WO2024060350A1 - 电动汽车无线充电辅助功能测试系统及方法 - Google Patents

电动汽车无线充电辅助功能测试系统及方法 Download PDF

Info

Publication number
WO2024060350A1
WO2024060350A1 PCT/CN2022/127166 CN2022127166W WO2024060350A1 WO 2024060350 A1 WO2024060350 A1 WO 2024060350A1 CN 2022127166 W CN2022127166 W CN 2022127166W WO 2024060350 A1 WO2024060350 A1 WO 2024060350A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
test
ground
wireless charging
robotic arm
Prior art date
Application number
PCT/CN2022/127166
Other languages
English (en)
French (fr)
Inventor
张宝强
王芳
王朝晖
樊彬
肖广宇
黄炘
杨新鹏
王建波
李杨
徐月
张萌
李晓
Original Assignee
中汽研新能源汽车检验中心(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中汽研新能源汽车检验中心(天津)有限公司 filed Critical 中汽研新能源汽车检验中心(天津)有限公司
Publication of WO2024060350A1 publication Critical patent/WO2024060350A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention belongs to the field of automobile wireless charging, and in particular relates to an electric vehicle wireless charging auxiliary function testing system and method.
  • wireless charging of electric vehicles has the advantages of high reliability, low maintenance cost, strong environmental adaptability, and convenient charging. It is the most promising technical solution to solve the problem of automatic charging of electric vehicles.
  • a high-frequency strong magnetic field will be generated between the vehicle-side and ground-side coils. If there is a metal foreign object involved, it will continue to heat under the action of a strong magnetic field, causing safety risks such as burns and fires.
  • the electromagnetic radiation generated when the wireless charging system is working will also have an impact on surrounding organisms. Therefore, the foreign object detection and living body protection auxiliary functions of the electric vehicle wireless charging system are crucial, and the quality of its design directly determines the safety performance of the system.
  • the present invention aims to propose a wireless charging auxiliary function testing system and method for electric vehicles, which lacks testing systems and methods for life detection and foreign object detection.
  • this application proposes a wireless charging auxiliary function test system for electric vehicles, including a device to be tested, a pit, a ground end support stand, a vehicle end support stand, and an electromagnetic field strength measuring instrument.
  • a ground surface inside the pit.
  • An end support platform, the vehicle end support platform is arranged on the upper side of the outside of the pit corresponding to the ground end support platform, and the parts to be tested are arranged on the upper side of the ground end support platform, and the parts to be tested include the entire vehicle or vehicle components;
  • the ground end equipment coil of the vehicle wireless charging system is provided on the upper surface of the ground end support stand.
  • the vehicle end equipment coil of the wireless charging system is provided inside the vehicle end support stand.
  • the ground end equipment coil establishes a vehicle test environment for charging the entire vehicle.
  • the ground-side equipment coil also cooperates with the vehicle-side to charge vehicle components and establish a vehicle component testing environment;
  • a robotic arm is provided on the ground of the test site, and an interference piece is provided at the front end of the robotic arm.
  • the robotic arm drives the interference piece to move in the wireless charging environment on the upper side of the pit;
  • the electromagnetic field intensity measuring instrument is arranged corresponding to the piece to be tested.
  • a lifting platform is provided between the bottom surface of the pit and the support platform at the ground end.
  • the lifting platform controls the lifting and lowering of the ground support platform to achieve above-ground installation or underground installation.
  • the above-ground installation is that the upper surface of the coil of the lifting platform driving equipment is flush with the ground.
  • the underground installation is that the lifting platform drives the ground.
  • the lower surface of the terminal equipment coil is flush with the ground of the test site;
  • the vehicle components are set on the upper surface of the ground-side support bench.
  • the lifting platform drives the ground-side support bench to rise.
  • a lifting rod is vertically installed in the middle of the upper side of the vehicle-side support bench. The lifting rod drives the vehicle-side support bench to descend. , the distance between the ground end support platform and the vehicle end support platform is adjusted to within the artificially set distance threshold.
  • the width of the pit should be smaller than the distance between the two wheels of a passenger vehicle.
  • the robotic arm is a six-degree-of-freedom robotic arm, and a moving platform is arranged at the lower side of the robotic arm.
  • the front end of the robotic arm is equipped with an electromagnetic field intensity measuring instrument probe
  • Interfering parts include foreign object simulators and living body simulators;
  • the foreign object simulator includes small metal objects such as paper clips, coins, and keys;
  • the living body simulator is a physiological saline ball.
  • the power supply end of the power supply cable and the control end of the control cable of the robotic arm can be placed on the top of the test site, and the cables can be placed for winding.
  • the mobile platform can use an AGV car, and the mobile platform cooperates with the mechanical arm to achieve 360-degree rotation in the horizontal direction and 180-degree movement in the vertical direction.
  • a camera is installed at the front end of the robotic arm.
  • the camera is used to record the location of foreign objects and whether they are sent to the designated location.
