WO2024055728A1 - 气溶胶生成设备及其控制方法、控制装置 - Google Patents

气溶胶生成设备及其控制方法、控制装置 Download PDF

Info

Publication number
WO2024055728A1
WO2024055728A1 PCT/CN2023/105858 CN2023105858W WO2024055728A1 WO 2024055728 A1 WO2024055728 A1 WO 2024055728A1 CN 2023105858 W CN2023105858 W CN 2023105858W WO 2024055728 A1 WO2024055728 A1 WO 2024055728A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating device
aerosol
aerosol generating
control
Prior art date
Application number
PCT/CN2023/105858
Other languages
English (en)
French (fr)
Inventor
郭玉
冼小毅
郭凤文
梁峰
杜贤武
刘小力
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2024055728A1 publication Critical patent/WO2024055728A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes

Definitions

  • the present application relates to the field of atomization equipment, and in particular to an aerosol generating equipment and its control method and control device.
  • the aerosol generating device is a kind of atomization device that can be used to heat the aerosol generating substrate to generate aerosol.
  • the aerosol-generating substrate can be a solid substrate formed from plant stems and leaves, or a liquid substrate such as tobacco oil.
  • continuous heating is generally used, but this method consumes high power.
  • the present application provides an aerosol generating device.
  • the aerosol generating device includes a power supply, a processor, a heating device, and a puff detection sensor;
  • the power supply is used to supply energy to the heating device
  • the processor is configured to, after detecting the turn-on instruction, control the energy supplied to the heating device so that the heating device reaches a first temperature, and the first temperature is less than or equal to the lowest temperature for generating aerosol;
  • the processor is also used to obtain the detection data of the suction detection sensor, and determine whether there is a suction action based on the detection data; if no suction action is detected, control the heating device to stabilize at the third a temperature.
  • the processor is also used to:
  • the heating device is controlled to reach a second temperature from the first temperature, and the second temperature is greater than the first temperature.
  • the processor is further configured to: after the suction action is completed, control the heating device from The second temperature decreases to the first temperature.
  • the processor is further configured to: after detecting a turn-on instruction, control the heating device to rise to a third temperature, where the third temperature is greater than the first temperature;
  • the heating device is used to accommodate the aerosol-generating matrix and heat the aerosol-generating matrix from the surroundings, the first temperature is less than 200°C, the second temperature is greater than 200°C, and the third temperature is less than 200°C. 3. The temperature is greater than 200°C.
  • the first temperature is between 170°C and 180°C
  • the second temperature is between 210°C and 240°C
  • the third temperature is between 240°C and 260°C.
  • the heating device is used to insert the aerosol-generating matrix and heat the aerosol-generating matrix from the inside, the first temperature is ⁇ 300°C, the second temperature is >300°C, and the The third temperature is >300°C.
  • the aerosol generating device further includes a temperature measurement element; the processor is further configured to:
  • the target temperature includes the first temperature, the second temperature or the Describe the third temperature.
  • the processor is also used to:
  • this application also provides a method for controlling an aerosol generating device, the method including:
  • control the heating device in the aerosol generating device After detecting the opening command, control the heating device in the aerosol generating device to reach a first temperature, where the first temperature is less than or equal to the lowest temperature for generating aerosol;
  • the heating device is controlled to stabilize at the first temperature.
  • the method further includes:
  • the heating device is controlled to reach a second temperature from the first temperature, and the second temperature is greater than the first temperature.
  • the method further includes:
  • the heating device is controlled to decrease from the second temperature to the first temperature.
  • the method includes:
  • control the heating device in the aerosol generating device After detecting the opening instruction, control the heating device in the aerosol generating device to rise to a third temperature, where the third temperature is greater than the first temperature;
  • this application also provides a control device for an aerosol generating device, the device including:
  • a first control module configured to control the heating device in the aerosol generating device to reach a first temperature after detecting the opening command, and the first temperature is less than or equal to the lowest temperature for generating aerosol;
  • a suction determination module used to obtain the detection data of the suction detection sensor in the aerosol generation device, and determine whether there is a suction action based on the detection data;
  • the first control module is also used to control the heating device to stabilize at the first temperature if no suction action is detected.
  • the above-mentioned aerosol generation equipment and its control method and control device control the heating device in the aerosol generation equipment to reach a first temperature after detecting the opening command, and the first temperature is less than or equal to the lowest temperature for generating aerosol. temperature, so that the heating device can preheat the aerosol generating matrix; then obtain the detection data of the suction detection sensor in the aerosol generation device, and determine whether there is a suction action based on the detection data; if no suction action is detected The suction action controls the heating device to stabilize at the first temperature. In this way, after the aerosol generation device is turned on, if no suction action is detected, the heating device is controlled to stabilize at a first temperature lower than the lowest temperature for generating aerosol. Compared with the traditional technology method (continuous heating after turning on), it can save money. A large amount of energy, reducing power consumption without affecting user use.
  • Figure 1 is a schematic structural diagram of an aerosol generating device in an embodiment of the present application.
  • FIG. 2 is a schematic diagram showing the relationship between the temperature of the heating device and time in an embodiment of the present application.
  • FIG. 3 is a schematic diagram showing the relationship between the temperature of the heating device and time in another embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an aerosol generating device in another embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an aerosol generating device in yet another embodiment of the present application.
  • FIG. 6 is a schematic diagram showing the relationship between the temperature of the heating device and time in yet another embodiment of the present application.
  • Figure 7 is a schematic flowchart of a control method of an aerosol generating device in an embodiment of the present application.
  • Figure 8 is a detailed flowchart of controlling the heating device in the aerosol generating device to reach the first temperature after detecting the start command in an embodiment of the present application.
  • Figure 9 is a schematic diagram of the module structure of a control device of an aerosol generating device in an embodiment of the present application.
  • an aerosol generating device in one embodiment, as shown in FIG. 1 , is provided.
  • the aerosol generating device includes: a processor 110 , a heating device 120 , a suction detection sensor 130 and a power supply 150 .
  • the power supply 150 is used to supply energy to the heating device 120.
  • the power supply 150 can be a battery, such as a rechargeable lithium-ion battery, a nickel metal hydride battery, a nickel-cadmium battery or a lithium-based battery.
  • the heating device 120 is also called a heater, and it can be in many forms, such as: heating sheets, heating needles, heating rods, heating wires or wires, heating tubes, etc. Alternatively, the heating device 120 can also be the above two types. Or a combination of the above different forms of heating devices.
  • the heating device 120 is a circumferential heating element.
  • the heating element has a groove or a hole for the aerosol-generating substrate 140 to be inserted.
  • the heating element wraps the aerosol-generating substrate 140 and performs heating on the aerosol-generating substrate 140 from around it. Heated to generate aerosols.
  • the heating method of the heating device 120 may be infrared radiation heating, that is, a material with a high infrared radiation rate is used as a heating substrate or heating coating to heat the aerosol-generating substrate. Because infrared radiation heats up quickly, it can quickly heat up when suction is detected.
  • the heating device can also use other heating methods, such as electromagnetic heating, laser heating, microwave heating, electric field heating, etc., as long as it can heat up quickly.
  • the suction detection sensor 130 may be a semiconductor air pressure sensor, a flow sensor, or other sensor that detects the suction action by detecting changes in air pressure in the airflow passage during suction.
  • the suction detection sensor 130 may be a sensor that detects the suction action by detecting the temperature change of the airflow passage during suction.
  • a thermocouple converts a temperature difference into a potential difference
  • a thermistor converts a temperature change into a resistance change, etc.
  • the suction detection sensor 130 is provided on one side of the airflow channel where airflow is generated by suction or inside the airflow channel.
  • the processor 110 is connected to the heating device 120, the suction detection sensor 130 and the power supply 150.
  • the processor 110 is used to obtain sensor data (including data from the suction detection sensor 130 ) to control the working power of the heating device 120 .
  • the aerosol generating device shown in Figure 1 is an example. In specific implementation, the technical solution of the present application can be applied to any aerosol generating device.
  • the processor 110 is configured to, after detecting the turn-on instruction, control the energy supplied by the power supply 150 to the heating device 120 so that the heating device 120 reaches a first temperature, and the first temperature is less than or equal to the lowest temperature for generating aerosol. temperature.
  • the processor 110 is also configured to obtain detection data from the suction detection sensor 130 and determine whether there is a suction action based on the detection data; if no suction action is detected, control the heating device 120 to stabilize at the first temperature.
  • the processor in the aerosol generation device can detect whether a startup instruction is received, where the startup instruction can be generated by a user operating a startup instruction on the aerosol generation device.
  • the aerosol generation device can also include generating a startup instruction. The user can press or touch the button to generate the corresponding startup command; or there is an acceleration sensor on the aerosol generation device, and the acceleration sensor generates acceleration during the user's use, so the aerosol generation device generates the corresponding startup command.
  • the processor in the aerosol generating device controls the heating device in the aerosol generating device to reach a first temperature, where the first temperature is less than or equal to the lowest temperature for generating aerosol.
  • the processor can control the energy provided by the power supply to the heating device so that the heating device reaches the first temperature.
  • the heating device needs to reach the first temperature as soon as possible to preheat the aerosol generating matrix in the aerosol generating device.
  • the user does not need to wait for a long time and can pump in a shorter time. Inhalation of aerosols.
  • the time required for controlling the heating device to reach the first temperature is less than 10 seconds.
  • the aerosol generation device obtains detection data from the suction detection sensor in the aerosol generation device, and determines whether there is a suction action based on the obtained detection data.
  • the detection data may be air pressure change data of the air flow channel, or temperature change data of the air flow channel.
  • the aerosol generation device can also detect the suction action based on the temperature measurement element detecting the temperature change of the heating device. At this time, the aerosol generation device has the temperature measurement element set in the air flow channel as a suction detection sensor.
  • the heating device 120 is controlled to stabilize at the first temperature, which is less than or equal to the lowest temperature for generating aerosol. As shown in Figure 2, T1 represents the first temperature.
  • the first temperature should not be much lower than the lowest temperature for generating aerosol.
  • the first temperature is less than 200°C
  • the second temperature is greater than 200°C
  • the third temperature is greater than 200°C.
  • the first temperature is between 170°C and 180°C, that is, the first temperature can be any temperature value between 170°C and 180°C.
  • the minimum temperature of the aerosol is 180°C
  • the first temperature should not be set. is 100°C, because when the user uses it, the aerosol generating device will need more time to heat the heating device to the required temperature compared to when the first temperature is 180°C.
  • the heating device is inserted into the aerosol-forming matrix to heat the aerosol-forming matrix from the inside to generate aerosol.
  • the first temperature is ⁇ 300°C
  • the third temperature is >300°C.
  • the heating device is controlled to reach a second temperature from the first temperature, where the second temperature is greater than the first temperature, and the second temperature is greater than or equal to the lowest temperature for generating aerosol, that is, the heating device is controlled to heat.
  • the aerosol-generating matrix is atomized to form an aerosol.
  • the processor in the aerosol generating device controls the heating device to reduce from the second temperature to the first temperature.
