WO2021120808A1 - 雾化器的加热方法、装置、计算机设备和存储介质 - Google Patents

雾化器的加热方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2021120808A1
WO2021120808A1 PCT/CN2020/121019 CN2020121019W WO2021120808A1 WO 2021120808 A1 WO2021120808 A1 WO 2021120808A1 CN 2020121019 W CN2020121019 W CN 2020121019W WO 2021120808 A1 WO2021120808 A1 WO 2021120808A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
trigger operation
atomizer
heating element
heating
Prior art date
Application number
PCT/CN2020/121019
Other languages
English (en)
French (fr)
Inventor
孙长文
方伟明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP20903767.0A priority Critical patent/EP4079175A4/en
Publication of WO2021120808A1 publication Critical patent/WO2021120808A1/zh
Priority to US17/839,814 priority patent/US20220304393A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0244Heating of fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • This application relates to the technical field of atomizers, in particular to a heating method, device, computer equipment and storage medium of an atomizer.
  • the heating method of the traditional atomizer is usually to add a heating body such as a heating liquid or a heating solid into the atomizer for heating, so that the heating body is atomized.
  • a heating method, device, computer equipment, and storage medium of an atomizer that can increase the service life are provided.
  • a heating method of an atomizer comprising:
  • the sampling value of the thermal property of the heating body in the atomizer is acquired in real time
  • the sampling value of the thermal property of the heating element when the thermal equilibrium is reached is taken as the stable value, and the difference between the sampling value of the heating element and the stable value is controlled to be the first Within the range, obtain the first output power of the atomizer in real time;
  • the judging whether the atomizer reaches thermal equilibrium according to the sampling value acquired at the current moment includes:
  • the first time length includes the current time
  • the first predetermined rule is that all the sample values within the first time period are the same.
  • the first predetermined rule is that the difference of each of the sampling values within the first time period is all within a preset range.
  • the method further includes:
  • each of the sampled values in the first period of time does not meet the first predetermined rule, obtain each of the sampled values in a second period of time; the second period of time is greater than the first period of time; the first period of time 2.
  • the duration includes the current moment
  • the second predetermined rule is that each of the sample values in the second time period increases one by one in chronological order, and the difference between two adjacent sample values in the second time period is The largest difference in the values is less than the difference threshold; or
  • the second predetermined rule is that each of the sample values in the second time period is increased one by one in a time sequence and then remains unchanged.
  • the method when it is determined that the atomizer has reached thermal equilibrium, before the sampling value of the heating element when the thermal equilibrium is reached is regarded as a stable value, the method further includes:
  • a reference value is obtained, and the difference between the sampling value of the heating element's thermal property and the reference value is controlled to be within a second range, and all the values are obtained in real time.
  • the second output power of the atomizer; the reference value is less than or equal to the maximum value of the thermal property of the heating body during the last trigger operation;
  • the method for determining the maximum value of the thermal property of the heating element for the last trigger operation includes: obtaining the stable value of the thermal property of the heating element for each trigger operation; The maximum stable value is taken as the maximum value of the thermal property of the heating element of the last trigger operation.
  • the reference value is the minimum value of the thermal attribute of the heating element in the last trigger operation, the average value of the thermal attribute of the heating element in the last trigger operation, and the last trigger operation One of the maximum thermal properties of the heating element.
  • the obtaining the trigger increment value of the last trigger operation includes:
  • the trigger increment value of the last trigger operation is determined according to the initial value of the last trigger operation and the stable value of the last trigger operation.
  • the method further includes:
  • the reference protection trigger value is a threshold value of the thermal property of the heating body
  • the determining the trigger increment value of the last trigger operation according to the initial value of the last trigger operation and the stable value of the last trigger operation includes:
  • the trigger increment value of the last trigger operation is determined according to the target parameter, the initial value of the last trigger operation, and the stable value of the last trigger operation.
  • the obtaining the initial value of the last trigger operation includes:
  • the sample value of the last trigger operation is used as the initial value of the last trigger operation
  • the calibration value is used as the initial value of the last trigger operation.
  • the thermal property of the heating element is the resistance value of the heating element or the temperature of the heating element.
  • the trigger operation is a suction operation, a pressing operation, a clicking operation or a sliding operation.
  • the stopping heating the heating element when the first output power is less than the first power threshold includes:
  • the power supply of the atomizer is cut off, so that the atomizer stops heating the heating element;
  • the power supply of the heating element is cut off, and the heating of the heating element is stopped.
  • the method further includes:
  • the trigger increment value is acquired, and if the first difference is less than or equal to the trigger increment value, the reference value is determined, Obtain the second output power, and if the second output power is less than the second power threshold, stop heating the heating element.
  • a heating device of an atomizer comprising:
  • the sampling value obtaining module is used to obtain the sampling value of the thermal properties of the heating body in the atomizer in real time when a trigger operation is detected;
  • a thermal balance judging module configured to judge whether the atomizer has reached thermal balance according to the sampling value acquired at the current moment
  • the first output power acquisition module is configured to, when judging that the atomizer reaches thermal equilibrium, use the sampling value of the thermal property of the heating element when the thermal equilibrium is reached as a stable value, and control the sampling value of the heating element and the stable value The difference between the values is within the first range, and the first output power of the atomizer is acquired in real time;
  • the stop heating module is used to stop heating the heating element when the first output power is less than the first power threshold.
  • a computer device includes a memory and a processor, the memory stores a computer program, and is characterized in that the processor implements the steps of the above method when the computer program is executed by the processor.
  • a computer-readable storage medium having a computer program stored thereon, wherein the computer program is characterized in that, when the computer program is executed by a processor, the steps of the above-mentioned method are realized.
  • Fig. 1 is a schematic flow chart of a heating method of an atomizer in an embodiment
  • FIG. 2 is a schematic diagram of a process of determining a stable value, a maximum value, a minimum value, and an average value after the atomizer is triggered in an embodiment
  • Figure 3 is a schematic flow chart of a heating method before the atomizer reaches thermal equilibrium in an embodiment
  • Fig. 4 is a schematic flow chart of a heating method of an atomizer in another embodiment
  • Fig. 5 is a schematic diagram of sampling values during the process of the atomizer reaching thermal equilibrium in an embodiment
  • Figure 6 is a structural block diagram of the heating device of the atomizer in an embodiment
  • Fig. 7 is an internal structure diagram of a computer device in an embodiment.
  • a heating method of an atomizer which includes the following steps:
  • Step 102 When the trigger operation is detected, the sampling value of the thermal property of the heating body in the atomizer is obtained in real time.
  • Atomizer refers to a device that heats a heating body to atomize the heating body.
  • the heating body may be liquid or solid.
  • An atomizer such as an electronic cigarette, heats the e-liquid through the e-cigarette, thereby forming the e-liquid into smoke.
  • the atomizer can also be a humidifier, a medical atomizer, or the like.
  • the atomizer includes a heating element, and the heating element can be heated by the heating element.
  • the thermal property of the heating element may be the resistance value of the heating element or the temperature of the heating element.
  • the trigger operation may be a suction operation, a pressing operation, a clicking operation, a sliding operation, etc., and is not limited thereto.
  • the trigger operation may be a suction operation.
  • the air pressure sensor in the atomizer detects a change in air pressure, it indicates that the suction operation is detected.
  • Real-time refers to responding in a short time.
  • the preset duration can be acquired, and when the trigger operation is detected, the sampling value of the thermal property of the heating body in the atomizer is acquired at intervals of the preset duration.
  • the preset time length is 200 milliseconds, that is, when a trigger operation is detected, the sampling value of the thermal property of the heating body in the atomizer is obtained every 200 milliseconds.
  • Step 104 Determine whether the atomizer has reached thermal equilibrium according to the sampling value acquired at the current moment.
  • the energy input by the atomizer is the same as the energy output, and the heating body in the atomizer can be heated to continuously and stably perform atomization.
  • Step 106 When it is judged that the atomizer has reached thermal equilibrium, the sampling value of the thermal property of the heating element when the thermal equilibrium is reached is taken as the stable value, and the difference between the sampling value and the stable value of the heating element is controlled to be within the first range, and it is obtained in real time The first output power of the atomizer.
  • the difference between the sampling value and the stable value of the heating element is controlled to be within the first range, so that the energy absorbed by the heating element can be stabilized within a certain interval.
  • a PID Proportion Integral Differential, proportional-integral-differential control
  • the value controls the power of the heating element, so that the sampling value of the heating element is adjusted to a stable value, that is, the heating element is heated at a constant temperature.
  • the PID algorithm is based on the given value and the actual output value to form a control deviation, and the deviation is proportional, integral and differential to form a control variable through a linear combination to control the controlled object.
  • the conventional PID controller is used as a linear controller.
  • the atomizer provides energy through the heating element to generate heat, that is, the first total energy, and part of the energy provided is absorbed by the heating element itself, and the other part is absorbed by the heating element in the atomizer. Therefore, the first total energy is the sum of the energy absorbed by the heating element and the energy absorbed by the heating element in the atomizer.
  • Qp is the first total energy
  • Qr is the energy absorbed by the heating element
  • Qoil is the energy absorbed by the heating element in the atomizer. That is to say, according to the law of conservation of energy, part of the heat generated by the heating element is absorbed by itself, causing its own temperature to rise, and the other part is absorbed by the heating body to atomize the e-liquid. Normally, the heating body can absorb heat stably, and it will reach thermal equilibrium.
  • the first total energy output by the atomizer that is, the first output power, stabilizes at a value. When the content of the heating body decreases, the first total energy output by the atomizer is also That is, the first output power will decrease accordingly, so it can be judged whether the content of the heating body in the atomizer is normal according to the first output power.
  • Step 108 When the first output power is less than the first power threshold, stop heating the heating element. In one embodiment, when it is detected that the first output power is less than the first power threshold, the power supply of the atomizer can be cut off, so that the atomizer stops heating the heating element.
  • the power supply of the heating element when it is detected that the first output power is less than the first power threshold, the power supply of the heating element can be cut off to stop heating the heating element.
  • the heating method of the above atomizer when the trigger operation is detected, the sampling value of the thermal property of the heating element in the atomizer is obtained in real time; according to the sampling value obtained at the current moment, it is judged whether the atomizer has reached thermal equilibrium; when it is judged that the atomizer has reached In thermal equilibrium, the sampling value of the thermal property of the heating element when the thermal equilibrium is reached is taken as the stable value, and the difference between the sampling value and the stable value of the heating element is controlled to be within the first range, and the first output power of the atomizer is obtained in real time; Control the difference between the sampling value of the heating element and the stable value within the first range, that is, control the energy absorbed by the heating element to stabilize within a certain interval; when the first output power is less than the first power threshold, it means atomization The energy absorbed by the heating element in the atomizer is reduced, that is, the heating element in the atomizer, that is, the object to be heated for atomization is insufficient, so the heating of the heating element is stopped
  • judging whether the atomizer has reached thermal equilibrium based on the sampling value acquired at the current moment includes: acquiring each sampling value in the first time period based on the current time; the first time period includes the current time; when each of the first time period is When the sampling value meets the first predetermined rule, it is determined that the atomizer has reached thermal equilibrium.
