WO2024022034A1 - 故障检测方法及其装置、可读存储介质和气溶胶雾化装置 - Google Patents

故障检测方法及其装置、可读存储介质和气溶胶雾化装置 Download PDF

Info

Publication number
WO2024022034A1
WO2024022034A1 PCT/CN2023/105228 CN2023105228W WO2024022034A1 WO 2024022034 A1 WO2024022034 A1 WO 2024022034A1 CN 2023105228 W CN2023105228 W CN 2023105228W WO 2024022034 A1 WO2024022034 A1 WO 2024022034A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance value
resistance
time
steady
state
Prior art date
Application number
PCT/CN2023/105228
Other languages
English (en)
French (fr)
Inventor
窦恒恒
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2024022034A1 publication Critical patent/WO2024022034A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the present invention relates to the technical field of aerosol atomization, and specifically, to a fault detection method and its device, a readable storage medium and an aerosol atomization device.
  • the existing aerosol atomization device uses a heating device to heat and atomize the aerosol-generating substrate to generate aerosol.
  • a heating device to heat and atomize the aerosol-generating substrate to generate aerosol.
  • the continuous heating of the aerosol-generating substrate by the heating device will cause aerosols to form.
  • the temperature of the generated matrix is too high, thus exceeding the upper limit temperature for reasonable atomization of the aerosol, which will have a negative impact on the quality of the generated aerosol, so this bad state needs to be detected.
  • the existing technology determines whether the aerosol atomization device is present by comparing the resistance value of the heating device in the current state with a preset resistance threshold, or by comparing the resistance change value of the heating device during the heating process with a preset change threshold. A bad state occurs, but the above methods all have misjudgments, which in turn affects the accuracy of the detection.
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the invention proposes a fault detection method.
  • a second aspect of the invention provides a fault detection device.
  • a third aspect of the invention provides a fault detection device.
  • a fourth aspect of the invention provides a readable storage medium.
  • a fifth aspect of the present invention provides an aerosol atomization device.
  • the first aspect of the present invention proposes a fault detection method, which is applied to an aerosol atomization device.
  • the aerosol atomization device includes a heating device for heating the atomized aerosol generating substrate.
  • the fault detection method includes: Obtain the first resistance value of the heating device, which is the resistance value of the heating device in a steady state during operation; obtain the second resistance value of the heating device during the current operation; according to the first resistance value and The second resistance value determines that the aerosol atomization device is in a fault state.
  • the fault detection method defined in the present invention can detect the fault of the aerosol atomization device.
  • the aerosol atomization device includes a heating device.
  • the heating device atomizes the aerosol by heating and atomizing the aerosol generated matrix in the aerosol atomization device.
  • the matrix is generated to generate aerosols.
  • the fault detection method obtains the first resistance value and the second resistance value of the heating device respectively, and determines whether the aerosol atomization device is in a fault state by comparing the first resistance value and the second resistance value.
  • the first resistance value is the steady-state resistance value of the heating device, where the first resistance value includes the steady-state resistance value in the historical operating records, that is, the historical steady-state resistance value.
  • the first resistance value also includes the steady-state resistance value during the current operation, that is, the current steady-state resistance value.
  • the resistance of the heating device is affected by the temperature of the heating device. It will rise rapidly at the beginning of operation and then maintain a steady state. The resistance in this steady state is the steady state resistance.
  • the second resistance value refers to the resistance value of the heating device during the current heating process of the heating device.
  • the first resistance value of the heating device in the steady state stage is read, and the second resistance value during the current operation is obtained. According to the first resistance value and the second resistance value, whether there is a fault in the aerosol atomization device is detected.
  • the failure of the aerosol atomization device includes hardware failure and too little remaining amount of aerosol atomization matrix. Because the remaining amount of the aerosol atomization device is too small, or the hardware of the aerosol atomization device fails, the resistance value of the heating device will change greatly. By comparing the second resistance value during the current operation with the heating device By comparing the first resistance value in the steady state stage, the fault of the aerosol atomization device can be accurately detected.
  • the fault detection method defined in the present invention detects the occurrence of aerosol by comparing the first resistance value of the heating device in a steady state during the operation of the sol atomization device and the second resistance value during the current operation. Detecting whether there is a fault in the device realizes the detection of whether there is a fault in the current operation of the heating device, and avoids the adverse effects on the generation of aerosol due to the fault of the heating device. Compared with the detection method in the related art, the present invention adopts The first resistance value of the resistor in a steady state is detected, thereby improving the accuracy of detection.
  • the fault detection method in the above embodiment provided by the present invention may also have the following additional technical features:
  • the first resistance value is the resistance value of the resistor in the steady state in the historical operation record.
  • Obtaining the first resistance value of the heating device includes: determining the first steady state stage in the historical operation record;
  • the steady-state resistance value in the historical record is obtained, that is, the first resistance value is the historical steady-state resistance value.
  • the first resistance value corresponding to the first steady-state stage can be determined based on a plurality of third resistance values in the first steady-state stage of the heating device in historical operation records.
  • the first steady-state stage is the operating stage in the historical operation record when the resistance value of the heating device is in a stable state, that is, the change value of the resistance value of the heating device in the first steady-state stage is less than the change threshold.
  • the third resistance value is the resistance value when the heating device operates in the first steady state stage.
  • the first resistance value can be selected as a rolling average, arithmetic average or median of a plurality of third resistance values. The present invention is not limited here and can be selected according to actual needs.
  • the present invention can determine the first resistance value corresponding to the historical record based on the plurality of third resistance values in the first steady-state stage, because the first resistance value can be selected as the arithmetic mean or rolling average of the plurality of third resistance values. value or median, so the first resistance value can represent the resistance value of the heating device in the first steady-state stage, thereby ensuring
  • the accuracy of judging whether there is a fault in the aerosol atomization device is based on the first resistance value and the second resistance value.
  • determining the first steady-state stage in the historical operating record includes: obtaining the first starting time and the first ending time of the historical operating record; determining based on the first starting time and the first preset duration.
  • the second starting moment is the starting moment of the first steady state stage; the second ending moment is determined based on the first ending moment and the second preset duration, and the second ending moment is the first steady state stage.
  • the end time determine the first steady-state stage based on the second start time and the second end time.
  • the complete operating phase in the historical record is read. And select the first steady-state stage in the complete operating stage based on the first preset time length and the second preset time length.
  • the first preset time period is the time period for the heating device to reach the first steady state stage from the first starting moment.
  • the second preset time period is the time it takes for the heating device to end the first steady state stage and end the heating process.
  • the second starting time can be determined based on the first preset duration and the first starting time of the complete operating phase in the historical record, and the second starting time is later than the first starting time.
  • the second end time can be determined based on the two preset durations and the first end time of the complete operation phase in the historical operation record, and the second end time is earlier than the first end time.
  • the present invention can accurately determine the first steady-state stage in the complete operation stage in the historical operation record, ensuring that those who obtain the first resistance value are all in historical operation.
  • the steady-state resistance value in the record improves the ability to judge whether there is a fault in the aerosol atomization device.
  • determining the first steady-state stage in the historical operating record includes: determining the resistance change curve based on multiple fourth resistance values and the historical operating time of the historical operating record; The moment when the slope of the curve reaches the preset slope is regarded as the third starting moment, and the third starting moment is the starting moment of the first steady-state stage; the third ending moment of the historical operation record is obtained; according to the third result
  • the end time and the third preset duration are used to determine the fourth end time, and the fourth end time is the end time of the first steady-state stage; based on the third starting time and the fourth end time, the first steady-state stage is determined.
  • the present invention draws the resistance change curve of historical operating records and accurately determines whether the heating device has run to the first steady-state stage based on the slope of the resistance change curve, that is, determines the third starting time.
  • the number of historical operation records is multiple, and the number of first resistance values is the same as the number of historical operation records; based on the first resistance value and the second resistance value, it is determined that the aerosol atomization device is faulty status, including: among multiple first resistance values
  • the preset difference value corresponds to the operating time of the heating device corresponding to the plurality of first resistance values; based on the fact that any first resistance difference value among the plurality of first resistance value differences is greater than the corresponding first preset difference value, it is determined
  • the aerosol nebulizer device is faulty.
  • the aerosol atomization device when the aerosol atomization device has multiple historical operation records, it is determined whether the aerosol atomization device is in the state based on multiple resistance differences between multiple first resistance values and second resistance values. fault status.
  • the first resistance value in each historical operation record is obtained.
  • the number of first resistance values is also multiple, and the number of first resistance values is the same as the historical operation record.
  • the number of records is the same.
  • the first preset difference value is a preset value preset in advance, and the first preset difference value corresponds to the operating time of the heating devices corresponding to the plurality of first resistance values. Specifically, when setting the first preset difference value, multiple first preset difference values are associated with historical operating times that are different lengths from the current operating time.
  • the number of first preset difference values is a, b, c.
  • the fault detection method defined in the present invention sets multiple historical operation records and corresponding first resistance values, and calculates the first resistance difference between each first resistance value and the second resistance value respectively.
  • a first resistance difference is compared with a corresponding first preset difference.
  • obtaining a plurality of first preset difference values corresponding to a plurality of first resistance values includes: obtaining a first preset difference value sequence, and the first preset difference value sequence includes a plurality of first preset difference values. Default difference value; get
  • the preset difference sequence establishes a mapping relationship with the first resistance value sequence to determine the first preset difference value corresponding to each first resistance value.
  • the first preset difference value is set in advance before the aerosol atomization device leaves the factory, so the number of the first preset difference value is a fixed number.
  • the first resistance value is the resistance value of the first steady-state stage in the historical operation record, that is, the first resistance value corresponds to the historical operation record.
  • the first resistance value The number is multiple. Since the number of historical operation records is the number of actual operations of the aerosol atomization device, the number of first resistance values is the number of changes.
  • the first preset difference sequence is a sequence arranged according to the size relationship between multiple first preset difference values.
  • the first resistance value sequence is a sequence arranged according to the operating time of historical operating records corresponding to the first resistance value. After establishing a corresponding relationship between the first preset difference sequence and the first resistance value sequence, the first preset difference value corresponding to each first resistance value can be determined.
  • first preset difference value when the number of first preset difference values in the first preset difference sequence is greater than or equal to the number of first resistance values in the first resistance sequence, then for each first resistance value Set the corresponding first preset difference value.
  • the number of first preset difference values in the first preset difference sequence is less than the number of first resistance values in the first resistance value sequence, corresponding first preset values are set for part of the first resistance values. The difference value ensures that each first preset difference value corresponds to a first resistance value.
  • the first preset difference sequence includes five first preset difference values, namely A, B,
  • the first resistance value sequence includes three first resistance values, namely a, b, and c. Then corresponding first preset difference values are set for the three first resistance values in the first resistance sequence, a corresponds to A, b corresponds to B, and c corresponds to C. As the number of historical operating records increases, the first resistance sequence includes six first resistance values, namely a, b, c, e, f, and g. For the five first resistance values in the first resistance sequence, The resistance values are respectively set to corresponding first preset difference values, b corresponds to A, c corresponds to B, e corresponds to C, f corresponds to D, and g corresponds to E.
  • first preset difference values are configured for multiple first resistance values.
  • multiple first preset difference values can be configured.
  • the first resistance value corresponding to the difference value is updated, thereby improving the accuracy of obtaining the first preset difference value corresponding to the first resistance value.
  • the time difference between the running time corresponding to the first resistance value and the current time is positively related to the first preset difference value corresponding to the first resistance value.
  • the resistance value of the heating device gradually increases as the heating device operates. Therefore, the smaller the first preset difference value in the first difference sequence, the closer the running time of the corresponding historical running record of the first resistance value is to the current time.
  • the accuracy of obtaining the first preset difference value corresponding to the first resistance value can be improved.
  • the first resistance value is the resistance value of the resistor in a steady state during the current operation
  • Obtaining the first resistance value of the heating device includes: acquiring a plurality of fifth resistance values of the heating device during the current operation, where the fifth resistance value is the resistance value in the steady state stage during the current operation; according to the plurality of fifth resistance values value, determine the first resistance value;
  • the first resistance value includes any of the following: an arithmetic mean of a plurality of fourth resistance values, a median of a plurality of fourth resistance values, or a rolling average of a plurality of fourth resistance values.
  • the steady-state resistance value during the current operation is the current steady-state resistance value.
  • a plurality of fifth resistance values during the current operation of the heating device are obtained.
  • the fifth resistance value indicates that the heating device is operating in a steady state. stage resistance.
  • the fifth resistance value in the steady state stage is collected, and the current steady state resistance value (first resistance value) is determined based on the fifth resistance value.
  • the first resistance value can be selected as a rolling average, arithmetic average or median of a plurality of fifth resistance values.
  • the present invention is not limited here and can be selected according to actual needs.
  • the present invention can determine the current operating process based on multiple fifth resistance values in the current steady-state stage.
  • the first resistance value Since the first resistance value can be selected as the arithmetic mean, rolling average or median of a plurality of fifth resistance values, the first resistance value can represent the steady-state stage of the current operation process.
  • the resistance value of the heating device ensures the accuracy of subsequent judgment of whether there is a fault in the aerosol atomization device based on the first resistance value and the second resistance value.
  • obtaining a plurality of fifth resistance values in the steady state stage of the heating device during the current operation includes:
  • the sixth starting moment is determined based on the fifth starting moment and the fourth preset duration.
  • the sixth starting moment is the start of the steady state phase in the current running process. starting moment;
  • the fourth preset time period is the time period for the heating device to reach the steady-state operation stage from the fifth starting moment.
  • the sixth starting time is determined based on the fifth starting time and the fourth preset time in the current running process.
  • the sixth starting time is the starting time of the steady state phase.
  • the current running time is after the starting time of the steady-state phase, it is impossible to determine whether the operation will stop immediately after the current running time.
  • it is necessary to eliminate the interference in a period of time before the current running time that is, it is necessary to exclude the interference situation according to the current running time.
  • the fifth preset duration to determine the sixth end time. If the sixth end time is later than the sixth start time, it means that the running time of the steady state phase in the current operation process is greater than zero, then the operation phase between the sixth start time and the sixth end time will be regarded as steady state operation. stage.
  • the current running time is less than or equal to the fourth preset time, it means that the current running process has not entered the steady state stage, and the first resistance value cannot be determined based on the current running process. If the sixth end time is earlier than the sixth start time, it means that although the current operation process has entered the steady state stage, in order to eliminate interference, the steady state stage running time is regarded as zero. In this case, it cannot be based on the current operation.
  • the process determines the first resistance value.
  • the present invention can accurately determine the steady-state operation stage in the current operation process through the preset fourth preset time length and the fifth preset time length, and obtain multiple fifth resistance values in this stage to determine the steady-state operation stage.
  • the first resistance value improves the accuracy of determining the first resistance value.
  • obtaining a plurality of fifth resistance values in the steady state stage of the heating device during the current operation includes:
  • the moment when the slope of the resistance change curve reaches the preset slope is regarded as the seventh starting moment, and the seventh starting moment is the starting moment of the steady-state phase in the current operation process;
  • the slope of the resistance change curve changes with time.
  • the moment corresponding to the slope of the curve is regarded as the seventh starting moment, and the seventh starting moment is the steady state stage. Starting time.
  • the current running time is after the starting time of the steady-state phase, it is impossible to determine whether the operation will stop immediately after the current running time.
  • it is necessary to eliminate the interference in a period of time before the current running time that is, it is necessary to exclude the interference situation according to the current running time.
  • the sixth preset duration to determine the seventh end time. If the seventh end time is later than the seventh start time, it means that the running time of the steady-state phase in the current operation process is greater than zero, and the operation phase between the seventh start time and the seventh end time is regarded as steady-state operation. stage.
  • the slope of the resistance change curve does not reach the preset slope, it means that the current operation process has not entered the steady state stage, and the first resistance value cannot be determined based on the current operation process. If the seventh end moment is earlier than the seventh start moment, it means that although the current running process has entered the steady state stage, in order to eliminate interference, the running time of the steady state stage is regarded as zero. In this case, it cannot be based on the current
  • the first resistance value is determined during the running process.
  • the present invention can accurately determine the steady-state operation stage in the current operation process, and obtain multiple data in this stage based on The fifth resistance value is used to determine the first resistance value in the steady state stage, thereby improving the accuracy of determining the first resistance value.
  • the fault detection method also includes: controlling the heating device to stop operating when the heating device is in a fault state.
  • the heating device when it is detected that the heating device is in a fault state, the heating device is controlled by
  • the user can also be reminded, which reduces energy loss and improves the user experience.
  • a second aspect of the present invention proposes a fault detection device, which is applied to an aerosol atomization device.
  • the aerosol atomization device includes a heating device for heating the atomized aerosol-generating substrate.
  • the fault detection device includes: an acquisition module. In order to obtain the first resistance value of the heating device, the first resistance value is the resistance value of the heating device in a steady state during operation; the acquisition module is also used to obtain the second resistance value of the heating device in the current operation process. value; the determination module is used to determine that the aerosol atomization device is in a fault state based on the first resistance value and the second resistance value.
  • the fault detection device provided by the second aspect of the present invention can be applied to an aerosol atomization device.