  • thermometer is installed at the front end of the robotic arm, and the remote thermometer is used to record the temperature rise of foreign objects.
  • the present application also proposes an electric vehicle wireless charging auxiliary function test system method according to the above electric vehicle wireless charging auxiliary function test system, and the specific steps are as follows:
  • the length of the object to be tested or the vehicle to be tested is set to M, the width is set to N, M is greater than N, and the extended length of the robotic arm is set to L, where L>0.5M and L>0.5N,
  • the initial point of the robot arm is the geometric center of the test area or the four corner vertices of the test environment site;
  • the mobile platform remains stationary during the test, and the movement trajectory of the foreign object is realized by controlling the robotic arm to cover the complete test area of the device under test;
  • the mobile platform should move the robotic arms to both sides of the object or vehicle in the length direction during the test. Each side controls the robotic arms to ensure that the trajectory of the foreign object can cover a complete area. After the test in this area is completed, the mobile platform moves to the other side of the sample to be tested, and the movement trajectory of the foreign object is controlled by the robotic arm to cover another complete test area of the sample to be tested.
  • the mobile platform should move the mechanical arm to the left front side, right front side, left rear side, and right rear side of the object or vehicle to be tested in sequence during the test, and each time the robot arm is controlled to realize the running trajectory of the foreign object to ensure that a complete test area of the sample to be tested can be covered; after the test of the area is completed, the mobile platform moves to the next position, and the robot arm is controlled to realize the running trajectory of the foreign object to cover another complete test area of the sample to be tested;
  • step S1 the test site is prepared.
  • the specific method is:
  • the lifting platform controls the lifting and lowering of the ground-end support platform to achieve above-ground installation or underground installation.
  • the above-ground installation is the lifting platform driving device, and the upper surface of the coil is flush with the ground.
  • the underground installation is the lifting platform driving device.
  • the lower surface of the ground-end equipment coil is flush with the ground of the test site. Park the vehicle to be tested on the upper side of the pit.
  • the two wheels of the vehicle to be tested are located on the ground of the test site on both sides of the pit in the width direction;
  • the vehicle components are set on the upper surface of the ground-side support bench.
  • the lifting platform drives the ground-side support bench to rise.
  • a lifting rod is vertically installed in the middle of the upper side of the vehicle-side support bench.
  • the lifting rod drives the vehicle-side support bench to descend.
  • the distance between the upper surface of the ground end equipment coil and the lower surface of the vehicle end support platform is adjusted to within the artificially set distance threshold, and the device to be tested is placed on the upper side of the bottom end equipment coil.
  • the electric vehicle wireless charging auxiliary function testing system and method of the present invention have the following beneficial effects:
  • the electric vehicle wireless charging auxiliary function testing system and method of the present invention can perform not only component-level wireless charging system auxiliary function testing, but also vehicle-level wireless charging system auxiliary function testing in the same test site. , thus greatly saving test site space and test hardware investment.
  • complex test scenarios of 360° in the horizontal direction and 180° in the vertical direction can be realized, realizing manual testing that is difficult or impossible to complete. Test, realize automated testing, shorten the test cycle, and at the same time free up testers and make full use of limited human resources; the test system can solve a large number of repeated test actions, is easy to operate, improves test efficiency, and ensures test accuracy. Make accessibility testing easier.
  • FIG1 is a schematic diagram of a vehicle test structure according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the vehicle component testing structure according to the embodiment of the present invention.
  • 11-Complete vehicle 12-Vehicle parts; 2-Pit; 3-Ground support platform; 4-Vehicle support platform; 5-Ground equipment coil; 6-Robotic arm; 7-Lifting platform; 8- mobile platform.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the wireless charging auxiliary function test system for electric vehicles includes the device to be tested, a pit, a ground-side support stand, a vehicle-side support stand, and an electromagnetic field strength measuring instrument.
  • an electromagnetic field strength measuring instrument inside the pit.
  • the ground end support platform, the vehicle end support platform is arranged on the upper side of the outside of the pit corresponding to the ground end support platform, and the parts to be tested are arranged on the upper side of the ground end support platform, and the parts to be tested include the entire vehicle or vehicle components;
  • the ground end equipment coil of the vehicle wireless charging system is provided on the upper surface of the ground end support stand.
  • the vehicle end equipment coil of the wireless charging system is provided inside the vehicle end support stand.
  • the ground end equipment coil establishes a vehicle test environment for charging the entire vehicle.
  • the ground-side equipment coil also cooperates with the vehicle-side to charge vehicle components and establish a vehicle component testing environment;