  • the first duration can be set according to user needs.
  • the first predetermined rule may be that all sample values within the first time period are the same. For example, if the current time is 19:5:10, 20 ms, and the atomizer obtains the sampling value of the thermal properties of the heating element in the atomizer every 200 ms, the first duration can be an integer multiple of 200 ms, such as 600 ms. Then, 4 sampling values can be obtained from 19:5:10 and 20 ms to 19:5:10 and 620 ms. When the 4 sampling values are all the same, it can be judged that the atomizer has reached thermal equilibrium.
  • the first predetermined rule may also be that the difference of each sampled value within the first time period is all within a preset range. For example, if the current time is 19:5:10, 20 ms, and the atomizer obtains the sampling value of the thermal properties of the heating element in the atomizer every 200 ms, the first duration can be an integer multiple of 200 ms, such as 600 ms. Then 4 sample values can be obtained from 19:5:10 and 20 ms to 19:5:10 and 620 ms, which are 578, 579, 580, and 578 respectively.
  • the preset range is 10, and the difference of each sample value in the first time period is equal Within the preset range, it can be judged that the atomizer has reached thermal equilibrium.
  • each sampling value in the first time period is obtained at the current time, and when the sampling value in the first time period meets the first rule, it can be more accurately determined that the atomizer has reached thermal equilibrium.
  • the above method further includes: when each sample value in the first period does not meet the first predetermined rule, acquiring each sample value in the second period; the second period is greater than the first period; the second period includes The current moment; when each sampling value within the second time period meets the second predetermined rule, it is determined that the atomizer has reached thermal equilibrium.
  • the second predetermined rule can be set according to user needs.
  • the second predetermined rule may be that each sample value in the second time period increases one by one in chronological order, and the largest difference between the difference between two adjacent sample values in the second time period is less than the difference threshold.
  • the second predetermined rule may also be that each sample value within the second time period increases one by one in a time sequence and then remains unchanged.
  • the above method further includes: when the sample values in the first time period are different, acquiring the sample values in the second time period; the second time period is greater than the first time period; the second time period includes the current time; when When each sample value in the second time period increases one by one in chronological order, the difference between two adjacent sample values in the second time period is obtained; the largest difference is determined from each difference; when the largest difference is less than the difference At the threshold, it is judged that the atomizer has reached thermal equilibrium.
  • the second duration can be set according to user needs, and the second duration is greater than the first duration.
  • the current time is 19:5:10, 20 milliseconds
  • the atomizer obtains sampling values of the thermal properties of the heating element in the atomizer every 200 milliseconds.
  • the sampling values in the first time period are different, the sampling values in the second time period are obtained.
  • the second time period can also be an integer multiple of 200 milliseconds. For example, 800 milliseconds will be at 19:5:10 and 20 ms. Up to 19:5:10, 820 milliseconds, 5 sample values can be obtained, which are 210, 220, 235, 240, 252, and 260 respectively.
  • Each sample value within 800 milliseconds of the second duration increases one by one in chronological order, and the difference between two adjacent sample values is determined, which are 10, 15, 5, 12, and 8, respectively, and the difference threshold is 20, the largest difference If 15 is less than the difference threshold of 20, it is judged that the atomizer has reached thermal equilibrium.
  • the sampling values in the first time period are different, the sampling values in the first time period are obtained, and when the sampling values in the second time period increase one by one in chronological order, and there are two adjacent ones.
  • the maximum difference between the sampled values is less than the threshold, which indicates that the atomizer is in a stable state, and it can be more accurately judged that the atomizer has reached thermal equilibrium.
  • the sample values in the first period are different, the sample values in the second period are acquired; the second period is greater than the first period; the second period includes the current moment; when the second period is greater than the first period When each sampled value of is increased one by one according to the time sequence and then remains unchanged, it is judged that the atomizer has reached thermal equilibrium.
  • the second time period includes the data of the two stages before and after the thermal equilibrium is reached.
  • the sampled value remains unchanged, that is The atomizer has reached thermal equilibrium.
  • the sampling values in the second time period are obtained.
  • the sampling values in the second time period meet the second predetermined rule, it means that the atomizer is from The thermal balance is reached before the thermal balance, and it can be more accurately judged that the atomizer has reached the thermal balance.
  • step 202 when a trigger operation is detected, the sampling value of the thermal property of the heating element in the atomizer is obtained in real time, that is, step 204 and step 206 are executed to determine whether the trigger duration is a predetermined Set an integer multiple of the duration.
  • the trigger duration refers to the duration between the current moment and the trigger operation.
  • Step 208 is executed to determine whether the trigger duration is greater than or equal to the first duration; when the determination is yes, step 210 is executed to determine whether each sample value within the first duration meets the first predetermined rule; when the determination is yes, step 212 is executed , The atomizer reaches thermal equilibrium and the stable value is determined. When it is determined that the trigger duration is less than the first duration, step 204 is executed.
  • step 214 is performed to determine whether the trigger time period is greater than or equal to the second time period; when the judgment is yes, step 216 is performed to determine each sample value in the second time period Whether the value meets the second predetermined rule; when the judgment is yes, step 212 is executed, the atomizer reaches thermal equilibrium, and a stable value is determined.
  • step 204 is executed.
  • step 204 is executed.
  • step 218 may be executed to determine the maximum, minimum, and average thermal properties of the heating element.
  • the method when it is determined that the atomizer reaches thermal equilibrium, before the sampling value of the heating element when the thermal equilibrium is reached as the stable value, the method further includes:
  • Step 302 Obtain the trigger increment value of the last trigger operation and the maximum value of the thermal property of the heating body during the last trigger operation.
  • the method for determining the maximum value of the thermal property of the heating element for the last trigger operation includes: obtaining the stable value of the thermal property of the heating element for each trigger operation; and taking the largest stable value among the stable values as the last trigger operation The maximum value of the thermal properties of the heating element.
  • each trigger operation when the atomizer reaches thermal equilibrium, the sampling value of the thermal property of the heating element when the atomizer reaches thermal equilibrium is acquired and recorded, and the sampling value is taken as the stable value of the trigger operation.
  • the stable value of the first trigger operation is 220
  • the stable value of the second trigger operation is 230
  • the stable value of the third trigger operation is 210
  • the stable value of the fourth trigger operation That is, the stable value of the last trigger operation is 235, and the maximum value of the thermal property of the heating element in the last trigger operation is 235.
  • the stable value of the first trigger operation is 220
  • the stable value of the second trigger operation is 230
  • the stable value of the third trigger operation is 210
  • the fourth The stable value of the last trigger operation is 213, and the maximum value of the thermal property of the heating element in the last trigger operation is 230.
  • the stable value of the thermal property of the heating element of the current trigger operation and the maximum value of the thermal property of the heating element of the last trigger operation are used as the current trigger operation.
  • the stable value of the thermal property of the heating element of the current trigger operation is taken as the maximum value of the thermal property of the heating element of the current trigger operation.
  • the atomizer when the atomizer reaches thermal equilibrium during the first trigger operation, obtain the stable value S_stable1 of the thermal property of the heating element, and use S_stable1 as the maximum value S_max of the thermal property of the heating element for the first trigger operation; when the second trigger operation When the middle atomizer reaches thermal equilibrium, obtain the stable value S_stable2 of the thermal property of the heating element.
  • S_stable2 is greater than S_stable1, use S_stable2 as the maximum value S_max of the thermal property of the heating element for the second trigger operation.
  • S_stable2 is less than or equal to S_stable1, S_stable1 is used as the maximum value S_max of the thermal property of the heating element for the second trigger operation, and so on.
  • Step 304 Determine in real time the first difference between the sampled value and the maximum value of the thermal property of the heating body that was triggered last time.
  • the first difference is the difference between the sampled value of the thermal property of the heating element before the atomizer reaches the thermal equilibrium and the maximum value of the thermal property of the heating element in the last trigger operation.
  • Step 306 When the first difference value is greater than the trigger increment value, obtain the reference value, and control the difference between the sampling value of the heating element thermal property and the reference value to be within the second range, and obtain the second value of the atomizer in real time. Output power; the reference value is less than or equal to the maximum value of the thermal property of the heating element in the last trigger operation.
  • the reference value is less than or equal to the maximum value of the thermal property of the heating element in the last trigger operation.
  • the reference value may be one of the minimum value of the thermal property of the heating element of the previous trigger operation, the average value of the thermal property of the heating element of the previous trigger operation, and the maximum value of the thermal property of the heating element of the previous trigger operation.
  • the reference value may also be other values set by the user according to needs, and is not limited to this.
  • the difference between the sampling value of the heating element and the reference value is controlled to be within the second range, so that the energy absorbed by the heating element can be stabilized within a certain interval.
  • the second range may be the same as the first range or different from the first range.
  • the first difference is greater than the trigger increment value, it means that the sampling value of the thermal property of the heating element in the atomizer exceeds the threshold, so the reference value is obtained, and the difference between the sampling value of the thermal property of the heating element and the reference value is controlled In the second range.
  • a PID Proportion Integral Differential, proportional-integral-differential control
  • a PID Proportion Integral Differential, proportional-integral-differential control
  • the atomizer provides energy through the heating element, that is, the second output power is the second total energy, and part of the energy provided is absorbed by the heating element itself. The other part is absorbed by the heating body in the atomizer. Therefore, the second total energy is the sum of the energy absorbed by the heating element and the energy absorbed by the heating element in the atomizer.
  • Qp is the second total energy
  • Qr is the energy absorbed by the heating element
  • Qoil is the energy absorbed by the heating element in the atomizer.
  • Step 308 When the second output power is less than the second power threshold, stop heating the heating element.
  • the difference between the sampling value of the heating element and the reference value is controlled to be within the second range, so that the energy absorbed by the heating element can be stabilized within a certain interval.
  • the second output power is less than the second power threshold, it means that the energy absorbed by the heating body in the atomizer is reduced, that is, the heating body in the atomizer is reduced, so the heating of the heating body is stopped.
  • the power supply of the atomizer can be cut off, so that the atomizer stops heating the heating element.
  • the power supply of the heating element can be cut off to stop heating the heating element.
  • the trigger increment value of the last trigger operation and the maximum value of the thermal property of the heating body of the last trigger operation are obtained; the sampling value and the heating body heat of the last trigger operation are determined in real time.
  • the heating method of the atomizer introduces a self-learning process each time a trigger operation is detected, that is, a process of obtaining a stable value, so that The trigger increment value is dynamically adjusted with the operation of the atomizer, and then automatically adapts to the atomization temperature range of the heating body, so as to ensure the accurate and stable operation of the atomizer.
