WO2024060503A1 - 油泵装置和车辆 - Google Patents

油泵装置和车辆 Download PDF

Info

Publication number
WO2024060503A1
WO2024060503A1 PCT/CN2023/076889 CN2023076889W WO2024060503A1 WO 2024060503 A1 WO2024060503 A1 WO 2024060503A1 CN 2023076889 W CN2023076889 W CN 2023076889W WO 2024060503 A1 WO2024060503 A1 WO 2024060503A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
pump
motor
shaft
oil
Prior art date
Application number
PCT/CN2023/076889
Other languages
English (en)
French (fr)
Inventor
付威
孙冬冬
黄瀚平
Original Assignee
安徽威灵汽车部件有限公司
广东威灵汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211141383.5A external-priority patent/CN117780632A/zh
Priority claimed from CN202222481588.XU external-priority patent/CN218816950U/zh
Application filed by 安徽威灵汽车部件有限公司, 广东威灵汽车部件有限公司 filed Critical 安徽威灵汽车部件有限公司
Publication of WO2024060503A1 publication Critical patent/WO2024060503A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the present application relates to the technical field of pump structures, and specifically to an oil pump device and a vehicle.
  • the shaft and the pump motor rotor are two parts, and the connection method between them needs to be considered during assembly.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • an embodiment of the first aspect of the present application provides an oil pump device.
  • An embodiment of the second aspect of the present application provides a vehicle.
  • an embodiment of the first aspect of the present application provides an oil pump device, including: a motor structure including a drive shaft that rotates around an axis extending in the axial direction; a pump structure including a pump housing; The pump rotor located in the pump housing drives the pump rotor to rotate through the rotation of the drive shaft to discharge the fluid medium; the pump housing includes: a pump body and a pump cover located at one axial end of the pump body. There is a pump cover between the pump body and the pump cover.
  • the pump rotor is located in the receiving part; the pump rotor specifically includes a first rotor part and a second rotor structure that mesh with each other; wherein the drive shaft and the first rotor part are integrally formed
  • the above technical solution also includes: a motor housing, a motor cavity is formed in the motor housing, and a motor structure is provided in the motor cavity; a pump cavity is formed in the pump housing to accommodate the pump rotor, and the drive shaft extends through the motor cavity into the pump. cavity.
  • the above technical solution also includes: a bearing groove provided on the motor cavity; a bearing provided in the bearing groove, and the drive shaft passes through the bearing.
  • the above technical solution also includes: an oil seal groove, which is provided on the motor cavity; an oil seal, which is provided in the oil seal groove; and the driving shaft passes through the oil seal.
  • a plurality of first teeth are provided on the radially outer side of the first rotor part, and a plurality of second teeth are provided on the radial outer side of the second rotor structure.
  • the first rotor part meshes externally with the second rotor structure.
  • a plurality of first teeth are provided on the radially outer side of the first rotor part, and a plurality of second teeth are provided on the radial inner side of the second rotor structure.
  • the first rotor part meshes with the second rotor structure internally.
  • the above technical solution also includes: a shaft protrusion located at one end of the first rotor part away from the drive shaft; a groove part located at an end of the pump cover facing the casing; the circumferential outer wall of the shaft protrusion and the groove wall of the groove part Slip fit.
  • the above technical solution also includes: a first shaft groove portion, located at an end of the first rotor portion away from the drive shaft; a protrusion, corresponding to the first shaft groove portion, located at an end of the pump cover facing the casing, and the protruding circumference
  • the outer wall is slidably engaged with the groove wall of the first shaft groove portion.
  • the groove bottom of the first shaft groove part is circular or annular, and the center line of the first shaft groove part is located on the axis of the drive shaft.
  • the above technical solution also includes: a second shaft groove portion, which is arranged at one end of the first rotor portion close to the motor cavity; a matching portion, which is arranged on the casing corresponding to the second shaft groove portion, and the matching portion is slidably matched with the second shaft groove portion.
  • the above technical solution also includes: an oil delivery channel, which is provided on the pump cover.
  • the oil delivery channel runs through both end surfaces of the pump cover, and at least part of the projection of the oil delivery channel on the end surface is connected with the second rotor structure and the first rotor.
  • the projection of the gap at the end on the end face has an overlapping portion.
  • the casing specifically includes a motor cavity and a pump cavity distributed along the axial direction, the motor structure is located in the motor cavity, and at least part of the first rotor part and the second rotor structure are located in the pump cavity.
  • the radial dimension of the first rotor part is larger than the radial dimension of the drive shaft.
  • the driving axis is a stepped axis or an optical axis.
  • the motor structure specifically includes: a motor stator and a motor rotor arranged coaxially, the driving shaft is connected to the motor rotor, and the rotation of the motor rotor drives the driving shaft to rotate together.
  • An embodiment of the second aspect of the present application provides a vehicle, including: a vehicle body; any oil pump device in the above first aspect, located in the vehicle body; and a transmission structure located in the vehicle body, and the transmission structure is connected to the oil pump device.
  • the first rotor part and the drive shaft are integrally formed, so that during the assembly process, the first rotor part is supported by the pump body, which can reduce the number of parts and the assembly process.
  • Figure 1 shows a schematic structural diagram of an oil pump device according to an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of an oil pump device according to an embodiment of the present application
  • FIG3 shows a schematic structural diagram of an oil pump device according to an embodiment of the present application.
  • Figure 4 shows a schematic structural diagram of an oil pump device according to an embodiment of the present application
  • Figure 5 shows a schematic structural diagram of an oil pump device according to an embodiment of the present application
  • FIG6 shows a schematic structural diagram of an oil pump device according to an embodiment of the present application.
  • Figure 7 shows a schematic structural diagram of an oil pump device according to an embodiment of the present application.
  • Figure 8 shows a schematic structural diagram of a pump body according to an embodiment of the present application.
  • Figure 9 shows a schematic structural diagram of the drive shaft and the first rotor part according to one embodiment of the present application.
  • Figure 10 shows a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • Oil pump device 100: Oil pump device; 102: Motor housing; 1024: Motor cavity; 1026: Pump cavity; 103: Pump structure; 1032: Pump housing; 104: Pump cover; 1042: Oil delivery channel; 105: Pump body; 106: First rotor part; 1065: first tooth; 108: second rotor structure; 1082: second tooth; 110: motor structure; 1101: drive shaft; 1102: motor rotor; 1104: motor stator; 1122: shaft convex portion; 1124: Groove; 1142: First shaft groove; 1144: Protrusion; 1162: Second shaft groove; 1164: Fitting part; 1182: Bearing groove; 1184: Bearing; 200: Vehicle; 202: Car body; 204 : Transmission structure.
  • an oil pump device 100 proposed in this embodiment mainly includes two parts: a motor structure 110 and a pump structure 103.
  • the motor structure 110 includes a drive shaft 1101, and the drive shaft 1101 extends around an axially extending The axis rotates
  • the pump structure 103 includes a pump housing 1032 and a pump rotor.
  • the pump rotor rotates in the same manner when the drive shaft rotates, and can rotate relative to the pump housing 1032, thereby affecting the fluid medium, such as lubricating oil.
  • Certain pressure driving effect is provided.
  • the pump housing 1032 mainly includes an axially arranged pump body 105 and a pump cover 104. A storage portion is provided between the pump cover 104 and the pump body 105 for storing the pump rotor.
  • a part of the storage portion can be It is located in the pump body 105 and a part of it is located in the pump cover 104, or the receiving part can be completely disposed in the pump body 105 or the pump cover 104.
  • the pump rotor it includes a meshed first rotor part 106 and a second rotor structure 108, wherein the first rotor part 106 and the drive shaft 1101 are integrally formed, so that during the assembly process, the pump body 105 A rotor part 106 is used for support, which can reduce the number of parts and assembly processes.
  • the first rotor part 106 adopts an integrated structure, and the drive shaft 1101 that rotates together with the motor rotor and the first rotor part 106 that cooperates with the second rotor structure 108 are manufactured as one piece, and the first rotor part 106 is supported by the pump body 105 or by an added rolling bearing.
  • the coaxiality of the drive shaft 1101 and the first rotor part 106 can be greatly improved, and the overall axial dimension of the first rotor part 106 can also be compressed.
  • the driving shaft 1101 is directly slidably matched with the pump body.
  • the lubricating oil will form an oil film, so that no additional oil is added.
  • the bearing structure it can have an effect similar to that of a sliding bearing.
