WO2022111121A1 - 一种电子烟的加热监测方法及电子烟 - Google Patents
一种电子烟的加热监测方法及电子烟 Download PDFInfo
- Publication number
- WO2022111121A1 WO2022111121A1 PCT/CN2021/124308 CN2021124308W WO2022111121A1 WO 2022111121 A1 WO2022111121 A1 WO 2022111121A1 CN 2021124308 W CN2021124308 W CN 2021124308W WO 2022111121 A1 WO2022111121 A1 WO 2022111121A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating wire
- resistance value
- temperature
- actual
- electronic cigarette
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 255
- 239000003571 electronic cigarette Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000012544 monitoring process Methods 0.000 title claims abstract description 20
- 238000013507 mapping Methods 0.000 claims abstract description 6
- 238000005070 sampling Methods 0.000 claims description 27
- 239000004020 conductor Substances 0.000 claims description 21
- 238000013178 mathematical model Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 230000033228 biological regulation Effects 0.000 abstract description 10
- 238000012937 correction Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000006872 improvement Effects 0.000 description 16
- 238000001514 detection method Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 6
- 230000003321 amplification Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001007 puffing effect Effects 0.000 description 1
- 230000035943 smell Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/57—Temperature control
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
Definitions
- the present application belongs to the field of electronic cigarettes, and particularly relates to a heating monitoring method for electronic cigarettes and electronic cigarettes.
- the existing electronic cigarette adopts an atomizer with a constant temperature coefficient. Under this structure, if the user's suction force is small, the heat generated in the atomization process cannot be taken away, and the heat accumulation will cause the internal temperature of the atomizer to rise. Due to the increase in temperature, harmful substances or other scorched smells will be produced, which will further increase the probability of damage to the atomizer and oil leakage, and further dry burning or burning of the heating wire. As long as there is one of the above factors, it will be seriously damaged. user experience. At the beginning, the power was reduced by judging that the temperature reached, but no matter the suction force, there was no change. Later, it was solved by measuring the change rate of the resistance of the atomizing wire.
- the purpose of the present application is to provide a heating monitoring method for an electronic cigarette and an electronic cigarette, which can accurately read the resistance as a basis for control by the system.
- the present application provides a heating monitoring method for an electronic cigarette, which includes setting the set temperature value of the heating wire; obtaining the normal temperature temperature value, the normal temperature resistance value and the temperature coefficient of the heating wire of the heating wire; the heating wire and the conductor.
- a contact resistance value and an expansion coefficient between them There is naturally a contact resistance value and an expansion coefficient between them, and there is a mapping relationship between the normal temperature resistance value and the normal temperature value, and between the set resistance value and the set temperature value.
- the set resistance value at this time (normal temperature resistance value - contact resistance value) + temperature coefficient * (normal temperature resistance value - contact resistance value) * (set temperature value - normal temperature temperature value) + contact resistance value * expansion coefficient; establish a mathematical model about the contact resistance value, set the heating wire and conductor
- the contact radius and expansion height are calculated from the contact radius and expansion height, and the contact area and contact resistance value of the heating wire and the conductor are converted from the contact radius and the expansion height; the electronic cigarette starts and outputs power to the heating wire. Based on the above process, the actual resistance value of the heating wire is obtained.
- the above scheme compared with the traditional method of directly detecting temperature, there is no need to introduce a new temperature sensor, which simplifies the structure of the electronic cigarette; the resistance can be converted into temperature, and the detection resistance device only needs one circuit board, and the above circuit can even be combined It is integrated into the existing control circuit board to realize the miniaturization of the electronic cigarette, and accordingly the means and accuracy of electrical resistance measurement need to be improved.
- the above solution can eliminate the error generated by the heating wire itself and after the heating wire is installed, and provide a fine basis for subsequent resistance/temperature regulation.
- the conductor can be a cylindrical pin or wire, and the material is copper.
- the heating wire under normal temperature conditions, there are contact parts and non-contact parts between the heating wire and the conductor.
- the heating wire expands in the axial direction and fills at least part of the non-contact part.
- the non-contact part is equivalent to a semi-spherical groove, and when the heating wire is heated, the real-time radius of the groove is calculated according to the expansion length, and the total heating contact area is obtained.
- the normal temperature resistance value of the heating wire is tested through a bridge circuit at normal temperature.
- the differential amplification of the shunt resistance in series with the heating wire is collected at normal temperature The current value is obtained from the signal to further calculate the normal temperature resistance value of the heating wire, and verify the normal temperature resistance value obtained by the bridge circuit and the differential circuit. If the difference between the two values is greater than the allowable error range, the corresponding atomizer will be recycled.
- the method of detecting resistance through differential amplifier circuit and multiple filtering can greatly improve the detection accuracy and provide an accurate basis for subsequent temperature control; if the difference between the values obtained by the two methods is large, it indicates the connection between the heating wire and the conductor.
- the position is unstable, and the recycling of the atomizer can prevent the subsequent connection from interfering with the device to obtain the accurate resistance value.
- the allowable difference range of the error is ⁇ 10%.
- the heating wire when the actual resistance value of the heating wire is lower than n 1 % of the set resistance value, the heating wire is heated with the power of w 1 ; when the actual resistance value of the heating wire is n 1 % of the set resistance value When -n 2 %, the heating wire is heated with the power of w 2 ; when the actual resistance value of the heating wire is n 2 %-n 3 % of the set resistance value, the heating wire is heated with the power of w 3 ; where n and w All are constants, 0 ⁇ n 1 ⁇ n 2 ⁇ n 3 ⁇ 100, w 1 >w 2 >w 3 >0.
- the output power to the heating wire is stopped or the electronic cigarette is directly turned off.
- the above solution is adopted to prevent overheating of the heating wire and maximize the protection of the electronic cigarette body.
- the present application provides a storage medium storing programs or instructions for executing the above control method.
- an electronic cigarette including a host, a mouthpiece, a power source, a processor and the above-mentioned storage medium, for executing a heating monitoring method
- the heating monitoring method includes:
- the heating monitoring method includes the following steps:
- the electronic cigarette starts and outputs power to the heating wire. Based on the above process, the actual resistance value of the heating wire is obtained.
- the heating wire under normal temperature conditions, there are contact parts and non-contact parts between the heating wire and the conductor.
- the heating wire expands in the axial direction and fills at least part of the non-contact part.
- the non-contact part is equivalent to a semi-spherical groove, and when the heating wire is heated, the real-time radius of the groove is calculated according to the expansion length, and the total heating contact area is obtained.
- the normal temperature resistance value of the heating wire is tested through a bridge circuit at normal temperature.
- the differential amplification of the shunt resistance in series with the heating wire is collected at normal temperature The current value is obtained from the signal to further calculate the normal temperature resistance value of the heating wire, and verify the normal temperature resistance value obtained by the bridge circuit and the differential circuit. If the difference between the two values is greater than the allowable error range, the corresponding atomizer will be recycled.
- the method of detecting resistance through differential amplifier circuit and multiple filtering can greatly improve the detection accuracy and provide an accurate basis for subsequent temperature control; if the difference between the values obtained by the two methods is large, it indicates the connection between the heating wire and the conductor.