  • the atomizer when the trigger operation is the first trigger operation, that is, the atomizer does not include the maximum value of the thermal property of the heating element of the last trigger operation, and the trigger increment value of the last trigger operation, then the atomizer is determined The stable value after reaching the thermal equilibrium and the first output power.
  • the atomizer may be an electronic cigarette.
  • the step of acquiring the thermal properties of the heating element in the atomizer in real time is performed; when it is detected that the cartridge is pulled out
  • the data stored in the atomizer is cleared.
  • the cartridge can be used to store heating bodies, such as e-liquid.
  • step 402 is executed.
  • step 404 is executed to obtain the sampling value of the thermal property of the heating body
  • step 406 is executed according to the obtained sampling value to determine whether the atomizer is Achieve thermal equilibrium.
  • step 408 determines the stable value, and obtain the first output power
  • step 410 to detect whether the first output power is less than the first power threshold
  • step 412 to stop heating the heating element ;
  • the judgment is no, end.
  • step 414 is executed to judge whether the current trigger operation is the first trigger operation, and when the current trigger operation is the first trigger operation, step 404 is executed; when the judgment is no, it means the current trigger When the operation is not the first trigger operation, the trigger increment value is obtained, and step 416 is executed to determine whether the first difference value is greater than the trigger increment value; the first difference value is the maximum value of the sampled value and the thermal property of the heating body during the last trigger operation
  • the judgment is no that is, the first difference is less than or equal to the trigger increment value
  • step 418 Determine the reference value to obtain the second output power
  • execute step 420 to detect whether the second output power is less than the second power threshold; when the judgment is yes, execute step 412 to stop heating the heating element; when the judgment is no, the end.
  • the reference value is one of the minimum value of the thermal property of the heating element in the last trigger operation, the average value of the thermal property of the heating element in the last trigger operation, and the maximum value of the thermal property of the heating element in the last trigger operation.
  • the method of determining the maximum thermal attribute of the heating element during the last trigger operation includes: obtaining the stable value of the thermal attribute of the heating element for each trigger operation; taking the largest stable value among the stable values as the maximum thermal attribute of the heating element during the last trigger operation value.
  • each trigger operation when the atomizer reaches thermal equilibrium, the sampling value of the thermal property of the heating element when the atomizer reaches thermal equilibrium is acquired and recorded, and the sampling value is taken as the stable value of the trigger operation.
  • the stable value of the first trigger operation is 220
  • the stable value of the second trigger operation is 230
  • the stable value of the third trigger operation is 210
  • the stable value of the fourth trigger operation That is, the stable value of the last trigger operation is 235, and the maximum value of the thermal property of the heating element in the last trigger operation is 235.
  • the stable value of the first trigger operation is 220
  • the stable value of the second trigger operation is 230
  • the stable value of the third trigger operation is 210
  • the fourth The stable value of the last trigger operation is 213, and the maximum value of the thermal property of the heating element in the last trigger operation is 230.
  • the stable value of the thermal property of the heating element of the current trigger operation and the maximum value of the thermal property of the heating element of the last trigger operation are used as the current trigger operation.
  • the stable value of the thermal property of the heating element of the current trigger operation is taken as the maximum value of the thermal property of the heating element of the current trigger operation.
  • the atomizer when the atomizer reaches thermal equilibrium during the first trigger operation, obtain the stable value S_stable1 of the thermal property of the heating element, and use S_stable1 as the maximum value S_max of the thermal property of the heating element for the first trigger operation; when the second trigger operation When the middle atomizer reaches thermal equilibrium, obtain the stable value S_stable2 of the thermal property of the heating element.
  • S_stable2 is greater than S_stable1, use S_stable2 as the maximum value S_max of the thermal property of the heating element for the second trigger operation.
  • S_stable2 is less than or equal to S_stable1, S_stable1 is used as the maximum value S_max of the thermal property of the heating element for the second trigger operation, and so on.
  • the method of determining the minimum thermal property of the heating element in the last trigger operation includes: obtaining the stable value of the thermal property of the heating element for each trigger operation; taking the smallest stable value among the stable values as the minimum of the thermal property of the heating element in the last trigger operation value.
  • each trigger operation when the atomizer reaches thermal equilibrium, the sampling value of the thermal property of the heating element when the atomizer reaches thermal equilibrium is acquired and recorded, and the sampling value is taken as the stable value of the trigger operation.
  • the average value of the thermal properties of the heating element during the last trigger operation including: obtaining the stable value of the thermal properties of the heating element for each trigger operation; determine the average value based on each stable value, and use the average value as the average value of the heating element thermal properties of the last trigger operation .
  • the stable value of the thermal property of the heating element of the last trigger operation is taken as the average value of the thermal property of the heating element of the last trigger operation.
  • the average value of the thermal properties of the heating body is determined, which can make the average value more accurate.
  • acquiring the trigger increment value of the last trigger operation includes: acquiring the initial value of the last trigger operation and the stable value of the last trigger operation; according to the initial value of the last trigger operation and the last trigger The stable value of the operation determines the trigger increment value of the last trigger operation.
  • the initial value of the last trigger operation can be the sample value of the thermal property of the heating element in the atomizer obtained for the first time when the last trigger operation is detected, or it can be the smallest sample value among the sample values obtained, or it can be The second smallest sample value among the acquired sample values is not limited to this.
  • the trigger increment value of the current trigger operation can be determined for determining the second output power before the atomizer reaches thermal equilibrium during the next trigger operation.
  • the above method further includes: obtaining a reference stable value and a reference protection trigger value; the reference protection trigger value is a threshold value of the thermal property of the heating body; and determining the target parameter according to the reference stable value and the reference protection trigger value.
  • the reference stability value is the predicted empirical value when the atomizer reaches thermal equilibrium.
  • the reference protection trigger value is the predicted empirical threshold of the thermal properties of the heating element in the atomizer.
  • the heating element in the electronic cigarette is e-liquid.
  • the sampling value of the thermal properties of the heating element can be 250 Between °C and 290°C, the reference stable value can be determined, such as 270°C, and the reference protection trigger value is 320°C, then the value range of L value can be between 0.05 and 0.1.
  • the candidate interval of the target parameter can be obtained, the candidate parameter is determined according to the reference stable value and the reference protection trigger value, and when the candidate parameter is in the candidate interval, the candidate parameter is used as the target parameter.
  • the determined candidate interval may be between 0.05 and 0.1.
  • the candidate parameter determined according to the parameter stable value and the parameter protection trigger value is between 0.05 and 0.1, the candidate parameter may be used as the target parameter.
  • the target parameter is determined according to the obtained reference stable value and the reference protection trigger value, and a more accurate last trigger can be determined according to the target parameter, the initial value of the last trigger operation, and the stable value of the last trigger operation The trigger increment value of the operation.
  • obtaining the initial value of the last trigger operation includes: obtaining the calibration value; when the sample value of the last trigger operation is less than the calibration value, the sample value of the last trigger operation is used as the initial value of the last trigger operation ; When the sampling value of the last trigger operation is greater than or equal to the calibration value, the calibration value will be used as the initial value of the last trigger operation.
  • the initial value of the last trigger operation refers to the sampled value of the thermal properties of the atomizer heating element at room temperature during the last trigger operation.
  • the calibration value is the predicted value of the thermal properties of the heating element of the atomizer at room temperature.
  • FIG. 5 shows the sampling value of the thermal properties of the heating element in the atomizer during a trigger operation.
  • the sampling value of the thermal property of the heating element first increases, and then reaches a stability.
  • 502 is the point when the atomizer reaches stability, and the sampling value corresponding to this point is a stable value.
  • the calibration value is used as the initial value of the last trigger operation.
  • the sampling value of the thermal property of the heating element of the atomizer when the sampling value of the thermal property of the heating element of the atomizer is less than the calibration value, it means that the sampling value can be used as the sampling value of the thermal property of the heating element at room temperature. Therefore, the sample value less than the calibration value is used as the initial value of the last trigger operation.
  • the initial value of this trigger operation can be determined, and the trigger increment value of this trigger operation can be determined according to the initial value of this trigger operation and the stable value of this trigger operation. , Used to determine the second output power before the atomizer reaches thermal equilibrium during the next trigger operation.
  • the calibration value is obtained, and the sample value of the last trigger operation is compared with the calibration value, so that a more accurate initial value of the last trigger operation can be determined.
  • a heating device 600 for an atomizer including: a sampling value acquisition module 602, a heat balance judgment module 604, a first output power acquisition module 606, and a heating stop module 608, among them:
  • the sampling value obtaining module 602 is used to obtain the sampling value of the thermal properties of the heating body in the atomizer in real time when a trigger operation is detected.
  • the thermal balance judging module 604 is used to judge whether the atomizer reaches thermal balance according to the sampling value acquired at the current moment.
  • the first output power acquisition module 606 is used to, when judging that the atomizer reaches thermal equilibrium, use the sampled value of the thermal property of the heating element when the thermal equilibrium is reached as the stable value, and control the difference between the sampled value and the stable value of the heating element to be In the first range, the first output power of the atomizer is obtained in real time.
  • the heating stop module 608 is used to stop heating the heating element when the first output power is less than the first power threshold.
  • the heating method, device, computer equipment and storage medium of the above atomizer when the trigger operation is detected, the sampling value of the thermal property of the heating body in the atomizer is obtained in real time; according to the sampling value obtained at the current moment, it is judged whether the atomizer reaches Thermal balance; when it is judged that the atomizer reaches thermal balance, the sampling value of the thermal properties of the heating element when the thermal balance is reached is taken as the stable value, and the difference between the sampling value and the stable value of the heating element is controlled to be within the first range, and the fog is obtained in real time
  • the first output power of the carburetor; the difference between the sampling value and the stable value of the control heating element is within the first range, that is, the energy absorbed by the control heating element is stabilized within a certain interval; when the first output power is less than the first A power threshold indicates that the energy absorbed by the heating body in the atomizer is reduced, that is, the heating body in the atomizer, that is, the object to be heated for atomization is in
  • the above-mentioned thermal balance judgment module 604 is further configured to obtain each sample value in the first time period based on the current time; the first time period includes the current time; when each sample value in the first time period meets the first predetermined rule, It is judged that the atomizer has reached thermal equilibrium.
  • the above-mentioned thermal balance judgment module 604 is further configured to obtain each sample value in the second period when each sample value in the first period does not meet the first predetermined rule; the second period is greater than the first period; The second time period includes the current time; when each sampling value in the second time period meets the second predetermined rule, it is determined that the atomizer has reached thermal equilibrium.
  • the above-mentioned stop heating module 608 is also used to obtain the trigger increment value of the last trigger operation and the maximum value of the heat attribute of the heating body of the last trigger operation; determine the sampling value in real time and the heat value of the heating body of the last trigger operation.
