WO2024060307A1 - 抗菌纳米复合材料的制备方法及其应用 - Google Patents

抗菌纳米复合材料的制备方法及其应用 Download PDF

Info

Publication number
WO2024060307A1
WO2024060307A1 PCT/CN2022/123080 CN2022123080W WO2024060307A1 WO 2024060307 A1 WO2024060307 A1 WO 2024060307A1 CN 2022123080 W CN2022123080 W CN 2022123080W WO 2024060307 A1 WO2024060307 A1 WO 2024060307A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
preparation
nanocomposite
tourmaline
metal salt
Prior art date
Application number
PCT/CN2022/123080
Other languages
English (en)
French (fr)
Inventor
顾家玮
瞿文琳
魏艳红
谈君婕
纪俊玲
周家良
何丽芬
杨利军
Original Assignee
江苏集萃先进纤维材料研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃先进纤维材料研究所有限公司 filed Critical 江苏集萃先进纤维材料研究所有限公司
Publication of WO2024060307A1 publication Critical patent/WO2024060307A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • A01N47/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides containing —N=CX2 groups, e.g. isothiourea
    • A01N47/44Guanidine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/06Aluminium; Calcium; Magnesium; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention belongs to the technical field of functional nanomaterials and relates to an antibacterial nanomaterial, specifically a preparation method and application of antibacterial nanocomposite materials.
  • antibacterial materials can be divided into single-component antibacterial materials and composite antibacterial materials according to different types of antibacterial substances.
  • single-component antibacterial materials have poor antibacterial properties and often need to be used in large quantities to improve the antibacterial effect. They also have problems such as darker colors, not heat-resistant, and difficult to disperse, making it difficult to meet the requirements of various industries.
  • the Chinese patent application with publication number CN113801457A is produced by modifying polyhexamethyleneguanidine hydrochloride (PHMG) with epichlorohydrin, adding tannic acid as a complexing agent, and reacting with iron ferric oxide to form Composite antibacterial material, but the nanometer size of the material generated by this method is uncontrollable, and the retention rate of PHMG in ferric oxide is reduced after washing, which affects the antibacterial effect, and the composite antibacterial agent is colored;
  • China's publication number is CN112853747A
  • the patent application is to add silver nitrate and sodium borohydride to the PHMG aqueous solution system to generate a nano-silver-PHMG composite treatment agent through a reduction reaction.
  • An object of the present invention is to provide a method for preparing antibacterial nanocomposite materials through the synergistic effect of porous tourmaline, guanidinium-containing organic polymer antibacterial agents, benzotriazole and metal salts, to achieve a simple preparation method.
  • the purpose is to obtain antibacterial nanocomposites with transparent color, long-lasting and stable antibacterial effect and uniform size.
  • Another object of the present invention is to provide the application of the above preparation method in preparing antibacterial fiber materials with organic polymer materials.
  • a method for preparing antibacterial nanocomposite materials uses porous tourmaline as a carrier and loads a guanidine-containing organic polymer antibacterial agent to obtain a functional hybrid material. After crushing, it is then mixed with benzotriazole and metal salt solutions. Produced by sealing the surface of functional hybrid materials.
  • the preparation method includes the following steps in sequence:
  • benzotriazole is easily soluble in water.
  • a water system is used in S2 to fully mix benzotriazole and the functional hybrid material, and a large amount of benzotriazole is retained in the gaps of the functional hybrid material, which is beneficial to the stability of the protective film structure formed subsequently.
  • the porous tourmaline is obtained by acidifying tourmaline, washing, vacuum filtration, and drying;
  • the pressure gauge display value of the vacuum environment is -0.1 ⁇ -0.02MPa, and the time of being placed in the vacuum environment is 1-3h;
  • the pressure gauge displays a value of -0.1 to -0.02 MPa, and the filtration time is 1 to 5 minutes;
  • the solvents of the guanidine group-containing organic polymer antibacterial agent solution and the metal salt solution are both water;
  • the flushing water flow speed is 50-100m/s
  • the ultraviolet light wavelength of the ultraviolet irradiation is 185-254nm, and the irradiation time is 10-30 minutes.
  • the acidification is to obtain 60-80% of the mass of the tourmaline before treatment with sulfuric acid.
  • the mass ratio of the porous tourmaline, guanidine group-containing organic polymer antibacterial agent and metal salt is 1-10:1:1-10.
  • the molar ratio of metal salt to benzotriazole is 1:1-3.
  • the guanidine-containing organic polymer antibacterial agent is at least one of polyhexamethyleneguanidine hydrochloride, polyhexamethylenebiguanide hydrochloride and polyhexamethyleneguanidine phosphate. kind.