  • the larger diameter drive shaft 1101 can greatly reduce the axial size by only increasing a part of the radial size.
  • the radial size of the oil pump device is usually affected by the size of the motor structure 110.
  • connection method between the drive shaft 1101 and the motor rotor includes but is not limited to interference fit, key fit, thread fit, spline fit, adhesive fit, etc.
  • the motor housing 102 has a cavity, that is, the motor cavity 1024, thereby protecting the motor structure.
  • the motor cavity 1024 For the pump housing, it will protect the internal structure of the pump cavity.
  • the pump rotor plays a protective role and reduces the influence of the external environment.
  • the drive shaft 1101 integrally formed with the first rotor part 106 can achieve relative sliding rotation relative to the pump housing 1032 .
  • the motor housing 102 and the pump housing 1032 may be made into an integral structure.
  • the motor housing 102 and the pump housing 1032 can also be made into separate structures.
  • the lubricating oil is driven by the meshing of the first teeth 1065 and the second teeth 1082 .
  • first rotor portion 106 is provided with external teeth, ie, first teeth 1065
  • second rotor structure 108 is provided with internal teeth, ie, second teeth 1082 .
  • first rotor portion 106 is provided with external teeth, ie, first teeth 1065
  • second rotor structure 108 is provided with external teeth, ie, second teeth 1082 .
  • first teeth 1065 and the second teeth 1082 are not fully meshed.
  • the first pair of teeth have not yet disengaged, and the second pair of teeth have entered meshing.
  • the tooth surface of each first tooth 1065 will contact the tooth surface of the second tooth 1082 to form a closed cavity.
  • the volume of the closed cavity will change. If the unloading channel cannot be connected, an oil-trapped volume will be formed. Since the compressibility of the liquid is very small, when the oil-trapped volume changes from large to small, the liquid in the oil-trapped volume is squeezed, and the pressure rises sharply.
  • the liquid (generally lubricating oil) in the oil-trapped volume is also forcibly squeezed out from all leakable gaps, so that the drive shaft 1101 and the bearing 1184 will bear a large impact load, increase power loss and make the oil heat up, cause noise and vibration, and reduce the working stability and life of the gear pump.
  • the oil-trapped volume changes from small to large, a vacuum is formed, so that the air dissolved in the liquid is separated to produce bubbles, which brings hazards such as cavitation, noise, vibration, flow and pressure pulsation.
  • the method for eliminating the oil trapped phenomenon is to open unloading grooves on the two end covers of the gear so that when the closed volume decreases, the unloading groove is connected to the oil pressure chamber, and when the closed volume increases, it is connected to the oil suction chamber through the unloading groove.
  • the first rotor part 106 meshes with the conjugate curved tooth profile of the second rotor structure 108, and each tooth contacts each other, driving the second rotor structure 108 to rotate in the same direction.
  • the first rotor part 106 divides the inner cavity of the second rotor structure 108 into multiple working cavities.
  • the centers of the first rotor part 106 and the second rotor structure 108 do not coincide with each other, but are offset.
  • the volumes of the multiple working chambers change with the rotation of the motor rotor 1102, and a certain vacuum is formed in the area with increased volume.
  • the oil port is set at this location, and the pressure increases in the area where the volume decreases, and the oil outlet is set here accordingly.
  • a motor cavity 1024 and a pump cavity 1026 are also provided. By axially distributing the two, it is easier to use the structure of the motor structure to drive the pump body, that is, the first rotor part 106 will be driven under the action of the motor rotor 1102 Turn together.
  • part of the first rotor part 106 may be disposed in the pump chamber 1026, or the entire first rotor part 106 may be disposed in the pump chamber 1026.
  • a bearing groove 1182 and a bearing 1184 are separately provided.
  • the motor housing 102 is directly provided with a bearing groove 1182. After the bearing 1184 is placed in the bearing groove 1182, the drive shaft 1101 of the first rotor part 106 can be directly passed through the bearing 1184 to achieve support.
  • the position of the bearing groove 1182 can be provided at the end of the motor structure. Furthermore, it can be disposed at one end of the motor structure facing the second rotor structure 108 , that is, it can be disposed at the middle portion in the axial direction.
  • the bearing 1184 located in the bearing groove 1182 can be a rolling bearing 1184 or a sliding bearing 1184, as long as it plays a supporting role.
  • an oil seal groove and an oil seal are separately provided.
  • the oil seal By arranging the oil seal on the drive shaft, a part of the motor cavity is directly opened with an oil seal groove. After the oil seal is placed in the oil seal groove, the drive shaft can be directly passed through the oil seal, so that sealing is achieved under the action of the oil seal, thereby preventing the liquid medium from flowing into the motor structure.
  • the position of the oil seal groove it can be arranged at the end of the motor structure. Furthermore, it can be disposed at one end of the motor structure facing the second rotor structure, that is, it can be disposed at the middle portion in the axial direction.
  • a bearing groove and an oil seal groove are provided at the same time.
  • neither a bearing groove nor an oil seal groove is provided.
  • an oil pump device 100 proposed in this embodiment mainly includes two parts: a motor structure 110 and a pump structure 103.
  • the motor structure 110 includes a drive shaft 1101, and the drive shaft 1101 extends around an axially extending The axis rotates
  • the pump structure 103 includes a pump housing 1032 and a pump rotor.
  • the pump rotor rotates in the same manner when the drive shaft rotates, and can rotate relative to the pump housing 1032, thereby affecting the fluid medium, such as lubricating oil.
  • Certain pressure driving effect is provided.
  • the pump housing 1032 mainly includes an axially arranged pump body 105 and a pump cover 104. A storage portion is provided between the pump cover 104 and the pump body 105 for storing the pump rotor.
  • a part of the storage portion can be It is located in the pump body 105 and a part of it is located in the pump cover 104, or the receiving part can be completely disposed in the pump body 105 or the pump cover 104.
  • the pump rotor it includes a meshed first rotor part 106 and a second rotor structure 108, wherein the first rotor part 106 and the drive shaft 1101 are integrally formed, so that during the assembly process, the pump body 105 A rotor part 106 is used for support, which can reduce the number of parts and assembly processes.
  • the first rotor part 106 adopts an integrated structure.
  • the drive shaft 1101 that rotates together with the motor rotor and the first rotor part 106 that cooperates with the second rotor structure 108 are integrally formed and manufactured, and the pump body 105 is used to
  • the first rotor part 106 supports and is integrally formed, which can greatly improve the coaxiality between the drive shaft 1101 and the first rotor part 106 and at the same time compress the overall axial dimension of the first rotor part 106.
  • the outer end of the first rotor part 106 is provided with a shaft convex part 1122
  • the pump cover 104 is provided with a groove part 1124 corresponding in shape and position.
  • the shaft protrusion 1122 can be used as another carrier for sliding fit.
  • the shaft protrusion 1122 can be driven to rotate together, so that the outer wall of the shaft protrusion 1122 is opposite to the groove wall of the groove part 1124. slide.
  • the shaft convex portion 1122 can also play a certain positioning role for the installation of the pump cover 104, and can also be restricted by the groove portion 1124 in the radial direction, thereby reducing movement in the radial direction.
  • the shaft convex portion 1122 and the first rotor portion 106 are also integrally formed.
  • the shaft convex portion 1122 can have an effect similar to the end bearing 1184 and cooperate with the groove portion to form a friction pair to provide support.
  • the shaft convex portion 1122 directly extends into the pump cover 104, and the pump cover 104 is provided with an indented groove portion 1124, it can also be realized by using the original structure without increasing the axial dimension. Enhance the effect of support.
  • the driving shaft 1101 is directly slidably matched with the pump body 105.
  • the lubricating oil will form an oil film.
  • the effect similar to sliding bearing 1184 can be achieved.
  • the number of bearing 1184 structures can be reduced.
  • a larger diameter drive shaft 1101 can be used, so that only a part of the radial dimension is increased to greatly reduce the axial dimension.
  • the radial dimension of the oil pump device 100 is usually affected by the size of the motor structure.
  • the drive shaft 1101 has a larger optional range, so part of the radial size can be sacrificed in exchange for a reduction in the axial size, thereby reducing the axial size without increasing the radial size of the oil pump device 100. Size effect.
  • an oil pump device 100 proposed in this embodiment mainly includes two parts: a motor structure 110 and a pump structure 103.
  • the motor structure 110 includes a drive shaft 1101, and the pump structure 103 It includes a pump housing 1032 and a pump rotor.
  • the pump rotor can rotate relative to the pump housing 1032, thereby exerting a certain pressure driving effect on the fluid medium, such as lubricating oil.
