WO2023134302A1 - 气溶胶产生装置及其控制方法、控制装置和存储介质 - Google Patents

气溶胶产生装置及其控制方法、控制装置和存储介质 Download PDF

Info

Publication number
WO2023134302A1
WO2023134302A1 PCT/CN2022/133129 CN2022133129W WO2023134302A1 WO 2023134302 A1 WO2023134302 A1 WO 2023134302A1 CN 2022133129 W CN2022133129 W CN 2022133129W WO 2023134302 A1 WO2023134302 A1 WO 2023134302A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
temperature
voltage
control
power supply
Prior art date
Application number
PCT/CN2022/133129
Other languages
English (en)
French (fr)
Inventor
李祥忠
李亚飞
黄鹏飞
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2023134302A1 publication Critical patent/WO2023134302A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present application relates to the technical field of atomization, and in particular to an aerosol generating device, a control method thereof, a control device and a storage medium.
  • the aerosol-forming substrate is heated by a heating element to achieve atomization to generate aerosol.
  • the heating element needs to be maintained at a certain temperature to atomize the aerosol to form a substrate, so it is necessary to obtain the current temperature of the heating element as feedback, and then perform heating control based on the current temperature. Therefore, in order to realize the reliable operation of the aerosol generating device, it is necessary to accurately obtain the temperature of the heating element.
  • An aerosol generating device comprising:
  • a heating element for heating the aerosol-forming substrate to generate an aerosol
  • a detection component is electrically connected to the heating element and the power supply, respectively;
  • the control component is electrically connected to the detection component, and is used to obtain the electrical parameters of the detection component, determine the temperature of the heating element according to the preset corresponding relationship, and determine the temperature of the heating element according to the temperature of the heating element and the preset target Temperature adjustment of the electric energy provided by the power supply to the heating element, so that the actual temperature of the heating element is kept within the target temperature range; wherein, the corresponding relationship is the electrical parameters of the detection component and the heating element The corresponding relationship between the temperature.
  • the detection component includes: a reference resistor and a detection switch
  • the first end of the detection switch is electrically connected to the power supply, the second end of the detection switch is electrically connected to the first end of the reference resistor, and the control end of the detection switch is electrically connected to the control assembly;
  • the second end of the reference resistor is electrically connected to the heating element; the electrical parameter is the voltage across the reference resistor;
  • the control component is configured to obtain a first voltage at a first end of the reference resistor and a second voltage at a second end of the reference resistor, and determine the first voltage according to the first voltage, the second voltage, and the corresponding relationship.
  • the temperature of the heating element it is also used to control the detection switch to be turned on or off, so as to realize the detection mode on or off.
  • control component includes:
  • the first end of the power switch is connected to the heating element, and the second end of the power switch is electrically connected to the power supply;
  • a controller electrically connected to the control terminal of the detection switch, the reference resistor, and the control terminal of the power switch, and used to obtain a first voltage at the first terminal of the reference resistor and a first voltage of the first terminal of the reference resistor.
  • the second voltage at both ends, determine the temperature of the heating element according to the first voltage, the second voltage and the corresponding relationship, and output a PWM signal to the power according to the temperature of the heating element and the preset target temperature switch; the PWM signal is used to control the power switch to periodically switch between on and off states, so that the actual temperature of the heating element is kept within a target temperature range.
  • the controller is configured to control the detection switch to turn on when the PWM signal controls the power switch to be in the off state, and obtain the first voltage and the second voltage to determine temperature of the heating element.
  • the corresponding relationship is:
  • T is the temperature of the heating element
  • K is a preset temperature coefficient
  • V1 is the first voltage
  • V2 is the second voltage
  • b is a preset correction constant.
  • a control method for an aerosol generating device includes a heating element, a power supply and a detection component, the heating element is used to heat an aerosol-forming substrate to generate an aerosol; the detection component is respectively connected to the The heating element and the power supply are electrically connected;
  • control methods include:
  • the correspondence is the correspondence between the electrical parameters of the detection component and the temperature of the heating element
  • the electric energy provided by the power supply to the heating element is adjusted according to the temperature of the heating element and a preset target temperature, so as to keep the actual temperature of the heating element within a target temperature range.
  • the detection component includes a reference resistor, the first end of the reference resistor is electrically connected to the power supply, and the second end of the reference resistor is electrically connected to the heating element; the detection component
  • the electrical parameters include a first voltage at the first terminal of the reference resistor and a second voltage at the second terminal of the reference resistor;
  • the determining the temperature of the heating element according to the preset corresponding relationship includes:
  • the temperature of the heating element is determined according to the first voltage, the second voltage and the corresponding relationship.
  • the aerosol atomization device further includes a power switch, the first end of the power switch is connected to the heating element, and the second end of the power switch is electrically connected to the power supply;
  • the adjusting the electric energy provided by the power supply for the heating element according to the temperature of the heating element and the preset target temperature includes:
  • the PWM signal is used to control the power switch to periodically switch between on and off states, so as to keep the actual temperature of the heating element within a target temperature range.
  • the detection component further includes a detection switch, the first end of the detection switch is electrically connected to the power supply, and the second end of the detection switch is electrically connected to the first end of the reference resistor ;
  • the detection component Before performing the acquisition of the electrical parameters of the detection component, it also includes:
  • the corresponding relationship is:
  • T is the temperature of the heating element
  • K is a preset temperature coefficient
  • V1 is the first voltage
  • V2 is the second voltage
  • b is a preset correction constant.
  • a control device for an aerosol generating device includes a heating element, a power supply and a detection component, the heating element is used to heat an aerosol-forming substrate to generate an aerosol; the detection component is respectively connected to the The heating element and the power supply are electrically connected;
  • the control device includes:
  • a parameter acquisition module configured to acquire electrical parameters of the detection component
  • a temperature determination module configured to determine the temperature of the heating element according to a preset correspondence; wherein the correspondence is the correspondence between the electrical parameters of the detection component and the temperature of the heating element;
  • the electric energy adjustment module is configured to adjust the electric energy provided by the power supply to the heating element according to the temperature of the heating element and the preset target temperature, so as to keep the actual temperature of the heating element within the target temperature range.
  • An aerosol atomization device comprising:
  • a heating element for heating the aerosol-forming substrate to generate an aerosol
  • a detection component is electrically connected to the heating element and the power supply, respectively;
  • the control component includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the correspondence is the correspondence between the electrical parameters of the detection component and the temperature of the heating element
  • the electric energy provided by the power supply to the heating element is adjusted according to the temperature of the heating element and a preset target temperature, so as to keep the actual temperature of the heating element within a target temperature range.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the correspondence is the correspondence between the electrical parameters of the detection component and the temperature of the heating element
  • the electric energy provided by the power supply to the heating element is adjusted according to the temperature of the heating element and a preset target temperature, so as to keep the actual temperature of the heating element within a target temperature range.
  • the detection component is electrically connected to the power supply and the heating element, because when the temperature of the heating element rises, the resistance value will also increase, which in turn will make the detection component electrically connected to it electrical parameters change. Therefore, the temperature of the heating element can be determined by detecting the correspondence between the electrical parameters of the component and the temperature of the heating element, and then according to the temperature of the heating element and the preset target temperature, the power supply provided by the power supply to the heating element can be adjusted to make the heating element The actual temperature is kept within the target temperature range, thereby enabling accurate temperature detection.
