WO2022116713A1 - 一种雾化芯加热方法、系统及气溶胶产生装置 - Google Patents

一种雾化芯加热方法、系统及气溶胶产生装置 Download PDF

Info

Publication number
WO2022116713A1
WO2022116713A1 PCT/CN2021/124309 CN2021124309W WO2022116713A1 WO 2022116713 A1 WO2022116713 A1 WO 2022116713A1 CN 2021124309 W CN2021124309 W CN 2021124309W WO 2022116713 A1 WO2022116713 A1 WO 2022116713A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
atomizing core
preset time
heating
preset
Prior art date
Application number
PCT/CN2021/124309
Other languages
English (en)
French (fr)
Inventor
赵贯云
田亚雷
周勇
龚文博
朱旦
Original Assignee
深圳市吉迩科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市吉迩科技有限公司 filed Critical 深圳市吉迩科技有限公司
Publication of WO2022116713A1 publication Critical patent/WO2022116713A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present application relates to the field of aerosol generating devices, and in particular, to a heating method and system for an atomizing core, and an aerosol generating device.
  • the aerosol generating device is a portable device that replaces conventional cigarettes. It is usually plugged into the host by a pod to heat the e-liquid in the pod to form smoke, so as to achieve the effect of smoking.
  • a voltage is applied to the atomizing core by controlling the power supply when starting, so that the atomizing core heats the oil to form an aerosol.
  • the existing way to control the atomizing core is to apply the maximum voltage to make the atomizing core work at the maximum power, that is, from the closed 0 Voltage Directly applies the maximum voltage to heat the atomizing core.
  • This method is easy to burn or burn the atomizing core, and the method of directly applying the maximum voltage is unsafe to use in the face of a short circuit caused by oil leakage.
  • the present application provides an atomizing core heating method, a system, and an aerosol generating device.
  • a method for heating an atomizing core comprising the following steps: Step S1: obtaining a start-up instruction, and controlling the voltage of the atomizing core to gradually increase, so that the voltage of the atomizing core is gradually increased within a first preset time. When the heating voltage is reached, the first preset time is greater than zero; step S2: maintaining the heating voltage for a second preset time to heat the atomizing core; and step S3: reducing the heating voltage based on the heated atomizing core Heat the voltage to obtain the use voltage.
  • step S1 specifically includes the following steps: step 11: obtaining a start-up instruction, and applying the voltage of the atomizing core to an initial voltage, where the initial voltage is lower than the use voltage; and step S12: based on the initial voltage, in The initial voltage is increased to a heating voltage within the first preset time.
  • the use voltage is twice the initial voltage.
  • the slope of the voltage change curve corresponding to the first preset time ranges from 0 to 1.
  • step S2 specifically includes the following steps: step S21: reading the preset normal temperature value and detecting the current atomizing core temperature, and calculating the second preset time; and step S22: according to the second preset time, keep the The heating voltage is stably applied to the atomizing core to heat the atomizing core.
  • the second preset time is calculated by the following steps: Step S211: Based on the normal temperature value, compare the temperature of the atomizing core with the normal temperature value; Step S212: Determine whether the normal temperature value is greater than the temperature of the atomizing core, if so, enter the step S214, if no, go to step S213; step S213: calculate the second preset time based on the first preset equation; step S214: calculate the second preset time based on the second preset equation.
  • the first preset equation is:
  • the second preset equation is:
  • t is the second preset time
  • t0 is the reference time
  • T1 is the temperature of the atomizing core
  • T2 is the normal temperature value
  • K is the proportional coefficient
  • the present application also provides a heating system for an atomizing core, including: a pressurizing unit for obtaining a start-up instruction and controlling the voltage of the atomizing core to gradually increase, so as to reach the heating voltage within a first preset time, the first preset setting the time to be greater than zero; an atomizing core heating unit for maintaining the heating voltage for a second preset time to heat the atomizing core; and a depressurizing unit for reducing the heating based on the heating atomizing core voltage to obtain the operating voltage.
  • a pressurizing unit for obtaining a start-up instruction and controlling the voltage of the atomizing core to gradually increase, so as to reach the heating voltage within a first preset time, the first preset setting the time to be greater than zero
  • an atomizing core heating unit for maintaining the heating voltage for a second preset time to heat the atomizing core
  • a depressurizing unit for reducing the heating based on the heating atomizing core voltage to obtain the operating voltage.
  • the atomizing core heating unit specifically includes: a temperature measuring unit, used for reading a preset normal temperature value and detecting the current atomizing core temperature, and calculating a second preset time; For a preset time, the heating voltage is kept stably applied to the atomizing core, so as to heat the atomizing core.