  • the second output power of the atomizer is obtained in real time; the reference value is less than or equal to the maximum value of the thermal property of the heating element in the last trigger operation; when the second output power is less than the second power threshold, the heating of the heating element is stopped.
  • the reference value is one of the minimum value of the thermal property of the heating element in the last trigger operation, the average value of the thermal property of the heating element in the last trigger operation, and the maximum value of the thermal property of the heating element in the last trigger operation.
  • the method of determining the minimum thermal property of the heating element in the last trigger operation includes: obtaining the stable value of the thermal property of the heating element for each trigger operation; taking the smallest stable value among the stable values as the minimum of the thermal property of the heating element in the last trigger operation value.
  • the average value of the thermal properties of the heating element during the last trigger operation including: obtaining the stable value of the thermal properties of the heating element for each trigger operation; determine the average value based on each stable value, and use the average value as the average value of the heating element thermal properties of the last trigger operation .
  • the method of determining the maximum thermal attribute of the heating element during the last trigger operation includes: obtaining the stable value of the thermal attribute of the heating element for each trigger operation; taking the largest stable value among the stable values as the maximum thermal attribute of the heating element during the last trigger operation value.
  • the above-mentioned heating stop module 608 is also used to obtain the initial value of the last trigger operation and the stable value of the last trigger operation; determine according to the initial value of the last trigger operation and the stable value of the last trigger operation The trigger increment value of the last trigger operation.
  • the heating device 600 of the atomizer further includes a target parameter determination module for obtaining the reference stable value and the reference protection trigger value; the reference protection trigger value is the threshold value of the thermal property of the heating body; according to the reference stable value and Refer to the protection trigger value to determine the target parameter.
  • the above-mentioned stop heating module 608 is also used to obtain the calibration value; when the sample value of the last trigger operation is less than the calibration value, the sample value of the last trigger operation is used as the initial value of the last trigger operation; When the sampling value of a trigger operation is greater than or equal to the calibration value, the calibration value will be used as the initial value of the last trigger operation.
  • each module in the heating device of the above atomizer can be implemented in whole or in part by software, hardware and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 7.
  • the computer equipment includes a processor, a memory, a network interface, a display screen and an input device connected through a system bus.
  • the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor to realize a heating method of the atomizer.
  • the display screen of the computer equipment can be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer equipment can be a touch layer covered on the display screen, or it can be a button, a trackball or a touchpad set on the housing of the computer equipment , It can also be an external keyboard, touchpad, or mouse.
  • FIG. 7 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • a computer device including a memory and a processor, and a computer program is stored in the memory.
  • the processor implements the steps of the atomizer heating method when the processor executes the computer program.
  • a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to realize the steps of the heating method of the atomizer.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Devices For Medical Bathing And Washing (AREA)
  • Control Of Resistance Heating (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种雾化器的加热方法、装置、计算机设备和存储介质。方法包括:当检测到触发操作时,实时获取雾化器中发热体热属性的采样值(102);根据当前时刻获取的采样值判断雾化器是否达到热平衡(104);当判断雾化器达到热平衡时,将达到热平衡时发热体热属性的采样值作为稳定值,并控制发热体的采样值与稳定值之间的差值在第一范围内,实时获取雾化器的第一输出功率(106);当第一输出功率小于第一功率阈值时,停止对发热体进行加热(108)。该雾化器的加热方法、装置、计算机设备和存储介质能够提高雾化器的使用寿命。

Description

雾化器的加热方法、装置、计算机设备和存储介质 技术领域
本申请涉及雾化器技术领域,特别是涉及一种雾化器的加热方法、装置、计算机设备和存储介质。
背景技术
随着社会的发展,出现了各种雾化器,如加湿器、电子烟、医用雾化器等。传统的雾化器的加热方法,通常是将加热液或者加热固体等加热体加入到雾化器中进行加热,使加热体雾化。
然而,传统的雾化器的加热方法,当雾化器中的加热体不足时,容易导致雾化器的温度急剧升高,使得雾化器存在干烧的情况,出现雾化器使用寿命短的问题。
发明内容
根据本申请的各种实施例,提供一种能够提高使用寿命的雾化器的加热方法、装置、计算机设备和存储介质。
一种雾化器的加热方法,所述方法包括:
当检测到触发操作时,实时获取所述雾化器中发热体热属性的采样值;
根据当前时刻获取的所述采样值判断所述雾化器是否达到热平衡;
当判断所述雾化器达到热平衡时,将达到热平衡时所述发热体热属性的采样值作为稳定值,并控制所述发热体的采样值与所述稳定值之间的差值在第一范围内,实时获取所述雾化器的第一输出功率;
当所述第一输出功率小于第一功率阈值时,停止对所述发热体进行加热。
在其中一个实施例中,所述根据当前时刻获取的所述采样值判断所述雾化器是否达到热平衡,包括:
基于当前时刻获取第一时长内的各个所述采样值;所述第一时长包括所述当前时刻;
当所述第一时长内的各个所述采样值符合第一预定规则时,判断所述雾化器达到热平衡。
在其中一个实施例中,所述第一预定规则为所述第一时长内的各个所述采样值均相同;或者
所述第一预定规则为所述第一时长内的各个所述采样值的差值均在预设范围内。
在其中一个实施例中,所述方法还包括:
当所述第一时长内的各个所述采样值不符合所述第一预定规则时,获取第二时长内的各个所述采样值;所述第二时长大于所述第一时长;所述第二时长包括所述当前时刻;
当所述第二时长内的各个所述采样值符合第二预定规则时,则判断所述雾化器达到热平 衡。
在其中一个实施例中,所述第二预定规则为所述第二时长内的各个所述采样值按照时间顺序逐个增大,且所述第二时长内相邻两个所述采样值的差值中最大的差值小于差值阈值;或者