  • Fig. 1 is a structural block diagram of an aerosol generating device in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a circuit structure of an aerosol generating device in another embodiment of the present application.
  • Fig. 3 is a schematic diagram of a circuit structure of an aerosol generating device in another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a control method for an aerosol generating device in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a control method for an aerosol generating device in another embodiment of the present application.
  • Fig. 6 is a structural block diagram of a control device for an aerosol generating device in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an aerosol generating device in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an aerosol generating device in an embodiment of the present application.
  • first and second used in this application may be used to describe various technical features herein, but these technical features are not limited by these terms. These terms are only used to distinguish a first feature from another element feature.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection” and the like if there is transmission of electrical signals or data between the connected objects.
  • an aerosol generating device including a heating element 110 , a power supply 120 , a detection component 130 and a control component 140 .
  • the heating element 110 is used to heat the aerosol-forming substrate to generate an aerosol.
  • the heating element 110 can be a heating wire, which is equivalent to a resistor.
  • the power supply 120 is electrically connected to the heating element 110 and used to output electric energy to the heating element 110 to heat the heating element 110 .
  • the detection component 130 is electrically connected to the heating element 110 and the power source 120 respectively.
  • the control component 140 is electrically connected with the detection component 130, and is used to obtain the electrical parameters of the detection component 130, determine the temperature of the heating element 110 according to the preset corresponding relationship, and adjust the power supply 120 according to the temperature of the heating element 110 and the preset target temperature
  • the electric energy provided to the heating element 110 keeps the actual temperature of the heating element 110 within the target temperature range.
  • the corresponding relationship is the corresponding relationship between the electrical parameter of the detection component 130 and the temperature of the heating element 110 .
  • the detection component 130 is electrically connected to the power source 120 and the heating element 110 . As the temperature of the heating element 110 rises, the resistance value also rises, which in turn causes the electrical parameters of the detection component 130 electrically connected thereto to change. Therefore, the temperature of the heating element 110 can be determined by detecting the correspondence between the electrical parameters of the component 130 and the temperature of the heating element 110; Electric energy is used to keep the actual temperature of the heating element 110 within the target temperature range.
  • the electrical parameters of the detection component 130 may be resistance value, voltage across terminals, power, current and so on.
  • the voltage across the detection component 130 is taken as an example for illustration.
  • control component 140 can control the heating temperature of the heating element 110 by controlling the output power of the power supply 120 to the heating element 110 or the continuous output time, so that the heating element 110 can maintain a stable atomization gas generation temperature.
  • the temperature of the sol It can be understood that there is another connection path between the power supply 120 and the heating element 110 , that is, the power supply 120 supplies power to the heating component through this path when no detection is required.
  • the resistance of the heating element 110 will change with temperature. As the temperature increases, the resistance of the heating element 110 also increases.
  • the control component 140 can keep the resistance value of the detection component 130 constant by limiting the power-on time of the detection component 130 . Based on the principle of voltage division, the temperature of the heating element 110 can be reflected by detecting the voltage across the component 130 , and the temperature of the heating element 110 can be determined according to the corresponding relationship between the voltage across the detecting component 130 and the preset.
  • any connection method that can form a voltage dividing structure between the detection component 130 and the heating element can be selected, and is not limited to the connection method shown in FIG. 1 .
  • the above-mentioned aerosol generating device constitutes a voltage dividing circuit by setting the detection component 130 and the heating element 110. Since the voltage across the detection component 130 depends on the resistance value of the heating element 110 and the resistance value of the detection component 130, the heating element 110 will , the resistance value will also change accordingly, and then the voltage across the detection component 130 will change, so the temperature of the heating element 110 can be determined through the corresponding relationship between the voltage across the detection component 130 and the temperature of the heating element 110, and then according to the heating The temperature of the element 110 and the preset target temperature are used to adjust the electric energy provided by the power supply 120 to the heating element 110, so that the actual temperature of the heating element 110 is kept within the target temperature range, thereby realizing accurate temperature detection.
  • the circuit design of the aerosol generating device provided by the present application is simpler and the cost is lower. Compared with temperature detection by directly detecting the resistance of the heating element 110 , since the detection component 130 is not affected by temperature, the measurement accuracy is higher.
  • the detection component 130 includes: a reference resistor RS and a detection switch Q1 .
  • the first end of the detection switch Q1 is electrically connected to the power supply 120
  • the second end of the detection switch Q1 is electrically connected to the first end of the reference resistor RS
  • the control end of the detection switch Q1 is electrically connected to the control component 140 .
  • the second end of the reference resistor RS is electrically connected to the heating element 110 .
  • the electrical parameter is the voltage across the reference resistor RS.
  • the control component 140 is used to obtain the first voltage V1 of the first end of the reference resistor RS and the second voltage V2 of the second end of the reference resistor RS, and determine the heating element 110 according to the first voltage V1, the second voltage V2 and the corresponding relationship. Temperature; it is also used to control the detection switch Q1 to be turned on or off, so as to realize the detection mode to be turned on or off.
  • the voltage output by the power supply is VS.
  • the control component 140 controls the detection switch Q1 to be turned on, and at this time, the power supply provides electric energy (namely, the power supply voltage VS) to the series reference resistor RS and the heating element 110 .
  • the control component 140 acquires the voltages across the reference resistor RS, that is, the first voltage V1 and the second voltage V2, and the first voltage V1 is the output voltage of the power supply 120, so the first voltage V1 will be maintained at a relatively stable voltage range, and the second voltage V2 will be affected by the change of the resistance of the heating element 110; in the case that the first voltage V1 is not abnormal, the second voltage V2 can be used to characterize the resistance of the heating element 110, so through the first The first voltage V1, the second voltage V2 and the preset corresponding relationship can determine the current temperature of the heating element 110 .
  • control component 140 acquires multiple groups of the first voltage V1 and the second voltage V2 in the detection mode, and obtains the average values after screening out the respective maximum and minimum values of the first voltage V1 and the second voltage V2 Finally, the average value of the first voltage V1 and the average value of the second voltage V2 are used to determine the temperature of the heating element 110 , thereby reducing detection errors.
  • control component 140 controls the detection switch Q1 to be turned off, cutting off the branch where the reference resistor RS is located, and at this time the power supply 120 supplies power to the heating element 110 through another branch.
  • the detection switch Q1 forms a series voltage divider with the reference resistor RS and the heating element, and the resistance of the heating element 110 changes , the first voltage V1 will also undergo a sudden change. At this time, the first voltage V1 and the second voltage V2 are used together for temperature detection, which can still ensure the accuracy of identification.
  • the detection switch Q1 may be an electronic switch such as a triode, a MOS transistor, and an IGBT.
  • the electrical parameter of the detection component 130 may also be the resistance value of the reference resistor RS, the power of the reference resistor RS or the current flowing through the reference resistor RS.
  • the control component 140 includes a power switch Q2 and a controller 141 .
  • a first end of the power switch Q2 is connected to the heating element 110 , and a second end of the power switch Q2 is electrically connected to the power source 120 .
