WO2024058148A1 - 3次元測量装置、3次元測量装置駆動方法および3次元測量装置駆動プログラム - Google Patents
3次元測量装置、3次元測量装置駆動方法および3次元測量装置駆動プログラム Download PDFInfo
- Publication number
- WO2024058148A1 WO2024058148A1 PCT/JP2023/033104 JP2023033104W WO2024058148A1 WO 2024058148 A1 WO2024058148 A1 WO 2024058148A1 JP 2023033104 W JP2023033104 W JP 2023033104W WO 2024058148 A1 WO2024058148 A1 WO 2024058148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- rotary encoder
- section
- surveying device
- phase
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000005259 measurement Methods 0.000 claims description 70
- 238000001514 detection method Methods 0.000 abstract description 11
- 230000003287 optical effect Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/30—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
Definitions
- the present invention relates to a three-dimensional surveying device, a three-dimensional surveying device driving method, and a three-dimensional surveying device driving program that acquire three-dimensional data of a measurement target.
- Patent Document 1 discloses a surveying device equipped with an inclination detection device.
- the surveying device described in Patent Document 1 includes a motor that rotates a rotating object such as a frame or an inclination detection unit around an axis, and an encoder that detects the rotation angle of the rotating object.
- a three-phase brushless motor that does not have a Hall sensor may be used as a motor for a surveying device as described in Patent Document 1.
- the surveying device checks and memorizes the initial phase of the motor phase by performing the oscillating motion of the motor, and stores the initial phase of the motor. It is necessary to control the motor based on the phase.
- the 3D surveying device performs an operation to check and memorize the initial phase of the motor in the initial operation every time a worker moves the 3D surveying device to change the survey point
- the 3D surveying device There is room for improvement in that the operating time of the device and the working time of the operator become longer.
- the power consumption of the battery of the three-dimensional surveying device increases, and there is room for improvement in terms of saving power consumption.
- the present invention has been made in view of the above circumstances, and provides a three-dimensional surveying device, a three-dimensional surveying device driving method, and a three-dimensional surveying device driving program that can reduce operating time and save battery power consumption.
- the purpose is to
- a first aspect of the present invention is a three-dimensional surveying device that acquires three-dimensional data of a measurement target, which includes a motor that rotates the rotation target around an axis, and a rotation angle of the rotation target.
- a rotary encoder a calculation unit that calculates a phase relationship between the phases of the motor at the zero position of the rotary encoder as an initial phase, and a storage unit that stores the initial phase calculated by the calculation unit as a drive parameter.
- the calculation unit stores the drive parameters in the storage unit in advance, drives the motor by open loop control in an initial operation after power is turned on, and when the zero position of the rotary encoder is detected.
- the three-dimensional surveying apparatus is characterized in that after applying the drive parameter stored in the storage unit as a phase angle, the motor is driven by closed loop control using a value of the rotary encoder.
- the calculation unit calculates the phase relationship of the motor phases at the zero position of the rotary encoder as an initial phase, and stores the calculated initial phase in advance in the storage unit as a drive parameter. .
- the arithmetic unit drives the motor by open-loop control in the initial operation after the power is turned on, and applies the drive parameter stored in the storage unit as the phase angle when the zero position of the rotary encoder is detected. In this manner, the arithmetic unit does not check the initial phases of the motor by executing the swinging operation of the motor by closed loop control in the initial operation after the power is turned on.
- the three-dimensional surveying device does not require a swinging motion of the motor during the initial operation after the power is turned on, so that the time required to detect the zero position of the rotary encoder is shortened. It is possible to reduce operating time. Further, for example, when an operator moves the 3D surveying device to change a survey point, there is no need to leave the power on. Since it is possible to suppress battery power consumption, it is possible to extend the operating time.
- the calculation unit calculates the initial phase multiple times at each pole of the motor, and sets the average value of the plurality of initial phases as the drive parameter.
- the three-dimensional surveying device is characterized in that the storage section stores information.
- the calculation unit when calculating the initial phase, can suppress variations in the initial phase due to the influence of the poles of the motor, and store more stable values as drive parameters in the storage unit. can.
- the three-dimensional surveying apparatus according to the second aspect of the present invention can realize more stable motor drive.
- a third aspect of the present invention is a method for driving a three-dimensional surveying device for acquiring three-dimensional data of a measurement object, the method of driving a three-dimensional surveying device to obtain three-dimensional data of a measurement object, which detects the phase relationship of the motor phases at the zero position of a rotary encoder that detects the rotation angle of the rotation object.
- a method for driving a three-dimensional surveying device comprising: a fourth step of driving the motor according to the method of the present invention.
- the phase relationship of the motor phases at the zero position of the rotary encoder is calculated as an initial phase
- the initial phase calculated in the first step is driven. It is stored in advance in the storage unit as a parameter.
- the motor is driven by open loop control in the initial operation after the power is turned on, and when the zero position of the rotary encoder is detected, the drive parameters stored in the storage section are applied as the phase angle. .
- the initial phase of the motor phase is not confirmed by executing the swinging operation of the motor by closed loop control in the initial operation after the power is turned on.
- the motor is driven by closed loop control using the value of the rotary encoder.
- the swinging operation of the motor since the swinging operation of the motor is not required in the initial operation after the power is turned on, it takes time to detect the zero position of the rotary encoder. It is possible to reduce the operating time. Further, for example, when an operator moves the 3D surveying device to change a survey point, there is no need to leave the power on, and furthermore, in the 3D surveying device driving method of the third aspect of the present invention, Since the operating time can be reduced, battery power consumption can be saved and the operating time can be extended.
- a fourth aspect of the present invention is a three-dimensional surveying device driving program executed by a computer of a three-dimensional surveying device that acquires three-dimensional data of a measurement target, the computer detecting a rotation angle of the rotating target. a first step of calculating the phase relationship of the motor phases at the zero position of the rotary encoder as an initial phase; and a second step of storing the initial phase calculated in the first step in a storage unit in advance as a drive parameter.
- the phase relationship of the motor phases at the zero position of the rotary encoder is calculated as an initial phase
- the initial phase calculated in the first step is driven. It is stored in advance in the storage unit as a parameter.
- the motor is driven by open loop control in the initial operation after the power is turned on, and when the zero position of the rotary encoder is detected, the drive parameters stored in the storage section are applied as the phase angle. .
- the initial phase of the motor phase is not confirmed by executing the swinging operation of the motor by closed loop control in the initial operation after the power is turned on.
- the motor is driven by closed loop control using the value of the rotary encoder.
- the swinging operation of the motor since the swinging operation of the motor is not required in the initial operation after the power is turned on, it takes time to detect the zero position of the rotary encoder. It is possible to reduce the operating time. Further, for example, when an operator moves the 3D surveying device to change a survey point, there is no need to leave the power on, and furthermore, in the 3D surveying device driving program according to the fourth aspect of the present invention, Since the operating time can be reduced, battery power consumption can be saved and the operating time can be extended.
- a three-dimensional surveying device it is possible to provide a three-dimensional surveying device, a three-dimensional surveying device driving method, and a three-dimensional surveying device driving program that can reduce operating time and save battery power consumption.
- FIG. 1 is a block diagram mainly illustrating a structural system of a three-dimensional surveying device according to an embodiment of the present invention.
- FIG. 2 is a block diagram mainly illustrating a control system of the three-dimensional surveying device according to the present embodiment. It is a flowchart showing the preliminary operation of the three-dimensional surveying device according to the present embodiment. It is a flowchart showing the initial operation after power-on of the three-dimensional surveying device according to the present embodiment. 7 is a graph illustrating an example of an initial phase measurement result according to the present embodiment.
- FIG. 1 is a block diagram mainly explaining the structural system of a three-dimensional surveying device according to an embodiment of the present invention.
- FIG. 2 is a block diagram mainly explaining the control system of the three-dimensional surveying device according to this embodiment.
- the three-dimensional surveying device 2 includes a collimation and ranging unit 4 and a scanner unit 5, and includes a three-dimensional surveying device 2 for measuring the three-dimensional measurement of a measurement target such as a structure. Get data.
- the three-dimensional surveying device 2 shown in FIGS. 1 and 2 is an example, and the three-dimensional surveying device 2 according to the present embodiment does not necessarily include both the collimation and distance measuring unit 4 and the scanner unit 5. It is not necessary. That is, the three-dimensional surveying device 2 according to the present embodiment may be, for example, a sighting and ranging unit 4 called a total station, and may be a device that performs distance measurement and angle measurement.
- the three-dimensional surveying device 2 may be a scanner unit 5, which is a device that performs distance measurement and angle measurement to obtain point cloud data.
- a case will be exemplified in which the three-dimensional surveying device 2 includes both a collimation and ranging unit 4 and a scanner unit 5.
- the sighting and ranging unit 4 of this embodiment includes a leveling section 41, a first cradle section 42, a first horizontal rotation section 43, a first vertical rotation section 44, a telescope section 45, and a control calculation section. 46, an operation display section 47, a base section 48, and an inclinometer 49.
- the sighting and ranging unit 4 has an automatic tracking function that automatically searches for the measurement target 6 (see FIG. 2).
- the control calculation section 46 includes a calculation section 461, a first distance measurement section 462, a first horizontal rotation drive section 463, a first vertical rotation drive section 464, a second distance measurement section 465, and a second horizontal rotation drive section. section 466 , a second vertical rotation drive section 467 , a storage section 468 , and an image processing section 469 .