所述第二预定规则为所述第二时长内的各个所述采样值按照时间顺序先逐个增大再保持不变。
在其中一个实施例中,所述当判断所述雾化器达到热平衡时,将达到热平衡时所述发热体的采样值作为稳定值之前,还包括:
获取上一次触发操作的触发增量值,以及所述上一次触发操作所述发热体热属性的最大值;
实时确定所述采样值与所述上一次触发操作所述发热体热属性的最大值之间的第一差值;
当所述第一差值大于所述触发增量值时,获取参考值,并控制所述发热体热属性的采样值与所述参考值之间的差值在第二范围内,实时获取所述雾化器的第二输出功率;所述参考值小于或等于所述上一次触发操作所述发热体热属性的最大值;
当所述第二输出功率小于第二功率阈值时,停止对所述发热体进行加热。
在其中一个实施例中,所述上一次触发操作发热体热属性的最大值的确定方式,包括:获取每次所述触发操作所述发热体热属性的稳定值;将各个所述稳定值中最大的所述稳定值作为所述上一次触发操作发热体热属性的最大值。
在其中一个实施例中,所述参考值为所述上一次触发操作所述发热体热属性的最小值、所述上一次触发操作所述发热体热属性的平均值、所述上一次触发操作所述发热体热属性的最大值的其中一种。
在其中一个实施例中,所述获取上一次触发操作的触发增量值,包括:
获取上一次触发操作的所述初始值,以及所述上一次触发操作的所述稳定值;
根据所述上一次触发操作的初始值,以及所述上一次触发操作的稳定值确定上一次触发操作的触发增量值。
在其中一个实施例中,所述方法还包括:
获取参考稳定值和参考保护触发值;所述参考保护触发值是所述发热体热属性的阈值;
根据所述参考稳定值和所述参考保护触发值确定目标参数;
所述根据所述上一次触发操作的初始值,以及所述上一次触发操作的稳定值确定上一次触发操作的触发增量值,包括:
根据所述目标参数、所述上一次触发操作的初始值,以及所述上一次触发操作的稳定值确定上一次触发操作的触发增量值。
在其中一个实施例中,所述获取上一次触发操作的初始值,包括:
获取标定值;
当所述上一次触发操作的采样值小于所述标定值时,将所述上一次触发操作的采样值作 为上一次触发操作的初始值;
当所述上一次触发操作的采样值大于或等于所述标定值时,将所述标定值作为上一次触发操作的初始值。
在其中一个实施例中,所述发热体热属性为发热体的电阻值或者发热体的温度。
在其中一个实施例中,所述触发操作为抽吸操作、按压操作、点击操作或滑动操作。
在其中一个实施例中,所述当所述第一输出功率小于第一功率阈值时,停止对所述发热体进行加热,包括:
当检测到所述第一输出功率小于所述第一功率阈值时,切断雾化器的电源,使得雾化器停止对发热体进行加热;或者
当检测到所述第一输出功率小于所述第一功率阈值时,切断发热体的电源,停止对发热体进行加热。
在其中一个实施例中,所述方法还包括:
当判断雾化器未达到热平衡时,若当前所述触发操作不是第一次触发操作时,获取触发增量值,若第一差值小于或等于所述触发增量值,则确定参考值,获取第二输出功率,若所述第二输出功率小于第二功率阈值,则停止对发热体进行加热。
一种雾化器的加热装置,所述装置包括:
采样值获取模块,用于当检测到触发操作时,实时获取所述雾化器中发热体热属性的采样值;
热平衡判断模块,用于根据当前时刻获取的所述采样值判断所述雾化器是否达到热平衡;
第一输出功率获取模块,用于当判断所述雾化器达到热平衡时,将达到热平衡时所述发热体热属性的采样值作为稳定值,并控制所述发热体的采样值与所述稳定值之间的差值在第一范围内,实时获取所述雾化器的第一输出功率;
停止加热模块,用于当所述第一输出功率小于第一功率阈值时,停止对所述发热体进行加热。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述的方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的那些申请的最佳模式中的任何一者的范围的限制。
图1为一个实施例中雾化器的加热方法的流程示意图;
图2为一个实施例中雾化器触发操作之后确定稳定值、最大值、最小值、平均值的流程示意图;
图3为一个实施例中雾化器达到热平衡之前的加热方法的流程示意图;
图4为另一个实施例中雾化器的加热方法的流程示意图;
图5为一个实施例中雾化器达到热平衡过程中采样值的示意图;
图6为一个实施例中雾化器的加热装置的结构框图;
图7为一个实施例中计算机设备的内部结构图。
具体实施方式
申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种雾化器的加热方法,包括以下步骤:
步骤102,当检测到触发操作时,实时获取雾化器中发热体热属性的采样值。
雾化器指的是对加热体进行加热,从而将加热体雾化的设备。其中,加热体可以是液体,也可以是固体。雾化器例如电子烟,通过电子烟对烟油进行加热,从而将烟油形成烟。雾化器还可以是加湿器、医用雾化器等。
雾化器中包括有发热体,通过该发热体可以对加热体进行加热。发热体的热属性可以为发热体的电阻值或者发热体的温度。
触发操作可以是抽吸操作、按压操作、点击操作、滑动操作等,不限于此。例如,当雾化器为电子烟时,则触发操作可以是抽吸操作,当雾化器中的气压传感器检测到气压发生变化时,表示检测到抽吸操作。
实时指的是在短时间内进行响应。具体地,可以获取预设时长,当检测到触发操作时,间隔预设时长获取雾化器中发热体热属性的采样值。例如,预设时长为200毫秒,即当检测到触发操作时,每间隔200毫秒获取雾化器中发热体热属性的采样值。
步骤104,根据当前时刻获取的采样值判断雾化器是否达到热平衡。
可以理解的是,当雾化器达到热平衡时,雾化器输入的能量与输出的能量相同,可以对雾化器中的加热体进行加热,持续并且稳定进行雾化。
步骤106,当判断雾化器达到热平衡时,将达到热平衡时发热体热属性的采样值作为稳定值,并控制发热体的采样值与稳定值之间的差值在第一范围内,实时获取雾化器的第一输出功率。当雾化器达到热平衡时,控制发热体的采样值与稳定值之间的差值在第一范围内,可以使得发热体吸收的能量稳定在一定的区间之内。
在一个实施例中,可以采用PID(Proportion Integral Differential,比例积分微分控制)算法将发热体的采样值和稳定值进行比较,确定发热体的采样值和稳定值之间的差值,根据该差值控制发热体的功率,使得发热体的采样值调整至稳定值,也即对加热体进行恒温加热。其中,PID算法是根据给定值和实际输出值构成控制偏差,将偏差按比例、积分和微分通过线性组合构成控制量,对被控对象进行控制。常规PID控制器作为一种线性控制器。
可以理解的是,雾化器通过发热体进行发热提供能量,即第一总能量,而提供的能量中, 一部分被发热体本身所吸收,另一部分则被雾化器中的加热体所吸收。因此,第一总能量为发热体吸收的能量与雾化器中的加热体吸收的能量之和。
第一总能量可以用以下公式计算得到:Qp=Qr+Qoil。其中,Qp是第一总能量,Qr是发热体吸收的能量,Qoil是雾化器中的加热体吸收的能量。也就是说,根据能量守恒定律可知,发热体所产生的热量,一部分被自身吸收,导致自身温度上升,另一部分被加热体吸收,使烟油进行雾化,而在采用恒温加热且加热体含量正常即加热体能够稳定吸热,会达到热平衡,雾化器输出的第一总能量也即第一输出功率稳定在一个值,当加热体的含量减少,雾化器输出的第一总能量也即第一输出功率会随之减少,因此根据第一输出功率即可判断雾化器中的加热体的含量是否正常。
步骤108,当第一输出功率小于第一功率阈值时,停止对发热体进行加热。在一个实施例中,当检测到第一输出功率小于第一功率阈值时,可以切断雾化器的电源,使得雾化器停止对发热体进行加热。
在另一个实施例中,当检测到第一输出功率小于第一功率阈值时,可以切断发热体的电源,停止对发热体进行加热。
上述雾化器的加热方法,当检测到触发操作时,实时获取雾化器中发热体热属性的采样值;根据当前时刻获取的采样值判断雾化器是否达到热平衡;当判断雾化器达到热平衡时,将达到热平衡时发热体热属性的采样值作为稳定值,并控制发热体的采样值与稳定值之间的差值在第一范围内,实时获取雾化器的第一输出功率;控制发热体的采样值与稳定值之间的差值在第一范围内,即控制发热体吸收的能量稳定在一定的区间之内;当第一输出功率小于第一功率阈值时,表示雾化器中的加热体吸收的能量降低,即雾化器中的加热体,即被加热的用于雾化的物体不足,因此停止对发热体进行加热,防止了雾化器干烧的情况,提高了雾化器的使用寿命。
在一个实施例中,根据当前时刻获取的采样值判断雾化器是否达到热平衡,包括:基于当前时刻获取第一时长内的各个采样值;第一时长包括当前时刻;当第一时长内的各个采样值符合第一预定规则时,判断雾化器达到热平衡。
第一时长可以根据用户需要进行设置。
在一个实施例中,第一预定规则可以是第一时长内的各个采样值均相同。例如,当前时刻为19时5分10秒20毫秒,雾化器每间隔200毫秒获取雾化器中发热体热属性的采样值,则第一时长可以是200毫秒的整数倍,如600毫秒,则在19时5分10秒20毫秒至19时5分10秒620毫秒可以获取到4个采样值,当4个采样值均相同时,则可以判断雾化器达到热平衡。
在另一个实施例中,第一预定规则还可以是第一时长内的各个采样值的差值均在预设范围内。例如,当前时刻为19时5分10秒20毫秒,雾化器每间隔200毫秒获取雾化器中发热体热属性的采样值,则第一时长可以是200毫秒的整数倍,如600毫秒,则在19时5分10秒20毫秒至19时5分10秒620毫秒可以获取到4个采样值,分别为578,579,580,578,预设范围为10,则第一时长内的各个采样值的差值均在预设范围内,可以判断雾化器达到热平衡。
在本实施例中,通过当前时刻获取第一时长内的各个采样值,当第一时长内的采样值符合第一规则时,可以更准确判断雾化器达到了热平衡。
在一个实施例中,上述方法还包括:当第一时长内的各个采样值不符合第一预定规则时,获取第二时长内的各个采样值;第二时长大于第一时长;第二时长包括当前时刻;当第二时长内的各个采样值符合第二预定规则时,则判断雾化器达到热平衡。
第二预定规则可以根据用户需要进行设定。
在一个实施例中,第二预定规则可以是第二时长内的各个采样值按照时间顺序逐个增大,且第二时长内相邻两个采样值的差值中最大的差值小于差值阈值。
在另一个实施例中,第二预定规则还可以是第二时长内的各个采样值按照时间顺序先逐个增大再保持不变。
在一个实施例中,上述方法还包括:当第一时长内的各个采样值存在不同时,获取第二时长内的各个采样值;第二时长大于第一时长;第二时长包括当前时刻;当第二时长内的各个采样值按照时间顺序逐个增大时,获取第二时长内相邻两个采样值的差值;从各个差值中确定最大的差值;当最大的差值小于差值阈值时,判断雾化器达到热平衡。
第二时长可以根据用户需要进行设置,并且第二时长大于第一时长。例如,当前时刻为19时5分10秒20毫秒,雾化器每间隔200毫秒获取雾化器中发热体热属性的采样值。当第一时长内的各个采样值存在不同时,则获取第二时长内的各个采样值,第二时长也可以是200毫秒的整数倍,如800毫秒,则在19时5分10秒20毫秒至19时5分10秒820毫秒可以获取到5个采样值,分别为210,220,235,240,252,260。第二时长800毫秒内的各个采样值按照时间顺序逐个增大,确定相邻两个采样值的差值,分别为10,15,5,12,8,差值阈值为20,最大的差值15小于差值阈值20,则判断雾化器达到热平衡。
在本实施例中,当第一时长内的各个采样值存在不同时,获取第一时长内的各个采样值,当第二时长内的各个采样值按照时间顺序逐个增大,且相邻两个采样值的最大差值小于阈值,表示雾化器处于稳定的状态,可以更准确判断雾化器达到热平衡。
在另一个实施例中,当第一时长内的各个采样值存在不同时,获取第二时长内的各个采样值;第二时长大于第一时长;第二时长包括当前时刻;当第二时长内的各个采样值按照时间顺序先逐个增大再保持不变时,判断雾化器达到热平衡。
当第二时长内的各个采样值按照时间顺序先逐个增大再保持不变时,即第二时长内包括了达到热平衡之前以及达到热平衡之后两个阶段的数据,当采样值保持不变时即雾化器达到了热平衡。
在本实施例中,当第一时长内的各个采样值存在不同时,获取第二时长内的各个采样值,当第二时长内的各个采样值符合第二预定规则时,表示雾化器从热平衡之前达到了热平衡,可以更准确判断雾化器达到了热平衡。
在一个实施例中,如图2所示,步骤202,当检测到触发操作时,实时获取雾化器中发热体热属性的采样值,即执行步骤204和步骤206,判断触发时长是否为预设时长的整数倍,当判断为是时,获取发热体热属性的采样值,当判断为否时,则继续执行步骤204。其中,触发时长指的是当前时刻与触发操作时之间的时长。
执行步骤208,判断触发时长是否大于或等于第一时长;当判断为是时,执行步骤210,判断第一时长内的各个采样值是否符合第一预定规则;当判断为是时,执行步骤212,雾化器达到热平衡,确定稳定值。当判断触发时长小于第一时长时,执行步骤204。当第一时长内的各个采样值不符合第一预定规则时,执行步骤214,确定触发时长是否大于或等于第二时长;当判断为是时,执行步骤216,判断第二时长内的各个采样值是否符合第二预定规则;当判断为是时,执行步骤212,该雾化器达到热平衡,确定稳定值。