  • the aerosol atomization device includes a heating device for heating the atomized aerosol generating substrate.
  • the fault detection device includes a heating device.
  • the acquisition module is used to obtain the first resistance value of the heating device in the steady state stage, and obtain the second resistance value of the heating device during the current operation; the determination module is used to obtain the first resistance value according to the first resistance value. and the second resistance value to determine that the aerosol atomization device is in a fault state.
  • the first resistance value is the resistance value of the heating device in a steady state.
  • the fault detection device defined in the present invention can detect the fault of the aerosol atomization device.
  • the atomization device includes a heating device.
  • the heating device heats and atomizes the aerosol-generating matrix in the aerosol atomizing device, so that the aerosol-generating matrix generates aerosol.
  • the fault detection device obtains the first resistance value and the second resistance value of the heating device respectively, and determines whether the aerosol atomization device is in a fault state by comparing the first resistance value and the second resistance value.
  • the first resistance value is the steady-state resistance value of the heating device, where the first resistance value includes historical
  • the steady-state resistance value in the historical operating record is the historical steady-state resistance value.
  • the first resistance value also includes the steady-state resistance value during the current operation, that is, the current steady-state resistance value.
  • the resistance of the heating device is affected by the temperature of the heating device. It will rise rapidly at the beginning of operation and then maintain a steady state. The resistance in this steady state is the steady state resistance.
  • the fault detection device defined in the present invention is based on the addition of the sol atomization device during operation.
  • the first resistance value of the resistance of the heating device in the steady state and the second resistance value during the current operation are used to detect whether there is a fault in the aerosol generating device, thereby realizing whether there is a fault during the current operation of the heating device. Detection avoids the adverse effects on the aerosol generated due to the failure of the heating device. Compared with the detection methods in the related art, the present invention adopts the first method where the resistance is in a steady state.
  • the resistance value is detected, which improves the accuracy of detection.
  • a third aspect of the present invention proposes a fault detection device, including: a memory on which programs or instructions are stored; and a processor for implementing the fault detection method in any one of the above technical solutions when executing the program or instructions. step.
  • the fault detection device provided by the present invention, when the processor executes the program or instructions stored in the memory
  • a fourth aspect of the present invention provides a readable storage medium on which a program or instructions are stored.
  • the program or instructions are executed by a processor, the steps of the fault detection method in any one of the above technical solutions are implemented.
  • the readable storage medium provided by the present invention, when the program or instructions stored thereon are executed by the processor
  • the fifth aspect of the present invention provides an aerosol atomization device, including: a fault detection device according to any one of the above technical solutions; or a readable storage medium according to any one of the above technical solutions.
  • the aerosol atomization device provided by the present invention includes a fault detection device as in any of the above technical solutions or a readable storage medium as in any of the above technical solutions, and therefore has the features as in any of the above technical solutions. Fault detection device and all the beneficial effects of a readable storage medium.
  • Figure 1 shows one of the schematic flow diagrams of a fault detection method provided by an embodiment of the present invention
  • Figure 2 shows a schematic structural diagram of an aerosol atomization device provided by an embodiment of the present invention
  • Figure 3 shows the second schematic flow chart of the fault detection method provided by the embodiment of the present invention.
  • Figure 4 shows the third schematic flowchart of the fault detection method provided by the embodiment of the present invention.
  • Figure 5 shows one of the graphs of resistance and operating time of the heating device provided by an embodiment of the present invention
  • Figure 6 shows the fourth schematic flowchart of the fault detection method provided by the embodiment of the present invention.
  • Figure 7 shows the fifth schematic flow chart of the fault detection method provided by the embodiment of the present invention.
  • Figure 8 shows the second graph of the resistance and operating time of the heating device provided by the embodiment of the present invention.
  • Figure 9 shows the sixth schematic flowchart of the fault detection method provided by the embodiment of the present invention.
  • Figure 10 shows the seventh schematic flowchart of the fault detection method provided by the embodiment of the present invention.
  • FIG. 11 shows the eighth schematic flowchart of the fault detection method provided by the embodiment of the present invention.
  • Figure 12 shows the second graph of the resistance and operating time of the heating device provided by the embodiment of the present invention.
  • Figure 13 shows the ninth schematic flow chart of the fault detection method provided by the embodiment of the present invention.
  • Figure 14 shows one of the structural block diagrams of the fault detection device provided by the embodiment of the present invention.
  • Figure 15 shows the second structural block diagram of the fault detection device provided by the embodiment of the present invention.
  • Figure 16 shows a structural block diagram of an aerosol atomization device provided by an embodiment of the present invention.
  • the following describes a fault detection method, a fault detection device, a readable storage medium and an aerosol atomization device according to some embodiments of the present invention with reference to FIGS. 1 to 16 .
  • an embodiment of the first aspect of the present invention proposes a fault detection method applied to an aerosol atomization device.
  • the aerosol atomization device includes a heating device for heating an atomized aerosol generating substrate, Fault detection methods include:
  • Step 102 Obtain the first resistance value of the heating device.
  • the first resistance value is the resistance value of the resistance in a steady state during the operation of the heating device;
  • Step 104 Obtain the second resistance value of the heating device during the current operation
  • Step 106 Determine that the aerosol atomization device is in a fault state based on the first resistance value and the second resistance value.
  • the fault detection method defined in the present invention can detect the fault of the aerosol atomization device.
  • the atomization device includes a heating device that generates a matrix for the aerosol in the aerosol atomization device.
  • Heating and atomizing causes the aerosol to generate matrix to generate aerosol.
  • the fault detection method obtains the first resistance value and the second resistance value of the heating device respectively, and determines whether the aerosol atomization device is in a fault state by comparing the first resistance value and the second resistance value.
  • the first resistance value is the steady-state resistance value of the heating device, where the first resistance value includes historical
  • the steady-state resistance value in the historical operating record is the historical steady-state resistance value.
  • the first resistance value also includes the current operation process
  • the steady-state resistance value is the current steady-state resistance value.
  • the second resistance value refers to the resistance value of the current heating device when it is running.
  • the second resistance value can be a transient resistance value, or it can be the arithmetic average of multiple transient resistance values within a very short period of time. , median or rolling average.
  • the extremely short time can be 1-100 milliseconds, optionally 5-30 milliseconds.
  • the first resistance value of the heating device in the steady state stage is read, and the second resistance value during the current operation is obtained. According to the first resistance value and the second resistance value, whether there is a fault in the aerosol atomization device is detected.
  • the failure of the aerosol atomization device includes hardware failure and the remaining parts of the aerosol atomization matrix.
  • the margin is too small. Because the remaining amount of the aerosol atomization device is too small, or the hardware of the aerosol atomization device fails, the resistance value of the heating device will change greatly. By comparing the second resistance value during the current operation with the heating device By comparing the first resistance value in the steady state stage, the fault of the aerosol atomization device can be accurately detected.
  • the fault detection method defined in the present invention is based on the operation process of the aerosol atomization device.
  • the first resistance value of the resistance of the heating device in the steady state and the second resistance value during the current operation are used to detect whether there is a fault in the aerosol generating device, thereby realizing whether there is a fault during the current operation of the heating device.
  • the detection avoids the adverse effects on the aerosol generated due to the failure of the heating device.
  • the present invention uses the first resistance value of the resistor in a steady state for detection, which improves the accuracy of detection. sex.
  • FIG 2 shows a schematic structural diagram of an aerosol atomization device provided by an embodiment of the present invention.
  • the aerosol atomization device 200 includes an atomization chamber 202 for storing an aerosol generating substrate, and a heating device 204. It is used to heat and atomize the aerosol-generating substrate in the atomization chamber 202.
  • the aerosol-generating substrate may be a liquid smoking substrate, such as e-liquid.
  • the heating device 204 includes a heating wire 206.
  • the heating wire 206 is made of metal and has resistance-temperature characteristics. During the heating process, the resistance and temperature of the heating wire 206 change with the operation of the heating device.
  • the first resistance value is the resistance value of the resistor in the steady state in the historical operating records
  • Obtaining the first resistance value of the heating device 204 includes:
  • Step 302 Determine the first steady-state stage in the historical operating record
  • Step 304 Obtain multiple third resistance values in the first steady-state stage
  • Step 306 Determine the first resistance value based on the plurality of third resistance values
  • the first resistance value includes any of the following: an arithmetic mean of a plurality of third resistance values, a median of a plurality of third resistance values, or a rolling average of a plurality of third resistance values.
  • the steady-state resistance value in the historical record is obtained, that is, the first resistance value is the historical steady-state resistance value.
  • the first resistance value corresponding to the first steady-state stage can be determined based on the plurality of third resistance values in the first steady-state stage of the heating device in the historical operation records.
  • the first steady-state stage is the operating stage in the historical operation record when the resistance value of the heating device is in a stable state, that is, the change value of the resistance value of the heating device in the first steady-state stage is less than the change threshold.
  • the third resistance value is the transient resistance value at the sampling time point when the heating device is operating in the first steady-state stage.
  • the first resistance value can be selected as a rolling average, arithmetic average or median of a plurality of third resistance values.
  • the present invention is not limited here and can be selected according to actual needs.
  • the present invention can determine the first resistance value corresponding to the historical record based on the plurality of third resistance values in the first steady-state stage, because the first resistance value can be selected as the arithmetic mean or rolling average of the plurality of third resistance values. value or median, so the first resistance value can represent the resistance value of the heating device in the first steady-state stage, thereby ensuring the subsequent judgment of whether the aerosol atomization device is faulty based on the first resistance value and the second resistance value. accuracy.
  • determining the first steady-state stage in the historical operating records includes:
  • Step 402 Obtain the first starting time and the first ending time of the historical running record
  • Step 404 Determine the second starting time based on the first starting time and the first preset duration.
  • the second starting time is the starting time of the first steady-state stage;
  • Step 406 Determine the second end time based on the first end time and the second preset duration.
  • the second end time is the end time of the first steady-state stage;
  • Step 408 Determine the first steady state stage based on the second starting time and the second ending time.
  • the complete operating phase in the historical record is read. And select the first steady-state stage in the complete operating stage based on the first preset time length and the second preset time length.
  • the first preset time period is the time period for the heating device to reach the first steady state stage from the first starting moment.
  • the second preset time period is the time it takes for the heating device to end the first steady state stage and end the heating process.
  • a second starting time can be determined, and the second starting time is later than the first starting time.
  • the second end time can be determined based on the second preset duration and the first end time of the complete operation phase in the historical operation record, and the second end time is earlier than the first end time.
  • T0 is the first starting moment of the historical record
  • T3 is the first ending moment of the historical record
  • T1 is the second starting moment of the first steady-state stage
  • T2 is the second starting point of the first steady-state stage. Ending moment.
  • T0 to T1 are the first preset time length
  • T2 to T3 are the second preset time length.
  • the present invention can accurately determine the first steady-state stage in the complete operation stage in the historical operation record, ensuring that those who obtain the first resistance value are all in historical operation.
  • the steady-state resistance value in the record improves the accuracy of judging whether there is a fault in the aerosol atomization device.
  • determining the first steady-state stage in the historical operating records includes:
  • Step 602 Determine the resistance change curve based on the plurality of fourth resistance values and the historical running time of the historical running records
  • Step 604 The moment when the slope of the resistance change curve reaches the preset slope is used as the third starting moment, and the third starting moment is the starting moment of the first steady-state stage;
  • Step 606 Obtain the third end time of the historical running record
  • Step 608 Determine the fourth end time based on the third end time and the third preset duration, and the fourth end time is the end time of the first steady-state stage;
  • Step 610 Determine the first steady state stage based on the third starting time and the fourth ending time.
  • a plurality of fourth resistance values in the historical operating record and the historical operating time of the historical operating record are obtained, and a resistance change curve is drawn accordingly.
  • the fourth resistance value is the transient resistance value of the heating device at the sampling time point in the historical operation record.
  • the slope of the resistance change curve changes with time. When it is detected that the slope of the curve reaches the preset slope, the moment corresponding to the slope of the curve is used as the third start point.
  • the fourth end time is determined based on the third end time and the third preset duration, and the fourth end time is before the third end time.
  • the operating phase between the third starting moment and the fourth ending moment is regarded as the first steady state phase.
  • the present invention draws the resistance change curve of historical operating records and accurately determines whether the heating device has operated to the first steady-state stage based on the slope of the resistance change curve, that is, determines the third starting moment. And determine the fourth end moment of the first steady-state phase through the third end time and the third preset duration of the historical operation record, thereby accurately determining the start and end time points of the first steady-state phase, further improving the determination Accuracy during the first steady-state phase.
  • Determining that the aerosol atomization device is in a fault state according to the first resistance value and the second resistance value includes: step 702, calculating the difference between each first resistance value and the second resistance value in the plurality of first resistance values, To obtain multiple first resistance difference values;
  • Step 704 Determine a plurality of first preset difference values corresponding to a plurality of first resistance values, and the plurality of first preset difference values correspond to the operating times of the heating devices corresponding to the plurality of first resistance values;
  • Step 706 Based on the fact that any first resistance difference among the plurality of first resistance differences is greater than the corresponding first preset difference, it is determined that the aerosol atomization device is in a fault state.
  • the aerosol atomization device when there are multiple historical operation records of the aerosol atomization device, it is determined whether the aerosol atomization device is in the state based on multiple resistance differences between multiple first resistance values and second resistance values. fault status.
  • the first resistance value in each historical operation record is obtained.
  • the number of first resistance values is also multiple, and the number of first resistance values is the same as the historical operation record.
  • the number of records is the same.
  • the number of historical running records ranges from 3 to 10 times.
  • the real-time resistance of the heating device will gradually increase. It is necessary to detect the first resistance values of multiple historical operating records and detect whether there is a fault based on the multiple first resistance values.
  • the first preset difference value is a preset value preset in advance, and the first preset difference value corresponds to the operating time of the heating devices corresponding to the plurality of first resistance values. Specifically, when setting the first preset difference value, multiple first preset difference values are associated with historical operating times that are different lengths from the current operating time.
  • the number of first preset difference values is a, b, c.
  • the fault detection method defined in this embodiment sets multiple historical operating records and corresponding first resistance values, and calculates the first resistance difference between each first resistance value and the second resistance value respectively. Compare the plurality of first resistance differences with the corresponding first preset difference, and when there is a first resistance difference among the plurality of first resistance differences that is greater than the corresponding first preset difference, By determining the presence of a fault, it is possible to detect the working status of the aerosol atomization device and determine whether the aerosol atomization device is in a fault state, improve the tolerance of the detection, avoid the impact of errors on the detection method, and thereby improve the accuracy of the detection method.
  • obtaining multiple first preset difference values corresponding to multiple first resistance values includes:
  • Step 902 Obtain a first preset difference sequence, where the first preset difference sequence includes a plurality of first preset difference values;
  • Step 904 Obtain the running time of the historical running record corresponding to each first resistance value among the plurality of first resistance values
  • Step 906 Sort multiple first resistance values according to multiple running times to obtain the first resistance value.
  • Step 908 Establish a mapping relationship between the first preset difference sequence and the first resistance value sequence to determine the first preset difference value corresponding to each first resistance value.
  • the first preset difference value is set in advance before the aerosol atomization device leaves the factory, so the number of the first preset difference value is a fixed number.
  • the first resistance value is the resistance value of the first steady-state stage in the historical operation record, that is, the first resistance value corresponds to the historical operation record.
  • the first resistance value The number is multiple. Since the number of historical operation records is the number of actual operations of the aerosol atomization device, the number of first resistance values is the number of changes.
  • the first preset difference sequence is a sequence arranged according to the size relationship between multiple first preset difference values.
  • the first resistance value sequence is a sequence arranged according to the operating time of historical operating records corresponding to the first resistance value. After establishing a corresponding relationship between the first preset difference sequence and the first resistance value sequence, the first preset difference value corresponding to each first resistance value can be determined.
  • first preset difference value when the number of first preset difference values in the first preset difference sequence is greater than or equal to the number of first resistance values in the first resistance sequence, then for each first resistance value Set the corresponding first preset difference value.
  • the number of first preset difference values in the first preset difference sequence is less than the number of first resistance values in the first resistance value sequence, corresponding first preset values are set for part of the first resistance values. The difference value ensures that each first preset difference value corresponds to a first resistance value.
  • the first preset difference sequence includes five first preset difference values, which are A, B, C, D, and E respectively.
  • the first resistance value sequence includes three first resistance values, namely a, b, and c.
  • corresponding first preset difference values are set for the three first resistance values in the first resistance sequence, a corresponds to A, b corresponds to B, and c corresponds to C.
  • the first resistance sequence includes six first resistance values, namely a, b, c, e, f, and g.
  • the resistance values are respectively set to corresponding first preset difference values, b corresponds to A, c corresponds to B, e corresponds to C, f corresponds to D, and g corresponds to E.
  • first preset difference values are configured for multiple first resistance values.
  • multiple first preset difference values can be configured.
  • the first resistance value corresponding to the difference value is updated, thereby improving the accuracy of obtaining the first preset difference value corresponding to the first resistance value.
  • the time difference between the running time corresponding to the first resistance value and the current time is positively related to the first preset difference value corresponding to the first resistance value.
  • the resistance value of the heating device gradually increases as the heating device operates. Therefore, the smaller the first preset difference value in the first difference sequence, the closer the running time of the corresponding historical running record of the first resistance value is to the current time.