  • a start command is detected, and the processor in the aerosol generation device controls the heating device in the aerosol generation device to reach the first temperature T1 within time t1; if no pumping is detected, The suction action controls the heating device to stabilize at the first temperature T1.
  • the suction action is detected, the heating device is controlled from the first temperature T1 to the second temperature T2, and the aerosol-generating substrate is atomized to form an aerosol.
  • the processor controls the power supply to reduce the energy supplied to the heating device, so that the temperature of the heating device gradually decreases to the first temperature T1 and is maintained at the first temperature T1.
  • the operation from t2 to t3 is repeated, and so on. If a shutdown command is detected, the power supply stops supplying power to the processor and other modules, the aerosol-generating device is turned off, and the temperature of the heating device is reduced to normal temperature (normal temperature refers to the ambient temperature of the environment where the aerosol-generating device is located).
  • the first temperature is less than 200°C
  • the second temperature is greater than 200°C
  • the third temperature is greater than 200°C.
  • the second temperature may be between 210°C and 240°C, that is, the second temperature may be any temperature value between 210°C and 240°C.
  • the aerosol generating device includes a processor, a heating device and a suction detection sensor.
  • the processor controls the heating device in the aerosol generating device to reach the first temperature after detecting the opening instruction.
  • the first temperature is less than or equal to the lowest temperature for generating aerosol, so that the heating device can preheat the aerosol-generating matrix; then, the detection data of the suction detection sensor in the aerosol generation device is obtained, and the detection data is obtained based on the detection data.
  • the heating device is controlled to stabilize at a first temperature lower than the lowest temperature for generating aerosol. Compared with the traditional technology method (continuous heating after turning on), it can save money. A large amount of energy, reducing power consumption without affecting user use.
  • an aerosol generating device includes: a processor 110 , a heating device 120 , a suction detection sensor 130 , a power supply 150 and a temperature measuring element 160 .
  • the processor 110 is connected to the heating device 120, the suction detection sensor 130, the power supply 150 and the temperature measuring element 160 respectively.
  • the suction detection sensor 130 is used to detect the suction action such as air pressure changes or temperature changes in the air flow passage.
  • the temperature measuring element 160 is used to detect the temperature of the heating device 120 .
  • the difference between the embodiment shown in Figure 2 and the embodiment shown in Figure 1 is that a temperature measuring element 160 is added in this embodiment, and other components are the same as the embodiment shown in Figure 1 .
  • the processor 110 is configured to obtain data from at least one of the suction detection sensor 130 and the temperature measurement element 160 to control the working power of the heating device 120 . Specifically, the processor 110 determines whether there is a suction action based on the data of the suction detection sensor 130, and the processor 110 obtains the temperature of the heating device 120 based on the data of the temperature measuring element 160.
  • an aerosol generating device which includes: a processor 110 , a heating device 120 , a suction detection sensor 130 , a power supply 150 and a fixing bracket 170 .
  • fever The device 120 is an inserted heating element (dashed line shape in FIG. 5 ).
  • the heating element is inserted into the aerosol generating matrix 140 to heat the aerosol generating matrix 140 from the inside.
  • the fixing bracket 170 is used to fix the aerosol generating matrix 140 .
  • the heating device 120 is an inserted heating element
  • the first temperature is ⁇ 300°C
  • the second temperature is >300°C
  • the third temperature is >300°C.
  • the first temperature, the second temperature and the third temperature of the heating device in the insertion form will be higher than that in the peripheral form. This is because the heating area of the inserted heating device is smaller, and the contact area with the aerosol-generating substrate is also smaller, and a higher temperature is required to provide enough energy to atomize the aerosol-generating substrate to produce aerosol.
  • Other parts are the same as in the above embodiment and will not be described again here.
  • the processor 110 is also configured to:
  • the heating device After detecting the turn-on command, the heating device is controlled to rise to a third temperature, where the third temperature is greater than the first temperature; and the heating device is controlled to cool down from the third temperature to the first temperature.
  • the heating device in the aerosol generating device is controlled to rise to a third temperature, where the third temperature is greater than the first temperature.
  • the heating device in the aerosol generation device is controlled to rise to the third temperature.
  • the third temperature T3 is greater than the first temperature T1. Because when the aerosol generation equipment is not started, the temperature of the heating device, aerosol generation matrix and other modules in the aerosol generation equipment is relatively low (generally the ambient temperature of the environment where the aerosol generation equipment is located, such as 25°C), and There is no aerosol in the atomized state in the aerosol generating device. If the heating device is raised to the first temperature, there is still no aerosol in the atomized state in the aerosol generating device.
  • the heating device is controlled to rise to a third temperature.
  • the third temperature is greater than the second temperature, and the second temperature is greater than the first temperature.
  • the first temperature is less than or equal to the lowest temperature at which aerosol is generated.
  • the first temperature is between 170°C and 180°C, that is, the first temperature can be any temperature value between 170°C and 180°C;
  • the second temperature is between 170°C and 180°C.
  • the temperature can be that the second temperature is between 210°C and 240°C, that is, the second temperature can be any temperature value between 210°C and 240°C;
  • the third temperature can be between 240°C and 260°C, that is, the third temperature can be is any temperature value between 240°C and 260°C.
  • the processor controls the energy supplied to the heating device so that the heating device cools down from the third temperature to the first temperature and is maintained at the first temperature, thereby reducing the overall power consumption of the aerosol generating device.
  • the detection data of the suction detection sensor in the aerosol generation device is obtained, and whether there is a suction action is determined based on the detection data. If a suction action is detected, the heating device is controlled to rise or cool down from the current temperature to the next The second temperature may include: controlling the heating device from the first temperature to the second temperature, or controlling the heating device Heating or cooling from any temperature between T1 to T3 to the second temperature.
  • the processor 110 is further configured to: obtain the detection temperature of the heating device through the temperature measurement element in the aerosol generation device; and according to the detection temperature and the target Perform PID calculation on the temperature to obtain the target energy, so as to control the heating device to reach the corresponding target temperature according to the target energy, where the target temperature includes the first temperature, the second temperature or the third temperature.
  • the detection temperature of the heating device is obtained through the temperature measuring element in the aerosol generation device, and then the detection temperature and the target temperature are input as Proportion Integral Differential (PID)
  • the target energy is obtained after Proportional Integral Derivative (PID) calculation, that is, the control information of the heating device is obtained, and the heating device is controlled to reach the corresponding target temperature according to the calculated target energy.
  • the target temperature includes the first temperature, the second temperature temperature or the third temperature.
  • the first temperature or the third temperature is the target temperature
  • the first temperature or the third temperature, and the temperature measurement element to obtain the detected temperature of the heating device are used as PID inputs through the PID
  • the target energy is obtained.
  • the target temperature can be the first temperature or the second temperature.
  • the target temperature is the second temperature.
  • the target temperature is the first temperature.
  • the heating device After obtaining the target energy, the heating device is controlled to reach the corresponding target temperature according to the target energy.
  • This embodiment can effectively correct the deviation of the controlled object (heating device) through the PID algorithm, so that the heating device reaches a stable state.
  • the processor 110 is further configured to: obtain the energy supplied to the heating device; and when the energy supplied to the heating device exceeds the preset energy, stop supplying energy to the heating device.
  • the processor can also obtain the energy supplied by the power supply to the heating device in real time.
  • the preset energy can be the energy corresponding to the first temperature, the second temperature or the third temperature.
  • the preset energy can be the energy corresponding to the first temperature or the third temperature.
  • the preset energy in this embodiment can be implemented in conjunction with the embodiment shown in Figure 7. Specifically, during use, the first temperature, the second temperature or the third temperature, as well as the current detection The temperature is used as PID input. After PID calculation, the preset energy is obtained, and the energy supplied to the heating device is obtained in real time (that is, the preset energy is obtained). After the energy supplied to the heating device exceeds the preset energy, the supply to the heating device is stopped. Supply energy. Using PID calculation during use can avoid control errors caused by attenuation of each module and improve control accuracy.
  • the aerosol generation device after the aerosol generation device detects the start command, the aerosol generation device obtains the detected temperature of the heating device through the temperature measuring element, and then uses the detected temperature and the first temperature as the input of the PID to perform PID calculation. Get target energy.
  • the aerosol generating device controls the power supply to supply energy to the heating device according to the target energy, so that the heating device reaches the first temperature, and the heating device reaches the first temperature for 5 seconds.
  • the heating device is controlled from the first temperature to the second temperature, that is, the heating device is controlled to heat to remove the aerosol.
  • the generated matrix is atomized to form an aerosol. If no suction action is detected, the heating device is stabilized at the first temperature to reduce power consumption in the non-suction phase.
  • a method for controlling an aerosol generating device is provided, specifically including the following steps 100 to 500.
  • Step 100 After detecting the start command, control the heating device in the aerosol generating device to reach a first temperature, and the first temperature is less than or equal to the lowest temperature for generating aerosol.
  • the aerosol generation equipment can be any aerosol generation equipment on the market, and is not limited here.
  • the processor in the aerosol generation device can detect whether a startup instruction is received, where the startup instruction can be generated by a user operating a startup instruction on the aerosol generation device.
  • the aerosol generation device can also include generating a startup instruction. The user can press or touch the button to generate the corresponding startup command; or there is an acceleration sensor on the aerosol generation device, and the acceleration sensor generates acceleration during the user's use, so the aerosol generation device generates the corresponding startup command.
  • the processor in the aerosol generating device controls the heating device in the aerosol generating device to reach a first temperature, where the first temperature is less than or equal to the lowest temperature for generating aerosol.
  • the processor can provide energy to the heating device by controlling the power supply, so that the heating device reaches the first temperature.
  • the heating device needs to reach the first temperature as soon as possible to preheat the aerosol generating matrix in the aerosol generating device.
  • the user does not need to wait for a long time and can pump in a shorter time.
  • the time required for controlling the heating device to reach the first temperature is less than 10 seconds.
  • Step 200 Obtain detection data from the suction detection sensor in the aerosol generation device, and determine whether there is a suction action based on the detection data;
  • the aerosol generation device obtains detection data from the suction detection sensor in the aerosol generation device, and determines whether there is a suction action based on the obtained detection data.
  • the detection data may be air pressure change data of the air flow channel, or temperature change data of the air flow channel.
  • the aerosol generating device can also detect the suction action based on the temperature measurement element detecting the temperature change of the heating device. In this case, the aerosol generating device does not need to include a suction detection sensor.
  • Step 300 If no suction action is detected, control the heating device to stabilize at the first temperature.
  • step 200 if no suction action is detected, the heating device is controlled to stabilize at the first temperature, and the first temperature is less than or equal to the lowest temperature for generating aerosol.
  • T1 represents the first temperature. a temperature.
  • the first temperature should not be much lower than the lowest temperature for generating aerosol.
  • the first temperature is less than 200°C