  • the pump housing 1032 mainly includes an axially arranged pump body 105 and a pump cover 104.
  • a storage portion is provided between the pump cover 104 and the pump body 105 for storing the pump rotor.
  • a part of the storage portion can be It is located in the pump body 105 and a part of it is located in the pump cover 104, or the receiving part can be completely disposed in the pump body 105 or the pump cover 104.
  • the pump rotor it includes a meshed first rotor part 106 and a second rotor structure 108, wherein the first rotor part 106 and the drive shaft 1101 are integrally formed, so that during the assembly process, the pump body 105 A rotor part 106 is used for support, which can reduce the number of parts and assembly processes.
  • the first rotor part 106 adopts an integrated structure.
  • the drive shaft 1101 that rotates together with the motor rotor and the first rotor part 106 that cooperates with the second rotor structure 108 are integrally formed and manufactured, and the pump body 105 is used to
  • the first rotor part 106 supports and is integrally formed, which can greatly improve the coaxiality between the drive shaft 1101 and the first rotor part 106 and at the same time compress the overall axial dimension of the first rotor part 106.
  • a first shaft groove portion 1142 is provided at the outer end of the first rotor portion 106, and a protrusion 1144 with corresponding shape and position is provided on the pump cover 104. With the cooperation of the first shaft groove portion 1142 and the protrusion 1144 , the first shaft groove portion 1142 can be used as another carrier for sliding fit. When the motor rotor 1102 rotates, the first shaft groove portion 1142 can be driven to rotate together, so that the groove wall of the first shaft groove portion 1142 and the outer wall of the protrusion 1144 relative sliding.
  • first shaft groove portion 1142 can also play a certain positioning role for the installation of the pump cover 104, and can also be restricted by the protrusions 1144 in the radial direction, thereby reducing movement in the radial direction. .
  • first shaft groove portion 1142 and the first rotor portion 106 are also integrally formed.
  • the first shaft groove portion 1142 can have an effect similar to the end bearing 1184 and cooperate with the groove portion to form a friction pair to provide support.
  • the protrusion 1144 on the pump cover 104 directly extends into the first shaft groove 1142, the original structure can also be used to achieve the enhanced support effect without increasing the axial dimension.
  • the first shaft groove portion 1142 is a circular groove.
  • the first shaft groove portion 1142 is an annular groove, that is, the bottom of the groove is circular or annular.
  • the center line of the first shaft groove portion 1142 is arranged on the drive shaft. 1101, so that when the first rotor part 106 is driven to rotate by the motor rotor 1102, the first shaft groove part 1142 will cooperate with the protrusion 1144 on the pump cover 104.
  • the second rotor structure 108 is sleeved radially outside the first rotor part 106, in order to achieve the effect of pressurization and driving, the second rotor structure 108 will be arranged eccentrically relative to the first rotor part 106.
  • first rotor part 106 adopts an integrated structure.
  • the drive shaft 1101 that rotates together with the motor rotor 1102 and the first rotor part 106 that cooperates with the second rotor structure 108 are integrally formed and manufactured, and the pump body is used to
  • the support provided by the first rotor part 106 can greatly improve the coaxiality between the drive shaft 1101 and the first rotor part 106 and at the same time compress the overall axial dimension of the first rotor part 106 .
  • an oil pump device 100 proposed in this embodiment mainly includes a pump body 105 and a pump cover 104 located at one end of the pump body 105.
  • the pump body 105 has a pump cavity 1026. On the one hand, it can play a role in improving the internal structure.
  • the protection function reduces the influence of the external environment and can support the internal first rotor part 106, the second rotor structure 108 and the motor structure.
  • the driving shaft 1101 of the first rotor part 106 can be relative to the pump body.
  • 105 realizes relative sliding rotation.
  • the motor structure mainly includes a coaxial motor rotor 1102 and a motor stator 1104.
  • the motor stator 1104 is fixedly installed in the pump body 105, and the motor rotor 1102 can rotate relative to the motor stator 1104. At this time, due to the 1026 is also provided with an integrated first rotor part 106.
  • the drive shaft 1101 can directly extend into the motor rotor 1102, so that when the motor rotor 1102 rotates under the action of the motor stator 1104, it will drive the first rotor part 106 to rotate together, thereby achieving Cooperating with the second rotor structure 108, it exerts a certain pressurizing and driving effect on the lubricating oil between the first rotor part 106 and the second rotor structure 108.
  • a second shaft groove portion 1162 is provided at the inner end of the first rotor portion 106, and a matching portion 1164 of a matching shape is provided at a relative position of the pump body 105.
  • the second shaft groove portion 1162 can serve as another sliding matching carrier.
  • the second shaft groove portion 1162 can be driven to rotate together, so that the groove wall of the second shaft groove portion 1162 and the outer wall of the matching portion 1164 slide relative to each other.
  • the second shaft groove portion 1162 can also play a certain positioning role in the installation of the pump cover 104, and can also be restricted by the protrusion 1144 in the radial direction, thereby reducing the movement in the radial direction.
  • first rotor part 106 adopts an integrated structure.
  • the drive shaft 1101 that rotates together with the motor rotor 1102 and the first rotor part 106 that cooperates with the second rotor structure 108 are integrally formed and manufactured, and the pump body is used to
  • the support provided by the first rotor part 106 can greatly improve the coaxiality between the drive shaft 1101 and the first rotor part 106 and at the same time compress the overall axial dimension of the first rotor part 106 .
  • a penetrating oil delivery channel 1042 is provided on the pump cover 104 so that lubricating oil can be input into the pump chamber 1026 without disassembling the pump cover 104 .
  • the oil delivery channel 1042 and the gap between the first rotor part 106 and the second rotor structure 108 have an overlapping area in the axial direction. Therefore, by inputting lubricating oil on the outer end surface of the pump cover 104, the lubricating oil will It flows into the first rotor portion 106 and the second rotor structure 108 along the oil delivery passage 1042 .
  • the radial size of the first rotor part 106 is limited, and the radial size of the first rotor part 106 is defined to be larger so as to cooperate with the second rotor structure 108 to realize the oil pump. role.
  • the driving shaft 1101 can directly use an optical axis to facilitate processing, or as shown in Figure 5, a stepped shaft can be used to achieve axial positioning according to the steps to facilitate assembly.
  • the structure of the step part can be used to process the step part again, for example, rolling bearings or sealing structures can be provided.
  • the motor structure 110 mainly includes a coaxial motor rotor 1102 and a motor stator 1104.
  • the motor stator 1104 is fixedly arranged in the motor shell 102, and the motor rotor 1102 can be rotated relative to the motor stator 1104. rotation.
  • the driving shaft 1101 can directly extend into the motor rotor 1102, so that when the motor rotor 1102 rotates under the action of the motor stator 1104, it will drive the first rotor part 106.
  • the rotor part 106 rotates together and cooperates with the second rotor structure 108 , thereby exerting a certain pressurizing and driving effect on the lubricating oil between the first rotor part 106 and the second rotor structure 108 .
  • this embodiment proposes a vehicle 200, including a vehicle body 202 and a motor structure arranged in the vehicle body 202.
  • the shell mainly plays a certain protective role for the motor oil pump.
  • a transmission structure 204 is provided in the vehicle body 202. Since the motor structure is provided in the vehicle body 202, it has the beneficial effects of any motor structure in the above-mentioned second aspect embodiment, which will not be repeated here.
  • the transmission structure 204 may be one or more of an engine, a reducer, a two-in-one electric drive system, and a three-in-one electric drive system assembly.
  • the vehicle 200 may be a special vehicle 200, and the vehicle 200 has all the advantages of the oil pump device 100. It is worth mentioning that the vehicle 200 can be a traditional fuel vehicle or a new energy vehicle. Among them, new energy vehicles include pure electric vehicles, extended-range electric vehicles, hybrid vehicles, fuel cell electric vehicles, hydrogen engine vehicles, etc.
  • the first rotor part adopts an integrated structure.
  • the drive shaft that rotates together with the motor rotor and the first rotor part that cooperates with the second rotor structure are integrally formed and manufactured, and the pump body is used to
  • the support of the first rotor part can greatly improve the coaxiality between the drive shaft and the first rotor part, and at the same time, it can also compress the overall axial size of the first rotor part, reduce the number of parts, and reduce the assembly process.
  • connection can be a fixed connection, a detachable connection, or an integral connection; “connection” can be Either directly or indirectly through an intermediary.
  • connection can be Either directly or indirectly through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