  • the present application also provides an aerosol generating device, including a memory and a voltage controller; a computer program is stored in the memory, and the computer program is configured to execute a method for heating an atomizing core when running; the voltage controller is configured to for executing the method for heating the atomizing core by the computer program;
  • the atomizing core heating method includes the following steps:
  • Step S1 obtaining a start-up instruction, and controlling the voltage of the atomizing core to gradually increase, so as to reach the heating voltage within a first preset time, and the first preset time is greater than zero;
  • Step S2 maintaining the heating voltage for a second preset time to heat the atomizing core
  • Step S3 Based on the heated atomizing core, reduce the heating voltage to obtain the use voltage.
  • step S1 specifically includes the following steps:
  • Step S11 obtaining a start-up instruction, and applying the voltage of the atomizing core to an initial voltage, where the initial voltage is lower than the use voltage;
  • Step S12 Based on the initial voltage, increase the initial voltage to a heating voltage within the first preset time.
  • the use voltage is twice the initial voltage.
  • the slope of the voltage change curve corresponding to the first preset time ranges from 0 to 1.
  • step S2 specifically includes the following steps:
  • Step S21 read the preset normal temperature value and detect the current atomizing core temperature, and calculate the second preset time;
  • Step S22 keeping the heating voltage applied to the atomizing core stably according to the second preset time, so as to heat the atomizing core.
  • the second preset time is calculated by the following steps:
  • Step S211 Based on the normal temperature value, compare the temperature of the atomizing core with the normal temperature value;
  • Step S212 determine whether the normal temperature value is greater than the temperature of the atomizing core, if yes, go to step S214, if not, go to step S213;
  • Step S213 calculating the second preset time based on the first preset equation
  • Step S214 Calculate the second preset time based on a second preset equation.
  • the first preset equation is:
  • the second preset equation is:
  • t is the second preset time
  • t0 is the reference time
  • T1 is the temperature of the atomizing core
  • T2 is the normal temperature value
  • K is the proportional coefficient
  • the atomizing core heating method, system and aerosol generating device provided by the present application have the following advantages:
  • the starting coil When starting, the starting coil is gradually increased to the heating voltage within the first preset time, so that the coil can obtain a more stable starting mechanism based on the gradually changing voltage, avoiding the instantaneous increase of the voltage to the maximum value. It also avoids the problem of excessive short-circuit voltage caused by the risk of short circuit caused by liquid leakage, and improves the safety of users. It can avoid the power whistle problem caused by direct maximum voltage drive. Further, after preheating the atomizing core to start smoothly through the first preset time, the atomizing core is heated to initially form aerosol within the second preset time, so that the second preheating of the atomizing core under the heating voltage is performed.
  • the setting time is shortened, the working time of the atomizing core at the maximum voltage is reduced, the service life of the atomizing core is improved, and the use intensity of the atomizing core is reduced. Furthermore, by adjusting the voltage of the heated atomizing core and reducing it to the working voltage, the use intensity of the atomizing core is further reduced. That is to say, the heating method of the atomizing core provided by the present application achieves the protection of the atomizing core by setting the voltage of the atomizing core to three stages of increasing, maintaining and depressurizing, and also reduces the startup time. The instantaneous voltage improves the safety of use.
  • the initial voltage of the atomizing core is adjusted from 0 to a preset initial voltage, and the initial voltage is lower than the use voltage, so that the voltage of the atomizing core can be adjusted in a short time.
  • the increase range is within the allowable range of the operating voltage, that is, when the user starts, the voltage is slightly increased, so that the voltage is directly increased from 0 to the initial voltage, which ensures the safety of use and protects the fog.
  • the preheating time of the first preset time is also reduced, that is, the process time from startup to generating aerosol by the user is reduced, and the heating efficiency of the atomizing core is further improved.
  • the voltage change forms a straight line with a slope, which makes the voltage change process more stable and ensures the stability of the atomizing core pressure. Avoid damage to the atomizing core caused by excessive changes.
  • FIG. 1 is a flowchart of a method for heating an atomizing core provided by the first embodiment of the present application.
  • FIG. 2 is a voltage-time curve diagram formed in an atomizing core heating method provided in the first embodiment of the present application.
  • FIG. 3 is a voltage-time curve diagram formed in the heating method of the atomizing core in the prior art.
  • FIG. 4 is another voltage-time curve diagram formed in the heating method of the atomizing core in the prior art.
  • FIG. 5 is a detailed flow chart of step S1 in an atomizing core heating method provided by the first embodiment of the present application.
  • FIG. 6 is a detailed flow chart of step S2 in the method for heating an atomizing core provided by the first embodiment of the present application.