  • a robotic arm is provided on the ground of the test site, and an interference piece is provided at the front end of the robotic arm.
  • the robotic arm drives the interference piece to move in the wireless charging environment on the upper side of the pit;
  • the electromagnetic field intensity measuring instrument is arranged corresponding to the piece to be tested.
  • the lifting platform controls the lifting and lowering of the ground support platform to achieve above-ground installation or underground installation.
  • the above-ground installation is that the upper surface of the coil of the lifting platform driving equipment is flush with the ground.
  • the underground installation is that the lifting platform drives the ground.
  • the lower surface of the terminal equipment coil is flush with the ground of the test site;
  • the vehicle components are arranged on the upper surface of the ground-end support platform, the lifting platform drives the ground-end support platform to rise, and a lifting rod is vertically arranged in the middle of the upper side of the vehicle-end support platform.
  • the lifting rod drives the vehicle-end support platform to descend, and the distance between the ground-end support platform and the vehicle-end support platform is adjusted to within the artificially set distance threshold.
  • the depth of the pit, the lifting height of the lifting platform, and the height of the ground support platform of the wireless charging system must be matched.
  • the width of the pit should be less than the distance between the wheels of a passenger vehicle.
  • the width of the pit can be 1.2mm.
  • the robotic arm is a six-degree-of-freedom robotic arm, and a mobile platform is provided on the lower side of the robotic arm.
  • the front end of the robotic arm is equipped with an electromagnetic field intensity measuring instrument probe
  • Interfering parts include foreign object simulators and living body simulators;
  • the foreign object simulator includes small metal objects such as paper clips, coins, and keys;
  • the living body simulator is a physiological saline ball.
  • the power supply end of the power supply cable and the control end of the control cable of the robotic arm can be placed on the top of the test site, and the cables can be placed for winding.
  • the mobile platform can use an AGV car, and the mobile platform cooperates with the mechanical arm to achieve 360-degree rotation in the horizontal direction and 180-degree movement in the vertical direction.
  • a camera is installed at the front end of the robotic arm.
  • the camera is used to record the location of foreign objects and whether they are sent to the designated location.
  • thermometer is installed at the front end of the robotic arm, and the remote thermometer is used to record the temperature rise of foreign objects.
  • thermometer can choose a remote non-contact thermometer to record the temperature rise of foreign objects to verify whether the function of the tested part meets the standard requirements.
  • the length of the object to be tested or the vehicle to be tested is set to M, the width is set to N, M is greater than N, and the extended length of the robotic arm is set to L, where L>0.5M and L>0.5N,
  • the initial point of the robot arm is the geometric center of the test area or the four corner vertices of the test environment site;
  • the mobile platform remains stationary during the test, and the movement trajectory of the foreign object is realized by controlling the robotic arm to cover the complete test area of the device under test;
  • the mobile platform should move the robotic arms to both sides of the object or vehicle in the length direction during the test. Each side controls the robotic arms to ensure that the trajectory of the foreign object can cover a complete area. After the test in this area is completed, the mobile platform moves to the other side of the sample to be tested, and the movement trajectory of the foreign object is controlled by the robotic arm to cover another complete test area of the sample to be tested.
  • the mobile platform should move the robotic arm sequentially during the test to the left front, right front, left rear, and right rear of the object or vehicle to be tested, and each time the foreign matter is detected by controlling the robotic arm.
  • the running trajectory ensures that it can cover a complete testing area of the tested sample; after the test in this area is completed, the mobile platform moves to the next position, and the running trajectory of the foreign object is controlled by the robotic arm to cover another complete testing area of the tested sample. ;
  • step S1 the test site is prepared.
  • the specific method is:
  • the lifting platform controls the lifting and lowering of the ground-end support platform to achieve above-ground installation or underground installation.
  • the above-ground installation is the lifting platform driving equipment coil with the upper surface flush with the ground
  • the underground installation is the lifting platform driving device.
  • the lower surface of the ground equipment coil is flush with the ground of the test site.
  • Above-ground installation or underground installation can be selected according to the needs of the tester.
  • the vehicle components are set on the upper surface of the ground-side support bench.
  • the lifting platform drives the ground-side support bench to rise.
  • a lifting rod is vertically installed in the middle of the upper side of the vehicle-side support bench.
  • the lifting rod drives the vehicle-side support bench to descend.
  • the distance between the upper surface of the ground end equipment coil and the lower surface of the vehicle end support platform is adjusted to within the artificially set distance threshold, and the device to be tested is placed on the upper side of the bottom end equipment coil.