- the calculation unit 461 is, for example, a CPU (Central Processing Unit), and starts programs, performs signal control processing, performs calculations, etc. based on signals (commands) transmitted from the operation input unit 472 of the operation display unit 47. , and performs drive control of the display section 471 of the operation display section 47, etc. That is, the calculation unit 461 controls the entire three-dimensional surveying device 2, and also inputs surveying conditions, measurement results (distance measurement results and angle measurement results), image processing results (images of the collimation range), etc. is displayed on the display section 471.
- a CPU Central Processing Unit
- First distance measuring section 462, first horizontal rotation drive section 463, first vertical rotation drive section 464, second distance measurement section 465, second horizontal rotation drive section 466, second vertical rotation drive section 467, and image processing section 469 is realized by the calculation unit 461 executing a program stored in the storage unit 468. Note that the first distance measurement section 462, the first horizontal rotation drive section 463, the first vertical rotation drive section 464, the second distance measurement section 465, the second horizontal rotation drive section 466, the second vertical rotation drive section 467, and the image
- the processing unit 469 may be realized by hardware or a combination of hardware and software.
- the storage unit 468 stores, for example, a sequence program for measurement, an image processing program for image processing, an arithmetic program, and the like. Further, the storage unit 468 stores drive parameters to be described later. Details of the driving parameters will be described later.
- the storage unit 468 for example, a semiconductor memory built into the three-dimensional surveying device 2 can be used.
- the storage unit 468 may include a CD (Compact Disc), DVD (Digital Versatile Disc), RAM (Random access memory), ROM (Read only memory), hard disk, memory card, etc. that can be connected to the three-dimensional surveying device 2.
- Various storage media can be mentioned.
- the program executed by the computer including the control calculation unit 46 is an example of the "three-dimensional surveying device driving program" of the present invention.
- the term "computer” used herein is not limited to personal computers, but also includes arithmetic processing units, microcomputers, etc. included in information processing equipment, and is a general term for devices and devices that can realize the functions of the present invention through programs. ing.
- the leveling unit 41 is a part that is attached to a tripod (not shown) and has, for example, three adjustment screws 411. Leveling of the leveling unit 41 is performed, for example, by adjusting the adjustment screws 411 so that an inclination sensor (not shown) provided on the first support unit 42 detects horizontality at a known point where the measurement target 6 is placed. In other words, the first support unit 42 is maintained horizontal by leveling using the adjustment screws 411 at a known point where the measurement target 6 is placed, for example.
- the first horizontal rotation section 43 includes a first horizontal rotation shaft 431, a bearing 432, a first horizontal drive motor 433, and a first horizontal angle detector 434.
- the first horizontal drive motor 433 is an example of the "motor” of the present invention, and is, for example, a three-phase brushless motor without a Hall sensor.
- the first horizontal angle detector 434 is an example of the "rotary encoder” of the present invention, and is, for example, an incremental rotary encoder.
- the first horizontal rotation shaft 431 has a first vertical axis 436 that extends vertically, and is rotatably supported by the base portion 48 via a bearing 432.
- the first rack part 42 is supported by a first horizontal rotation shaft 431 and rotates horizontally around a first vertical axis 436 by the driving force transmitted from the first horizontal drive motor 433. rotates as one.
- the first holder 42 is an example of the "rotating object" of the present invention.
- the rotation angle of the first horizontal rotation shaft 431 with respect to the base portion 48 (that is, the rotation angle of the first mount portion 42) is detected by the first horizontal angle detector 434.
- the detection result of the first horizontal angle detector 434 is input to the calculation section 461.
- the drive of the first horizontal drive motor 433 is controlled by the first horizontal rotation drive unit 463 based on the detection result of the first horizontal angle detector 434.
- the first vertical rotation section 44 includes a first vertical rotation shaft 441, a bearing 442, a first vertical drive motor 443, and a first vertical angle detector 444.
- the first vertical drive motor 443 is an example of the "motor” of the present invention, and is, for example, a three-phase brushless motor without a Hall sensor.
- the first vertical angle detector 444 is an example of the "rotary encoder” of the present invention, and is, for example, an incremental rotary encoder.
- the first vertical rotation shaft 441 has a first horizontal axis 446 that extends horizontally, and is rotatably supported by the first support portion 42 via a bearing 442 . One end of the first vertical rotating shaft 441 protrudes into the gap 421 of the first support portion 42 .
- the telescope section 45 is supported by one end of a first vertical rotation shaft 441 that protrudes into the gap 421 of the first rack section 42, and is rotated by the first horizontal shaft by the driving force transmitted from the first vertical drive motor 443. It rotates integrally with the first vertical rotation shaft 441 in the vertical direction about the center 446 .
- the telescope section 45 is an example of the "rotating object" of the present invention.
- the first vertical angle detector 444 is provided at the other end of the first vertical rotation shaft 441.
- the rotation angle of the first vertical rotation shaft 441 (that is, the rotation angle of the telescope section 45) with respect to the first holder section 42 is detected by the first vertical angle detector 444.
- the detection result of the first vertical angle detector 444 is input to the calculation section 461.
- the drive of the first vertical drive motor 443 is controlled by the first vertical rotation drive unit 464 based on the detection result of the first vertical angle detector 444.
- the telescope section 45 is supported by the first vertical rotation shaft 441 and rotates in the vertical direction about the first horizontal axis 446 by the driving force transmitted from the first vertical drive motor 443.
- the telescope section 45 has a collimating telescope 458, collimates the measurement target 6, and irradiates the first ranging light 455.
- the telescope section 45 includes a first distance measuring light emitting section 451, a first distance measuring light receiving section 452, and a collimating light receiving section 453.
- the first distance measuring light emitting section 451 is driven and controlled by the first distance measuring section 462.
- the first distance measuring light emitting section 451 is provided inside the telescope section 45 and emits a first distance measuring light 455 such as a laser beam in a direction perpendicular to the first horizontal axis 446 .
- the first distance measurement light 455 emitted from the first distance measurement light emitting section 451 is irradiated onto the measurement target 6 .
- the first reflected ranging light 456 reflected by the measurement target 6 is received by a first ranging light receiving section 452 provided inside the telescope section 45 .
- the first distance measurement light receiving section 452 converts the brightness (light reception result) of the received first reflected distance measurement light 456 into an electronic signal (light reception signal), and transmits the light reception signal to the first distance measurement section 462. Further, the first distance measuring light receiving section 452 receives an internal reference light (not shown) guided from a reference light optical section (not shown), converts it into an electrical signal, and transmits it to the first distance measuring section 462. do.
- the first distance measurement section 462 calculates the distance to the measurement target 6 based on the light reception signal transmitted from the first distance measurement light reception section 452. That is, the first reflected distance measuring light 456 and the internal reference light are converted into a first reflected distance measuring optical electrical signal and an internal reference optical electrical signal, respectively, and sent to the first distance measuring section 462. The distance to the measurement target 6 is measured based on the difference in time interval between the first reflected ranging photoelectric signal and the internal reference photoelectric signal.
- the calculation result of the first distance measuring section 462 is input to the calculation section (CPU) 461.
- the calculation unit 461 calculates the following: The coordinate values of the measurement target 6 are calculated. In other words, since the measurement target 6 is installed at a known point, the calculation unit 461 calculates the measured distance to the measurement target 6, the vertical angle detected by the first vertical angle detector 444, and the first Based on the horizontal angle detected by the horizontal angle detector 434, the coordinate values of the measurement center of the sighting and ranging unit 4 are calculated.
- the collimating light receiving unit 453 is an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and receives reflected collimated light 457 in a wavelength range different from that of the first reflected ranging light 456. receives light.
- the reflected collimated light 457 is light having a wavelength range different from that of the first reflected ranging light 456, and is light reflected by the measurement target 6. That is, the collimation light receiving section 453 receives the reflected collimation light 457 reflected by the measurement target 6 and receives an image of the measurement target 6.
- Examples of the reflected collimated light 457 include natural light and infrared light.
- the reflected collimated light 457 is not limited to this.
- the reflected collimated light 457 is received by a collimated light receiving section 453 provided inside the telescope section 45 .
- the collimation light receiving section 453 converts the brightness and darkness (light reception result) of the reflected collimation light 457 into an electronic signal (image signal), and transmits the image signal to the image processing section 469 .
- the image processing unit 469 performs image processing on the image signal transmitted from the collimation light receiving unit 453, and transmits it to the calculation unit 461 as an image data signal.
- the calculation unit 461 performs calculations based on the image data signal transmitted from the image processing unit 469, and controls the display unit 471 of the operation display unit 47 to display an image of the collimation range by the telescope unit 45.
- the inclinometer 49 measures the inclination (inclination angle) of the sighting and ranging unit 4 with respect to gravity.
- the measurement results of the inclinometer 49 are input to the calculation section 461.
- the scanner unit 5 of the present embodiment includes a second rack section 52, a second horizontal rotation section 53, a second vertical rotation section 54, a scanning mirror 55, a second distance measurement light emitting section 56, and a second distance measurement light emitting section 56. It has a distance light receiving section 57.
- the external orientation factors of the scanner unit 5 with respect to the collimation and ranging unit 4 are preset and known.
