WO2024055962A1 - 树脂组合物及其应用 - Google Patents

树脂组合物及其应用 Download PDF

Info

Publication number
WO2024055962A1
WO2024055962A1 PCT/CN2023/118241 CN2023118241W WO2024055962A1 WO 2024055962 A1 WO2024055962 A1 WO 2024055962A1 CN 2023118241 W CN2023118241 W CN 2023118241W WO 2024055962 A1 WO2024055962 A1 WO 2024055962A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
silica powder
particle size
composition according
mass proportion
Prior art date
Application number
PCT/CN2023/118241
Other languages
English (en)
French (fr)
Inventor
徐伟娜
刘成杰
袁灿
金松
朱洨易
庄德义
包旭升
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024055962A1 publication Critical patent/WO2024055962A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present application relate to the technical field of electronic device preparation, and in particular to a resin composition and its application.
  • fan-out wafer-level packaging has the characteristics of substrate-less packaging, thin packaging, low impedance and high I/O (Input/Ouput interface, i.e. input/output interface) number in the same silicon chip size, which can maximize It ensures the rapid transmission of signals and the rapid calculation of electronic computing processors to the greatest extent, and can effectively reduce transmission loss and power consumption to meet the needs of thinner, lighter and higher-performance electronic devices.
  • the fan-out wafer level packaging (FOWLP) structure mainly uses compression molding for plastic packaging.
  • the plastic packaging materials include liquid epoxy molding compound (Liquid molding compound, LMC) and granular epoxy molding compound (GMC). And sheet molding compound (Sheet molding compound, SMC).
  • LMC has the characteristics of easy operation, no dust problems, mature technology, and uniform plastic sealing, occupying more than 90% of the market.
  • FOWLP in order to ensure that LMC has a sufficient process operation window and can be completely filled before molding, it is required to have low viscosity and high fluidity; in addition, the cured LMC is coated outside the chip to ensure that the components are Reliability during service requires it to have a lower coefficient of thermal expansion (CTE), a higher glass transition temperature (Tg) and lower warpage.
  • CTE coefficient of thermal expansion
  • Tg glass transition temperature
  • the amount of inorganic filler is generally increased as much as possible.
  • liquid epoxy molding compound that has both low viscosity and high fluidity, and can have a low thermal expansion coefficient CTE and a high glass transition temperature Tg after curing.
  • embodiments of the present application provide a resin composition that has low viscosity, and after curing, has a low thermal expansion coefficient CTE and a high glass transition temperature Tg, which can enlarge the process window and improve filling.
  • the effect is to improve the wafer warping problem caused by electronic device packaging and improve the packaging reliability of electronic devices.
  • the first aspect of the embodiment of the present application provides a resin composition.
  • the resin composition includes an epoxy resin, a curing agent and silica powder.
  • the mode diameter of the silica powder is 18 ⁇ m-22 ⁇ m.
  • the silica powder The average particle size is 6 ⁇ m-9 ⁇ m.
  • the resin composition provided in the embodiment of the present application is liquid at room temperature and is a liquid resin composition.
  • the resin composition is composed of a variety of silica powders with different particle sizes as fillers, and the mode diameter and average particle size of the silica powder are combined. The diameter is controlled within a specific range. Since the large particles of silica powder are as close as possible to the cut-off particle diameter (25 ⁇ m), and the average particle size is 6 ⁇ m-9 ⁇ m through an appropriate combination of large and small particles of silica powder, the resin composition can have high The filling amount of silica powder (i.e.
  • Coefficient CTE using this resin composition for electronic device packaging can broaden the process operation window, better achieve complete filling, reduce the generation of flow marks, and the plastic encapsulation body formed after curing to cover the surface of the electronic component can It has a lower thermal expansion coefficient CTE and a higher glass transition temperature Tg, thereby improving the filling effect, improving the wafer warpage problem caused by electronic device packaging, and improving the packaging reliability of electronic devices.
  • the silica powder is silica powder processed from natural quartz or fused quartz, and the silica powder is spherical or spherical-like particles.
  • the low thermal expansion coefficient of silica powder is helpful for the resin composition system to obtain a low thermal expansion coefficient after curing.
  • the silica powder also has high mechanical strength and low water absorption, which is beneficial to improving packaging reliability.
  • the spherical or quasi-spherical structure of silica powder is beneficial to improving the fluidity of the resin composition, thereby enabling better filling.
  • the specific surface area of the silica powder is 1.6m 2 /g-2m 2 /g.
  • the most frequency path and the average Microsilica powder with a particle size within a specific range enables the microsilica powder to have a low specific surface area, which can better improve the fluidity of the resin composition system, improve the uniformity of the cured resin composition, and make the plastic package obtained after curing more uniform. Thermal expansion coefficient CTE, thereby better improving the warpage problem.
  • the mass proportion of the silica powder is greater than or equal to 86%.
  • the mass proportion of the silica powder in the resin composition is 86%-92%.
  • the resin composition can better balance low thermal expansion coefficient and low viscosity, thus ensuring the process feasibility and packaging reliability of the resin composition as an electronic device plastic encapsulation material. .
  • the cut-off particle size (ie, cut-off particle size, cut-off particle size) of the silica powder is 25 ⁇ m.
  • the mass proportion of the silica powder with a particle size greater than 25 ⁇ m is less than 1%. Controlling the cut-off particle size of silica powder to 25 ⁇ m and controlling the content of silica powder larger than 25 ⁇ m to a very low proportion can better achieve complete filling.
  • the mass proportion of silica powder with a particle size greater than 15 ⁇ m is greater than or equal to 20%. In some embodiments of the present application, in the silica powder, the mass proportion of silica powder with a particle size greater than 15 ⁇ m is greater than or equal to 20% and less than or equal to 35%. Controlling a relatively large proportion of silica powder with a larger particle size than 15 ⁇ m can better achieve the low viscosity performance of the resin composition.
  • the mass proportion of silica powder with a particle size less than 1.5 ⁇ m is greater than or equal to 20%. In some embodiments of the present application, in the silica powder, the mass proportion of silica powder with a particle size less than 1.5 ⁇ m is greater than or equal to 20% and less than or equal to 35%.
  • the appropriate combination of small particle size sub-micron silica powder and nano-silica powder can achieve a high filling ratio, while increasing fluidity and improving the filling property of the resin composition.
  • the mass proportion of silica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12%. Controlling the content of small particle size nanosilica powder to a smaller level is beneficial to improving the overall fluidity of the resin composition system.
  • the mass proportion of the curing agent in the resin composition is 3%-8%.
  • Appropriate curing agent content can enable the resin composition to be cured smoothly, obtain basic physical properties that meet the requirements of packaging, and better ensure that the wafer has smaller warpage.
  • the mass proportion of the epoxy resin in the resin composition is 3%-8%.
  • a suitable epoxy resin content can enable the resin composition to meet the basic physical properties of the package, achieve filling, and better ensure that the wafer has smaller warpage.
  • the mass proportion of the silica powder is 86%-92%
  • the mass proportion of the curing agent is 3%-8%
  • the mass proportion of the epoxy resin is The mass proportion is 3%-8%.
  • the resin composition in the embodiment of this application uses high-quality silica powder and a suitable ratio of epoxy resin and curing agent, which can better ensure the overall physical properties of the resin composition system and make the resin composition have low viscosity and high viscosity stability. properties, low thermal expansion coefficient CTE, high glass transition temperature Tg, high peel strength, low water absorption, etc. It can also reduce wafer warpage and improve the reliability of electronic device packaging.
  • the mass ratio of the epoxy resin to all organic components in the resin composition is 10%-55%.
  • the mass ratio of the curing agent to all organic components in the resin composition is 10%-80%. Controlling the mass proportion of epoxy resin and curing agent in the organic components within the above range can better balance the viscosity, adhesion, curing effect, etc., and can better balance the thermal shrinkage and chemical properties of the resin composition. Shrinkage performance, thereby helping to improve the problem of wafer warpage.
  • the number ratio of the epoxy group of the epoxy resin to the reactive functional group of the curing agent is 0.3-2. That is, the ratio of the number of groups that can participate in the reaction of the epoxy resin to the number of groups that can participate in the reaction of the curing agent is in the range of 0.3-2, and the ratio of the number of groups that can react with the epoxy resin and the curing agent is controlled to the above Within the range, it can better balance the viscosity, adhesion, curing effect, water absorption and other properties, improve the comprehensive performance of the resin composition, and better balance the thermal shrinkage and chemical shrinkage properties of the resin composition, thus benefiting Improve the problem of wafer warpage.
  • the curing agent includes an acid anhydride curing agent and/or an amine curing agent.
  • the acid anhydride curing agent may be hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, alkyl hexahydrophthalic anhydride, tetrahydrophthalic anhydride, One of hydrogen phthalic anhydride, succinic anhydride, methyl nadic anhydride, hydrogenated methyl nadic anhydride, 5-norbornene-2,3-dioic anhydride, trialkyl tetrahydrophthalic anhydride, etc.
  • the amine curing agent may be polyether amine, isophorone diamine, 3,3’-dimethyl-4,4’-diamino-dicyclohexylmethane, etc.
  • the use of acid anhydride curing agents is beneficial to obtain low viscosity, fast reaction, and short curing time.
  • the epoxy resin includes bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, bisphenol AD-type epoxy resin, bisphenol S-type epoxy resin, and alicyclic epoxy resin. , naphthalene epoxy resin, aminophenol epoxy resin, one or more.
  • the epoxy resin may be one type or a combination of multiple types (two or more types).
  • the resin composition may also include additives, including coupling agents, stress modifiers, curing accelerators, colorants, dispersants, and ion trapping agents. , leveling agent, flame retardant, release agent, flow modification One or more of the ingredients. Additives can be added according to specific needs.
  • the viscosity of the resin composition at 25°C and 3 inverse seconds is less than 800 Pas.
  • the resin composition of the embodiment of the present application has a relatively low viscosity at room temperature, and thus has a relatively wide process operation window, which is conducive to ensuring good fluidity and filling properties of the resin composition during plastic packaging, better performing packaging operations, and improving packaging effects.
  • the viscosity change rate of the resin composition when left to stand for 24 hours at room temperature and 45% humidity is less than 300%.
  • the viscosity change rate of the resin composition is small, that is, the viscosity stability is high, which is beneficial to its application in the packaging process.
  • the glass transition temperature of the cured product of the resin composition is greater than or equal to 140°C.
  • the resin composition has a higher glass transition temperature Tg after curing, which can improve the service reliability of the plastic package obtained by encapsulation.
  • the thermal expansion coefficient (linear expansion coefficient) of the cured product of the resin composition when the temperature is below Tg is less than or equal to 10 ppm/K, and the thermal expansion coefficient when the temperature is above Tg is less than or equal to 40 ppm/K.
  • the cured product of the resin composition has a low thermal expansion coefficient, which can ensure that the plastic package obtained by the package has high dimensional and structural stability, and improves the service reliability of the package.
  • the second aspect of the embodiment of the present application provides a packaging material for sealed packaging of electronic components.
  • the packaging material includes the resin composition described in the first aspect of the embodiment of the present application and/or the curing of the resin composition. things.
  • Using the resin composition provided in the embodiments of the present application as a packaging material for packaging electronic components can improve the packaging effect and improve the service reliability of electronic components.
  • the third aspect of the embodiments of the present application provides the application of the resin composition described in the first aspect in sealed packaging of electronic components.
  • the resin composition is used to form a plastic encapsulation body covering electronic components to fix and protect the electronic components.
  • the fourth aspect of the embodiments of the present application provides a cured product, which includes a cured product of the resin composition described in the first aspect of the embodiments of the present application.
  • the cured product in the embodiment of the present application can be cured with a resin composition to form various shapes as needed, and cover the surface of the electronic component that needs to be encapsulated.
  • the fifth aspect of the embodiment of the present application provides a packaged device, which includes the cured product described in the fourth aspect of the embodiment of the present application.
  • the device encapsulated in the embodiments of this application is encapsulated using the cured product of the resin composition provided in the embodiments of this application, and has high service reliability.
  • the package device includes a substrate, an electronic component provided on the substrate, and a plastic package covering the electronic component, and the plastic package includes the cured product.
  • electronic components include but are not limited to chips.
  • the packaging device is a chip packaging structure.
  • An embodiment of the present application also provides a terminal device, which includes a circuit board and the packaging device described in the fifth aspect of the embodiment of the present application provided on the circuit board.
  • the terminal equipment of the embodiment of the present application can improve the service reliability of the terminal equipment by using the packaging device provided by the embodiment of the present application.
  • An embodiment of the present application further provides a communication device, which includes the packaging device described in the fifth aspect of the embodiment of the present application.
  • An embodiment of the present application also provides a communication base station, which includes the packaging device described in the fifth aspect of the embodiment of the present application.
  • Figure 1 is a schematic structural diagram of an electronic package 100 provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the electronic package 100 installed on a circuit board according to the embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a terminal device 200 provided by an embodiment of the present application.
  • liquid epoxy molding compound LMC in order to ensure that the liquid epoxy molding compound LMC has a sufficient process operation window to achieve complete filling before molding, it is required to have low viscosity and high fluidity; in addition, the cured liquid epoxy molding compound LMC package Covered outside the chip, in order to ensure service reliability, it is required to have a lower thermal expansion coefficient CTE, a higher glass transition temperature Tg and lower warpage. At present, it is difficult for liquid epoxy molding compound LMC to have both the above properties. For this reason, embodiments of the present application provide a resin composition.
  • the resin composition is in a liquid state and is a liquid epoxy molding compound.
  • the liquid epoxy molding compound It can have both low viscosity and high fluidity, and can have a low thermal expansion coefficient CTE and a high glass transition temperature Tg after curing.
  • the resin composition can be used in, but is not limited to, fan-in wafer-level packaging FOWLP, fan-out wafer-level packaging FOWLP, through-silicon via technology TSV, 2.5D packaging, 3D packaging, and embedded wafer-level ball grid array packaging. In advanced packaging structures such as eWLB.
  • the embodiment of the present application provides a resin composition, which includes an epoxy resin, a curing agent and silica powder, wherein the most frequent diameter of the silica powder is 18 ⁇ m-22 ⁇ m, and the average particle size of the silica powder is 6 ⁇ m-22 ⁇ m. 9 ⁇ m.
  • the most frequent diameter is the particle diameter value corresponding to the highest point of the frequency distribution curve.
  • the mode diameter of the silica powder may be, for example, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 21 ⁇ m, or 22 ⁇ m.
  • the cut-off particle size of silica powder is 25 ⁇ m.
  • the average particle size of the silica powder can be specifically 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, or 9 ⁇ m.
  • the resin composition provided in the embodiment of the present application is liquid at room temperature and is a liquid resin composition.
  • the resin composition is composed of a variety of silica powders with different particle sizes as fillers, and the mode diameter and average particle size of the silica powder are combined. The diameter is controlled within a specific range. Since the large particles of silica powder are as close as possible to the cut-off particle diameter (25 ⁇ m), and the average particle size is 6 ⁇ m-9 ⁇ m through an appropriate combination of large and small particles of silica powder, the resin composition can have high The filling amount of silica powder (i.e.
  • the plastic encapsulation body can have a lower thermal expansion coefficient CTE and a higher glass transition temperature Tg, thereby improving the filling effect, improving the warpage problem caused by electronic device packaging, and improving the packaging reliability of electronic devices.
  • the silica powder is silica powder processed from natural quartz or fused quartz, and the silica powder is spherical or spherical-like particles.
  • the low thermal expansion coefficient of silica powder is helpful for the resin composition system to obtain a low thermal expansion coefficient after curing.