  • the second temperature is greater than 200°C
  • the third temperature is greater than 200°C.
  • the first temperature is between 170°C and 180°C, that is, the first temperature can be any temperature value between 170°C and 180°C.
  • the minimum temperature of the aerosol is 180°C
  • the first temperature should not be set. is 100°C, because when the user uses it, the aerosol generating device will need more time to heat the heating device to the required temperature compared to when the first temperature is 180°C.
  • the heating device is an inserted heating element
  • the first temperature is ⁇ 300°C
  • the second temperature is >300°C
  • the third temperature is >300°C.
  • Step 400 If a suction action is detected, control the heating device to reach a second temperature from the first temperature, and the second temperature is greater than the first temperature.
  • step 200 if the suction action is detected, the heating device is controlled to reach the second temperature from the first temperature, that is, the heating device is controlled to heat to atomize the aerosol-generating substrate to form an aerosol, where the second temperature greater than the first temperature.
  • Step 500 After the suction action is completed, control the heating device to decrease from the second temperature to the first temperature.
  • the processor in the aerosol generating device controls the heating device to reduce from the second temperature to the first temperature.
  • a start command is detected, and the processor in the aerosol generation device controls the heating device in the aerosol generation device to reach the first temperature T1 within time t1. If no pumping is detected, The suction action controls the heating device to stabilize at the first temperature T1. At time t2, the suction action is detected, the heating device is controlled from the first temperature T1 to the second temperature T2, and the aerosol-generating substrate is atomized to form an aerosol.
  • the processor controls the power supply to reduce the energy supplied to the heating device, so that the temperature of the heating device gradually decreases to the first temperature T1 and is maintained at the first temperature T1.
  • the operation from t2 to t3 is repeated, and so on. If a shutdown command is detected, the power supply stops supplying power to the processor and other modules, the aerosol-generating device is turned off, and the temperature of the heating device is reduced to normal temperature (normal temperature refers to the ambient temperature of the environment where the aerosol-generating device is located).
  • the second temperature may be between 210°C and 240°C, that is, the second temperature may be any temperature value between 210°C and 240°C.
  • the control method of the above-mentioned aerosol generating equipment is by controlling the aerosol generating equipment after detecting the opening instruction.
  • the heating device in the device reaches a first temperature, and the first temperature is less than or equal to the lowest temperature for generating aerosol, so that the heating device can preheat the aerosol-generating substrate; and then obtains the suction in the aerosol-generating device.
  • Detect the detection data of the sensor and determine whether there is a suction action based on the detection data; if no suction action is detected, control the heating device to stabilize at the first temperature.
  • the heating device is controlled to stabilize at a first temperature lower than the lowest temperature for generating aerosol.
  • it can save money. It consumes a lot of power and basically does not affect user use.
  • the step of controlling the heating device in the aerosol generating device to reach the first temperature includes:
  • Step 110 After detecting the opening command, control the heating device in the aerosol generating device to rise to a third temperature;
  • the heating device in the aerosol generating device is controlled to rise to a third temperature within a first period of time, wherein: The third temperature is greater than the first temperature.
  • the heating device in the aerosol generation device is controlled to rise to the third temperature.
  • the third temperature T3 is greater than the first temperature T1. Because when the aerosol generation equipment is not started, the temperature of the heating device, aerosol generation matrix and other modules in the aerosol generation equipment is relatively low (generally the ambient temperature of the environment where the aerosol generation equipment is located, such as 25°C), and There is no aerosol in the atomized state in the aerosol generating device. If the heating device is raised to the first temperature, there is still no aerosol in the atomized state in the aerosol generating device.
  • the heating device is controlled to rise to a third temperature.
  • the third temperature is greater than the second temperature, and the second temperature is greater than the first temperature.
  • the first temperature is less than or equal to the lowest temperature at which aerosol is generated.
  • the first temperature is between 170°C and 180°C, that is, the first temperature can be any temperature value between 170°C and 180°C;
  • the second temperature is between 170°C and 180°C.
  • the temperature can be that the second temperature is between 210°C and 240°C, that is, the second temperature can be any temperature value between 210°C and 240°C;
  • the third temperature can be between 240°C and 260°C, that is, the third temperature can be is any temperature value between 240°C and 260°C.
  • Step 120 Control the heating device to cool down from a third temperature to the first temperature, where the third temperature is greater than the first temperature.
  • the processor controls the energy supplied to the heating device so that the heating device cools down from the third temperature to the first temperature and is maintained at the first temperature, thereby reducing the overall power consumption of the aerosol generating device.
  • the detection data of the suction detection sensor in the aerosol generation device is obtained, and whether there is a suction action is determined based on the detection data. If a suction action is detected, the heating device is controlled to rise or cool down from the current temperature to the next The second temperature may include: controlling the heating device to reach the second temperature from the first temperature, or controlling the heating device to rise or cool down from any temperature between T1 to T3 to the second temperature.
  • the method may further include:
  • the target temperature includes the first temperature, the second temperature or the Describe the third temperature.
  • the detection temperature of the heating device is obtained through the temperature measuring element in the aerosol generation device, and then the detection temperature and the target temperature are input as proportional integral derivative (PID), and the PID ( Proportion Integral Differential) is calculated to obtain the target energy, that is, the control information of the heating device is obtained, and the heating device is controlled to reach the corresponding target temperature according to the calculated target energy.
  • the target temperature includes the first temperature, the second temperature, or the The third temperature.
  • the first temperature or the third temperature is the target temperature
  • the first temperature or the third temperature, and the temperature measurement element to obtain the detected temperature of the heating device are used as PID inputs through the PID
  • the target energy is obtained.
  • the target temperature can be the first temperature or the second temperature.
  • the target temperature is the second temperature.
  • the target temperature is the first temperature.
  • the heating device After obtaining the target energy, the heating device is controlled to reach the corresponding target temperature according to the target energy.
  • This embodiment can effectively correct the deviation of the controlled object (heating device) through the PID algorithm, so that the heating device reaches a stable state.
  • the method further includes:
  • the processor can also obtain the energy supplied by the power supply to the heating device in real time.
  • the preset energy can be the energy corresponding to the first temperature, the second temperature or the third temperature.
  • the preset energy can be the energy corresponding to the first temperature or the third temperature.
  • the preset energy in this embodiment can be implemented in conjunction with the embodiment shown in Figure 7. Specifically, during use, the first temperature, the second temperature or the third temperature, as well as the current detection Temperature as PID input, After PID calculation, the preset energy is obtained, and the energy supplied to the heating device is obtained in real time (that is, the preset energy is obtained). After the energy supplied to the heating device exceeds the preset energy, the supply of energy to the heating device is stopped. Using PID calculation during use can avoid control errors caused by attenuation of each module and improve control accuracy.
  • the aerosol generation device after the aerosol generation device detects the start command, the aerosol generation device obtains the detected temperature of the heating device through the temperature measuring element, and then uses the detected temperature and the first temperature as the input of the PID to perform PID calculation, and obtain target energy.
  • the aerosol generating device controls the power supply to supply energy to the heating device according to the target energy, so that the heating device reaches the first temperature, and the heating device reaches the first temperature for 5 seconds.
  • the heating device is controlled from the first temperature to the second temperature, that is, the heating device is controlled to heat to remove the aerosol.
  • the generated matrix is atomized to form an aerosol. If no suction action is detected, the heating device is stabilized at the first temperature to reduce power consumption in the non-suction phase.
  • embodiments of the present application also provide a control device for implementing the above-mentioned control method of an aerosol generating device.
  • the solution to the problem provided by this device is similar to the solution described in the above method. Therefore, the specific limitations in the one or more aerosol generation device embodiments provided below can be found in the above description of the aerosol generation device. The limitations of the control method will not be repeated here.
  • a control device for an aerosol generating device including:
  • the first control module 710 is configured to control the heating device in the aerosol generating device to reach a first temperature after detecting the opening instruction, and the first temperature is less than or equal to the lowest temperature for generating aerosol;
  • the suction determination module 720 is used to obtain the detection data of the suction detection sensor in the aerosol generation device, and determine whether there is a suction action based on the detection data;
  • the first control module 710 is also used to control the heating device to stabilize at the first temperature if no suction action is detected.
  • control device of the aerosol generation device further includes:
  • the second control module 730 is used to control the heating device from the first temperature to a second temperature if a suction action is detected, and the second temperature is greater than the first temperature.
  • control device of the aerosol generation device further includes:
  • the third control module 740 is used to control the heating device to reduce from the second temperature to the first temperature after the suction action is completed.
  • the first control module 710 is further configured to control the heating device in the aerosol generating device to rise to a third temperature after detecting the opening command; and control the heating device to cool down from the third temperature to The first temperature and the third temperature are greater than the first temperature.
  • the heating device is a circumferential heating element, the first temperature is less than 200°C, the second temperature is greater than 200°C, and the third temperature is greater than 200°C.
  • the first temperature is between 170°C and 180°C
  • the second temperature is between 210°C and 240°C
  • the third temperature is between 240°C and 260°C.
  • the heating device is an inserted heating element, the first temperature is ⁇ 300°C, the second temperature is >300°C, and the third temperature is >300°C.
  • control device of the aerosol generation device further includes:
  • a first acquisition module (not shown), used to acquire the detected temperature of the heating device through the temperature measuring element in the aerosol generating device;
  • a calculation module (not shown), configured to perform PID calculation according to the detected temperature and the target temperature to obtain target energy, so as to control the heating device to reach the corresponding target temperature according to the target energy, where the target temperature includes the third a temperature, the second temperature or the third temperature.
  • control device of the aerosol generation device further includes:
  • a second acquisition module (not shown), used to acquire the energy supplied to the heating device
  • a fourth control module (not shown) is configured to stop supplying energy to the heating device when the energy supplied to the heating device exceeds the preset energy.
  • Each module in the above control device can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a computer-readable storage medium is provided, with a computer program stored thereon.
  • the computer program is executed by a processor, the steps of the above embodiments of the control method of any aerosol generating device are implemented.
  • the computer program can be stored in a non-volatile computer-readable file.
  • the computer program when executed, may include the processes of the above method embodiments.
  • Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory (FRAM)), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory.
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM Dynamic Random Access Memory
  • the databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include blockchain-based distributed databases, etc., but are not limited thereto.
  • the processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited to this.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Control Of Temperature (AREA)