- the position is unstable, and the recycling of the atomizer can prevent the subsequent connection from interfering with the device to obtain the accurate resistance value.
- the allowable difference range of the error is ⁇ 10%.
- the heating wire when the actual resistance value of the heating wire is lower than n 1 % of the set resistance value, the heating wire is heated with the power of w 1 ; when the actual resistance value of the heating wire is n 1 % of the set resistance value When -n 2 %, the heating wire is heated with the power of w 2 ; when the actual resistance value of the heating wire is n 2 %-n 3 % of the set resistance value, the heating wire is heated with the power of w 3 ; where n and w All are constants, 0 ⁇ n 1 ⁇ n 2 ⁇ n 3 ⁇ 100, w 1 >w 2 >w 3 >0.
- the output power to the heating wire is stopped or the electronic cigarette is directly turned off.
- the above solution is adopted to prevent overheating of the heating wire and maximize the protection of the electronic cigarette body.
- the present application has the following beneficial effects: a heating wire with a certain temperature coefficient is used, and changes in its resistance and related control variables are detected to identify the regulation and suction state; it has the advantages of accurate resistance value acquisition, accurate adjustment, and simple structure.
- the size of the smoke is stable, which can reasonably limit the temperature of the heating wire, reduce the probability of oil leakage from the atomizer, and prevent the atomizer from burning.
- the circuit system of the detection resistor can be integrated into the original control circuit board, and the electronic cigarette has a simple structure and low cost.
- Fig. 1 is a flow chart related to the adjustment of resistance value in an embodiment
- Fig. 2 is a flow chart related to resistance slope adjustment in an embodiment
- FIG. 3 is a schematic diagram of a differential amplifier circuit in an embodiment
- Fig. 4 is the structure diagram of atomizer in a kind of embodiment
- Fig. 5 is the sectional view of the actual model of the connection place between the heating wire and the elastic needle at A place in Fig. 4;
- Fig. 6 is the sectional view after Fig. 5 is transformed into mathematical model
- FIG. 7 is an end view of the mathematical model of the connection between the heating wire and the elastic needle in an embodiment.
- the present application discloses a heating control method for an electronic cigarette and an electronic cigarette.
- the innovation lies in adjusting the power of the heating wire by detecting the resistance, and at the same time optimizing the method for adjusting the power.
- a heating wire with a temperature coefficient is used to make the atomizer, and the resistance of the heating wire increases with the increase of temperature.
- the current magnitude is obtained by collecting the differential amplification signal of the shunt resistor connected in series with the heating wire to further calculate the heating wire.
- the normal temperature resistance value set the set resistance value and set temperature value of the electronic cigarette at the same time, and obtain the actual resistance value of the heating wire after the electronic cigarette is started. Calculate the actual temperature of the heating wire based on the actual resistance value of the heating wire, and compare the actual temperature with the set temperature value. If the actual temperature is higher than the set temperature value, the actual power of the heating wire will be reduced, otherwise, the actual power of the heating wire will not be reduced.
- the atomizer extends out of two pins, and the position marked with a circle on the two pins is the position where the atomizer and the elastic pin are connected, and the heating wire obtains electric energy through this position.
- T (set temperature value) (R (actual resistance value) - R (room temperature resistance value)) / (TCR (temperature coefficient) * R (room temperature resistance value)) + T (room temperature).
- T (set temperature value) (R (actual resistance value) - R (room temperature resistance value)) / (TCR (temperature coefficient) * R (room temperature resistance value)) + T (room temperature).
- the heating wire In order to verify the stability of sampling and to propose unstable heating wire in advance, after the heating wire is made, test the resistance value of the heating wire at room temperature through the bridge circuit at normal temperature, and verify the normal temperature obtained by the bridge circuit and the differential circuit. Resistance value, if the difference between the two values is greater than the allowable error range, the corresponding atomizer will be recycled. In this embodiment, based on the measurement value of the bridge circuit, the difference of the resistance values obtained by the differential circuit is within 2%.
- the differential circuit is integrated in the control system.
- the current magnitude is obtained by collecting the differential amplification signal of the shunt resistance connected in series with the heating wire to further calculate the actual resistance value of the heating wire.
- the chip has six pins (IN+, IN-, V+, OUT, REF, GND), in which the voltage of the F+ output terminal is collected, VOUT is used as the system voltage, and other pins are used for power supply, buffering and output integration. The data.
- f n 10-10 times per unit time.
- the value of f n is adjustable, it can be 20 or 30 and so on.
- the actual resistance value of the heating wire when the actual resistance value of the heating wire is lower than the set resistance value, first heat the heating wire with a constant power, and when the actual resistance value of the heating wire is close to the set resistance value, heat the heating wire at a slower speed.
- the output power through PWM control maintains the actual resistance value of the heating wire. Dynamically adjust the heating wire to generate heat to achieve dynamic balance.
- R max when the actual resistance value of the heating wire is higher than the set resistance value R max , stop outputting power to the heating wire;
- the allowable maximum resistance value of the heating wire is set to R max , and when the actual resistance value of the heating wire is higher than R max % of the set resistance value, the atomizer is directly turned off (that is, turn off the electronic cigarette), prevent the heating wire from overheating, and maximize the protection of the electronic cigarette body.
- the first power is named w 1
- the second power is named w 2
- the third power is named w 3 .
- the heating wire is heated with the power of w 1
- the actual resistance value of the heating wire is n 1 %-n 2 % of the set resistance value
- n 2 %-n 3 % of the set resistance value heat the heating wire with the power of w 3 ;
- n and w are both constants, 0 ⁇ n 1 ⁇ n 2 ⁇ n 3 ⁇ 100, w 1 >w 2 >w 3 >0.
- a power of 6w is provided to the heating wire; when the actual resistance value of the heating wire is 80-90% of the set resistance value, Provide 5.5w power to the heating wire; when the actual resistance value of the heating wire is 90-100% of the set resistance value, provide 5.2w power to the heating wire.
- n 1 % of the set resistance value when the actual resistance value of the heating wire is lower than n 1 % of the set resistance value, sampling at the frequency of f 1 ; when the actual resistance value of the heating wire is n 1 %-n 2 % of the set resistance value , sampling at the frequency of f 2 ; when the actual resistance value of the heating wire is n 2 %-n 3 % of the set resistance value, sampling at the frequency of f 3 ; where n and f are both constants, 0 ⁇ n 1 ⁇ n 2 ⁇ n 3 ⁇ 100, 0 ⁇ f 1 ⁇ f 2 ⁇ f 3 .
- the actual resistance value of the heating wire when the actual resistance value of the heating wire is lower than 80% of the set resistance value, the actual resistance is sampled at a frequency of 30ms intervals; when the actual resistance value of the heating wire is 80%-90% of the set resistance value When the actual resistance is sampled at a frequency of 20ms interval; when the actual resistance value of the heating wire is 90%-100% of the set resistance value, the actual resistance is sampled at a frequency of 15ms interval.
- the temperature of the heating wire is low, you can rest assured that the output power can be saved while saving electricity.
- the temperature of the heating wire is high, more accurate detection is required to deal with complex situations.
- the range of the set resistance value can be divided into two or four intervals as needed to achieve more refined regulation.