  • the accuracy of obtaining the first preset difference value corresponding to the first resistance value can be improved.
  • the first resistance value is the resistance value of the resistor in a steady state during the current operation
  • Get the first resistance value of the heating device including:
  • Step 1002 obtain a plurality of fifth resistance values of the heating device during the current operation process, and the fifth resistance values are the resistance values in the steady-state stage during the current operation process;
  • Step 1004 Determine the first resistance value based on a plurality of fifth resistance values
  • the first resistance value includes any of the following: an arithmetic mean of a plurality of fifth resistance values, a median of a plurality of fifth resistance values, or a rolling average of a plurality of fifth resistance values.
  • the steady-state resistance value during the current operation is the current steady-state resistance value.
  • a plurality of fifth resistance values during the current operation of the heating device are obtained.
  • the fifth resistance values represent the steady-state operation of the heating device.
  • the fifth resistance value in the steady state stage is collected, and the current steady state resistance value (first resistance value) is determined based on the fifth resistance value.
  • the first resistance value can be selected as a rolling average, arithmetic average or median of a plurality of fifth resistance values.
  • the present invention is not limited here and can be selected according to actual needs.
  • the present invention can determine the current operating process based on multiple fifth resistance values in the current steady-state stage.
  • the first resistance value Since the first resistance value can be selected as the arithmetic mean, rolling average or median of a plurality of fifth resistance values, the first resistance value can represent the steady-state stage of the current operation process.
  • the resistance value of the heating device ensures the accuracy of subsequent judgment of whether there is a fault in the aerosol atomization device based on the first resistance value and the second resistance value.
  • a plurality of fifth resistance values in the steady state stage of the heating device during the current operation are obtained, including:
  • Step 1102 Obtain the fifth starting time, current running time and current running duration in the current running process
  • Step 1104 If the current running time is greater than the fourth preset time, determine the sixth starting time based on the fifth starting time and the fourth preset time.
  • the sixth starting time is the steady state during the current running process. The starting moment of the stage;
  • Step 1106 Determine the sixth end time based on the current running time and the fifth preset duration; Step 1108: If the sixth end time is later than the sixth start time, obtain the sixth start time to the sixth end time multiple fifth resistance values between.
  • the fourth preset time period is the time used by the heating device to reach the steady-state operation stage from the fifth starting moment.
  • the sixth starting time is determined based on the fifth starting time and the fourth preset time in the current running process.
  • the sixth starting time is the starting time of the steady state phase.
  • the interference situation means that the sixth end time needs to be determined based on the current running time and the fifth preset duration. If the sixth end time is later than the sixth start time, it means that the running time of the steady state phase in the current operation process is greater than zero, then the operation phase between the sixth start time and the sixth end time will be regarded as steady state operation. stage.
  • the current running time is less than or equal to the fourth preset time, it means that the current running process has not entered the steady state stage, and the first resistance value cannot be determined based on the current running process.
  • the sixth end time is earlier than the sixth start time, it means that although the current operation process has entered the steady state stage, in order to eliminate interference, the running time of the steady state stage is regarded as zero. In this case, the current operation process cannot be based on the current operation time. The process determines the first resistance value.
  • T5 is the fifth starting time of the current operating process
  • T8 is the current operating time
  • T6 is the starting time of the steady-state phase of the current operating process (sixth starting time)
  • T7 is the stable phase of the current operating process.
  • the end moment of the state phase (the sixth end moment).
  • T5 to T6 are the fourth preset duration
  • T7 to T8 are the second preset duration
  • T5 to T8 are the current running duration.
  • the present invention can accurately determine the steady-state operation stage in the current operation process through the preset fourth preset time length and the fifth preset time length, and obtain multiple fifth resistance values in this stage to determine the steady-state operation stage.
  • the first resistance value improves the accuracy of determining the first resistance value.
  • Multiple fifth resistance values during the steady state phase including:
  • Step 1302 Determine the resistance change curve based on the plurality of sixth resistance values and the running time of the current running process
  • Step 1304 use the moment when the slope of the resistance change curve reaches the preset slope as the seventh starting moment, and the seventh starting moment is the starting moment of the steady-state phase in the current operation process;
  • Step 1306 Obtain the current running time during the current running process
  • Step 1308 Determine the seventh end time based on the current running time and the sixth preset duration; Step 1310: If the seventh end time is later than the seventh start time, obtain the seventh start time to the seventh end time multiple fifth resistance values between.
  • a plurality of sixth resistance values of the current running process and the running time of the current running process are obtained, and a resistance change curve is drawn accordingly.
  • the sixth resistance value is the transient resistance value of the heating device at the sampling time point during the current operation.
  • the slope of the resistance change curve changes with time. When it is detected that the slope of the curve reaches the preset slope, the moment corresponding to the slope of the curve is regarded as the seventh starting moment, and the seventh starting moment is the steady state stage. Starting time.
  • the seventh end time needs to be determined based on the current running time and the sixth preset duration.
  • the seventh end time is later than the seventh start time, it means that the running time of the steady state phase in the current operation process is greater than zero, then the operation phase between the seventh start time and the seventh end time is regarded as the steady state phase.
  • the slope of the resistance change curve does not reach the preset slope, it means that the current operation process has not entered the steady state stage, and the first resistance value cannot be determined based on the current operation process. If the seventh end time is earlier than the seventh start time, it means that although the current operation process has entered the steady state stage, in order to eliminate interference, the steady state stage running time is regarded as zero. In this case, it cannot be based on the current operation. The process determines the first resistance value.
  • the present invention can accurately determine the steady-state operation stage in the current operation process, and obtain multiple data in this stage based on A fifth resistance value is used to determine the first resistance value in the steady state stage, thereby improving the accuracy of determining the first resistance value.
  • the fault detection method further includes: controlling the heating device to stop operating when the heating device is in a fault state. In any of the above embodiments, the fault detection method further includes: controlling the heating device to stop operating when the heating device is in a fault state.
  • the heating device when it is detected that the heating device is in a fault state, the heating device is controlled to stop running, thereby avoiding the adverse effects on aerosol generation caused by the excessive temperature of the heating device and the consumption of electric energy of the heating device. It can remind users, reduce energy consumption, and improve user experience.
  • an embodiment of the second aspect of the present invention proposes a fault detection device 1400, which is applied to an aerosol atomization device.
  • the aerosol atomization device includes a heating device for heating an atomized aerosol-generating substrate.
  • the fault detection device 1400 includes:
  • the acquisition module 1402 is used to obtain the first resistance value of the heating device.
  • the first resistance value is the resistance value of the heating device when the resistance is in a steady state during operation;
  • the acquisition module 1402 is also used to obtain the second resistance value of the heating device during the current operation; the determination module 1404 is used to determine that the aerosol atomization device is in a fault state based on the first resistance value and the second resistance value.
  • the fault detection device defined in this embodiment will be based on the operation process of the sol atomization device.
  • the first resistance value of the resistance of the heating device in the steady state and the second resistance value during the current operation are used to detect whether there is a fault in the aerosol generating device, thereby realizing whether there is a fault during the current operation of the heating device.
  • the detection avoids the adverse effects on the aerosol generated due to the failure of the heating device.
  • the present invention uses the first resistance value of the resistor in a steady state for detection, which improves the accuracy of detection. sex.
  • the determination module 1404 is also used to determine the first steady-state stage in the historical operating records
  • the acquisition module 1402 is also used to acquire multiple third resistance values in the first steady-state stage;
  • the determining module 1404 is also used to determine the first resistance value based on the plurality of third resistance values
  • the first resistance value includes any of the following: the arithmetic mean of multiple third resistance values, the arithmetic mean of multiple third resistance values,
  • the present invention can determine the first resistance value corresponding to the historical record based on the plurality of third resistance values in the first steady-state stage, because the first resistance value can be selected as the arithmetic mean or rolling average of the plurality of third resistance values. value or median, so the first resistance value can represent the resistance value of the heating device in the first steady-state stage, thereby ensuring the subsequent judgment of whether the aerosol atomization device is faulty based on the first resistance value and the second resistance value. accuracy.
  • the acquisition module 1102 is also used to obtain the first starting time and the first ending time of the historical running record
  • the determination module 1404 is also used to determine the second starting time based on the first starting time and the first preset duration, and the second starting time is the starting time of the first steady-state stage;
  • the determination module 1404 is also configured to determine the second end time based on the first end time and the second preset duration, where the second end time is the end time of the first steady-state stage;
  • the determination module 1404 is also used to determine the first steady-state stage based on the second starting time and the second ending time.
  • the present invention can accurately determine the first steady-state stage in the complete operation stage in the historical operation record, ensuring that the first resistance value is obtained in the historical period.
  • the steady-state resistance value in the historical operating records is used to improve the accuracy of determining whether there is a fault in the aerosol atomization device.
  • the determination module 1404 is also used to determine the resistance change curve based on the plurality of fourth resistance values and the historical running time of the historical running records;
  • the determination module 1404 is also used to determine the moment when the slope of the resistance change curve reaches the preset slope as the third starting moment, and the third starting moment is the starting moment of the first steady-state stage;
  • the acquisition module 1402 is also used to obtain the third end moment of the historical running record
  • the determination module 1404 is also used to determine the fourth end time based on the third end time and the third preset duration, and the fourth end time is the end time of the first steady-state stage;
  • the determination module 1404 is also used to determine the first steady-state stage based on the third starting time and the fourth ending time.
  • the present invention draws the resistance change curve of historical operating records and accurately determines whether the heating device has operated to the first steady-state stage based on the slope of the resistance change curve, that is, determines the third starting moment. And determine the first steady-state stage through the third end moment and the third preset duration of the historical operation record.
  • the fourth end moment thereby accurately determining the start and end time points of the first steady-state stage, further improving the accuracy of determining the first steady-state stage.
  • the number of historical operating records is multiple, and the number of first resistance values is the same as the number of historical operating records;
  • Fault detection device 1400 includes:
  • a calculation module configured to calculate the difference between each first resistance value and the second resistance value in the plurality of first resistance values to obtain a plurality of first resistance value differences
  • the determination module 1404 is also used to determine a plurality of first preset difference values corresponding to a plurality of first resistance values.
  • the plurality of first preset difference values correspond to the operating times of the heating devices corresponding to the plurality of first resistance values. ;
  • the determination module 1404 is also configured to determine that the aerosol atomization device is in a fault state based on the fact that any first resistance difference among the plurality of first resistance differences is greater than the corresponding first preset difference.
  • the fault detection method defined in this embodiment sets multiple historical operating records and corresponding first resistance values, and calculates the first resistance difference between each first resistance value and the second resistance value respectively. Compare the plurality of first resistance differences with the corresponding first preset difference, and when there is a first resistance difference among the plurality of first resistance differences that is greater than the corresponding first preset difference, By determining the presence of a fault, it is possible to detect the working status of the aerosol atomization device and determine whether the aerosol atomization device is in a fault state, improve the tolerance of the detection, avoid the impact of errors on the detection method, and thereby improve the accuracy of the detection method.
  • the acquisition module 1402 is also used to acquire a first preset difference sequence, where the first preset difference sequence includes a plurality of first preset difference values;
  • the acquisition module 1402 is also used to obtain the running time of the historical running record corresponding to each first resistance value in the plurality of first resistance values;
  • Fault detection device 1400 includes:
  • a sorting module used to sort multiple first resistance values according to multiple running times to obtain a first resistance value sequence
  • the mapping module is used to establish a mapping relationship between the first preset difference sequence and the first resistance value sequence to determine the first preset difference value corresponding to each first resistance value.
  • first preset difference values are configured for multiple first resistance values.
  • multiple first preset difference values can be configured. It is assumed that the first resistance value corresponding to the difference value is updated, thereby improving the accuracy of obtaining the first preset difference value corresponding to the first resistance value.
  • the time difference between the running time corresponding to the first resistance value and the current time is positively related to the first preset difference value corresponding to the first resistance value.
  • the resistance value of the heating device gradually increases as the heating device operates. Therefore, the smaller the first preset difference value in the first difference sequence, the closer the running time of the corresponding historical running record of the first resistance value is to the current time.
  • the accuracy of obtaining the first preset difference value corresponding to the first resistance value can be improved.
  • the first resistance value is the resistance value of the resistor in a steady state during the current operation
  • the acquisition module 1402 is used to acquire a plurality of fifth resistance values of the heating device during the current operation process, and the fifth resistance values are the resistance values in the steady-state stage during the current operation process;
  • Determining module 1404 used to determine the first resistance value based on a plurality of fifth resistance values
  • the first resistance value includes any of the following: an arithmetic mean of a plurality of fourth resistance values, a median of a plurality of fourth resistance values, or a rolling average of a plurality of fourth resistance values.
  • This embodiment can determine the first resistance value in the current operation process based on the plurality of fifth resistance values in the current steady-state stage, because the first resistance value can be selected as the arithmetic mean, rolling value, etc. of the plurality of fifth resistance values.
  • the average or median value, so the first resistance value can represent the resistance value of the heating device in the steady-state stage of the current operation process, thereby ensuring that the aerosol atomization device is subsequently judged based on the first resistance value and the second resistance value. Whether there is a glitch in accuracy.
  • the acquisition module 1402 is also used to obtain the fifth starting time, the current running time and the current running duration in the current running process;
  • the determination module 1404 is also configured to determine the sixth starting time based on the fifth starting time and the fourth preset time length when the current running time is greater than the fourth preset time length, and the sixth starting time is the current running time.
  • the determination module 1404 is also used to determine the sixth end time based on the current running time and the fifth preset duration;
  • the obtaining module 1402 is also configured to obtain a plurality of fifth resistance values between the sixth starting time and the sixth ending time when the sixth ending time is later than the sixth starting time.
  • the current running time is after the starting time of the steady-state phase, it is impossible to determine whether the operation will stop immediately after the current running time.
  • it is necessary to eliminate the interference in a period of time before the current running time that is, it is necessary to exclude the interference situation according to the current running time.
  • the fifth preset duration to determine the sixth end time. If the sixth end time is later than the sixth start time, it means that the running time of the steady state phase in the current operation process is greater than zero, then the operation phase between the sixth start time and the sixth end time will be regarded as steady state operation. stage.
  • the determination module 1404 is also used to determine the resistance change curve based on a plurality of sixth resistance values and the running time of the current running process;
  • the determination module 1404 is also used to determine the moment when the slope of the resistance change curve reaches the preset slope as the seventh starting moment, and the seventh starting moment is the starting moment of the steady-state phase in the current operation process;
  • the acquisition module 1402 is also used to obtain the current running time in the current running process
  • the determination module 1404 is also used to determine the seventh end time based on the current running time and the sixth preset duration;
  • the acquisition module 1402 is also used to obtain the seventh end time later than the seventh start time.
  • the present invention can accurately determine the steady-state operation stage in the current operation process, and obtain multiple data in this stage based on A fifth resistance value is used to determine the first resistance value in the steady state stage, thereby improving the accuracy of determining the first resistance value.
  • the fault detection device 1400 includes:
  • the control module is used to control the heating device to stop running when the heating device is in a fault state.
  • the heating device when it is detected that the heating device is in a fault state, the heating device is controlled to stop running, thereby avoiding the adverse effects on aerosol generation caused by the excessive temperature of the heating device and the consumption of electric energy of the heating device. It can remind users, reduce energy consumption, and improve user experience.
  • FIG. 15 another embodiment of the present invention proposes a fault detection device 1500, including: a memory 1504, on which programs or instructions are stored; a processor 1502, used to implement any of the above when executing the program or instructions.
  • An embodiment provides steps of a fault detection method.
  • the fault detection device provided by the present invention implements the steps of the fault detection method as provided in any of the above embodiments when the processor executes the program or instruction stored in the memory. Therefore, it has the fault detection method as provided in any of the above embodiments. It has the beneficial effects of large tolerance and high accuracy, which will not be repeated here.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Another embodiment of the present invention provides a readable storage medium on which a program or instructions are stored.
  • the program or instructions are executed by a processor, the steps of the fault detection method provided in any of the above embodiments are implemented.
  • the readable storage medium provided by the present invention implements the steps of the fault detection method as provided in any of the above embodiments when the program or instructions stored thereon are executed by the processor. Therefore, it has the fault detection as provided in any of the above embodiments.
  • the method has the beneficial effects of large tolerance and high accuracy, which will not be described in detail here.
  • an aerosol atomization device 1600 including: a fault detection device 1400 as provided in the second embodiment above; and/or an optional device as provided in any of the above embodiments.
  • the fault detection device and the readable storage medium provided by any of the above embodiments have the beneficial effects of large tolerance and high accuracy, which will not be described again here.
  • connection refers to two or more than two, unless otherwise explicitly limited.
  • connection can be a fixed connection, a detachable connection, or an integral connection; “connection” can be Either directly or indirectly through an intermediary.
  • connection can be Either directly or indirectly through an intermediary.
  • the terms “one embodiment,” “some embodiments,” “specific embodiments,” etc. mean that a particular feature, structure, material or characteristic described in connection with the embodiment or example is included in the invention. in at least one embodiment or example.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种故障检测方法及其装置、可读存储介质和气溶胶雾化装置,其中,故障检测方法,应用于气溶胶雾化装置(200),气溶胶雾化装置(200)包括加热装置(204),用于加热雾化气溶胶产生基质,故障检测方法包括:获取加热装置(204)的第一阻值,第一阻值为加热装置(204)在运行过程中电阻处于稳态状态下的阻值(102);获取加热装置(204)在当前运行过程中的第二阻值(104);根据第一阻值和第二阻值,确定气溶胶雾化装置(200)处于故障状态(106)。实现了对加热装置(204)当前运行过程中是否存在故障进行检测,避免了由于加热装置(204)故障对生成气溶胶造成的不良影响,采用了电阻处于稳态状态下的第一阻值进行检测,提高了检测的准确性。