Abstract

一种气溶胶生成设备及其控制方法、控制装置,气溶胶生成设备包括电源(150)、处理器(110)、发热器件(120)和抽吸检测传感器(130),电源(150)用于向发热器件(120)供应能量,处理器(110)用于在检测到开启指令后,控制向发热器件(120)供应能量以使发热器件达到第一温度,第一温度小于或者等于产生气溶胶的最低温度,处理器(110)还用于获取抽吸检测传感器(130)的检测数据,并根据检测数据确定是否存在抽吸动作,若未检测到抽吸动作,则控制发热器件(120)稳定在第一温度,从而使得气溶胶生成设备降低功耗,节省能量。

Description

气溶胶生成设备及其控制方法、控制装置
相关申请
本申请要求2022年09月15日申请的,申请号为202211122729.7,名称为“气溶胶生成设备及其控制方法、控制装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及雾化设备领域,特别是涉及一种气溶胶生成设备及其控制方法、控制装置。
背景技术
气溶胶生成设备属于一种雾化设备,其能够用于加热气溶胶生成基质产生气溶胶。其中气溶胶生成基质可以是植物茎叶等形成的固态基质,也可以是烟油类液态基质。当加热固态基质时,由于预热速度较慢,为了方便用户抽吸,保证持续生成气溶胶,一般采用连续加热的方式,但这种方式功耗很高。
发明内容
基于此,有必要针对上述技术问题,提供一种能够降低功耗的气溶胶生成设备及其控制方法、控制装置。
第一方面,本申请提供了一种气溶胶生成设备。所述气溶胶生成设备包括电源、处理器、发热器件和抽吸检测传感器;
所述电源用于向所述发热器件供应能量;
所述处理器用于在检测到开启指令后,控制向所述发热器件供应的能量以使所述发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度;
所述处理器还用于获取所述抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;若未检测到抽吸动作,则控制所述发热器件稳定在所述第一温度。
在其中一个实施例中,所述处理器还用于:
若检测到抽吸动作,则控制所述发热器件从所述第一温度达到第二温度,所述第二温度大于所述第一温度。
在其中一个实施例中,所述处理器还用于:在抽吸动作完成后,控制所述发热器件从 所述第二温度降低至所述第一温度。
在其中一个实施例中,所述处理器还用于:在检测到开启指令后,控制所述发热器件升高至第三温度,所述第三温度大于所述第一温度;
以及控制所述发热器件从所述第三温度降低至所述第一温度。
在其中一个实施例中,所述发热器件用于收容气溶胶生成基质并从周围对气溶胶生成基质进行加热,所述第一温度小于200℃,所述第二温度大于200℃,所述第三温度大于200℃。
在其中一个实施例中,所述第一温度位于170℃至180℃之间,所述第二温度位于210℃至240℃之间,所述第三温度位于240℃至260℃之间。
在其中一个实施例中,所述发热器件用于插入气溶胶生成基质并从内部对气溶胶生成基质进行加热,所述第一温度为<300℃,所述第二温度>300℃,所述第三温度>300℃。
在其中一个实施例中,所述气溶胶生成设备还包括测温元件;所述处理器还用于:
通过所述气溶胶生成设备中的测温元件获取所述发热器件的检测温度;
根据所述检测温度和目标温度进行PID计算获得目标能量,以根据所述目标能量控制所述发热器件达到对应的目标温度,所述目标温度包括所述第一温度、所述第二温度或所述第三温度。
在其中一个实施例中,所述处理器还用于:
获取向所述发热器件供应的能量;
在向所述发热器件供应的能量超过预设能量时,停止向所述发热器件供应能量。
第二方面,本申请还提供了一种气溶胶生成设备的控制方法,所述方法包括:
在检测到开启指令后,控制所述气溶胶生成设备中发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度;
获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;
若未检测到抽吸动作,则控制所述发热器件稳定在所述第一温度。
在其中一个实施例中,在所述获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作之后,所述方法还包括:
若检测到抽吸动作,控制所述发热器件从所述第一温度达到第二温度,所述第二温度大于所述第一温度。
在其中一个实施例中,在所述若检测到抽吸动作,控制所述发热器件从所述第一温度达到第二温度之后,所述方法还包括:
在抽吸动作完成后,控制所述发热器件从所述第二温度降低至所述第一温度。
在其中一个实施例中,在所述在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度后,所述方法包括:
在检测到开启指令后,控制所述气溶胶生成设备中的发热器件升高至第三温度,所述第三温度大于所述第一温度;
以及控制所述发热器件从所述第三温度降低至所述第一温度。
第三方面,本申请还提供了一种气溶胶生成设备的控制装置,所述装置包括:
第一控制模块,用于在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度;
抽吸判断模块,用于获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;
第一控制模块,还用于若未检测到抽吸动作,控制所述发热器件稳定在所述第一温度。
上述气溶胶生成设备及其控制方法、控制装置,通过在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度,以实现发热器件能够对气溶胶生成基质进行预热;然后获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;若未检测到抽吸动作,控制所述发热器件稳定在所述第一温度。这样,在气溶胶生成设备开启后,若未检测到抽吸动作,控制发热器件稳定在低于产生气溶胶的最低温度的第一温度,相对传统技术的方式(开启后持续进行加热)能够节省大量能量,降低功耗,且不会影响用户使用。
附图说明
图1为本申请一实施例中气溶胶生成设备的结构示意图。
图2为本申请一实施例中发热器件的温度和时间的关系示意图。
图3为本申请另一实施例中发热器件的温度和时间的关系示意图。
图4为本申请另一实施例中气溶胶生成设备的结构示意图。
图5为本申请又一实施例中气溶胶生成设备的结构示意图。
图6为本申请又一实施例中发热器件的温度和时间的关系示意图。
图7为本申请一实施例中气溶胶生成设备的控制方法的流程示意图。
图8为本申请一实施例中在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度的细化流程示意图。
图9为本申请一实施例中气溶胶生成设备的控制装置的模块结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种气溶胶生成设备,该气溶胶生成设备包括:处理器110、发热器件120、抽吸检测传感器130和电源150。其中,电源150用于向发热器件120供应能量,该电源150可为电池,例如为:可充电锂离子电池、镍金属氢化物电池、镍镉电池或锂基电池。发热器件120又称加热器,其可有多种形式,例如可为:发热片、加热针、加热棒、加热线或丝、加热管等,可替换地,发热器件120还可为以上两种或以上不同形式的发热器件的组合。本实施例中发热器件120为周圈形态发热体,该发热体具有供气溶胶生成基质140插入的凹槽或者孔,发热体包裹气溶胶生成基质140,并从周围对气溶胶生成基质140进行加热以生成气溶胶。
发热器件120的加热方式可以是红外辐射加热,即利用红外辐射率较高的材料作为发热基体或者发热涂层对气溶胶生成基质进行加热。由于红外辐射加热升温速度快,因此可实现在检测到抽吸时,快速升温。当然,具体实施中发热器件也可以采用其他发热方式,例如电磁加热、激光加热、微波加热、电场加热等,只要能够快速升温即可。
抽吸检测传感器130可以为半导体气压传感器、流量传感器等利用检测抽吸时气流通道的气压变化检测抽吸动作的传感器。或者抽吸检测传感器130还可以为利用检测抽吸时气流通道的温度变化检测抽吸动作的传感器。例如将温度差转换为电势差的热电偶、利用温度变化转为阻值变化的热敏电阻等。抽吸检测传感器130设置在抽吸产生气流的气流通道的一侧或者气流通道内部。
处理器110与发热器件120、抽吸检测传感器130及电源150连接。处理器110用于获取传感器的数据(包括抽吸检测传感器130的数据)以控制发热器件120的工作功率。图1所示的气溶胶生成设备为一种示例,具体实施中,可以将本申请技术方案应用到任意气溶胶生成设备。
具体地,处理器110,用于在检测到开启指令后,控制电源150向发热器件120供应的能量,以使发热器件120达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度。处理器110还用于获取抽吸检测传感器130的检测数据,并根据检测数据确定是否存在抽吸动作;若未检测到抽吸动作,则控制发热器件120稳定在所述第一温度。
具体地,气溶胶生成设备中处理器可以检测是否收到开启指令,其中,开启指令可以为用户操作气溶胶生成设备上的开机指令产生,示例性的,气溶胶生成设备还可以包括产生开机指令的按键,用户可以通过按压或者触碰该按键生成对应的开机指令;或者气溶胶生成设备上存在加速度传感器,用户在使用过程中,加速度传感器产生加速度,如此气溶胶生成设备生成对应的开启指令。