  • FIG. 7 is a detailed flow chart of calculating the second preset time in an atomizing core heating method provided by the first embodiment of the present application.
  • FIG. 8 is a block diagram of an atomizing core heating system provided by the second embodiment of the present application.
  • FIG. 9 is a block diagram of an atomizing core heating unit in an atomizing core heating system provided by the second embodiment of the present application.
  • FIG. 10 is a block diagram of an aerosol generating device according to a third embodiment of the present application.
  • the first embodiment of the present application provides a method for heating an atomizing core, which is used to control the magnitude of the voltage applied to the atomizing core based on a set power, so as to realize the heating control of the atomizing core, including the following steps:
  • Step S1 obtaining a start-up instruction, and controlling the voltage of the atomizing core to gradually increase, so as to reach the heating voltage within a first preset time, and the first preset time is greater than zero.
  • Step S2 maintaining the heating voltage for a second preset time to heat the atomizing core.
  • Step S3 Based on the heated atomizing core, reduce the heating voltage to obtain the use voltage.
  • step S1 the user is driven by the aerosol generating device, the atomizing core is heated by the voltage applied by the power supply, and within the first preset time, the voltage applied on the atomizing core gradually rises until the applied voltage is reached. until the voltage reaches the heating voltage.
  • step S1 since the first preset time is greater than zero, the applied voltage forms a curve with a slope in time, which avoids the burning and burning of the atomizing core caused by the existing method of directly applying the maximum voltage. It can also reduce the risk of accidental short circuit when the existing maximum voltage is applied, and improve the safety of product use.
  • the voltage change curve within the first preset time may be an arc, such as a sinusoidal rising curve, or may be set as a straight line, and the slope of the straight line is between 0-1.
  • the slope range of the voltage change curve corresponding to the first preset time is between 0 and 1, so that the voltage change forms a straight line with a slope (corresponding between t1 and t2 in the figure).
  • the slashed line segment makes the voltage change process more stable, ensures the stability of the atomizing core pressure, and avoids damage to the atomizing core caused by excessive changes.
  • U0 is the initial voltage
  • U2 is the operating voltage
  • U1 is the heating voltage
  • t1 is the time when the user starts the device
  • t2 is the time when the heating reaches the heating voltage
  • t3 is the time point of entering the use voltage.
  • FIG. 4 it is a graph formed by directly applying the maximum voltage to the atomizing core for heating in the prior art. In this graph, the voltage is directly increased from 0 to the maximum voltage (that is, the heating voltage in this embodiment).
  • FIG. 4 it is a method of slow heating by directly applying the use voltage U2 in the prior art, and this method starts slowly.
  • the first preset time may be set to 3ms, 6ms, 8ms or 10ms, preferably 6ms.
  • step S2 when the heating voltage is reached, the atomizing core works at the maximum power, and the temperature is raised rapidly, so as to quickly enter the working temperature, and the heating oil will initially generate aerosol, so as to shorten the time when the user starts the device.
  • the process time of forming the aerosol reduces the use delay and improves the user experience.
  • step S2 the voltage gradually changed after step S1, so that the atomizing core in step S2 already has a certain amount of heat, that is, the atomizing core has undergone the preheating treatment in step S1, so that in step S2
  • the second preset time that the heating voltage lasts is greatly reduced, which further reduces the heating time of the atomizing core at the maximum power, improves the service life of the atomizing core, and further slows down the burning and burning caused by the atomizing core. question.
  • step S2 the size of the second preset time is based on the temperature obtained by the atomizing core within the first preset time. Then, the second preset time can be shortened, and vice versa, the second preset time can be extended.
  • step S3 based on the stable heating atomizing core obtained in step S2, the current heating voltage is reduced to the operating voltage in normal use (that is, the rated operating voltage), so as to avoid the maximum voltage for a long time. High-load work with atomizing cores.
  • the start-up mechanism avoids the problem of burning or burning the atomizing core caused by instantaneously increasing the voltage to the maximum value, and also avoids the problem of excessive short-circuit voltage caused by the risk of short-circuit caused by liquid leakage, improving the safety of users. sex.
  • the atomizing core is heated to initially form aerosol within the second preset time, so that the atomizing core is at the second preset temperature under the heating voltage.
  • the time is shortened, the working time of the atomizing core at the maximum voltage is reduced, the service life of the atomizing core is improved, and the use intensity of the atomizing core is reduced. Further, by adjusting the voltage of the heated atomizing core and reducing it to the working voltage, the use intensity of the atomizing core is further reduced.
  • step S1 obtaining a start-up instruction, and controlling the voltage of the atomizing core to gradually increase, so as to reach the heating voltage within a first preset time, and the first preset time is greater than zero.