Description

故障检测方法及其装置、可读存储介质和气溶胶雾化装置 技术领域
本发明涉及气溶胶雾化技术领域,具体而言,涉及一种故障检测方法及其装置、可读存储介质和气溶胶雾化装置。
背景技术
现有的气溶胶雾化装置通过加热装置对气溶胶产生基质进行加热雾化,以生成气溶胶,当气溶胶产生基质接近耗尽时,加热装置对气溶胶产生基质的持续加热会导致气溶胶产生基质温度过高,从而超过气溶胶合理雾化的上限温度,进而对生成的气溶胶质量产生不良影响,因此需要对此种不良状态进行检测。
现有技术通过将当前状态下加热装置的电阻值与预设的电阻阈值进行比较,或是通过加热过程中加热装置的电阻变化值与预设的变化阈值进行比较,判断气溶胶雾化装置是否出现不良状态,但是以上方法均存在误判的情况,进而影响检测的准确性。
因此,如何设计出一种可有效解决上述技术问题的检测方法,成为了亟待解决的技术问题。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的第一方面提出了一种故障检测方法。
本发明的第二方面提出了一种故障检测装置。
本发明的第三方面提出了一种故障检测装置。
本发明的第四方面提出了一种可读存储介质。
本发明的第五方面提出了一种气溶胶雾化装置。
有鉴于此,本发明的第一方面提出了一种故障检测方法,应用于气溶胶雾化装置,气溶胶雾化装置包括加热装置,用于加热雾化气溶胶产生基质,故障检测方法包括:获取加热装置的第一阻值,第一阻值为加热装置在运行过程中电阻处于稳态状态下的阻值;获取加热装置在当前运行过程中的第二阻值;根据第一阻值和第二阻值,确定气溶胶雾化装置处于故障状态。
本发明限定的故障检测方法可对气溶胶雾化装置的故障进行检测,气溶胶雾化装置包括加热装置,加热装置通过对气溶胶雾化装置中的气溶胶产生基质加热雾化,使气溶胶产生基质生成气溶胶。故障检测方法通过分别获取加热装置的第一阻值以及第二阻值,并通过比较第一阻值以及第二阻值判断气溶胶雾化装置是否处于故障状态。
需要说明的是,第一阻值为加热装置的稳态阻值,其中,第一阻值包括历史运行记录中的稳态阻值,即历史稳态阻值。第一阻值还包括当前运行过程中的稳态阻值,即当前稳态阻值。在加热装置处于运行状态的过程中,加热装置的阻值受到加热装置的温度影响,会在运行开始阶段快速上升,然后保持稳态,该稳态状态的阻值即为稳态阻值。
第二阻值指的是当下加热装置运行的加热过程中加热装置的电阻阻值。
具体来说,气溶胶雾化装置在运行过程中,读取加热装置在稳态阶段的第一阻值,以及获取当前运行过程中的第二阻值。根据第一阻值和第二阻值,对气溶胶雾化装置是否存在故障进行检测。
其中,气溶胶雾化装置的故障包括硬件故障,还包括气溶胶雾化基质的剩余量过少。由于气溶胶雾化装置的剩余量过少,或气溶胶雾化装置的硬件出现故障,均会导致加热装置的电阻值发生较大变化,通过将当前运行过程中的第二阻值与加热装置的稳态阶段的第一阻值进行比较,能够准确对气溶胶雾化装置存在故障进行检测。
本发明限定的故障检测方法,通过将在溶胶雾化装置运行过程中,根据加热装置的电阻处于稳态状态下的第一阻值,以及当前运行过程中的第二阻值,对气溶胶发生装置是否存在故障进行检测,实现了对加热装置当前运行过程中是否存在故障进行检测,避免了由于加热装置故障对生成气溶胶造成的不良影响,相比于相关技术中的检测方式,本发明采用了电阻处于稳态状态下的第一阻值进行检测,提高了检测的准确性。
另外,本发明提供的上述实施例中的故障检测方法还可以具有如下附加技术特征:
在上述技术方案中,第一阻值为历史运行记录中电阻处于稳态状态下的阻值,获取加热装置的第一阻值,包括:确定历史运行记录中的第一稳态阶段;
获取第一稳态阶段中的多个第三阻值;根据多个第三阻值,确定第一阻值;其中,第一阻值包括以下任一项:多个第三阻值的算术平均值、多个第三阻值的中位数、多个第三阻值的滚动平均值。
需要说明的是,在气溶胶雾化装置存在历史运行记录的情况下,则获取历史记录中的稳态阻值,即第一阻值为历史稳态阻值。
在该技术方案中,根据加热装置在历史运行记录中的第一稳态阶段的多个第三阻值,能够确定该第一稳态阶段对应的第一阻值。
需要说明的是,第一稳态阶段为历史运行记录中,加热装置的电阻值处于稳定状态下的运行阶段,即加热装置的电阻值在第一稳态阶段下的变化值小于变化阈值。第三阻值为加热装置运行在第一稳态阶段下的电阻值。第一阻值可选为多个第三阻值的滚动平均值、算术平均值或中位数,本发明在此不做限定,可根据实际需求进行选择。
本发明根据第一稳态阶段的多个第三阻值,能够确定该历史记录对应的第一阻值,由于该第一阻值可选为多个第三阻值的算术平均值、滚动平均值或中位数,故该第一阻值能够代表第一稳态阶段中加热装置的电阻值,从而保证了
后续根据第一阻值和第二阻值判断气溶胶雾化装置是否存在故障的准确性。
在上述任一技术方案中,确定历史运行记录中的第一稳态阶段,包括:获取历史运行记录的第一起始时刻和第一结束时刻;根据第一起始时刻和第一预设时长,确定第二起始时刻,第二起始时刻为第一稳态阶段的起始时刻;根据第一结束时刻和第二预设时长,确定第二结束时刻,第二结束时刻为第一稳态阶段的结束时刻;根据第二起始时刻和第二结束时刻,确定第一稳态阶段。在该技术方案中,在确定历史运行记录中的第一稳态阶段的过程中,读取历史记录中的完整的运行阶段。并根据第一预设时长和第二预设时长选取完整的运行阶段中的第一稳态阶段。
其中,第一预设时长即加热装置由第一起始时刻达到第一稳态阶段所用的时长。第二预设时长即加热装置由结束第一稳态阶段到结束加热过程所用的时长。
具体来说,根据第一预设时长,以及历史记录中的完整的运行阶段的第一起始时刻,能够确定第二起始时刻,第二起始时刻晚于第一起始时刻。根据第
二预设时长,以及历史运行记录中的完整的运行阶段的第一结束时刻,能够确定第二结束时刻,第二结束时刻早于第一结束时刻。
本发明通过预设的第一预设时长和第二预设时长,能够准确确定历史运行记录中的完整的运行阶段中的第一稳态阶段,保证了得到第一阻值的均处于历史运行记录中的稳态阻值,进而提高了对气溶胶雾化装置是否存在故障判断的
准确性。
在上述任一技术方案中,确定历史运行记录中的第一稳态阶段,包括:根据多个第四阻值和历史运行记录的历史运行时长,确定阻值变化曲线;将阻值变化曲线的曲线斜率达到预设斜率的时刻,作为第三起始时刻,第三起始时刻为第一稳态阶段的起始时刻;获取历史运行记录的第三结束时刻;根据第三结
束时刻和第三预设时长,确定第四结束时刻,第四结束时刻为第一稳态阶段的结束时刻;根据第三起始时刻和第四结束时刻,确定第一稳态阶段。
在该技术方案中,获取历史运行记录中的多个第四阻值和历史运行记录历史运行时长,并据此绘制阻值变化曲线。阻值变化曲线的曲线斜率随时间发生变化,在检测到曲线斜率达到预设斜率的情况下,将该曲线斜率对应的时刻作为第三起始时刻。再根据第三结束时刻和第三预设时长,确定第四结束时刻,第四结束时刻在第三结束时刻之前。将第三起始时刻与第四结束时刻之间的运行阶段作为第一稳态阶段。
本发明通过绘制历史运行记录的阻值变化曲线,并基于阻值变化曲线的曲线斜率对加热装置是否运行至第一稳态阶段进行准确判定,即确定第三起始时
刻。并通过历史运行记录的第三结束时刻和第三预设时长确定第一稳态阶段的第四结束时刻,从而对第一稳态阶段的开始和结束的时间点进行准确确定,进一步提高了确定第一稳态阶段的准确性。在上述任一技术方案中,历史运行记录的数量为多个,第一阻值的数量与历史运行记录的数量相同;根据第一阻值和第二阻值,确定气溶胶雾化装置处于故障状态,包括:对多个第一阻值中
每个第一阻值与第二阻值进行差值计算,以得到多个第一阻值差值;确定多个第一阻值中对应的多个第一预设差值,多个第一预设差值与多个第一阻值对应的加热装置的运行时刻相对应;基于多个第一阻值差值中任一第一阻值差值大于相应的第一预设差值,确定气溶胶雾化装置处于故障状态。
在该技术方案中,在气溶胶雾化装置存在多个历史运行记录的情况下,根据多个第一阻值与第二阻值的多个阻值差值,判断气溶胶雾化装置是否处于故障状态。
在气溶胶雾化装置存在多个历史运行记录的情况下,获取每个历史运行记录中的第一阻值,第一阻值的数量也为多个,且第一阻值的数量与历史运行记录的数量相同。将多个第一阻值分别与第二阻值进行差值计算,以得到多个第一阻值差值,并将多个第一阻值差值与相应的第一预设差值进行比较。在检测到多个第一阻值差值中的任一个第一阻值差值大于相应的第一预设差值的情况下,则判定气溶胶雾化装置存在故障。
需要说明的是,第一预设差值为提前预设的预设值,该第一预设差值与多个第一阻值对应的加热装置的运行时刻相对应。具体来说,在设置第一预设差值时,将多个第一预设差值与距离当前运行时刻不同时长的历史运行时刻进行关联对应。
示例性地,第一预设差值的数量为 a、b、c。将距离当前运行时刻最近的历史运行时刻对应设置第一预设差值 a,按照距离当前运行时刻的时长由短至长的关系,将第一预设差值 b、c 对应设置不同的历史运行时刻。
本发明限定的故障检测方法,通过设置多个历史运行记录以及对应的第一阻值,并通过分别计算每个第一阻值与第二阻值之间的第一阻值差值,将多个第一阻值差值与对应的第一预设差值对比,在多个第一阻值差值中存在大于相应的第一预设差值的第一阻值差值的情况下,就判定存在故障,实现了对气溶胶雾化装置工作状态的检测以及气溶胶雾化装置是否处于故障状态的判断,提高了检测的容差性,避免了误差对检测方法造成的影响,进而提高了检测方法的准确性。
在上述任一技术方案中,获取多个第一阻值中对应的多个第一预设差值,包括:获取第一预设差值序列,第一预设差值序列包括多个第一预设差值;获
取多个第一阻值中每个第一阻值对应的历史运行记录的运行时刻;根据多个运行时刻,对多个第一阻值进行排序,以得到第一阻值序列;将第一预设差值序列与第一阻值序列建立映射关系,以确定每个第一阻值对应的第一预设差值。
需要说明的是,第一预设差值为气溶胶雾化装置在出厂前提前设置得到的,故第一预设差值的数量为固定数量。第一阻值为历史运行记录中的第一稳态阶段的阻值,即第一阻值与历史运行记录向相对应,在历史运行记录的数量为多个的情况下,则第一阻值的数量为多个,由于历史运行记录的数量为气溶胶雾化装置实际运行的次数,故第一阻值的数量为变化数量。
第一预设差值序列为按照多个第一预设差值之间的大小关系排列得到的序列。第一阻值序列为按照第一阻值对应的历史运行记录的运行时刻进行排列得到的序列。将第一预设差值序列与第一阻值序列建立对应关系后,能够确定每个第一阻值对应的第一预设差值。
具体来说,在第一预设差值序列中的第一预设差值的数量大于等于第一阻值序列中的第一阻值的数量的情况下,则对每个第一阻值均设置对应的第一预设差值。在第一预设差值序列中的第一预设差值的数量小于第一阻值序列中的第一阻值的数量的情况下,则对部分第一阻值设置对应的第一预设差值,保证每个第一预设差值对应一个第一阻值。
示例性地,第一预设差值序列中包括五个第一预设差值,分别为  A、B、
C、D、E。第一阻值序列中包括三个第一阻值,分别为 a、b、c。则对第一阻值序列中的三个第一阻值分别设置相应的第一预设差值,a 对应 A,b 对应 B,c 对应 C。随着历史运行记录数量的增长,第一阻值序列中包括六个第一阻值,分别为 a、b、c、e、f、g,则对第一阻值序列中的五个第一阻值分别设置相应的第一预设差值,b 对应 A,c 对应 B,e 对应 C,f 对应 D,g 对应 E。
本发明中,通过提前设置的第一预设差值序列,对多个第一阻值配置相应的第一预设差值,在历史运行记录增多的情况下,能够对多个第一预设差值对应的第一阻值进行更新,实现了提高获取第一阻值对应的第一预设差值的准确性。
在上述任一技术方案中,第一阻值对应的运行时刻距离当前时刻的时间差值与第一阻值对应的第一预设差值正相关。
在该技术方案中,受加热装置的物理特性影响,随着加热装置的运行,则加热装置的电阻值逐渐增大。故第一差值序列中的第一预设差值越小的对应的第一阻值的历史运行记录的运行时刻距离当前时刻越近。
本发明中通过设置第一阻值和第一差值序列之间的关系,能够提高获取第一阻值对应的第一预设差值的准确性。
在上述任一技术方案中,第一阻值为当前运行过程中电阻处于稳态状态下的阻值;
获取加热装置的第一阻值,包括:获取加热装置在当前运行过程中的多个第五阻值,第五阻值为当前运行过程中的稳态阶段的阻值;根据多个第五阻值,确定第一阻值;
其中,第一阻值包括以下任一项:多个第四阻值的算术平均值、多个第四阻值的中位数、多个第四阻值的滚动平均值。
需要说明的是,在气溶胶雾化装置不存在历史运行记录的情况下,则当前运行过程中的稳态阻值,即第一阻值为当前稳态阻值。
在该技术方案中,在获取第一阻值(当前稳态阻值)的过程中,获取加热装置在当前运行过程中的多个第五阻值,第五阻值为加热装置运行在稳态阶段的阻值。
在确定电子设备所处的当前运行过程已经进入稳态阶段,故采集稳态阶段中的第五阻值,并基于第五阻值确定当前稳态阻值(第一阻值)。
第一阻值可选为多个第五阻值的滚动平均值、算术平均值或中位数,本发明在此不做限定,可根据实际需求进行选择。
本发明根据当前的稳态阶段的多个第五阻值,能够确定当前运行过程中的
第一阻值,由于该第一阻值可选为多个第五阻值的算术平均值、滚动平均值或中位数,故该第一阻值能够代表当前运行过程中的稳态阶段中加热装置的电阻值,从而保证了后续根据第一阻值和第二阻值判断气溶胶雾化装置是否存在故障的准确性。
在上述任一实施例中,获取加热装置在当前运行过程中的稳态阶段的多个第五阻值,包括:
获取当前运行过程中的第五起始时刻、当前运行时刻及当前运行时长;
在当前运行时长大于第四预设时长的情况下,根据第五起始时刻和第四预设时长,确定第六起始时刻,第六起始时刻为当前运行过程中的稳态阶段的起始时刻;
根据当前运行时刻和第五预设时长,确定第六结束时刻;
在第六结束时刻晚于第六起始时刻的情况下,获取第六起始时刻至第六结束时刻之间的多个第五阻值。
其中,第四预设时长即加热装置由第五起始时刻达到稳态运行阶段所用的时长。在当前运行时长大于第四预设时长的情况下,则确定加热装置进入到稳态阶段,再根据当前运行过程中的第五起始时刻和第四预设时长确定第六起始时刻,该第六起始时刻即为稳态阶段起始时刻。
由于当前运行时刻在稳态阶段起始时刻之后,无法确定当前运行时刻之后是否会立即停止运行,为排除干扰,则需要排除当前运行时刻之前一段时间内的干扰情况,也就是需要根据当前运行时刻和第五预设时长,确定第六结束时刻。在第六结束时刻晚于第六起始时刻的情况下,说明当前运行过程中稳态阶段运行时间大于零,则将第六起始时刻至第六结束时刻之间的运行阶段作为稳态运行阶段。