一种油泵装置和车辆,其中,油泵装置(100)包括:电机结构(110),电机结构包括驱动轴(1101),驱动轴(1101)绕沿轴向延伸的轴线旋转;泵结构(103),包括泵壳体(1032)以及设于泵壳体(1032)的泵转子;泵壳体(1032)包括:泵体(105)和设于泵体(105)的轴向一端的泵盖(104),泵体(105)和泵盖(104)之间设有收纳部,泵转子位于收纳部内;泵转子具体包括相互啮合的第一转子部(106)和第二转子结构(108);其中,驱动轴(1101)与第一转子部(106)一体成型。该油泵装置(100)中第一转子部(106)采用一体式的结构,将与电机转子(1102)一同转动的驱动轴(1101)和与第二转子结构(108)配合的第一转子部(106)一体成型制造,并利用机壳和泵体对第一转子部(106)进行支撑,可减少零件数量、减少装配工序,同时也可压缩整体的轴向尺寸。

Description

油泵装置和车辆
本申请要求于2022年09月20日提交中国国家知识产权局、申请号为“202211141383.5”、申请名称为“油泵装置和车辆”的中国专利申请以及于2022年09月20日提交中国国家知识产权局、申请号为“202222481588.X”、申请名称为“油泵装置和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及泵结构技术领域,具体而言,涉及一种油泵装置和一种车辆。
背景技术
目前,现有泵体内,轴和泵的电机转子是两个部件,装配的时候需要考虑它们之间的连接方式。
技术问题
现有技术中,需要增加一道轴和电机转子之间的装配工序和相应的成本。
技术解决方案
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
有鉴于此,本申请第一方面的实施例提供了一种油泵装置。
本申请第二方面的实施例提供了一种车辆。
为了实现上述目的,本申请第一方面的实施例提供了一种油泵装置,包括:电机结构,电机结构包括驱动轴,驱动轴绕沿轴向延伸的轴线旋转;泵结构,包括泵壳体以及设于泵壳体的泵转子,通过驱动轴转动带动泵转子转动以排出流体介质;泵壳体包括:泵体和设于泵体的轴向一端的泵盖,泵体和泵盖之间设有收纳部,泵转子位于收纳部内;泵转子具体包括相互啮合的第一转子部和第二转子结构;其中,驱动轴与第一转子部一体成型
上述技术方案中,还包括:电机壳,电机壳内形成有电机腔,电机腔内设有电机结构;泵壳体内形成有容纳泵转子的泵腔,驱动轴穿过电机腔伸入泵腔。
上述技术方案中,还包括:轴承槽,设于电机腔上;轴承,设于轴承槽内,驱动轴穿过轴承。
上述技术方案中,还包括:油封槽,设于电机腔上;油封,设于油封槽内,驱动轴穿过油封。
上述技术方案中,第一转子部的径向外侧设有多个第一齿,第二转子结构的径向外侧设有多个第二齿,第一转子部与第二转子结构外啮合。
上述技术方案中,第一转子部的径向外侧设有多个第一齿,第二转子结构的径向内侧设有多个第二齿,第一转子部与第二转子结构内啮合。
上述技术方案中,还包括:轴凸部,设于第一转子部远离驱动轴的一端;槽部,设于泵盖朝向机壳的一端,轴凸部的周向外壁与槽部的槽壁滑动配合。
上述技术方案中,还包括:第一轴槽部,设于第一转子部远离驱动轴的一端;凸起,与第一轴槽部对应设于泵盖朝向机壳的一端,凸起的周向外壁与第一轴槽部的槽壁滑动配合。
上述技术方案中,第一轴槽部的槽底呈圆形或环形,第一轴槽部的中心线位于驱动轴的轴线上。
上述技术方案中,还包括:第二轴槽部,设于第一转子部靠近电机腔的一端;配合部,与第二轴槽部对应设于机壳上,配合部与第二轴槽部滑动配合。
上述技术方案中,还包括:输油通道,设于泵盖上,输油通道贯通泵盖的两个端面,且至少部分输油通道在端面上的投影,与第二转子结构和第一转子部的间隙在端面上的投影存在重叠部分。
上述技术方案中,机壳具体包括沿轴向分布的电机腔和泵腔,电机结构设于电机腔内,至少部分第一转子部和第二转子结构设于泵腔内。
上述技术方案中,第一转子部的径向尺寸大于驱动轴的径向尺寸。
上述技术方案中,驱动轴为阶梯轴或光轴。
上述技术方案中,电机结构具体包括:同轴设置的电机定子和电机转子,驱动轴与电机转子相连,电机转子转动带动驱动轴一同转动。
本申请第二方面的实施例提供了一种车辆,包括:车体;上述第一方面中的任一油泵装置,设于车体内;传动结构,设于车体内,传动结构与油泵装置相连。
有益效果
本申请中第一转子部与驱动轴是一体成型的,从而在装配过程中,通过泵体对第一转子部进行支撑,可减少零件数量,减少装配工序。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
图1示出了根据本申请的一个实施例的油泵装置的结构示意图;
图2示出了根据本申请的一个实施例的油泵装置的结构示意图;
图3示出了根据本申请的一个实施例的油泵装置的结构示意图;
图4示出了根据本申请的一个实施例的油泵装置的结构示意图;
图5示出了根据本申请的一个实施例的油泵装置的结构示意图;
图6示出了根据本申请的一个实施例的油泵装置的结构示意图;
图7示出了根据本申请的一个实施例的油泵装置的结构示意图;
图8示出了根据本申请的一个实施例的泵体的结构示意图;
图9示出了根据本申请的一个实施例的驱动轴和第一转子部的结构示意图;
图10示出了根据本申请的一个实施例的车辆的结构示意图。
其中,图1至图10中附图标记与部件名称之间的对应关系为:
100:油泵装置;102:电机壳;1024:电机腔;1026:泵腔;103:泵结构;1032:泵壳体;104:泵盖;1042:输油通道;105:泵体;106:第一转子部;1065:第一齿;108:第二转子结构;1082:第二齿;110:电机结构;1101:驱动轴;1102:电机转子;1104:电机定子;1122:轴凸部;1124:槽部;1142:第一轴槽部;1144:凸起;1162:第二轴槽部;1164:配合部;1182:轴承槽;1184:轴承;200:车辆;202:车体;204:传动结构。
本发明的实施方式
为了能够更清楚地理解本申请的实施例的上述目的、特征和优点,下面结合附图和具体实施方式对本申请的实施例进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请的实施例还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不限于下面公开的具体实施例的限制。
下面参照图1至图10描述根据本申请的一些实施例。