Abstract

一种电动汽车无线充电辅助功能测试系统及方法,该测试系统包括地坑(2)、车辆端支撑台架(4)、电磁场强度测量仪,地坑(2)内侧设有地面端支撑台架(3),车辆端支撑台架(4)设置于地面端支撑台架(3)上侧,待测件设置于地面端支撑台架(3)上侧;地面端支撑台架(3)上表面设有地面端设备线圈(5),车辆端支撑台架(4)内部设有车辆端设备线圈,地面端设备线圈(5)为整车(11)充电,地面端设备线圈(5)还与车辆端配合为车辆部件(12)充电;测试场地地面设置有机械臂(6),所述机械臂(6)前端设置干扰件,机械臂(6)驱动干扰件在地坑(2)上侧的无线充电环境中进行移动;电磁场强度测量仪对应待测件设置。该电动汽车无线充电辅助功能测试系统及方法,节约测试场地空间和测试硬件投入,可自动化循环多次使用。

Description

电动汽车无线充电辅助功能测试系统及方法 技术领域
本发明属于汽车无线充电领域,尤其是涉及一种电动汽车无线充电辅助功能测试系统及方法。
背景技术
电动汽车无线充电相比于传统的传导充电具有可靠性高、维护成本低、环境适应性强、充电便捷等优势,是解决电动汽车自动充电问题的最具有前景的技术方案。电动汽车无线充电系统在工作时,车辆端和地面端线圈之间会产生高频强磁场。如果有金属异物介入其中,在强磁场的作用下会持续发热,从而带来灼伤、起火等安全风险。此外,无线充电系统工作时产生的电磁辐射还会对周围的生物体有影响。因此,电动汽车无线充电系统的异物检测和活体保护辅助功能至关重要,其设计的优劣直接决定了系统的安全性能。
目前,在已经发布的国家标准《电动汽车无线充电系统第6部分:互操作性要求及测试地面端》《电动汽车无线充电系统第7部分:互操作性要求及测试车辆端》中,对异物检测测试和活体保护测试分别提出了要求。根据标准内容可以分析出,一是测试步骤非常多,测试工作量很大,但具有一定的重复性;二是活体保护测试的要求比较苛刻,主要体现在模拟活体侵入的速度和角度两方面。市面上尚未有满足活体保护测试标准要求的设备,以及同时满足异物检测测试和活体保护测试要求的设备。
基于此,需要设计一种能够对电动汽车无线充电系统的异物检测和活体保护辅助功能进行测试的系统,以推动行业高质量地发展。
发明内容
有鉴于此,本发明旨在提出一种电动汽车无线充电辅助功能测试系统及方法,以缺少活体检测和异物检测的测试系统及方法。
为达到上述目的,本发明的技术方案是这样实现的:
一方面,本申请提出一种电动汽车无线充电辅助功能测试系统,包括待测件、地坑、地面端支撑台架、车辆端支撑台架、电磁场强度测量仪,所述地坑内侧设有地面端支撑台架,所述车辆端支撑台架对应地面端支撑台架设置于地坑外部上侧,待测件设置于地面端支撑台架上侧,待测件包括整车或车辆部件;
所述地面端支撑台架上表面设有车辆无线充电系统的地面端设备线圈,车辆端支撑台架内部设有无线充电系统车辆端设备线圈,地面端设备线圈为整车充电建立整车测试环境,地面端设备线圈还与车辆端配合为车辆部件充电建立车辆部件测试环境;
测试场地地面设置有机械臂,所述机械臂前端设置干扰件,机械臂驱动干扰件在地坑上侧的无线充电环境中进行移动;
所述电磁场强度测量仪对应待测件设置。
进一步的,地坑底面与地面端支撑台架之间设置有升降台,
整车测试环境中,升降台控制地面端支撑台架升降实现地上安装或地埋安装,所述地上安装为升降台驱动设备线圈上表面与地面平齐,所述地埋安装为升降台驱动地面端设备线圈下表面与测试场地地面平齐;
车辆部件测试环境中,车辆部件设置于地面端支撑台架上表面,升降台驱动地面端支撑台架上升,车辆端支撑台架上侧中部垂直设置升降杆,升降杆驱动车辆端支撑台架下降,所述地面端支撑台架与车辆端支撑台架之间距离调整至人为设定的距离阈值内。
进一步的,地坑的宽度应小于乘用车两轮之间的间距。
进一步的,机械臂为六自由度机械臂,所述机械臂下侧设置移动平台,
所述机械臂前端设置电磁场强度测量仪器探头;
干扰件包括异物模拟器具、活体模拟器具;
所述异物模拟器具包括小型金属物如曲别针、硬币、钥匙;
所述活体模拟器具为生理盐水球。
所述机械臂的供电线缆供电端与控制线缆控制端可设置于测试场地顶部,放置线缆缠绕。
所述移动平台可采用AGV小车,所述移动平台与机械臂配合实现水平方向360度转动和竖直方向上180度移动。
机械臂的前端设置摄像头,安装摄像头,摄像头用于记录异物的位置是否被送至指定位置。
机械臂的前端设置测温仪,远程测温仪用于记录异物的温升情况。
另一方面,本申请还提出一种根据上述电动汽车无线充电辅助功能测试系统的电动汽车无线充电辅助功能测试系统方法,具体步骤如下,
S1、准备测试场地,所述测试场地包括整车测试环境场地、车辆部件测试环境场地;
S2、建立待测车辆或待测车辆部件检测测试的机械臂运行范围轨迹;
将待测物体或待测车辆的长度均设为M,宽度均设为N,M大于N,机械臂伸出的长度设为L,其中,L>0.5M且L>0.5N,
若L>M,设置一个测试区域,
若L>N且L<M,设置两个测试区域,
若L<M且L<N,设置四个测试区域,
机械臂初始点以测试区域的几何中心或测试环境场地的四角顶点;
对于测试区域为一个,移动平台在测试过程中保持不动,通过控制机械臂实现异物的运行轨迹能够覆盖完整的被测件的测试区域;