在确定当前运行过程中的稳态运行阶段之后,获取当前运行过程中的稳态运行阶段中的多个第五阻值。
需要说明的是,如果当前运行时长小于等于第四预设时长,则说明当前运行过程并未进入稳态阶段,则不能依据当前运行过程确定第一阻值。如果第六结束时刻早于第六起始时刻,则说明当前运行过程虽然已进入稳态阶段,但为了排除干扰,稳态阶段运行时间被视为零,这种情况下,也不能根据当前运行
过程确定第一阻值。
本发明通过预设的第四预设时长和第五设时长,能够准确确定当前运行过程中的稳态运行阶段,并根据获取此阶段内的多个第五阻值,以确定稳态阶段中的第一阻值,提高了确定第一阻值的准确性。
在上述任一实施例中,获取加热装置在当前运行过程中的稳态阶段的多个第五阻值,包括:
根据多个第六阻值和当前运行过程的运行时长,确定阻值变化曲线;
将阻值变化曲线的曲线斜率达到预设斜率的时刻,作为第七起始时刻,第七起始时刻为当前运行过程中的稳态阶段的起始时刻;
获取当前运行过程中的当前运行时刻;
根据当前运行时刻和第六预设时长,确定第七结束时刻;
在第七结束时刻晚于第七起始时刻的情况下,获取第七起始时刻至第七结束时刻之间的多个第五阻值。
在该实施例中,获取当前运行过程的多个第六阻值和当前运行过程的运行
时长,并据此绘制阻值变化曲线。阻值变化曲线的曲线斜率随时间发生变化,在检测到曲线斜率达到预设斜率的情况下,将该曲线斜率对应的时刻作为第七起始时刻,该第七起始时刻即为稳态阶段起始时刻。
由于当前运行时刻在稳态阶段起始时刻之后,无法确定当前运行时刻之后是否会立即停止运行,为排除干扰,则需要排除当前运行时刻之前一段时间内的干扰情况,也就是需要根据当前运行时刻和第六预设时长,确定第七结束时刻。在第七结束时刻晚于第七起始时刻的情况下,说明当前运行过程中稳态阶段运行时间大于零,则将第七起始时刻至第七结束时刻之间的运行阶段作为稳态运行阶段。
在确定当前运行过程中的稳态运行阶段之后,获取当前运行过程中的稳态
运行阶段中的多个第五阻值。
需要说明的是,如果阻值变化曲线的曲线斜率未达到预设斜率,则说明当前运行过程并未进入稳态阶段,则不能依据当前运行过程确定第一阻值。如果第七结束时刻早于第七起始时刻,则说明当前运行过程虽然已进入稳态阶段,但为了排除干扰,稳态阶段运行时间被视为零,这种情况下,也不能根据当前
运行过程确定第一阻值。
本发明通过绘制历史运行记录的阻值变化曲线,并基于阻值变化曲线的曲线斜率和第六设时长,能够准确确定当前运行过程中的稳态运行阶段,并根据获取此阶段内的多个第五阻值,以确定稳态阶段中的第一阻值,提高了确定第一阻值的准确性。
在上述任一技术方案中,故障检测方法还包括:在加热装置处于故障状态下,控制加热装置停止运行。
在该技术方案中,当检测到加热装置处于故障状态时,通过控制加热装
置停止运行,避免了由于加热装置的温度过高对生成气溶胶造成的不良影响,
以及对加热装置电能的耗费,还可对用户进行提醒,减小了能源的损耗,提高了用户的使用体验。
本发明的第二方面提出了一种故障检测装置,应用于气溶胶雾化装置,气溶胶雾化装置包括加热装置,用于加热雾化气溶胶产生基质,故障检测装置包括:获取模块,用于获取加热装置在的第一阻值,第一阻值为加热装置在运行过程中电阻处于稳态状态下的阻值;获取模块,还用于获取加热装置在当前运行过程中的第二阻值;确定模块,用于根据第一阻值和第二阻值,确定气溶胶雾化装置处于故障状态。
本发明的第二方面提供的故障检测装置可应用于气溶胶雾化装置,气溶胶雾化装置包括加热装置,用于加热雾化气溶胶产生基质,故障检测装置包括获
取模块以及确定模块,其中,获取模块用于获取加热装置在稳态阶段中的第一阻值,以及获取加热装置在当前运行过程中的第二阻值;确定模块用于根据第一阻值和第二阻值,确定气溶胶雾化装置处于故障状态,具体地,第一阻值为加热装置的电阻处于稳态状态下的阻值。
本发明限定的故障检测装置可对气溶胶雾化装置的故障进行检测,气溶胶
雾化装置包括加热装置,加热装置通过对气溶胶雾化装置中的气溶胶产生基质加热雾化,使气溶胶产生基质生成气溶胶。故障检测装置通过分别获取加热装置的第一阻值以及第二阻值,并通过比较第一阻值以及第二阻值判断气溶胶雾化装置是否处于故障状态。
需要说明的是,第一阻值为加热装置的稳态阻值,其中,第一阻值包括历
史运行记录中的稳态阻值,即历史稳态阻值。第一阻值还包括当前运行过程中的稳态阻值,即当前稳态阻值。在加热装置处于运行状态的过程中,加热装置的阻值受到加热装置的温度影响,会在运行开始阶段快速上升,然后保持稳态,该稳态状态的阻值即为稳态阻值。
本发明限定的故障检测装置,通过将在溶胶雾化装置运行过程中,根据加
热装置的电阻处于稳态状态下的第一阻值,以及当前运行过程中的第二阻值,对气溶胶发生装置是否存在故障进行检测,实现了对加热装置当前运行过程中是否存在故障进行检测,避免了由于加热装置故障对生成气溶胶造成的不良影响,相比于相关技术中的检测方式,本发明采用了电阻处于稳态状态下的第一
阻值进行检测,提高了检测的准确性。
本发明的第三方面提出了一种故障检测装置,包括:存储器,其上存储有程序或指令;处理器,用于执行程序或指令时实现如上述技术方案中任一项的故障检测方法的步骤。
本发明提供的故障检测装置,当处理器执行存储于存储器上的程序或指令
时实现如上述技术方案中任一项的故障检测方法的步骤,因此,具有如上述技术方案中任一项的故障检测方法的全部有益效果。
本发明的第四方面提出了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时实现如上述技术方案中任一项的故障检测方法的步骤。
本发明提供的可读存储介质,当其上存储的程序或指令被处理器执行时
实现如上述技术方案中任一项的故障检测方法的步骤,因此,具有如上述技术方案中任一项的故障检测方法的全部有益效果。
本发明的第五方面提出了一种气溶胶雾化装置,包括:如上述技术方案中任一项的故障检测装置;或上述技术方案中任一项的可读存储介质。
本发明提供的气溶胶雾化装置,由于包括如上述技术方案中任一项的故障检测装置或上述技术方案中任一项的可读存储介质,因此,具有如上述技术方案中任一项的故障检测装置以及可读存储介质的全部有益效果。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本发明实施例提供的故障检测方法的流程示意图之一;
图2示出了本发明实施例提供的气溶胶雾化装置的结构示意图;
图3示出了本发明实施例提供的故障检测方法的流程示意图之二;
图4示出了本发明实施例提供的故障检测方法的流程示意图之三;
图5示出了本发明实施例提供的加热装置的电阻与运行时长的曲线图之一;
图6示出了本发明实施例提供的故障检测方法的流程示意图之四;
图7示出了本发明实施例提供的故障检测方法的流程示意图之五;
图8示出了本发明实施例提供的加热装置的电阻与运行时长的曲线图之二;
图9示出了本发明实施例提供的故障检测方法的流程示意图之六;
图10示出了本发明实施例提供的故障检测方法的流程示意图之七;
图11示出了本发明实施例提供的故障检测方法的流程示意图之八;
图12示出了本发明实施例提供的加热装置的电阻与运行时长的曲线图之二;
图13 示出了本发明实施例提供的故障检测方法的流程示意图之九;
图14 示出了本发明实施例提供的故障检测装置的结构框图之一;
图15 示出了本发明实施例提供的故障检测装置的结构框图之二;
图16 示出了本发明实施例提供的气溶胶雾化装置的结构框图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图16 描述根据本发明一些实施例的故障检测方法、故障检测装置、可读存储介质和气溶胶雾化装置。
实施例一:
如图1所示,本发明的第一方面的实施例提出了一种故障检测方法,应用于气溶胶雾化装置,气溶胶雾化装置包括加热装置,用于加热雾化气溶胶产生基质,故障检测方法包括:
步骤102,获取加热装置的第一阻值,第一阻值为加热装置运行过程中电阻处于稳态状态下的阻值;
步骤104,获取加热装置在当前运行过程中的第二阻值;
步骤106,根据第一阻值和第二阻值,确定气溶胶雾化装置处于故障状态。本发明限定的故障检测方法可对气溶胶雾化装置的故障进行检测,气溶胶
雾化装置包括加热装置,加热装置通过对气溶胶雾化装置中的气溶胶产生基质
加热雾化,使气溶胶产生基质生成气溶胶。故障检测方法通过分别获取加热装置的第一阻值以及第二阻值,并通过比较第一阻值以及第二阻值判断气溶胶雾化装置是否处于故障状态。
需要说明的是,第一阻值为加热装置的稳态阻值,其中,第一阻值包括历
史运行记录中的稳态阻值,即历史稳态阻值。第一阻值还包括当前运行过程中
的稳态阻值,即当前稳态阻值。在加热装置处于运行状态的过程中,加热装置的阻值受到加热装置的温度影响,会在运行开始阶段快速上升,然后保持稳态,该稳态状态的阻值即为稳态阻值。第二阻值指的是当下加热装置运行的电阻阻值,具体而言,第二阻值可以是瞬态阻值,也可以是极短时间段内的多个瞬态阻值的算术平均值、中位值或滚动平均值。极短时间可以是 1-100 毫秒,可选5-30 毫秒。
具体来说,气溶胶雾化装置在运行过程中,读取加热装置在的稳态阶段的第一阻值,以及获取当前运行过程中的第二阻值。根据第一阻值和第二阻值,对气溶胶雾化装置是否存在故障进行检测。
其中,气溶胶雾化装置的故障包括硬件故障,还包括气溶胶雾化基质的剩
余量过少。由于气溶胶雾化装置的剩余量过少,或气溶胶雾化装置的硬件出现故障,均会导致加热装置的电阻值发生较大变化,通过将当前运行过程中的第二阻值与加热装置的稳态阶段的第一阻值进行比较,能够准确对气溶胶雾化装置存在故障进行检测。
本发明限定的故障检测方法,通过将在气溶胶雾化装置运行过程中,根据
加热装置的电阻处于稳态状态下的第一阻值,以及当前运行过程中的第二阻值,对气溶胶发生装置是否存在故障进行检测,实现了对加热装置当前运行过程中 是否存在故障进行检测,避免了由于加热装置故障对生成气溶胶造成的不良影 响,相比于相关技术中的检测方式,本发明采用了电阻处于稳态状态下的第一阻值进行检测,提高了检测的准确性。
图2示出了本发明实施例提供的气溶胶雾化装置的结构示意图,如图2所示,气溶胶雾化装置 200 包括雾化腔 202,用于存储气溶胶产生基质,加热装置 204,用于对雾化腔 202 中的气溶胶产生基质进行加热雾化。气溶胶产生基质可以是液态发烟基质,例如烟油。加热装置 204 中包括加热丝 206,加热丝 206 为金属材质,具有电阻-温度特性,在加热过程中,加热丝 206 的阻值及温度随着加热装置的运行而改变。
如图3 所示,在上述实施例中,第一阻值为历史运行记录中电阻处于稳态状态下的阻值;
获取加热装置204的第一阻值,包括:
步骤 302,确定历史运行记录中的第一稳态阶段;
步骤 304,获取第一稳态阶段中的多个第三阻值;
步骤 306,根据多个第三阻值,确定第一阻值;
其中,第一阻值包括以下任一项:多个第三阻值的算术平均值、多个第三阻值的中位数、多个第三阻值的滚动平均值。
需要说明的是,在气溶胶雾化装置存在历史运行记录的情况下,则获取历史记录中的稳态阻值,即第一阻值为历史稳态阻值。
在该实施例中,根据加热装置在历史运行记录中的第一稳态阶段的多个第三阻值,能够确定该第一稳态阶段对应的第一阻值。
需要说明的是,第一稳态阶段为历史运行记录中,加热装置的电阻值处于稳定状态下的运行阶段,即加热装置的电阻值在第一稳态阶段下的变化值小于变化阈值。第三阻值为加热装置运行在第一稳态阶段下的采样时间点的瞬态电阻值。
第一阻值可选为多个第三阻值的滚动平均值、算术平均值或中位数,本发明在此不做限定,可根据实际需求进行选择。
本发明根据第一稳态阶段的多个第三阻值,能够确定该历史记录对应的第一阻值,由于该第一阻值可选为多个第三阻值的算术平均值、滚动平均值或中位数,故该第一阻值能够代表第一稳态阶段中加热装置的电阻值,从而保证了后续根据第一阻值和第二阻值判断气溶胶雾化装置是否存在故障的准确性。
如图4 所示,在上述任一实施例中,确定历史运行记录中的第一稳态阶段,包括:
步骤 402,获取历史运行记录的第一起始时刻和第一结束时刻;
步骤 404,根据第一起始时刻和第一预设时长,确定第二起始时刻,第二起始时刻为第一稳态阶段的起始时刻;
步骤 406,根据第一结束时刻和第二预设时长,确定第二结束时刻,第二结束时刻为第一稳态阶段的结束时刻;
步骤408,根据第二起始时刻和第二结束时刻,确定第一稳态阶段。
在该实施例中,在确定历史运行记录中的第一稳态阶段的过程中,读取历史记录中的完整的运行阶段。并根据第一预设时长和第二预设时长选取完整的运行阶段中的第一稳态阶段。
其中,第一预设时长即加热装置由第一起始时刻达到第一稳态阶段所用的时长。第二预设时长即加热装置由结束第一稳态阶段到结束加热过程所用的时长。
具体来说,根据第一预设时长,以及历史记录中的完整的运行阶段的第一
起始时刻,能够确定第二起始时刻,第二起始时刻晚于第一起始时刻。根据第二预设时长,以及历史运行记录中的完整的运行阶段的第一结束时刻,能够确定第二结束时刻,第二结束时刻早于第一结束时刻。
如图5 所示,T0 为历史记录的第一起始时刻,T3 为历史记录的第一结束时刻,T1为第一稳态阶段的第二起始时刻,T2  为第一稳态阶段的第二结束时刻。T0 至 T1 为第一预设时长,T2 至T3 为第二预设时长。
本发明通过预设的第一预设时长和第二预设时长,能够准确确定历史运行记录中的完整的运行阶段中的第一稳态阶段,保证了得到第一阻值的均处于历史运行记录中的稳态阻值,进而提高了对气溶胶雾化装置是否存在故障判断的准确性。
如图6所示,在上述任一实施例中,确定历史运行记录中的第一稳态阶段,包括:
步骤 602,根据多个第四阻值和历史运行记录的历史运行时长,确定阻值变化曲线;
步骤 604,将阻值变化曲线的曲线斜率达到预设斜率的时刻,作为第三起始时刻,第三起始时刻为第一稳态阶段的起始时刻;
步骤 606,获取历史运行记录的第三结束时刻;
步骤 608,根据第三结束时刻和第三预设时长,确定第四结束时刻,第四结束时刻为第一稳态阶段的结束时刻;
步骤610,根据第三起始时刻和第四结束时刻,确定第一稳态阶段。
在该实施例中,获取历史运行记录中的多个第四阻值和历史运行记录历史运行时长,并据此绘制阻值变化曲线。第四阻值为加热装置在历史运行记录中的采样时间点的瞬态电阻值。阻值变化曲线的曲线斜率随时间发生变化,在检测到曲线斜率达到预设斜率的情况下,将该曲线斜率对应的时刻作为第三起始
时刻。再根据第三结束时刻和第三预设时长,确定第四结束时刻,第四结束时刻在第三结束时刻之前。将第三起始时刻与第四结束时刻之间的运行阶段作为第一稳态阶段。