- the second horizontal rotation section 53 includes a second horizontal rotation shaft 531, a bearing 532, a second horizontal drive motor 533, and a second horizontal angle detector 534.
- the second horizontal drive motor 533 is an example of the "motor” of the present invention, and is, for example, a three-phase brushless motor without a Hall sensor.
- the second horizontal angle detector 534 is an example of the "rotary encoder” of the present invention, and is, for example, an incremental rotary encoder.
- the second horizontal rotation shaft 531 has a second vertical axis 536 that extends vertically, and is rotatably supported by the second support portion 52 via a bearing 532 . One end of the second horizontal rotation shaft 531 is connected to the first mount 42 of the sighting and ranging unit 4 .
- the second rack part 52 is supported by a second horizontal rotation shaft 531 and rotates horizontally around a second vertical axis 536 by the driving force transmitted from the second horizontal drive motor 533. rotates as one.
- the second support section 52 is an example of the "rotating object" of the present invention.
- the second vertical axis 536 is parallel to the first vertical axis 436.
- the first vertical axis 436 and the second vertical axis 536 are on the same straight line.
- the first vertical axis 436 and the second vertical axis 536 are not limited to being on the same straight line.
- the distance between the first vertical axis 436 and the second vertical axis 536 is known. That is, the position of the second vertical axis 536 with respect to the first vertical axis 436 is known.
- the second horizontal angle detector 534 is provided at the other end of the second horizontal rotation shaft 531.
- the rotation angle of the second horizontal rotating shaft 531 with respect to the first holder 42 (that is, the rotation angle of the second holder 52) is detected by the second horizontal angle detector 534.
- the detection result of the second horizontal angle detector 534 is input to the calculation section 461.
- the drive of the second horizontal drive motor 533 is controlled by the second horizontal rotation drive section 466 based on the detection result of the second horizontal angle detector 534.
- the second vertical rotation section 54 includes a second vertical rotation shaft 541, a bearing 542, a second vertical drive motor 543, and a second vertical angle detector 544.
- the second vertical drive motor 543 is an example of the "motor” of the present invention, and is, for example, a three-phase brushless motor without a Hall sensor.
- the second vertical angle detector 544 is an example of the "rotary encoder” of the present invention, and is, for example, an incremental rotary encoder.
- the second vertical rotation shaft 541 has a second horizontal axis 546 that extends horizontally, and is rotatably supported by the second support portion 52 via a bearing 542 . One end of the second vertical rotating shaft 541 protrudes into the recess 521 of the second support portion 52 .
- the scanning mirror 55 is supported by one end of a second vertical rotation shaft 541 that protrudes into the recess 521 of the second holder 52, and is rotated around the second horizontal axis by the driving force transmitted from the second vertical drive motor 543. 546 and rotates integrally with the second vertical rotation shaft 541 in the vertical direction.
- the scanning mirror 55 is an example of the "rotating object" of the present invention.
- the second vertical angle detector 544 is provided at the other end of the second vertical rotation shaft 541.
- the rotation angle of the second vertical rotation shaft 541 (that is, the rotation angle of the scanning mirror 55) with respect to the second holder 52 is detected by the second vertical angle detector 544.
- the detection result of the second vertical angle detector 544 is input to the calculation section 461.
- the drive of the second vertical drive motor 543 is controlled by the second vertical rotation drive section 467 based on the detection result of the second vertical angle detector 544.
- the second horizontal axis 546 is parallel to the first horizontal axis 446.
- the distance between the first horizontal axis 446 and the second horizontal axis 546 is known. That is, the position of the second horizontal axis 546 with respect to the first horizontal axis 446 is known.
- the scanning mirror 55 is a deflection optical member, and reflects the second ranging light 565 incident from the horizontal direction at right angles. That is, the scanning mirror 55 reflects the second ranging light 565 that is incident from the horizontal direction in a direction perpendicular to the second horizontal axis 546.
- the scanning mirror 55 is supported by the second vertical rotation shaft 541 and rotates in the vertical direction about the second horizontal axis 546 by the driving force transmitted from the second vertical drive motor 543. Thereby, the scanning mirror 55 rotates and irradiates the second distance measuring light 565 within a plane intersecting (specifically orthogonal to) the second horizontal axis 546.
- the scanning mirror 55 reflects the second reflected distance measuring light 566 that has been reflected by the object to be measured 7 and is incident on the scanning mirror 55 toward the second distance measuring light receiving section 57 . That is, the scanning mirror 55 reflects the second reflected ranging light 566 that has been reflected by the measurement object 7 and is incident on the scanning mirror 55 in a direction parallel to the second horizontal axis 546 .
- the second distance measuring light emitting section 56 includes a light emitting element 561 and a light projecting optical section 562 including an objective lens, etc., and is driven and controlled by the second distance measuring section 465.
- the light emitting element 561 is, for example, a semiconductor laser or the like, and emits the second distance measuring light 565 onto an optical axis that coincides with the second horizontal axis 546 via the projection optical section 562.
- the second distance measuring light 565 is a pulsed laser beam of infrared light as invisible light.
- the light emitting element 561 is controlled by the second distance measuring section 465 and emits pulsed light in a required state including a required light intensity, a required pulse interval, and the like.
- the second ranging light receiving section 57 includes a light receiving element 571 and a light receiving optical section 572 including a condensing lens and the like.
- the light-receiving element 571 receives the second reflected distance-measuring light 566 which is the second distance-measuring light 565 reflected by the measurement object 7 and which is the second reflected distance-measuring light 566 which is reflected by the scanning mirror 55 and transmitted through the light-receiving optical section 572. receives light.
- the light receiving element 571 converts the brightness (result of light reception) of the received second reflected distance measuring light 566 into an electronic signal (light reception signal), and transmits the light reception signal to the second distance measuring section 465.
- the light receiving element 571 receives an internal reference light (not shown) guided from a reference light optical section (not shown), converts it into an electrical signal, and transmits it to the second distance measuring section 465.
- the second distance measurement unit 465 calculates the distance to the measurement target 7 based on the light reception signal transmitted from the second distance measurement light reception unit 57 (specifically, the light reception element 571). That is, the second reflected distance measuring light 566 and the internal reference light are converted into a second reflected distance measuring optical electrical signal and an internal reference optical electrical signal, respectively, and sent to the second distance measuring section 465.
- the distance to the measurement object 7 is measured based on the difference in time interval between the second reflected ranging photoelectric signal and the internal reference photoelectric signal.
- the calculation result of the second distance measuring section 465 is input to the calculation section 461.
- the calculation unit 461 calculates the following: The coordinate values of the measurement object 7 are calculated. Furthermore, the calculation unit 461 can obtain point cloud data regarding the entire measurement range or point cloud data regarding the measurement object 7 by recording the coordinate values of the measurement object 7 for each pulsed light.
- a three-phase brushless motor without a Hall sensor is used for at least one of the first horizontal drive motor 433, the first vertical drive motor 443, the second horizontal drive motor 533, and the second vertical drive motor 543.
- the three-dimensional surveying device 2 needs to confirm and store the initial phase of the motor by performing a swinging operation of the motor, and control the motor based on the stored initial phase.
- the 3D surveying device 2 performs an operation of checking and storing the initial phase of the motor in the initial operation every time the operator moves the 3D surveying device 2 to change the survey point, The operating time of the dimensional surveying device 2 and the working time of the operator become longer.
- the motor phase changes each time the 3D surveying device 2 is changed.
- the operation of checking and storing the initial phase becomes unnecessary, the power consumption of the battery of the three-dimensional surveying device 2 increases.
- the calculation unit 461 of the three-dimensional surveying device 2 calculates the phase relationship of the motor phases at the zero position of the first horizontal angle detector 434 as the initial phase, and uses the calculated initial phase as the initial phase.
- the driving parameters are stored in the storage unit 468 in advance.
- the calculation unit 461 drives the first horizontal drive motor 433 by open loop control in the initial operation after the three-dimensional surveying device 2 is powered on, and when the zero position of the first horizontal angle detector 434 is detected.
- the drive parameters stored in the storage unit 468 are applied as phase angles.
- the calculation unit 461 detects the zero position of the first horizontal angle detector 434
- the calculation unit 461 applies the drive parameter stored in the storage unit 468 as the phase angle, and then calculates the value of the first horizontal angle detector 434.
- the first horizontal drive motor 433 is driven by the closed loop control used. Such processing is performed by the first vertical angle detector 444 and the first vertical drive motor 443, the second horizontal angle detector 534 and the second horizontal drive motor 533, and the second vertical angle detector 544 and the second vertical drive motor. 543 is similarly executed.
- the three-dimensional surveying device 2 according to the present embodiment The operation of the three-dimensional surveying device 2 according to the present embodiment, the three-dimensional surveying device driving method executed by the three-dimensional surveying device 2 according to the present embodiment, and the computer of the three-dimensional surveying device 2 according to the present embodiment will be described below. Details of the three-dimensional surveying device driving program to be executed will be explained with reference to the drawings.
- FIG. 3 is a flowchart showing preliminary operations of the three-dimensional surveying device according to this embodiment.
- FIG. 4 is a flowchart showing the initial operation of the three-dimensional surveying device according to the present embodiment after the power is turned on.
- FIG. 5 is a graph illustrating an example of the initial phase measurement results of this embodiment.