  • the controller 141 is electrically connected to the control terminal of the detection switch Q1, the reference resistor RS, and the control terminal of the power switch Q2 respectively, and is used to obtain the first voltage V1 of the first terminal of the reference resistor RS and the second voltage V1 of the second terminal of the reference resistor RS.
  • the voltage V2 determines the temperature of the heating element 110 according to the first voltage V1, the second voltage V2 and the corresponding relationship, and outputs a PWM signal to the power switch Q2 according to the temperature of the heating element 110 and the preset target temperature.
  • the PWM signal is used to control the power switch Q2 to periodically switch between on and off states, so as to keep the actual temperature of the heating element 110 within the target temperature range.
  • the controller 141 can change the output power of the power supply 120 by changing the duty ratio of the PWM signal, thereby adjusting the temperature of the heating element 110, and determining the temperature of the heating element 110 according to the first voltage V1, the second voltage V2 and the corresponding relationship;
  • adjust the PWM signal increase the output power of the power supply 120, and increase the temperature of the heating element 110;
  • the temperature of the heating element 110 is higher than the preset target temperature, then adjust the PWM signal. signal, the output power of the power supply 120 is reduced, and the temperature of the heating element 110 is reduced, thereby realizing precise temperature control.
  • the controller 141 is used to control the detection switch Q1 to turn on when the PWM signal controls the power switch Q2 to be in the off state, and obtain the first voltage V1 and the second voltage V2 to determine the temperature of the heating element 110 .
  • the power switch Q2 When the power switch Q2 is turned on, the second voltage V2 will be pulled up, and the detection cannot be realized, so it needs to be detected when the power switch Q2 is turned off.
  • the power switch Q2 In order not to affect the normal atomization, the power switch Q2 can be controlled by the PWM signal to be at In the off state, the control detection switch Q1 is turned on to realize the detection.
  • the corresponding relationship is:
  • the temperature coefficient K and the correction constant b are preset by means of a pre-calibration, which can be realized in the production stage. Specifically, measure multiple temperature values of the heating element 110 during the heating process, and record the first voltage V1 and the second voltage V2 corresponding to each temperature value, calculate the temperature coefficient K and the correction constant b according to the above relational formula, and realize default.
  • a control method for an aerosol generating device includes a heating element, a power supply and a detection assembly; the heating element is used to heat the aerosol-forming substrate to Generate aerosol; the detection components are electrically connected to the heating element and the power supply;
  • control methods include:
  • Step 401 obtaining electrical parameters of the detection component
  • Step 402 determine the temperature of the heating element according to the preset corresponding relationship; wherein, the corresponding relationship is the corresponding relationship between the electrical parameters of the detection component and the temperature of the heating element;
  • Step 403 adjusting the electric energy provided by the power supply to the heating element according to the temperature of the heating element and the preset target temperature, so as to keep the actual temperature of the heating element within the target temperature range.
  • the detection component includes a reference resistor; the first end of the reference resistor is electrically connected to the power supply, and the second end of the reference resistor is electrically connected to the heating element;
  • the voltage at the terminal includes a first voltage at the first terminal of the reference resistor and a second voltage at the second terminal of the reference resistor.
  • the determining the temperature of the heating element according to the preset corresponding relationship includes:
  • the temperature of the heating element is determined according to the first voltage, the second voltage and the corresponding relationship.
  • the aerosol atomization device further includes a power switch, the first end of the power switch is connected to the heating element, and the second end of the power switch is electrically connected to the power supply;
  • the electric energy provided by the power supply for the heating element is adjusted according to the temperature of the heating element and the preset target temperature, including:
  • the PWM signal is used to control the power switch to periodically switch between the on state and the off state, so that the actual temperature of the heating element can be kept within the target temperature range.
  • the detection component further includes a detection switch, the first end of the detection switch is electrically connected to the power supply, and the second end of the detection switch is electrically connected to the first end of the reference resistor;
  • control method Before performing the acquisition of the electrical parameters of the detection component, the control method further includes:
  • Step 501 judging whether the power switch is in an off state according to the PWM signal.
  • Step 502 if yes, control the detection switch to be turned on.
  • Step 503 if the power switch is in the on state, control the detection switch to be turned off.
  • the correspondence is:
  • T is the temperature of the heating element
  • K is a preset temperature coefficient
  • V1 is a first voltage
  • V2 is a second voltage
  • b is a preset correction constant.
  • control method used for the aerosol generating device please refer to the above definition for the aerosol generating device, and details will not be repeated here.
  • steps in the flowcharts of FIG. 4 to FIG. 5 are shown sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in FIGS. 4 to 5 may include multiple steps or stages. These steps or stages are not necessarily performed at the same time, but may be performed at different times. The steps or stages The execution sequence is not necessarily performed sequentially, but may be performed alternately or alternately with other steps or at least a part of steps or stages in other steps.
  • a control device 600 for an aerosol generating device includes a heating element, a power supply and a detection assembly; the heating element is used to heat the aerosol forming substrate to generate aerosol; the detection components are electrically connected to the heating element and the power supply;
  • the control device includes:
  • a temperature determination module 602 configured to determine the temperature of the heating element according to a preset correspondence; wherein, the correspondence is the correspondence between the electrical parameters of the detection component and the temperature of the heating element;
  • the electric energy adjustment module 603 is used for adjusting the electric energy provided by the power supply to the heating element according to the temperature of the heating element and the preset target temperature, so as to keep the actual temperature of the heating element within the target temperature range.
  • Each module in the above-mentioned control device for the aerosol generating device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • an aerosol atomization device including: a heating element, a power supply, a detection component and a control component.
  • the heating element is used to heat the aerosol forming substrate to generate aerosol;
  • the power supply is electrically connected to the heating element;
  • the detection component is electrically connected to the heating element and the power supply respectively;
  • the control component includes a memory and a processor, and the memory stores A computer program, the processor implements the following steps when executing the computer program:
  • the corresponding relationship is the corresponding relationship between the electrical parameters of the detection component and the temperature of the heating element
  • the electric energy provided by the power supply to the heating element is adjusted according to the temperature of the heating element and the preset target temperature, so as to keep the actual temperature of the heating element within the target temperature range.
  • the temperature of the heating element is determined according to the first voltage, the second voltage and the corresponding relationship.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the corresponding relationship is the corresponding relationship between the electrical parameters of the detection component and the temperature of the heating element
  • the electric energy provided by the power supply to the heating element is adjusted according to the temperature of the heating element and the preset target temperature, so as to keep the actual temperature of the heating element within the target temperature range.
  • the temperature of the heating element is determined according to the first voltage, the second voltage and the corresponding relationship.
  • any references to memory, storage, database or other media used in the various embodiments provided in the present application may include at least one of non-volatile memory and volatile memory.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory can include Random Access Memory (RAM) or external cache memory.
  • RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).
  • the aerosol generating device can be a heat-not-burn electronic cigarette
  • the aerosol-forming substrate can be a solid aerosol-forming substrate 200, by inserting the solid aerosol-forming substrate 200 into In an aerosol generating device, heat is used to generate an aerosol for inhalation by the user.
  • the aerosol generating device can use a liquid aerosol-forming substrate for atomization; the aerosol generating device is provided with a liquid storage chamber 150 for accommodating the aerosol-forming substrate, and the heating element passes through The aerosol-forming substrate in the liquid storage chamber is heated to generate an aerosol for inhalation by the user.