当触发时长小于第二时长时,执行步骤204。当判断相邻两个采样值的差值存在大于差值阈值时,执行步骤204。当雾化器达到热平衡时,可以执行步骤218,确定发热体热属性的最大值、最小值、平均值。
在一个实施例中,如图3所示,当判断所述雾化器达到热平衡时,将达到热平衡时所述发热体的采样值作为稳定值之前,还包括:
步骤302,获取上一次触发操作的触发增量值,以及上一次触发操作发热体热属性的最大值。
在一个实施例中,上一次触发操作发热体热属性的最大值的确定方式,包括:获取每次触发操作发热体热属性的稳定值;将各个稳定值中最大的稳定值作为上一次触发操作发热体热属性的最大值。
在每次触发操作过程中,当雾化器达到热平衡时,获取并记录雾化器达到热平衡时发热体热属性的采样值,将该采样值作为该次触发操作的稳定值。获取上一次触发操作以及上一次触发操作之前所记录的各个稳定值,将各个稳定值进行比较,并将最大的稳定值作为上一 次触发操作发热体热属性的最大值。
例如,在当前触发操作之前,存在4次触发操作,第一次触发操作的稳定值为220,第二次触发操作的稳定值为230,第三次触发操作的稳定值为210,第四次即上一次触发操作的稳定值为235,则上一次触发操作的发热体热属性的最大值为235。
又如,在当前触发操作之前,存在4次触发操作,第一次触发操作的稳定值为220,第二次触发操作的稳定值为230,第三次触发操作的稳定值为210,第四次即上一次触发操作的稳定值为213,则上一次触发操作的发热体热属性的最大值为230。
在一个实施例中,当雾化器达到热平衡时,将当前触发操作发热体热属性的稳定值和上一次触发操作发热体热属性的最大值,将两者中值较大的作为当前触发操作发热体热属性的最大值。
当当前触发操作为第一次触发操作时,则将当前触发操作发热体热属性的稳定值作为当前触发操作发热体热属性的最大值。
例如,当第一次触发操作中雾化器达到热平衡时,获取发热体热属性的稳定值S_stable1,并将S_stable1作为第一次触发操作发热体热属性的最大值S_max;当第二次触发操作中雾化器达到热平衡时,获取发热体热属性的稳定值S_stable2,当S_stable2大于S_stable1时,则将S_stable2作为第二次触发操作发热体热属性的最大值S_max,当S_stable2小于或等于S_stable1时,则将S_stable1作为第二次触发操作发热体热属性的最大值S_max,以此类推。
步骤304,实时确定采样值与上一次触发操作发热体热属性的最大值之间的第一差值。
第一差值是雾化器达到热平衡之前发热体热属性的采样值与上一次触发操作发热体热属性的最大值之间的差值。
获取上一次触发操作发热体热属性的最大值之后,实时确定获取的雾化器中发热体热属性的采样值与上一次触发操作发热体热属性的最大值之间的第一差值。
步骤306,当第一差值大于触发增量值时,获取参考值,并控制发热体热属性的采样值与参考值之间的差值在第二范围内,实时获取雾化器的第二输出功率;参考值小于或等于上一次触发操作发热体热属性的最大值。
参考值小于或等于上一次触发操作发热体热属性的最大值。例如,参考值可以为上一次触发操作发热体热属性的最小值、上一次触发操作发热体热属性的平均值、上一次触发操作发热体热属性的最大值的其中一种。参考值还可以是用户根据需要进行设置的其他值,不限于此。
在雾化器达到热平衡之前,控制发热体的采样值与参考值之间的差值在第二范围内,可以使得发热体吸收的能量稳定在一定的区间之内。第二范围可以与第一范围相同,也可以与第一范围不同。
当第一差值大于触发增量值时,表示雾化器中发热体热属性的采样值超出了阈值,因此获取参考值,并控制发热体热属性的采样值与参考值之间的差值在第二范围内。
在一个实施例中,可以采用PID(Proportion Integral Differential,比例积分微分控制)算法将发热体的采样值和参考值进行比较,确定发热体的采样值和参考值之间的差值,根据该差值控制发热体的功率,使得发热体的采样值调整至参考值。
可以理解的是,在雾化器达到热平衡之前,雾化器通过发热体进行发热提供能量,即第二输出功率也即第二总能量,而提供的能量中,一部分被发热体本身所吸收,另一部分则被雾化器中的加热体所吸收。因此,第二总能量为发热体吸收的能量与雾化器中的加热体吸收的能量之和。
第二总能量可以用以下公式计算得到:Qp=Qr+Qoil。其中,Qp是第二总能量,Qr是发热体吸收的能量,Qoil是雾化器中的加热体吸收的能量。
步骤308,当第二输出功率小于第二功率阈值时,停止对发热体进行加热。
在雾化器达到热平衡之前,控制发热体的采样值与参考值之间的差值在第二范围内,可以使得发热体吸收的能量稳定在一定的区间之内。而当第二输出功率小于第二功率阈值时, 表示雾化器中的加热体吸收的能量减少,即雾化器中的加热体减少,因此停止对发热体进行加热。
在一个实施例中,当检测到第二总能量小于第二功率阈值时,可以切断雾化器的电源,使得雾化器停止对发热体进行加热。
在另一个实施例中,当检测到第二总能量小于第二功率阈值时,可以切断发热体的电源,停止对发热体进行加热。
在本实施例中,在雾化器达到热平衡之前,获取上一次触发操作的触发增量值,以及上一次触发操作发热体热属性的最大值;实时确定采样值与上一次触发操作发热体热属性的最大值之间的第一差值;当第一差值大于触发增量值时,获取参考值,并控制发热体热属性的采样值与参考值之间的差值在第二范围内,实时获取输出的第二输出功率;控制发热体热属性的采样值与参考值之间的差值在第二范围内,即控制发热体吸收的能量稳定在一定的区间之内;当第二输出功率小于第二功率阈值时,表示雾化器中的加热体吸收的能量降低,即雾化器中的加热体即被加热的用于雾化的物体不足,因此停止对发热体进行加热,防止了雾化器干烧的情况,提高了雾化器的使用寿命;进一步,该雾化器的加热方法通过每次检测到触发操作时引入自学习的过程也即获取稳定值的过程,使得触发增量值随着雾化器的运行而动态调整,进而自动适应加热体的雾化温度区间,从而保证雾化器准确稳定地工作。
可以理解的是,当触发操作为第一次触发操作,即雾化器中不包括上一次触发操作发热体热属性的最大值,以及上一次触发操作的触发增量值,则确定雾化器到达热平衡之后的稳定值以及第一输出功率。
在一个实施例中,雾化器可以为电子烟,当检测到烟弹插入雾化器中时,则执行实时获取雾化器中发热体热属性的采样值步骤;当检测到烟弹拔出雾化器时,则清空雾化器中存储的数据。其中,烟弹可以用于存储加热体,如烟油。
在一个实施例中,如图4所示,执行步骤402,当检测到触发操作时,执行步骤404,获取发热体热属性的采样值,根据获取的采样值执行步骤406,判断雾化器是否达到热平衡。当判断为是时,执行步骤408,确定稳定值,获取第一输出功率;执行步骤410,检测第一输出功率是否小于第一功率阈值;当是时,执行步骤412,停止对发热体进行加热;当判断为否时,结束。
当判断雾化器未达到热平衡时,执行步骤414,判断当前触发操作是否为第一次触发操作,当当前触发操作为第一次触发操作时,执行步骤404;当判断为否,即当前触发操作不是第一次触发操作时,获取触发增量值,执行步骤416,判断第一差值是否大于触发增量值;第一差值是采样值与上一次触发操作发热体热属性的最大值之间的差值;当判断为否时,即第一差值小于或等于触发增量值,执行步骤404;当判断为是时,即第一差值大于触发增量值时,执行步骤418,确定参考值,获取第二输出功率;执行步骤420,检测第二输出功率是否小于第二功率阈值;当判断为是时,执行步骤412,停止对发热体进行加热;当判断为否时,结束。
在一个实施例中,参考值为上一次触发操作发热体热属性的最小值、上一次触发操作发热体热属性的平均值、上一次触发操作发热体热属性的最大值中的其中一种。
上一次触发操作发热体热属性的最大值的确定方式,包括:获取每次触发操作发热体热属性的稳定值;将各个稳定值中最大的稳定值作为上一次触发操作发热体热属性的最大值。
在每次触发操作过程中,当雾化器达到热平衡时,获取并记录雾化器达到热平衡时发热体热属性的采样值,将该采样值作为该次触发操作的稳定值。获取上一次触发操作以及上一次触发操作之前所记录的各个稳定值,将各个稳定值进行比较,并将最大的稳定值作为上一次触发操作发热体热属性的最大值。
例如,在当前触发操作之前,存在4次触发操作,第一次触发操作的稳定值为220,第二次触发操作的稳定值为230,第三次触发操作的稳定值为210,第四次即上一次触发操作的稳定值为235,则上一次触发操作的发热体热属性的最大值为235。
又如,在当前触发操作之前,存在4次触发操作,第一次触发操作的稳定值为220,第二次触发操作的稳定值为230,第三次触发操作的稳定值为210,第四次即上一次触发操作的稳定值为213,则上一次触发操作的发热体热属性的最大值为230。
在一个实施例中,当雾化器达到热平衡时,将当前触发操作发热体热属性的稳定值和上一次触发操作发热体热属性的最大值,将两者中值较大的作为当前触发操作发热体热属性的最大值。
当当前触发操作为第一次触发操作时,则将当前触发操作发热体热属性的稳定值作为当前触发操作发热体热属性的最大值。
例如,当第一次触发操作中雾化器达到热平衡时,获取发热体热属性的稳定值S_stable1,并将S_stable1作为第一次触发操作发热体热属性的最大值S_max;当第二次触发操作中雾化器达到热平衡时,获取发热体热属性的稳定值S_stable2,当S_stable2大于S_stable1时,则将S_stable2作为第二次触发操作发热体热属性的最大值S_max,当S_stable2小于或等于S_stable1时,则将S_stable1作为第二次触发操作发热体热属性的最大值S_max,以此类推。
上一次触发操作发热体热属性的最小值的确定方式,包括:获取每次触发操作发热体热属性的稳定值;将各个稳定值中最小的稳定值作为上一次触发操作发热体热属性的最小值。
在每次触发操作过程中,当雾化器达到热平衡时,获取并记录雾化器达到热平衡时发热体热属性的采样值,将该采样值作为该次触发操作的稳定值。获取上一次触发操作以及上一次触发操作之前所记录的各个稳定值,将各个稳定值进行比较,并将最小的稳定值作为上一次触发操作发热体热属性的最小值。
上一次触发操作发热体热属性的平均值,包括:获取每次触发操作发热体热属性的稳定值;基于各个稳定值确定平均值,将平均值作为上一次触发操作发热体热属性的平均值。
获取每次触发操作发热体热属性的稳定值,并求取平均值,将该平均值作为上一次触发操作发热体热属性的平均值。
当上一次触发操作为第一次触发操作时,则将上一次触发操作发热体热属性的稳定值作为上一次触发操作发热体热属性的平均值。
进一步地,当统计的稳定值达到阈值之后,确定发热体热属性的平均值,可以使得该平均值更加准确。
在一个实施例中,获取上一次触发操作的触发增量值,包括:获取上一次触发操作的初始值,以及上一次触发操作的稳定值;根据上一次触发操作的初始值,以及上一次触发操作的稳定值确定上一次触发操作的触发增量值。
上一次触发操作的初始值可以是当检测到上一次触发操作时,首次获取的雾化器中发热体热属性的采样值,也可以是获取的各个采样值中最小的采样值,还可以是获取的各个采样值中次小的采样值,不限于此。
在一个实施例中,在本次触发操作过程中,可以确定本次触发操作的触发增量值,用于下次触发操作过程在雾化器达到热平衡之前确定第二输出功率。
在一个实施例中,上述方法还包括:获取参考稳定值和参考保护触发值;参考保护触发值是发热体热属性的阈值;根据参考稳定值和参考保护触发值确定目标参数。根据上一次触发操作的初始值,以及上一次触发操作的稳定值确定上一次触发操作的触发增量值,包括:根据目标参数、上一次触发操作的初始值,以及上一次触发操作的稳定值确定上一次触发操作的触发增量值。
参考稳定值是预测的该雾化器达到热平衡时的经验值。参考保护触发值是预测的该雾化器中发热体热属性的经验阈值。
例如,当雾化器为电子烟时,电子烟中的加热体为烟油,根据烟油的特性,当烟油雾化且雾化器达到热平衡时,发热体热属性的采样值可以为250℃至290℃之间,可以确定参考稳定值如270℃,参考保护触发值为320℃,则L值的取值范围可以为0.05至0.1之间。
进一步地,可以获取目标参数的候选区间,根据参考稳定值和参考保护触发值确定候选 参数,当候选参数处于候选区间内时,将该候选参数作为目标参数。
例如,确定的候选区间可以为0.05至0.1之间,当根据参数稳定值和参数保护触发值确定的候选参数处于0.05至0.1之间时,可以将该候选参数作为目标参数。
在本实施例中,根据获取的参考稳定值和参考保护触发值,确定目标参数,根据目标参数、上一次触发操作的初始值,以及上一次触发操作的稳定值可以确定更加准确的上一次触发操作的触发增量值。
在一个实施例中,获取上一次触发操作的初始值,包括:获取标定值;当上一次触发操作的采样值小于标定值时,将上一次触发操作的采样值作为上一次触发操作的初始值;当上一次触发操作的采样值大于或等于标定值时,将标定值作为上一次触发操作的初始值。