- the suction strength is calculated by the change of the actual resistance value per unit time. If the suction strength is large, the airflow will take away more heat accordingly. At this time, the actual resistance of the heating wire increases slowly.
- the slope of the curve when the user evenly puffs (different people also have different puffing strengths, so the reference K has a floating space), and the slope is used as the reference K; in this embodiment, when the slope of the curve falls When entering the [0.9K, 1.1K] interval, the user's suction strength is judged to be uniform suction, and power is supplied to the heating wire according to the original setting; when the slope of the curve is lower than 0.9K, the user's suction power is The suction strength is judged as forced suction.
- the coefficient 1.1 is multiplied by the power of the original heating wire, and the increased power is sent to the heating wire; when the slope of the curve is higher than 1.1K, the user's suction strength is judged as Slight suction, at this time the coefficient of 0.9 is multiplied by the power of the original heating wire, and the reduced power is sent to the heating wire.
- Other values for the coefficients k 1 , k 2 , and k 3 are optional.
- the sampling frequency is dynamically adjusted, the original output power is dynamically adjusted, and the original output power is dynamically corrected.
- the actual resistance value is 85% of the set resistance value, and the power of w 2 is output to the heating wire; at the same time, considering that the slope of the curve of the actual resistance value per unit time exceeds 1.05K, the power of 0.9*w2 is output to the heating wire;
- the sampling frequency is 20ms each time.
- the e-liquid volatilizes and takes away the heat. If the e-liquid permeability of the atomizer is insufficient, the cotton e-liquid on the surface of the heating wire is insufficient, and the heating wire will carbonize (burn) the cotton. This method prevents the atomization core from burning by limiting the surface temperature of the heating wire. When the amount of oil is insufficient, the surface temperature rises sharply, and the output power is reduced by formula calculation to achieve the purpose of cooling, thereby preventing burning.
- the resistance values mentioned in the above scheme can be converted into temperature and then displayed.
- the linear expansion coefficient a 15*10 ⁇ -6/°C, at 300°C
- the expansion length in the axial direction between the heating wire and the output electrode is 0.41mm
- the total cross-sectional area of the heating wire in the radial direction is 4.9mm 2
- the plane accuracy is 0.05
- the expansion length length at normal temperature*linear expansion coefficient
- the undulating height of the wavy line at the contact position in Figure 5 is called the expansion height
- the undulating height of the wavy line is uniformly set as the change in the axial direction
- the radian corresponding to each wavy line is called the contact radius r.
- r 1 (corresponding line segment is AO) represents the contact radius at room temperature
- r 2 (corresponding line segment is BO) represents the contact radius after heating)
- the groove is assumed to be on the heating wire.
- the radial direction of the triangle (not part of the heating wire and the elastic needle, but only a schematic diagram for simulating the structure) is the contact radius
- the axial direction is the expansion height
- the slope is the projection of the contact area
- the angle of the slope is set by ⁇ CAB It is 45°, and the contact area can be converted after obtaining the length of the slope.