  • Step S1 specifically includes steps S11 to S12:
  • Step S11 Acquire a start-up instruction, and apply the voltage of the atomizing core to an initial voltage, where the initial voltage is lower than the use voltage.
  • Step S12 Based on the initial voltage, increase the initial voltage to a heating voltage within the first preset time.
  • step S11 before the voltage is gradually changed, the voltage of the initially activated atomizing core is adjusted from 0 to a preset initial voltage, and the initial voltage is lower than the use voltage, so that the atomizing core can be replaced in a short time.
  • the voltage of the core is appropriately increased, and the increase is within the allowable range of the operating voltage, that is, when the user starts, the voltage is increased by a small amount, so that the voltage is directly increased from 0 to the initial voltage.
  • the preheating time of the first preset time is also reduced, that is, the process time from startup to generating aerosol by the user is reduced, and the heating efficiency of the atomizing core is further improved.
  • step S12 the initial value of the voltage that is gradually changed within the first preset time is the initial voltage, that is, the heating voltage is gradually increased from the initial voltage to the voltage value.
  • the use voltage is twice the initial voltage.
  • the initial voltage is calculated according to the following formula:
  • the operating voltage is calculated according to the following formula:
  • U0 is the initial voltage
  • U2 is the operating voltage
  • P1 is the rated power used by the atomizing core
  • R is the resistance value of the atomizing core.
  • the rated power P1 used by the atomizing core can be set to 20W
  • the maximum power (that is, the power value corresponding to the maximum voltage) is 30W.
  • steps S11 to S12 are only an implementation of this embodiment, and the implementation is not limited to steps S11 to S12.
  • step S2 maintaining the heating voltage for a second preset time to heat the atomizing core.
  • Step S2 specifically includes steps S21 to S22. Specifically:
  • Step S21 read the preset normal temperature value and detect the current atomizing core temperature, and calculate the second preset time;
  • Step S22 keeping the heating voltage applied to the atomizing core stably according to the second preset time, so as to heat the atomizing core.
  • step S21 the temperature of the atomizing core when not in use is related to the preset normal temperature value, and the higher the normal temperature value, the higher the temperature of the atomizing core, and vice versa.
  • the interval between the next use and the previous use is shorter, so that the atomizing core continues to work after it has not cooled down, so that the temperature of the atomizing core when it starts to work is high. at ambient temperature.
  • step S21 is used to detect the normal temperature and the current starting temperature of the atomizing core to determine the value of the second preset time, so as to accurately calculate the duration of the atomizing core under the heating voltage, so as to avoid the high-load operation of the atomizing core for a long time.
  • step S22 the temperature of the atomizing core is detected by setting a temperature control resistor (or called a thermistor) for temperature detection.
  • a temperature control resistor or called a thermistor
  • the second preset time is calculated by the following steps:
  • Step S211 Based on the normal temperature value, compare the temperature of the atomizing core with the normal temperature value;
  • Step S212 determine whether the normal temperature value is greater than the temperature of the atomizing core, if yes, go to step S214, if not, go to step S213;
  • Step S213 calculating the second preset time based on the first preset equation
  • Step S214 Calculate the second preset time based on a second preset equation.
  • step S213 and step S214 the first preset equation is:
  • the second preset equation is:
  • t is the second preset time
  • t0 is the reference time
  • T1 is the temperature of the atomizing core
  • T2 is the normal temperature value
  • K is the proportional coefficient.
  • t0 is preferably 12.
  • the second preset time t decreases as the temperature of the atomizing core increases, and vice versa, it increases as the temperature of the atomizing core decreases.
  • steps S21 to S22 are only an implementation of this embodiment, and the implementation is not limited to steps S21 to S22.
  • the atomizing core heating system may include:
  • the pressurizing unit 1 is configured to obtain a start-up instruction and control the voltage of the atomizing core to gradually increase to reach the heating voltage within a first preset time, where the first preset time is greater than zero.
  • the atomizing core heating unit 2 is configured to maintain the heating voltage for a second preset time to heat the atomizing core.
  • the step-down unit 3 is used for the heating-based atomizing core to reduce the heating voltage to obtain the use voltage.
  • the above-mentioned atomizing core heating unit 2 specifically includes:
  • the temperature measuring unit 21 is used to read the preset normal temperature value and detect the current atomizing core temperature, and calculate the second preset time.
  • the temperature rise maintaining unit 22 is configured to keep the heating voltage stably applied to the atomizing core according to the second preset time, so as to heat the atomizing core.