  • the silica powder also has high mechanical strength and low water absorption, which is beneficial to improving packaging reliability.
  • the spherical or quasi-spherical structure of silica powder is beneficial to improving the fluidity of the resin composition, thereby enabling better filling.
  • the specific surface area of silica powder is 1.6m 2 /g-2m 2 /g.
  • Specific surface area refers to the total area per unit mass of material.
  • the specific surface area of the silica powder can be specifically 1.6m 2 /g, 1.7m 2 / g, 1.8m 2 /g, 1.9m 2 /g, or 2m 2 /g.
  • the embodiments of the present application select silica powder with the most frequent diameter and average particle size within a specific range, so that the silica powder has a low specific surface area, thereby better improving the fluidity of the resin composition system and improving the uniformity of the cured resin composition. properties, so that the plastic package obtained after curing can obtain a more uniform coefficient of thermal expansion CTE, thereby better improving the warpage problem.
  • the mass proportion of the silica powder is greater than or equal to 86%.
  • the mass proportion of silica powder in the resin composition is 86%-92%. Specifically, for example, it may be 86%, 87%, 88%, 89%, 90%, 91%, or 92%.
  • the resin composition can better balance low thermal expansion coefficient and low viscosity, thus ensuring the process feasibility and packaging reliability of the resin composition as an electronic device plastic encapsulation material. .
  • the cut-off particle size of silica powder is 25 ⁇ m.
  • the cut-off particle size is the cut-off particle size and the cut-off particle size, which corresponds to the mesh size of the silica powder.
  • the cut-off particle size of silica powder is 25 ⁇ m.
  • Microsilica powder is silica powder obtained by passing through a 25 ⁇ m sieve. It should be noted that due to the limitations of the sieve itself and the impact of silica powder storage, there may inevitably be some silicon exceeding the cut-off particle size in the silica powder. Micron powder particles.
  • the mass proportion of the silica powder with a particle size greater than 25 ⁇ m is less than 1%, that is, the mass proportion of the silica powder with a particle size greater than 25 ⁇ m in the resin composition is less than 1%. . In some embodiments, in the silica powder, the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 0.8%. Controlling the cut-off particle size of silica powder at 25 ⁇ m, and controlling the content of silica powder larger than 25 ⁇ m to as small an extremely low proportion as possible, can improve the filling performance of the resin composition, achieve better complete filling, and better Suitable for filling scenes with small and narrow gaps.
  • the mass proportion of the silica powder with a particle size greater than 15 ⁇ m is greater than or equal to 20%, that is, the mass proportion of the silica powder with a particle size greater than 15 ⁇ m to the mass of all the silica powder in the resin composition is greater than or equal to equals 20%.
  • the mass proportion of silica powder with a particle size greater than 15 ⁇ m is greater than or equal to 25%; in some embodiments, the mass proportion of silica powder with a particle size greater than 15 ⁇ m is greater than or equal to 30%. %.
  • the mass proportion of silica powder with a particle size greater than 15 ⁇ m is greater than or equal to 20% and less than or equal to 35%. Specifically, in some embodiments, the mass proportion of silica powder with a particle size greater than 15 ⁇ m is 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28% , 29%, 30%, 31%, 32%, 33%, 34%, 35%. Controlling a relatively large proportion of silica powder with a larger particle size than 15 ⁇ m can better achieve the low viscosity performance of the resin composition.
  • the mass proportion of the silica powder with a particle size less than 1.5 ⁇ m is greater than or equal to 20%, that is, the mass proportion of the silica powder with a particle size less than 1.5 ⁇ m accounts for the mass of all the silica powder in the resin composition. Greater than or equal to 20%. In some embodiments, in the silica powder, the mass proportion of silica powder with a particle size less than 1.5 ⁇ m is greater than or equal to 25%; in some embodiments, in the silica powder, the mass proportion of the silica powder with a particle size less than 1.5 ⁇ m is greater than or equal to 25%. equals 30%.
  • the mass proportion of silica powder with a particle size less than 1.5 ⁇ m is greater than or equal to 20% and less than or equal to 35%. Specifically, in some embodiments, among the silica powder, the mass proportion of silica powder with a particle size less than 1.5 ⁇ m is 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28% , 29%, 30%, 31%, 32%, 33%, 34%, 35%.
  • the appropriate combination of sub-micron silica powder and nano-silica powder with a particle size less than 1.5 ⁇ m can achieve a high filling ratio (i.e., high silica powder mass content), while increasing fluidity and improving the filling property of the resin composition.
  • the mass proportion of the silica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12%. That is, the proportion of the mass of silica powder with a particle size smaller than 0.5 ⁇ m to the mass of all silica powder in the resin composition is less than or equal to 12%.
  • silica powder In the silica powder, the mass proportion of the silica powder with a particle size less than 0.5 ⁇ m is less than or equal to 10%; in some embodiments, in the silica powder, the mass proportion of the silica powder with a particle size less than 0.5 ⁇ m is less than or equal to 9%; in some embodiments Among the silica powder, the mass proportion of silica powder with a particle size less than 0.5 ⁇ m is less than or equal to 8%. Controlling the content of small particle size nanosilica powder to a smaller level is beneficial to improving the overall fluidity of the resin composition system.
  • the type of epoxy resin is determined in the resin composition of the embodiment of the present application, within the cut-off particle size range, low viscosity under a high filler ratio can be achieved through the selection and grading of silica powder.
  • the formula can make the silica powder closely stacked, which is beneficial to the flow of the system, so that the resin composition has good fluidity.
  • the most frequent diameter is in the range of 18-22 ⁇ m, and the average particle size is 6-9 ⁇ m, which is beneficial to achieving low viscosity under high filler ratio; further through the narrow particle size distribution, the gradation
  • the specific surface area of the final silica powder is controlled within the range of 1.6-2m 2 /g, which can make the viscosity of the resin composition system lower.
  • the particle size is less than 1.5
  • the resin composition system can obtain a lower viscosity.
  • the morphology, size and particle size distribution of the silicon powder can be obtained through analysis using a scanning electron microscope (SEM), optical microscope, laser particle size analyzer, etc.
  • the mass proportion of the curing agent in the resin composition is 3%-8%. In some embodiments of the present application, the mass proportion of the curing agent in the resin composition may be 3%, 4%, 5%, 6%, 7%, or 8%.
  • Appropriate curing agent content can enable the resin composition to be cured smoothly and obtain basic physical properties that meet the needs of packaging (such as low viscosity, high viscosity stability, low thermal expansion coefficient CTE, high glass transition temperature Tg, high peel strength, low water absorption etc.), and can better ensure that the wafer has smaller warpage.
  • the mass proportion of epoxy resin in the resin composition is 3%-8%. In some embodiments of the present application, the mass proportion of epoxy resin in the resin composition may be 3%, 4%, 5%, 6%, 7%, or 8%.
  • a suitable epoxy resin content can enable the resin composition to meet the basic physical properties of the package, achieve filling, and better ensure that the wafer has smaller warpage.
  • the mass proportion of silica powder is 86%-92%
  • the mass proportion of curing agent is 3%-8%
  • the mass proportion of epoxy resin is 3%-8 %.
  • the resin composition in the embodiment of this application uses high-quality silica powder and a suitable ratio of epoxy resin and curing agent, which can better ensure the overall physical properties of the resin composition system and make the resin composition have low viscosity and high viscosity stability. (i.e. low viscosity change rate), low thermal expansion coefficient CTE, high glass transition temperature Tg, high peel strength, low water absorption, etc., which can reduce wafer warpage and improve the reliability of electronic device packaging.
  • the warpage size of the wafer molded with liquid epoxy plastic encapsulation material LMC is not only related to the silicon powder, but also closely related to the shrinkage of the packaging material.
  • the shrinkage is composed of thermal shrinkage and chemical shrinkage, and the two parts are The size is in a trade-off relationship. In this application, by balancing the ratio of epoxy resin and curing agent, a liquid epoxy molding compound material with better warpage can be obtained.
  • the mass ratio of epoxy resin to all organic components in the resin composition is 10%-55%. In some embodiments, the mass ratio of epoxy resin to all organic components in the resin composition is 15%-45%; in some embodiments, the mass ratio of epoxy resin to all organic components in the resin composition is 25%-40%. In the embodiment of the present application, the mass ratio of the curing agent to all organic components in the resin composition is 10%-80%. In some embodiments, the mass ratio of the curing agent to all organic components in the resin composition is 20%-70%. In some embodiments, the mass ratio of the curing agent to all organic components in the resin composition is 30%-60%.
  • Controlling the mass proportion of epoxy resin and curing agent in the organic components within the above range can better balance viscosity, adhesion, curing effect, glass transition temperature Tg, etc., and can better balance the resin combination.
  • the thermal shrinkage and chemical shrinkage properties of the material are beneficial to improving the problem of wafer warpage.
  • the number ratio of the epoxy group of the epoxy resin to the reactive functional group of the curing agent is 0.3-2. That is, the ratio of the number of epoxy groups of the epoxy resin to the number of groups that the curing agent can participate in the reaction is in the range of 0.3-2. In some embodiments, the number ratio of the epoxy groups of the epoxy resin to the reactive functional groups of the curing agent is 0.5-1.8. In some embodiments, the number ratio of the epoxy groups of the epoxy resin to the reactive functional groups of the curing agent is 0.7-1.6.
  • Controlling the ratio of the number of reactive groups between the epoxy resin and the curing agent within the above range can better balance the viscosity, adhesion, curing effect, water absorption, glass transition temperature Tg and other properties, and improve the performance of the resin composition. comprehensive performance, and can better balance the thermal shrinkage and chemical shrinkage properties of the resin composition, thereby helping to improve the problem of wafer warpage.
  • the epoxy resin may include bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, bisphenol AD-type epoxy resin, bisphenol S-type epoxy resin, and alicyclic epoxy resin. , naphthalene epoxy resin, aminophenol epoxy resin, one or more.
  • the epoxy resin may be one type or a combination of multiple types (two or more types). Combining a variety of epoxy resins can achieve better overall properties of the resin composition, such as balancing viscosity, adhesion, etc.
  • the curing agent may include an acid anhydride curing agent and/or an amine curing agent.
  • the anhydride curing agent may be hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, alkyl hexahydrophthalic anhydride, tetrahydrophthalic anhydride One or Various.
  • the amine curing agent can be polyetheramine, isophorone diamine, 3,3'-dimethyl-4,4'- Diamino-dicyclohexylmethane, etc. Among them, the use of acid anhydride curing agents is beneficial to obtain low viscosity, fast reaction, and short curing time.
  • the resin composition of the present application may include one curing agent or multiple (two or more) curing agents.
  • the type of epoxy resin and the type of curing agent can be obtained through analysis using nuclear magnetic resonance spectroscopy, infrared spectroscopy, elemental analysis and other methods.
  • the resin composition in order to improve the performance of the resin composition, may also include additives.
  • the additives include but are not limited to coupling agents, stress modifiers, curing accelerators, colorants, dispersants, ion trapping agents, One or more of leveling agents, flame retardants, release agents, and flow improvers. Additives can be added according to specific needs. In the embodiments of the present application, there are no special restrictions on the specific types of coupling agents, stress modifiers, curing accelerators, colorants, dispersants, ion trapping agents, leveling agents, flame retardants, release agents, and flow improvers. .
  • the curing accelerator includes but is not limited to one of tertiary amines (such as N,N-dimethylbenzylamine, etc.), imidazole, and modified imidazole (such as dimethylimidazole, 1-phenyldimethylimidazole, etc.) kind or variety.
  • the total content of additives in the resin composition is controlled to be less than 5%. In some embodiments, the total content of additives in the resin composition is controlled to less than 4%.
  • the viscosity of the resin composition at 25°C and 3 seconds is less than 800 Pas. In some embodiments, the viscosity of the resin composition at 25°C and 3 seconds is less than 700 Pas. In some embodiments, the viscosity of the resin composition at 25° C. and 3 seconds is less than 600 Pas. In some embodiments, the viscosity of the resin composition at 25° C. and 3 seconds is less than 500 Pas. In some embodiments, the viscosity of the resin composition at 25° C. and 3 seconds is less than 400 Pas. In some embodiments, the viscosity of the resin composition at 25° C. and 3 seconds is less than 300 Pas. The viscosity of the resin composition can be tested using a rheometer.
  • the resin compositions in the examples of the present application need to be stored and transported at low temperatures of -40°C and below.
  • the above viscosity eta at 25°C and 3 seconds refers to the viscosity measured when the resin composition is just mixed and prepared, or the viscosity measured after thawing.
  • the resin composition of the embodiment of the present application has a lower viscosity at room temperature, and therefore has a wider process operation window, which is beneficial to ensuring good fluidity and filling properties of the resin composition during molding and better performing packaging operations. Improve packaging effect.
  • the viscosity change rate of the resin composition when left to stand at room temperature and 45% humidity for 24 hours is less than 300%. In some embodiments, the viscosity change rate of the resin composition when left to stand at room temperature and 45% humidity for 24 hours is less than or equal to 200%. In some embodiments, the viscosity change rate of the resin composition when left to stand at room temperature and 45% humidity for 24 hours is less than or equal to 100%. In some embodiments, the viscosity change rate of the resin composition when left to stand at room temperature and 45% humidity for 24 hours is less than or equal to 90%.
  • the viscosity change rate of the resin composition is low, that is, the viscosity stability of the resin composition is high, which can be beneficial to its application in the packaging process.
  • the glass transition temperature of the cured product of the resin composition is greater than or equal to 140°C. In some embodiments, the glass transition temperature of the cured product of the resin composition is greater than or equal to 150°C.
  • the resin composition has a higher glass transition temperature Tg after curing, which can improve the service reliability of the plastic package obtained by encapsulation.
  • the thermal expansion coefficient of the cured resin composition when the temperature is below Tg is less than or equal to 10 ppm/K, and when the temperature is above Tg, the thermal expansion coefficient is less than or equal to 40 ppm/K. In some embodiments, the thermal expansion coefficient of the cured product of the resin composition when the temperature is below Tg is less than or equal to 9 ppm/K. In some embodiments, the thermal expansion coefficient of the cured product of the resin composition when the temperature is below Tg is less than or equal to 8ppm/K. In some embodiments, the thermal expansion coefficient of the cured product of the resin composition is less than or equal to 38 ppm/K when the temperature is above Tg.
  • the thermal expansion coefficient of the cured product of the resin composition is less than or equal to 37 ppm/K when the temperature is above Tg.
  • the cured product of the resin composition has a low thermal expansion coefficient, which can ensure that the plastic package obtained by the package has high dimensional stability and structural stability, and improves the service reliability of the package.
  • the resin composition in the embodiment of the present application can be prepared by stirring and mixing each component. Stirring and mixing can be carried out solely with an overhead mechanical mixer, dual planetary mixer, homogenizer, or three-roller grinder, or a combination of the above devices can be used.
  • the resin composition in the embodiments of the present application will be cured when heated, that is, the epoxy resin and the curing agent in the resin composition may react chemically to form a three-dimensional network polymer.
  • the resin composition is converted into a cured product of a certain shape after curing, and the cured product may be in the form of a film, a sheet, or a three-dimensional structure.
  • the resin composition mentioned above in this application is usually in liquid state.
  • the liquid resin composition can be directly used as liquid glue, and can be coated, filled, and cured to form a glue layer.
  • the resin composition can also be converted into a solid molding compound that is easy to store (the epoxy resin is not completely cross-linked and solidified) after being kneaded, aged, etc., and the molding compound can be in the form of granules, sheets, or lumps. etc., which can subsequently be transformed into a solidified product of a certain shape through common molding processes.
  • the resin composition in the embodiment of the present application is an epoxy resin composition containing silica powder with a high filling ratio.
  • This resin composition can effectively reduce the thermal expansion coefficient CTE of the system while having a lower viscosity. It can be used in but not It is limited to applications in advanced packaging structures such as fan-in wafer level packaging FOWLP, fan-out wafer level packaging FOWLP, through silicon via technology TSV, 2.5D packaging, 3D packaging, embedded wafer level ball grid array packaging eWLB, etc. Products using these advanced packaging structures (such as processors, etc.) can be used in complete equipment such as mobile phones, computers, and automobiles.