在检测到开启指令后,气溶胶生成设备中处理器控制气溶胶生成设备中的发热器件达到第一温度,其中,第一温度小于或者等于产生气溶胶的最低温度。具体地,处理器可以通过控制电源向发热器件提供的能量,使得发热器件达到第一温度。
进一步地,为了提高用户体验,需要尽快将发热器件达到第一温度,以对气溶胶生成设备中的气溶胶生成基质进行预热,用户可以无需等待较长的时间,能够在更短的时间抽吸到气溶胶。本实施例中控制发热器件达到第一温度所需的时间小于10秒。
气溶胶生成设备获取气溶胶生成设备中抽吸检测传感器的检测数据,根据获得的检测数据确定是否存在抽吸动作。其中检测数据可以为气流通道的气压变化数据,或者气流通道的温度变化数据。
可以理解的是,气溶胶生成设备还可以根据测温元件检测发热器件的温度变化检测抽吸动作,此时气溶胶生成设备中将测温元件设置在气流通道内作为抽吸检测传感器。
若未检测到抽吸动作,则控制发热器件120稳定在所述第一温度,第一温度小于或者等于产生气溶胶的最低温度。如图2所示,T1表示第一温度。
可以理解的是,为方便使用,第一温度不宜比产生气溶胶的最低温度小太多。示例性的,所述第一温度小于200℃,所述第二温度大于200℃,所述第三温度大于200℃。具体的,第一温度位于170℃~180℃之间,即第一温度可以为170℃~180℃之间的任一温度值,此时气溶胶的最低温度为180℃,第一温度不宜设为100℃,因为用户使用时,相对于第一温度为180℃时,气溶胶生成设备会需要更多的时间将发热器件加热到需要的温度。在其他实施例中,所述发热器件插入气溶胶形成基质中,以从内部对气溶胶形成基质进行加热产生气溶胶,此时,所述第一温度为<300℃,所述第二温度>300℃,所述第三温度>300℃。
若检测到抽吸动作,控制发热器件从第一温度达到第二温度,其中,第二温度大于第一温度,且第二温度大于等于产生气溶胶的最低温度,即控制发热器件进行加热,以将气溶胶生成基质雾化形成气溶胶。
根据抽吸检测传感器的检测数据确定抽吸动作完成后,气溶胶生成设备中处理器控制发热器件从所述第二温度降低至所述第一温度。
示例性的,如图3所示,在t0时刻,检测到开启指令,气溶胶生成设备中处理器控制气溶胶生成设备中的发热器件在t1时间内达到第一温度T1;若未检测到抽吸动作,控制发热器件稳定在第一温度T1。t2时刻,检测到抽吸动作,控制发热器件从第一温度T1达到第二温度T2,将气溶胶生成基质雾化形成气溶胶。t3时刻,根据抽吸检测传感器的检测数据确定抽吸动作停止,处理器控制电源降低对发热器件供应的能量,使得发热器件的温度逐步降低至第一温度T1,并维持在第一温度T1。在下一次检测到抽吸动作后,重复t2至t3时刻的操作,如此循环。若在检测到关闭指令,电源停止对处理器等模块进行供电,气溶胶生成设备处于关闭状态,发热器件的温度降低至常温(常温是指气溶胶生成设备所在环境的环境温度)。
示例性的,所述发热器件为周圈形态发热体时,所述第一温度小于200℃,所述第二温度大于200℃,所述第三温度大于200℃。具体地,第二温度可以位于210℃至240℃之间,即第二温度可以为210℃至240℃之间的任一温度值。
上述气溶胶生成设备,气溶胶生成设备包括处理器、发热器件和抽吸检测传感器,处理器通过在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度,以实现发热器件能够对气溶胶生成基质进行预热;然后获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;若未检测到抽吸动作,控制所述发热器件稳定在所述第一温度。这样,在气溶胶生成设备开启后,若未检测到抽吸动作,控制发热器件稳定在低于产生气溶胶的最低温度的第一温度,相对传统技术的方式(开启后持续进行加热)能够节省大量能量,降低功耗,且不会影响用户使用。
在一个实施例中,如图4所示,提供了一种气溶胶生成设备,该气溶胶生成设备包括:处理器110、发热器件120、抽吸检测传感器130、电源150和测温元件160。其中,处理器110分别与发热器件120、抽吸检测传感器130、电源150和测温元件160连接。抽吸检测传感器130用于气流通道的气压变化或者温度变化等检测抽吸动作。测温元件160用于检测发热器件120的温度。图2所示的实施例与图1所示实施例的区别在于,本实施例中增加了测温元件160,其他部件与图1所示实施例相同。处理器110用于获取抽吸检测传感器130、测温元件160中的至少一种传感器的数据控制发热器件120的工作功率。具体的,处理器110根据抽吸检测传感器130的数据确定是否存在抽吸动作,处理器110根据测温元件160的数据获得发热器件120的温度。
在一个实施例中,如图5所示,提供了一种气溶胶生成设备,该气溶胶生成设备包括:处理器110、发热器件120、抽吸检测传感器130、电源150和固定支架170。其中,发热 器件120为插入形态发热体(图5中虚线形状),发热体插入气溶胶生成基质140中,以从内部对气溶胶生成基质140进行加热,固定支架170用于固定气溶胶生成基质140。发热器件120为插入形态发热体时,所述第一温度为<300℃,所述第二温度>300℃,所述第三温度>300℃。需要说明的是,插入形态的发热器件与周圈形态的发热器件相比,所述第一温度、第二温度及第三温度会更高。这是因为插入形态的发热器件加热面积更小,与气溶胶生成基质的接触面积也更小,需要更高的温度才能提供足够的能量使气溶胶生成基质雾化产生气溶胶。其他部分与上述实施例中相同,此处不在赘述。
在一个实施例中,处理器110还用于:
在检测到开启指令后,控制所述发热器件升高至第三温度,其中所述第三温度大于所述第一温度;以及控制所述发热器件从第三温度降温至所述第一温度。
具体的,为了提升用户的体验,本实施例中在检测到开启指令后,控制所述气溶胶生成设备中的发热器件升高至第三温度,其中,第三温度大于第一温度。
示例性的,如图6所示,本实施例中在第一时间段(t0至t1时间段)内,将控制气溶胶生成设备中的发热器件升高至第三温度,本实施例中第三温度T3大于第一温度T1。因在气溶胶生成设备在未启动时,气溶胶生成设备中的发热器件、气溶胶生成基质等模块的温度都比较低(一般为气溶胶生成设备所在环境的环境温度,例如25℃),且气溶胶生成设备内并没有雾化状态的气溶胶,若将发热器件升高至第一温度,则气溶胶生成设备内还是没有雾化状态的气溶胶,在用户进行抽吸的前段时间(如图6中t2至t2’时间段),用户抽吸不到气溶胶,造成用户体验不佳。因此本实施例中,将在检测到开启指令后,控制发热器件升高至第三温度,本实施例中第三温度大于第二温度,第二温度大于第一温度。如此,即可在气溶胶生成设备内生成少量雾化状态的气溶胶,供用户抽吸,提升用户体验,且使得气溶胶生成基质预热充分,方便后续抽吸。
第一温度小于或者等于产生气溶胶的最低温度,示例性的,第一温度位于170℃至180℃之间,即第一温度可以为170℃至180℃之间的任一温度值;第二温度可以第二温度位于210℃至240℃之间,即第二温度可以为210℃至240℃之间的任一温度值;第三温度位于240℃至260℃之间,即第三温度可以为位于240℃至260℃之间的任一温度值。
在发热器件达到第三温度时,处理器控制向发热器件供应的能量,使得发热器件从第三温度降温至第一温度,并维持在第一温度,从而减少气溶胶生成设备整体功耗。
在后续使用过程中,通过获取气溶胶生成设备中抽吸检测传感器的检测数据,并根据检测数据确定是否存在抽吸动作,若检测到抽吸动作,控制发热器件从当前温度升温或者降温至第二温度,可以包括:控制发热器件从第一温度达到第二温度,或者控制发热器件 从T1至T3之间的任意温度升温或者降温至第二温度。
在一个实施例中,气溶胶生成设备还包括测温元件时,处理器110还用于:通过气溶胶生成设备中的测温元件获取所述发热器件的检测温度;根据所述检测温度和目标温度进行PID计算获得目标能量,以根据所述目标能量控制所述发热器件达到对应的目标温度,其中所述目标温度包括所述第一温度、所述第二温度或所述第三温度。
本实施例中,在控制发热器件的温度过程中,通过气溶胶生成设备中的测温元件获取发热器件的检测温度,然后将检测温度和目标温度作为比例积分微分(Proportion Integral Differential,PID)输入,经过比例积分微分(PID)计算后获得目标能量,即获得发热器件的控制信息,根据计算获得的目标能量控制发热器件达到对应的目标温度,目标温度包括所述第一温度、所述第二温度或所述第三温度。
具体地,在开启阶段,即在获得开启指令后,第一温度或者第三温度即为目标温度,将第一温度或者第三温度,以及测温元件获取发热器件的检测温度作为PID输入经过PID计算后获得目标能量。在使用过程中目标温度可以为第一温度或者第二温度,在抽吸时,目标温度为第二温度,抽吸后,目标温度为第一温度,将第一温度或者第二温度以及测温元件获取发热器件的检测温度作为PID输入经过PID计算后获得目标能量。
获得目标能量后,根据目标能量控制发热器件达到对应的目标温度。本实施例通过PID算法可有效地纠正被控制对象(发热器件)的偏差,从而使发热器件达到一个稳定的状态。
在一个实施例中,处理器110还用于:获取向所述发热器件供应的能量;在向所述发热器件供应的能量超过预设能量时,停止向所述发热器件供应能量。
具体地,本实施例中,在使用过程中,处理器还可以实时获取电源向发热器件供应的能量。预设能量可以为第一温度、第二温度或第三温度对应的能量,示例性的,在开启阶段,预设能量可以为第一温度或第三温度对应的能量,通过检测电源向发热器件供应的能量,在检测到供应的能量超过预设能量时,停止向发热器件供应能量。