  • the atomizing core heating system provided in the second embodiment of the present application is particularly suitable for the atomizing core voltage heating system in the aerosol generating device, so that the atomizing core can obtain a relatively stable starting mechanism based on the gradually changing voltage, It avoids the problem of burning or burning the atomizing core caused by instantaneously increasing the voltage to the maximum value, and also avoids the problem of excessive short-circuit voltage caused by the risk of short-circuit caused by liquid leakage, which improves the safety of users.
  • the atomizing core is heated to initially form aerosol within the second preset time, so that the atomizing core is at the second preset temperature under the heating voltage.
  • the time is shortened, the working time of the atomizing core at the maximum voltage is reduced, the service life of the atomizing core is improved, and the use intensity of the atomizing core is reduced. Further, by adjusting the voltage of the heated atomizing core and reducing it to the working voltage, the use intensity of the atomizing core is further reduced.
  • a third embodiment of the present application provides an aerosol generating device for implementing the above-mentioned atomizing core heating method.
  • the aerosol generating device includes a memory 10 and a voltage controller 20 , and the memory 10 stores arithmetic operations.
  • the computer program is configured to execute the steps in any of the above-mentioned embodiments of the heating method for the atomizing core when running.
  • the voltage controller 20 is configured to execute the steps in any one of the above-mentioned embodiments of the heating method for the atomizing core through the computer program.
  • the atomizing core heating method, system and aerosol generating device provided by the present application have the following advantages:
  • the atomizing core By starting the atomizing core to gradually increase to the heating voltage within the first preset time during startup, the atomizing core can obtain a relatively stable startup mechanism based on the gradually changing voltage, and avoid the sudden increase of the voltage to the maximum value. It also avoids the problem of excessive short-circuit voltage caused by the risk of short-circuit caused by liquid leakage, and improves the safety of users. Power whistle problem caused by direct maximum voltage drive. Further, after preheating the atomizing core to start smoothly through the first preset time, the atomizing core is heated to initially form aerosol within the second preset time, so that the second preheating of the atomizing core under the heating voltage is performed.