  • the metal salt is at least one of copper chloride, copper sulfate, silver nitrate, zinc sulfate, magnesium sulfate and zinc chloride.
  • the particle diameter of the antibacterial nanocomposite material is 300-700 nm.
  • the present invention provides an application of the above preparation method, which is to prepare antibacterial nanocomposite materials according to the above preparation method and then use them as antibacterial materials for coatings, textiles, protective equipment, medical materials, plastic vessels, digital products and home appliances.
  • antibacterial nanocomposites and organic polymer materials are used to prepare antibacterial fibers, which are then melt-spun and woven to obtain textiles; the antibacterial fibers are used to prepare medical materials such as masks, gauze, dental appliances, and drug outer packaging; in addition, antibacterial nanocomposites Composite materials are also used to be added to the casings and screen materials of digital products such as mobile phones to improve the antibacterial properties of digital products; antibacterial nanocomposites are also used to be added to plastic or alloy materials to improve water purifiers, washing machines, refrigerators, etc. Antibacterial properties of household appliances.
  • the principle of the present invention is to etch the inner cavity of tourmaline through acidification with sulfuric acid to create porous tourmaline, utilize cation exchange and capillary effect in a vacuum environment to make the porous tourmaline adsorb the guanidinium-containing organic polymer antibacterial agent, and then use benzotriazole It forms a stable film-like structure on the surface with metal salts, which adheres to the surface of the material and becomes a protective film.
  • Each component has a clear division of labor and cooperates to form a stable multi-component antibacterial system to amplify the antibacterial effect.
  • the preparation method provided by the present invention uses porous tourmaline as a carrier, uses it to adsorb the guanidine-containing organic polymer antibacterial agent, and then dries at 80-90°C to increase the loading capacity of benzotriazole.
  • Triazole and free metal ions increase the load of metal ions in the composite material, and can form a protective film on the surface of the functional hybrid material to prevent the internal antibacterial components from being directly exposed to the air or solution, improving the resistance of the material itself.
  • the water washability and anti-oxidation properties improve the water washability and anti-oxidation properties; in the preparation of porous tourmaline, the present invention regulates the load of antibacterial agents by controlling the quality of tourmaline after acidification treatment; the water flow rate is 50-100m/s High-speed washing changes the electron arrangement on the surface of tourmaline to make it positively charged, which is conducive to attracting negatively charged bacteria, thereby improving the antibacterial effect; among them, the antibacterial nanocomposite material is irradiated with ultraviolet light to slowly decompose the BTA on the surface of the material. , in which the part of the metal element in contact with the air is slowly oxidized to form metal oxide, which improves the antibacterial effect of the material;
  • the raw materials used in the preparation method of the present invention are transparent in color. After repeated grinding, the antibacterial nanocomposite material obtained is transparent and has a size of 300-700nm. Compared with antibacterial materials with dark colors and larger particle sizes, it has broadened the range of Application scenarios in medical, home appliances and other fields;
  • the antibacterial nanocomposite material prepared by the present invention has outstanding antibacterial effect, with an antibacterial rate of E. coli > 99%, an antibacterial rate of Staphylococcus aureus > 99%, and an antibacterial rate of Candida albicans > 90%;
  • the present invention is also applicable to the preparation of antibacterial fiber materials. After obtaining the powdered antibacterial nanocomposite material, it is mixed with an organic polymer material and granulated to prepare the antibacterial fiber material through a melting method. Compared with the method of coating the fiber material surface, the amount of material added can be accurately determined, so that the antibacterial effect is long-lasting.
  • Figure 1 is a scanning electron microscope and a transmission electron microscope photo of the antibacterial nanocomposite C1 prepared in Example 1 of the present invention.
  • Figure 1(a) and Figure 1(b) are scanning electron microscope photos.
  • Figure 1(c) and Figure 1(d) ) is a transmission electron microscope photo;
  • Figure 2 is a photo of the antibacterial effect detection results of the antibacterial nanocomposite C1 prepared in Example 1 of the present invention
  • Figure 3 is a graph showing the comparative results of antibacterial effects in Example 8 of the present invention.
  • Figure 4 is a graph showing the results of testing the long-lasting antibacterial effect of the antibacterial nanocomposite material in Example 9 of the present invention.
  • the preparation method of this embodiment is to use porous tourmaline as a carrier, load a guanidine-containing organic polymer antibacterial agent, and obtain a functional hybrid material. After crushing, the functional hybrid material is sealed with benzotriazole and metal salt solutions. Made on the surface of the material.