可以理解的是,本实施例中的预设能量可以结合如图7所示的实施例执行,具体地,在使用过程中,将第一温度、第二温度或第三温度,以及当前的检测温度作为PID输入,经过PID计算,获得预设能量,并实时获取向发热器件供应的能量(即获得预设能量),在向所述发热器件供应的能量超过预设能量后,停止向发热器件供应能量。在使用过程中采用PID计算,能够避免因各模块使用衰减导致控制误差,提高控制的准确性。
在一个实施例中,气溶胶生成设备在检测到开启指令后,气溶胶生成设备通过测温元件获取发热器件的检测温度,然后将检测温度和第一温度作为PID的输入,进行PID计算, 获得目标能量。气溶胶生成设备根据目标能量控制电源向发热器件供应能量,使得发热器件达到第一温度,将发热器件达到第一温度为5秒。
然后通过抽吸检测传感器的检测数据,根据获得的检测数据确定是否存在抽吸动作。若检测到抽吸动作,根据第一温度和第二温度作为PID输入,计算获得目标能量,根据目标能量控制发热器件从第一温度达到第二温度,即控制发热器件进行加热,以将气溶胶生成基质雾化形成气溶胶。若没有检测到抽吸动作,将发热器件稳定在第一温度,降低非抽吸阶段的功耗。
在一个实施例中,如图7所示,提供了一种气溶胶生成设备的控制方法,具体包括以下步骤100至步骤500。
步骤100,在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度。
本申请应用于气溶胶生成设备,气溶胶生成设备可以为市面上任意气溶胶生成设备,此处不做限定。
具体地,气溶胶生成设备中处理器可以检测是否收到开启指令,其中,开启指令可以为用户操作气溶胶生成设备上的开机指令产生,示例性的,气溶胶生成设备还可以包括产生开机指令的按键,用户可以通过按压或者触碰该按键生成对应的开机指令;或者气溶胶生成设备上存在加速度传感器,用户在使用过程中,加速度传感器产生加速度,如此气溶胶生成设备生成对应的开启指令。
在检测到开启指令后,气溶胶生成设备中处理器控制气溶胶生成设备中的发热器件达到第一温度,其中,第一温度小于或者等于产生气溶胶的最低温度。具体地,处理器可以通过控制电源向发热器件提供能量,使得发热器件达到第一温度。
进一步地,为了提高用户体验,需要尽快将发热器件达到第一温度,以对气溶胶生成设备中的气溶胶生成基质进行预热,用户可以无需等待较长的时间,能够在更短的时间抽吸到气溶胶,本实施例中控制发热器件达到第一温度所需的时间小于10秒。
步骤200,获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;
本实施例中,气溶胶生成设备获取气溶胶生成设备中抽吸检测传感器的检测数据,根据获得的检测数据确定是否存在抽吸动作。其中检测数据可以为气流通道的气压变化数据,或者气流通道的温度变化数据。
可以理解的是,气溶胶生成设备还可以根据测温元件检测发热器件的温度变化检测抽吸动作,此时气溶胶生成设备可以不包括抽吸检测传感器。
步骤300,若未检测到抽吸动作,控制所述发热器件稳定在所述第一温度。
根据步骤200的确定结果:若未检测到抽吸动作,控制所述发热器件稳定在所述第一温度,第一温度小于或者等于产生气溶胶的最低温度,如图2所示,T1表示第一温度。
可以理解的是,为方便使用,第一温度不宜比产生气溶胶的最低温度小太多。示例性的,所述发热器件为周圈形态发热体时,所述第一温度小于200℃,所述第二温度大于200℃,所述第三温度大于200℃。具体的,第一温度位于170℃至180℃之间,即第一温度可以为170℃至180℃之间的任一温度值,此时气溶胶的最低温度为180℃,第一温度不宜设为100℃,因为用户使用时,相对于第一温度为180℃时,气溶胶生成设备会需要更多的时间将发热器件加热到需要的温度。在所述发热器件为插入形态发热体时,所述第一温度为<300℃,所述第二温度>300℃,所述第三温度>300℃。
步骤400,若检测到抽吸动作,控制所述发热器件从所述第一温度达到第二温度,所述第二温度大于所述第一温度。
根据步骤200的确定结果:若检测到抽吸动作,控制发热器件从第一温度达到第二温度,即控制发热器件进行加热,以将气溶胶生成基质雾化形成气溶胶,其中,第二温度大于第一温度。
步骤500,在抽吸动作完成后,控制所述发热器件从所述第二温度降低至所述第一温度。
根据抽吸检测传感器的检测数据确定抽吸动作完成后,气溶胶生成设备中处理器控制发热器件从所述第二温度降低至所述第一温度。
示例性的,如图3所示,在t0时刻,检测到开启指令,气溶胶生成设备中处理器控制气溶胶生成设备中的发热器件在t1时间内达到第一温度T1,若未检测到抽吸动作,控制发热器件稳定在第一温度T1。t2时刻,检测到抽吸动作,控制发热器件从第一温度T1达到第二温度T2,将气溶胶生成基质雾化形成气溶胶。t3时刻,根据抽吸检测传感器的检测数据确定抽吸动作停止,处理器控制电源降低对发热器件供应的能量,使得发热器件的温度逐步降低至第一温度T1,并维持在第一温度T1。在下一次检测到抽吸动作后,重复t2至t3时刻的操作,如此循环。若在检测到关闭指令,电源停止对处理器等模块进行供电,气溶胶生成设备处于关闭状态,发热器件的温度降低至常温(常温是指气溶胶生成设备所在环境的环境温度)。
示例性的,第二温度可以位于210℃至240℃之间,即第二温度可以为210℃至240℃之间的任一温度值。
上述气溶胶生成设备的控制方法,通过在检测到开启指令后,控制所述气溶胶生成设 备中的发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度,以实现发热器件能够对气溶胶生成基质进行预热;然后获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;若未检测到抽吸动作,控制所述发热器件稳定在所述第一温度。这样,在气溶胶生成设备开启后,若未检测到抽吸动作,控制发热器件稳定在低于产生气溶胶的最低温度的第一温度,相对传统技术的方式(开启后持续进行加热)能够节省大量功耗,且基本不会影响用户使用。
在一个实施例中,如图8所示,在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度的步骤包括:
步骤110,在检测到开启指令后,控制所述气溶胶生成设备中的发热器件升高至第三温度;
作为一种实施例,为了提升用户的体验,本实施例中在检测到开启指令后,在第一时间段内控制所述气溶胶生成设备中的发热器件升高至第三温度,其中,第三温度大于第一温度。
示例性的,如图6所示,本实施例中在第一时间段(t0至t1时间段)内,将控制气溶胶生成设备中的发热器件升高至第三温度,本实施例中第三温度T3大于第一温度T1。因在气溶胶生成设备在未启动时,气溶胶生成设备中的发热器件、气溶胶生成基质等模块的温度都比较低(一般为气溶胶生成设备所在环境的环境温度,例如25℃),且气溶胶生成设备内并没有雾化状态的气溶胶,若将发热器件升高至第一温度,则气溶胶生成设备内还是没有雾化状态的气溶胶,在用户进行抽吸的前段时间(如图6中t2至t2’时间段),用户抽吸不到气溶胶,造成用户体验不佳。因此本实施例中,将在检测到开启指令后,控制发热器件升高至第三温度,本实施例中第三温度大于第二温度,第二温度大于第一温度。如此,即可在气溶胶生成设备内生成少量雾化状态的气溶胶,供用户抽吸,提升用户体验,且使得气溶胶生成基质预热充分,方便后续抽吸。
第一温度小于或者等于产生气溶胶的最低温度,示例性的,第一温度位于170℃至180℃之间,即第一温度可以为170℃至180℃之间的任一温度值;第二温度可以第二温度位于210℃至240℃之间,即第二温度可以为210℃至240℃之间的任一温度值;第三温度位于240℃至260℃之间,即第三温度可以为位于240℃至260℃之间的任一温度值。
步骤120,控制所述发热器件从第三温度降温至所述第一温度,所述第三温度大于所述第一温度。
在发热器件从第三温度,处理器控制向发热器件供应的能量,使得发热器件从第三温度降温至第一温度,并维持在第一温度,从而减少气溶胶生成设备整体功耗。
在后续使用过程中,通过获取气溶胶生成设备中抽吸检测传感器的检测数据,并根据检测数据确定是否存在抽吸动作,若检测到抽吸动作,控制发热器件从当前温度升温或者降温至第二温度,可以包括:控制发热器件从第一温度达到第二温度,或者控制发热器件从T1至T3之间的任意温度升温或者降温至第二温度。
在一个实施例中,基于上述实施例,所述方法还可以包括:
通过所述气溶胶生成设备中的测温元件获取所述发热器件的检测温度;
根据所述检测温度和目标温度进行PID计算获得目标能量,以根据所述目标能量控制所述发热器件达到对应的目标温度,所述目标温度包括所述第一温度、所述第二温度或所述第三温度。
本实施例中,在控制发热器件的温度过程中,通过气溶胶生成设备中的测温元件获取发热器件的检测温度,然后将检测温度和目标温度作为比例积分微分(PID)输入,经过PID(Proportion Integral Differential)计算后获得目标能量,即获得发热器件的控制信息,根据计算获得的目标能量控制发热器件达到对应的目标温度,目标温度包括所述第一温度、所述第二温度或所述第三温度。
具体地,在开启阶段,即在获得开启指令后,第一温度或者第三温度即为目标温度,将第一温度或者第三温度,以及测温元件获取发热器件的检测温度作为PID输入经过PID计算后获得目标能量。在使用过程中目标温度可以为第一温度或者第二温度,在抽吸时,目标温度为第二温度,抽吸后,目标温度为第一温度,将第一温度或者第二温度以及测温元件获取发热器件的检测温度作为PID输入经过PID计算后获得目标能量。
获得目标能量后,根据目标能量控制发热器件达到对应的目标温度。本实施例通过PID算法可有效地纠正被控制对象(发热器件)的偏差,从而使发热器件达到一个稳定的状态。
在一个实施例中,基于上述实施例,该方法还包括:
获取向所述发热器件供应的能量;