- FIGS. 3 and 4 illustrate steps executed by the three-dimensional surveying device driving method according to the present embodiment and steps executed by the computer of the three-dimensional surveying device 2 by the three-dimensional surveying device driving program according to the present embodiment.
- This is a flowchart showing the following.
- the first horizontal drive motor 433, the first vertical drive motor 443, the second horizontal drive motor 533, and the second vertical drive motor 543 will be referred to as "motors”
- the first horizontal angle detector 434, the first vertical angle detector 444, the second horizontal angle detector 534, and the second vertical angle detector 544 will be described as a "rotary encoder.”
- step S11 shown in FIG. 3 the three-dimensional surveying device 2 performs a swinging operation of the motor as a preliminary operation, for example, in the manufacturing process or assembly process of the three-dimensional surveying device 2. That is, the calculation unit 461 executes control to obtain the initial position of the motor. Subsequently, in step S12, the calculation unit 461 drives the motor by closed loop control. Subsequently, in step S13, the calculation unit 461 determines whether the zero position of the rotary encoder has been detected.
- step S13: NO If the zero position of the rotary encoder is not detected (step S13: NO), the calculation unit 461 executes the process described above regarding step S12. On the other hand, when the calculation unit 461 detects the zero position of the rotary encoder (step S13: YES), in step S14, the calculation unit 461 calculates the phase relationship of the motor phases at the zero position of the rotary encoder as an initial phase. Subsequently, in step S15, the calculation unit 461 stores the calculated initial phase in the storage unit 468 as a drive parameter.
- FIG. 5 shows an example of the results of measuring the phase of an arbitrary phase (for example, the U phase of a three-phase brushless motor) at each pole of the motor once, twice, and three times.
- the initial phase variations as shown in FIG. 5 exist, for example, not only in the U phase but also in the V phase and W phase of a three-phase brushless motor.
- the calculation unit 461 of this embodiment calculates the initial phase multiple times for each pole of the motor, and stores the average value of the multiple initial phases in the storage unit 468 as a drive parameter. Therefore, when calculating the initial phase, the calculation unit 461 can suppress variations in the initial phase due to the influence of the poles of the motor, and can store more stable values in the storage unit 468 as drive parameters. In this way, preliminary operations in the manufacturing process and assembly process of the three-dimensional surveying device 2 are completed.
- step S21 shown in FIG. 4 the power of the three-dimensional surveying apparatus 2 is turned on, for example, at a surveying site.
- step S22 the calculation unit 461 drives the motor by open loop control as an initial operation after the power is turned on.
- step S23 the calculation unit 461 determines whether the zero position of the rotary encoder has been detected.
- step S23: NO If the zero position of the rotary encoder has not been detected (step S23: NO), the calculation unit 461 executes the process described above regarding step S22. On the other hand, when the calculation unit 461 detects the zero position of the rotary encoder (step S23: YES), in step S24, the calculation unit 461 applies the drive parameter stored in the storage unit 468 as the phase angle. In this way, the calculation unit 461 of this embodiment does not confirm the initial phases of the motor by executing the swinging operation of the motor by closed loop control in the initial operation after the power is turned on. Subsequently, in step S25, the calculation unit 461 drives the motor by closed loop control using the value of the rotary encoder.
- the three-dimensional surveying device 2 there is no need for a swinging motion of the motor in the initial operation after the power is turned on, so that the time required to detect the zero position of the rotary encoder can be shortened. It is possible to reduce operating time. In addition, for example, when an operator moves the 3D surveying device 2 to change the surveying point, there is no need to leave the power on, which further reduces operating time, saving battery power consumption. It is possible to extend the operating time.
- the calculation unit 461 calculates the initial phase multiple times at each pole of the motor, and stores the average value of the multiple initial phases in the storage unit 468 as a drive parameter. Thereby, when calculating the initial phase, the calculation unit 461 can suppress variations in the initial phase due to the influence of the poles of the motor, and can store more stable values in the storage unit 468 as drive parameters. Thereby, the three-dimensional surveying device 2 can realize more stable motor drive.