- Contact resistance value resistivity*resistance length/contact area
- this example takes the contact resistance value of 0.02 ⁇ as an example
- expansion length normal temperature length*temperature difference*expansion coefficient
- the expansion length increases with the increase of temperature, so that the The contact area becomes larger, the contact resistance value is reduced, and the area increased by heating is calculated using the cotangent function.
- the innovation of the design is to propose a mathematical model for the calculation of the contact area. Based on the mathematical model, it can approximate the actual situation, greatly reduce the error in the process of measuring the resistance, and facilitate the system to control the power required for heating more accurately.
- set resistance value (normal temperature resistance value - contact resistance value) + temperature coefficient * (normal temperature resistance value - contact resistance value) * (set temperature value - normal temperature temperature value) +Contact resistance value*area expansion coefficient, one-to-one correspondence to the value to get the following formula: 0.51 ⁇ (0.3 ⁇ -0.02 ⁇ )+(2800ppm/°C*(0.3 ⁇ -0.02 ⁇ ))*(300°C-25°C)+ (0.02*0.95).
- the set resistance value corresponding to 300°C before the correction is 0.53 ⁇
- the set resistance value corresponding to 300°C after the correction is 0.51 ⁇ . After the correction, a more accurate adjustment basis is obtained.
- the text order in the mathematical formula corresponds to the numerical order one by one.
- a storage medium stores programs or instructions for executing the above-mentioned control method.
- the aforementioned storage medium includes a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk, an optical disk, or a cloud medium that can store program codes.
- An electronic cigarette includes a host, a mouthpiece, a power source, a processor and the above-mentioned storage medium, for executing the above-mentioned control method.
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本申请涉及电子烟领域,具体公开了一种电子烟的加热监测方法及电子烟,选用具有温度系数的发热丝制作雾化器,初始化发热丝的常温阻值和常温温度,初始化电子烟的设定阻值和设定温度,发热丝与弹针之间存在接触阻值和膨胀系数,常温阻值和常温温度之间、设定阻值和设定温度之间存在映射关系,映射关系中额外包含发热丝与弹针的接触阻值进行修正,在电子烟启动后获取发热丝的实际阻值,基于发热丝的实际阻值推算发热丝的实际温度,对比实际温度和设定温度,如果实际温度高于设定温度则降低发热丝的实际功率,反之则不降低发热丝的实际功率。提高检测电阻的精度,从而提高对应的温度的精度,为调控提供准确的依据。
Description
本申请要求于2020年11月30日提交中国专利局、申请号为202011383344.7,发明名称为“一种电子烟的加热监测方法及电子烟”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于电子烟领域,特别涉及一种电子烟的加热监测方法及电子烟。
现有的电子烟采用恒温系数的雾化器,在这种结构下,如果用户抽吸力小则无法将雾化过程中产生的热量带走,热量累积会导致雾化器内部温度升高。由于温度升高,进一步会产生有害物质或其他焦糊味道,进一步增大雾化器损坏漏油的概率,进一步发热丝干烧或烧断,只要存在上述多个因素中的一个,都会严重破坏用户的体验。一开始通过判断温度达到就降功率,但是无论抽吸力大小都没有变化,后来转为测量雾化丝电阻变化速度得以解决。
发明内容
本申请的目的在于提供一种电子烟的加热监测方法及电子烟,能准确地读取电阻作为依据交由系统调控。
为实现上述目的,本申请提供了一种电子烟的加热监测方法,设置发热丝的设定温度值;调取发热丝的常温温度值、常温电阻值及发热丝的温度系数;发热丝与导体之间自然存在接触电阻值和膨胀系数,常温电阻值和常温温度值之间、设定电阻值和设定温度值之间存在映射关系,此时的设定电阻值=(常温电阻值-接触电阻值)+温度系数*(常温电阻值-接触电阻值)*(设定温度值-常温温度值)+接触电阻值*膨胀系数;建立关于接触电阻值的数学模型,设定 发热丝与导体的接触半径和膨胀高度,接触半径和膨胀高度换算出发热丝与导体的接触面积以及接触电阻值;电子烟启动并对发热丝输出功率,基于上述流程,获取发热丝的实际电阻值。
采用上述方案,相比传统的直接检测温度的做法,不需要引入新的温度传感器,简化电子烟的结构;电阻可以换算成温度,检测电阻设备只需要一个电路板即可,甚至可以将上述电路集成到现有的控制电路板中,实现电子烟的小型化,相应地电测电阻的手段和精度需要提高。但影响到设备获取到的电阻的综合因素较多,不过采用上述方案,可以消除发热丝本身和发热丝安装之后产生的误差,为后续电阻/温度调控提供精细的依据。
在其他方案中,导体可选圆柱状的弹针或导线,材质为铜。
作为上述方案的改进,常温条件下,发热丝与导体存在接触部与非接触部,当发热丝受热时,发热丝在轴向上膨胀并填充至少部分非接触部,根据发热丝常温下的长度、线性膨胀系数、实际温度与常温温度的温度差,得到轴向上的膨胀长度,并进一步得到总加热接触面积。进一步,将所述未接触部等效成一个半圆球状的凹槽,当发热丝受热时,根据所述膨胀长度计算凹槽的实时半径,并得出总加热接触面积。通过大量观察和实验,采用上述方案,能更逼真地模拟实际发热丝和导体的接触情况。
作为上述方案的改进,在发热丝制作完成后,在常温下通过电桥电路测试发热丝的常温电阻值,在电子烟制作完成后,在常温下通过采集与发热丝串联的分流电阻的差分放大信号得到电流大小从而进一步计算出发热丝的常温电阻值,验证电桥电路和差分电路获取到的常温电阻值,如果两者数值差异大于误差允许范围则回收对应的雾化器。采用上述方案,通过差分放大电路及多重滤波的方式检测电阻的方式,可以极大地提高检测精度,为后续控制温度提供准 确的依据;如果两种方式得到的数值差异大说明发热丝与导体的连接位置不稳定,回收雾化器可以避免后续连接处干扰设备获取精确的阻值。