  • the resin composition of the present application can also be used in large-area molding, thin packaging without grinding, passive devices and POP (package-on-package, Package stacking technology) packaging, etc. These packaging products can be used in wireless devices of mobile electronic equipment and self-driven sensors and other equipment.
  • Embodiments of the present application provide a packaging material.
  • the packaging material is an electronic packaging material and is used for sealed packaging of electronic components.
  • the packaging material includes the resin composition provided above in the embodiment of the present application and/or the resin composition provided above. of solidified material. Using the resin composition provided above in the embodiments of the present application as a packaging material for packaging electronic components can improve the packaging effect and improve the service reliability of electronic components.
  • the embodiments of the present application provide the application of the above-mentioned resin composition in the field of electronic packaging, specifically in the sealing packaging of electronic components.
  • electronic components may be chips, transistors (such as diodes, transistors), LEDs, resistor-capacitor components (such as resistors, capacitors, inductors), etc.
  • the packaging structure can be fan-in wafer level packaging FOWLP, fan-out wafer level packaging FOWLP, through silicon via technology TSV, 2.5D packaging, 3D packaging, embedded wafer level ball grid array packaging eWLB and other advanced packaging
  • the structure can also be packaging structures such as large-area molding, thin grinding-free packaging, passive device packaging, and POP (package-on-package, package stacking technology) packaging.
  • the embodiments of the present application also provide a cured product, which includes the cured product of the resin composition described above in the embodiments of the present application.
  • the cured product can be in the shape of film, sheet, three-dimensional structure, etc.
  • the cured product has the characteristics of low thermal expansion coefficient CTE, high glass transition temperature Tg, high mechanical strength, low water absorption, etc., and can be formed into a plastic package to better protect various components. kind of electronic components.
  • FIG. 1 is a schematic structural diagram of the packaging device 100 in an embodiment of the present application.
  • the packaged device 100 may be an electronic device package, and the packaged device 100 includes the cured product of the resin composition described in the embodiment of the present application.
  • the packaged device 100 includes a substrate 10, electronic components 20 disposed on the substrate 10, and a plastic package 30 that seals and packages the substrate 10 and the electronic components 20.
  • the electronic component 20 can be a variety of components that need to be packaged, including but not limited to one of chips, transistors (such as diodes, triodes), LEDs, resistance-capacitance components (such as resistors, capacitors, inductors), etc. or more.
  • the chip may be attached to the surface of the substrate 10 by soldering, and the substrate 10 may be a redistribution layer (RDL).
  • RDL redistribution layer
  • a plurality of metal balls 50 (such as tin balls) can be disposed on the side of the substrate 10 away from the chip.
  • the metal balls 50 are electrically connected to the chip through the conductive structure 40 in the substrate 10 .
  • the packaged device 100 can be soldered to the circuit board 202 through the metal balls 50
  • the electronic components 20 in the packaged device 100 can be electrically connected to the circuit board 202 through the conductive structure 40 and the metal balls 50 .
  • the plastic encapsulated body 30 adopts the resin composition of the embodiment of the present application, that is, the plastic encapsulated body 30 includes the cured product of the resin composition of the embodiment of the present application.
  • the plastic package 30 can be processed into a certain structural shape by using common molding processes such as transfer molding, compression molding, or injection molding, and the molding process is environmentally friendly. Oxygen resin is cross-linked and solidified.
  • the packaging device of this application uses the resin composition provided in the embodiment of this application to encapsulate electronic components, which has high process operability and high packaging reliability.
  • an embodiment of the present application also provides a terminal device 200.
  • the terminal device 200 includes a housing 201, a circuit board and a packaging device 100 disposed in the housing 201. Inside the terminal device 200, the packaging device 100 can be as follows: As shown in FIG. 2 , it is arranged on the circuit board 202 and is electrically connected to the circuit board 202 .
  • the terminal device 200 may be a mobile phone, a tablet computer, a notebook computer, a portable computer, a smart wearable product, a television, a video recorder, a camcorder, a radio, a cassette player, a vehicle-mounted terminal, a mouse, a keyboard, a microphone, a scanner, and other products.
  • An embodiment of the present application also provides a communication device.
  • the communication device includes the packaging device 100 mentioned above in the embodiment of the present application.
  • the packaged device 100 may be electrically connected and fixed on the circuit board.
  • Communication equipment can be various types of wired communication equipment or wireless communication equipment, including but not limited to communication conversion equipment, lightning arresters, antennas, gateways, remote controls, radars, walkie-talkies, switches, routers, etc.
  • An embodiment of the present application also provides a communication base station.
  • the communication base station includes the packaging device 100 described above in the embodiment of the present application.
  • the packaged device 100 may be electrically connected and fixed on the circuit board.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.42% first curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin includes first epoxy resin 1.86% and second epoxy resin 1.82%, cut-off particle size of silica powder is 25 ⁇ m, the average particle size of silica powder is 9 ⁇ m, the mode diameter is 18 ⁇ m, and the specific surface area is 1.6m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the particle size is greater than 15 ⁇ m.
  • the mass proportion of microsilica powder is in the range of 20%-35%, the mass proportion of microsilica powder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%, and the mass proportion of microsilica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12 %.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.42% first curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin includes first epoxy resin 1.86% and second epoxy resin 1.82%, cut-off particle size of silica powder is 25 ⁇ m, The average particle size of silica powder is 7 ⁇ m, the mode diameter is 18 ⁇ m, and the specific surface area is 1.8 m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the mass proportion of silica powder with a particle size greater than 15 ⁇ m is
  • the mass proportion of microsilica powder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%, and the mass proportion of microsilica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12%.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.42% first curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin includes first epoxy resin 1.86% and second epoxy resin 1.82%, cut-off particle size of silica powder is 25 ⁇ m, the average particle size of silica powder is 6 ⁇ m, the mode diameter is 18 ⁇ m, and the specific surface area is 2m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the mass proportion of silica powder with a particle size greater than 15 ⁇ m
  • the mass proportion of microsilica powder is in the range of 20%-35%, the mass proportion of microsilica powder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%, and the mass proportion of microsilica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12% .
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.42% first curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin includes first epoxy resin 1.86% and second epoxy resin 1.82%, cut-off particle size of silica powder is 25 ⁇ m, the average particle size of silica powder is 8 ⁇ m, the mode diameter is 22 ⁇ m, and the specific surface area is 1.6m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the particle size is greater than 15 ⁇ m.
  • the mass proportion of microsilica powder is in the range of 20%-35%, the mass proportion of microsilica powder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%, and the mass proportion of microsilica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12 %.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.52% first curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin includes first epoxy resin 1.86% and third epoxy resin 1.72%, cut-off particle size of silica powder is 25 ⁇ m, the average particle size of silica powder is 8 ⁇ m, the mode diameter is 22 ⁇ m, and the specific surface area is 1.6m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the particle size is greater than 15 ⁇ m.
  • the mass proportion of microsilica powder is in the range of 20%-35%, the mass proportion of microsilica powder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%, and the mass proportion of microsilica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12 %.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.10% first curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin includes first epoxy resin 2.12% and third epoxy resin 1.88%, cut-off particle size of silica powder is 25 ⁇ m, the average particle size of silica powder is 8 ⁇ m, the mode diameter is 22 ⁇ m, and the specific surface area is 1.6m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the particle size is greater than 15 ⁇ m.
  • the mass proportion of microsilica powder is in the range of 20%-35%, the mass proportion of microsilica powder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%, and the mass proportion of microsilica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12 %.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.23% second curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin including third epoxy resin 3.87%, cut-off particle size of silica powder is 25 ⁇ m, average particle size of silica powder The diameter is 8 ⁇ m, the most frequent diameter is 22 ⁇ m, and the specific surface area is 1.6 m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the mass proportion of silica powder with a particle size greater than 15 ⁇ m is 20
  • the mass proportion of silica powder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%, and the mass proportion of silica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12%.
  • a resin composition is obtained by uniformly mixing the following components in proportion by mass: 3.68% of epoxy resin, 4.11% of a first curing agent, 88% of silicon micropowder, 0.25% of a coupling agent, 0.45% of a stress modifier, 1.4% of a curing accelerator, 1% of a colorant, 0.4% of a dispersant, and 0.4% of an ion capture agent.
  • the epoxy resin comprises 2.21% of a second epoxy resin and 1.78% of a third epoxy resin.
  • the silicon micropowder has a cutoff particle size of 25 ⁇ m, an average particle size of 8 ⁇ m, a mode diameter of 22 ⁇ m, and a specific surface area of 1.6 m 2 /g.
  • the mass proportion of silicon micropowder with a particle size greater than 25 ⁇ m is less than 1%
  • the mass proportion of silicon micropowder with a particle size greater than 15 ⁇ m is in the range of 20%-35%
  • the mass proportion of silicon micropowder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%
  • the mass proportion of silicon micropowder with a particle size less than 0.5 ⁇ m is less than or equal to 12%.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 3.74% second curing agent, 89% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin including third epoxy resin 3.36%, cut-off particle size of silica powder is 25 ⁇ m, average particle size of silica powder The diameter is 8 ⁇ m, the most frequent diameter is 22 ⁇ m, and the specific surface area is 1.6m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the mass proportion of silica powder with a particle size greater than 15 ⁇ m is 20%.
  • the mass proportion of silica powder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%, and the mass proportion of silica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12%.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.78% second curing agent, 87% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin including third epoxy resin 4.32%, cut-off particle size of silica powder is 25 ⁇ m, average particle size of silica powder The diameter is 8 ⁇ m, the most frequent diameter is 22 ⁇ m, and the specific surface area is 1.6 m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the mass proportion of silica powder with a particle size greater than 15 ⁇ m is 20
  • the mass proportion of silica powder with a particle size less than 1.5 ⁇ m is in the range of 20%-35%, and the mass proportion of silica powder with a particle size less than 0.5 ⁇ m is less than or equal to 12%.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.42% first curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin includes first epoxy resin 1.86% and second epoxy resin 1.82%, cut-off particle size of silica powder is 25 ⁇ m, the average particle size of silica powder is 9 ⁇ m, the mode diameter is 18 ⁇ m, and the specific surface area is 1.6m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the particle size is greater than 15 ⁇ m.
  • the mass proportion of silica powder is 18%, the mass proportion of silica powder with particle size less than 1.5 ⁇ m is 18%, and the mass proportion of silica powder with particle size less than 0.5 ⁇ m is 13%.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.42% first curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin includes first epoxy resin 1.86% and second epoxy resin 1.82%, cut-off particle size of silica powder is 25 ⁇ m, the average particle size of silica powder is 9 ⁇ m, the mode diameter is 18 ⁇ m, and the specific surface area is 1.6m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the particle size is greater than 15 ⁇ m.
  • the mass proportion of silica powder is 37%, the mass proportion of silica powder with particle size less than 1.5 ⁇ m is 37%, and the mass proportion of silica powder with particle size less than 0.5 ⁇ m is 13%.
  • a resin composition is obtained by uniformly mixing the components including the following mass proportions: 3.68% epoxy resin, 4.42% first curing agent, 88% silica powder, 0.25% coupling agent, and 0.45% stress modifier. %, curing accelerator 1.4%, colorant 1%, dispersant 0.4%, ion trapping agent 0.4%, epoxy resin includes first epoxy resin 1.86% and second epoxy resin 1.82%, cut-off particle size of silica powder is 25 ⁇ m, the average particle size of silica powder is 5 ⁇ m, the mode diameter is 16 ⁇ m, and the specific surface area is 2.2m 2 /g.
  • the mass proportion of silica powder with a particle size greater than 25 ⁇ m is less than 1%, and the particle size is greater than 15 ⁇ m.
  • the mass proportion of silica powder is 15%, and the mass proportion of silica powder with a particle size less than 1.5 ⁇ m is 37%.
  • the first epoxy resin is a bisphenol epoxy resin
  • the second epoxy resin is an alicyclic epoxy resin
  • the third epoxy resin is a naphthalene epoxy resin.
  • the first curing agent is methylhexahydrophthalic anhydride
  • the second curing agent is methyltetrahydrophthalic anhydride.
  • the resin compositions prepared from Examples 1 to 12 and Comparative Example 1 of the present application were subjected to a viscosity test.
  • the viscosity test included an initial viscosity test at normal temperature, and a normal temperature viscosity test after the humidity was 45% and left at room temperature for 24 hours.
  • the normal temperature viscosity test Specifically, it is the viscosity at 25°C and 3 seconds.
  • the cured products of the resin composition prepared in Examples 1 to 12 of the present application and the cured product of the resin composition of Comparative Example 1 were subjected to glass transition temperature Tg test, thermal expansion coefficient CTE test, water absorption test, filling test and Warpage test.
  • the initial viscosity of the resin composition at room temperature, the viscosity at room temperature after standing for 24 hours, the glass transition temperature Tg of the cured resin composition, the thermal expansion coefficient when the temperature is below Tg (i.e., CTE1), and the thermal expansion coefficient when the temperature is above Tg (i.e. CTE2), water absorption, filling property, and warpage results are shown in Table 1.
  • the viscosity of the resin composition is measured by a rheometer; the thermal expansion coefficient CTE of the cured resin composition is obtained by a thermomechanical analysis (TMA) test, and the glass transition temperature Tg is tested by a dynamic thermomechanical analyzer; the water absorption is tested by PCT test (commonly known as pressure cooker cooking test or saturated steam test) is used for testing.
  • TMA thermomechanical analysis
  • PCT test commonly known as pressure cooker cooking test or saturated steam test
  • Fillability and warpage test method Use a 12-inch bare silicon wafer, dispense 50g of liquid resin composition in the center, and use compression molding equipment to mold at 125°C for 10 minutes. Then observe the surface. If it is completely filled, it is qualified, and if there are areas that are not completely filled, it is not qualified. After molding, post-cure at 150°C for 1 hour. Then place it on a flat surface and test its warpage. If the warpage is less than 2 ⁇ m, it is excellent, if the warpage is 2-3 ⁇ m, it is good, and if the warp is greater than 3 ⁇ m, it is poor.
  • the cut-off particle size of silica powder selected in the embodiments of this application is 25 ⁇ m. From the results of the above examples and comparative examples, it can be seen that the resin compositions of Examples 1 to 12 of this application can achieve high performance through the selection and gradation of silica powder. It has low viscosity under the filler ratio, and the cured product also has low thermal expansion coefficient CTE, high glass transition temperature Tg and low water absorption, good filling performance and small warpage. This is because within the cut-off particle size range, the selection and gradation of silica powder can make the silica powder closely stacked, which is beneficial to the flow of the system, so that the resin composition has good fluidity.
  • the total content of silica powder was adjusted in Examples 8 to 10. It can be found that the thermal expansion coefficient CTE of the cured resin composition decreases as the content of silica powder increases. Therefore, the viscosity can be as much as possible when the viscosity meets the requirements. Increase the content of silicon powder to obtain a lower thermal expansion coefficient, reduce wafer warpage, and better meet application needs in the field of electronic packaging. In addition, by selecting a suitable curing agent and controlling the ratio of epoxy resin and curing agent within a suitable range, the glass transition temperature Tg of the resin composition system can be increased and a packaging material with better warpage can be obtained.
  • At least one refers to one or more
  • plural refers to two or more.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c or “at least one of a, b, and c” can mean: a, b, c, a-b ( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