本发明通过绘制历史运行记录的阻值变化曲线,并基于阻值变化曲线的曲线斜率对加热装置是否运行至第一稳态阶段进行准确判定,即确定第三起始时刻。并通过历史运行记录的第三结束时刻和第三预设时长确定第一稳态阶段的第四结束时刻,从而对第一稳态阶段的开始和结束的时间点进行准确确定,进一步提高了确定第一稳态阶段的准确性。
如图7 所示,在上述任一实施例中,历史运行记录的数量为多个,第一阻值的数量与历史运行记录的数量相同;
根据第一阻值和第二阻值,确定气溶胶雾化装置处于故障状态,包括:步骤702,对多个第一阻值中每个第一阻值与第二阻值进行差值计算,以得到多个第一阻值差值;
步骤 704,确定多个第一阻值中对应的多个第一预设差值,多个第一预设差值与多个第一阻值对应的加热装置的运行时刻相对应;
步骤 706,基于多个第一阻值差值中任一第一阻值差值大于相应的第一预设差值,确定气溶胶雾化装置处于故障状态。
在该实施例中,在气溶胶雾化装置存在多个历史运行记录的情况下,根据多个第一阻值与第二阻值的多个阻值差值,判断气溶胶雾化装置是否处于故障状态。
在气溶胶雾化装置存在多个历史运行记录的情况下,获取每个历史运行记录中的第一阻值,第一阻值的数量也为多个,且第一阻值的数量与历史运行记录的数量相同。将多个第一阻值分别与第二阻值进行差值计算,以得到多个第一阻值差值,并将多个第一阻值差值与相应的第一预设差值进行比较。在检测到多个第一阻值差值中的任一个第一阻值差值大于相应的第一预设差值的情况下,则判定气溶胶雾化装置存在故障。
示例性地,历史运行记录的数量的取值范围为 3 至 10 次。
在气溶胶雾化装置出现故障的情况下,加热装置的实时阻值会逐步上升,需要检测多个历史运行记录的第一阻值,并根据多个第一阻值对是否存在故障进行检测。
如图8 所示,气溶胶物装置在第 8 次运行时,加热装置的阻值上升幅度出现明显变化。
需要说明的是,第一预设差值为提前预设的预设值,该第一预设差值与多个第一阻值对应的加热装置的运行时刻相对应。具体来说,在设置第一预设差值时,将多个第一预设差值与距离当前运行时刻不同时长的历史运行时刻进行关联对应。
示例性地,第一预设差值的数量为 a、b、c。将距离当前运行时刻最近的历史运行时刻对应设置第一预设差值 a,按照距离当前运行时刻的时长由短至长的关系,将第一预设差值 b、c 对应设置不同的历史运行时刻。
本实施例限定的故障检测方法,通过设置多个历史运行记录以及对应的第一阻值,并通过分别计算每个第一阻值与第二阻值之间的第一阻值差值,将多个第一阻值差值与对应的第一预设差值对比,在多个第一阻值差值中存在大于相应的第一预设差值的第一阻值差值的情况下,就判定存在故障,实现了对气溶胶雾化装置工作状态的检测以及气溶胶雾化装置是否处于故障状态的判断,提高了检测的容差性,避免了误差对检测方法造成的影响,进而提高了检测方法的准确性。
如图 9 所示,在上述任一实施例中,获取多个第一阻值中对应的多个第一预设差值,包括:
步骤 902,获取第一预设差值序列,第一预设差值序列包括多个第一预设差值;
步骤 904,获取多个第一阻值中每个第一阻值对应的历史运行记录的运行时刻;
步骤906,根据多个运行时刻,对多个第一阻值进行排序,以得到第一阻
值序列;
步骤 908,将第一预设差值序列与第一阻值序列建立映射关系,以确定每个第一阻值对应的第一预设差值。
需要说明的是,第一预设差值为气溶胶雾化装置在出厂前提前设置得到的,故第一预设差值的数量为固定数量。第一阻值为历史运行记录中的第一稳态阶段的阻值,即第一阻值与历史运行记录相对应,在历史运行记录的数量为多个的情况下,则第一阻值的数量为多个,由于历史运行记录的数量为气溶胶雾化装置实际运行的次数,故第一阻值的数量为变化数量。
第一预设差值序列为按照多个第一预设差值之间的大小关系排列得到的序列。第一阻值序列为按照第一阻值对应的历史运行记录的运行时刻进行排列得到的序列。将第一预设差值序列与第一阻值序列建立对应关系后,能够确定每个第一阻值对应的第一预设差值。
具体来说,在第一预设差值序列中的第一预设差值的数量大于等于第一阻值序列中的第一阻值的数量的情况下,则对每个第一阻值均设置对应的第一预设差值。在第一预设差值序列中的第一预设差值的数量小于第一 阻值序列中的第一阻值的数量的情况下,则对部分第一阻值设置对应的第一预设差值,保证每个第一预设差值对应一个第一阻值。
示例性地,第一预设差值序列中包括五个第一预设差值,分别为 A、B、 C、D、E。第一阻值序列中包括三个第一阻值,分别为 a、b、c。则对第一阻值序列中的三个第一阻值分别设置相应的第一预设差值,a 对应 A,b 对应 B,c 对应 C。随着历史运行记录数量的增长,第一阻值序列中包括六个第一阻值,分别为 a、b、c、e、f、g,则对第一阻值序列中的五个第一阻值分别设置相应的第一预设差值,b 对应 A,c 对应 B,e 对应 C,f 对应 D, g 对应 E。
本发明中,通过提前设置的第一预设差值序列,对多个第一阻值配置相应的第一预设差值,在历史运行记录增多的情况下,能够对多个第一预设差值对应的第一阻值进行更新,实现了提高获取第一阻值对应的第一预设差值的准确性。
在上述任一实施例中,第一阻值对应的运行时刻距离当前时刻的时间差值与第一阻值对应的第一预设差值正相关。
在该实施例中,受加热装置的物理特性影响,随着加热装置的运行,则加热装置的电阻值逐渐增大。故第一差值序列中的第一预设差值越小的对应的第一阻值的历史运行记录的运行时刻距离当前时刻越近。
本发明中通过设置第一阻值和第一差值序列之间的关系,能够提高获取第一阻值对应的第一预设差值的准确性。
如图10 所示,在上述任一实施例中,第一阻值为当前运行过程中电阻处于稳态状态下的阻值;
获取加热装置的第一阻值,包括:
步骤1002,获取加热装置在当前运行过程中的多个第五阻值,第五阻值为当前运行过程中的稳态阶段的阻值;
步骤1004,根据多个第五阻值,确定第一阻值;
其中,第一阻值包括以下任一项:多个第五阻值的算术平均值、多个第五阻值的中位数、多个第五阻值的滚动平均值。
需要说明的是,在气溶胶雾化装置不存在历史运行记录的情况下,则当前运行过程中的稳态阻值,即第一阻值为当前稳态阻值。
在该实施例中,在获取第一阻值(当前稳态阻值)的过程中,获取加热装置在当前运行过程中的多个第五阻值,第五阻值为加热装置运行在稳态阶段的采样时间点的瞬态电阻值。
在确定电子设备所处的当前运行过程已经进入稳态阶段,故采集稳态阶段中的第五阻值,并基于第五阻值确定当前稳态阻值(第一阻值)。
第一阻值可选为多个第五阻值的滚动平均值、算术平均值或中位数,本发明在此不做限定,可根据实际需求进行选择。
本发明根据当前的稳态阶段的多个第五阻值,能够确定当前运行过程中的
第一阻值,由于该第一阻值可选为多个第五阻值的算术平均值、滚动平均值或中位数,故该第一阻值能够代表当前运行过程中的稳态阶段中加热装置的电阻值,从而保证了后续根据第一阻值和第二阻值判断气溶胶雾化装置是否存在故障的准确性。
如图11所示,在上述任一实施例中,获取加热装置在当前运行过程中的稳态阶段的多个第五阻值,包括:
步骤1102,获取当前运行过程中的第五起始时刻、当前运行时刻及当前运行时长;
步骤 1104,在当前运行时长大于第四预设时长的情况下,根据第五起始时刻和第四预设时长,确定第六起始时刻,第六起始时刻为当前运行过程中的稳态阶段的起始时刻;
步骤 1106,根据当前运行时刻和第五预设时长,确定第六结束时刻; 步骤 1108,在第六结束时刻晚于第六起始时刻的情况下,获取第六起始时刻至第六结束时刻之间的多个第五阻值。
其中,第四预设时长即加热装置由第五起始时刻达到稳态运行阶段所用的
时长。在当前运行时长大于第四预设时长的情况下,则确定加热装置进入到稳态阶段,再根据当前运行过程中的第五起始时刻和第四预设时长确定第六起始时刻,该第六起始时刻即为稳态阶段起始时刻。
由于当前运行时刻在稳态阶段起始时刻之后,无法确定当前运行时刻之后是否会立即停止运行,为排除干扰,则需要排除当前运行时刻之前一段时间内
的干扰情况,也就是需要根据当前运行时刻和第五预设时长,确定第六结束时刻。在第六结束时刻晚于第六起始时刻的情况下,说明当前运行过程中稳态阶段运行时间大于零,则将第六起始时刻至第六结束时刻之间的运行阶段作为稳态运行阶段。
在确定当前运行过程中的稳态运行阶段之后,获取当前运行过程中的稳态
运行阶段中的多个第五阻值。
需要说明的是,如果当前运行时长小于等于第四预设时长,则说明当前运行过程并未进入稳态阶段,则不能依据当前运行过程确定第一阻值。如果第六结束时刻早于第六起始时刻,则说明当前运行过程虽然已进入稳态阶段,但为了排除干扰,稳态阶段运行时长被视为零,这种情况下,也不能根据当前运行过程确定第一阻值。
如图12 所示,T5 为当前运行过程的第五起始时刻,T8 为当前运行时刻,T6 为当前运行过程稳态阶段的起始时刻(第六起始时刻),T7 为当前运行过程稳态阶段的结束时刻(第六结束时刻)。T5 至 T6 为第四预设时长,T7 至T8 为第二预设时长,T5 至 T8 为当前运行时长。
本发明通过预设的第四预设时长和第五设时长,能够准确确定当前运行过程中的稳态运行阶段,并根据获取此阶段内的多个第五阻值,以确定稳态阶段中的第一阻值,提高了确定第一阻值的准确性。
如图 13所示,在上述任一实施例中,获取加热装置在当前运行过程中的
稳态阶段的多个第五阻值,包括:
步骤 1302,根据多个第六阻值和当前运行过程的运行时长,确定阻值变化曲线;
步骤 1304,将阻值变化曲线的曲线斜率达到预设斜率的时刻,作为第七起始时刻,第七起始时刻为当前运行过程中的稳态阶段的起始时刻;
步骤1306,获取当前运行过程中的当前运行时刻;
步骤 1308,根据当前运行时刻和第六预设时长,确定第七结束时刻; 步骤 1310,在第七结束时刻晚于第七起始时刻的情况下,获取第七起始时刻至第七结束时刻之间的多个第五阻值。
在该实施例中,获取当前运行过程的多个第六阻值和当前运行过程的运行时长,并据此绘制阻值变化曲线。第六阻值为加热装置在当前运行过程中的采样时间点的采样时间点的瞬态电阻值。阻值变化曲线的曲线斜率随时间发生变化,在检测到曲线斜率达到预设斜率的情况下,将该曲线斜率对应的时刻作为第七起始时刻,该第七起始时刻即为稳态阶段起始时刻。
由于当前运行时刻在稳态阶段起始时刻之后,无法确定当前运行时刻之后
是否会立即停止运行,为排除干扰,则需要排除当前运行时刻之前一段时间内的干扰情况,也就是需要根据当前运行时刻和第六预设时长,确定第七结束时刻。在第七结束时刻晚于第七起始时刻的情况下,说明当前运行过程中稳态阶段运行时间大于零,则将第七起始时刻至第七结束时刻之间的运行阶段作为稳
态运行阶段。
在确定当前运行过程中的稳态运行阶段之后,获取当前运行过程中的稳态运行阶段中的多个第五阻值。
需要说明的是,如果阻值变化曲线的曲线斜率未达到预设斜率,则说明当前运行过程并未进入稳态阶段,则不能依据当前运行过程确定第一阻值。如果第七结束时刻早于第七起始时刻,则说明当前运行过程虽然已进入稳态阶段,但为了排除干扰,稳态阶段运行时间被视为零,这种情况下,也不能根据当前运行过程确定第一阻值。
本发明通过绘制历史运行记录的阻值变化曲线,并基于阻值变化曲线的曲线斜率和第六预设时长,能够准确确定当前运行过程中的稳态运行阶段,并根据获取此阶段内的多个第五阻值,以确定稳态阶段中的第一阻值,提高了确定第一阻值的准确性。
在上述任一实施例中,故障检测方法还包括:在加热装置处于故障状态下,控制加热装置停止运行。在上述任一实施例中,故障检测方法还包括:在加热装置处于故障状态下,控制加热装置停止运行。
在该实施例中,当检测到加热装置处于故障状态时,通过控制加热装置停止运行,避免了由于加热装置的温度过高对生成气溶胶造成的不良影响,以及对加热装置电能的耗费,还可对用户进行提醒,减小了能源的损耗,提高了用户的使用体验。
实施例二:
如图14 所示,本发明的第二方面的实施例提出了一种故障检测装置 1400,应用于气溶胶雾化装置,气溶胶雾化装置包括加热装置,用于加热雾化气溶胶产生基质,故障检测装置 1400 包括:
获取模块 1402,用于获取加热装置的第一阻值,第一阻值为加热装置在运行过程中电阻处于稳态状态下的阻值;
获取模块 1402,还用于获取加热装置在当前运行过程中的第二阻值; 确定模块 1404,用于根据第一阻值和第二阻值,确定气溶胶雾化装置处于故障状态。
本实施例限定的故障检测装置,通过将在溶胶雾化装置运行过程中,根据
加热装置的电阻处于稳态状态下的第一阻值,以及当前运行过程中的第二阻值,对气溶胶发生装置是否存在故障进行检测,实现了对加热装置当前运行过程中 是否存在故障进行检测,避免了由于加热装置故障对生成气溶胶造成的不良影 响,相比于相关技术中的检测方式,本发明采用了电阻处于稳态状态下的第一 阻值进行检测,提高了检测的准确性。
在上述实施例中,确定模块 1404,还用于确定历史运行记录中的第一稳态阶段;
获取模块 1402,还用于获取第一稳态阶段中的多个第三阻值;
确定模块 1404,还用于根据多个第三阻值,确定第一阻值;
其中,第一阻值包括以下任一项:多个第三阻值的算术平均值、多个第三
阻值的中位数、多个第三阻值的滚动平均值。
本发明根据第一稳态阶段的多个第三阻值,能够确定该历史记录对应的第一阻值,由于该第一阻值可选为多个第三阻值的算术平均值、滚动平均值或中位数,故该第一阻值能够代表第一稳态阶段中加热装置的电阻值,从而保证了后续根据第一阻值和第二阻值判断气溶胶雾化装置是否存在故障的准确性。在
上述任一实施例中,获取模块 1102,还用于获取历史运行记录的第一起始时刻和第一结束时刻;
确定模块 1404,还用于根据第一起始时刻和第一预设时长,确定第二起始时刻,第二起始时刻为第一稳态阶段的起始时刻;
确定模块1404,还用于根据第一结束时刻和第二预设时长,确定第二结束时刻,第二结束时刻为第一稳态阶段的结束时刻;
确定模块 1404,还用于根据第二起始时刻和第二结束时刻,确定第一稳态阶段。
本发明通过预设的第一预设时长和第二预设时长,能够准确确定历史运行记录中的完整的运行阶段中的第一稳态阶段,保证了得到第一阻值的均处于历
史运行记录中的稳态阻值,进而提高了对气溶胶雾化装置是否存在故障判断的准确性。
在上述任一实施例中,确定模块1404,还用于根据多个第四阻值和历史运行记录的历史运行时长,确定阻值变化曲线;
确定模块 1404,还用于将阻值变化曲线的曲线斜率达到预设斜率的时刻,作为第三起始时刻,第三起始时刻为第一稳态阶段的起始时刻;
获取模块 1402,还用于获取历史运行记录的第三结束时刻;
确定模块 1404,还用于根据第三结束时刻和第三预设时长,确定第四结束时刻,第四结束时刻为第一稳态阶段的结束时刻;