如图1所示,本实施例提出的一种油泵装置100,主要包括电机结构110和泵结构103两个部分,其中,电机结构110包括有驱动轴1101,驱动轴1101绕沿轴向延伸的轴线旋转,泵结构103则包括有泵壳体1032和泵转子,泵转子在驱动轴转动的情况下发生相同的转动,可以相对于泵壳体1032转动,从而对流体介质,例如润滑油起到一定的加压驱动效果。具体地,泵壳体1032主要包括有轴向设置的泵体105和泵盖104,泵盖104和泵体105之间设置有收纳部,用于收纳泵转子,可以理解,收纳部的一部分可以位于泵体105内,一部分位于泵盖104内,或者收纳部可完全设置在泵体105内或泵盖104内。对于泵转子而言,其包括啮合的第一转子部106和第二转子结构108,其中,第一转子部106与驱动轴1101是一体成型的,从而在装配过程中,通过泵体105对第一转子部106进行支撑,可减少零件数量,减少装配工序。
需要强调的是,如图9所示,第一转子部106采用一体式的结构,将与电机转子一同转动的驱动轴1101和与第二转子结构108配合的第一转子部106一体成型制造,并利用泵体105或利用加装的滚动轴承对第一转子部106进行支撑,通过一体成型,可极大的提高驱动轴1101与第一转子部106的同轴度,同时也可压缩第一转子部106整体的轴向尺寸。
可以理解,对于油泵装置而言,直接将驱动轴1101与泵体滑动配合,在泵体和驱动轴1101之间存在较小的间隙的基础上,润滑油会形成油膜,从而在不增加额外的轴承结构的基础上,即可起到类似于滑动轴承的效果,充分利用油泵结构103的特性,可减少轴承结构的数量,但需要补充的是,为了保证二者之间的油膜厚度,可采用较大直径的驱动轴1101,使得仅需增加一部分径向尺寸,即可极大程度的降低轴向尺寸,而油泵装置的径向尺寸通常受到电机结构110的尺寸影响,对于驱动轴1101而言,具有较大的可选范围,故而可通过增加一部分泵体105内部的径向尺寸换取整机的外部轴向尺寸,从而使得在不增加油泵装置外在的径向尺寸的基础上,实现降低整机外在轴向尺寸的效果。
其中,驱动轴1101与电机转子之间的连接方式包括但不限于过盈配合、键配合、螺纹配合、花键配合、粘胶配合等。
进一步地,通过设置电机壳102,电机壳102具有腔体,即电机腔1024,从而可为电机结构起到保护的作用,对于泵壳体而言,则会对内部设于泵腔的泵转子起到保护作用,减少受外部环境的影响,尤其是与第一转子部106一体成型的驱动轴1101可相对于泵壳体1032实现相对滑动的转动。
在一个具体的实施例中,电机壳102和泵壳体1032可以做成一体结构。
在另一个具体的实施例中,电机壳102和泵壳体1032也可以做成分体结构。
对于第一转子部106和第二转子结构108而言,通过第一齿1065和第二齿1082的啮合实现对润滑油的驱动。
在一个实施例中,第一转子部106设有外齿,即第一齿1065,第二转子结构108设有内齿,即第二齿1082。
在另一个实施例中,第一转子部106设有外齿,即第一齿1065,第二转子结构108设有外齿,即第二齿1082。
可以理解,第一齿1065和第二齿1082并不是全部啮合的,在啮合过程中,前一对齿尚未脱离啮合,后一对齿已经进入啮合,每个第一齿1065的齿面均会与第二齿1082的齿面接触,形成密闭容腔,随着第一转子部106的自转,密闭容腔的体积会发生变化,如果不能连通卸荷通道,就会形成困油容积。由于液体的可压缩性很小,当困油容积由大变小时,存在于困油容积中的液体收到挤压,压力急剧升高,同时困油容积中的液体(一般为润滑油)也从一切可泄漏的缝隙中强行挤出,使得驱动轴1101和轴承1184都会承受很大的冲击载荷,增加功率损失并使得油发热,引起噪音和振动,降低齿轮泵的工作平稳性和寿命。当困油容积由小变大时形成真空,使得溶于液体中的空气分离出来产生气泡,带来气蚀、噪音、振动、流量和压力脉动等危害。消除困油现象的方法,采用在齿轮的两端盖上开卸荷槽,使得封闭容积减小时卸荷槽与压油腔连通,封闭容积增大时通过卸荷槽与吸油腔连通。
具体地,第一转子部106通过与第二转子结构108的共轭曲线齿形轮廓的啮合,每一个齿都相互接触,同方向带动第二转子结构108转动。第一转子部106将第二转子结构108内腔分隔为多个工作腔。
进一步地,第一转子部106和第二转子结构108的中心并不重合,是偏移的,多个工作腔容积随着电机转子1102的转动发生变化,容积增大的区域形成一定真空,进油口就设置在该部位,容积减小的区域压力提高,出油口则对应设置在此处。
其中,还设置有电机腔1024和泵腔1026,通过将二者轴向分布,更便于利用电机结构的结构对泵体进行驱动,也即在电机转子1102的作用下会带动第一转子部106一同转动。
需要说明的,根据具体形状的不同,可将第一转子部106的部分设置在泵腔1026中,或者全部第一转子部106设置在泵腔1026内。
进一步地,还单独设置有轴承槽1182和轴承1184,通过限制第一转子部106的驱动轴1101上设置轴承1184,可对驱动轴1101起到一定的支撑效果。具体地,电机壳102上直接开设有轴承槽1182,将轴承1184放置到轴承槽1182内后,可直接将第一转子部106的驱动轴1101穿过轴承1184,从而实现支撑。
其中,对于轴承槽1182的位置而言,可以设置在电机结构的端部。进一步,可以设置在电机结构朝向第二转子结构108的一端,也即设置在轴向中间部位。
其中,位于轴承槽1182内的轴承1184可以为滚动轴承1184,也可以为滑动轴承1184,只要保证起到支撑作用即可。
进一步地,还单独设置有油封槽和油封,通过在驱动轴上设置油封,电机腔的部分直接开设有油封槽,将油封放置到油封槽内后,可直接将驱动轴穿过油封,从而在油封的作用下实现密封,从而起到防止液体介质流入电机结构中的效果。
其中,对于油封槽的位置而言,可以设置在电机结构的端部。进一步,可以设置在电机结构朝向第二转子结构的一端,也即设置在轴向中间部位。
在另一个具体的实施例中,同时设置有轴承槽和油封槽。
在一个具体的实施例中,如图7所示,既不设置轴承槽,也不设置油封槽。
如图1所示,本实施例提出的一种油泵装置100,主要包括电机结构110和泵结构103两个部分,其中,电机结构110包括有驱动轴1101,驱动轴1101绕沿轴向延伸的轴线旋,泵结构103则包括有泵壳体1032和泵转子,泵转子在驱动轴转动的情况下发生相同的转动,可以相对于泵壳体1032转动,从而对流体介质,例如润滑油起到一定的加压驱动效果。具体地,泵壳体1032主要包括有轴向设置的泵体105和泵盖104,泵盖104和泵体105之间设置有收纳部,用于收纳泵转子,可以理解,收纳部的一部分可以位于泵体105内,一部分位于泵盖104内,或者收纳部可完全设置在泵体105内或泵盖104内。对于泵转子而言,其包括啮合的第一转子部106和第二转子结构108,其中,第一转子部106与驱动轴1101是一体成型的,从而在装配过程中,通过泵体105对第一转子部106进行支撑,可减少零件数量,减少装配工序。