- Distance light 456: First reflected ranging light, 457: Reflected collimating light, 458: Collimating telescope, 461: Arithmetic unit, 462: First distance measuring unit, 463: First horizontal rotation drive unit, 464: First 1 vertical rotation drive section, 465: second distance measurement section, 466: second horizontal rotation drive section, 467: second vertical rotation drive section, 468: storage section, 469: image processing section, 471: display section, 472: Operation input section, 521: recess, 531: second horizontal rotation axis, 532: bearing, 533: second horizontal drive motor, 534: second horizontal angle detector, 536: second vertical axis, 541: second vertical Rotating axis, 542: Bearing, 543: Second vertical drive motor, 544: Second vertical angle detector, 546: Second horizontal axis, 561: Light emitting element, 562: Light projection optical section, 565: Second distance measurement light, 566: second reflected ranging light, 571: light receiving element, 572: light receiving
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
作動時間を抑え、バッテリの消費電力を節約することができる3次元測量装置、3次元測量装置駆動方法および3次元測量装置駆動プログラムを提供することを目的とする。3次元測量装置2は、回転対象物を回転させるモータ433と、回転対象物の回転角を検出するロータリーエンコーダ434と、ロータリーエンコーダ434のゼロ位置におけるモータ433の相の位相関係を初期位相として算出する演算部461と、初期位相を駆動パラメータとして記憶する記憶部468と、を備える。演算部461は、駆動パラメータを事前に記憶部468に記憶させ、電源が入った後の初期動作においてオープンループ制御によりモータ433を駆動し、ロータリーエンコーダ434のゼロ位置を検出したときに記憶部468に記憶された駆動パラメータを位相角として適用した後、ロータリーエンコーダ434の値を用いたクローズドループ制御によりモータ433を駆動する。
Description
本発明は、測定対象物の3次元データを取得する3次元測量装置、3次元測量装置駆動方法および3次元測量装置駆動プログラムに関する。
特許文献1には、傾斜検出装置を具備する測量装置が開示されている。特許文献1に記載された測量装置は、フレームや傾斜検出ユニットなどの回転対象物を軸心を中心に回転させるモータと、回転対象物の回転角を検出するエンコーダと、を備えている。例えば、 特許文献1に記載されたような測量装置のモータとして、ホールセンサを有していない3相ブラシレスモータが使用される場合がある。このような場合には、測量装置の電源が入った後の初期動作において、測量装置は、モータの揺動動作を実行することによりモータの相の初期位相を確認して記憶し、記憶した初期位相に基づいてモータの制御を行う必要がある。
しかし、例えば作業者が3次元測量装置を移動させて測量地点を変更する度に、3次元測量装置が初期動作においてモータの相の初期位相を確認して記憶する動作を実行すると、3次元測量装置の作動時間や作業者の作業時間が長くなるという点において改善の余地がある。これに対して、例えば作業者が3次元測量装置を移動させて測量地点を変更する際に、3次元測量装置の電源を入れたままにしておくことも一策である。しかし、そうすると、3次元測量装置のバッテリの消費電力が多くなり、消費電力の節約という点において改善の余地がある。
本発明は、前記事情に鑑みてなされたものであり、作動時間を抑え、バッテリの消費電力を節約することができる3次元測量装置、3次元測量装置駆動方法および3次元測量装置駆動プログラムを提供することを目的とする。
本発明の第1態様は、測定対象物の3次元データを取得する3次元測量装置であって、回転対象物を軸心を中心に回転させるモータと、前記回転対象物の回転角を検出するロータリーエンコーダと、前記ロータリーエンコーダのゼロ位置における前記モータの相の位相関係を初期位相として算出する演算部と、前記演算部により算出された前記初期位相を駆動パラメータとして記憶する記憶部と、を備え、前記演算部は、前記駆動パラメータを事前に前記記憶部に記憶させ、電源が入った後の初期動作においてオープンループ制御により前記モータを駆動し、前記ロータリーエンコーダの前記ゼロ位置を検出したときに前記記憶部に記憶された前記駆動パラメータを位相角として適用した後、前記ロータリーエンコーダの値を用いたクローズドループ制御により前記モータを駆動することを特徴とする3次元測量装置である。
本発明の第1態様によれば、演算部は、ロータリーエンコーダのゼロ位置におけるモータの相の位相関係を初期位相として算出し、算出した初期位相を駆動パラメータとして事前に記憶部に記憶させておく。そして、演算部は、電源が入った後の初期動作においてオープンループ制御によりモータを駆動し、ロータリーエンコーダのゼロ位置を検出したときに、記憶部に記憶された駆動パラメータを位相角として適用する。このように、演算部は、電源が入った後の初期動作においてクローズドループ制御によりモータの揺動動作を実行してモータの相の初期位相を確認するわけではない。そして、演算部は、ロータリーエンコーダのゼロ位置を検出したときに、記憶部に記憶された駆動パラメータを位相角として適用した後、ロータリーエンコーダの値を用いたクローズドループ制御によりモータを駆動する。これにより、本発明の第1態様の3次元測量装置は、電源が入った後の初期動作におけるモータの揺動動作が不要であるため、ロータリーエンコーダのゼロ位置を検出するまでの時間を短縮することができ、作動時間を抑えることができる。また、例えば作業者が3次元測量装置を移動させて測量地点を変更する際に電源を入れたままにしておく必要がなく、さらに、本発明の第1態様の3次元測量装置は、作動時間を抑えることができるため、バッテリの消費電力を節約することができ、動作可能時間を拡張することができる。
本発明の第2態様は、本発明の第1態様において、前記演算部は、前記モータの各極で複数回にわたって前記初期位相を算出し、複数の前記初期位相の平均値を前記駆動パラメータとして前記記憶部に記憶させることを特徴とする3次元測量装置である。
本発明の第2態様によれば、演算部は、初期位相を算出する際に、モータの極の影響による初期位相のばらつきを抑え、より安定した値を駆動パラメータとして記憶部に記憶させることができる。これにより、本発明の第2態様の3次元測量装置は、より安定したモータの駆動を実現することができる。
本発明の第3態様は、測定対象物の3次元データを取得する3次元測量装置駆動方法であって、回転対象物の回転角を検出するロータリーエンコーダのゼロ位置におけるモータの相の位相関係を初期位相として算出する第1ステップと、前記第1ステップにおいて算出された前記初期位相を駆動パラメータとして事前に記憶部に記憶する第2ステップと、電源が入った後の初期動作においてオープンループ制御により前記モータを駆動し、前記ロータリーエンコーダの前記ゼロ位置を検出したときに前記記憶部に記憶された前記駆動パラメータを位相角として適用する第3ステップと、前記ロータリーエンコーダの値を用いたクローズドループ制御により前記モータを駆動する第4ステップと、を備えたことを特徴とする3次元測量装置駆動方法である。
本発明の第3態様によれば、第1ステップにおいて、ロータリーエンコーダのゼロ位置におけるモータの相の位相関係を初期位相として算出し、第2ステップにおいて、第1ステップにより算出された初期位相を駆動パラメータとして事前に記憶部に記憶させておく。そして、第3ステップにおいて、電源が入った後の初期動作においてオープンループ制御によりモータを駆動し、ロータリーエンコーダのゼロ位置を検出したときに、記憶部に記憶された駆動パラメータを位相角として適用する。このように、第3ステップでは、電源が入った後の初期動作においてクローズドループ制御によりモータの揺動動作を実行してモータの相の初期位相を確認するわけではない。そして、第4ステップにおいて、ロータリーエンコーダの値を用いたクローズドループ制御によりモータを駆動する。これにより、本発明の第3態様の3次元測量装置駆動方法では、電源が入った後の初期動作におけるモータの揺動動作が不要であるため、ロータリーエンコーダのゼロ位置を検出するまでの時間を短縮することができ、作動時間を抑えることができる。また、例えば作業者が3次元測量装置を移動させて測量地点を変更する際に電源を入れたままにしておく必要がなく、さらに、本発明の第3態様の3次元測量装置駆動方法では、作動時間を抑えることができるため、バッテリの消費電力を節約することができ、動作可能時間を拡張することができる。
本発明の第4態様は、測定対象物の3次元データを取得する3次元測量装置のコンピュータによって実行される3次元測量装置駆動プログラムであって、前記コンピュータに、回転対象物の回転角を検出するロータリーエンコーダのゼロ位置におけるモータの相の位相関係を初期位相として算出する第1ステップと、前記第1ステップにおいて算出された前記初期位相を駆動パラメータとして事前に記憶部に記憶する第2ステップと、電源が入った後の初期動作においてオープンループ制御により前記モータを駆動し、前記ロータリーエンコーダの前記ゼロ位置を検出したときに前記記憶部に記憶された前記駆動パラメータを位相角として適用する第3ステップと、前記ロータリーエンコーダの値を用いたクローズドループ制御により前記モータを駆動する第4ステップと、を実行させることを特徴とする3次元測量装置駆動プログラムである。
本発明の第4態様によれば、第1ステップにおいて、ロータリーエンコーダのゼロ位置におけるモータの相の位相関係を初期位相として算出し、第2ステップにおいて、第1ステップにより算出された初期位相を駆動パラメータとして事前に記憶部に記憶させておく。そして、第3ステップにおいて、電源が入った後の初期動作においてオープンループ制御によりモータを駆動し、ロータリーエンコーダのゼロ位置を検出したときに、記憶部に記憶された駆動パラメータを位相角として適用する。このように、第3ステップでは、電源が入った後の初期動作においてクローズドループ制御によりモータの揺動動作を実行してモータの相の初期位相を確認するわけではない。そして、第4ステップにおいて、ロータリーエンコーダの値を用いたクローズドループ制御によりモータを駆動する。これにより、本発明の第4態様の3次元測量装置駆動プログラムでは、電源が入った後の初期動作におけるモータの揺動動作が不要であるため、ロータリーエンコーダのゼロ位置を検出するまでの時間を短縮することができ、作動時間を抑えることができる。また、例えば作業者が3次元測量装置を移動させて測量地点を変更する際に電源を入れたままにしておく必要がなく、さらに、本発明の第4態様の3次元測量装置駆動プログラムでは、作動時間を抑えることができるため、バッテリの消費電力を節約することができ、動作可能時間を拡張することができる。
本発明によれば、作動時間を抑え、バッテリの消費電力を節約することができる3次元測量装置、3次元測量装置駆動方法および3次元測量装置駆動プログラムを提供することができる。
以下に、本発明の実施形態を、図面を参照して説明する。