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

一种气溶胶产生装置及其控制方法、控制装置和存储介质,气溶胶产生装置包括:加热元件(110),用于加热气溶胶形成基质以产生气溶胶;电源(120),与加热元件(110)电连接;检测组件(130),分别与加热元件(110)、电源(120)电连接;控制组件(140),用于获取检测组件(130)的电性参数,根据预设的对应关系确定加热元件(110)的温度,并根据加热元件(110)的温度及预设的目标温度调节电源(120)为加热元件(110)提供的电能,以使加热元件(110)的实际温度保持在目标温度区间内;其中,对应关系为检测组件(130)的电性参数与加热元件(110)温度之间的对应关系。能够精准检测温度实现可靠温控。

Description

气溶胶产生装置及其控制方法、控制装置和存储介质
相关申请
本申请要求2022年1月14日申请的,申请号为202210044758.X,名称为“气溶胶产生装置及其控制方法、控制装置和存储介质”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及雾化技术领域,尤其涉及一种气溶胶产生装置及其控制方法、控制装置和存储介质。
背景技术
随着雾化技术的发展,出现了气溶胶雾化技术,通过加热元件加热气溶胶形成基质实现雾化,以产生气溶胶。加热元件需要维持在一定的温度下才能雾化气溶胶形成基质,因此需要获得加热元件的当前温度作为反馈,再基于当前温度进行加热控制。所以要实现气溶胶产生装置的可靠工作,需要精准获取加热元件的温度。
发明内容
基于此,有必要针对上述技术问题,提供一种能够精准获取温度的气溶胶产生装置及其控制方法、控制装置和存储介质。
一种气溶胶产生装置,包括:
加热元件,用于加热气溶胶形成基质以产生气溶胶;
电源,与所述加热元件电连接;
检测组件,分别与所述加热元件、所述电源电连接;
控制组件,与所述检测组件电连接,用于获取所述检测组件的电性参数,根据预设的对应关系确定所述加热元件的温度,并根据所述加热元件的温度及预设的目标温度调节所述电源为所述加热元件提供的电能,以使所述加热元件的实际温度保持在目标温度区间内;其中,所述对应关系为所述检测组件的电性参数与所述加热元件的温度之间的对应关系。
在其中一个实施例中,所述检测组件包括:参考电阻及检测开关;
所述检测开关的第一端与所述电源电连接,所述检测开关的第二端与所述参考电阻的 第一端电连接,所述检测开关的控制端与所述控制组件电连接;
所述参考电阻的第二端与所述加热元件电连接;所述电性参数为所述参考电阻两端的电压;
所述控制组件用于获取所述参考电阻的第一端的第一电压以及所述参考电阻的第二端的第二电压,并根据所述第一电压、第二电压及所述对应关系确定所述加热元件的温度;还用于控制所述检测开关导通或断开,以实现检测模式的开启或关闭。
在其中一个实施例中,所述控制组件包括:
功率开关,所述功率开关的第一端与所述加热元件连接,所述功率开关的第二端与所述电源电连接;
控制器,分别与所述检测开关的控制端、所述参考电阻、所述功率开关的控制端电连接,用于获取所述参考电阻的第一端的第一电压以及所述参考电阻的第二端的第二电压,根据所述第一电压、第二电压及所述对应关系确定所述加热元件的温度,并根据所述加热元件的温度及预设的目标温度输出PWM信号至所述功率开关;所述PWM信号用于控制所述功率开关周期性地在导通和关断状态之间进行切换,以使所述加热元件的实际温度保持在目标温度区间内。
在其中一个实施例中,所述控制器用于在所述PWM信号控制所述功率开关处于关断状态时,控制所述检测开关导通,并获取所述第一电压和第二电压,以确定所述加热元件的温度。
在其中一个实施例中,所述对应关系为:
T=K*V2(V1-V2)+b;
其中,T为所述加热元件的温度;K为预设的温度系数;V1为所述第一电压,V2为所述第二电压;b为预设的修正常数。
一种用于气溶胶产生装置的控制方法,所述气溶胶产生装置包括加热元件、电源及检测组件,所述加热元件用于加热气溶胶形成基质以产生气溶胶;所述检测组件分别与所述加热元件、所述电源电连接;
所述控制方法包括:
获取检测组件的电性参数;
根据预设的对应关系确定所述加热元件的温度;其中,所述对应关系为所述检测组件的电性参数与所述加热元件温度之间的对应关系;
根据所述加热元件的温度及预设目标温度调节所述电源为所述加热元件提供的电能,以使所述加热元件的实际温度保持在目标温度区间内。
在其中一个实施例中,所述检测组件包括参考电阻,所述参考电阻的第一端与所述电源电连接,所述参考电阻的第二端与所述加热元件电连接;所述检测组件的电性参数包括所述参考电阻第一端的第一电压及所述参考电阻第二端的第二电压;
所述根据预设的对应关系确定所述加热元件的温度,包括:
根据所述第一电压、第二电压及所述对应关系确定所述加热元件的温度。
在其中一个实施例中,所述气溶胶雾化装置还包括功率开关,所述功率开关的第一端与所述加热元件连接,所述功率开关的第二端与所述电源电连接;
所述根据所述加热元件的温度及预设目标温度调节所述电源为所述加热元件提供的电能,包括:
根据所述加热元件的温度及预设的目标温度输出PWM信号至所述功率开关;
其中,所述PWM信号用于控制所述功率开关周期性地在导通和关断状态之间进行切换,以使所述加热元件的实际温度保持在目标温度区间内。
在其中一个实施例中,所述检测组件还包括检测开关,所述检测开关的第一端与所述电源电连接,所述检测开关的第二端与所述参考电阻的第一端电连接;
执行所述获取检测组件的电性参数之前,还包括:
根据所述PWM信号判断所述功率开关是否处于关断状态;
若是,则控制所述检测开关导通。
在其中一个实施例中,所述对应关系为:
T=K*V2(V1-V2)+b;
其中,T为所述加热元件的温度;K为预设的温度系数;V1为所述第一电压,V2为所述第二电压;b为预设的修正常数。
一种用于气溶胶产生装置的控制装置,所述气溶胶产生装置包括加热元件、电源及检测组件,所述加热元件用于加热气溶胶形成基质以产生气溶胶;所述检测组件分别与所述加热元件、所述电源电连接;
所述控制装置包括:
参数获取模块,用于获取检测组件的电性参数;
温度确定模块,用于根据预设的对应关系确定所述加热元件的温度;其中,所述对应关系为所述检测组件的电性参数与所述加热元件温度之间的对应关系;
电能调节模块,用于根据所述加热元件的温度及预设目标温度调节所述电源为所述加热元件提供的电能,以使所述加热元件的实际温度保持在目标温度区间内。
一种气溶胶雾化装置,包括:
加热元件,用于加热气溶胶形成基质以产生气溶胶;
电源,与所述加热元件电连接;
检测组件,分别与所述加热元件、所述电源电连接;
控制组件,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取检测组件的电性参数;
根据预设的对应关系确定所述加热元件的温度;其中,所述对应关系为所述检测组件的电性参数与所述加热元件温度之间的对应关系;
根据所述加热元件的温度及预设目标温度调节所述电源为所述加热元件提供的电能,以使所述加热元件的实际温度保持在目标温度区间内。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取检测组件的电性参数;
根据预设的对应关系确定所述加热元件的温度;其中,所述对应关系为所述检测组件的电性参数与所述加热元件温度之间的对应关系