  • the antibacterial test of the antibacterial nanocomposite C1 (i.e. BTA-ZnO-PHMG@TM) was carried out in accordance with GB/T 21510-2008 "Method for Testing Antibacterial Performance of Nanoinorganic Materials".
  • the results of an antibacterial test are shown in Figure 2.
  • the colonies of each bacteria The formation unit test results are marked below the plate in Figure 2.
  • the antibacterial nanocomposite material shows a long-lasting antibacterial effect.
  • BTA-ZnO-PHMG@TM has outstanding long-lasting antibacterial effects on Escherichia coli and Staphylococcus aureus in different colony forming units.
  • the average value was taken, and the results showed that the antibacterial rate of BTA-ZnO-PHMG@TM against E. coli was >99%, the antibacterial rate against Staphylococcus aureus was >99%, and the antibacterial rate against Candida albicans was >90%.
  • Embodiments 2-6 are respectively a preparation method of antibacterial nanocomposite materials.
  • the specific method is basically the same as that of Embodiment 1. The only difference is that the parameter settings are different. The specific differences are shown in Table 1:
  • polyhexamethyleneguanidine hydrochloride polyhexamethylenebiguanide hydrochloride and polyhexamethyleneguanidine phosphate are marked with codes x, y and z in order. ;
  • Examples 2-6 are the same as Example 1 or are common knowledge to those skilled in the art.
  • Example 1 According to the method of Example 1, take transmission electron microscope pictures of the antibacterial nanocomposites C1-C6 and conduct antibacterial performance testing. The results show that the antibacterial nanocomposites C1-C6 are all stable in structure and nearly spherical. After measurement, the particle diameter is 300-700nm. The antibacterial test results show that the antibacterial rate against Escherichia coli is >99%, and the antibacterial rate against Staphylococcus aureus. The antibacterial rate against Candida albicans is >99%.
  • the antibacterial nanocomposite material C1 obtained in Example 1 and polyamide 56 resin (organic polymer material) were mixed evenly according to the mass ratio of 3:100, and a twin-screw extruder was used to blend and cut at 260°C.
  • the winding speed is 2800m/min, and the antibacterial fiber material is produced through melt spinning, drafting, shaping and winding.
  • the antibacterial fiber material produced by the present invention has a long-lasting antibacterial effect due to the precise amount added compared to the method of coating on the surface of the fiber material.
  • Example 1 Referring to Example 1, according to GB/T 21510-2008 "Method for Testing Antibacterial Performance of Nano-Inorganic Materials", the antibacterial test against E. coli was carried out on equal amounts of TM, ZnO-TM, PHMG-TM and BTA-ZnO-PHMG@TM. The results are shown in Figure 3.
  • test objects and preparation methods are: BTA-ZnO-PHMG@TM is prepared from Example 1; TM is the porous tourmaline prepared from Example 1; the preparation method of ZnO-TM is except that PHMG and BTA are not added , other preparation steps are the same as Example 1; the preparation method of PHMG-TM is the same as Example 1 except that metal salt and BTA are not added;
  • test results are shown in Figure 3.
  • TM, ZnO-TM and PHMG-TM BTA-ZnO-PHMG@TM prepared by the present invention has the best antibacterial effect. It shows that porous tourmaline, guanidine-containing organic polymer antibacterial agents, benzotriazole and metal salts work synergistically to jointly enhance the antibacterial effect.