需要强调的是,第一转子部106采用一体式的结构,将与电机转子一同转动的驱动轴1101和与第二转子结构108配合的第一转子部106一体成型制造,并利用泵体105对第一转子部106进行支撑,通过一体成型,可极大的提高驱动轴1101与第一转子部106的同轴度,同时也可压缩第一转子部106整体的轴向尺寸。
其中,如图2和图8所示,第一转子部106的外端设置有轴凸部1122,同时在泵盖104上设有形状位置相对应的槽部1124,在轴凸部1122和槽部1124的配合下,轴凸部1122可作为另一个滑动配合的载体,在电机转子1102转动时,可带动轴凸部1122一同转动,使得轴凸部1122的外壁与槽部1124的槽壁相对滑动。
此外,对于轴凸部1122而言,还可对泵盖104的安装起到一定的定位作用,同时也可在径向方向上受到槽部1124的限制,从而减少径向方向的窜动。
可以理解,轴凸部1122与第一转子部106也是一体成型的,轴凸部1122可作为类似于端部轴承1184的效果,与槽部配合形成摩擦副起到支撑的效果。同时,由于轴凸部1122是直接伸入到泵盖104内的,泵盖104则设有内陷的槽部1124,同样可以在不增加轴向尺寸的基础上,利用原有结构即可实现增强支撑的效果。
可以理解,对于油泵装置100而言,直接将驱动轴1101与泵体105滑动配合,在泵体105和驱动轴1101之间存在较小的间隙的基础上,润滑油会形成油膜,从而在不增加额外的轴承1184结构的基础上,即可起到类似于滑动轴承1184的效果,充分利用油泵结构的特性,可减少轴承1184结构的数量,但需要补充的是,为了保证二者之间的油膜厚度,可采用较大直径的驱动轴1101,使得仅需增加一部分径向尺寸,即可极大程度的降低轴向尺寸,而油泵装置100的径向尺寸通常受到电机结构的尺寸影响,对于驱动轴1101而言,具有较大的可选范围,故而可通过牺牲一部分径向尺寸换取轴向尺寸的减小,从而使得在不增加油泵装置100的径向尺寸的基础上,实现降低轴向尺寸的效果。
如图4、图5和图6所示,本实施例提出的一种油泵装置100,主要包括电机结构110和泵结构103两个部分,其中,电机结构110包括有驱动轴1101,泵结构103则包括有泵壳体1032和泵转子,泵转子可以相对于泵壳体1032转动,从而对流体介质,例如润滑油起到一定的加压驱动效果。具体地,泵壳体1032主要包括有轴向设置的泵体105和泵盖104,泵盖104和泵体105之间设置有收纳部,用于收纳泵转子,可以理解,收纳部的一部分可以位于泵体105内,一部分位于泵盖104内,或者收纳部可完全设置在泵体105内或泵盖104内。对于泵转子而言,其包括啮合的第一转子部106和第二转子结构108,其中,第一转子部106与驱动轴1101是一体成型的,从而在装配过程中,通过泵体105对第一转子部106进行支撑,可减少零件数量,减少装配工序。
需要强调的是,第一转子部106采用一体式的结构,将与电机转子一同转动的驱动轴1101和与第二转子结构108配合的第一转子部106一体成型制造,并利用泵体105对第一转子部106进行支撑,通过一体成型,可极大的提高驱动轴1101与第一转子部106的同轴度,同时也可压缩第一转子部106整体的轴向尺寸。
其中,第一转子部106的外端设置有第一轴槽部1142,同时在泵盖104上设有形状位置相对应的凸起1144,在第一轴槽部1142和凸起1144的配合下,第一轴槽部1142可作为另一个滑动配合的载体,在电机转子1102转动时,可带动第一轴槽部1142一同转动,使得第一轴槽部1142的槽壁与凸起1144的外壁相对滑动。
此外,对于第一轴槽部1142而言,还可对泵盖104的安装起到一定的定位作用,同时也可在径向方向上受到凸起1144的限制,从而减少径向方向的窜动。
可以理解,第一轴槽部1142与第一转子部106也是一体成型的,第一轴槽部1142可作为类似于端部轴承1184的效果,与槽部配合形成摩擦副起到支撑的效果。同时,由于泵盖104上的凸起1144是直接伸入到第一轴槽部1142内的,同样可以在不增加轴向尺寸的基础上,利用原有结构即可实现增强支撑的效果。
在一个具体的实施例中,如图4所示,第一轴槽部1142为圆槽。
在另一个具体的实施例中,如图3所示,第一轴槽部1142为环形槽,即其槽底呈圆形或环形,通过将第一轴槽部1142的中心线设置在驱动轴1101上,使得在第一转子部106受电机转子1102带动转动的情况下,第一轴槽部1142会与泵盖104上的凸起1144相配合。
可以理解,由于第二转子结构108套设在第一转子部106的径向外侧,为了实现加压驱动的效果,会将第二转子结构108相对于第一转子部106偏心设置。
需要强调的是,第一转子部106采用一体式的结构,将与电机转子1102一同转动的驱动轴1101和与第二转子结构108配合的第一转子部106一体成型制造,并利用泵体对第一转子部106进行支撑,可极大的提高驱动轴1101与第一转子部106的同轴度,同时也可压缩第一转子部106整体的轴向尺寸。
如图1所示,本实施例提出的一种油泵装置100,主要包括泵体105和位于泵体105一端的泵盖104,泵体105具有泵腔1026,一方面可对内部的结构起到保护的作用,减少受外部环境的影响,可对内部的第一转子部106、第二转子结构108和电机结构起到支撑作用,尤其是第一转子部106的驱动轴1101可相对于泵体105实现相对滑动的转动。具体地,电机结构主要包括有同轴的电机转子1102和电机定子1104,电机定子1104固定设置在泵体105内,电机转子1102则可相对于电机定子1104发生转动,此时,由于在泵腔1026内还设有一体的第一转子部106,驱动轴1101可直接伸入电机转子1102,使得电机转子1102在电机定子1104作用下转动时,会带动第一转子部106一同发生转动,进而实现与第二转子结构108的配合,从而对第一转子部106和第二转子结构108之间的润滑油起到一定的加压驱动效果。
其中,如图6所示,第一转子部106的内端设置有第二轴槽部1162,同时在泵体105的相对位置上设有形状相适配的配合部1164,在第二轴槽部1162和配合部1164的配合下,第二轴槽部1162可作为另一个滑动配合的载体,在电机转子1102转动时,可带动第二轴槽部1162一同转动,使得第二轴槽部1162的槽壁与配合部1164的外壁相对滑动。
此外,对于第二轴槽部1162而言,还可对泵盖104的安装起到一定的定位作用,同时也可在径向方向上受到凸起1144的限制,从而减少径向方向的窜动。
需要强调的是,第一转子部106采用一体式的结构,将与电机转子1102一同转动的驱动轴1101和与第二转子结构108配合的第一转子部106一体成型制造,并利用泵体对第一转子部106进行支撑,可极大的提高驱动轴1101与第一转子部106的同轴度,同时也可压缩第一转子部106整体的轴向尺寸。