确定模块 1404,还用于根据第三起始时刻和第四结束时刻,确定第一稳态阶段。
本发明通过绘制历史运行记录的阻值变化曲线,并基于阻值变化曲线的曲线斜率对加热装置是否运行至第一稳态阶段进行准确判定,即确定第三起始时刻。并通过历史运行记录的第三结束时刻和第三预设时长确定第一稳态阶段的
第四结束时刻,从而对第一稳态阶段的开始和结束的时间点进行准确确定,进一步提高了确定第一稳态阶段的准确性。
在上述任一实施例中,历史运行记录的数量为多个,第一阻值的数量与历史运行记录的数量相同;
故障检测装置 1400 包括:
计算模块,用于对多个第一阻值中每个第一阻值与第二阻值进行差值计算,以得到多个第一阻值差值;
确定模块 1404,还用于确定多个第一阻值中对应的多个第一预设差值,多个第一预设差值与多个第一阻值对应的加热装置的运行时刻相对应;
确定模块1404,还用于基于多个第一阻值差值中任一第一阻值差值大于相应的第一预设差值,确定气溶胶雾化装置处于故障状态。
本实施例限定的故障检测方法,通过设置多个历史运行记录以及对应的第一阻值,并通过分别计算每个第一阻值与第二阻值之间的第一阻值差值,将多个第一阻值差值与对应的第一预设差值对比,在多个第一阻值差值中存在大于相应的第一预设差值的第一阻值差值的情况下,就判定存在故障,实现了对气溶胶雾化装置工作状态的检测以及气溶胶雾化装置是否处于故障状态的判断,提高了检测的容差性,避免了误差对检测方法造成的影响,进而提高了检测方法的准确性。
在上述任一实施例中,获取模块1402,还用于获取第一预设差值序列,第一预设差值序列包括多个第一预设差值;
获取模块 1402,还用于获取多个第一阻值中每个第一阻值对应的历史运行记录的运行时刻;
故障检测装置 1400 包括:
排序模块,用于根据多个运行时刻,对多个第一阻值进行排序,以得到第一阻值序列;
映射模块,用于将第一预设差值序列与第一阻值序列建立映射关系,以确定每个第一阻值对应的第一预设差值。
本发明实施中,通过提前设置的第一预设差值序列,对多个第一阻值配置相应的第一预设差值,在历史运行记录增多的情况下,能够对多个第一预设差值对应的第一阻值进行更新,实现了提高获取第一阻值对应的第一预设差值的准确性。
在上述任一实施例中,第一阻值对应的运行时刻距离当前时刻的时间差值与第一阻值对应的第一预设差值正相关。
在该实施例中,受加热装置的物理特性影响,随着加热装置的运行,则加热装置的电阻值逐渐增大。故第一差值序列中的第一预设差值越小的对应的第一阻值的历史运行记录的运行时刻距离当前时刻越近。
本发明中通过设置第一阻值和第一差值序列之间的关系,能够提高获取第一阻值对应的第一预设差值的准确性。
在上述任一实施例中,第一阻值为当前运行过程中电阻处于稳态状态下的阻值;
获取模块1402,用于获取加热装置在当前运行过程中的多个第五阻值,第五阻值为当前运行过程中的稳态阶段的阻值;
确定模块1404,用于根据多个第五阻值,确定第一阻值;
其中,第一阻值包括以下任一项:多个第四阻值的算术平均值、多个第四阻值的中位数、多个第四阻值的滚动平均值。
本实施例根据当前的稳态阶段的多个第五阻值,能够确定当前运行过程中的第一阻值,由于该第一阻值可选为多个第五阻值的算术平均值、滚动平均值或中位数,故该第一阻值能够代表当前运行过程中的稳态阶段中加热装置的电阻值,从而保证了后续根据第一阻值和第二阻值判断气溶胶雾化装置是否存在故障的准确性。在上述任一实施例中,获取模块 1402,还用于获取当前运行过程中的第五起始时刻、当前运行时刻及当前运行时长;
确定模块 1404,还用于在当前运行时长大于第四预设时长的情况下,根据第五起始时刻和第四预设时长,确定第六起始时刻,第六起始时刻为当前运
行过程中的稳态阶段的起始时刻;
确定模块 1404,还用于根据当前运行时刻和第五预设时长,确定第六结束时刻;
获取模块 1402,还用于在第六结束时刻晚于第六起始时刻的情况下,获取第六起始时刻至第六结束时刻之间的多个第五阻值。
由于当前运行时刻在稳态阶段起始时刻之后,无法确定当前运行时刻之后是否会立即停止运行,为排除干扰,则需要排除当前运行时刻之前一段时间内的干扰情况,也就是需要根据当前运行时刻和第五预设时长,确定第六结束时刻。在第六结束时刻晚于第六起始时刻的情况下,说明当前运行过程中稳态阶段运行时间大于零,则将第六起始时刻至第六结束时刻之间的运行阶段作为稳态运行阶段。
在上述任一实施例中,确定模块 1404,还用于根据多个第六阻值和当前运行过程的运行时长,确定阻值变化曲线;
确定模块 1404,还用于将阻值变化曲线的曲线斜率达到预设斜率的时刻,作为第七起始时刻,第七起始时刻为当前运行过程中的稳态阶段的起始时刻;
获取模块1402,还用于获取当前运行过程中的当前运行时刻;
确定模块 1404,还用于根据当前运行时刻和第六预设时长,确定第七结束时刻;
获取模块1402,还用于在第七结束时刻晚于第七起始时刻的情况下,获
取第七起始时刻至第七结束时刻之间的多个第五阻值。
本发明通过绘制历史运行记录的阻值变化曲线,并基于阻值变化曲线的曲线斜率和第六预设时长,能够准确确定当前运行过程中的稳态运行阶段,并根据获取此阶段内的多个第五阻值,以确定稳态阶段中的第一阻值,提高了确定第一阻值的准确性。
在上述任一实施例中,故障检测装置 1400 包括:
控制模块,用于在加热装置处于故障状态下,控制加热装置停止运行。在该实施例中,当检测到加热装置处于故障状态时,通过控制加热装置停止运行,避免了由于加热装置的温度过高对生成气溶胶造成的不良影响,以及对加热装置电能的耗费,还可对用户进行提醒,减小了能源的损耗,提高了用户的使用体验。
实施例三:
如图15 所示,本发明的又一个实施例提出了一种故障检测装置 1500,包括:存储器 1504,其上存储有程序或指令;处理器 1502,用于执行程序或指令时实现如上述任一实施例提供的故障检测方法的步骤。
本发明提供的故障检测装置,当处理器执行存储于存储器上的程序或指令时实现如上述任一实施例提供的故障检测方法的步骤,因此,具有如上述任一实施例提供的故障检测方法具有的容差性较大、准确率高的有益效果,在此不再一一赘述。
实施例四:
本发明的又一个实施例提出了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时实现如上述任一实施例提供的故障检测方法的步骤。
本发明提供的可读存储介质,当其上存储的程序或指令被处理器执行时实现如上述任一实施例提供的故障检测方法的步骤,因此,具有如上述任一实施例提供的故障检测方法具有的容差性较大、准确率高的有益效果,在此不再一一赘述。
实施例五:
如图16 所示,本发明的又一个实施例提出了一种气溶胶雾化装置1600,包括:如上述实施例二提供的故障检测装置 1400;和/或如上述任一实施例提供的可读存储介质 1602。
因此,具有如上述任一实施例提供的故障检测装置以及可读存储介质具有的容差性较大、准确率高的有益效果,在此不再一一赘述。
在本发明中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种故障检测方法,应用于气溶胶雾化装置,其特征在于,所述气溶胶雾化装置包括加热装置,用于加热雾化气溶胶产生基质,所述故障检测方法包括:
    获取所述加热装置的第一阻值,所述第一阻值为所述加热装置运行过程中电阻处于稳态状态下的阻值;
    获取所述加热装置在当前运行过程中的第二阻值;
    根据所述第一阻值和第二阻值,确定所述气溶胶雾化装置处于故障状态。
  2. 根据权利要求1所述的故障检测方法,其特征在于,所述第一阻值为历史运行记录中电阻处于稳态状态下的阻值;
    所述获取所述加热装置的第一阻值,包括:
    确定所述历史运行记录中的第一稳态阶段;
    获取所述第一稳态阶段中的多个第三阻值;
    根据所述多个第三阻值,确定所述第一阻值;
    其中,所述第一阻值包括以下任一项:所述多个第三阻值的算术平均值、所述多个第三阻值的中位数、所述多个第三阻值的滚动平均值。
  3. 根据权利要求2所述的故障检测方法,其特征在于,所述确定所述历史运行记录中的第一稳态阶段,包括:
    获取所述历史运行记录的第一起始时刻和第一结束时刻;
    根据所述第一起始时刻和第一预设时长,确定第二起始时刻,所述第二起始时刻为所述第一稳态阶段的起始时刻;
    根据所述第一结束时刻和第二预设时长,确定第二结束时刻,所述第二结束时刻为所述第一稳态阶段的结束时刻;
    根据所述第二起始时刻和所述第二结束时刻,确定所述第一稳态阶段。
  4. 根据权利要求2 所述的故障检测方法,其特征在于,所述确定所述历史运行记录中的第一稳态阶段,包括:
    根据多个第四阻值和所述历史运行记录的历史运行时长,确定阻值变化曲线;
    将所述阻值变化曲线的曲线斜率达到预设斜率的时刻,作为第三起始时刻,所述第三起始时刻为第一稳态阶段的起始时刻;
    获取所述历史运行记录的第三结束时刻;
    根据所述第三结束时刻和第三预设时长,确定第四结束时刻,所述第四结束时刻为所述第一稳态阶段的结束时刻;
    根据所述第三起始时刻和所述第四结束时刻,确定所述第一稳态阶段。
  5. 根据权利要求2至4中任一项所述的故障检测方法,其特征在于,所述历史运行记录的数量为多个,所述第一阻值的数量与所述历史运行记录的数量相同;
    所述根据所述第一阻值和第二阻值,确定所述气溶胶雾化装置处于故障状态,包括:
    对多个所述第一阻值中每个所述第一阻值与所述第二阻值进行差值计算,以得到多个第一阻值差值;
    确定多个所述第一阻值中对应的多个第一预设差值,所述多个第一预设差值与多个第一阻值对应的所述加热装置的运行时刻相对应;
    基于所述多个第一阻值差值中任一所述第一阻值差值大于相应的所述第一预设差值,确定所述气溶胶雾化装置处于故障状态。
  6. 根据权利要求5所述的故障检测方法,其特征在于,所述确定多个所述第一阻值中对应的多个第一预设差值,包括:
    获取第一预设差值序列,所述第一预设差值序列包括多个所述第一预设差值;
    获取多个所述第一阻值中每个所述第一阻值对应的历史运行记录的运行时刻;
    根据多个所述运行时刻,对多个所述第一阻值进行排序,以得到第一阻值序列;
    将所述第一预设差值序列与所述第一阻值序列建立映射关系,以确定每个所述第一阻值对应的第一预设差值。
  7. 根据权利要求6所述的故障检测方法,其特征在于,所述第一阻值对应的所述运行时刻距离当前时刻的时间差值与所述第一阻值对应的所述第一预设差值正相关。
  8. 根据权利要求1所述的故障检测方法,其特征在于,所述第一阻值为当前运行过程中电阻处于稳态状态下的阻值;
    所述获取所述加热装置的第一阻值,包括:
    获取所述加热装置在当前运行过程中的多个第五阻值,所述第五阻值为当前运行过程中的稳态阶段的阻值;
    根据所述多个第五阻值,确定所述第一阻值;
    其中,所述第一阻值包括以下任一项:所述多个第五阻值的算术平均值、所述多个第五阻值的中位数、所述多个第五阻值的滚动平均值。
  9. 根据权利要求8所述的故障检测方法,其特征在于,所述获取所述加热装置在当前运行过程中的稳态阶段的多个第五阻值,包括:
    获取所述当前运行过程中的第五起始时刻、当前运行时刻及当前运行时长;
    在所述当前运行时长大于第四预设时长的情况下,根据所述第五起始时刻
    和所述第四预设时长,确定第六起始时刻,所述第六起始时刻为所述当前运行过程中的稳态阶段的起始时刻;
    根据所述当前运行时刻和第五预设时长,确定第六结束时刻;
    在所述第六结束时刻晚于所述第六起始时刻的情况下,获取所述第六起始时刻至所述第六结束时刻之间的所述多个第五阻值。
  10. 根据权利要求8所述的故障检测方法,其特征在于,所述获取所述加热装置在当前运行过程中的稳态阶段的多个第五阻值,包括:
    根据多个第六阻值和所述当前运行过程的运行时长,确定阻值变化曲线;将所述阻值变化曲线的曲线斜率达到预设斜率的时刻,作为第七起始时
    刻,所述第七起始时刻为所述当前运行过程中的稳态阶段的起始时刻;
    获取所述当前运行过程中的当前运行时刻;
    根据所述当前运行时刻和第六预设时长,确定第七结束时刻;
    在所述第七结束时刻晚于所述第七起始时刻的情况下,获取所述第七起始时刻至所述第七结束时刻之间的所述多个第五阻值。
  11. 根据权利要求8至10中任一项所述的故障检测方法,其特征在于,所述根据所述第一阻值和第二阻值,确定所述气溶胶雾化装置处于故障状态,包括:
    对所述第一阻值与所述第二阻值进行差值计算,以得到第一阻值差值;基于所述第一阻值差值大于第一预设差值,确定所述气溶胶雾化装置处于故障状态。
  12. 根据权利要求1所述的故障检测方法,其特征在于,还包括:在所述加热装置处于故障状态下,控制所述加热装置停止运行。
  13. 一种故障检测装置,应用于气溶胶雾化装置,其特征在于,所述气溶胶雾化装置包括加热装置,用于加热雾化气溶胶产生基质,所述故障检测装置
    包括:
    获取模块,用于获取所述加热装置的第一阻值,所述第一阻值为所述加热装置运行过程中电阻处于稳态状态下的阻值;
    所述获取模块,还用于获取所述加热装置在当前运行过程中的第二阻值;确定模块,用于根据所述第一阻值和第二阻值,确定所述气溶胶雾化装置处于故障状态。
  14. 一种故障检测装置,其特征在于,包括:
    存储器,其上存储有程序或指令;
    处理器,用于执行所述程序或指令时实现如权利要求1至12中任一项所述的故障检测方法的步骤。
  15. 一种可读存储介质,其上存储有程序或指令,其特征在于,所述程序或指令被处理器执行时实现如权利要求1至12中任一项所述的故障检测方法的步骤。
  16. 一种气溶胶雾化装置,其特征在于,包括:
    如权利要求13或14所述的故障检测装置;或
    如权利要求15所述的可读存储介质。
PCT/CN2023/105228 2022-07-25 2023-06-30 故障检测方法及其装置、可读存储介质和气溶胶雾化装置 WO2024022034A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210879883.2 2022-07-25
CN202210879883.2A CN117491758A (zh) 2022-07-25 2022-07-25 故障检测方法及其装置、可读存储介质和气溶胶雾化装置