  • PHMG has efficient bactericidal properties. The longer it remains in the composite material, the longer the composite material will have more effective antibacterial properties. Disperse equal amounts of PHMG, PHMG-TM and BTA-ZnO-PHMG@TM in water respectively, detect the PHMG content in the water by detecting the pH value, characterize the release rate of PHMG, and thereby determine the retention rate of PHMG in the composite material.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

一种抗菌纳米复合材料的制备方法及其应用,该抗菌纳米复合材料是以多孔电气石为载体,负载含胍基有机高分子抗菌剂后,得功能性杂化材料,经粉碎,再以苯并三唑和金属盐溶液封闭功能性杂化材料表面制得。该技术方案以简单制备方法制得颜色透明、抗菌效果持久稳定且尺寸均一的抗菌纳米复合材料,该材料对大肠杆菌的抗菌率>99%,对金黄色葡萄球菌的抗菌率>99%,对白色念珠菌的抗菌率>90%,适用于功能性纳米材料技术领域,可用作抗菌材料用于涂料、纺织品、防护用品、医用材料、塑料器皿、数码产品及家电产品。

Description

抗菌纳米复合材料的制备方法及其应用 技术领域
本发明属于功能性纳米材料技术领域,涉及一种抗菌纳米材料,具体地说是抗菌纳米复合材料的制备方法及其应用。
背景技术
随着现代生活质量的提高,人们对健康安全的重视程度也逐渐提高,健康防护、生态环保等概念在消费市场得到了广泛关注。由于细菌与人类的生产、生活密切相关,抗菌抑菌已成为各行各业均面临的问题,随着人们消费观念的改变,在厨卫用具中,材料的抗菌性能逐渐被关注;除此之外,用于防护、包扎及矫治等用途的抗菌材料也一直是医用材料研发的热点。
目前,抗菌材料根据抗菌物质种类的不同,可分为单一组分抗菌材料和复合抗菌材料。然而,单一组分抗菌材料抗菌性较差,往往需大量使用以提高抗菌效果,还存在颜色较深、不耐热、不易分散等问题,难以满足各行各业的要求。
近年来,复合抗菌材料的研究受到广泛地关注,但仍存在一定问题。公开号为CN113801457A的中国专利申请,通过将聚六亚甲基胍盐酸盐(PHMG)用环氧氯丙烷改性后添加单宁酸作为络合剂,与四氧化三铁发生络合反应生成复合抗菌材料,但该方法生成材料的纳米尺寸不可控,且经水洗后PHMG在四氧化三铁留着率降低,影响抗菌效果,并且该复合抑菌剂带有颜色;公开号为CN112853747A的中国专利申请,是在PHMG水溶液体系中加入硝酸银和硼氢化钠,通过还原反应生成纳米银-PHMG复合处理剂,该方法因纳米银在PHMG溶液中不易分散,基体间相容性不高,易对环境产生污染;公开号为CN110354304A的中国专利申请,由于仅将PHMG涂覆于二氧化钛的表面,所得材料的抗菌时间有限;而公告号为CN112998884B的中国 专利申请,在改性多孔纳米电气石时,采用接枝抗菌剂的方法,需在150~180℃恒温环境中进行8h以上的接枝反应,存在能耗高、反应时间长等问题。
发明内容
本发明的一个目的,是要提供一种抗菌纳米复合材料的制备方法,通过多孔电气石、含胍基有机高分子抗菌剂、苯并三唑和金属盐的协同作用,达到以简单制备方法制得颜色透明、抗菌效果持久稳定且尺寸均一抗菌纳米复合材料的目的。
本发明的另一个目的,是要提供上述制备方法在与有机高分子材料制备抗菌纤维材料中的应用。
为实现上述目的,本发明所采用的技术方案如下:
一种抗菌纳米复合材料的制备方法,它是以多孔电气石为载体,负载含胍基有机高分子抗菌剂后,得功能性杂化材料,经粉碎,再以苯并三唑和金属盐溶液封闭功能性杂化材料表面制得。
作为本发明的一种限定,该制备方法包括依次进行的以下步骤:
S1.取多孔电气石和含胍基有机高分子抗菌剂溶液,经超声处理后,置于真空环境,得功能性杂化材料;
S2.取功能性杂化材料和苯并三唑研磨成粉,加水混匀,于80-90℃真空抽滤,干燥,得复合功能性杂化材料;
S3.取复合功能性杂化材料加入金属盐溶液,静置1-2h,冲洗,真空抽滤,干燥,紫外照射,得抗菌纳米复合材料。
其中,苯并三唑易溶于水,在S2中采用水体系,使苯并三唑和功能性杂化材料充分混合,并且苯并三唑在功能性杂化材料空隙中大量存留,有利于后续形成的护封膜结构稳定。
作为本发明的进一步限定,所述多孔电气石是将电气石酸化后,经洗涤和和真空抽滤、干燥所得;