  • the setting time is shortened, the working time of the atomizing core at the maximum voltage is reduced, the service life of the atomizing core is improved, and the use intensity of the atomizing core is reduced. Further, by adjusting the voltage of the heated atomizing core and reducing it to the working voltage, the use intensity of the atomizing core is further reduced. That is to say, the heating method of the atomizing core provided by the present application achieves the protection of the atomizing core by setting the voltage of the atomizing core to three stages of increasing, maintaining and decreasing the voltage, and also reduces the time of startup. The instantaneous voltage improves the safety of use.
  • orientation descriptions related to orientations are based on the orientations or positional relationships shown in the drawings, only It is for the convenience of description of the present application to create and simplify the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present application.
  • the meaning of several is one or more, the meaning of multiple is two or more, greater than, less than, exceeding, etc. are understood as not including this number, above, below, within, etc. are understood as including this number. If it is described that the first and the second are only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance, or indicating the number of the indicated technical features or the order of the indicated technical features. relation.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

一种雾化芯加热方法、系统及气溶胶产生装置,启动雾化芯在第一预设时间内逐渐升高至加热电压,使得雾化芯可基于逐渐变化的电压获得较平稳的启动机制,避免瞬时提高电压到最大值时带来雾化芯烧糊或烧毁问题,也避免了由于液体渗漏导致短路风险带来的短路电压过大的问题。同时,通过第一预设时间对雾化芯平稳启动的预热后,在第二预设时间内将雾化芯加热至初步形成气溶胶,使得雾化芯在加热电压下的第二预设时间缩短,减少了雾化芯在最大电压的工作时间,提高了雾化芯的使用寿命,降低了雾化芯的使用强度。通过对加热完毕后的雾化芯调整电压降低至使用电压,进一步降低雾化芯的使用强度。

Description

一种雾化芯加热方法、系统及气溶胶产生装置
本申请要求于2020年12月1日提交中国专利局、申请号为202011385060.1,发明名称为“一种雾化芯加热方法、系统及气溶胶产生装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及气溶胶产生装置领域,特别涉及一种雾化芯加热方法、系统及气溶胶产生装置。
背景技术
气溶胶产生装置是替代常规卷烟的便携式设备,其通常是由烟弹插接在主机上,以将烟弹中的烟油加热形成烟雾,以达到出烟效果。
在气溶胶产生装置中,通过启动时控制电源给雾化芯施加电压,使得雾化芯加热油液后形成气溶胶。
为了在用户启动时具有较快的加热速率以获得较快的气溶胶产生速率,现有的控制雾化芯的方式为施加最大电压让雾化芯在最大功率下工作,也即从关闭的0电压直接施加最大电压进行加热雾化芯,该种方式容易烧糊或烧毁雾化芯,且直接施加最大电压的方式在面对油液泄漏导致的短路时,使用不安全。
发明内容