作为上述方案的改进,所述误差允许的差值范围为±10%。
作为上述方案的改进,在获取发热丝的实际电阻值时,每隔预定时间进行复数次采样,去掉复数个最大值和最小值,对剩下的一个或复数个值进行平均计算,从而获取过滤后的实际电阻值。采用上述方案,常温电阻值和实际电阻值均能得到精确的结果,实现精细化控制。
作为上述方案的改进,在获取发热丝的实际电阻值时,每隔预定时间进行一次多重采样,去掉若干个最大值和最小值,对若干剩下的值进行平均计算,从而获取过滤后的实际电阻值。采用上述方案,单位时间内的多重采样可以降低阻值的波动带来的影响,最终反馈出精确的电阻。
作为上述方案的改进,当发热丝的实际电阻值低于设定电阻值的n
1%时,以w
1的功率加热发热丝;当发热丝的实际电阻值为设定电阻值的n
1%-n
2%时,以w
2的功率加热发热丝;当发热丝的实际电阻值为设定电阻值的n
2%-n
3%时,以w
3的功率加热发热丝;其中n和w均为常数,0<n
1<n
2<n
3≤100,w
1>w
2>w
3>0。采用上述方案,实际阻值越是靠近设定阻值,则是往发热丝输出更低的功率,让实际阻值更缓慢地逼近设计阻值,实现更加细致化的调控。
作为上述方案的改进,当发热丝的实际电阻值超过设定电阻值一定范围后,停止对发热丝输出功率或直接关闭电子烟。采用上述方案,防止发热丝过热,最大限度地保护电子烟本体。
作为上述方案的改进,当发热丝的实际电阻值低于设定电阻值的n
1%时,以第一功率f
1的频率采样;当发热丝的实际电阻值为设定电阻值的n
1%-n
2%时,以第二功率f
2的频率采样;当发热丝的实际电阻值为设定电阻值的n
2%-n
3%时,以 第三功率f
3的频率采样;其中n和f均为常数,0<n
1<n
2<n
3≤100,0<f
1<f
2<f
3。采用上述方案,实际阻值越是靠近设定阻值,则是以更高的帧率进行侦测,实现更加细致化的调控。
为实现上述目的,本申请提供了一种储存介质,存储有执行上述的控制方法的程序或指令。
为实现上述目的,本申请提供了一种电子烟,包括主机、吸嘴、电源、处理器和上述的储存介质,用于执行加热监测方法;
所述加热监测方法包括:
所述加热监测方法包括以下步骤:
设置发热丝的设定温度值;
调取发热丝的常温温度值、常温电阻值及发热丝的温度系数;
发热丝与导体之间自然存在接触电阻值和膨胀系数,常温电阻值和常温温度值之间、设定电阻值和设定温度值之间存在映射关系;
建立关于接触电阻值的数学模型,设定发热丝与导体的接触半径和膨胀高度,接触半径和膨胀高度换算出发热丝与导体的接触面积以及接触电阻值;
电子烟启动并对发热丝输出功率,基于上述流程,获取发热丝的实际电阻值。
作为上述方案的改进,常温条件下,发热丝与导体存在接触部与非接触部,当发热丝受热时,发热丝在轴向上膨胀并填充至少部分非接触部,根据发热丝常温下的长度、线性膨胀系数、实际温度与常温温度的温度差,得到轴向上的膨胀长度,并进一步得到总加热接触面积。进一步,将所述未接触部等效成一个半圆球状的凹槽,当发热丝受热时,根据所述膨胀长度计算凹槽的实时半径,并得出总加热接触面积。通过大量观察和实验,采用上述方案,能更逼真地模 拟实际发热丝和导体的接触情况。
作为上述方案的改进,在发热丝制作完成后,在常温下通过电桥电路测试发热丝的常温电阻值,在电子烟制作完成后,在常温下通过采集与发热丝串联的分流电阻的差分放大信号得到电流大小从而进一步计算出发热丝的常温电阻值,验证电桥电路和差分电路获取到的常温电阻值,如果两者数值差异大于误差允许范围则回收对应的雾化器。采用上述方案,通过差分放大电路及多重滤波的方式检测电阻的方式,可以极大地提高检测精度,为后续控制温度提供准确的依据;如果两种方式得到的数值差异大说明发热丝与导体的连接位置不稳定,回收雾化器可以避免后续连接处干扰设备获取精确的阻值。
作为上述方案的改进,所述误差允许的差值范围为±10%。
作为上述方案的改进,在获取发热丝的实际电阻值时,每隔预定时间进行复数次采样,去掉复数个最大值和最小值,对剩下的一个或复数个值进行平均计算,从而获取过滤后的实际电阻值。采用上述方案,常温电阻值和实际电阻值均能得到精确的结果,实现精细化控制。
作为上述方案的改进,在获取发热丝的实际电阻值时,每隔预定时间进行一次多重采样,去掉若干个最大值和最小值,对若干剩下的值进行平均计算,从而获取过滤后的实际电阻值。采用上述方案,单位时间内的多重采样可以降低阻值的波动带来的影响,最终反馈出精确的电阻。
作为上述方案的改进,当发热丝的实际电阻值低于设定电阻值的n
1%时,以w
1的功率加热发热丝;当发热丝的实际电阻值为设定电阻值的n
1%-n
2%时,以w
2的功率加热发热丝;当发热丝的实际电阻值为设定电阻值的n
2%-n
3%时,以w
3的功率加热发热丝;其中n和w均为常数,0<n
1<n
2<n
3≤100,w
1>w
2>w
3>0。采用上述方案,实际阻值越是靠近设定阻值,则是往发热丝输出更低的功率,让实 际阻值更缓慢地逼近设计阻值,实现更加细致化的调控。
作为上述方案的改进,当发热丝的实际电阻值超过设定电阻值一定范围后,停止对发热丝输出功率或直接关闭电子烟。采用上述方案,防止发热丝过热,最大限度地保护电子烟本体。
作为上述方案的改进,当发热丝的实际电阻值低于设定电阻值的n
1%时,以第一功率f
1的频率采样;当发热丝的实际电阻值为设定电阻值的n
1%-n
2%时,以第二功率f
2的频率采样;当发热丝的实际电阻值为设定电阻值的n
2%-n
3%时,以第三功率f
3的频率采样;其中n和f均为常数,0<n
1<n
2<n
3≤100,0<f
1<f
2<f
3。采用上述方案,实际阻值越是靠近设定阻值,则是以更高的帧率进行侦测,实现更加细致化的调控。
本申请具有如下有益效果:使用具有一定温度系数的发热丝,检测其电阻及相关控制变量的变化来识别了调控抽吸状态;具有获取阻值准确,调节准确,结构简单等优点,在抽烟时烟雾大小稳定,既可以合理限制发热丝的温度,又可以减少雾化器漏油概率,防止雾化器烧糊。检测电阻的电路系统可以集成到原控制电路板中,电子烟结构简单成本低。
图1是一种实施例中涉及阻值数值调节的流程图;
图2是一种实施例中涉及阻值斜率调节的流程图;
图3是一种实施例中差分放大电路的原理图;
图4是一种实施例中雾化器的结构图;
图5是图4中A处的发热丝与弹针连接处实际模型的剖视图;
图6是图5转变为数学模型后的剖视图;
图7是一种实施例中发热丝与弹针连接处数学模型的端面图。
下面结合附图,对本申请的具体实施方式进行详细描述,但应当理解本申请的保护范围并不受具体实施方式的限制。
参照图1至图7,本申请公开了一种电子烟的加热控制方法及电子烟,创新点在于通过侦测电阻调节发热丝的功率,同时优化调节功率的方法。
选用具有温度系数的发热丝制作雾化器,发热丝的阻值随着温度的升高而增加。在电子烟启动前获取发热丝的常温温度值和常温电阻值,在获取发热丝的常温电阻值时,通过采集与发热丝串联的分流电阻的差分放大信号得到电流大小从而进一步计算出发热丝的常温电阻值,同时设置电子烟的设定电阻值和设定温度值,在电子烟启动后获取发热丝的实际电阻值。基于发热丝的实际电阻值推算发热丝的实际温度,对比实际温度和设定温度值,如果实际温度高于设定温度值则降低发热丝的实际功率,反之则不降低发热丝的实际功率。
相比传统的直接检测温度的做法,不需要引入新的温度传感器,简化电子烟的结构;电阻可以换算成温度,检测电阻的设备只需要一个电路板即可,甚至可以将上述电路集成到现有的控制电路板中,实现电子烟的小型化。相应地电测电阻的手段和精度需要提高,本方案中给出了通过差分放大电路及多重滤波的方式检测电阻的方式,可以极大地提高检测精度,为后续控制温度提供准确的依据。上述方案中涉及获取各种参数,可以统称为系统、参数的初始化。
具体参照图4,雾化器伸出两根引脚,两根引脚上标记圆圈的位置便是雾化器与弹针连接的位置,发热丝经由该位置获得电能。
电阻换算成温度的公式如下:T(设定温度值)=(R(实际电阻值)-R(常温电阻值))/(TCR(温度系数)*R(常温电阻值))+T(常温温度值);其中常温电阻值和常温温度值检测后可以录入公式,温度系数可以查产品的参数,公式中动变量的 仅有实际电阻值。比如说设定温度值为300℃,对公式进行反推,R(设定电阻值)=R(常温电阻值)+(TCR(温度系数)*R(常温电阻值))*(T(设定温度值)-T(常温温度值)),R(设定电阻值)=0.3Ω+(2800ppm/℃*0.3Ω)*(300℃-25℃)=0.53Ω,后续将发热丝的电阻维持在0.53Ω附近即可。