所述真空环境的压力表显示值为-0.1~-0.02MPa,置于真空环境的时间为1-3h;
所述真空抽滤时压力表显示值为-0.1~-0.02MPa,抽滤时间为1-5min;
所述含胍基有机高分子抗菌剂溶液和金属盐溶液的溶剂均为水;
所述冲洗的水流速度为50-100m/s;
所述紫外照射的紫外光波长为185-254nm,照射时间为10-30min。作为本发明的更进一步限定,所述酸化是取电气石经硫酸处理至处理前质量的60-80%。
作为本发明的进一步限定,所述多孔电气石、含胍基有机高分子抗菌剂和金属盐的质量比为1-10:1:1-10。
作为本发明的再进一步限定,金属盐与苯并三唑的摩尔比为1:1-3。
作为本发明的另一种限定,含胍基有机高分子抗菌剂为聚六亚甲基胍盐酸盐、聚六亚甲基双胍盐酸盐和聚六亚甲基胍磷酸盐中的至少一种。
作为本发明的进一步限定,金属盐为氯化铜、硫酸铜、硝酸银、硫酸锌、硫酸镁和氯化锌中的至少一种。
作为本发明的再一种限定,所述抗菌纳米复合材料的颗粒直径为300-700nm。
本发明提供了上述制备方法的一种应用,它是按照上述制备方法制备抗菌纳米复合材料后,用作抗菌材料用于涂料、纺织品、防护用品、医用材料、塑料器皿、数码产品及家电产品。
其中,抗菌纳米复合材料与有机高分子材料制备抗菌纤维,再经熔融纺丝、纺织得到纺织品;该抗菌纤维用于制备口罩、纱布、牙科矫治器、药品外包装等医用材料;此外,抗菌纳米复合材料也用于添加至手机等数码产品的外壳、屏幕材料中,提高数码产品的抗菌性能;抗菌纳米复合材料还用于添加至塑料或合金材料中,以提高净水器、洗衣机、冰箱等家用电器的抗菌性能。
本发明的原理为:通过硫酸酸化刻蚀电气石内腔,得多孔电气石,利用真空环境中阳离子交换及毛细管效应使多孔电气石吸附含胍基有机高分子抗菌剂,再利用苯并 三唑与金属盐在表面形成稳定的稳定的膜状结构,附着在材料表面,成为护封膜,各组分分工明确,协同构建形成稳定的多组分抗菌体系,放大抗菌效果。
由于采用了上述的技术方案,本发明与现有技术相比,所取得的技术进步在于:
(1)本发明提供的制备方法,采用多孔电气石为载体,利用其吸附含胍基有机高分子抗菌剂后,通过在80-90℃干燥,提高苯并三唑的负载量,利用苯并三唑和游离的金属离子加大金属离子在复合材料中的负载量,而且能在功能杂化材料表面形成的护封膜,防止内部抗菌成分直接曝露在空气或溶液中,提高材料本身的耐水洗性和抗氧化性提升耐水洗性和抗氧化性;本发明在多孔电气石制备中,通过控制酸化处理后电气石质量,来调控抗菌剂的负载量;通过水流速度为50-100m/s高速冲洗,改变电气石的表面电子排布,使之带正电性,有利于吸引带负电的细菌,从而提高抗菌效果;其中,抗菌纳米复合材料经紫外光照射,使材料表面的BTA缓慢分解,其中金属元素与空气接触部分缓慢氧化生成金属氧化物,提高材料的抗菌效果;
(2)本发明的制备方法中所用原料颜色透明,经多次研磨,制得的抗菌纳米复合材料透明且尺寸达300-700nm,相较于深颜色、颗粒尺寸较大的抗菌材料,拓宽了在医用、家电等领域的应用场景;
(3)本发明制得的抗菌纳米复合材料抗菌效果突出,对大肠杆菌的抗菌率>99%,对金黄色葡萄球菌的抗菌率>99%,对白色念珠菌的抗菌率>90%;
(4)本发明还适用于制备抗菌纤维材料,制得粉末状的抗菌纳米复合材料后,再与有机高分子材料混合造粒,通过熔融法,制备抗菌纤维材料,相较于涂覆至纤维材料表面的方式,能够精确加入量,使抗菌效果持久。
下面结合附图及具体实施例对本发明作更进一步详细说明。
附图说明
图1为本发明实施例1所制备的抗菌纳米复合材料C1的扫描电镜及透射电镜照片,图1(a)和图1(b)为扫描电镜照片,图1(c)和图1(d)为透射电镜照片;
图2为本发明实施例1所制备的抗菌纳米复合材料C1的抗菌效果检测结果照片;
图3为本发明实施例8中抗菌效果对比结果图;
图4为本发明实施例9中抗菌纳米复合材料的长效抗菌效果检测结果图。
具体实施方式
实施例1一种抗菌纳米复合材料的制备方法
本实施例的制备方法是以多孔电气石为载体,负载含胍基有机高分子抗菌剂后,得功能性杂化材料,经粉碎,再以苯并三唑和金属盐溶液封闭功能性杂化材料表面制得。
(一)抗菌纳米复合材料C1的制备方法
S0:制备多孔电气石:取30g铁电气石颗粒与浓硫酸,使铁电气石被浸没,于60℃温度下加热活化,待铁电气石被酸化刻蚀至质量为18.2g(处理前的60.7%),取出,用水离心清洗至上清液和铁电气石均呈中性,真空干燥,研磨成粉,即得多孔电气石,备用。
S1:取2.2g聚六亚甲基胍盐酸盐(PHMG)溶解于80mL水,加入所得多孔电气石,超声处理30min后,置于压力表显示值为-0.1MPa的真空室1h;重复3次超声处理后,用水清洗表面,在60℃烘箱中干燥后,研磨成粉,得功能性杂化材料。
S2:取所得功能性杂化材料和2.2g苯并三唑(BTA)研磨成粉,加水混匀,压力表显示值为-0.1MPa条件下真空抽滤,于80℃干燥,得复合功能性杂化材料。