根据所述加热元件的温度及预设目标温度调节所述电源为所述加热元件提供的电能,以使所述加热元件的实际温度保持在目标温度区间内。
上述气溶胶产生装置及其控制方法、控制装置和存储介质,检测组件与电源及加热元件电连接,由于加热元件在温度升高时,阻值也会上升,进而会使得与其电连接的检测组件的电性参数发生变化。因此可以通过检测组件的电性参数与加热元件温度之间的对应关系确定加热元件的温度,再根据加热元件的温度与预设目标温度来调节电源为加热元件提供的电能,以使加热元件的实际温度保持在目标温度区间内,由此能够实现精准温度检测。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中气溶胶产生装置的结构框图。
图2为本申请另一实施例中气溶胶产生装置的电路结构示意图。
图3为本申请又一实施例中气溶胶产生装置的电路结构示意图。
图4为本申请一实施例中用于气溶胶产生装置的控制方法的流程示意图。
图5为本申请另一实施例中用于气溶胶产生装置的控制方法的流程示意图。
图6为本申请一实施例中用于气溶胶产生装置的控制装置的结构框图。
图7为本申请一实施例中气溶胶产生装置的结构示意图。
图8为本申请一实施例中气溶胶产生装置的结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种技术特征,但这些技术特征不受这些术语限制。这些术语仅用于将第一个特征与另一个元件特征。
需要说明的是,当一个元件被认为是“连接”另一个元件时,它可以是直接连接到另一个元件,或者通过居中元件连接另一个元件。此外,以下实施例中的“连接”,如果被连接的对象之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。
如图1所示,本申请实施例中提供了一种气溶胶产生装置,包括加热元件110、电源120、检测组件130及控制组件140。
其中,加热元件110用于加热气溶胶形成基质以产生气溶胶。加热元件110可以为一个发热丝,等效为一个电阻器。电源120与加热元件110电连接,用于向加热元件110输出电能,以使加热元件110加热。检测组件130分别与加热元件110、电源120电连接。控制组件140与检测组件130电连接,用于获取检测组件130的电性参数,根据预设的对应关系确定加热元件110的温度,并根据加热元件110的温度及预设的目标温度调节电源120为加热元件110提供的电能,以使加热元件110的实际温度保持在目标温度区间内。 其中,对应关系为检测组件130的电性参数与加热元件110的温度之间的对应关系。
检测组件130与电源120及加热元件110电连接。由于加热元件110在温度升高时,阻值也会上升,进而会使得与其电连接的检测组件130的电性参数发生变化。因此可以通过检测组件130的电性参数与加热元件110的温度之间的对应关系确定加热元件110的温度;再根据加热元件110的温度与预设目标温度来调节电源120为加热元件110提供的电能,以使加热元件110的实际温度保持在目标温度区间内。
在一个实施例中,检测组件130的电性参数可以是电阻值、两端电压、功率、电流等。本申请实施例中以检测组件130的两端电压为例进行说明。
在一个实施例中,控制组件140通过控制电源120向加热元件110输出的功率或者持续输出的时间,能够对加热元件110的加热温度进行控制,以使加热元件110维持在能够稳定雾化产生气溶胶的温度。可以理解的是,电源120还与加热元件110存在另一连接通路,即在不需要进行检测时,电源120通过该通路对加热组件进行供电。
加热元件110的阻值会随温度的变化发生改变。在温度升高时,加热元件110的阻值也会上升。控制组件140可以通过限制检测组件130的通电时间,保持检测组件130的阻值不变。基于分压原理,通过检测组件130两端的电压即可反映加热元件110的温度,根据检测组件130两端电压与预设的对应关系可以确定出加热元件110的温度。
需要说明的是,检测组件130与加热元件110及电源120的连接方式除了图1中所示出的将检测组件130设置于加热元件110与电源120之间之外,还可以将检测组件130设置于加热元件110与地之间,即任何能够将检测组件130与加热元件构成分压结构的连接方式都可以选择,并不限制于图1所示的连接方式。
上述气溶胶产生装置,通过设置检测组件130与加热元件110构成分压电路,由于检测组件130两端的电压取决于加热元件110的阻值与检测组件130的阻值,加热元件110在温度变化时,阻值也会随之变化,进而使得检测组件130两端的电压发生改变,因此可以通过检测组件130两端的电压与加热元件110的温度之间的对应关系确定加热元件110的温度,再根据加热元件110的温度与预设目标温度来调节电源120为加热元件110提供的电能,以使加热元件110的实际温度保持在目标温度区间内,由此能够实现精准温度检测。另外,相比于采用温度传感器进行温度测量的气溶胶产生装置,本申请提供的气溶胶产生装置的电路设计更为简单,成本也更低。与直接检测加热元件110的阻值进行温度检测相比,由于检测组件130不会受到温度影响,因此测量精度更高。
如图2所示,在一个实施例中,检测组件130包括:参考电阻RS及检测开关Q1。其中,检测开关Q1的第一端与电源120电连接,检测开关Q1的第二端与参考电阻RS的第 一端电连接,检测开关Q1的控制端与控制组件140电连接。参考电阻RS的第二端与加热元件110电连接。电性参数为参考电阻RS两端的电压。控制组件140用于获取参考电阻RS的第一端的第一电压V1以及参考电阻RS的第二端的第二电压V2,并根据第一电压V1、第二电压V2及对应关系确定加热元件110的温度;还用于控制检测开关Q1导通或断开,以实现检测模式的开启或关闭。
其中,电源输出的电压为VS。在需要进行检测时,控制组件140控制检测开关Q1导通,此时电源向串联的参考电阻RS和加热元件110提供电能(即电源电压VS)。控制组件140在此过程中获取参考电阻RS两端的电压,即第一电压V1和第二电压V2,而第一电压V1即为电源120的输出电压,因此第一电压V1会维持在相对稳定的电压范围内,而第二电压V2则会受到加热元件110阻值变化的影响;在第一电压V1未出现异常的情况下,第二电压V2可用于表征加热元件110的阻值,因此通过第一电压V1、第二电压V2及预设的对应关系可以确定加热元件110当前的温度。
在一个实施例中,控制组件140在检测模式下会获取多组第一电压V1与第二电压V2,筛除第一电压V1、第二电压V2各自的最大值和最小值后分别取平均值,最终采用第一电压V1的平均值和第二电压V2的平均值来确定加热元件110的温度,由此降低检测误差。
在需要关闭检测模式时,控制组件140控制检测开关Q1断开,切断参考电阻RS所在支路,此时电源120则通过另一支路为加热元件110供电。
在一个实施例中,若检测开关Q1的内阻与加热元件110的阻值量级相差不大,检测开关Q1与参考电阻RS以及加热元件构成串联分压,在加热元件110的阻值发生变化时,第一电压V1也会发生突变,此时采用第一电压V1和第二电压V2共同进行温度检测,依然能保证识别的准确性。
在一个实施例中,检测开关Q1可以采用三极管、MOS管、IGBT等电子开关。
在一个实施例中,检测组件130的电性参数还可以是参考电阻RS的阻值、参考电阻RS的功率或流过参考电阻RS的电流。