上一次触发操作的初始值指的是上一次触发操作中雾化器发热体热属性常温下的采样值。标定值是雾化器发热体热属性常温下的预测值。
可以理解的是,雾化器触发操作之前,常温下发热体热属性的采样值是较小的,当雾化器达到热平衡时,发热体热属性的采样值是较大的。如图5所示为一次触发操作过程中雾化器中发热体热属性的采样值。在一次触发操作过程中,发热体热属性的采样值先增大,再达到稳定,502为雾化器达到稳定时的点,该点所对应的采样值为稳定值。
在上一次触发操作中,当开始时间段内获取的雾化器中发热体热属性的采样值大于或等于标定值时,表示雾化器在一段时间之前经过触发操作达到热平衡之后,该发热体处于冷却的状态,该发热体热属性的采样值仍高于常温下发热体的标定值,因此,将该标定值作为上一次触发操作的初始值。
在上一次触发操作中,雾化器发热体热属性的采样值小于标定值时,表示该采样值可以作为常温下发热体热属性的采样值。因此,将该小于标定值的采样值作为上一次触发操作的初始值。
在一个实施例中,在本次触发操作过程中,可以确定本次触发操作的初始值,根据本次触发操作的初始值和本次触发操作的稳定值确定本次触发操作的触发增量值,用于下次触发操作过程在雾化器达到热平衡之前确定第二输出功率。
在本实施例中,获取标定值,将上一次触发操作的采样值与标定值进行比较,可以确定更加准确的上一次触发操作的初始值。
应该理解的是,虽然图1和图3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1和图3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图6所示,提供了一种雾化器的加热装置600,包括:采样值获取模块602、热平衡判断模块604、第一输出功率获取模块606和停止加热模块608,其中:
采样值获取模块602,用于当检测到触发操作时,实时获取雾化器中发热体热属性的采样值。
热平衡判断模块604,用于根据当前时刻获取的采样值判断雾化器是否达到热平衡。
第一输出功率获取模块606,用于当判断雾化器达到热平衡时,将达到热平衡时发热体热属性的采样值作为稳定值,并控制发热体的采样值与稳定值之间的差值在第一范围内,实时获取雾化器的第一输出功率。
停止加热模块608,用于当第一输出功率小于第一功率阈值时,停止对发热体进行加热。
上述雾化器的加热方法、装置、计算机设备和存储介质,当检测到触发操作时,实时获取雾化器中发热体热属性的采样值;根据当前时刻获取的采样值判断雾化器是否达到热平衡;当判断雾化器达到热平衡时,将达到热平衡时发热体热属性的采样值作为稳定值,并控制发热体的采样值与稳定值之间的差值在第一范围内,实时获取雾化器的第一输出功率;控制发 热体的采样值与稳定值之间的差值在第一范围内,即控制发热体吸收的能量稳定在一定的区间之内;当第一输出功率小于第一功率阈值时,表示雾化器中的加热体吸收的能量降低,即雾化器中的加热体,即被加热的用于雾化的物体不足,因此停止对发热体进行加热,防止了雾化器干烧的情况,提高了雾化器的使用寿命;进一步,该雾化器的加热方法通过每次检测到触发操作时引入自学习的过程也即获取稳定值的过程,使得触发增量值随着雾化器的运行而动态调整,进而自动适应加热体的雾化温度区间,从而保证雾化器准确稳定地工作。
在一个实施例中,上述热平衡判断模块604还用于基于当前时刻获取第一时长内的各个采样值;第一时长包括当前时刻;当第一时长内的各个采样值符合第一预定规则时,判断雾化器达到热平衡。
在一个实施例中,上述热平衡判断模块604还用于当第一时长内的各个采样值不符合第一预定规则时,获取第二时长内的各个采样值;第二时长大于第一时长;第二时长包括当前时刻;当第二时长内的各个采样值符合第二预定规则时,则判断所述雾化器达到热平衡。
在一个实施例中,上述停止加热模块608还用于获取上一次触发操作的触发增量值,以及上一次触发操作发热体热属性的最大值;实时确定采样值与上一次触发操作发热体热属性的最大值之间的第一差值;当第一差值大于触发增量值时,获取参考值,并控制发热体热属性的采样值与参考值之间的差值在第二范围内,实时获取雾化器的第二输出功率;参考值小于或等于上一次触发操作发热体热属性的最大值;当第二输出功率小于第二功率阈值时,停止对发热体进行加热。
在一个实施例中,参考值为上一次触发操作发热体热属性的最小值、上一次触发操作发热体热属性的平均值、上一次触发操作发热体热属性的最大值中的其中一种。
上一次触发操作发热体热属性的最小值的确定方式,包括:获取每次触发操作发热体热属性的稳定值;将各个稳定值中最小的稳定值作为上一次触发操作发热体热属性的最小值。
上一次触发操作发热体热属性的平均值,包括:获取每次触发操作发热体热属性的稳定值;基于各个稳定值确定平均值,将平均值作为上一次触发操作发热体热属性的平均值。
上一次触发操作发热体热属性的最大值的确定方式,包括:获取每次触发操作发热体热属性的稳定值;将各个稳定值中最大的稳定值作为上一次触发操作发热体热属性的最大值。
在一个实施例中,上述停止加热模块608还用于获取上一次触发操作的初始值,以及上一次触发操作的稳定值;根据上一次触发操作的初始值,以及上一次触发操作的稳定值确定上一次触发操作的触发增量值。
在一个实施例中,上述雾化器的加热装置600还包括目标参数确定模块,用于获取参考稳定值和参考保护触发值;参考保护触发值是发热体热属性的阈值;根据参考稳定值和参考保护触发值确定目标参数。根据上一次触发操作的初始值,以及上一次触发操作的稳定值确定上一次触发操作的触发增量值,包括:根据目标参数、上一次触发操作的初始值,以及上一次触发操作的稳定值确定上一次触发操作的触发增量值。
在一个实施例中,上述停止加热模块608还用于获取标定值;当上一次触发操作的采样值小于标定值时,将上一次触发操作的采样值作为上一次触发操作的初始值;当上一次触发操作的采样值大于或等于标定值时,将标定值作为上一次触发操作的初始值。
关于雾化器的加热装置的具体限定可以参见上文中对于雾化器的加热方法的限定,在此不再赘述。上述雾化器的加热装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图7所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备 的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种雾化器的加热方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述雾化器的加热方法的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述雾化器的加热方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种雾化器的加热方法,所述方法包括:
    当检测到触发操作时,实时获取所述雾化器中发热体热属性的采样值;
    根据当前时刻获取的所述采样值判断所述雾化器是否达到热平衡;
    当判断所述雾化器达到热平衡时,将达到热平衡时所述发热体热属性的采样值作为稳定值,并控制所述发热体的采样值与所述稳定值之间的差值在第一范围内,实时获取所述雾化器的第一输出功率;
    当所述第一输出功率小于第一功率阈值时,停止对所述发热体进行加热。
  2. 根据权利要求1所述的方法,其特征在于,所述根据当前时刻获取的所述采样值判断所述雾化器是否达到热平衡,包括:
    基于当前时刻获取第一时长内的各个所述采样值;所述第一时长包括所述当前时刻;
    当所述第一时长内的各个所述采样值符合第一预定规则时,判断所述雾化器达到热平衡。
  3. 根据权利要求2所述的方法,其特征在于,所述第一预定规则为所述第一时长内的各个所述采样值均相同;或者
    所述第一预定规则为所述第一时长内的各个所述采样值的差值均在预设范围内。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    当所述第一时长内的各个所述采样值不符合所述第一预定规则时,获取第二时长内的各个所述采样值;所述第二时长大于所述第一时长;所述第二时长包括所述当前时刻;
    当所述第二时长内的各个所述采样值符合第二预定规则时,则判断所述雾化器达到热平衡。
  5. 根据权利要求4所述的方法,其特征在于,所述第二预定规则为所述第二时长内的各个所述采样值按照时间顺序逐个增大,且所述第二时长内相邻两个所述采样值的差值中最大的差值小于差值阈值;或者所述第二预定规则为所述第二时长内的各个所述采样值按照时间顺序先逐个增大再保持不变。
  6. 根据权利要求1所述的方法,其特征在于,所述当判断所述雾化器达到热平衡时,将达到热平衡时所述发热体的采样值作为稳定值之前,还包括:
    获取上一次触发操作的触发增量值,以及所述上一次触发操作所述发热体热属性的最大值;
    实时确定所述采样值与所述上一次触发操作所述发热体热属性的最大值之间的第一差值;
    当所述第一差值大于所述触发增量值时,获取参考值,并控制所述发热体热属性的采样值与所述参考值之间的差值在第二范围内,实时获取所述雾化器的第二输出功率;所述参考值小于或等于所述上一次触发操作所述发热体热属性的最大值;
    当所述第二输出功率小于第二功率阈值时,停止对所述发热体进行加热。
  7. 根据权利要求6所述的方法,其特征在于,所述上一次触发操作发热体热属性的最大值的确定方式,包括:获取每次所述触发操作所述发热体热属性的稳定值;将各个所述稳定 值中最大的所述稳定值作为所述上一次触发操作发热体热属性的最大值。
  8. 根据权利要求6所述的方法,其特征在于,所述参考值为所述上一次触发操作所述发热体热属性的最小值、所述上一次触发操作所述发热体热属性的平均值、所述上一次触发操作所述发热体热属性的最大值中的其中一种。
  9. 根据权利要求6所述的方法,其特征在于,所述获取上一次触发操作的触发增量值,包括:
    获取上一次触发操作的初始值,以及所述上一次触发操作的稳定值;
    根据所述上一次触发操作的所述初始值,以及所述上一次触发操作的所述稳定值确定上一次触发操作的触发增量值。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    获取参考稳定值和参考保护触发值;所述参考保护触发值是所述发热体热属性的阈值;
    根据所述参考稳定值和所述参考保护触发值确定目标参数;
    所述根据所述上一次触发操作的初始值,以及所述上一次触发操作的稳定值确定上一次触发操作的触发增量值,包括:
    根据所述目标参数、所述上一次触发操作的初始值,以及所述上一次触发操作的稳定值确定上一次触发操作的触发增量值。
  11. 根据权利要求9所述的方法,其特征在于,所述获取上一次触发操作的初始值,包括:
    获取标定值;
    当所述上一次触发操作的采样值小于所述标定值时,将所述上一次触发操作的采样值作为上一次触发操作的初始值;
    当所述上一次触发操作的采样值大于或等于所述标定值时,将所述标定值作为上一次触发操作的初始值。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述发热体热属性为发热体的电阻值或者发热体的温度。
  13. 根据权利要求1至11中任一项所述的方法,其特征在于,所述触发操作为抽吸操作、按压操作、点击操作或滑动操作。
  14. 根据权利要求1至11中任一项所述的方法,其特征在于,所述当所述第一输出功率小于第一功率阈值时,停止对所述发热体进行加热,包括:
    当检测到所述第一输出功率小于所述第一功率阈值时,切断雾化器的电源,使得雾化器停止对发热体进行加热;或者
    当检测到所述第一输出功率小于所述第一功率阈值时,切断发热体的电源,停止对发热体进行加热。
  15. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    当判断雾化器未达到热平衡时,若当前所述触发操作不是第一次触发操作时,获取触发 增量值,若第一差值小于或等于所述触发增量值,则确定参考值,获取第二输出功率,若所述第二输出功率小于第二功率阈值,则停止对发热体进行加热。
  16. 一种雾化器的加热装置,其特征在于,所述装置包括:
    采样值获取模块,用于当检测到触发操作时,实时获取所述雾化器中发热体热属性的采样值;
    热平衡判断模块,用于根据当前时刻获取的所述采样值判断所述雾化器是否达到热平衡;
    第一输出功率获取模块,用于当判断所述雾化器达到热平衡时,将达到热平衡时所述发热体热属性的采样值作为稳定值,并控制所述发热体的采样值与所述稳定值之间的差值在第一范围内,实时获取所述雾化器的第一输出功率;
    停止加热模块,用于当所述第一输出功率小于第一功率阈值时,停止对所述发热体进行加热。