一种树脂组合物,所述树脂组合物包括环氧树脂、固化剂和硅微粉,所述硅微粉的最频径为18μm-22μm,所述硅微粉的平均粒径为6μm-9μm。该树脂组合物能够在高硅微粉填充量的情况下具有低粘度,在固化后具有较低的热膨胀系数CTE,较高的玻璃化转变温度Tg,可拓宽工艺窗口,提升填充效果,改善电子器件包封产生的翘曲问题,提高电子器件的服役可靠性。

Description

树脂组合物及其应用
本申请要求于2022年9月15日提交中国专利局、申请号为202211119854.2、申请名称为“树脂组合物及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子器件制备技术领域,特别是涉及一种树脂组合物及其应用。
背景技术
随着信息技术的不断发展,电子整机设备向小型化、便携式、多功能化、数字化及高可靠性、高性能等方向发展,因此要求设备内部元器件趋于小型化、集成化以至模块化。基于此,先进封装技术得到不断发展和广泛应用,如扇入型晶圆级封装(Fan-in Wafer Level Packaging,FOWLP)、扇出型晶圆级封装(Fan-Out Wafer Level Packaging,FOWLP)、硅通孔技术(Through Silicon Via,TSV)、2.5D封装、3D封装、eWLB(Embedded Wafer Level Ball Grid Array,嵌入型晶圆级球栅阵列封装)等。
其中,扇出型晶圆级封装(FOWLP)具有无衬底封装、薄封装、低阻抗和相同硅芯片尺寸高I/O(Input/Ouput接口,即输入/输出接口)数等特点,可以最大程度地保证信号的快速传输和电子运算处理器快速计算,并能有效降低传输损耗和功耗,满足电子设备轻薄化和高性能化的需求。扇出型晶圆级封装(FOWLP)结构主要采用压模(Compression molding)进行塑封,塑封材料包括液态环氧塑封料(Liquid molding compound,LMC)、颗粒环氧塑封料(Granular molding compound,GMC)和片状环氧塑封料(Sheet molding compound,SMC)。其中LMC具有操作简便、无粉尘问题、技术成熟,塑封均匀等特性,占有90%以上的市场。在FOWLP中,为保证LMC在压模前具有足够的工艺操作窗口以及能够实现完全填充,要求其具有低粘度和高流动性;此外,固化后的LMC包覆在芯片外,为保证元器件在服役过程中的可靠性,需要求它具有较低的热膨胀系数(coefficient of thermal expansion,CTE)、较高的玻璃转化温度(glass transition temperature,Tg)和较低的翘曲。为了提高塑封料可靠性一般尽可能地将无机填料的加入量提高,然而无机填料含量的提高会使得LMC体系粘度偏高,工艺窗口偏窄,影响完全填充。因此,有必要提供一种液态环氧塑封料能够兼具低粘度和高流动性,且固化后能够具有较低的热膨胀系数CTE、较高的玻璃转化温度Tg。
发明内容
鉴于此,本申请实施例提供一种树脂组合物,该树脂组合物具有低粘度,且固化后具有较低的热膨胀系数CTE,较高的玻璃化转变温度Tg,可加大工艺窗口,提升填充效果,改善电子器件封装产生的晶圆翘曲问题,提高电子器件的封装可靠性。
具体地,本申请实施例第一方面提供一种树脂组合物,所述树脂组合物包括环氧树脂、固化剂和硅微粉,所述硅微粉的最频径为18μm-22μm,所述硅微粉的平均粒径为6μm-9μm。
本申请实施例提供的树脂组合物在室温下为液态,为液态树脂组合物,该树脂组合物通过选用包括多种不同粒径的硅微粉作为填料,并将硅微粉的最频径和平均粒径控制在特定范围,由于硅微粉的大颗粒尽可能接近截止粒径(25μm),且通过硅微粉大颗粒和小颗粒的适当搭配使平均粒径在6μm-9μm,可以使树脂组合物具有高硅微粉填充量(即高质量含量)和良好的封装填充性,进而有利于树脂组合物体系在硅微粉填充量高时仍具有低粘度和高流动性,同时降低树脂组合物固化后产物的热膨胀系数CTE;将该树脂组合物用于电子器件封装,能够扩宽工艺操作窗口,能够更好地实现完全填充,减少流痕产生,且在固化后形成的覆盖在电子元器件表面的塑封体能够具有较低的热膨胀系数CTE和较高的玻璃转化温度Tg,从而提升填充效果,改善电子器件封装产生的晶圆翘曲问题,提高电子器件的封装可靠性。
本申请实施方式中,硅微粉是由天然石英或熔融石英加工而成的二氧化硅微粉,硅微粉为球形或类球形颗粒。硅微粉的热膨胀系数较低有利于树脂组合物体系在固化后获得低热膨胀系数,硅微粉还具有高机械强度和低吸水性,有利于提高封装可靠性。硅微粉具有球形或类球形结构有利于提升树脂组合物的流动性,从而更好实现填充。
本申请实施方式中,所述硅微粉的比表面积为1.6m2/g-2m2/g。本申请实施例通过选用最频径和平均 粒径在特定范围的硅微粉,使硅微粉具有低比表面积,从而能够更好地提升树脂组合物体系的流动性,提升树脂组合物固化物的均匀性,使固化后所得塑封体获得更均匀的热膨胀系数CTE,从而更好地改善翘曲问题。
本申请实施方式中,所述树脂组合物中,所述硅微粉的质量占比大于或等于86%。通过将硅微粉控制在较高的含量,有利于降低树脂组合物固化物的热膨胀系数,改善翘曲,从而提高封装可靠性。
本申请一些实施方式中,所述树脂组合物中,所述硅微粉的质量占比为86%-92%。通过将硅微粉控制在尽可能高的适合的含量范围,能够使得树脂组合物更好地兼顾低热膨胀系数和低粘度,从而保证树脂组合物作为电子器件塑封料的工艺可实现性和封装可靠性。
本申请实施方式中,所述硅微粉的截止粒径(即卡断粒径、截断粒径)为25μm,所述硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%。将硅微粉的截止粒径控制在25μm,并将大于25μm的硅微粉的含量控制在极低的占比,可以更好地实现完全填充。
本申请实施方式中,所述硅微粉中,粒径大于15μm的硅微粉的质量占比大于或等于20%。本申请一些实施方式中,所述硅微粉中,粒径大于15μm的硅微粉的质量占比大于或等于20%,且小于或等于35%。将粒径大于15μm的较大粒径的硅微粉控制在相对较大的占比,可以更好地实现树脂组合物的低粘度性能。
本申请实施方式中,所述硅微粉中,粒径小于1.5μm的硅微粉的质量占比大于或等于20%。本申请一些实施方式中,所述硅微粉中,粒径小于1.5μm的硅微粉的质量占比大于或等于20%,且小于或等于35%。小粒径的亚微米硅微粉和纳米硅微粉的适当搭配,可以实现高填充比,同时可以增加流动性,提高树脂组合物填充性。
本申请实施方式中,所述硅微粉中,粒径小于0.5μm的硅微粉的质量占比小于或等于12%。小粒径的纳米硅微粉控制在较小的含量,有利于提升树脂组合物体系整体的流动性。
本申请实施方式中,所述固化剂在所述树脂组合物中的质量占比为3%-8%。适合的固化剂含量可使得树脂组合物能够顺利实现固化,获得满足封装的基本物性,且能够更好地保证晶圆具有较小的翘曲。
本申请实施方式中,所述环氧树脂在所述树脂组合物中的质量占比为3%-8%。适合的环氧树脂含量可使得树脂组合物能够满足封装的基本物性,实现填充,且能够更好地保证晶圆具有较小的翘曲。
本申请一些实施方式中,所述树脂组合物中,所述硅微粉的质量占比为86%-92%,所述固化剂的质量占比为3%-8%,所述环氧树脂的质量占比为3%-8%。本申请实施例树脂组合物采用高质量含量硅微粉、以及适合的环氧树脂和固化剂配比,可以更好地保证树脂组合物体系的整体物性,使树脂组合物具有低粘度,高粘度稳定性,低热膨胀系数CTE,高玻璃化转变温度Tg,高剥离强度,低吸水性等,还可降低晶圆翘曲,提高电子器件封装可靠性。
本申请实施方式中,所述环氧树脂相对所述树脂组合物中所有有机组分的质量占比为10%-55%。
本申请实施方式中,所述固化剂相对所述树脂组合物中所有有机组分的质量占比为10%-80%。将环氧树脂和固化剂在有机组分中的质量占比控制在上述范围,可以更好地平衡粘度、粘结力、固化效果等,而且能够更好地平衡树脂组合物的热收缩和化学收缩性能,从而有利于改善晶圆翘曲的问题。
本申请实施方式中,所述环氧树脂的环氧基团与所述固化剂的反应性官能团的数量比为0.3-2。即环氧树脂能够参与反应的基团的数量与固化剂能够参与反应的基团的数量之比在0.3-2的范围内,将环氧树脂与固化剂能够反应的基团数量比控制在上述范围内,可以更好地平衡粘度、粘结力、固化效果、吸水性等性能,提升树脂组合物的综合性能,而且能够更好地平衡树脂组合物的热收缩和化学收缩性能,从而有利于改善晶圆翘曲的问题。
本申请实施方式中,所述固化剂包括酸酐固化剂和/或胺类固化剂。本申请实施方式中,酸酐固化剂可以是六氢苯酐、四氢苯酐、甲基四氢苯酐、甲基六氢苯酐、六氢邻苯二甲酸酐、烷基六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、琥珀酸酐、甲基纳迪克酸酐、氢化甲基那迪克酸酐、5-降冰片烯-2,3-二酸酐、三烷基四氢邻苯二甲酸酐等中的一种或多种。本申请实施方式中,胺类固化剂可以是聚醚胺、异佛尔酮二胺、3,3’-二甲基-4,4’-二氨基-二环己基甲烷等。其中,使用酸酐类固化剂有利于获得低粘度,且反应快,固化时间短。
本申请实施方式中,所述环氧树脂包括双酚A型环氧树脂、双酚F型环氧树脂、双酚AD型环氧树脂、双酚S型环氧树脂、脂环型环氧树脂、萘系环氧树脂、氨基苯酚型环氧树脂中的一种或多种。树脂组合物中,环氧树脂可以是一种,也可以是多种(两种或两种以上)的组合。
本申请实施方式中,为了改善树脂组合物的性能,所述树脂组合物还可以包括添加剂,所述添加剂包括偶联剂、应力改性剂、固化促进剂、着色剂、分散剂、离子捕捉剂、流平剂、阻燃剂、脱模剂、流动改 进剂中的一种或多种。添加剂可以根据具体需要加入。
本申请实施方式中,所述树脂组合物在25℃、3倒秒下的粘度小于800Pas。本申请实施例的树脂组合物在室温下具有较低粘度,因而具有较宽的工艺操作窗口,有利于保证树脂组合物在进行塑封时良好的流动性和填充性,更好地进行封装操作,提高封装效果。
本申请实施方式中,所述树脂组合物在室温、45%湿度下静置24小时的粘度变化率小于300%。树脂组合物的粘度变化率小,即粘度稳定性高,有利于其在封装工艺中的应用。
本申请实施方式中,所述树脂组合物的固化物的玻璃化转变温度大于或等于140℃。树脂组合物在固化后具有较高的玻璃化转变温度Tg,可以提高封装所得塑封体的服役可靠性。
本申请实施方式中,所述树脂组合物的固化物的温度在Tg以下时的热膨胀系数(线膨胀系数)小于或等于10ppm/K,温度在Tg以上时的热膨胀系数小于或等于40ppm/K。树脂组合物的固化物具有较低的热膨胀系数,可以保证封装所得塑封体具有较高尺寸、结构稳定性,提高封装件的服役可靠性。
本申请实施例第二方面提供一种封装材料,用于电子元器件的密封包装,所述封装材料包括本申请实施例第一方面所述的树脂组合物和/或所述树脂组合物的固化物。采用本申请实施例提供的树脂组合物作为封装材料,用于电子元器件的封装,可以提升封装效果,提高电子器件的服役可靠性。
本申请实施例第三方面提供第一方面所述的树脂组合物在电子元器件密封包装中的应用。具体地,树脂组合物用于形成覆盖电子元器件的塑封体,以固定保护电子元器件。
本申请实施例第四方面提供一种固化物,所述固化物包括本申请实施例第一方面所述的树脂组合物的固化物。本申请实施例的固化物可以是根据需要采用树脂组合物固化形成各种形状,覆盖于需要进行封装的电子元器件表面。
本申请实施例第五方面提供一种封装器件,所述封装器件包括本申请实施例第四方面所述的固化物。本申请实施例封装器件,采用本申请实施例提供的树脂组合物的固化物实现封装,具有较高的服役可靠性。
本申请实施方式中,所述封装器件包括基板、设置在所述基板上的电子元器件、以及覆盖所述电子元器件的塑封体,所述塑封体包括所述固化物。本申请中,电子元器件包括但不限于芯片,当电子元器件为芯片时,封装器件为一芯片封装结构。
本申请实施例还提供一种终端设备,所述终端设备包括电路板和设置在所述电路板上的本申请实施例第五方面所述的封装器件。本申请实施例终端设备采用本申请实施例提供的封装器件可以提高终端设备的服役可靠性。
本申请实施例还提供一种通信设备,所述通信设备包括本申请实施例第五方面所述的封装器件。
本申请实施例还提供一种通信基站,所述通信基站包括本申请实施例第五方面所述的封装器件。
附图说明
图1为本申请一实施例提供的电子包装件100的结构示意图;
图2为本申请实施例电子包装件100设置于电路板上的示意图;
图3为本申请实施例提供的终端设备200的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行说明。