如图3所示,在一个实施例中,控制组件140包括功率开关Q2和控制器141。功率开关Q2的第一端与加热元件110连接,功率开关Q2的第二端与电源120电连接。控制器141分别与检测开关Q1的控制端、参考电阻RS、功率开关Q2的控制端电连接,用于获取参考电阻RS的第一端的第一电压V1以及参考电阻RS的第二端的第二电压V2,根据第一电压V1、第二电压V2及对应关系确定加热元件110的温度,并根据加热元件110的温度及预设的目标温度输出PWM信号至功率开关Q2。
其中,PWM信号用于控制功率开关Q2周期性地在导通和关断状态之间进行切换,以使 加热元件110的实际温度保持在目标温度区间内。控制器141通过改变PWM信号的占空比能够改变电源120的输出功率,从而调节加热元件110的温度,根据第一电压V1、第二电压V2及对应关系确定加热元件110的温度;在加热元件110的温度低于预设的目标温度时,则调节PWM信号,增大电源120的输出功率,提高加热元件110的温度;在加热元件110的温度高于预设的目标温度时,则调节PWM信号,降低电源120的输出功率,降低加热元件110的温度,由此实现精准控温。
在一个实施例中,控制器141用于在PWM信号控制功率开关Q2处于关断状态时,控制检测开关Q1导通,并获取第一电压V1和第二电压V2,以确定加热元件110的温度。
在功率开关Q2导通时,第二电压V2会被上拉,无法实现检测,因此需要在功率开关Q2关断时进行检测,为了不影响正常雾化,可以利用功率开关Q2受PWM信号控制处于关断状态时,控制检测开关Q1导通实现检测。
在一个实施例中,该对应关系为:
T=K*V2(V1-V2)+b;
其中,T为加热元件110的温度;K为预设的温度系数;V1为第一电压,V2为第二电压;b为预设的修正常数。
温度系数K和修正常数b通过与预先校准的方式进行预设,可以在生产阶段实现。具体地,测量加热元件110在加热过程中的多个温度值,并记录每个温度值对应的第一电压V1和第二电压V2,根据上述关系式计算出温度系数K和修正常数b,实现预设。
在一个实施例中,如图4所示,提供了一种用于气溶胶产生装置的控制方法,该气溶胶产生装置包括加热元件、电源及检测组件;加热元件用于加热气溶胶形成基质以产生气溶胶;检测组件分别与加热元件、电源电连接;
所述控制方法包括:
步骤401,获取检测组件的电性参数;
步骤402,根据预设的对应关系确定加热元件的温度;其中,对应关系为检测组件电性参数与加热元件温度之间的对应关系;
步骤403,根据加热元件的温度及预设目标温度调节电源为加热元件提供的电能,以使加热元件的实际温度保持在目标温度区间内。
在一个实施例中,所述检测组件包括参考电阻;所述参考电阻的第一端与所述电源电连接,所述参考电阻的第二端与所述加热元件电连接;所述检测组件两端的电压包括所述参考电阻第一端的第一电压及所述参考电阻第二端的第二电压。
所述根据预设的对应关系确定所述加热元件的温度,包括:
根据所述第一电压、第二电压及所述对应关系确定所述加热元件的温度。
在一个实施例中,气溶胶雾化装置还包括功率开关,功率开关的第一端与加热元件连接,功率开关的第二端与电源电连接;
所述根据加热元件的温度及预设目标温度调节电源为加热元件提供的电能,包括:
根据加热元件的温度及预设的目标温度输出PWM信号至功率开关;
其中,PWM信号用于控制功率开关周期性地在导通和关断状态之间进行切换,以使加热元件的实际温度保持在目标温度区间内。
如图5所示,在一个实施例中,检测组件还包括检测开关,检测开关的第一端与电源电连接,检测开关的第二端与参考电阻的第一端电连接;
执行获取检测组件的电性参数之前,该控制方法还包括:
步骤501,根据PWM信号判断功率开关是否处于关断状态。
步骤502,若是,则控制检测开关导通。
步骤503,若功率开关处于导通状态,则控制检测开关断开。
在一个实施例中,所述对应关系为:
T=K*V2(V1-V2)+b;
其中,T加热元件的温度;K为预设的温度系数;V1为第一电压,V2为第二电压;b为预设的修正常数。
关于用于气溶胶产生装置的控制方法的具体限定可以参见上文中对于气溶胶产生装置的限定,在此不再赘述。
应该理解的是,虽然图4至图5的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图4至图5中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图6所示,提供了一种用于气溶胶产生装置的控制装置600,该气溶胶产生装置包括加热元件、电源及检测组件;加热元件用于加热气溶胶形成基质以产生气溶胶;检测组件分别与加热元件、电源电连接;
所述控制装置包括:
参数获取模块601,用于获取检测组件的电性参数;
温度确定模块602,用于根据预设的对应关系确定加热元件的温度;其中,对应关系为检测组件的电性参数与加热元件温度之间的对应关系;
电能调节模块603,用于根据加热元件的温度及预设目标温度调节电源为加热元件提供的电能,以使加热元件的实际温度保持在目标温度区间内。
关于用于气溶胶产生装置的控制装置的具体限定可以参见上文中对于气溶胶雾化装置的限定,在此不再赘述。上述用于气溶胶产生装置的控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在一个实施例中,提供一种气溶胶雾化装置,包括:加热元件、电源、检测组件及控制组件。其中,加热元件用于加热气溶胶形成基质以产生气溶胶;电源与所述加热元件电连接;检测组件分别与加热元件、电源电连接;控制组件,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取检测组件的电性参数;
根据预设的对应关系确定加热元件的温度;其中,对应关系为检测组件的电性参数与加热元件温度之间的对应关系;
根据加热元件的温度及预设目标温度调节电源为加热元件提供的电能,以使加热元件的实际温度保持在目标温度区间内。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
根据所述第一电压、第二电压及所述对应关系确定所述加热元件的温度。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
根据所述加热元件的温度及预设的目标温度输出PWM信号至所述功率开关;其中,所述PWM信号用于控制所述功率开关周期性地在导通和关断状态之间进行切换,以使所述加热元件的实际温度保持在目标温度区间内。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
根据所述PWM信号判断所述功率开关是否处于关断状态;
若是,则控制所述检测开关导通。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取检测组件的电性参数;
根据预设的对应关系确定加热元件的温度;其中,对应关系为检测组件的电性参数与加热元件温度之间的对应关系;
根据加热元件的温度及预设目标温度调节电源为加热元件提供的电能,以使加热元件的实际温度保持在目标温度区间内。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据所述第一电压、第二电压及所述对应关系确定所述加热元件的温度。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据所述加热元件的温度及预设的目标温度输出PWM信号至所述功率开关;其中,所述PWM信号用于控制所述功率开关周期性地在导通和关断状态之间进行切换,以使所述加热元件的实际温度保持在目标温度区间内。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据所述PWM信号判断所述功率开关是否处于关断状态;