S3:取2.98g硫酸锌(与苯并三唑的摩尔比为1:1)溶解于100mL水,加入所得复合功能性杂化材料,静置1h,用50m/s水流冲洗后,压力表显示值为-0.1MPa条件下真空抽滤,干燥1h后,在250nm波长的紫外灯下照射20min,得抗菌纳米复合材料BTA-ZnO-PHMG@TM,标记为C1。对抗菌纳米复合材料C1拍摄电镜照片以观察局部结构,如图1,抗菌纳米复合材料C1结构稳定,为近球形,经测量,抗菌纳米复合材料C1的颗粒直径为300-700nm。
(二)抗菌纳米复合材料C1的抗菌性能检测
按照GB/T 21510-2008《纳米无机材料抗菌性能检测方法》对抗菌纳米复合材料C1(即BTA-ZnO-PHMG@TM)进行抗菌测试,其中,一次抗菌测试结果如图2,各菌的菌落形成单位检测结果标记在图2平板下方,随着时间延长,抗菌纳米复合材料表现出持久的抗菌效果,在加入抗菌纳米复合材料30min时,对大肠杆菌完全抑制;在加入抗菌纳米复合材料20min后,已无金黄色葡萄球菌和白色念珠菌存活,表明BTA-ZnO-PHMG@TM对不同菌落形成单位的大肠杆菌和金黄色葡萄球菌均具有突出的长效抗菌效果。经重复测试后,取均值,结果为BTA-ZnO-PHMG@TM对大肠杆菌的抗菌率>99%,对金黄色葡萄球菌的抗菌率>99%,对白色念珠菌的抗菌率>90%。
实施例2-6抗菌纳米复合材料的制备方法
实施例2-6分别为一种抗菌纳米复合材料的制备方法,具体方法与实施例1基本相同,不同之处仅在于参数设置不同,具体区别见表1:
其中,含胍基有机高分子抗菌剂中,聚六亚甲基胍盐酸盐、聚六亚甲基双胍盐酸盐和聚六亚甲基胍磷酸盐,依次标记代码为x、y及z;
表1实施例2-6参数表
Figure PCTCN2022123080-appb-000001
Figure PCTCN2022123080-appb-000002
实施例2-6的其它部分与实施例1相同或为本领域技术人员公知常识。
按照实施例1的方法对抗菌纳米复合材料C1-C6拍摄透射电镜照片并进行抗菌性能检测。结果表明,抗菌纳米复合材料C1-C6均结构稳定,为近球形,经测量,颗粒直径为300-700nm;抗菌检测结果表明,对大肠杆菌的抗菌率>99%,对金黄色 葡萄球菌的抗菌率>99%,对白色念珠菌的抗菌率>90%。
实施例7抗菌纳米复合材料在制备抗菌纤维材料中的应用
本实施例将实施例1所得抗菌纳米复合材料C1与聚酰胺56树脂(有机高分子材料)按照质量比3:100,混合均匀,采用双螺杆挤出机,在260℃条件下共混并切粒,制得复合树脂切片,再放入真空转鼓干燥箱,于128℃干燥后,设置喷丝板为36孔、纺丝温度为280℃、牵伸温度75℃、热定型温度130℃、卷绕速度2800m/min,通过熔融纺丝、牵伸、定型、卷绕制得抗菌纤维材料。
本发明制得是抗菌纤维材料,相较于涂覆至纤维材料表面的方式,由于能够精确加入量,抗菌效果持久。
实施例8抗菌纳米复合材料的抗菌效果对比
参照实施例1,根据GB/T 21510-2008《纳米无机材料抗菌性能检测方法》对等量TM、ZnO-TM、PHMG-TM及BTA-ZnO-PHMG@TM分别进行抗大肠杆菌的抗菌测试,结果如图3所示。
其中,各检测对象及制备方法为:BTA-ZnO-PHMG@TM由实施例1制得;TM为由实施例1制得的多孔电气石;ZnO-TM的制备方法除不加入PHMG及BTA以外,其它制备步骤与实施例1相同;PHMG-TM的制备方法除不加入金属盐及BTA以外,其它制备步骤与实施例1相同;
检测结果如图3,相较于TM、ZnO-TM及PHMG-TM,本发明制得的BTA-ZnO-PHMG@TM抗菌效果最佳。表明多孔电气石、含胍基有机高分子抗菌剂、苯并三唑与金属盐协同增效,共同提升抗菌效果。
实施例9抗菌纳米复合材料的长效抗菌效果
PHMG具有高效杀菌性能,其在复合材料中留存时间越长,则该复合材料具有更长效的抗菌性能。将等量PHMG、PHMG-TM及BTA-ZnO-PHMG@TM分别分散于水中,通过检测pH值来检测水中PHMG的含量,表征PHMG的释放率,从而判 断复合材料中PHMG的留存率。
结果如图4,相较于其它材料,BTA-ZnO-PHMG@TM长时间浸泡于水中,但PHMG的释放率保持在较低水平,表明BTA-ZnO-PHMG@TM表面的护封膜持久有效,能够保证PHMG的缓慢释放,从而实现长效抗菌。
需要说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照上述实施例对本发明进行了详细的说明,对于本领域技术人员来说,其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明权利要求保护的范围之内。

Claims (10)

  1. 一种抗菌纳米复合材料的制备方法,其特征在于,它是以多孔电气石为载体,负载含胍基有机高分子抗菌剂后,得功能性杂化材料,经粉碎,再以苯并三唑和金属盐溶液封闭功能性杂化材料表面制得。