为了验证采样的稳定性,也为了提前提出不稳定的发热丝,在发热丝制作完成后,在常温下通过电桥电路测试发热丝的常温电阻值,验证电桥电路和差分电路获取到的常温电阻值,如果两者数值差异大于误差允许范围则回收对应的雾化器。本实施例中,以电桥电路的测量值为标准,差分电路获取到的阻值差异在2%以内。
差分电路集成在控制系统中,在获取发热丝的实际电阻值时,也通过采集与发热丝串联的分流电阻的差分放大信号得出电流大小从而进一步计算出发热丝的实际电阻值。具体参照图3,芯片具有六个引脚(IN+、IN-、V+、OUT、REF、GND),其中采集F+输出端的电压,VOUT作为系统电压,其他引脚用于供电、缓冲和输出整合后的数据。
作为优选,在测量阻值时每隔f
n(单位为ms)采样一次,进行多重采样并大小排序数值,去掉若干个最大值和最小值,对若干剩下的值平均,从而获取准确的阻值,其中f
n为常数。单位时间内的多重采样可以降低阻值的漂移带来的影响,最终反馈出精确的电阻。在一种实施例中,f
n为10,即采样的频率为每10ms一次,一个单位时间内完成采样10-30次。f
n的数值可调,可以是20或30等等。
作为优选,当发热丝的实际电阻值低于设定电阻值时,先以恒定功率加热发热丝,当发热丝的实际电阻值接近设定电阻值时以更慢的速度加热发热丝,当发热丝的实际电阻值等于设定电阻值时,通过PWM控制输出的功率维持发热 丝的实际电阻值。动态调节发热丝产生热量,实现动态平衡。
进一步,设置发热丝的允许最大阻值为R
max,当发热丝的实际电阻值高于设定电阻值R
max时,停止往发热丝输出功率;以设定电阻值的0.53Ω(对应的设定温度值为300℃)为例,实际电阻值超过0.60Ω(对应的温度为340℃)之后直接关闭雾化器。在其他实施例中,电子烟可能出现其他故障,于是设置发热丝的允许最大阻值为R
max,当发热丝的实际电阻值高于设定电阻值的R
max%时,直接关闭雾化器(即关闭电子烟),防止发热丝过热,最大限度地保护电子烟本体。
第一功率命名为w
1,第二功率命名为w
2,第三功率命名为w
3。当发热丝的实际电阻值低于设定电阻值的n
1%时,以w
1的功率加热发热丝;当发热丝的实际电阻值为设定电阻值的n
1%-n
2%时,以w
2的功率加热发热丝;当发热丝的实际电阻值为设定电阻值的n
2%-n
3%时,以w
3的功率加热发热丝;其中n和w均为常数,0<n
1<n
2<n
3≤100,w
1>w
2>w
3>0。实际电阻值越是靠近设定电阻值,则是往发热丝输出更低的功率,让实际电阻值更缓慢地逼近设计阻值,实现更加细致化的调控。本实施例中,当发热丝的实际电阻值低于设定电阻值的80%时,给发热丝提供6w的功率;当发热丝的实际电阻值为设定电阻值的80-90%时,给发热丝提供5.5w的功率;当发热丝的实际电阻值为设定电阻值的90-100%时,给发热丝提供5.2w的功率。
在划分实际电阻值落入的区间时,可以不局限于上述三个区间,可以根据需要将设定电阻值的范围划分两个或四个之类的区间,实现更加精细化的调控。
同理,当发热丝的实际电阻值低于设定电阻值的n
1%时,以f
1的频率采样;当发热丝的实际电阻值为设定电阻值的n
1%-n
2%时,以f
2的频率采样;当发热丝的实际电阻值为设定电阻值的n
2%-n
3%时,以f
3的频率采样;其中n和f均为常 数,0<n
1<n
2<n
3≤100,0<f
1<f
2<f
3。实际电阻值越是靠近设定电阻值,则是以更高的帧率进行侦测,实现更加细致化的调控。本实施例中,当发热丝的实际电阻值低于设定电阻值的80%时,以30ms间隔的频率采样实际电阻;当发热丝的实际电阻值为设定电阻值的80%-90%时,以20ms间隔的频率采样实际电阻;当发热丝的实际电阻值为设定电阻值的90%-100%时,以15ms间隔的频率采样实际电阻。发热丝的温度较低时可以放心输出功率同时省电,发热丝的温度较高时则需要更加准确的检测应对复杂的情况。
当然了,在划分实际电阻值落入的区间时,可以不局限于上述三个区间,可以根据需要将设定电阻值的范围划分两个或四个之类的区间,实现更加精细化的调控。
作为优选,采集不同时间点及其对应的实际电阻值,将上述不同时间点及其对应实际电阻值放入一直角坐标系并模拟成一曲线,分析该曲线的斜率大小,如果该曲线的斜率逐渐增大则降低发热丝得到的功率,如果该曲线的斜率逐渐降低则提高发热丝得到的功率,如果该曲线的斜率不变则维持发热丝得到的功率不变。采用上述方案,通过单位时间内实际电阻值的变化程度推算抽吸力度,如果抽吸力度大则相应地气流会带走较多的热量,此时发热丝的实际电阻增长缓慢,此时可以适当提高这个状态下的功率,引入一个大于1的修正系数k
1;如果抽吸力度小则相应地气流无法带走较多的热量,此时发热丝的实际电阻增长迅速,此时可以适当降低这个状态下的功率,引入一个小于1的修正系数k
2;如果抽吸力度均匀,则可以维持功率的稳定,即引入一个等于1的修正系数k
3;如此实现精细化的调控。根据经验预设用户均匀抽吸时曲线的斜率(不同人均匀抽吸的力度也会存在差异,所以基准K具有浮动空间),将该斜率作为基准K;本实施例中,当曲线的斜率落入[0.9K,1.1K]该区间时,将用户的抽吸力度判 断为均匀抽吸,此时按原设定往发热丝提供功率;当曲线的斜率低于0.9K时,将用户的抽吸力度判断为用力抽吸,此时系数1.1乘以原发热丝的功率,按增大后的功率送往发热丝;当曲线的斜率高于1.1K时,将用户的抽吸力度判断为轻微抽吸,此时系数0.9乘以原发热丝的功率,按降低后的功率送往发热丝。系数k
1、k
2、k
3可选的还有其他值。
按实际电阻值落入设定电阻值区间的方式以及实际电阻值的变化程度,动态调节采样频率,动态调节原输出功率,动态修正原输出功率。将上述三个方案组合使用。比如实际电阻值为设定电阻值的85%,以w
2的功率输出给发热丝;同时考虑到单位时间内实际电阻值的曲线斜率超过1.05K,以0.9*w2的功率输出给发热丝;在上述过程中,采样频率为20ms每次。
雾化器在加热雾化中,烟油挥发带走热量,如雾化器烟油渗透率不足时,发热丝表面棉花烟油量不足,则发热丝会将棉花碳化(烧糊)。本方法通过限制发热丝表面温度来达到防止雾化芯烧糊,当油量不足时,表面温度急剧升高,通过公式计算降低输出功率来达到降温的目的,从而防止烧糊。
上述方案中提到的阻值均可以换算成温度然后再显示。
在一种方案中,发热丝与弹针之间存在接触电阻,并且由于热胀冷缩效应会改变电阻阻值,因此在公式中导入膨胀系数计算以提高检测精度。本实施例以设定温度值300℃为例,介绍具体的计算过程。具体参照图4和图5,以下实际参数为例,线性膨胀系数a=15*10^-6/℃,300℃时,发热丝与输出电极之间的轴向方向上的膨胀长度为0.41mm,发热丝径向方向上的总的横截面积为4.9mm
2,平面精度0.05;其中膨胀长度=常温下的长度*线性膨胀系数,加热后的长度=常温下的长度+膨胀长度。图5中接触位置的波浪线起伏高度称为膨胀高度,波浪线起伏高度统一设定为轴向方向上的变化;每一段波浪线对应的弧 度称为接触半径r,具体参照图6,由于工艺的差别使得发热丝中心略微凹陷,统一设定当两者相互接触时其接触面积为圆环形,随着两者发热,圆环形的接触面积越来越大(即图6中r增大,r
1(对应的线段为AO)表示常温下的接触半径,r
2(对应的线段为BO)表示加热后的接触半径),本实施例将凹槽假定在发热丝上,图6中的三角形(不属于发热丝和弹针的一部分,仅仅是用于模拟结构的示意图)的径向方向为接触半径、轴向方向为膨胀高度、斜面为接触面积的投影,斜面的角度∠CAB设定为45°,得到斜面长度后可以换算出接触面积。接触电阻值=电阻率*电阻长度/接触面积,本实施例以0.02Ω的接触电阻值为例;膨胀长度=常温长度*温度差*膨胀系数,膨胀长度随着温度升高而增长,从而使接触面积变大,减少接触电阻值,使用余切函数计算加热增加的面积。该设计的创新点在于提出一个关于接触面积计算的数学模型,基于该数学模型能逼近实际情况,大幅度地减少测量电阻过程中的误差,方便系统更精确地控制加热所需的功率。
面积膨胀系数=实际电阻值/常温电阻值=常温接触面积/总加热接触面积=4.655/4.883≈0.95。
结合上述计算设定温度值300℃的公式,设定电阻值=(常温电阻值-接触电阻值)+温度系数*(常温电阻值-接触电阻值)*(设定温度值-常温温度值)+接触电阻值*面积膨胀系数,一一对应数值得到下式:0.51Ω≈(0.3Ω-0.02Ω)+(2800ppm/℃*(0.3Ω-0.02Ω))*(300℃-25℃)+(0.02*0.95)。未修正之前300℃对应的设定电阻值为0.53Ω,修正之后300℃对应的设定电阻值为0.51Ω,修正之后得到了更加准确的调整依据。注:数学公式中的文字顺序与数值顺序一一对应。