若是,则控制所述检测开关导通。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
如图7所示,在其中一个实施例中,气溶胶产生装置可以是加热不燃烧式的电子烟,气溶胶形成基质可以为固态气溶胶形成基质200,通过将固态气溶胶形成基质200插入至气溶胶产生装置中,加热产生气溶胶供使用者吸入。
如图8所示,在一个实施例中,气溶胶产生装置可以是使用液体气溶胶形成基质进行雾化;气溶胶产生装置内设有用于容纳气溶胶形成基质的储液腔150,加热元件通过加热储液腔内的气溶胶形成基质产生气溶胶供使用者吸入。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施 例或示例。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种气溶胶产生装置,包括:
    加热元件,用于加热气溶胶形成基质以产生气溶胶;
    电源,与所述加热元件电连接;
    检测组件,分别与所述加热元件、所述电源电连接;
    控制组件,与所述检测组件电连接,用于获取所述检测组件的电性参数,根据预设的对应关系确定所述加热元件的温度,并根据所述加热元件的温度及预设的目标温度调节所述电源为所述加热元件提供的电能,以使所述加热元件的实际温度保持在目标温度区间内;其中,所述对应关系为所述检测组件的电性参数与所述加热元件的温度之间的对应关系。
  2. 根据权利要求1所述的气溶胶产生装置,其中所述检测组件包括:参考电阻及检测开关;
    所述检测开关的第一端与所述电源电连接,所述检测开关的第二端与所述参考电阻的第一端电连接,所述检测开关的控制端与所述控制组件电连接;
    所述参考电阻的第二端与所述加热元件电连接;所述电性参数为所述参考电阻两端的电压;
    所述控制组件用于获取所述参考电阻的第一端的第一电压以及所述参考电阻的第二端的第二电压,并根据所述第一电压、第二电压及所述对应关系确定所述加热元件的温度;还用于控制所述检测开关导通或断开,以实现检测模式的开启或关闭。
  3. 根据权利要求2所述的气溶胶产生装置,其中所述控制组件包括:
    功率开关,所述功率开关的第一端与所述加热元件连接,所述功率开关的第二端与所述电源电连接;
    控制器,分别与所述检测开关的控制端、所述参考电阻、所述功率开关的控制端电连接,用于获取所述参考电阻的第一端的第一电压以及所述参考电阻的第二端的第二电压,根据所述第一电压、第二电压及所述对应关系确定所述加热元件的温度,并根据所述加热元件的温度及预设的目标温度输出PWM信号至所述功率开关;所述PWM信号用于控制所述功率开关周期性地在导通和关断状态之间进行切换,以使所述加热元件的实际温度保持在目标温度区间内。
  4. 根据权利要求3所述的气溶胶产生装置,其中所述控制器用于在所述PWM信号控制所述功率开关处于关断状态时,控制所述检测开关导通,并获取所述第一电压和第二电压, 以确定所述加热元件的温度。
  5. 根据权利要求3所述的气溶胶产生装置,其中所述对应关系为:
    T=K*V2(V1-V2)+b;
    其中,T为所述加热元件的温度;K为预设的温度系数;V1为所述第一电压,V2为所述第二电压;b为预设的修正常数。
  6. 一种用于气溶胶产生装置的控制方法,所述气溶胶产生装置包括加热元件、电源及检测组件,所述加热元件用于加热气溶胶形成基质以产生气溶胶;所述检测组件分别与所述加热元件、所述电源电连接;
    所述控制方法包括:
    获取检测组件的电性参数;
    根据预设的对应关系确定所述加热元件的温度;其中,所述对应关系为所述检测组件的电性参数与所述加热元件温度之间的对应关系;
    根据所述加热元件的温度及预设目标温度调节所述电源为所述加热元件提供的电能,以使所述加热元件的实际温度保持在目标温度区间内。
  7. 根据权利要求6所述的控制方法,其中所述检测组件包括参考电阻,所述参考电阻的第一端与所述电源电连接,所述参考电阻的第二端与所述加热元件电连接;所述检测组件的电性参数包括所述参考电阻第一端的第一电压及所述参考电阻第二端的第二电压;
    所述根据预设的对应关系确定所述加热元件的温度,包括:
    根据所述第一电压、第二电压及所述对应关系确定所述加热元件的温度。
  8. 根据权利要求7所述的控制方法,其中所述气溶胶雾化装置还包括功率开关,所述功率开关的第一端与所述加热元件连接,所述功率开关的第二端与所述电源电连接;
    所述根据所述加热元件的温度及预设目标温度调节所述电源为所述加热元件提供的电能,包括:
    根据所述加热元件的温度及预设的目标温度输出PWM信号至所述功率开关;
    其中,所述PWM信号用于控制所述功率开关周期性地在导通和关断状态之间进行切换,以使所述加热元件的实际温度保持在目标温度区间内。
  9. 根据权利要求8所述的控制方法,其中所述检测组件还包括检测开关,所述检测开关的第一端与所述电源电连接,所述检测开关的第二端与所述参考电阻的第一端电连接;
    执行所述获取检测组件的电性参数之前,还包括:
    根据所述PWM信号判断所述功率开关是否处于关断状态;
    若是,则控制所述检测开关导通。
  10. 根据权利要求8或9所述的控制方法,其中所述对应关系为:
    T=K*V2(V1-V2)+b;
    其中,T为所述加热元件的温度;K为预设的温度系数;V1为所述第一电压,V2为所述第二电压;b为预设的修正常数。
  11. 一种用于气溶胶产生装置的控制装置,所述气溶胶产生装置包括加热元件、电源及检测组件,所述加热元件用于加热气溶胶形成基质以产生气溶胶;所述检测组件分别与所述加热元件、所述电源电连接;
    所述控制装置包括:
    参数获取模块,用于获取检测组件的电性参数;
    温度确定模块,用于根据预设的对应关系确定所述加热元件的温度;其中,所述对应关系为所述检测组件的电性参数与所述加热元件温度之间的对应关系;
    电能调节模块,用于根据所述加热元件的温度及预设目标温度调节所述电源为所述加热元件提供的电能,以使所述加热元件的实际温度保持在目标温度区间内。
  12. 一种气溶胶雾化装置,包括:
    加热元件,用于加热气溶胶形成基质以产生气溶胶;
    电源,与所述加热元件电连接;
    检测组件,分别与所述加热元件、所述电源电连接;
    控制组件,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求6至10中任一项所述方法的步骤。
  13. 一种计算机可读存储介质,其上存储有计算机程序,其中所述计算机程序被处理器执行时实现权利要求6至10中任一项所述的方法的步骤。
PCT/CN2022/133129 2022-01-14 2022-11-21 气溶胶产生装置及其控制方法、控制装置和存储介质 WO2023134302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210044758.X 2022-01-14
CN202210044758.XA CN114376275A (zh) 2022-01-14 2022-01-14 气溶胶产生装置及其控制方法、控制装置和存储介质