  2. 根据权利要求1所述的抗菌纳米复合材料的制备方法,其特征在于,包括依次进行的以下步骤:
    S1.取多孔电气石和含胍基有机高分子抗菌剂溶液,经超声处理后,置于真空环境,得功能性杂化材料;
    S2.取功能性杂化材料和苯并三唑研磨成粉,加水混匀,于80-90℃真空抽滤,干燥,得复合功能性杂化材料;
    S3.取复合功能性杂化材料加入金属盐溶液,静置1-2h,冲洗,真空抽滤,干燥,紫外照射,得抗菌纳米复合材料。
  3. 根据权利要求2所述的抗菌纳米复合材料的制备方法,其特征在于,所述多孔电气石是将电气石酸化后,经洗涤和真空抽滤、干燥所得;
    所述真空环境的压力表显示值为-0.1~-0.02MPa,置于真空环境的时间为1-3h;
    所述真空抽滤时压力表显示值为-0.1~-0.02MPa,抽滤时间为1-5min;
    所述含胍基有机高分子抗菌剂溶液和金属盐溶液的溶剂均为水;
    所述冲洗的水流速度为50-100m/s;
    所述紫外照射的紫外光波长为185-254nm,照射时间为10-30min。
  4. 根据权利要求3所述的抗菌纳米复合材料的制备方法,其特征在于,所述酸化是取电气石经硫酸处理至处理前质量的60-80%。
  5. 根据权利要求4所述的抗菌纳米复合材料的制备方法,其特征在于,所述多孔电气石、含胍基有机高分子抗菌剂和金属盐的质量比为1-10:1:1-10。
  6. 根据权利要求5所述的抗菌纳米复合材料的制备方法,其特征在于,金属盐与苯并三唑的摩尔比为1:1-3。
  7. 根据权利要求1-6中任一项所述的抗菌纳米复合材料的制备方法,其特征在于,含胍基有机高分子抗菌剂为聚六亚甲基胍盐酸盐、聚六亚甲基双胍盐酸盐和聚六亚甲基胍磷酸盐中的至少一种。
  8. 根据权利要求7所述的抗菌纳米复合材料的制备方法,其特征在于,金属盐为氯化铜、硫酸铜、硝酸银、硫酸锌、硫酸镁和氯化锌中的至少一种。
  9. 根据权利要求1-6或8中任一项所述的抗菌纳米复合材料的制备方法,其特征在于,所述 抗菌纳米复合材料的颗粒直径为300-700nm。
  10. 权利要求1-9中任一项所述的抗菌纳米复合材料的制备方法的一种应用,其特征在于,用作抗菌材料用于涂料、纺织品、防护用品、医用材料、塑料器皿、数码产品及家电产品。
PCT/CN2022/123080 2022-09-20 2022-09-30 抗菌纳米复合材料的制备方法及其应用 WO2024060307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211141827.5A CN115399333B (zh) 2022-09-20 2022-09-20 抗菌纳米复合材料的制备方法及其应用
CN202211141827.5 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024060307A1 true WO2024060307A1 (zh) 2024-03-28

Family

ID=84166234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123080 WO2024060307A1 (zh) 2022-09-20 2022-09-30 抗菌纳米复合材料的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN115399333B (zh)
WO (1) WO2024060307A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101112199A (zh) * 2007-09-06 2008-01-30 哈尔滨工业大学 采用载银电气石的抑制硫酸盐还原菌粉剂及制备方法
WO2009041548A1 (ja) * 2007-09-28 2009-04-02 Nippon Chemical Industrial Co., Ltd 抗菌剤
CN105670238A (zh) * 2014-11-21 2016-06-15 宁波康氏塑料科技有限公司 一种杀菌聚酯树脂
CN105801976A (zh) * 2016-04-24 2016-07-27 张崇英 一种hdpe抗菌塑料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104631115A (zh) * 2013-11-15 2015-05-20 青岛鑫益发工贸有限公司 纺织品的抗菌防臭整理应用技术
CN110354304A (zh) * 2019-07-29 2019-10-22 湖州市中心医院 用于人工关节置换术后假体的基材及其制备工艺