对于测试区域为两个,移动平台在测试过程中应先后移动机械臂处于待测物体或待测车辆长度方向的两侧,每侧通过控制机械臂实现异物的运行轨迹能够覆盖1个完整的被测样品测试区域;待该区域测试完成后,移动平台移动到被测样品的另一侧,通过控制机械臂实现异物的运行轨迹能够覆盖另一个完整的被测样品测试区域。
对于测试区域为四个,移动平台在测试过程中应依次移动机械臂处于待测物体或待测车辆的左前侧、右前侧、左后侧、右后侧,每次通过控制机械臂实现异物的运行轨迹确保能够覆盖1个完整的被测样品测试区域;待该区域测试完成后,移动平台移动到下一个位置,通过控制机械臂实现异物的运行轨迹能够覆盖另一个完整的被测样品测试区域;
S3、机械臂前端设置电磁场强度测量仪器探头,确定活体保护测试区域,步骤如下:
S31、以地面端设备中轴线为X方向建立坐标系,在X方向上测试EMF值,以设定的EMF的限值对应的X轴上的点为X方向上的零点;
S32、分别向Y轴的正负两个方向进行EMF值测试,同时改变Z轴的高度间隔,记录相同X坐标值,不同Z坐标下,Y方向上对应的EMF值;
S33、X轴上依次取多个X坐标值,每取一个X坐标值重复执行一次步骤S2;
S34、将步骤S31-S32中,获得的所有EMF限值对应的工作点坐标位置 连接成一个面;
S35、以该面为基础,均匀向外扩10cm,所获得的区域为活体保护的测试区域;
S4、在活体保护的测试区域内机械臂前端设置活体模拟器具,记录每个测试工作点的活体保护测试响应情况,若活体模拟器具进入活体保护区域,系统发出响应,若活体模拟器具未进入活体保护区域,系统不发出响应。
进一步的,步骤S1中,准备测试场地,具体方法为,
建立整车测试环境时,升降台控制地面端支撑台架升降实现地上安装或地埋安装,所述地上安装为升降台驱动设备线圈上表面与地面平齐,所述地埋安装为升降台驱动地面端设备线圈下表面与测试场地地面平齐,将待测车辆停停放到地坑上侧,待测车辆两轮分别位于地坑宽度方向两侧的测试场地地面上;
车辆部件测试环境中,车辆部件设置于地面端支撑台架上表面,升降台驱动地面端支撑台架上升,车辆端支撑台架上侧中部垂直设置升降杆,升降杆驱动车辆端支撑台架下降,所述地面端支设备线圈上表面与车辆端支撑台架下表面之间距离调整至人为设定的距离阈值内,将待测件设置于底面端设备线圈上侧。
相对于现有技术,本发明所述的电动汽车无线充电辅助功能测试系统及方法,具有以下有益效果:
本发明所述的电动汽车无线充电辅助功能测试系统及方法,能够在同一个试验场地内,既能够进行部件级的无线充电系统辅助功能测试,也能够进行整车级的无线充电系统辅助功能测试,从而大大节约测试场地空间和测试硬件投入,其次,通过机械臂和AGV小车的配合,能够实现水平方向上360°,竖直方向上180°的复杂测试场景,实现人工测试困难或者无法完成的 测试,实现自动化的测试,缩短测试周期,同时能够解放测试人员,让有限的人力资源得到充分利用;该测系统能够解决大量反复的测试动作,操作便捷,提高了测试效率,保证了测试精度,使辅助功能测试更加简单。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的整车测试结构示意图;
图2为本发明实施例所述的车辆部件测试结构示意图。
附图标记说明:
11-整车;12-车辆部件;2-地坑;3-地面端支撑台架;4-车辆端支撑台架;5-地面端设备线圈;6-机械臂;7-升降台;8-移动平台。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包 括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
下面将参考附图并结合实施例来详细说明本发明。
如图1、图2所示,电动汽车无线充电辅助功能测试系统,包括待测件、地坑、地面端支撑台架、车辆端支撑台架、电磁场强度测量仪,所述地坑内侧设有地面端支撑台架,所述车辆端支撑台架对应地面端支撑台架设置于地坑外部上侧,待测件设置于地面端支撑台架上侧,待测件包括整车或车辆部件;
所述地面端支撑台架上表面设有车辆无线充电系统的地面端设备线圈,车辆端支撑台架内部设有无线充电系统车辆端设备线圈,地面端设备线圈为整车充电建立整车测试环境,地面端设备线圈还与车辆端配合为车辆部件充电建立车辆部件测试环境;
测试场地地面设置有机械臂,所述机械臂前端设置干扰件,机械臂驱动干扰件在地坑上侧的无线充电环境中进行移动;
所述电磁场强度测量仪对应待测件设置。
如图1、图2所示,地坑底面与地面端支撑台架之间设置有升降台,
整车测试环境中,升降台控制地面端支撑台架升降实现地上安装或地埋 安装,所述地上安装为升降台驱动设备线圈上表面与地面平齐,所述地埋安装为升降台驱动地面端设备线圈下表面与测试场地地面平齐;
车辆部件测试环境中,车辆部件设置于地面端支撑台架上表面,升降台驱动地面端支撑台架上升,车辆端支撑台架上侧中部垂直设置升降杆,升降杆驱动车辆端支撑台架下降,所述地面端支撑台架与车辆端支撑台架之间距离调整至人为设定的距离阈值内。
地坑的深度、升降台的升降高度、无线充电系统地面端支撑台架的高度三者之间的匹配设置。