为了克服目前现有的雾化芯加热方式容易导致啸叫、使用不安全的问题,本申请提供一种雾化芯加热方法、系统及气溶胶产生装置。
本申请为解决上述技术问题,提供一技术方案如下:一种雾化芯加热方法,包括以下步骤:步骤S1:获取启动指令,控制雾化芯的电压逐渐上升,以在第一预设时间内达到加热电压,所述第一预设时间大于零;步骤S2:在第二预设 时间内保持所述加热电压,以加热雾化芯;及步骤S3:基于加热的雾化芯,降低所述加热电压,获得使用电压。
优选地,上述步骤S1具体包括以下步骤:步骤11:获取启动指令,将雾化芯的电压施加至初始电压,所述初始电压小于所述使用电压;及步骤S12:基于所述初始电压,在所述第一预设时间内将所述初始电压提高至加热电压。
优选地,所述使用电压是初始电压的两倍。
优选地,所述第一预设时间对应的电压变化曲线的斜率范围为0-1之间。
优选地,上述步骤S2具体包括以下步骤:步骤S21:读取预设的常温值和检测当前雾化芯温度,计算第二预设时间;及步骤S22:根据第二预设时间,保持所述加热电压稳定施加于雾化芯,以加热雾化芯。
优选地,所述第二预设时间通过以下步骤计算:步骤S211:基于常温值,将雾化芯温度与常温值进行对比;步骤S212:判断常温值是否大于雾化芯温度,若是,进入步骤S214,若否,则进入步骤S213;步骤S213:基于第一预设方程计算所述第二预设时间;步骤S214:基于第二预设方程计算所述第二预设时间。
优选地,所述第一预设方程为:
t=t0-(T1/T2)*K
所述第二预设方程为:
t=t0+[(T2-T1)/T2]*K
其中,t为第二预设时间,t0为参考时间,T1为雾化芯温度,T2为常温值,K为比例系数。
本申请还提供一种雾化芯加热系统,包括:加压单元,用于获取启动指令,控制雾化芯的电压逐渐上升,以在第一预设时间内达到加热电压,所述第一预 设时间大于零;雾化芯加热单元,用于在第二预设时间内保持所述加热电压,以加热雾化芯;及降压单元,用于基于加热的雾化芯,降低所述加热电压,获得使用电压。
优选地,所述雾化芯加热单元具体包括:测温单元,用于读取预设的常温值和检测当前雾化芯温度,计算第二预设时间;及升温保持单元,用于根据第二预设时间,保持所述加热电压稳定施加于雾化芯,以加热雾化芯。
本申请还提供一种气溶胶产生装置,包括存储器及电压控制器;所述存储器中存储有计算机程序,所述计算机程序被设置为运行时执行雾化芯加热方法;所述电压控制器被设置为通过所述计算机程序执行所述雾化芯加热方法;
所述雾化芯加热方法包括以下步骤:
步骤S1:获取启动指令,控制雾化芯的电压逐渐上升,以在第一预设时间内达到加热电压,所述第一预设时间大于零;
步骤S2:在第二预设时间内保持所述加热电压,以加热雾化芯;及
步骤S3:基于加热的雾化芯,降低所述加热电压,获得使用电压。
优选地,上述步骤S1具体包括以下步骤:
步骤S11:获取启动指令,将雾化芯的电压施加至初始电压,所述初始电压小于所述使用电压;及
步骤S12:基于所述初始电压,在所述第一预设时间内将所述初始电压提高至加热电压。
优选地,所述使用电压是初始电压的两倍。
优选地,所述第一预设时间对应的电压变化曲线的斜率范围为0-1之间。
优选地,上述步骤S2具体包括以下步骤:
步骤S21:读取预设的常温值和检测当前雾化芯温度,计算第二预设时间;及
步骤S22:根据第二预设时间,保持所述加热电压稳定施加于雾化芯,以加热雾化芯。
优选地,所述第二预设时间通过以下步骤计算:
步骤S211:基于常温值,将雾化芯温度与常温值进行对比;
步骤S212:判断常温值是否大于雾化芯温度,若是,进入步骤S214,若否,则进入步骤S213;
步骤S213:基于第一预设方程计算所述第二预设时间;
步骤S214:基于第二预设方程计算所述第二预设时间。
优选地,所述第一预设方程为:
t=t0-(T1/T2)*K
所述第二预设方程为:
t=t0+[(T2-T1)/T2]*K
其中,t为第二预设时间,t0为参考时间,T1为雾化芯温度,T2为常温值,K为比例系数。
与现有技术相比,本申请提供的雾化芯加热方法、系统及气溶胶产生装置具有以下优点:
1、通过在启动时,启动雾化芯在第一预设时间内逐渐升高至加热电压,使得雾化芯可基于逐渐变化的电压获得较平稳的启动机制,避免瞬时提高电压到 最大值时带来的烧糊或烧毁雾化芯的问题,也避免了由于液体渗漏导致短路风险带来的短路电压过大的问题,提高了用户使用的安全性,同时,平稳启动的雾化芯也能避免直接最大电压驱动带来的电源啸叫问题。进一步地,通过第一预设时间对雾化芯平稳启动的预热后,在第二预设时间内将雾化芯加热至初步形成气溶胶,使得雾化芯在加热电压下的第二预设时间缩短,减少了雾化芯在最大电压的工作时间,提高了雾化芯的使用寿命,降低了雾化芯的使用强度。再进一步,通过对加热完毕后的雾化芯调整电压降低至使用电压,进一步降低雾化芯的使用强度。也即,本申请提供的雾化芯加热方法通过将雾化芯的电压设定为升高、保持和降压平稳使用三个阶段,以实现对雾化芯的保护作用,也降低了启动时的瞬时电压,提高使用安全性。
2、通过在电压进行逐渐变化之前,将初始启动的雾化芯电压从0调整至预设的初始电压,且该初始电压低于使用电压,以使得在短时间内将雾化芯的电压进行适当的提升,且提升的幅度在使用电压的允许范围之内,也即在用户启动时,对电压进行小幅度的提升,使得电压从0直接升高至初始电压,在确保使用安全和保护雾化芯使用的同时,也减少了第一预设时间的预热时间,也即减少了用户在启动至产生气溶胶的过程时间,进一步提高雾化芯的加热效率。
3、通过设置第一预设时间对应的电压变化曲线的斜率范围为0-1之间,使得电压变化形成一具有斜率的直线,让电压变化过程更加平稳,确保雾化芯压力的稳定性,避免变化过大导致而损坏雾化芯。
4、通过检测常温与当前雾化芯启动的温度,以确定第二预设时间的数值,以准确计算雾化芯在加热电压下的持续时间,避免雾化芯长时间高负荷工作。