CN112998884B (zh) * 2021-02-24 2021-10-01 吉林大学 一种长效抗菌材料、牙科膜片和长效隐形矫治器
CN112853747B (zh) * 2021-02-26 2022-12-30 石家庄学院 一种基于复合纳米银的长效抗菌聚酯纤维的制备方法及其专用装置
CN113801457B (zh) * 2021-10-16 2022-07-19 福州大学 一种高效抗菌聚碳酸酯复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101112199A (zh) * 2007-09-06 2008-01-30 哈尔滨工业大学 采用载银电气石的抑制硫酸盐还原菌粉剂及制备方法
WO2009041548A1 (ja) * 2007-09-28 2009-04-02 Nippon Chemical Industrial Co., Ltd 抗菌剤
CN105670238A (zh) * 2014-11-21 2016-06-15 宁波康氏塑料科技有限公司 一种杀菌聚酯树脂
CN105801976A (zh) * 2016-04-24 2016-07-27 张崇英 一种hdpe抗菌塑料及其制备方法

Also Published As

Publication number Publication date
CN115399333A (zh) 2022-11-29
CN115399333B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
Radetić et al. Nano-finishing of cellulose textile materials with copper and copper oxide nanoparticles
CN108589266B (zh) 纳米金属颗粒/金属有机框架复合抗菌纤维素纤维的制备方法
Gan et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry
CN103835124B (zh) 载银棉织物抗菌材料及其制备方法
CN104145993B (zh) 一种壳聚糖与银铜共混制备复合抗菌剂的方法
Fahmy et al. Enhancing some functional properties of viscose fabric
CN109880470B (zh) 一种水性丙烯酸酯延时抗菌涂料的制备方法
Li et al. Preparation and antibacterial activity of polyvinyl alcohol/regenerated silk fibroin composite fibers containing Ag nanoparticles
CN104206420A (zh) 一种非银粉状固溶体抗菌剂的制备方法及其应用
CN105177995A (zh) 一种抗菌纯棉面料的制备方法
EP2274470B1 (en) Method of manufacturing natural or synthetic fibres containing silver nano-particles
CN103835025B (zh) 一种永久抗菌聚胍海藻纤维的制备方法
CN107793581B (zh) 一种高效的抗菌母料及制备方法
CN112252046A (zh) 一种抗菌防螨面料及其制备方法
WO2024060307A1 (zh) 抗菌纳米复合材料的制备方法及其应用
CN103911853B (zh) 一种纳米银微球乳液及其制备方法和应用
CN112144277A (zh) 一种面料抗菌处理液及其制备方法
CN102926187A (zh) 一种磁性纳米三氧化二铁改性涤纶织物的方法
CN102286882A (zh) 一种织物整理剂及其制备方法以及使用其整理织物的方法
JP2023547271A (ja) テキスタイル用抗微生物処理剤の調製方法
TWI644949B (zh) Nano copper polyester masterbatch composition and method for producing nano copper polyester masterbatch composition
CN113122958B (zh) 一种长效低毒抗菌聚酯纤维
CN115444860B (zh) 一种载纳米银抗菌复合材料及其制备方法
CN110591306A (zh) 铜系抗菌pet拉丝母粒的制备方法及其产品和应用
CN104594019A (zh) 一种含磁织物结构及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959309

Country of ref document: EP

Kind code of ref document: A1