在向所述发热器件供应的能量超过预设能量时,停止向所述发热器件供应能量。
具体地,本实施例中,在使用过程中,处理器还可以实时获取电源向发热器件供应的能量。预设能量可以为第一温度、第二温度或第三温度对应的能量,示例性的,在开启阶段,预设能量可以为第一温度或第三温度对应的能量,通过检测电源向发热器件供应的能量,在检测到供应的能量超过预设能量时,停止向发热器件供应能量。
可以理解的是,本实施例中的预设能量可以结合如图7所示的实施例执行,具体地,在使用过程中,将第一温度、第二温度或第三温度,以及当前的检测温度作为PID输入, 经过PID计算,获得预设能量,并实时获取向发热器件供应的能量(即获得预设能量),在向所述发热器件供应的能量超过预设能量后,停止向发热器件供应能量。在使用过程中采用PID计算,能够避免因各模块使用衰减导致控制误差,提高控制的准确性。
在一个实施例中,气溶胶生成设备在检测到开启指令后,气溶胶生成设备通过测温元件获取发热器件的检测温度,然后将检测温度和第一温度作为PID的输入,进行PID计算,获得目标能量。气溶胶生成设备根据目标能量控制电源向发热器件供应能量,使得发热器件达到第一温度,将发热器件达到第一温度为5秒。
然后通过抽吸检测传感器的检测数据,根据获得的检测数据确定是否存在抽吸动作。若检测到抽吸动作,根据第一温度和第二温度作为PID输入,计算获得目标能量,根据目标能量控制发热器件从第一温度达到第二温度,即控制发热器件进行加热,以将气溶胶生成基质雾化形成气溶胶。若没有检测到抽吸动作,将发热器件稳定在第一温度,降低非抽吸阶段的功耗。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的气溶胶生成设备的控制方法的控制装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个气溶胶生成装置实施例中的具体限定可以参见上文中对于气溶胶生成设备的控制方法的限定,在此不再赘述。
在一个实施例中,如图9所示,提供了一种气溶胶生成设备的控制装置,包括:
第一控制模块710,用于在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度;
抽吸判断模块720,用于获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;
第一控制模块710,还用于若未检测到抽吸动作,控制所述发热器件稳定在所述第一温度。
在一个实施例中,该气溶胶生成设备的控制装置还包括:
第二控制模块730,用于若检测到抽吸动作,控制所述发热器件从所述第一温度达到第二温度,所述第二温度大于所述第一温度。
在一个实施例中,该气溶胶生成设备的控制装置还包括:
第三控制模块740,用于在抽吸动作完成后,控制所述发热器件从所述第二温度降低至所述第一温度。
在一个实施例中,第一控制模块710还用于在检测到开启指令后,控制所述气溶胶生成设备中的发热器件升高至第三温度;控制所述发热器件从第三温度降温至所述第一温度,所述第三温度大于所述第一温度。
在一个实施例中,所述发热器件为周圈形态发热体,所述第一温度小于200℃,所述第二温度大于200℃,所述第三温度大于200℃。
在一个实施例中,所述第一温度位于170℃至180℃之间,所述第二温度位于210℃至240℃之间,所述第三温度位于240℃至260℃之间。
在一个实施例中,所述发热器件为插入形态发热体,所述第一温度为<300℃,所述第二温度>300℃,所述第三温度>300℃。
在一个实施例中,该气溶胶生成设备的控制装置还包括:
第一获取模块(图未示),用于通过所述气溶胶生成设备中的测温元件获取所述发热器件的检测温度;
计算模块(图未示),用于根据所述检测温度和目标温度进行PID计算获得目标能量,以根据所述目标能量控制所述发热器件达到对应的目标温度,所述目标温度包括所述第一温度、所述第二温度或所述第三温度。
在一个实施例中,该气溶胶生成设备的控制装置还包括:
第二获取模块(图未示),用于获取向所述发热器件供应的能量;
第四控制模块(图未示),用于在向所述发热器件供应的能量超过预设能量时,停止向所述发热器件供应能量。
上述控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述任一气溶胶生成设备的控制方法所述实施例的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读 取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种气溶胶生成设备,包括电源、处理器、发热器件和抽吸检测传感器;其中,
    所述电源用于向所述发热器件供应能量;
    所述处理器用于在检测到开启指令后,控制向所述发热器件供应的能量以使所述发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度;
    所述处理器还用于获取所述抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;若未检测到抽吸动作,则控制所述发热器件稳定在所述第一温度。
  2. 根据权利要求1所述的气溶胶生成设备,其中所述处理器还用于:若检测到抽吸动作,则控制所述发热器件从所述第一温度达到第二温度,所述第二温度大于所述第一温度。
  3. 根据权利要求2所述的气溶胶生成设备,其中所述处理器还用于:在抽吸动作完成后,控制所述发热器件从所述第二温度降低至所述第一温度。
  4. 根据权利要求1所述的气溶胶生成设备,其中所述处理器还用于:在检测到开启指令后,控制所述发热器件升高至第三温度,所述第三温度大于所述第一温度;以及控制所述发热器件从所述第三温度降低至所述第一温度。
  5. 根据权利要求4所述的气溶胶生成设备,其中所述发热器件用于收容气溶胶生成基质并从周围对气溶胶生成基质进行加热,所述第一温度小于200℃,所述第二温度大于200℃,所述第三温度大于200℃。
  6. 根据权利要求5所述的气溶胶生成设备,其中所述第一温度位于170℃至180℃之间,所述第二温度位于210℃至240℃之间,所述第三温度位于240℃至260℃之间。
  7. 根据权利要求4所述的气溶胶生成设备,其中所述发热器件用于插入气溶胶生成基质并从内部对气溶胶生成基质进行加热,所述第一温度为<300℃,所述第二温度>300℃,所述第三温度>300℃。
  8. 根据权利要求1-7中任一项所述的气溶胶生成设备,其中所述气溶胶生成设备还包括测温元件;所述处理器还用于:
    通过所述测温元件获取所述发热器件的检测温度;
    根据所述检测温度和目标温度进行PID计算获得目标能量,并根据所述目标能量控制所述发热器件达到对应的目标温度,所述目标温度包括所述第一温度、所述第二温度或所述第三温度。
  9. 根据权利要求8所述的气溶胶生成设备,其中所述处理器还用于:
    获取向所述发热器件供应的能量;在向所述发热器件供应的能量超过预设能量时,停止向所述发热器件供应能量。
  10. 一种气溶胶生成设备的控制方法,包括:
    在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度;
    获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;
    若未检测到抽吸动作,则控制所述发热器件稳定在所述第一温度。
  11. 根据权利要求10所述的方法,其中在所述获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作之后,所述方法还包括:
    若检测到抽吸动作,则控制所述发热器件从所述第一温度达到第二温度,所述第二温度大于所述第一温度。
  12. 根据权利要求11所述的方法,其中在所述若检测到抽吸动作,控制所述发热器件从所述第一温度达到第二温度之后,所述方法还包括:
    在抽吸动作完成后,控制所述发热器件从所述第二温度降低至所述第一温度。
  13. 根据权利要求10所述的方法,其中在所述在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度后,所述方法包括:
    在检测到开启指令后,控制所述气溶胶生成设备中的发热器件升高至第三温度,所述第三温度大于所述第一温度;
    以及控制所述发热器件从所述第三温度降低至所述第一温度。
  14. 一种气溶胶生成设备的控制装置,包括:
    第一控制模块,用于在检测到开启指令后,控制所述气溶胶生成设备中的发热器件达到第一温度,所述第一温度小于或者等于产生气溶胶的最低温度;
    抽吸判断模块,用于获取所述气溶胶生成设备中抽吸检测传感器的检测数据,并根据所述检测数据确定是否存在抽吸动作;
    第一控制模块,还用于若未检测到抽吸动作,控制所述发热器件稳定在所述第一温度。
PCT/CN2023/105858 2022-09-15 2023-07-05 气溶胶生成设备及其控制方法、控制装置 WO2024055728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211122729.7A CN117731066A (zh) 2022-09-15 2022-09-15 气溶胶生成设备及其控制方法、控制装置
CN202211122729.7 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024055728A1 true WO2024055728A1 (zh) 2024-03-21