一种储存介质,存储有执行上述的控制方法的程序或指令。前述的储存介质包括U盘、移动硬盘、只读存储器、随机存储器、磁碟、光盘或云端等可以存储程序代码的介质。
一种电子烟,包括主机、吸嘴、电源、处理器和上述的储存介质,用于执行如上述的控制方法。
前述对本申请的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本申请限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本申请的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本申请的各种不同的示例性实施方案以及各种不同的选择和改变。本申请的范围意在由权利要求书及其等同形式所限定。
Claims (18)
- 一种电子烟的加热监测方法,设置发热丝的设定温度值;调取发热丝的常温温度值、常温电阻值及发热丝的温度系数;发热丝与导体之间自然存在接触电阻值和膨胀系数,常温电阻值和常温温度值之间、设定电阻值和设定温度值之间存在映射关系;建立关于接触电阻值的数学模型,设定发热丝与导体的接触半径和膨胀高度,接触半径和膨胀高度换算出发热丝与导体的接触面积以及接触电阻值;电子烟启动并对发热丝输出功率,基于上述流程,获取发热丝的实际电阻值。
- 根据权利要求1所述的电子烟的加热监测方法,其中,常温条件下,发热丝与导体存在接触部与非接触部,当发热丝受热时,发热丝在轴向上膨胀并填充至少部分非接触部,根据发热丝常温下的长度、线性膨胀系数、实际温度值与常温温度值的温度差,得到轴向上的膨胀长度,并进一步得到总加热接触面积。
- 根据权利要求2所述的电子烟的加热监测方法,其中,将所述未接触部分等效成一个半圆球状的凹槽,当发热丝受热时,根据所述膨胀长度计算凹槽的实时半径,并得出总加热接触面积。
- 根据权利要求1至3任一项所述的电子烟的加热监测方法,其中,比较发热丝的实际电阻值和设定电阻值,根据发热丝的电阻与温度关系,判断实际电阻值对应的实际温度值和设定电阻值对应的设定温度值关系,当实际温度值不低于设定温度值时,则降低或停止输出至发热丝的功率。
- 根据权利要求4所述的电子烟的加热监测方法,其中,在获取发热丝的实际电阻值时,每隔预定时间进行复数次采样,去掉复数个最大值和最小值,对剩下的一个或复数个值进行平均计算,从而获取过滤后的实际电阻值。
- 根据权利要求5所述的电子烟的加热监测方法,其中,所述发热丝的电阻与温度关系为电阻随着温度的升高而增大。
- 根据权利要求6所述的电子烟的加热监测方法,其中,当发热丝的实际电阻值低于设定电阻值的n 1%时,以第一功率w 1加热发热丝;当发热丝的实际电阻值为设定电阻值的n 1%-n 2%时,以第二功率w 2加热发热丝;当发热丝的实际电阻值为设定电阻值的n 2%-n 3%时,以第三功率w 3加热发热丝;其中n和w均为常数,0<n 1<n 2<n 3≤100,w 1>w 2>w 3>0。
- 根据权利要求7所述的电子烟的加热监测方法,其中,当发热丝的实际电阻值超过设定电阻值一定范围后,停止对发热丝输出功率或直接关闭电子烟。
- 根据权利要求8所述的电子烟的加热监测方法,其中,当发热丝的实际电阻值低于设定 电阻值的n 1%时,以第一功率f 1采样;当发热丝的实际电阻值为设定电阻值的n 1%-n 2%时,以第二功率f 2采样;当发热丝的实际电阻值为设定电阻值的n 2%-n 3%时,以第三功率f 3采样;其中n和f均为常数,0<n 1<n 2<n 3≤100,0<f 1<f 2<f 3。
- 一种电子烟,其中,包括主机、吸嘴、电源、处理器、储存器,用于执行加热监测方法;所述加热监测方法包括以下步骤:设置发热丝的设定温度值;调取发热丝的常温温度值、常温电阻值及发热丝的温度系数;发热丝与导体之间自然存在接触电阻值和膨胀系数,常温电阻值和常温温度值之间、设定电阻值和设定温度值之间存在映射关系;建立关于接触电阻值的数学模型,设定发热丝与导体的接触半径和膨胀高度,接触半径和膨胀高度换算出发热丝与导体的接触面积以及接触电阻值;电子烟启动并对发热丝输出功率,基于上述流程,获取发热丝的实际电阻值。
- 根据权利要求10所述的电子烟,其中,常温条件下,发热丝与导体存在接触部与非接触部,当发热丝受热时,发热丝在轴向上膨胀并填充至少部分非接触部,根据发热丝常温下的长度、线性膨胀系数、实际温度值与常温温度值的温度差,得到轴向上的膨胀长度,并进一步得到总加热接触面积。
- 根据权利要求11所述的电子烟,其中,将所述未接触部分等效成一个半圆球状的凹槽,当发热丝受热时,根据所述膨胀长度计算凹槽的实时半径,并得出总加热接触面积。
- 根据权利要求10至12任一项所述的电子烟,其中,比较发热丝的实际电阻值和设定电阻值,根据发热丝的电阻与温度关系,判断实际电阻值对应的实际温度值和设定电阻值对应的设定温度值关系,当实际温度值不低于设定温度值时,则降低或停止输出至发热丝的功率。
- 根据权利要求13所述的电子烟,其中,在获取发热丝的实际电阻值时,每隔预定时间进行复数次采样,去掉复数个最大值和最小值,对剩下的一个或复数个值进行平均计算,从而获取过滤后的实际电阻值。
- 根据权利要求14所述的电子烟,其中,所述发热丝的电阻与温度关系为电阻随着温度的升高而增大。
- 根据权利要求15所述的电子烟,其中,当发热丝的实际电阻值低于设定电阻值的n 1%时,以第一功率w 1加热发热丝;当发热丝的实际电阻值为设定电阻值的n 1%-n 2%时,以第二功率w 2加热发热丝;当发热丝的实际电阻值为设定电阻值的n 2%-n 3%时,以第三功率w 3加热发热丝;其中n和w均为常数,0<n 1<n 2<n 3≤100,w 1>w 2>w 3>0。
- 根据权利要求16所述的电子烟,其中,当发热丝的实际电阻值超过设定电阻值一定范围后,停止对发热丝输出功率或直接关闭电子烟。
- 根据权利要求17所述的电子烟,其中,当发热丝的实际电阻值低于设定电阻值的n 1%时,以第一功率f 1采样;当发热丝的实际电阻值为设定电阻值的n 1%-n 2%时,以第二功率f 2采样;当发热丝的实际电阻值为设定电阻值的n 2%-n 3%时,以第三功率f 3采样;其中n和f均为常数,0<n 1<n 2<n 3≤100,0<f 1<f 2<f 3。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011383344.7 | 2020-11-30 | ||
CN202011383344.7A CN112535324B (zh) | 2020-11-30 | 2020-11-30 | 一种电子烟的加热监测方法及电子烟 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022111121A1 true WO2022111121A1 (zh) | 2022-06-02 |
Family
ID=75016759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/124308 WO2022111121A1 (zh) | 2020-11-30 | 2021-10-18 | 一种电子烟的加热监测方法及电子烟 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112535324B (zh) |
WO (1) | WO2022111121A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117837827A (zh) * | 2022-12-01 | 2024-04-09 | 郑福盈 | 一种基于一次性电子烟的控制系统 |
CN117837825A (zh) * | 2022-12-05 | 2024-04-09 | 黄养 | 一种基于电子烟的低功耗系统 |
WO2024140492A1 (zh) * | 2022-12-29 | 2024-07-04 | 深圳华宝协同创新技术研究院有限公司 | 一种温度控制方法、装置及电子设备 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112535324B (zh) * | 2020-11-30 | 2023-09-05 | 深圳市吉迩科技有限公司 | 一种电子烟的加热监测方法及电子烟 |
CN115944120A (zh) * | 2021-10-08 | 2023-04-11 | 常州市派腾电子技术服务有限公司 | 气溶胶生成装置的控制方法、控制装置及气溶胶生成装置 |