在FOWLP中,为保证液态环氧塑封料LMC在压模前具有足够的工艺操作窗口,能够实现完全填充,要求其具有低粘度和高流动性;此外,固化后的液态环氧塑封料LMC包覆在芯片外,为保证服役可靠性,要求它具有较低的热膨胀系数CTE、较高的玻璃转化温度Tg和较低的翘曲。目前,液态环氧塑封料LMC难以兼具上述性能,为此,本申请实施例提供一种树脂组合物,该树脂组合物为液态,是一种液态环氧塑封料,该液态环氧塑封料能够兼具低粘度和高流动性,且固化后能够具有较低的热膨胀系数CTE、较高的玻璃转化温度Tg。该树脂组合物可以但不限于应用于扇入型晶圆级封装FOWLP、扇出型晶圆级封装FOWLP、硅通孔技术TSV、2.5D封装、3D封装、嵌入型晶圆级球栅阵列封装eWLB等先进封装结构中。
本申请实施例提供一种树脂组合物,该树脂组合物包括环氧树脂、固化剂和硅微粉,其中,所述硅微粉的最频径为18μm-22μm,硅微粉的平均粒径为6μm-9μm。
本申请实施方式中,最频径即最频粒径,是频率分布曲线的最高点对应的粒径值。本申请实施方式中,硅微粉的最频径具体例如可以是18μm、19μm、20μm、21μm、22μm。本申请实施方式中,硅微粉的截止粒径为25μm。本申请实施方式中,硅微粉的平均粒径具体可以是6μm、7μm、8μm、9μm。
本申请实施例提供的树脂组合物在室温下为液态,为液态树脂组合物,该树脂组合物通过选用包括多种不同粒径的硅微粉作为填料,并将硅微粉的最频径和平均粒径控制在特定范围,由于硅微粉的大颗粒尽可能接近截止粒径(25μm),且通过硅微粉大颗粒和小颗粒的适当搭配使平均粒径在6μm-9μm,可以使树脂组合物具有高硅微粉填充量(即高质量含量)和良好的封装填充性,进而有利于树脂组合物体系在硅微粉填充量高时仍具有低粘度和高流动性,同时降低树脂组合物固化后产物的热膨胀系数CTE;将该树脂组合物用于电子器件封装,能够扩宽工艺操作窗口,能够更好地实现完全填充,减少气孔、空隙及流痕产生,且在固化后形成的覆盖在电子元器件表面的塑封体能够具有较低的热膨胀系数CTE和较高的玻璃转化温度Tg,从而提升填充效果,改善电子器件封装产生的翘曲问题,提高电子器件的封装可靠性。
本申请实施方式中,硅微粉是由天然石英或熔融石英加工而成的二氧化硅微粉,硅微粉为球形或类球形颗粒。硅微粉的热膨胀系数较低有利于树脂组合物体系在固化后获得低热膨胀系数,硅微粉还具有高机械强度和低吸水性,有利于提高封装可靠性。硅微粉具有球形或类球形结构有利于提升树脂组合物的流动性,从而更好实现填充。
本申请实施方式中,硅微粉的比表面积为1.6m2/g-2m2/g。比表面积是指单位质量物料所具有的总面积。本申请实施方式中,硅微粉的比表面积具体可以是1.6m2/g、1.7m2/g、1.8m2/g、1.9m2/g、2m2/g。本申请实施例通过选用最频径和平均粒径在特定范围的硅微粉,使硅微粉具有低比表面积,从而能够更好地提升树脂组合物体系的流动性,提升树脂组合物固化物的均匀性,使固化后所得塑封体获得更均匀的热膨胀系数CTE,从而更好地改善翘曲问题。
本申请实施方式中,树脂组合物中,所述硅微粉的质量占比大于或等于86%。通过将硅微粉控制在较高的含量,有利于降低树脂组合物固化物的热膨胀系数,改善翘曲,从而提高封装可靠性。
本申请一些实施方式中,树脂组合物中,硅微粉的质量占比为86%-92%。具体地,例如可以是86%、87%、88%、89%、90%、91%、92%。通过将硅微粉控制在尽可能高的适合的含量范围,能够使得树脂组合物更好地兼顾低热膨胀系数和低粘度,从而保证树脂组合物作为电子器件塑封料的工艺可实现性和封装可靠性。
本申请实施方式中,硅微粉的截止粒径为25μm,截止粒径即卡断粒径、截断粒径,其对应硅微粉过筛的筛网尺寸,例如,硅微粉的截止粒径为25μm,则硅微粉为过25μm尺寸筛网所得的硅微粉,需要说明的是,由于筛网本身的限制以及硅微粉储存等方面的影响,硅微粉中可能不可避免地存在个别一些超过截止粒径的硅微粉颗粒。本申请一些实施方式中,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,即粒径大于25μm的硅微粉的质量占树脂组合物中所有硅微粉质量的比例小于1%。一些实施例中,硅微粉中,粒径大于25μm的硅微粉的质量占比小于0.8%。将硅微粉的截止粒径控制在25μm,并将大于25μm的硅微粉的含量控制在尽可能小的极低的占比,可以提高树脂组合物的填充性能,更好地实现完全填充,更好地适用于小尺寸窄间隙的填充场景。
本申请实施方式中,硅微粉中,粒径大于15μm的硅微粉的质量占比大于或等于20%,即粒径大于15μm的硅微粉的质量占树脂组合物中所有硅微粉质量的比例大于或等于20%。一些实施例中,硅微粉中,粒径大于15μm的硅微粉的质量占比大于或等于25%;一些实施例中,硅微粉中,粒径大于15μm的硅微粉的质量占比大于或等于30%。本申请一些实施方式中,所述硅微粉中,粒径大于15μm的硅微粉的质量占比大于或等于20%,且小于或等于35%。具体地,一些实施例中,硅微粉中,粒径大于15μm的硅微粉的质量占比为20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%。将粒径大于15μm的较大粒径的硅微粉控制在相对较大的占比,可以更好地实现树脂组合物的低粘度性能。
本申请实施方式中,硅微粉中,粒径小于1.5μm的硅微粉的质量占比大于或等于20%,即粒径小于1.5μm的硅微粉的质量占树脂组合物中所有硅微粉质量的比例大于或等于20%。一些实施例中,硅微粉中,粒径小于1.5μm的硅微粉的质量占比大于或等于25%;一些实施例中,硅微粉中,粒径小于1.5μm的硅微粉的质量占比大于或等于30%。本申请一些实施方式中,所述硅微粉中,粒径小于1.5μm的硅微粉质量占比大于或等于20%,且小于或等于35%。具体地,一些实施例中,硅微粉中,粒径小于1.5μm的硅微粉质量占比为20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%。粒径小于1.5μm的小粒径的亚微米硅微粉和纳米硅微粉的适当搭配,可以实现高填充比(即高硅微粉质量含量),同时可以增加流动性,提高树脂组合物的填充性。
本申请实施方式中,硅微粉中,粒径小于0.5μm的硅微粉的质量占比小于或等于12%。即粒径小于0.5μm的硅微粉的质量占树脂组合物中所有硅微粉的质量的比例小于或等于12%。一些实施例中,硅微粉 中,粒径小于0.5μm的硅微粉的质量占比小于或等于10%;一些实施例中,硅微粉中,粒径小于0.5μm的硅微粉的质量占比小于或等于9%;一些实施例中,硅微粉中,粒径小于0.5μm的硅微粉的质量占比小于或等于8%。小粒径的纳米硅微粉控制在较小的含量,有利于提升树脂组合物体系整体的流动性。
本申请实施例树脂组合物在确定环氧树脂种类的情况下,在截止粒径范围内,通过硅微粉的选型和级配可实现高填料比下的低粘度,硅微粉的选型和级配可以使硅微粉紧密堆叠有利于体系的流动,从而使树脂组合物具备良好的流动性。具体地,当硅微粉填充含量相同时,最频径在18-22μm的范围内,平均粒径在6-9μm有利于实现高填料比下的低粘度;进一步通过窄粒径分布,将级配后的硅微粉比表面积控制在1.6-2m2/g范围内,可使得树脂组合物体系粘度更低,当进一步控制粒径大于15μm的硅微粉质量占比大于或等于20%,粒径小于1.5μm的硅微粉质量占比大于或等于20%,和/或粒径小于0.5μm的硅微粉的质量占比小于或等于12%时,树脂组合物体系可获得更低粘度。
本申请实施方式中,可以通过扫描电子显微镜(scanning electron microscope,SEM))、光学显微镜、激光粒度仪等分析获知硅微粉的形貌、尺寸和粒径分布。
本申请实施方式中,固化剂在所述树脂组合物中的质量占比为3%-8%。本申请一些实施例中,固化剂在树脂组合物中的质量占比可以是3%、4%、5%、6%、7%、8%。适合的固化剂含量可使得树脂组合物能够顺利实现固化,获得满足封装的基本物性(如低粘度,高粘度稳定性,低热膨胀系数CTE,高玻璃化转变温度Tg,高剥离强度,低吸水性等),且能够更好地保证晶圆具有较小的翘曲。
本申请实施方式中,环氧树脂在所述树脂组合物中的质量占比为3%-8%。本申请一些实施例中,环氧树脂在树脂组合物中的质量占比可以是3%、4%、5%、6%、7%、8%。适合的环氧树脂含量可使得树脂组合物能够满足封装的基本物性,实现填充,且能够更好地保证晶圆具有较小的翘曲。
本申请一些实施方式中,树脂组合物中,硅微粉的质量占比为86%-92%,固化剂的质量占比为3%-8%,环氧树脂的质量占比为3%-8%。本申请实施例树脂组合物采用高质量含量硅微粉、以及适合的环氧树脂和固化剂配比,可以更好地保证树脂组合物体系的整体物性,使树脂组合物具有低粘度,高粘度稳定性(即低粘度变化率),低热膨胀系数CTE,高玻璃化转变温度Tg,高剥离强度,低吸水性等,降低晶圆翘曲,提高电子器件封装可靠性。
采用液态环氧塑封料LMC压模完的晶圆翘曲大小除了和硅微粉有关外,还和封装材料的收缩密切相关,其中收缩又由热收缩和化学收缩两部分组成,而这两者的大小又是此消彼长的关系,本申请通过将环氧树脂和固化剂的配比做到平衡,可以得到翘曲更优的液态环氧塑封料材料。
本申请实施方式中,环氧树脂相对树脂组合物中所有有机组分的质量占比为10%-55%。一些实施例中,环氧树脂相对树脂组合物中所有有机组分的质量占比为15%-45%;一些实施例中,环氧树脂相对树脂组合物中所有有机组分的质量占比为25%-40%。本申请实施方式中,固化剂相对树脂组合物中所有有机组分的质量占比为10%-80%。一些实施方式中,固化剂相对树脂组合物中所有有机组分的质量占比为20%-70%。一些实施方式中,固化剂相对树脂组合物中所有有机组分的质量占比为30%-60%。将环氧树脂和固化剂在有机组分中的质量占比控制在上述范围,可以更好地平衡粘度、粘结力、固化效果、玻璃化转变温度Tg等,而且能够更好地平衡树脂组合物的热收缩和化学收缩性能,从而有利于改善晶圆翘曲的问题。
本申请实施方式中,环氧树脂的环氧基团与固化剂的反应性官能团的数量比为0.3-2。即环氧树脂环氧基团的数量与固化剂能够参与反应的基团的数量之比在0.3-2的范围内。一些实施例中,环氧树脂的环氧基团与所述固化剂的反应性官能团的数量比为0.5-1.8。一些实施例中,环氧树脂的环氧基团与所述固化剂的反应性官能团的数量比为0.7-1.6。将环氧树脂与固化剂能够反应的基团数量比控制在上述范围内,可以更好地平衡粘度、粘结力、固化效果、吸水性、玻璃化转变温度Tg等性能,提升树脂组合物的综合性能,而且能够更好地平衡树脂组合物的热收缩和化学收缩性能,从而有利于改善晶圆翘曲的问题。
本申请实施方式中,环氧树脂可以是包括双酚A型环氧树脂、双酚F型环氧树脂、双酚AD型环氧树脂、双酚S型环氧树脂、脂环型环氧树脂、萘系环氧树脂、氨基苯酚型环氧树脂中的一种或多种。树脂组合物中,环氧树脂可以是一种,也可以是多种(两种或两种以上)的组合。将多种环氧树脂组合使用,可以使树脂组合物获得更优的综合性能,例如可以平衡粘度、粘结力等。
本申请实施方式中,固化剂可以是包括酸酐固化剂和/或胺类固化剂。示例性地,酸酐固化剂可以是六氢苯酐、四氢苯酐、甲基四氢苯酐、甲基六氢苯酐、六氢邻苯二甲酸酐、烷基六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、琥珀酸酐、甲基纳迪克酸酐、氢化甲基那迪克酸酐、5-降冰片烯-2,3-二酸酐、三烷基四氢邻苯二甲酸酐等中的一种或多种。示例性地,胺类固化剂可以是聚醚胺、异佛尔酮二胺、3,3’-二甲基-4,4’- 二氨基-二环己基甲烷等。其中,使用酸酐类固化剂有利于获得低粘度,且反应快,固化时间短。本申请树脂组合物中,可以是包括一种固化剂,也可以是包括多种(两种或两种以上)固化剂。
本申请实施方式中,可通过核磁共振谱图、红外光谱仪、元素分析等方法分析获知环氧树脂种类和固化剂种类。
本申请实施方式中,为了改善树脂组合物的性能,树脂组合物还可以包括添加剂,添加剂包括但不限于偶联剂、应力改性剂、固化促进剂、着色剂、分散剂、离子捕捉剂、流平剂、阻燃剂、脱模剂、流动改进剂中的一种或多种。添加剂可以根据具体需要加入。本申请实施方式中,对偶联剂、应力改性剂、固化促进剂、着色剂、分散剂、离子捕捉剂、流平剂、阻燃剂、脱模剂、流动改进剂的具体种类无特殊限定。其中,固化促进剂包括但不限于叔胺(例如N,N-二甲基卞胺等)、咪唑、改性咪唑(例如二甲基咪唑、1-苯基二甲基咪唑等)中的一种或多种。本申请实施方式中,树脂组合物中的添加剂的总含量控制在小于5%。一些实施例中,树脂组合物中的添加剂的总含量控制在小于4%。