地坑的宽度应小于乘用车两轮之间的间距。
地坑的宽度可为1.2mm。
如图1、图2所示,机械臂为六自由度机械臂,所述机械臂下侧设置移动平台,
所述机械臂前端设置电磁场强度测量仪器探头;
干扰件包括异物模拟器具、活体模拟器具;
所述异物模拟器具包括小型金属物如曲别针、硬币、钥匙;
所述活体模拟器具为生理盐水球。
所述机械臂的供电线缆供电端与控制线缆控制端可设置于测试场地顶部,放置线缆缠绕。
所述移动平台可采用AGV小车,所述移动平台与机械臂配合实现水平方向360度转动和竖直方向上180度移动。
如图1、图2所示,机械臂的前端设置摄像头,安装摄像头,摄像头用于记录异物的位置是否被送至指定位置。
记录异物的位置是否被送至指定位置保证测试试验数据真实有效可追溯。
机械臂的前端设置测温仪,远程测温仪用于记录异物的温升情况。
测温仪可选择远程非接触式测温仪,记录异物的温升情况以验证被测件的功能是否满足标准要求。
如图1、图2所示,另一方面基于上述的电动汽车无线充电辅助功能测试系统本申请提出一种电动汽车无线充电辅助功能测试系统方法,具体步骤如下,
S1、准备测试场地,所述测试场地包括整车测试环境场地、车辆部件测试环境场地;
S2、建立待测车辆或待测车辆部件检测测试的机械臂运行范围轨迹;
将待测物体或待测车辆的长度均设为M,宽度均设为N,M大于N,机械臂伸出的长度设为L,其中,L>0.5M且L>0.5N,
若L>M,设置一个测试区域,
若L>N且L<M,设置两个测试区域,
若L<M且L<N,设置四个测试区域,
机械臂初始点以测试区域的几何中心或测试环境场地的四角顶点;
对于测试区域为一个,移动平台在测试过程中保持不动,通过控制机械臂实现异物的运行轨迹能够覆盖完整的被测件的测试区域;
对于测试区域为两个,移动平台在测试过程中应先后移动机械臂处于待测物体或待测车辆长度方向的两侧,每侧通过控制机械臂实现异物的运行轨迹能够覆盖1个完整的被测样品测试区域;待该区域测试完成后,移动平台 移动到被测样品的另一侧,通过控制机械臂实现异物的运行轨迹能够覆盖另一个完整的被测样品测试区域。
对于测试区域为四个,移动平台在测试过程中应依次移动机械臂处于待测物体或待测车辆的左前侧、右前侧、左后侧、右后侧,每次通过控制机械臂实现异物的运行轨迹确保能够覆盖1个完整的被测样品测试区域;待该区域测试完成后,移动平台移动到下一个位置,通过控制机械臂实现异物的运行轨迹能够覆盖另一个完整的被测样品测试区域;
S3、机械臂前端设置电磁场强度测量仪器探头,确定活体保护测试区域,步骤如下:
S31、以地面端设备中轴线为X方向建立坐标系,在X方向上测试EMF值,以设定的EMF的限值对应的X轴上的点为X方向上的零点;
S32、分别向Y轴的正负两个方向进行EMF值测试,同时改变Z轴的高度间隔,记录相同X坐标值,不同Z坐标下,Y方向上对应的EMF值;
S33、X轴上依次取多个X坐标值,每取一个X坐标值重复执行一次步骤S2;
S34、将步骤S31-S32中,获得的所有EMF限值对应的工作点坐标位置连接成一个面;
S35、以该面为基础,均匀向外扩10cm,所获得的区域为活体保护的测试区域;
S4、在活体保护的测试区域内机械臂前端设置活体模拟器具,记录每个测试工作点的活体保护测试响应情况,若活体模拟器具进入活体保护区域,系统发出响应,若活体模拟器具未进入活体保护区域,系统不发出响应。
进一步的,步骤S1中,准备测试场地,具体方法为,
建立整车测试环境时,升降台控制地面端支撑台架升降实现地上安装或地埋安装,所述地上安装为升降台驱动设备线圈上表面与地面平齐,所述地埋安装为升降台驱动地面端设备线圈下表面与测试场地地面平齐,将待测车辆停停放到地坑上侧,待测车辆两轮分别位于地坑宽度方向两侧的测试场地地面上;
地上安装或地埋安装根据测试人员需要进行选择。
车辆部件测试环境中,车辆部件设置于地面端支撑台架上表面,升降台驱动地面端支撑台架上升,车辆端支撑台架上侧中部垂直设置升降杆,升降杆驱动车辆端支撑台架下降,所述地面端支设备线圈上表面与车辆端支撑台架下表面之间距离调整至人为设定的距离阈值内,将待测件设置于底面端设备线圈上侧。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 电动汽车无线充电辅助功能测试系统,其特征在于:包括待测件、地坑、地面端支撑台架、车辆端支撑台架、电磁场强度测量仪,所述地坑内侧设有地面端支撑台架,所述车辆端支撑台架对应地面端支撑台架设置于地坑外部上侧,待测件设置于地面端支撑台架上侧,待测件包括整车或车辆部件;
    所述地面端支撑台架上表面设有车辆无线充电系统的地面端设备线圈,车辆端支撑台架内部设有无线充电系统车辆端设备线圈,地面端设备线圈为整车充电建立整车测试环境,地面端设备线圈还与车辆端配合为车辆部件充电建立车辆部件测试环境;
    测试场地地面设置有机械臂,所述机械臂前端设置干扰件,机械臂驱动干扰件在地坑上侧的无线充电环境中进行移动;
    所述电磁场强度测量仪对应待测件设置。
  2. 根据权利要求1所述的电动汽车无线充电辅助功能测试系统,其特征在于:地坑底面与地面端支撑台架之间设置有升降台,