在上述任一实施例的基础上,在泵盖104上设置贯通的输油通道1042,可在不拆开泵盖104的情况下,向泵腔1026内输入润滑油。具体地,输油通道1042和第一转子部106与第二转子结构108之间的间隙在轴向方向上是存在重叠区域的,故而通过在泵盖104的外端面输入润滑油,润滑油会沿输油通道1042流入第一转子部106和第二转子结构108中。
在上述任一实施例的基础上,对第一转子部106的径向尺寸进行限定,限定第一转子部106的径向尺寸更大,以便于与第二转子结构108进行配合,从而实现油泵的作用。
在上述任一实施例的基础上,如图2所示,驱动轴1101可直接选用光轴,便于加工,或者如图5所示,选用阶梯轴,可根据阶梯实现轴向定位,便于装配。
在选用阶梯轴的基础上,可利用台阶部分的结构,对台阶部分进行再次加工,例如可设置滚动轴承,或者设置密封结构等。
在上述任一实施例的基础上,电机结构110主要包括有同轴的电机转子1102和电机定子1104,电机定子1104固定设置在电机壳102内,电机转子1102则可相对于电机定子1104发生转动,此时,由于在泵腔1026内还设有一体的第一转子部106,驱动轴1101可直接伸入电机转子1102,使得电机转子1102在电机定子1104作用下转动时,会带动第一转子部106一同发生转动,进而实现与第二转子结构108的配合,从而对第一转子部106和第二转子结构108之间的润滑油起到一定的加压驱动效果。
实施例
如图10所示,本实施例提出了一种车辆200,包括车体202以及设于车体202内的电机结构,壳体主要对电机油泵起到一定的保护作用,同时在车体202内设有传动结构204,由于车体202内设置有电机结构,故而具有上述第二方面实施例中任一电机结构的有益效果,在此不再赘述。
其中,传动结构204可以为发动机、减速器、二合一电驱动系统和三合一电驱动系统总成中的一个或多个。
其中,车辆200可以为特种车辆200,且车辆200具有油泵装置100的所有优点。值得说明的是,车辆200可以为传统的燃油车,也可以为新能源汽车。其中,新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车等。
根据本申请提供的油泵装置和车辆,第一转子部采用一体式的结构,将与电机转子一同转动的驱动轴和与第二转子结构配合的第一转子部一体成型制造,并利用泵体对第一转子部进行支撑,可极大的提高驱动轴与第一转子部的同轴度,同时也可压缩第一转子部整体的轴向尺寸,减少零件数量,减少装配工序。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种油泵装置,其中,包括:
    电机结构,所述电机结构包括驱动轴,所述驱动轴绕沿轴向延伸的轴线旋转;
    泵结构,包括泵壳体以及设于所述泵壳体的泵转子,通过所述驱动轴转动带动所述泵转子转动以排出流体介质;
    所述泵壳体包括:泵体和设于所述泵体的轴向一端的泵盖,所述泵体和所述泵盖之间设有收纳部,所述泵转子位于所述收纳部内;
    所述泵转子具体包括相互啮合的第一转子部和第二转子结构;
    其中,所述驱动轴与所述第一转子部一体成型。
  2. 根据权利要求1所述的油泵装置,其中,还包括:
    电机壳,所述电机壳内形成有电机腔,所述电机腔内设有所述电机结构;
    所述泵壳体内形成有容纳所述泵转子的泵腔,所述驱动轴穿过所述电机腔伸入所述泵腔。
  3. 根据权利要求2所述的油泵装置,其中,还包括:
    轴承槽,设于所述电机腔上;
    轴承,设于所述轴承槽内,所述驱动轴穿过所述轴承。
  4. 根据权利要求2所述的油泵装置,其中,还包括:
    油封槽,设于所述电机腔上;
    油封,设于所述油封槽内,所述驱动轴穿过所述油封。
  5. 根据权利要求1至4中任一项所述的油泵装置,其中,所述第一转子部的径向外侧设有多个第一齿,所述第二转子结构的径向外侧设有多个第二齿,所述第一转子部与所述第二转子结构外啮合。
  6. 根据权利要求1至5中任一项所述的油泵装置,其中,所述第一转子部的径向外侧设有多个第一齿,所述第二转子结构的径向内侧设有多个第二齿,所述第一转子部与所述第二转子结构内啮合。
  7. 根据权利要求1至6中任一项所述的油泵装置,其中,还包括:
    轴凸部,设于所述第一转子部远离所述驱动轴的一端;
    槽部,设于所述泵盖朝向所述泵体的一端,所述轴凸部的周向外壁与所述槽部的槽壁滑动配合。
  8. 根据权利要求1至7中任一项所述的油泵装置,其中,还包括:
    第一轴槽部,设于所述第一转子部远离所述驱动轴的一端;
    凸起,与所述第一轴槽部对应设于所述泵盖朝向所述泵体的一端,所述凸起的周向外壁与所述第一轴槽部的槽壁滑动配合。
  9. 根据权利要求8所述的油泵装置,其中,所述第一轴槽部的槽底呈圆形或环形,所述第一轴槽部的中心线位于所述驱动轴的轴线上。
  10. 根据权利要求2至9中任一项所述的油泵装置,其中,还包括:
    第二轴槽部,设于所述第一转子部靠近所述电机腔的一端;
    配合部,与所述第二轴槽部对应设于所述泵体上,所述配合部与所述第二轴槽部滑动配合。
  11. 根据权利要求1至10中任一项所述的油泵装置,其中,还包括:
    输油通道,设于所述泵盖上,所述输油通道贯通所述泵盖的两个端面,且至少部分所述输油通道在端面上的投影,与所述第二转子结构和所述第一转子部的间隙在所述端面上的投影存在重叠部分。
  12. 根据权利要求1至11中任一项所述的油泵装置,其中,所述第一转子部的径向尺寸大于所述驱动轴的径向尺寸。
  13. 根据权利要求1至12中任一项所述的油泵装置,其中,所述驱动轴为阶梯轴或光轴。
  14. 根据权利要求1至13中任一项所述的油泵装置,其中,所述电机结构具体包括:
    同轴设置的电机定子和电机转子,所述驱动轴与所述电机转子相连,所述电机转子转动带动所述驱动轴一同转动。
  15. 一种车辆,其中,包括:
    车体;
    如权利要求1至14中任一项所述的油泵装置,设于所述车体内;
    传动结构,设于所述车体内,所述传动结构与所述油泵装置相连。
PCT/CN2023/076889 2022-09-20 2023-02-17 油泵装置和车辆 WO2024060503A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211141383.5 2022-09-20
CN202211141383.5A CN117780632A (zh) 2022-09-20 2022-09-20 油泵装置和车辆
CN202222481588.X 2022-09-20
CN202222481588.XU CN218816950U (zh) 2022-09-20 2022-09-20 油泵装置和车辆