  17. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至15中任一项所述方法的步骤。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至15中任一项所述的方法的步骤。
PCT/CN2020/121019 2019-12-17 2020-10-15 雾化器的加热方法、装置、计算机设备和存储介质 WO2021120808A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20903767.0A EP4079175A4 (en) 2019-12-17 2020-10-15 HEATING METHOD AND DEVICE FOR ATOMIZER, COMPUTER APPARATUS AND STORAGE MEDIUM
US17/839,814 US20220304393A1 (en) 2019-12-17 2022-06-14 Heating method and device for atomizer, computer apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911298724.8A CN111165914B (zh) 2019-12-17 2019-12-17 雾化器的加热方法、装置、计算机设备和存储介质
CN201911298724.8 2019-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/839,814 Continuation US20220304393A1 (en) 2019-12-17 2022-06-14 Heating method and device for atomizer, computer apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2021120808A1 true WO2021120808A1 (zh) 2021-06-24

Family

ID=70618120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121019 WO2021120808A1 (zh) 2019-12-17 2020-10-15 雾化器的加热方法、装置、计算机设备和存储介质

Country Status (4)

Country Link
US (1) US20220304393A1 (zh)
EP (1) EP4079175A4 (zh)
CN (1) CN111165914B (zh)
WO (1) WO2021120808A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111165914B (zh) * 2019-12-17 2021-11-09 深圳麦克韦尔科技有限公司 雾化器的加热方法、装置、计算机设备和存储介质
CN112656048A (zh) * 2020-12-11 2021-04-16 深圳市基克纳科技有限公司 一种电子烟自动终止加热的方法和装置
CN112656049A (zh) * 2020-12-18 2021-04-16 深圳市基克纳科技有限公司 电子烟的交互方法、装置和电子烟
CN113080525A (zh) * 2021-03-17 2021-07-09 深圳麦克韦尔科技有限公司 气溶胶产生装置、干烧检测方法及计算机程序产品
WO2022193161A1 (zh) * 2021-03-17 2022-09-22 深圳麦克韦尔科技有限公司 气溶胶产生装置、干烧检测方法及计算机程序产品
CN113812678A (zh) * 2021-09-28 2021-12-21 深圳市吉迩科技有限公司 设备状态管理方法、装置及存储介质
CN117491758A (zh) * 2022-07-25 2024-02-02 深圳麦时科技有限公司 故障检测方法及其装置、可读存储介质和气溶胶雾化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014126A1 (en) * 2012-07-11 2014-01-16 Eyal Peleg Hot-wire control for an electronic cigarette
CN109330032A (zh) * 2018-11-30 2019-02-15 昂纳自动化技术(深圳)有限公司 一种电子烟控制方法及电子烟
CN109588779A (zh) * 2018-03-27 2019-04-09 深圳瀚星翔科技有限公司 电子雾化设备及其防干烧控制装置
US20190247606A1 (en) * 2018-04-24 2019-08-15 Samuel Alexander Williams Variable Temperature Electronic Vaporization Device with Filter Addition and Methods
CN110487848A (zh) * 2019-07-30 2019-11-22 深圳麦克韦尔科技有限公司 雾化组件含油量检测方法、装置及电子雾化装置
CN110558617A (zh) * 2019-07-30 2019-12-13 深圳麦克韦尔科技有限公司 电子雾化装置、加热控制方法、装置和存储介质
CN111165914A (zh) * 2019-12-17 2020-05-19 深圳麦克韦尔科技有限公司 雾化器的加热方法、装置、计算机设备和存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104323428B (zh) * 2014-10-24 2017-10-17 林光榕 温控电子烟及其温度控制方法
CN104305527B (zh) * 2014-10-24 2018-04-06 林光榕 红外感应温控电子烟及其温度控制方法
CN106136323B (zh) * 2016-07-06 2019-06-07 深圳瀚星翔科技有限公司 电子雾化装置中雾化器干烧的判断方法
CN107440157B (zh) * 2017-08-15 2020-04-07 惠州市新泓威科技有限公司 电子烟的防干烧装置及其防干烧控制方法
CN108391852A (zh) * 2017-12-18 2018-08-14 卓尔悦欧洲控股有限公司 控制方法、装置及电子烟
CN108851233B (zh) * 2018-04-04 2020-02-28 赫斯提亚深圳生物科技有限公司 一种气溶胶生成装置及其控制方法
CN110522079B (zh) * 2018-05-24 2021-07-02 常州市派腾电子技术服务有限公司 确定电子烟输出功率的方法、电子烟及计算机存储介质
CN108954631A (zh) * 2018-05-30 2018-12-07 广东奥迪威传感科技股份有限公司 一种雾化器及基于其的雾化量调节方法
CN108835718B (zh) * 2018-08-18 2020-11-03 深圳市合元科技有限公司 一种电子烟功率控制方法及电子烟
CN109717519B (zh) * 2019-03-13 2021-07-27 常州市派腾电子技术服务有限公司 电子烟

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014126A1 (en) * 2012-07-11 2014-01-16 Eyal Peleg Hot-wire control for an electronic cigarette
CN109588779A (zh) * 2018-03-27 2019-04-09 深圳瀚星翔科技有限公司 电子雾化设备及其防干烧控制装置
US20190247606A1 (en) * 2018-04-24 2019-08-15 Samuel Alexander Williams Variable Temperature Electronic Vaporization Device with Filter Addition and Methods
CN109330032A (zh) * 2018-11-30 2019-02-15 昂纳自动化技术(深圳)有限公司 一种电子烟控制方法及电子烟
CN110487848A (zh) * 2019-07-30 2019-11-22 深圳麦克韦尔科技有限公司 雾化组件含油量检测方法、装置及电子雾化装置
CN110558617A (zh) * 2019-07-30 2019-12-13 深圳麦克韦尔科技有限公司 电子雾化装置、加热控制方法、装置和存储介质
CN111165914A (zh) * 2019-12-17 2020-05-19 深圳麦克韦尔科技有限公司 雾化器的加热方法、装置、计算机设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079175A4 *

Also Published As

Publication number Publication date
EP4079175A1 (en) 2022-10-26
CN111165914B (zh) 2021-11-09
US20220304393A1 (en) 2022-09-29
EP4079175A4 (en) 2024-01-17
CN111165914A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021120808A1 (zh) 雾化器的加热方法、装置、计算机设备和存储介质
EP3771351B1 (en) Electronic atomization devices, methods for heating control, and computer program products
US10321718B2 (en) Electronic cigarette temperature control system and method, and electronic cigarette with the same
US9536296B2 (en) Imaging for quality control in an electronic cigarette
CN110584204B (zh) 电子雾化装置的加热控制方法、控制装置及电子雾化装置
TW201808127A (zh) 測量風速風向之輔助控制之蒸發器
EP3841899B1 (en) Temperature control method of electronic cigarette, electronic cigarette and computer storage medium
US20150027472A1 (en) Charger for an electronic cigarette
CN106509998A (zh) 电子雾化装置的温度控制方法和系统
KR102478103B1 (ko) 전기 작동식 에어로졸 생성 시스템
WO2022247563A1 (zh) 雾化控制方法、充电设备、雾化设备及电子雾化系统
WO2021047654A1 (zh) 电子烟控制方法及电子烟
CN110731545A (zh) 雾化组件加热控制方法、装置、电子雾化装置及存储介质
WO2023134358A1 (zh) 气溶胶产生装置及其控制方法、控制装置和存储介质
CN111000294B (zh) 雾化器的加热方法、装置、计算机设备和存储介质
CN111616421A (zh) 电子烟功率的控制方法、装置、设备及可读介质
CN111329114A (zh) 电子烟自适应加热方法、电子烟和存储介质
CN113245093A (zh) 雾化装置的控制方法、雾化装置、计算机设备和存储介质
WO2022193161A1 (zh) 气溶胶产生装置、干烧检测方法及计算机程序产品
CN112944690A (zh) 基于燃气热水器的参数调节方法、装置和燃气热水器
CN110897206A (zh) 电子烟口数统计方法、控制装置、设备和存储介质
CN117837829A (zh) 电子烟的变功率输出控制方法、装置、设备及介质
CN115708599A (zh) 电子雾化装置及其待雾化基质的消耗检测方法
CN115918968A (zh) 一种智能雾化器及智能雾化控制方法
CN117731066A (zh) 气溶胶生成设备及其控制方法、控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020903767

Country of ref document: EP

Effective date: 20220718