    整车测试环境中,升降台控制地面端支撑台架升降实现地上安装或地埋安装,所述地上安装为升降台驱动设备线圈上表面与地面平齐,所述地埋安装为升降台驱动地面端设备线圈下表面与测试场地地面平齐;
    车辆部件测试环境中,车辆部件设置于地面端支撑台架上表面,升降台驱动地面端支撑台架上升,车辆端支撑台架上侧中部垂直设置升降杆,升降杆驱动车辆端支撑台架下降,所述地面端支撑台架与车辆端支撑台架之间距离调整至人为设定的距离阈值内。
  3. 根据权利要求1所述的电动汽车无线充电辅助功能测试系统,其特征在于:地坑的宽度应小于乘用车两轮之间的间距。
  4. 根据权利要求1所述的电动汽车无线充电辅助功能测试系统,其特征 在于:
    机械臂为六自由度机械臂,所述机械臂下侧设置移动平台,
    所述机械臂前端设置电磁场强度测量仪器探头;
    干扰件包括异物模拟器具、活体模拟器具;
    所述异物模拟器具包括小型金属物如曲别针、硬币、钥匙;
    所述活体模拟器具为生理盐水球。
  5. 根据权利要求1所述的电动汽车无线充电辅助功能测试系统,其特征在于:机械臂的前端设置摄像头,安装摄像头,摄像头用于记录异物的位置是否被送至指定位置。
  6. 根据权利要求1所述的电动汽车无线充电辅助功能测试系统,其特征在于:机械臂的前端设置测温仪,远程测温仪用于记录异物的温升情况。
  7. 基于权利要求1-6任一所述的电动汽车无线充电辅助功能测试系统的电动汽车无线充电辅助功能测试系统方法,其特征在于:
    S1、准备测试场地,所述测试场地包括整车测试环境场地、车辆部件测试环境场地;
    S2、建立待测车辆或待测车辆部件检测测试的机械臂运行范围轨迹;
    将待测物体或待测车辆的长度均设为M,宽度均设为N,M大于N,机械臂伸出的长度设为L,其中,L>0.5M且L>0.5N,
    若L>M,设置一个测试区域,
    若L>N且L<M,设置两个测试区域,
    若L<M且L<N,设置四个测试区域,
    机械臂初始点以测试区域的几何中心或测试环境场地的四角顶点;
    对于测试区域为一个,移动平台在测试过程中保持不动,通过控制机械臂实现异物的运行轨迹能够覆盖完整的被测件的测试区域;
    对于测试区域为两个,移动平台在测试过程中应先后移动机械臂处于待测物体或待测车辆长度方向的两侧,每侧通过控制机械臂实现异物的运行轨迹能够覆盖1个完整的被测样品测试区域;待该区域测试完成后,移动平台移动到被测样品的另一侧,通过控制机械臂实现异物的运行轨迹能够覆盖另一个完整的被测样品测试区域。
    对于测试区域为四个,移动平台在测试过程中应依次移动机械臂处于待测物体或待测车辆的左前侧、右前侧、左后侧、右后侧,每次通过控制机械臂实现异物的运行轨迹确保能够覆盖1个完整的被测样品测试区域;待该区域测试完成后,移动平台移动到下一个位置,通过控制机械臂实现异物的运行轨迹能够覆盖另一个完整的被测样品测试区域;
    S3、机械臂前端设置电磁场强度测量仪器探头,确定活体保护测试区域,步骤如下:
    S31、以地面端设备中轴线为X方向建立坐标系,在X方向上测试EMF值,以设定的EMF的限值对应的X轴上的点为X方向上的零点;
    S32、分别向Y轴的正负两个方向进行EMF值测试,同时改变Z轴的高度间隔,记录相同X坐标值,不同Z坐标下,Y方向上对应的EMF值;
    S33、X轴上依次取多个X坐标值,每取一个X坐标值重复执行一次步骤S2;
    S34、将步骤S31-S32中,获得的所有EMF限值对应的工作点坐标位置连接成一个面;
    S35、以该面为基础,均匀向外扩10cm,所获得的区域为活体保护的测 试区域;
    S4、在活体保护的测试区域内机械臂前端设置活体模拟器具,记录每个测试工作点的活体保护测试响应情况,若活体模拟器具进入活体保护区域,系统发出响应,若活体模拟器具未进入活体保护区域,系统不发出响应。
  8. 根据权利要求7所述的电动汽车无线充电辅助功能测试系统,其特征在于:步骤S1中,准备测试场地,具体方法为,
    建立整车测试环境时,升降台控制地面端支撑台架升降实现地上安装或地埋安装,所述地上安装为升降台驱动设备线圈上表面与地面平齐,所述地埋安装为升降台驱动地面端设备线圈下表面与测试场地地面平齐,将待测车辆停停放到地坑上侧,待测车辆两轮分别位于地坑宽度方向两侧的测试场地地面上;
    车辆部件测试环境中,车辆部件设置于地面端支撑台架上表面,升降台驱动地面端支撑台架上升,车辆端支撑台架上侧中部垂直设置升降杆,升降杆驱动车辆端支撑台架下降,所述地面端支设备线圈上表面与车辆端支撑台架下表面之间距离调整至人为设定的距离阈值内,将待测件设置于底面端设备线圈上侧。
PCT/CN2022/127166 2022-09-19 2022-10-25 电动汽车无线充电辅助功能测试系统及方法 WO2024060350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211134701.5 2022-09-19
CN202211134701.5A CN115201618B (zh) 2022-09-19 2022-09-19 电动汽车无线充电辅助功能测试系统