CN114859997B (zh) * | 2022-05-25 | 2024-07-26 | 上海迈振电子科技有限公司 | 一种温度控制方法、装置、系统、设备及存储介质 |
CN115500557A (zh) * | 2022-09-15 | 2022-12-23 | 声海电子(深圳)有限公司 | 防止干烧的发热元件组及具有其的电子烟 |
CN115736389A (zh) * | 2022-12-21 | 2023-03-07 | 深圳麦克韦尔科技有限公司 | 加热控制方法、加热控制装置、电池组件及电子雾化装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105011375A (zh) * | 2015-07-21 | 2015-11-04 | 昆山祥维电子科技有限公司 | 一种雾化丝阻值能够自动控制的电子烟 |
CN106942791A (zh) * | 2017-03-22 | 2017-07-14 | 东莞市哈维电子科技有限公司 | 电子吸烟装置及其温度控制方法 |
CN108107951A (zh) * | 2018-01-08 | 2018-06-01 | 威滔电子科技(深圳)有限公司 | 一种电子烟自动温控装置、系统及方法、电子烟 |
US20200008482A1 (en) * | 2017-03-22 | 2020-01-09 | Dongguan Mysmok Electronic Technology Co., Ltd | Temperature controller for electronic smoking device |
CN112535324A (zh) * | 2020-11-30 | 2021-03-23 | 深圳市吉迩科技有限公司 | 一种电子烟的加热监测方法及电子烟 |
CN112535325A (zh) * | 2020-11-30 | 2021-03-23 | 深圳市吉迩科技有限公司 | 一种电子烟的加热控制方法及电子烟 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204540825U (zh) * | 2014-12-12 | 2015-08-12 | 卓尔悦(常州)电子科技有限公司 | 雾化装置及含有该雾化装置的电子烟 |
CN104382239A (zh) * | 2014-12-12 | 2015-03-04 | 卓尔悦(常州)电子科技有限公司 | 雾化装置及含有该雾化装置的电子烟 |
CN204560957U (zh) * | 2015-01-21 | 2015-08-19 | 惠州市吉瑞科技有限公司 | 一种电子烟 |
WO2016145634A1 (zh) * | 2015-03-18 | 2016-09-22 | 惠州市吉瑞科技有限公司 | 一种电子烟雾化器发热丝加热方法和电子烟 |
-
2020
- 2020-11-30 CN CN202011383344.7A patent/CN112535324B/zh active Active
-
2021
- 2021-10-18 WO PCT/CN2021/124308 patent/WO2022111121A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105011375A (zh) * | 2015-07-21 | 2015-11-04 | 昆山祥维电子科技有限公司 | 一种雾化丝阻值能够自动控制的电子烟 |
CN106942791A (zh) * | 2017-03-22 | 2017-07-14 | 东莞市哈维电子科技有限公司 | 电子吸烟装置及其温度控制方法 |
US20200008482A1 (en) * | 2017-03-22 | 2020-01-09 | Dongguan Mysmok Electronic Technology Co., Ltd | Temperature controller for electronic smoking device |
CN108107951A (zh) * | 2018-01-08 | 2018-06-01 | 威滔电子科技(深圳)有限公司 | 一种电子烟自动温控装置、系统及方法、电子烟 |
CN112535324A (zh) * | 2020-11-30 | 2021-03-23 | 深圳市吉迩科技有限公司 | 一种电子烟的加热监测方法及电子烟 |
CN112535325A (zh) * | 2020-11-30 | 2021-03-23 | 深圳市吉迩科技有限公司 | 一种电子烟的加热控制方法及电子烟 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117837827A (zh) * | 2022-12-01 | 2024-04-09 | 郑福盈 | 一种基于一次性电子烟的控制系统 |
CN117837825A (zh) * | 2022-12-05 | 2024-04-09 | 黄养 | 一种基于电子烟的低功耗系统 |
WO2024140492A1 (zh) * | 2022-12-29 | 2024-07-04 | 深圳华宝协同创新技术研究院有限公司 | 一种温度控制方法、装置及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN112535324B (zh) | 2023-09-05 |
CN112535324A (zh) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022111121A1 (zh) | 一种电子烟的加热监测方法及电子烟 | |
CN112535325A (zh) | 一种电子烟的加热控制方法及电子烟 | |
EP3841899B1 (en) | Temperature control method of electronic cigarette, electronic cigarette and computer storage medium | |
CN204861167U (zh) | 电子烟雾化温度控制电路及可控温电子烟雾化芯 | |
CN105011375A (zh) | 一种雾化丝阻值能够自动控制的电子烟 | |
CN110279149B (zh) | 一种电子烟雾化器温度补偿电路及控制方法 | |
CN104839896A (zh) | 一种自动控温钛丝电子烟 | |
CN104881063A (zh) | 一种自动控温铂金丝电子烟 | |
CN110856556A (zh) | 控制电路、电子烟以及电子烟的控制方法 | |
CN111351985B (zh) | 电阻检测系统和方法 | |
CN213404869U (zh) | 一种电子烟防干烧装置 | |
CN112315031A (zh) | 基于极间电容介电常数变化的烟支检测方法 | |
CN108918026A (zh) | 一种热阴极电离真空计电参数校准装置及方法 | |
CN104808041A (zh) | 一种氮氧传感器芯片泵电流的测试方法及装置 | |
CN117122105A (zh) | 一种电子烟咪头出厂检测的气压校正方法 | |
CN116268579B (zh) | 电子烟装置的变功率输出控制方法、装置及电子烟装置 | |
WO2020038320A1 (zh) | 控制电路以及电子烟 | |
CN109900964B (zh) | 发热体的常温初始阻值标定方法和系统 | |
CN111478664A (zh) | 一种光伏组件测试系统 | |
CN102854378B (zh) | 电流测试电路 | |
CN111938420B (zh) | 一种湿度控制系统、控制方法及蒸汽烹饪装置 | |
CN102727021A (zh) | 智能控制型dc低压电热被/毯及其智能控制电路 | |
CN204556709U (zh) | 一种氮氧传感器芯片泵电流的测试装置 | |
CN109374978A (zh) | 一种基于电桥法的电缆介损改进测量电路及方法 | |
CN214375089U (zh) | 负载检测装置、无人装置充电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21896623 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21896623 Country of ref document: EP Kind code of ref document: A1 |