本申请实施方式中,树脂组合物在25℃、3倒秒下的粘度小于800Pas。一些实施方式中,树脂组合物在25℃、3倒秒下的粘度小于700Pas。一些实施方式中,树脂组合物在25℃、3倒秒下的粘度小于600Pas。一些实施方式中,树脂组合物在25℃、3倒秒下的粘度小于500Pas。一些实施方式中,树脂组合物在25℃、3倒秒下的粘度小于400Pas。一些实施方式中,树脂组合物在25℃、3倒秒下的粘度小于300Pas。树脂组合物的粘度可以采用流变仪进行测试。需要说明的是,本申请实施例的树脂组合物需要在-40℃及以下低温保存和运输。上述25℃、3倒秒下的粘度η是指树脂组合物在刚混合制备好时测得的粘度,或解冻后测得的粘度。本申请实施例的树脂组合物在室温下具有较低粘度,因而具有较宽的工艺操作窗口,有利于保证树脂组合物在进行塑封时良好的流动性和填充性,更好地进行封装操作,提高封装效果。
本申请实施方式中,树脂组合物在室温、45%湿度下静置24小时的粘度变化率小于300%。一些实施方式中,树脂组合物在室温、45%湿度下静置24小时的粘度变化率小于或等于200%。一些实施方式中,树脂组合物在室温、45%湿度下静置24小时的粘度变化率小于或等于100%。一些实施方式中,树脂组合物在室温、45%湿度下静置24小时的粘度变化率小于或等于90%。粘度变化率是指树脂组合物经解冻后在室温、45%湿度下静置24小时后的粘度变化量△η相对静置之前的初始粘度的变化率,其中△η=24小时后粘度-初始粘度,粘度变化率=(△η/初始粘度)*100%,初始粘度即前述的树脂组合物在解冻后测得的粘度。树脂组合物的粘度变化率低,即树脂组合物的粘度稳定性高,可以有利于其在封装工艺中的应用。
本申请实施方式中,树脂组合物的固化物的玻璃化转变温度大于或等于140℃。一些实施方式中,树脂组合物的固化物的玻璃化转变温度大于或等于150℃。树脂组合物在固化后具有较高的玻璃化转变温度Tg,可以提高封装所得塑封体的服役可靠性。
本申请实施方式中,树脂组合物的固化物的温度在Tg以下时的热膨胀系数小于或等于10ppm/K,温度在Tg以上时的热膨胀系数小于或等于40ppm/K。一些实施方式中,树脂组合物的固化物的温度在Tg以下时的热膨胀系数小于或等于9ppm/K,一些实施方式中,树脂组合物的固化物的温度在Tg以下时的热膨胀系数小于或等于8ppm/K。一些实施方式中,树脂组合物的固化物的温度在Tg以上时的热膨胀系数小于或等于38ppm/K。一些实施方式中,树脂组合物的固化物的温度在Tg以上时的热膨胀系数小于或等于37ppm/K。树脂组合物的固化物具有较低的热膨胀系数,可以保证封装所得塑封体具有较高尺寸稳定性和结构稳定性,提高封装件的服役可靠性。
本申请实施例的树脂组合物可以是通过将各成分搅拌混合制备得到。搅拌混合可以单独用置顶式机械搅拌器、双行星搅拌机、匀质机、三辊研磨机进行,也可以是将上述装置组合使用。
本申请实施例的树脂组合物在受热时会发生固化,即,其中的环氧树脂和固化剂可发生化学反应而形成三维网状聚合物。该树脂组合物在固化后转变成一定形状的固化物,该固化物可以是薄膜状、片状或具有三维立体结构。本申请上述树脂组合物通常为液态。该液态树脂组合物可以直接作为液态胶水,可经涂覆填充、固化后形成胶层。此外,该树脂组合物还可以经混炼、熟化等处理后,转变成易保存的固态的模塑料(环氧树脂未完全交联固化),该模塑料可以是颗粒状、片状或团状等,其后续可通过常见的成型工艺转化成一定形状的固化物。
本申请实施例的树脂组合物为一种含高填充比例硅微粉的环氧树脂组合物,该树脂组合物可以在有效降低体系的热膨胀系数CTE的同时具有较低的粘度,可以用于但不限于应用在扇入型晶圆级封装FOWLP、扇出型晶圆级封装FOWLP、硅通孔技术TSV、2.5D封装、3D封装、嵌入型晶圆级球栅阵列封装eWLB等先进封装结构中,采用这些先进封装结构的产品(如处理器等)可用于手机、电脑、汽车等整机设备中。本申请树脂组合物还可以应用于大面积成型、薄型无需研磨封装、无源器件和POP(package-on-package, 封装体叠层技术)封装等,这些封装产品可应用于移动电子设备的无线装置和自驱动传感器等设备中。
本申请实施例提供一种封装材料,该封装材料为电子封装材料,用于电子元器件的密封包装,该封装材料包括本申请实施例上述提供的树脂组合物和/或上述提供的树脂组合物的固化物。采用本申请实施例上述提供的树脂组合物作为封装材料,用于电子元器件的封装,可以提升封装效果,提高电子器件的服役可靠性。
本申请实施例提供上述的树脂组合物在电子封装领域的应用,具体地在电子元器件密封包装中的应用。本申请实施例中,电子元器件可以是芯片、晶体管(如二极管、三极管)、LED、阻容感元件(如电阻、电容、电感)等。封装的结构形式可以是扇入型晶圆级封装FOWLP、扇出型晶圆级封装FOWLP、硅通孔技术TSV、2.5D封装、3D封装、嵌入型晶圆级球栅阵列封装eWLB等先进封装结构,还可以是大面积成型、薄型无需研磨封装、无源器件封装和POP(package-on-package,封装体叠层技术)封装等封装结构。
本申请实施例还提供一种固化物,该固化物包括本申请实施例上述的树脂组合物的固化物。固化物可以是薄膜状、片状、三维立体结构等形状,固化物具有低热膨胀系数CTE,高玻璃化转变温度Tg,高机械强度,低吸水性等特性,可以构成塑封体较好地保护各种电子元器件。
请参阅图1,本申请实施例还提供一种封装器件100,图1是本申请一实施方式中封装器件100的结构示意图。该封装器件100可以是电子器件包封件,封装器件100包括本申请实施例上述的树脂组合物的固化物。具体地,封装器件100包括基板10、设置在基板10上的电子元器件20,以及密封包装包覆基板10、电子元器件20的塑封体30。其中,电子元器件20可以是各种需要封装的元器件,包括但不限于是芯片、晶体管(如二极管、三极管)、LED、阻容感元件(如电阻、电容、电感)等中的一种或多种。下面以电子元器件20是芯片为例进行具体说明。芯片可通过焊接附接至基板10表面,基板10可以是再布线层(RDL)。基板10远离芯片的一侧可设置多个金属球50(如锡球),金属球50通过基板10中的导通结构40与芯片电连接。参见图2,封装器件100可以通过金属球50焊接至电路板202上,封装器件100中的电子元器件20可通过导通结构40、金属球50与电路板202电连接。其中,塑封体30采用本申请实施例的树脂组合物,即塑封体30包括本申请实施例的树脂组合物的固化物。塑封体30可以通过将树脂组合物借助传递成型法(transfer molding)或压缩成型法(compression molding)或注射成型法(injection molding)等常见成型工艺加工成一定结构外型,且在成型过程中环氧树脂发生交联固化。
本申请封装器件采用本申请实施例提供的树脂组合物对电子元器件进行封装,工艺操作性高,封装可靠性高。
参见图3,本申请实施例还提供一种终端设备200,终端设备200包括壳体201和设置在壳体201内的电路板和封装器件100,在终端设备200内部,封装器件100可以是如图2所示设置在电路板202上,且与电路板202电连接。终端设备200可以是手机、平板电脑、笔记本电脑、便携机、智能穿戴产品、电视机、录像机、摄录机、收音机、收录机、车载终端、鼠标、键盘、麦克风、扫描仪等产品。
本申请实施例还提供一种通信设备,通信设备包括本申请实施例上述的封装器件100。封装器件100可以是电连接固定于电路板上。通信设备可以是各类有线通信设备或无线通信设备,包括但不限于是通信转换设备、避雷器、天线、网关、遥控器、雷达、对讲机、交换机、路由器等。
本申请实施例还提供一种通信基站,通信基站包括本申请实施例上述的封装器件100。封装器件100可以是电连接固定于电路板上。
下面分多个实施例对本申请实施例进行进一步的说明。
实施例1
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂4.42%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第一环氧树脂1.86%和第二环氧树脂1.82%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为9μm,最频径为18μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉质量占比小于或等于12%。
实施例2
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂4.42%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第一环氧树脂1.86%和第二环氧树脂1.82%,硅微粉的截止粒径为25μm, 硅微粉的平均粒径为7μm,最频径为18μm,比表面积为1.8m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉质量占比小于或等于12%。
实施例3
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂4.42%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第一环氧树脂1.86%和第二环氧树脂1.82%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为6μm,最频径为18μm,比表面积为2m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉质量占比小于或等于12%。
实施例4
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂4.42%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第一环氧树脂1.86%和第二环氧树脂1.82%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为8μm,最频径为22μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉质量占比小于或等于12%。
实施例5
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂4.52%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第一环氧树脂1.86%和第三环氧树脂1.72%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为8μm,最频径为22μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉质量占比小于或等于12%。
实施例6
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂4.10%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第一环氧树脂2.12%和第三环氧树脂1.88%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为8μm,最频径为22μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉质量占比小于或等于12%。
实施例7
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第二固化剂4.23%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第三环氧树脂3.87%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为8μm,最频径为22μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉质量占比小于或等于12%。
实施例8
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂为4.11%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第二环氧树脂2.21%和第三环氧树脂1.78%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为8μm,最频径为22μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉的质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉的质量占比小于或等于12%。