なお、以下に説明する実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。また、各図面中、同様の構成要素には同一の符号を付して詳細な説明を適宜省略する。
なお、以下に説明する実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。また、各図面中、同様の構成要素には同一の符号を付して詳細な説明を適宜省略する。
図1は、本発明の実施形態に係る3次元測量装置の構造系を主として説明するブロック図である。
図2は、本実施形態に係る3次元測量装置の制御系を主として説明するブロック図である。
図2は、本実施形態に係る3次元測量装置の制御系を主として説明するブロック図である。
図1および図2に表したように、本実施形態に係る3次元測量装置2は、視準測距ユニット4と、スキャナユニット5と、を備え、例えば構造物などの測定対象物の3次元データを取得する。なお、図1および図2に表した3次元測量装置2は、一例であり、本実施形態に係る3次元測量装置2は、必ずしも視準測距ユニット4とスキャナユニット5との両方を備えていなくともよい。つまり、本実施形態に係る3次元測量装置2は、例えばトータルステーションなどと呼ばれる視準測距ユニット4であって、測距および測角を行う機器であってもよい。あるいは、本実施形態に係る3次元測量装置2は、スキャナユニット5であって、測距および測角を行い点群データを取得する機器であってもよい。本実施形態の説明では、3次元測量装置2が視準測距ユニット4とスキャナユニット5との両方を備える場合を例に挙げる。
本実施形態の視準測距ユニット4は、整準部41と、第1托架部42と、第1水平回転部43と、第1鉛直回転部44と、望遠鏡部45と、制御演算部46と、操作表示部47と、基盤部48と、傾斜計49と、を有する。視準測距ユニット4は、計測用ターゲット6(図2参照)を自動的に探す自動追尾機能を有する。
制御演算部46は、演算部461と、第1距離測定部462と、第1水平回転駆動部463と、第1鉛直回転駆動部464と、第2距離測定部465と、第2水平回転駆動部466と、第2鉛直回転駆動部467と、記憶部468と、画像処理部469と、を有する。演算部461は、例えばCPU(Central Processing Unit)などであり、操作表示部47の操作入力部472から送信された信号(指令)に基づいて、プログラムの起動や、信号の制御処理や、演算や、操作表示部47の表示部471などの駆動制御などを実行する。すなわち、演算部461は、3次元測量装置2の全体の制御を行うとともに、測量条件や、測定結果(測距結果および測角結果)や、画像処理された結果(視準範囲の画像)などを表示部471に表示させる。
第1距離測定部462、第1水平回転駆動部463、第1鉛直回転駆動部464、第2距離測定部465、第2水平回転駆動部466、第2鉛直回転駆動部467、および画像処理部469は、記憶部468に格納(記憶)されているプログラムを演算部461が実行することにより実現される。なお、第1距離測定部462、第1水平回転駆動部463、第1鉛直回転駆動部464、第2距離測定部465、第2水平回転駆動部466、第2鉛直回転駆動部467、および画像処理部469は、ハードウェアによって実現されてもよく、ハードウェアとソフトウェアとの組み合わせによって実現されてもよい。
記憶部468には、例えば、測定のためのシーケンスプログラムや、画像処理のための画像処理プログラムや、演算プログラムなどが格納されている。また、記憶部468には、後述する駆動パラメータが格納される。駆動パラメータの詳細については、後述する。記憶部468としては、例えば、3次元測量装置2に内蔵された半導体メモリなどが挙げられる。あるいは、記憶部468としては、3次元測量装置2に接続可能なCD(Compact Disc)、DVD(Digital Versatile Disc)、RAM(Random access memory)、ROM(Read only memory)、ハードディスク、メモリカードなどの種々の記憶媒体が挙げられる。
制御演算部46を含むコンピュータによって実行されるプログラムは、本発明の「3次元測量装置駆動プログラム」の一例である。ここでいう「コンピュータ」とは、パソコンには限定されず、情報処理機器に含まれる演算処理装置、マイコン等も含み、プログラムによって本発明の機能を実現することが可能な機器、装置を総称している。
整準部41は、三脚(図示せず)に取付けられる部分であり、例えば3つの調整螺子411を有する。整準部41の整準は、例えば計測用ターゲット6が設置された既知点において、第1托架部42に設けられた傾斜センサ(図示せず)が水平を検出するように調整螺子411が調整されることにより行われる。すなわち、第1托架部42は、例えば計測用ターゲット6が設置された既知点において、調整螺子411による整準が行われることで水平に維持される。
第1水平回転部43は、第1水平回転軸431と、軸受432と、第1水平駆動モータ433と、第1水平角検出器434と、を有する。第1水平駆動モータ433は、本発明の「モータ」の一例であり、例えばホールセンサを有していない3相ブラシレスモータである。第1水平角検出器434は、本発明の「ロータリーエンコーダ」の一例であり、例えばインクリメンタル型のロータリーエンコーダである。第1水平回転軸431は、鉛直に延びた第1鉛直軸心436を有し、軸受432を介して基盤部48に回転自在に支持されている。第1托架部42は、第1水平回転軸431に支持され、第1水平駆動モータ433から伝達された駆動力により第1鉛直軸心436を中心として水平方向に第1水平回転軸431と一体的に回転する。第1托架部42は、本発明の「回転対象物」の一例である。
基盤部48に対する第1水平回転軸431の回転角(すなわち第1托架部42の回転角)は、第1水平角検出器434によって検出される。第1水平角検出器434の検出結果は、演算部461に入力される。第1水平駆動モータ433の駆動は、第1水平角検出器434の検出結果に基づいて第1水平回転駆動部463により制御される。
第1鉛直回転部44は、第1鉛直回転軸441と、軸受442と、第1鉛直駆動モータ443と、第1鉛直角検出器444と、を有する。第1鉛直駆動モータ443は、本発明の「モータ」の一例であり、例えばホールセンサを有していない3相ブラシレスモータである。第1鉛直角検出器444は、本発明の「ロータリーエンコーダ」の一例であり、例えばインクリメンタル型のロータリーエンコーダである。第1鉛直回転軸441は、水平に延びた第1水平軸心446を有し、軸受442を介して第1托架部42に回転自在に支持されている。第1鉛直回転軸441の一方の端部は、第1托架部42の間隙部421に突出している。望遠鏡部45は、第1托架部42の間隙部421に突出した第1鉛直回転軸441の一方の端部に支持され、第1鉛直駆動モータ443から伝達された駆動力により第1水平軸心446を中心として鉛直方向に第1鉛直回転軸441と一体的に回転する。望遠鏡部45は、本発明の「回転対象物」の一例である。
第1鉛直角検出器444は、第1鉛直回転軸441の他方の端部に設けられている。第1托架部42に対する第1鉛直回転軸441の回転角(すなわち望遠鏡部45の回転角)は、第1鉛直角検出器444により検出される。第1鉛直角検出器444の検出結果は、演算部461に入力される。第1鉛直駆動モータ443の駆動は、第1鉛直角検出器444の検出結果に基づいて第1鉛直回転駆動部464により制御される。
望遠鏡部45は、前述したように、第1鉛直回転軸441に支持され、第1鉛直駆動モータ443から伝達された駆動力により第1水平軸心446を中心として鉛直方向に回転する。望遠鏡部45は、視準望遠鏡458を有し、計測用ターゲット6を視準して第1測距光455を照射する。具体的に説明すると、望遠鏡部45は、第1測距発光部451と、第1測距受光部452と、視準受光部453と、を有する。
第1測距発光部451は、第1距離測定部462により駆動制御される。第1測距発光部451は、望遠鏡部45の内部に設けられ、例えばレーザ光などの第1測距光455を第1水平軸心446に直交する方向に射出する。第1測距発光部451から射出された第1測距光455は、計測用ターゲット6に照射される。計測用ターゲット6で反射した第1反射測距光456は、望遠鏡部45の内部に設けられた第1測距受光部452において受光される。第1測距受光部452は、受光した第1反射測距光456による明暗(受光結果)を電子信号(受光信号)に変換し、受光信号を第1距離測定部462に送信する。また、第1測距受光部452は、参照光光学部(図示せず)から導かれた内部参照光(図示せず)を受光し電気信号に変換して、第1距離測定部462に送信する。
第1距離測定部462は、第1測距受光部452から送信された受光信号に基づいて計測用ターゲット6までの距離を演算する。すなわち、第1反射測距光456および内部参照光は、第1反射測距光電気信号および内部参照光電気信号のそれぞれに変換され、第1距離測定部462に送られる。計測用ターゲット6までの距離は、第1反射測距光電気信号と内部参照光電気信号との間の時間的間隔の差に基づいて測定される。第1距離測定部462の演算結果は、演算部(CPU)461に入力される。
演算部461は、測定した計測用ターゲット6までの距離と、第1鉛直角検出器444により検出された鉛直角と、第1水平角検出器434により検出された水平角と、に基づいて、計測用ターゲット6の座標値を算出する。言い換えれば、計測用ターゲット6は既知点に設置されているため、演算部461は、測定した計測用ターゲット6までの距離と、第1鉛直角検出器444により検出された鉛直角と、第1水平角検出器434により検出された水平角と、に基づいて、視準測距ユニット4の計測中心の座標値を算出する。
視準受光部453は、例えばCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサであり、第1反射測距光456の波長域とは異なる波長域の反射視準光457を受光する。反射視準光457は、第1反射測距光456の波長域とは異なる波長域を有する光であって、計測用ターゲット6で反射した光である。すなわち、視準受光部453は、計測用ターゲット6で反射した反射視準光457を受光し、計測用ターゲット6の画像を受光する。反射視準光457としては、例えば自然光や赤外光などが挙げられる。但し、反射視準光457は、これだけには限定されない。反射視準光457は、望遠鏡部45の内部に設けられた視準受光部453において受光される。視準受光部453は、反射視準光457による明暗(受光結果)を電子信号(画像信号)に変換し、画像信号を画像処理部469に送信する。
画像処理部469は、視準受光部453から送信された画像信号の画像処理を実行し、画像データ信号として演算部461に送信する。演算部461は、画像処理部469から送信された画像データ信号に基づいて演算を実行し、望遠鏡部45による視準範囲の画像を操作表示部47の表示部471に表示させる制御を実行する。
傾斜計49は、重力に対する視準測距ユニット4の傾き(傾斜角)を計測する。傾斜計49の計測結果は、演算部461に入力される。
本実施形態のスキャナユニット5は、第2托架部52と、第2水平回転部53と、第2鉛直回転部54と、走査鏡55と、第2測距発光部56と、第2測距受光部57と、を有する。視準測距ユニット4に対するスキャナユニット5の外部標定要素は、予め設定されており既知である。
第2水平回転部53は、第2水平回転軸531と、軸受532と、第2水平駆動モータ533と、第2水平角検出器534と、を有する。第2水平駆動モータ533は、本発明の「モータ」の一例であり、例えばホールセンサを有していない3相ブラシレスモータである。第2水平角検出器534は、本発明の「ロータリーエンコーダ」の一例であり、例えばインクリメンタル型のロータリーエンコーダである。第2水平回転軸531は、鉛直に延びた第2鉛直軸心536を有し、軸受532を介して第2托架部52に回転自在に支持されている。第2水平回転軸531の一方の端部は、視準測距ユニット4の第1托架部42に接続されている。第2托架部52は、第2水平回転軸531に支持され、第2水平駆動モータ533から伝達された駆動力により第2鉛直軸心536を中心として水平方向に第2水平回転軸531と一体的に回転する。第2托架部52は、本発明の「回転対象物」の一例である。