Family

ID=90259696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105858 WO2024055728A1 (zh) 2022-09-15 2023-07-05 气溶胶生成设备及其控制方法、控制装置

Country Status (2)

Country Link
CN (1) CN117731066A (zh)
WO (1) WO2024055728A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109043665A (zh) * 2018-05-25 2018-12-21 威滔电子科技(深圳)有限公司 一种控制气溶胶产生的方法及装置
CN110367593A (zh) * 2019-07-15 2019-10-25 上海新型烟草制品研究院有限公司 一种温控方法、气雾产生装置及气雾产生系统
CN211532796U (zh) * 2019-07-03 2020-09-22 惠州市沛格斯科技有限公司 电子烟具
US20200323274A1 (en) * 2017-10-10 2020-10-15 Changzhou Patent Electronic Technology Co., Ltd. Airflow heating device, heating control method, and electronic cigarette
CN112167726A (zh) * 2019-07-03 2021-01-05 惠州市沛格斯科技有限公司 电子烟具
CN113507852A (zh) * 2020-02-07 2021-10-15 韩国烟草人参公社 气溶胶生成装置
CN113543666A (zh) * 2019-09-25 2021-10-22 韩国烟草人参公社 气溶胶生成装置及其操作方法
CN113519918A (zh) * 2021-06-25 2021-10-22 深圳麦时科技有限公司 气溶胶形成装置及其抽吸检测方法、计算机存储介质
CN113826955A (zh) * 2020-06-24 2021-12-24 深圳麦克韦尔科技有限公司 气溶胶产生装置控制方法、气溶胶产生装置及控制电路
KR20220050207A (ko) * 2020-05-08 2022-04-22 차이나 토바코 후베이 인더스트리얼 코퍼레이션 리미티드 비연소-가열식 장치 및 온도 제어 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200323274A1 (en) * 2017-10-10 2020-10-15 Changzhou Patent Electronic Technology Co., Ltd. Airflow heating device, heating control method, and electronic cigarette
CN109043665A (zh) * 2018-05-25 2018-12-21 威滔电子科技(深圳)有限公司 一种控制气溶胶产生的方法及装置
CN211532796U (zh) * 2019-07-03 2020-09-22 惠州市沛格斯科技有限公司 电子烟具
CN112167726A (zh) * 2019-07-03 2021-01-05 惠州市沛格斯科技有限公司 电子烟具
CN110367593A (zh) * 2019-07-15 2019-10-25 上海新型烟草制品研究院有限公司 一种温控方法、气雾产生装置及气雾产生系统
CN113543666A (zh) * 2019-09-25 2021-10-22 韩国烟草人参公社 气溶胶生成装置及其操作方法
CN113507852A (zh) * 2020-02-07 2021-10-15 韩国烟草人参公社 气溶胶生成装置
KR20220050207A (ko) * 2020-05-08 2022-04-22 차이나 토바코 후베이 인더스트리얼 코퍼레이션 리미티드 비연소-가열식 장치 및 온도 제어 방법
CN113826955A (zh) * 2020-06-24 2021-12-24 深圳麦克韦尔科技有限公司 气溶胶产生装置控制方法、气溶胶产生装置及控制电路
CN113519918A (zh) * 2021-06-25 2021-10-22 深圳麦时科技有限公司 气溶胶形成装置及其抽吸检测方法、计算机存储介质

Also Published As

Publication number Publication date
CN117731066A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US11454996B2 (en) Electronic cigarette temperature control system and method, and electronic cigarette with the same
WO2019120043A1 (zh) 控制方法、装置及电子烟
CN108563255B (zh) 一种温控电路、电子烟温控方法及计算机可读存储介质
US20220248767A1 (en) Smoking cessation system
CN110946338B (zh) 电子烟具的加热方法、装置、存储介质及电子烟具
WO2022247563A1 (zh) 雾化控制方法、充电设备、雾化设备及电子雾化系统
WO2020038322A1 (zh) 电子烟的温度控制方法、电子烟及计算机存储介质
US12063981B2 (en) Methods and systems for heating carrier material using a vaporizer
EP4360485A1 (en) Aerosol forming apparatus and vaping detection method therefor, and computer storage medium
EP4079175A1 (en) Heating method and device for atomizer, computer apparatus, and storage medium
WO2020150890A1 (zh) 一种加热不燃烧发烟设备的温度控制方法及发烟设备
WO2022116713A1 (zh) 一种雾化芯加热方法、系统及气溶胶产生装置
WO2023134358A1 (zh) 气溶胶产生装置及其控制方法、控制装置和存储介质
CN112369723A (zh) 智能调温方法、装置及可读存储介质
WO2024055728A1 (zh) 气溶胶生成设备及其控制方法、控制装置
JP2020068689A (ja) エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム
CN109591300A (zh) 一种管道热熔焊机的加热控制方法、存储介质和终端
US20220264958A1 (en) Control device, control method, and nonvolatile computer readable medium
WO2024152756A1 (zh) 气溶胶生成装置及其控制方法、控制装置
EP4023087A1 (en) Heating-not-burning apparatus and temperature control method
WO2024022034A1 (zh) 故障检测方法及其装置、可读存储介质和气溶胶雾化装置
CN117479856A (zh) 气溶胶产生装置电力监测
CN117413979A (zh) 电子雾化装置及其加热控制方法、控制装置和存储介质
CN116507226A (zh) 气溶胶生成装置
WO2024095476A1 (ja) エアロゾル生成システム、制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864465

Country of ref document: EP

Kind code of ref document: A1