实施例9
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第二固化剂3.74%、硅微粉89%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第三环氧树脂3.36%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为 8μm,最频径为22μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉的质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉的质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉的质量占比小于或等于12%。
实施例10
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第二固化剂4.78%、硅微粉87%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第三环氧树脂4.32%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为8μm,最频径为22μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉的质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉质量占比小于或等于12%。
实施例11
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂4.42%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第一环氧树脂1.86%和第二环氧树脂1.82%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为9μm,最频径为18μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉的质量占比为18%,粒径小于1.5μm的硅微粉的质量占比为18%,粒径小于0.5μm的硅微粉的质量占比为13%。
实施例12
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂4.42%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第一环氧树脂1.86%和第二环氧树脂1.82%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为9μm,最频径为18μm,比表面积为1.6m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉的质量占比为37%,粒径小于1.5μm的硅微粉的质量占比为37%,粒径小于0.5μm的硅微粉的质量占比为13%。
对比例1
一种树脂组合物,将包括如下质量占比的各组分搅拌均匀混合得到:环氧树脂3.68%、第一固化剂4.42%、硅微粉88%、偶联剂0.25%、应力改性剂0.45%、固化促进剂1.4%、着色剂1%、分散剂0.4%、离子捕捉剂0.4%,环氧树脂包括第一环氧树脂1.86%和第二环氧树脂1.82%,硅微粉的截止粒径为25μm,硅微粉的平均粒径为5μm,最频径为16μm,比表面积为2.2m2/g,硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%,粒径大于15μm的硅微粉的质量占比为15%,粒径小于1.5μm的硅微粉的质量占比为37%。
上述实施例1-12和对比例1的配方列于表1。上述实施例和对比例中,第一环氧树脂为双酚类环氧树脂、第二环氧树脂为脂环类环氧树脂、第三环氧树脂为萘系环氧树脂。第一固化剂为甲基六氢苯酐、第二固化剂为甲基四氢苯酐。
将本申请实施例1至实施例12和对比例1制备的树脂组合物进行粘度测试,粘度测试包括常温初始粘度测试,以及湿度45%、室温静置24小时后的常温粘度测试,常温粘度测试具体是25℃、3倒秒下的粘度。将本申请实施例1至实施例12制备的树脂组合物的固化物和对比例1的树脂组合物的固化物进行玻璃化转变温度Tg测试、热膨胀系数CTE测试、吸水率测试、填充性测试和翘曲测试。树脂组合物的常温初始粘度、静置24小时后的常温粘度、以及树脂组合物固化物的玻璃化转变温度Tg温度在Tg以下时的热膨胀系数(即CTE1)、温度在Tg以上时的热膨胀系数(即CTE2)、吸水率、填充性、翘曲结果如表1所示。其中,树脂组合物为的粘度采用流变仪测定;树脂组合物固化物的热膨胀系数CTE通过热机械分析(TMA)测试获得,玻璃化转变温度Tg采用动态热机械分析仪测试;吸水性测试采用PCT试验(一般称为压力锅蒸煮试验或饱和蒸汽试验)进行测试。
填充性和翘曲测试方法:采用12inch裸硅片,在其中心点胶50g的液态树脂组合物,采用压模设备在125℃下压模10min。随后观察其表面,完全填充为合格,有未完全填充的区域则为不合格。压模结束后,在150℃后固化1小时。随后将其置于平面,测试其翘曲度,翘曲小于2μm为优,翘曲2-3μm为良,翘曲大于3μm为差。
表1各实施例与对比例的测试结果汇总
本申请实施例选择的硅微粉截止粒径为25μm,由上述实施例和对比例的结果可知,本申请实施例1至实施例12的树脂组合物通过硅微粉的选型和级配可实现高填料比下的低粘度,同时固化物还具有低热膨胀系数CTE、高玻璃化转变温度Tg和较低吸水率,填充性较好,翘曲较小。这是由于在截止粒径范围内,通过硅微粉的选型和级配可以使硅微粉紧密堆叠有利于体系的流动,从而使树脂组合物具备良好的流动性。由上述实施例的结果还可以获知,硅微粉的最频径控制在18-22μm的范围内,平均粒径控制在6-9μm,比表面积控制在1.6-2m2/g范围内有利于实现高填料比下的低粘度;而控制粒径大于15μm的硅微粉质量占比在20%-35%范围内,粒径小于1.5μm的硅微粉质量占比在20%-35%范围内,粒径小于0.5μm的硅微粉质量占比小于或等于12%时,树脂组合物体系粘度可大幅降低,从而能够获得更低粘度树脂组合物。
另外,实施例8至实施例10调整了硅微粉的总含量,可以发现,树脂组合物固化物的热膨胀系数CTE随硅微粉含量的增加而下降,因此,在粘度满足需求的情况下可以尽可能地增加硅微粉的含量,以获得更低的热膨胀系数,降低晶圆翘曲,更好地满足在电子封装领域中的应用需求。此外,本申请通过选择合适的固化剂,并将环氧树脂和固化剂的配比控制在适合范围内,可以提高树脂组合物体系的玻璃化转变温度Tg,得到翘曲更优的封装材料。
应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请 的范围。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种树脂组合物,其特征在于,所述树脂组合物包括环氧树脂、固化剂和硅微粉,所述硅微粉的最频径为18μm-22μm,所述硅微粉的平均粒径为6μm-9μm。
  2. 如权利要求1所述的树脂组合物,其特征在于,所述硅微粉的比表面积为1.6m2/g-2m2/g。
  3. 如权利要求1或2所述的树脂组合物,其特征在于,所述硅微粉的截止粒径为25μm;所述硅微粉中,粒径大于25μm的硅微粉的质量占比小于1%。
  4. 如权利要求1-3任一项所述的树脂组合物,其特征在于,所述硅微粉中,粒径大于15μm的硅微粉的质量占比大于或等于20%。
  5. 如权利要求4所述的树脂组合物,其特征在于,所述硅微粉中,粒径大于15μm的硅微粉的质量占比大于或等于20%,且小于或等于35%。
  6. 如权利要求1-5任一项所述的树脂组合物,其特征在于,所述硅微粉中,粒径小于1.5μm的硅微粉的质量占比大于或等于20%。
  7. 如权利要求6所述的树脂组合物,其特征在于,所述硅微粉中,粒径小于1.5μm的硅微粉的质量占比大于或等于20%,且小于或等于35%。
  8. 如权利要求1-7任一项所述的树脂组合物,其特征在于,所述硅微粉中,粒径小于0.5μm的硅微粉的质量占比小于或等于12%。
  9. 如权利要求1-8任一项所述的树脂组合物,其特征在于,所述树脂组合物中,所述硅微粉的质量占比大于或等于86%。
  10. 如权利要求9所述的树脂组合物,其特征在于,所述树脂组合物中,所述硅微粉的质量占比为86%-92%。
  11. 如权利要求1-10任一项所述的树脂组合物,其特征在于,所述固化剂在所述树脂组合物中的质量占比为3%-8%。
  12. 如权利要求1-11任一项所述的树脂组合物,其特征在于,所述环氧树脂在所述树脂组合物中的质量占比为3%-8%。
  13. 如权利要求1-12任一项所述的树脂组合物,其特征在于,所述环氧树脂相对所述树脂组合物中所有有机组分的质量占比为10%-55%。
  14. 如权利要求1-13任一项所述的树脂组合物,其特征在于,所述固化剂相对所述树脂组合物中所有有机组分的质量占比为10%-80%。
  15. 如权利要求1-14任一项所述的树脂组合物,其特征在于,所述环氧树脂的环氧基团与所述固化剂的反应性官能团的数量比为0.3-2。
  16. 如权利要求1-15任一项所述的树脂组合物,其特征在于,所述固化剂包括酸酐固化剂和/或胺类固化剂。
  17. 如权利要求1-16任一项所述的树脂组合物,其特征在于,所述环氧树脂包括双酚A型环氧树脂、双酚F型环氧树脂、双酚AD型环氧树脂、双酚S型环氧树脂、脂环型环氧树脂、萘系环氧树脂、氨基苯酚型环氧树脂中的一种或多种。
  18. 如权利要求1-17任一项所述的树脂组合物,其特征在于,所述树脂组合物还包括添加剂,所述添加剂包括偶联剂、应力改性剂、固化促进剂、着色剂、分散剂、离子捕捉剂、流平剂、阻燃剂、脱模剂、流动改进剂中的一种或多种。
  19. 如权利要求1-18任一项所述的树脂组合物,其特征在于,所述树脂组合物在25℃、3倒秒下的粘度小于800Pas。
  20. 如权利要求1-19任一项所述的树脂组合物,其特征在于,所述树脂组合物在室温、45%湿度下静置24小时的粘度变化率小于300%。
  21. 如权利要求1-20任一项所述的树脂组合物,其特征在于,所述树脂组合物的固化物的玻璃化转变温度大于或等于140℃。
  22. 如权利要求1-21任一项所述的树脂组合物,其特征在于,所述树脂组合物的固化物的温度在Tg以下时的热膨胀系数小于或等于10ppm/K,温度在Tg以上时的热膨胀系数小于或等于40ppm/K。
  23. 一种封装材料,用于电子元器件的密封包装,其特征在于,所述封装材料包括权利要求1-22任一项所述的树脂组合物和/或所述树脂组合物的固化物。
  24. 如权利要求1-22任一项所述的树脂组合物在电子元器件密封包装中的应用。
  25. 一种固化物,其特征在于,所述固化物包括权利要求1-22任一项所述的树脂组合物的固化物。
  26. 一种封装器件,其特征在于,所述电子包装件包括如权利要求25所述的固化物。
  27. 如权利要求26所述的封装器件,其特征在于,所述封装器件包括基板、设置在所述基板上的电子元器件、以及覆盖所述电子元器件的塑封体,所述塑封体包括所述固化物。
  28. 一种终端设备,其特征在于,所述终端设备包括电路板和设置在所述电路板上的如权利要求26或27所述的封装器件。
  29. 一种通信设备,其特征在于,所述通信设备包括如权利要求26或27所述的封装器件。
  30. 一种通信基站,其特征在于,所述通信基站包括如权利要求26或27所述的封装器件。
PCT/CN2023/118241 2022-09-15 2023-09-12 树脂组合物及其应用 WO2024055962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211119854.2 2022-09-15
CN202211119854.2A CN117736535A (zh) 2022-09-15 2022-09-15 树脂组合物及其应用