Publications (1)

Publication Number Publication Date
WO2024060350A1 true WO2024060350A1 (zh) 2024-03-28

Family

ID=83573685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127166 WO2024060350A1 (zh) 2022-09-19 2022-10-25 电动汽车无线充电辅助功能测试系统及方法

Country Status (4)

Country Link
US (1) US11951862B1 (zh)
CN (1) CN115201618B (zh)
DE (1) DE102023121062A1 (zh)
WO (1) WO2024060350A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201618B (zh) * 2022-09-19 2023-03-24 中汽研新能源汽车检验中心(天津)有限公司 电动汽车无线充电辅助功能测试系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039643A (ja) * 2014-08-05 2016-03-22 パナソニック株式会社 送電装置および無線電力伝送システム
US20170033615A1 (en) * 2015-07-30 2017-02-02 Panasonic Intellectual Property Management Co., Ltd. Foreign object detecting device, wireless power transmitting device, and wireless power transmission system
CN110053499A (zh) * 2019-04-29 2019-07-26 上海爱驱汽车技术有限公司 无线充电设备、系统和方法
CN110865254A (zh) * 2019-11-21 2020-03-06 中汽研汽车检验中心(天津)有限公司 电动汽车无线充电系统互操作条件下辐射发射测试方法
CN110988573A (zh) * 2019-12-27 2020-04-10 无锡市沃乐思科技有限公司 一种电动汽车无线充电测试台架
CN112550009A (zh) * 2020-11-27 2021-03-26 南方科技大学 无线充电异物检测装置及电动车辆停车辅助装置
WO2021179784A1 (zh) * 2020-03-10 2021-09-16 华为技术有限公司 一种无线充电异物检测方法和装置
CN113696753A (zh) * 2021-09-24 2021-11-26 重庆大学 用于电动汽车无线充电的异物检测系统及其控制方法
CN115201618A (zh) * 2022-09-19 2022-10-18 中汽研新能源汽车检验中心(天津)有限公司 电动汽车无线充电辅助功能测试系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788212B1 (en) * 1996-01-30 2002-04-17 Sumitomo Wiring Systems, Ltd. Connection system and connection method for an electric automotive vehicle
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US9496732B2 (en) 2011-01-18 2016-11-15 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US9815377B2 (en) * 2015-07-06 2017-11-14 Hon Hai Precision Industry Co., Ltd. Battery charging apparatus and method for charging electric vehicle
CN206452188U (zh) * 2017-02-24 2017-08-29 厦门新页电气有限公司 一种无线充电异物检测装置
CN112213795B (zh) * 2020-09-17 2023-10-10 国网电力科学研究院有限公司 电动汽车无线充电关键功能测试方法及系统
CN112433111A (zh) * 2020-10-27 2021-03-02 苏州菲利波电磁技术有限公司 电动汽车无线充电辐射发射测试台架
CN213960334U (zh) * 2020-11-11 2021-08-13 中汽研汽车检验中心(天津)有限公司 一种电动汽车无线充电通信测试系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039643A (ja) * 2014-08-05 2016-03-22 パナソニック株式会社 送電装置および無線電力伝送システム
US20170033615A1 (en) * 2015-07-30 2017-02-02 Panasonic Intellectual Property Management Co., Ltd. Foreign object detecting device, wireless power transmitting device, and wireless power transmission system
CN110053499A (zh) * 2019-04-29 2019-07-26 上海爱驱汽车技术有限公司 无线充电设备、系统和方法
CN110865254A (zh) * 2019-11-21 2020-03-06 中汽研汽车检验中心(天津)有限公司 电动汽车无线充电系统互操作条件下辐射发射测试方法
CN110988573A (zh) * 2019-12-27 2020-04-10 无锡市沃乐思科技有限公司 一种电动汽车无线充电测试台架
WO2021179784A1 (zh) * 2020-03-10 2021-09-16 华为技术有限公司 一种无线充电异物检测方法和装置
CN112550009A (zh) * 2020-11-27 2021-03-26 南方科技大学 无线充电异物检测装置及电动车辆停车辅助装置
CN113696753A (zh) * 2021-09-24 2021-11-26 重庆大学 用于电动汽车无线充电的异物检测系统及其控制方法
CN115201618A (zh) * 2022-09-19 2022-10-18 中汽研新能源汽车检验中心(天津)有限公司 电动汽车无线充电辅助功能测试系统

Also Published As

Publication number Publication date
CN115201618B (zh) 2023-03-24
US20240092208A1 (en) 2024-03-21
CN115201618A (zh) 2022-10-18
DE102023121062A1 (de) 2024-03-21
US11951862B1 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
CN110988555B (zh) 基于硬件在环的自动驾驶智能汽车电磁兼容性测试平台
WO2024060350A1 (zh) 电动汽车无线充电辅助功能测试系统及方法
CN110988573A (zh) 一种电动汽车无线充电测试台架
CN112009721B (zh) 一种微小型多旋翼无人机的高功率微波效应试验装置
CN214669327U (zh) 一种测试系统
CN103728558A (zh) 轮毂电机带载emc性能测试系统
CN112576861B (zh) 地质雷达机器人、控制系统、方法、终端和可读存储介质
CN112946377A (zh) 车辆无线性能测试暗室
CN207007970U (zh) 一种电动汽车无线充电自动测试系统
CN112378337A (zh) 用于起重机主梁腹板翘曲度检测的自动装置及检测方法
CN102469472B (zh) 一种wwan测试方法和测试系统
US10094865B2 (en) Test chamber for electromagnetic compatibility measurement and test chamber validation method
CN207036439U (zh) 一种燃油箱翻转试验机构
CN113369221A (zh) 一种用于铁路绝缘子的清洗系统和清洗方法
CN112068568A (zh) 一种室内测绘小车
CN206369786U (zh) 一种敞开式变电站高压设备缺陷检测与定位装置
CN215986198U (zh) 一种局部放电检测装置及局部放电巡检设备
CN102495025B (zh) 一种空间目标会合动态激光特性模拟系统和模拟方法
CN111510674A (zh) 一种电力巡检装置
CN211698022U (zh) 一种电动汽车无线充电测试台架
CN103678071B (zh) 鼠标测试设备及其测试方法
CN217954726U (zh) 一种毫米波雷达测试实验系统
CN208000292U (zh) 一种基于涡流漏磁的自动化检测焊点系统
CN210665909U (zh) 一种crh5a型动车组端部连接器检查测试试验台
CN110095655A (zh) 用于电动汽车无线充电时电磁场分布的测量系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959352

Country of ref document: EP

Kind code of ref document: A1