第2鉛直軸心536は、第1鉛直軸心436と平行である。本実施形態に係る3次元測量装置2では、第1鉛直軸心436および第2鉛直軸心536は、互いに同一直線上に存在する。ただし、第1鉛直軸心436および第2鉛直軸心536は、互いに同一直線上に存在することには限定されない。第1鉛直軸心436と第2鉛直軸心536との間の距離は、既知である。すなわち、第1鉛直軸心436に対する第2鉛直軸心536の位置は、既知である。
第2水平角検出器534は、第2水平回転軸531の他方の端部に設けられている。第1托架部42に対する第2水平回転軸531の回転角(すなわち第2托架部52の回転角)は、第2水平角検出器534により検出される。第2水平角検出器534の検出結果は、演算部461に入力される。第2水平駆動モータ533の駆動は、第2水平角検出器534の検出結果に基づいて第2水平回転駆動部466により制御される。
第2鉛直回転部54は、第2鉛直回転軸541と、軸受542と、第2鉛直駆動モータ543と、第2鉛直角検出器544と、を有する。第2鉛直駆動モータ543は、本発明の「モータ」の一例であり、例えばホールセンサを有していない3相ブラシレスモータである。第2鉛直角検出器544は、本発明の「ロータリーエンコーダ」の一例であり、例えばインクリメンタル型のロータリーエンコーダである。第2鉛直回転軸541は、水平に延びた第2水平軸心546を有し、軸受542を介して第2托架部52に回転自在に支持されている。第2鉛直回転軸541の一方の端部は、第2托架部52の凹部521に突出している。走査鏡55は、第2托架部52の凹部521に突出した第2鉛直回転軸541の一方の端部に支持され、第2鉛直駆動モータ543から伝達された駆動力により第2水平軸心546を中心として鉛直方向に第2鉛直回転軸541と一体的に回転する。走査鏡55は、本発明の「回転対象物」の一例である。
第2鉛直角検出器544は、第2鉛直回転軸541の他方の端部に設けられている。第2托架部52に対する第2鉛直回転軸541の回転角(すなわち走査鏡55の回転角)は、第2鉛直角検出器544により検出される。第2鉛直角検出器544の検出結果は、演算部461に入力される。第2鉛直駆動モータ543の駆動は、第2鉛直角検出器544の検出結果に基づいて第2鉛直回転駆動部467により制御される。
第2水平軸心546は、第1水平軸心446と平行である。第1水平軸心446と第2水平軸心546との間の距離は、既知である。すなわち、第1水平軸心446に対する第2水平軸心546の位置は、既知である。
走査鏡55は、偏向光学部材であり、水平方向から入射した第2測距光565を直角に反射する。すなわち、走査鏡55は、水平方向から入射した第2測距光565を第2水平軸心546に直交する方向に反射する。走査鏡55は、前述したように、第2鉛直回転軸541に支持され、第2鉛直駆動モータ543から伝達された駆動力により第2水平軸心546を中心として鉛直方向に回転する。これにより、走査鏡55は、第2測距光565を第2水平軸心546に交差(具体的には直交)する面内で回転照射させる。また、走査鏡55は、測定対象物7で反射され走査鏡55に入射した第2反射測距光566を第2測距受光部57に向かって反射する。すなわち、走査鏡55は、測定対象物7で反射され走査鏡55に入射した第2反射測距光566を第2水平軸心546に平行な方向に反射する。
図2に表したように、第2測距発光部56は、発光素子561と、対物レンズ等を含む投光光学部562と、を有し、第2距離測定部465により駆動制御される。発光素子561は、例えば半導体レーザ等であり、投光光学部562を介して第2測距光565を第2水平軸心546に合致する光軸上に射出する。第2測距光565は、不可視光としての赤外光のパルスレーザ光線である。発光素子561は、第2距離測定部465に制御され、所要の光強度や所要のパルス間隔などを含む所要の状態でパルス光を発光する。
図2に表したように、第2測距受光部57は、受光素子571と、集光レンズなどを含む受光光学部572と、を有する。受光素子571は、第2測距光565が測定対象物7で反射した第2反射測距光566であって、走査鏡55で反射し受光光学部572を透過した第2反射測距光566を受光する。受光素子571は、受光した第2反射測距光566による明暗(受光結果)を電子信号(受光信号)に変換し、受光信号を第2距離測定部465に送信する。また、受光素子571は、参照光光学部(図示せず)から導かれた内部参照光(図示せず)を受光し電気信号に変換して、第2距離測定部465に送信する。
第2距離測定部465は、第2測距受光部57(具体的には受光素子571)から送信された受光信号に基づいて測定対象物7までの距離を演算する。すなわち、第2反射測距光566および内部参照光は、第2反射測距光電気信号および内部参照光電気信号のそれぞれに変換され、第2距離測定部465に送られる。測定対象物7までの距離は、第2反射測距光電気信号と内部参照光電気信号との間の時間的間隔の差に基づいて測定される。第2距離測定部465の演算結果は、演算部461に入力される。
演算部461は、測定した測定対象物7までの距離と、第2鉛直角検出器544により検出された鉛直角と、第2水平角検出器534により検出された水平角と、に基づいて、測定対象物7の座標値を算出する。また、演算部461は、パルス光毎の測定対象物7の座標値を記録することで、測定範囲全域に関する点群データ、あるいは測定対象物7に関する点群データを得ることができる。
ここで、ホールセンサを有していない3相ブラシレスモータが第1水平駆動モータ433、第1鉛直駆動モータ443、第2水平駆動モータ533および第2鉛直駆動モータ543の少なくともいずれかに使用される場合、3次元測量装置2は、モータの揺動動作を実行することによりモータの相の初期位相を確認して記憶し、記憶した初期位相に基づいてモータの制御を行う必要がある。しかし、例えば作業者が3次元測量装置2を移動させて測量地点を変更する度に、3次元測量装置2が初期動作においてモータの相の初期位相を確認して記憶する動作を実行すると、3次元測量装置2の作動時間や作業者の作業時間が長くなる。また、例えば作業者が3次元測量装置2を移動させて測量地点を変更する際に、3次元測量装置2の電源を入れたままにしておくと、測量地点を変更する度にモータの相の初期位相を確認して記憶する動作は不要になる一方で、3次元測量装置2のバッテリの消費電力が多くなる。
これに対して、本実施形態に係る3次元測量装置2の演算部461は、第1水平角検出器434のゼロ位置におけるモータの相の位相関係を初期位相として算出し、算出した初期位相を駆動パラメータとして事前に記憶部468に記憶させておく。そして、演算部461は、3次元測量装置2の電源が入った後の初期動作においてオープンループ制御により第1水平駆動モータ433を駆動し、第1水平角検出器434のゼロ位置を検出したときに、記憶部468に記憶された駆動パラメータを位相角として適用する。そして、演算部461は、第1水平角検出器434のゼロ位置を検出したときに、記憶部468に記憶された駆動パラメータを位相角として適用した後、第1水平角検出器434の値を用いたクローズドループ制御により第1水平駆動モータ433を駆動する。このような処理は、第1鉛直角検出器444および第1鉛直駆動モータ443、第2水平角検出器534および第2水平駆動モータ533、ならびに第2鉛直角検出器544および第2鉛直駆動モータ543についても同様に実行される。
以下、本実施形態に係る3次元測量装置2の動作と、本実施形態に係る3次元測量装置2が実行する3次元測量装置駆動方法と、本実施形態に係る3次元測量装置2のコンピュータによって実行される3次元測量装置駆動プログラムと、の詳細を、図面を参照して説明する。
図3は、本実施形態に係る3次元測量装置の事前動作を表すフローチャートである。
図4は、本実施形態に係る3次元測量装置の電源オン後の初期動作を表すフローチャートである。
図5は、本実施形態の初期位相の測定結果の一例を例示するグラフである。
図4は、本実施形態に係る3次元測量装置の電源オン後の初期動作を表すフローチャートである。
図5は、本実施形態の初期位相の測定結果の一例を例示するグラフである。
なお、図3および図4は、本実施形態に係る3次元測量装置駆動方法により実行されるステップと、本実施形態に係る3次元測量装置駆動プログラムが3次元測量装置2のコンピュータに実行させるステップと、を表すフローチャートである。
以下では、説明の便宜上、第1水平駆動モータ433、第1鉛直駆動モータ443、第2水平駆動モータ533および第2鉛直駆動モータ543を「モータ」と称して説明し、第1水平角検出器434、第1鉛直角検出器444、第2水平角検出器534および第2鉛直角検出器544を「ロータリーエンコーダ」と称して説明する。
以下では、説明の便宜上、第1水平駆動モータ433、第1鉛直駆動モータ443、第2水平駆動モータ533および第2鉛直駆動モータ543を「モータ」と称して説明し、第1水平角検出器434、第1鉛直角検出器444、第2水平角検出器534および第2鉛直角検出器544を「ロータリーエンコーダ」と称して説明する。
まず、図3に表したステップS11において、3次元測量装置2は、例えば3次元測量装置2の製造工程や組立工程で事前動作としてモータの揺動動作を実行する。つまり、演算部461は、モータの初期位置を求める制御を実行する。続いて、ステップS12において、演算部461は、クローズドループ制御によりモータを駆動する。続いて、ステップS13において、演算部461は、ロータリーエンコーダのゼロ位置を検出したか否かを判断する。
演算部461は、ロータリーエンコーダのゼロ位置を検出していない場合には(ステップS13:NO)、ステップS12に関して前述した処理を実行する。一方で、演算部461は、ロータリーエンコーダのゼロ位置を検出した場合には(ステップS13:YES)、ステップS14において、ロータリーエンコーダのゼロ位置におけるモータの相の位相関係を初期位相として算出する。続いて、ステップS15において、演算部461は、算出した初期位相を駆動パラメータとして記憶部468に記憶させる。
ここで、図5に表したように、演算部461が算出する初期位相には、演算部461が初期位相を確認するモータの極に応じてばらつきが存在する。図5は、1回、2回および3回にわたってモータの各極における任意の相(例えば3相ブラシレスモータのU相)の位相を測定した結果の一例を表している。図5に表したような初期位相のばらつきは、例えば3相ブラシレスモータのU相だけではなく、V相およびW相についても同様に存在する。
そこで、本実施形態の演算部461は、モータの各極で複数回にわたって初期位相を算出し、複数の初期位相の平均値を駆動パラメータとして記憶部468に記憶させる。これにより、演算部461は、初期位相を算出する際に、モータの極の影響による初期位相のばらつきを抑え、より安定した値を駆動パラメータとして記憶部468に記憶させることができる。
このようにして、3次元測量装置2の製造工程や組立工程での事前動作が終了する。
このようにして、3次元測量装置2の製造工程や組立工程での事前動作が終了する。
続いて、図4に表したステップS21において、例えば測量現場などで3次元測量装置2の電源が入る。そうすると、ステップS22において、演算部461は、電源が入った後の初期動作として、オープンループ制御によりモータを駆動する。続いて、ステップS23において、演算部461は、ロータリーエンコーダのゼロ位置を検出したか否かを判断する。