Publications (1)

Publication Number Publication Date
WO2024055962A1 true WO2024055962A1 (zh) 2024-03-21

Family

ID=90274293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118241 WO2024055962A1 (zh) 2022-09-15 2023-09-12 树脂组合物及其应用

Country Status (2)

Country Link
CN (1) CN117736535A (zh)
WO (1) WO2024055962A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841173A (ja) * 1994-07-27 1996-02-13 Matsushita Electric Works Ltd 液状エポキシ樹脂組成物、その製造方法及びその硬化方法
JPH11255864A (ja) * 1998-03-09 1999-09-21 Toshiba Corp 液状エポキシ樹脂組成物および樹脂封止型半導体装置
CN107216614A (zh) * 2017-07-10 2017-09-29 江苏华海诚科新材料股份有限公司 一种适用于扇出型晶圆级封装的环氧树脂组合物
CN112745634A (zh) * 2020-12-17 2021-05-04 江苏华海诚科新材料股份有限公司 一种适用于基板封装的环氧树脂组合物
CN113201204A (zh) * 2021-04-23 2021-08-03 衡所华威电子有限公司 一种高Tg、低翘曲的MUF环氧树脂组合物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841173A (ja) * 1994-07-27 1996-02-13 Matsushita Electric Works Ltd 液状エポキシ樹脂組成物、その製造方法及びその硬化方法
JPH11255864A (ja) * 1998-03-09 1999-09-21 Toshiba Corp 液状エポキシ樹脂組成物および樹脂封止型半導体装置
CN107216614A (zh) * 2017-07-10 2017-09-29 江苏华海诚科新材料股份有限公司 一种适用于扇出型晶圆级封装的环氧树脂组合物
CN112745634A (zh) * 2020-12-17 2021-05-04 江苏华海诚科新材料股份有限公司 一种适用于基板封装的环氧树脂组合物
CN113201204A (zh) * 2021-04-23 2021-08-03 衡所华威电子有限公司 一种高Tg、低翘曲的MUF环氧树脂组合物及其制备方法

Also Published As

Publication number Publication date
CN117736535A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN103436019B (zh) 一种高导热绝缘导热硅胶垫片及其制备方法
US10839977B2 (en) Conductive fiber-coated particle, curable composition and cured article derived from curable composition
CN102766426A (zh) 一种用于半导体芯片封装用的导电胶及其制备方法
CN111560232B (zh) 一种单组分环氧树脂流动型底部填充胶粘剂及其制备方法
CN112409757A (zh) 一种高功率模块封装用高导热环氧塑封料及其制备方法
CN102002209A (zh) 一种用于倒装芯片型半导体封装用底部填充胶
TWI480326B (zh) 用於含低k介電質之半導體裝置中作為底填密封劑之可固化樹脂組合物
CN112375340B (zh) 晶圆级封装密封用电路积层膜、其制备方法及应用
Sasajima et al. New development trend of epoxy molding compound for encapsulating semiconductor chips
WO2024055962A1 (zh) 树脂组合物及其应用
JP2014094981A (ja) 半導体封止用液状エポキシ樹脂組成物とそれを用いた半導体装置
CN106280254A (zh) 一种低介电常数模塑型环氧底填料及其制备方法与用途
JP5703489B2 (ja) 封止用液状樹脂組成物の製造方法と調整方法及びこれを用いた半導体装置と半導体素子の封止方法
JP5696462B2 (ja) 半導体パッケージの製造方法
CN106590494A (zh) 一种低热膨胀系数的低粘度快速渗透底部填充胶及其制备方法
WO2019133005A1 (en) Materials comprising lithium aluminum silicate for semiconductor manufacturing techniques, semiconductor packaging techniques, or semiconductor packages
WO2024055959A1 (zh) 树脂组合物及其应用
JP3365725B2 (ja) エポキシ樹脂組成物及び半導体装置
JP2001064522A (ja) 半導体封止用樹脂組成物
JP2004018790A (ja) エポキシ樹脂組成物及び半導体装置
CN108070257A (zh) 一种绝缘型高导热硅胶垫片
WO2024055946A1 (zh) 树脂组合物及其制备方法和应用
JP2020111748A (ja) 半導体封止用樹脂組成物およびそれを用いた半導体装置
JP2021183682A (ja) 樹脂被覆無機粒子、熱硬化性樹脂組成物、半導体装置、樹脂被覆無機粒子の製造方法
JP2010219451A (ja) 半導体素子封止体の製造方法および半導体パッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864694

Country of ref document: EP

Kind code of ref document: A1