Publications (1)

Publication Number Publication Date
WO2024022034A1 true WO2024022034A1 (zh) 2024-02-01

Family

ID=89669600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105228 WO2024022034A1 (zh) 2022-07-25 2023-06-30 故障检测方法及其装置、可读存储介质和气溶胶雾化装置

Country Status (2)

Country Link
CN (1) CN117491758A (zh)
WO (1) WO2024022034A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170245551A1 (en) * 2016-02-25 2017-08-31 Tony Reevell Aerosol-generating systems with liquid level determination and methods of determining liquid level in aerosol-generating systems
WO2017185355A1 (zh) * 2016-04-29 2017-11-02 惠州市吉瑞科技有限公司深圳分公司 一种检测电子烟中烟油是否耗尽的方法
CN109588779A (zh) * 2018-03-27 2019-04-09 深圳瀚星翔科技有限公司 电子雾化设备及其防干烧控制装置
CN110487848A (zh) * 2019-07-30 2019-11-22 深圳麦克韦尔科技有限公司 雾化组件含油量检测方法、装置及电子雾化装置
CN110558617A (zh) * 2019-07-30 2019-12-13 深圳麦克韦尔科技有限公司 电子雾化装置、加热控制方法、装置和存储介质
CN111165914A (zh) * 2019-12-17 2020-05-19 深圳麦克韦尔科技有限公司 雾化器的加热方法、装置、计算机设备和存储介质
CN112353009A (zh) * 2020-12-02 2021-02-12 深圳美众联科技有限公司 气溶胶雾化装置、雾化控制方法、控制装置和存储介质
CN112469295A (zh) * 2018-06-22 2021-03-09 日本烟草产业株式会社 气溶胶生成装置以及使其动作的方法以及程序
CN113854642A (zh) * 2021-09-23 2021-12-31 常州市派腾电子技术服务有限公司 气溶胶生成装置的控制方法、控制装置及气溶胶生成装置
CN114376274A (zh) * 2022-01-14 2022-04-22 深圳麦时科技有限公司 气溶胶产生装置及其控制方法、控制装置和存储介质
CN114468380A (zh) * 2020-10-27 2022-05-13 深圳市合元科技有限公司 气溶胶生成装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170245551A1 (en) * 2016-02-25 2017-08-31 Tony Reevell Aerosol-generating systems with liquid level determination and methods of determining liquid level in aerosol-generating systems
WO2017185355A1 (zh) * 2016-04-29 2017-11-02 惠州市吉瑞科技有限公司深圳分公司 一种检测电子烟中烟油是否耗尽的方法
CN109588779A (zh) * 2018-03-27 2019-04-09 深圳瀚星翔科技有限公司 电子雾化设备及其防干烧控制装置
CN112469295A (zh) * 2018-06-22 2021-03-09 日本烟草产业株式会社 气溶胶生成装置以及使其动作的方法以及程序
US20210106065A1 (en) * 2018-06-22 2021-04-15 Japan Tobacco Inc. Aerosol generation device, and method and program for operating same
CN110487848A (zh) * 2019-07-30 2019-11-22 深圳麦克韦尔科技有限公司 雾化组件含油量检测方法、装置及电子雾化装置
CN110558617A (zh) * 2019-07-30 2019-12-13 深圳麦克韦尔科技有限公司 电子雾化装置、加热控制方法、装置和存储介质
CN111165914A (zh) * 2019-12-17 2020-05-19 深圳麦克韦尔科技有限公司 雾化器的加热方法、装置、计算机设备和存储介质
CN114468380A (zh) * 2020-10-27 2022-05-13 深圳市合元科技有限公司 气溶胶生成装置
CN112353009A (zh) * 2020-12-02 2021-02-12 深圳美众联科技有限公司 气溶胶雾化装置、雾化控制方法、控制装置和存储介质
CN113854642A (zh) * 2021-09-23 2021-12-31 常州市派腾电子技术服务有限公司 气溶胶生成装置的控制方法、控制装置及气溶胶生成装置
CN114376274A (zh) * 2022-01-14 2022-04-22 深圳麦时科技有限公司 气溶胶产生装置及其控制方法、控制装置和存储介质

Also Published As

Publication number Publication date
CN117491758A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
EP3841899B1 (en) Temperature control method of electronic cigarette, electronic cigarette and computer storage medium
CN104296386B (zh) 燃气热水器的控制方法、控制系统及燃气热水器
CN110326817B (zh) 一种电子烟电源输出功率控制方法及电子烟
CN107205479A (zh) 一种电子烟雾化控制方法以及电子烟控制电路
WO2017031681A1 (zh) 电子烟及其控制方法
WO2021120808A1 (zh) 雾化器的加热方法、装置、计算机设备和存储介质
WO2022247563A1 (zh) 雾化控制方法、充电设备、雾化设备及电子雾化系统
CN110553351B (zh) 空调器设备负荷率的优化方法与空调云群控系统
WO2023134358A1 (zh) 气溶胶产生装置及其控制方法、控制装置和存储介质
JP2004177179A (ja) 酸素センサの劣化検出装置
CN109883010A (zh) 一种空调的温度控制方法、装置、存储介质及空调
WO2024022034A1 (zh) 故障检测方法及其装置、可读存储介质和气溶胶雾化装置
WO2022166275A1 (zh) 一种蒸汽发生器控制方法、装置、蒸汽发生器及蒸烤箱
CN110572032B (zh) 一种Boost变换器的自校正-无差拍电流控制方法
CN110209217A (zh) 一种基于不定周期的pid的蒸箱温度的控制方法
CN112050179A (zh) 蒸汽发生器自适应控制方法及蒸汽发生系统
CN110595071A (zh) 家用电器的控制方法及家用电器
CN109375513A (zh) 一种氮氧传感器控制系统
CN106642536B (zh) 一种空调器负荷智能匹配方法
WO2023134302A1 (zh) 气溶胶产生装置及其控制方法、控制装置和存储介质
CN114223969A (zh) 加热不燃烧电子烟温度控制方法、装置、电子烟与介质
CN109026404B (zh) 一种发动机转速控制方法、控制装置以及转速控制器
CN113854642A (zh) 气溶胶生成装置的控制方法、控制装置及气溶胶生成装置
Wei et al. Research on a soft real-time scheduling algorithm based on hybrid adaptive control architecture
CN108549215A (zh) 一种无刷直流电机模糊化自适应pid控制优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845247

Country of ref document: EP

Kind code of ref document: A1