Publications (1)

Publication Number Publication Date
WO2024060503A1 true WO2024060503A1 (zh) 2024-03-28

Family

ID=90453814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076889 WO2024060503A1 (zh) 2022-09-20 2023-02-17 油泵装置和车辆

Country Status (1)

Country Link
WO (1) WO2024060503A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174069A (ja) * 2007-01-18 2008-07-31 Mazda Motor Corp ホイール駆動装置
JP2013177835A (ja) * 2012-02-28 2013-09-09 Calsonic Kansei Corp ベーン型圧縮機
JP2014066179A (ja) * 2012-09-26 2014-04-17 Hitachi Automotive Systems Ltd 電動オイルポンプ
CN204419616U (zh) * 2014-12-15 2015-06-24 比亚迪股份有限公司 油泵组件和具有其的车辆
CN105782016A (zh) * 2016-03-15 2016-07-20 李路 一种油泵转子
CN109969259A (zh) * 2017-12-28 2019-07-05 比亚迪股份有限公司 电动油泵总成和具有其的车辆
CN215949822U (zh) * 2021-05-25 2022-03-04 厦门东亚机械工业股份有限公司 一种喷油螺杆真空泵

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174069A (ja) * 2007-01-18 2008-07-31 Mazda Motor Corp ホイール駆動装置
JP2013177835A (ja) * 2012-02-28 2013-09-09 Calsonic Kansei Corp ベーン型圧縮機
JP2014066179A (ja) * 2012-09-26 2014-04-17 Hitachi Automotive Systems Ltd 電動オイルポンプ
CN204419616U (zh) * 2014-12-15 2015-06-24 比亚迪股份有限公司 油泵组件和具有其的车辆
CN105782016A (zh) * 2016-03-15 2016-07-20 李路 一种油泵转子
CN109969259A (zh) * 2017-12-28 2019-07-05 比亚迪股份有限公司 电动油泵总成和具有其的车辆
CN215949822U (zh) * 2021-05-25 2022-03-04 厦门东亚机械工业股份有限公司 一种喷油螺杆真空泵

Similar Documents

Publication Publication Date Title
US9127674B2 (en) High efficiency fixed displacement vane pump including a compression spring
JPH08284855A (ja) 無給油ねじ圧縮機
CN218816950U (zh) 油泵装置和车辆
WO2024060503A1 (zh) 油泵装置和车辆
CN109944792A (zh) 一种双压双向齿轮泵
CN106762609A (zh) 一种高压屏蔽摆线泵
JPH02298601A (ja) スクロール流体機械
WO2024060500A1 (zh) 油泵装置和车辆
EP4056853A1 (en) Pump device and vehicle
JPH05164060A (ja) 歯車式ポンプ
CN210196008U (zh) 一种水润滑螺杆压缩机
CN209819195U (zh) 一种用于曲轴供油可正反转外转子驱动单向供油转子泵
CN109969259B (zh) 电动油泵总成和具有其的车辆
CN117780632A (zh) 油泵装置和车辆
CN106015901A (zh) 一种能及时吸油的转子式机油泵
CN109751236B (zh) 一种轴向滑片泵用对称双螺旋转子
CN214403962U (zh) 一种大流量低噪音型燃油泵
CN217582901U (zh) 轴承、泵装置和车辆
CN218093422U (zh) 一种柴油内燃机用机油泵泵体
CN220118236U (zh) 摆线液压马达结构
CN217602913U (zh) 泵装置和车辆
CN117780630A (zh) 油泵装置和车辆
CN109969258B (zh) 电动油泵总成和具有其的车辆
CN219606716U (zh) 润滑系统用摆线泵
CN117780634A (zh) 油泵装置和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866807

Country of ref document: EP

Kind code of ref document: A1