演算部461は、ロータリーエンコーダのゼロ位置を検出していない場合には(ステップS23:NO)、ステップS22に関して前述した処理を実行する。一方で、演算部461は、ロータリーエンコーダのゼロ位置を検出した場合には(ステップS23:YES)、ステップS24において、記憶部468に記憶された駆動パラメータを位相角として適用する。このように、本実施形態の演算部461は、電源が入った後の初期動作においてクローズドループ制御によりモータの揺動動作を実行してモータの相の初期位相を確認するわけではない。続いて、ステップS25において、演算部461は、ロータリーエンコーダの値を用いたクローズドループ制御によりモータを駆動する。
本実施形態に係る3次元測量装置2によれば、電源が入った後の初期動作におけるモータの揺動動作が不要であるため、ロータリーエンコーダのゼロ位置を検出するまでの時間を短縮することができ、作動時間を抑えることができる。また、例えば作業者が3次元測量装置2を移動させて測量地点を変更する際に電源を入れたままにしておく必要がなく、さらに作動時間を抑えることができるため、バッテリの消費電力を節約することができ、動作可能時間を拡張することができる。
また、図3および図5に関して前述した通り、演算部461は、モータの各極で複数回にわたって初期位相を算出し、複数の初期位相の平均値を駆動パラメータとして記憶部468に記憶させる。これにより、演算部461は、初期位相を算出する際に、モータの極の影響による初期位相のばらつきを抑え、より安定した値を駆動パラメータとして記憶部468に記憶させることができる。これにより、3次元測量装置2は、より安定したモータの駆動を実現することができる。
以上、本発明の実施形態について説明した。しかし、本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。上記実施形態の構成は、その一部を省略したり、上記とは異なるように任意に組み合わせたりすることができる。
2:3次元測量装置、 4:視準測距ユニット、 5:スキャナユニット、 6:計測用ターゲット、 7:測定対象物、 41:整準部、 42:第1托架部、 43:第1水平回転部、 44:第1鉛直回転部、 45:望遠鏡部、 46:制御演算部、 47:操作表示部、 48:基盤部、 49:傾斜計、 52:第2托架部、 53:第2水平回転部、 54:第2鉛直回転部、 55:走査鏡、 56:第2測距発光部、 57:第2測距受光部、 411:調整螺子、 421:間隙部、 431:第1水平回転軸、 432:軸受、 433:第1水平駆動モータ、 434:第1水平角検出器、 436:第1鉛直軸心、 441:第1鉛直回転軸、 442:軸受、 443:第1鉛直駆動モータ、 444:第1鉛直角検出器、 446:第1水平軸心、 451:第1測距発光部、 452:第1測距受光部、 453:視準受光部、 455:第1測距光、 456:第1反射測距光、 457:反射視準光、 458:視準望遠鏡、 461:演算部、 462:第1距離測定部、 463:第1水平回転駆動部、 464:第1鉛直回転駆動部、 465:第2距離測定部、 466:第2水平回転駆動部、 467:第2鉛直回転駆動部、 468:記憶部、 469:画像処理部、 471:表示部、 472:操作入力部、 521:凹部、 531:第2水平回転軸、 532:軸受、 533:第2水平駆動モータ、 534:第2水平角検出器、 536:第2鉛直軸心、 541:第2鉛直回転軸、 542:軸受、 543:第2鉛直駆動モータ、 544:第2鉛直角検出器、 546:第2水平軸心、 561:発光素子、 562:投光光学部、 565:第2測距光、 566:第2反射測距光、 571:受光素子、 572:受光光学部
Claims (4)
- 測定対象物の3次元データを取得する3次元測量装置であって、
回転対象物を軸心を中心に回転させるモータと、
前記回転対象物の回転角を検出するロータリーエンコーダと、
前記ロータリーエンコーダのゼロ位置における前記モータの相の位相関係を初期位相として算出する演算部と、
前記演算部により算出された前記初期位相を駆動パラメータとして記憶する記憶部と、
を備え、
前記演算部は、前記駆動パラメータを事前に前記記憶部に記憶させ、電源が入った後の初期動作においてオープンループ制御により前記モータを駆動し、前記ロータリーエンコーダの前記ゼロ位置を検出したときに前記記憶部に記憶された前記駆動パラメータを位相角として適用した後、前記ロータリーエンコーダの値を用いたクローズドループ制御により前記モータを駆動することを特徴とする3次元測量装置。 - 前記演算部は、前記モータの各極で複数回にわたって前記初期位相を算出し、複数の前記初期位相の平均値を前記駆動パラメータとして前記記憶部に記憶させることを特徴とする請求項1に記載の3次元測量装置。
- 測定対象物の3次元データを取得する3次元測量装置駆動方法であって、
回転対象物の回転角を検出するロータリーエンコーダのゼロ位置におけるモータの相の位相関係を初期位相として算出する第1ステップと、
前記第1ステップにおいて算出された前記初期位相を駆動パラメータとして事前に記憶部に記憶する第2ステップと、
電源が入った後の初期動作においてオープンループ制御により前記モータを駆動し、前記ロータリーエンコーダの前記ゼロ位置を検出したときに前記記憶部に記憶された前記駆動パラメータを位相角として適用する第3ステップと、
前記ロータリーエンコーダの値を用いたクローズドループ制御により前記モータを駆動する第4ステップと、
を備えたことを特徴とする3次元測量装置駆動方法。 - 測定対象物の3次元データを取得する3次元測量装置のコンピュータによって実行される3次元測量装置駆動プログラムであって、
前記コンピュータに、
回転対象物の回転角を検出するロータリーエンコーダのゼロ位置におけるモータの相の位相関係を初期位相として算出する第1ステップと、
前記第1ステップにおいて算出された前記初期位相を駆動パラメータとして事前に記憶部に記憶する第2ステップと、
電源が入った後の初期動作においてオープンループ制御により前記モータを駆動し、前記ロータリーエンコーダの前記ゼロ位置を検出したときに前記記憶部に記憶された前記駆動パラメータを位相角として適用する第3ステップと、
前記ロータリーエンコーダの値を用いたクローズドループ制御により前記モータを駆動する第4ステップと、
を実行させることを特徴とする3次元測量装置駆動プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022144694A JP2024039935A (ja) | 2022-09-12 | 2022-09-12 | 3次元測量装置、3次元測量装置駆動方法および3次元測量装置駆動プログラム |
JP2022-144694 | 2022-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024058148A1 true WO2024058148A1 (ja) | 2024-03-21 |
Family
ID=90275049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/033104 WO2024058148A1 (ja) | 2022-09-12 | 2023-09-11 | 3次元測量装置、3次元測量装置駆動方法および3次元測量装置駆動プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024039935A (ja) |
WO (1) | WO2024058148A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014023273A (ja) * | 2012-07-18 | 2014-02-03 | Aida Engineering Ltd | モータ励磁装置、モータ励磁方法、モータ制御装置およびモータ制御方法 |
JP2015023675A (ja) * | 2013-07-19 | 2015-02-02 | キヤノン株式会社 | アクチュエータの制御装置およびアクチュエータの制御方法 |
JP2017102033A (ja) * | 2015-12-02 | 2017-06-08 | 株式会社トプコン | レーザスキャナ |
-
2022
- 2022-09-12 JP JP2022144694A patent/JP2024039935A/ja active Pending
-
2023
- 2023-09-11 WO PCT/JP2023/033104 patent/WO2024058148A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014023273A (ja) * | 2012-07-18 | 2014-02-03 | Aida Engineering Ltd | モータ励磁装置、モータ励磁方法、モータ制御装置およびモータ制御方法 |
JP2015023675A (ja) * | 2013-07-19 | 2015-02-02 | キヤノン株式会社 | アクチュエータの制御装置およびアクチュエータの制御方法 |
JP2017102033A (ja) * | 2015-12-02 | 2017-06-08 | 株式会社トプコン | レーザスキャナ |
Also Published As
Publication number | Publication date |
---|---|
JP2024039935A (ja) | 2024-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2056066B1 (en) | Surveying Instrument | |
JP3937154B2 (ja) | 位置検出装置 | |
US10330788B2 (en) | Measuring instrument | |
US10371801B2 (en) | Measuring instrument | |
JP7240466B2 (ja) | 3次元測量装置 | |
JP7355484B2 (ja) | 3次元測量装置および3次元測量方法 | |
JP3799579B2 (ja) | 位置測定装置 | |
US20210080578A1 (en) | Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program | |
US10935636B2 (en) | Laser scanner | |
EP3096110A2 (en) | Three-dimensional surveying instrument and three-dimensional surveying method | |
JP5693827B2 (ja) | 測量システム | |
JP2004132914A (ja) | 位置測定装置 | |
WO2024058148A1 (ja) | 3次元測量装置、3次元測量装置駆動方法および3次元測量装置駆動プログラム | |
US10895456B1 (en) | Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program | |
US11692823B2 (en) | Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program | |
US20210080577A1 (en) | Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program | |
JP6749191B2 (ja) | スキャナ装置および測量装置 | |
JP2024052434A (ja) | 送光器および測量システム、および自動で追尾を再開する方法 | |
JP2003262522A (ja) | 測量機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23865501 Country of ref document: EP Kind code of ref document: A1 |