Publications (1)

Publication Number Publication Date
WO2023134302A1 true WO2023134302A1 (zh) 2023-07-20

Family

ID=81201383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133129 WO2023134302A1 (zh) 2022-01-14 2022-11-21 气溶胶产生装置及其控制方法、控制装置和存储介质

Country Status (2)

Country Link
CN (1) CN114376275A (zh)
WO (1) WO2023134302A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114376275A (zh) * 2022-01-14 2022-04-22 深圳麦时科技有限公司 气溶胶产生装置及其控制方法、控制装置和存储介质
CN115778006A (zh) * 2022-11-21 2023-03-14 思摩尔国际控股有限公司 气溶胶生成装置及其温度控制方法、装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208523769U (zh) * 2018-04-13 2019-02-22 赫斯提亚深圳生物科技有限公司 一种气溶胶生成装置及其电路
CN110074465A (zh) * 2019-05-20 2019-08-02 深圳市合元科技有限公司 电子烟及其控制方法和雾化器
CN112704265A (zh) * 2019-10-24 2021-04-27 日本烟草产业株式会社 气溶胶吸入器的电源单元
CN112704266A (zh) * 2019-10-24 2021-04-27 日本烟草产业株式会社 气溶胶吸入器的电源单元
JP2021065220A (ja) * 2020-02-21 2021-04-30 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット
CN113349464A (zh) * 2020-03-05 2021-09-07 日本烟草产业株式会社 用于气溶胶吸入器的电源单元
CN214229854U (zh) * 2020-12-22 2021-09-21 深圳市合元科技有限公司 一种气溶胶生成装置
CN113508933A (zh) * 2020-04-02 2021-10-19 日本烟草产业株式会社 气溶胶吸入器和气溶胶吸入器的电源单元
CN114376275A (zh) * 2022-01-14 2022-04-22 深圳麦时科技有限公司 气溶胶产生装置及其控制方法、控制装置和存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432444B1 (ko) * 2002-03-16 2004-05-22 주식회사 나래나노텍 센서가 필요없는 히터용 온도제어시스템
US10143232B2 (en) * 2011-12-30 2018-12-04 Philip Morris Products S.A. Aerosol generating device with air flow detection
MY177353A (en) * 2011-12-30 2020-09-14 Philip Morris Products Sa Aerosol-generating system with consumption monitoring and feedback
EP2609820A1 (en) * 2011-12-30 2013-07-03 Philip Morris Products S.A. Detection of aerosol-forming substrate in an aerosol generating device
CN204576338U (zh) * 2015-05-05 2015-08-19 佛山市顺德区美的电热电器制造有限公司 功率调节电路和烹饪器具
CN111655053B (zh) * 2018-01-26 2024-06-11 日本烟草产业株式会社 气溶胶生成装置、使其工作的方法以及存储介质
CN109156898A (zh) * 2018-09-11 2019-01-08 西安电子科技大学 一种电子烟雾化温度的控制电路
CN209310938U (zh) * 2018-10-31 2019-08-27 惠州市蓝微电子有限公司 一种温度检测电路、电子设备
CN110312327A (zh) * 2019-07-29 2019-10-08 石家庄丰亚电器有限公司 控温电热系统和电加热器具
CN112403405B (zh) * 2020-10-15 2023-01-03 深圳麦克韦尔科技有限公司 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质
CN113412968A (zh) * 2021-05-27 2021-09-21 深圳麦时科技有限公司 雾化控制方法、充电设备、雾化设备及电子雾化系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208523769U (zh) * 2018-04-13 2019-02-22 赫斯提亚深圳生物科技有限公司 一种气溶胶生成装置及其电路
CN110074465A (zh) * 2019-05-20 2019-08-02 深圳市合元科技有限公司 电子烟及其控制方法和雾化器
CN112704265A (zh) * 2019-10-24 2021-04-27 日本烟草产业株式会社 气溶胶吸入器的电源单元
CN112704266A (zh) * 2019-10-24 2021-04-27 日本烟草产业株式会社 气溶胶吸入器的电源单元
JP2021065220A (ja) * 2020-02-21 2021-04-30 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット
CN113349464A (zh) * 2020-03-05 2021-09-07 日本烟草产业株式会社 用于气溶胶吸入器的电源单元
CN113508933A (zh) * 2020-04-02 2021-10-19 日本烟草产业株式会社 气溶胶吸入器和气溶胶吸入器的电源单元
CN214229854U (zh) * 2020-12-22 2021-09-21 深圳市合元科技有限公司 一种气溶胶生成装置
CN114376275A (zh) * 2022-01-14 2022-04-22 深圳麦时科技有限公司 气溶胶产生装置及其控制方法、控制装置和存储介质

Also Published As

Publication number Publication date
CN114376275A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2023134302A1 (zh) 气溶胶产生装置及其控制方法、控制装置和存储介质
CN106461470B (zh) 低功率低成本温度传感器
WO2016115890A1 (zh) 温控系统及其控制方法、含有温控系统的电子烟
CN104678343B (zh) 一种波形发生器频响特性校准方法、装置及系统
TWI721801B (zh) 具自我校準功能的電流感測電路
KR20220056227A (ko) 전자 담배 장치 및 그 가열 방법, 컴퓨터 저장 매체
CN114376274B (zh) 气溶胶产生装置及其控制方法、控制装置和存储介质
US7703975B2 (en) Temperature detecting circuit
CN110025052B (zh) 雾化器的电压控制方法、装置和电子烟
US20070170171A1 (en) Method and apparatus for measurement of AC voltages in an HVAC system
CN113925217B (zh) 一种加热烟具电路及其控制方法
CN112353004A (zh) 电子烟温度校准方法、电子烟、控制器和可读存储介质
CN114253317B (zh) 发热体的加热温度校准方法、装置及可读存储介质
WO2022111121A1 (zh) 一种电子烟的加热监测方法及电子烟
CN214278772U (zh) 电压生成单元及电子设备
CN114009847B (zh) 用于电子雾化装置的控制单元、电子雾化装置、控制方法
JP2024012116A (ja) 霧化デバイスの加熱制御方法、装置、回路、媒体、及びプログラム製品
US20200326244A1 (en) Temperature sensor evaluation method
CN215422829U (zh) 一种负载控制电路、装置及雾化装置
CN113729313B (zh) 一种加热烟具校准方法以及系统
WO2022048290A1 (zh) 电压检测电路及电荷泵电路
CN114690620A (zh) 电子负载pid自整定方法及系统
CN113917971A (zh) 电流模带隙基准电压源的校准电路
CN109100041B (zh) 测温电路、加热膜、湿化器及通气治疗设备
WO2022188227A1 (zh) 电压生成单元和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919935

Country of ref document: EP

Kind code of ref document: A1