5、通过设置两种不同的方程计算第二预设时间,使得在多种条件下准确计 算第二预设时间的数值,避免计算不准确带来的加热电压下工作时间过长导致的雾化芯高负载工作的问题,也可以避免带来的工作时间过短带来的产生气溶胶不合格的问题。
附图说明
图1为本申请第一实施例提供的一种雾化芯加热方法的流程图。
图2为本申请第一实施例提供的一种雾化芯加热方法中形成的电压-时间曲线图。
图3为现有技术中雾化芯加热方法中形成的电压-时间曲线图。
图4为现有技术中雾化芯加热方法中形成的又一种电压-时间曲线图。
图5为本申请第一实施例提供的一种雾化芯加热方法中步骤S1的细节流程图。
图6为本申请第一实施例提供的一种雾化芯加热方法中步骤S2的细节流程图。
图7为本申请第一实施例提供的一种雾化芯加热方法中计算第二预设时间的的细节流程图。
图8为本申请第二实施例提供的一种雾化芯加热系统的模块图。
图9为本申请第二实施例提供的一种雾化芯加热系统中雾化芯加热单元的模块图。
图10为本申请第三实施例提供的一种气溶胶产生装置的模块图。
附图标记说明:
1-加压单元,2-雾化芯加热单元,3-降压单元;
21-测温单元,22-升温保持单元,
10-存储器,20-电压控制器。
具体实施方式
下面结合附图,对本申请的具体实施方式进行详细描述,但应当理解本申请的保护范围并不受具体实施方式的限制。
请参阅图1,本申请第一实施例提供一种雾化芯加热方法,用于基于设定的功率控制施加给雾化芯的电压大小,以实现雾化芯的加热控制,包括以下步骤:
步骤S1:获取启动指令,控制雾化芯的电压逐渐上升,以在第一预设时间内达到加热电压,所述第一预设时间大于零。
步骤S2:在第二预设时间内保持所述加热电压,以加热雾化芯。及
步骤S3:基于加热的雾化芯,降低所述加热电压,获得使用电压。
可以理解,在步骤S1中,用户通过气溶胶产生装置驱动,雾化芯被电源施加的电压而启动加热,在第一预设时间内,在雾化芯上施加的电压逐渐上升,直至施加的电压达到加热电压为止。
可以理解,在步骤S1中,由于第一预设时间大于零,使得施加的电压在时间上形成具有斜率的曲线,避免了现有直接施加最大电压的方式导致的烧糊、烧毁雾化芯的问题,也可以降低了现有施加最大电压时意外短路带来的风险,提高产品使用安全性。
可选地,作为一种实施例,在第一预设时间内的电压变化曲线可以为弧线, 例如正弦的上升曲线,也可以为设置为直线,该直线的斜率在0-1之间。在本实施例中,如图2所示,第一预设时间对应的电压变化曲线的斜率范围为0-1之间,使得电压变化形成一具有斜率的直线(图中t1和t2之间对应的斜线段),让电压变化过程更加平稳,确保雾化芯压力的稳定性,避免变化过大导致而损坏雾化芯。
请结合图2、图3和图4,在图2中,U0为初始电压,U2为使用电压,U1为加热电压,t1为用户启动装置的时间点,t2为加热至加热电压的时间点,t3为进入使用电压的时间点。在图3中,是现有技术中直接将最大电压加在雾化芯进行加热的,形成的图形,在该图形中,电压直接从0增加至最大电压(也即本实施例中的加热电压U1)。在图4中,是现有技术中通过直接施加使用电压U2进行缓慢加热的方式,该种方式启动较慢。
可以理解,在步骤S1中,所述第一预设时间可以设定为3ms、6ms,8ms或者10ms,优选为6ms。
可以理解,在步骤S2中,当达到加热电压后,雾化芯在最大功率下工作,快速提升温度,以使得快速进入工作温度,加热油液初步产生气溶胶,以缩短用户在开始设备后到形成气溶胶的过程时间,减少使用延迟,提高用户使用体验。
可以理解,在步骤S2中,经过步骤S1逐渐变化的电压,使得进入步骤S2中的雾化芯已经具有一定的热量,也即雾化芯经过了步骤S1的预热处理,使得在步骤S2中的加热电压持续的第二预设时间大大减少,进一步降低了雾化芯在最大功率下加热的时间,提高了雾化芯的使用寿命,也进一步减缓了雾化芯产生的烧糊、烧毁的问题。
可以理解,在步骤S2中,所述第二预设时间的大小基于第一预设时间内雾化芯获得的温度大小,若在第一预设时间内雾化芯预热的温度较高,则可缩短第二预设时间,反之则延长第二预设时间。
可以理解,在步骤S3中,基于步骤S2中获得加热稳定后的雾化芯,将当前加热电压降低至正常使用中的使用电压(也即额定使用电压),以避免在长时间的最大电压下使用雾化芯的高负荷工作。
可以理解,在本实施例中,通过设置第一预设时间以控制雾化芯的电压逐渐上升至加热电压,使得用户在开启使用装置时,雾化芯可基于逐渐变化的电压获得较平稳的启动机制,避免瞬时提高电压到最大值时带来的烧糊或烧毁雾化芯的问题,也避免了由于液体渗漏导致短路风险带来的短路电压过大的问题,提高了用户使用的安全性。同时,通过第一预设时间对雾化芯平稳启动的预热后,在第二预设时间内将雾化芯加热至初步形成气溶胶,使得雾化芯在加热电压下的第二预设时间缩短,减少了雾化芯在最大电压的工作时间,提高了雾化芯的使用寿命,降低了雾化芯的使用强度。进一步,通过对加热完毕后的雾化芯调整电压降低至使用电压,进一步降低雾化芯的使用强度。
请参阅图5,步骤S1:获取启动指令,控制雾化芯的电压逐渐上升,以在第一预设时间内达到加热电压,所述第一预设时间大于零。步骤S1具体包括步骤S11~S12:
步骤S11:获取启动指令,将雾化芯的电压施加至初始电压,所述初始电压小于所述使用电压。及
步骤S12:基于所述初始电压,在所述第一预设时间内将所述初始电压提高至加热电压。
可以理解,在步骤S11中,在电压进行逐渐变化之前,将初始启动的雾化芯电压从0调整至预设的初始电压,且该初始电压低于使用电压,以使得在短时间内将雾化芯的电压进行适当的提升,且提升的幅度在使用电压的允许范围之内,也即在用户启动时,对电压进行小幅度的提升,使得电压从0直接升高至初始电压,在确保使用安全和保护雾化芯使用的同时,也减少了第一预设时间的预热时间,也即减少了用户在启动至产生气溶胶的过程时间,进一步提高雾化芯的加热效率。
可以理解,在步骤S12中,第一预设时间内进行逐渐变化的电压起始数值为初始电压,也即从初始电压逐渐升高电压值加热电压。
可选地,作为一种实施例,所述使用电压是初始电压的两倍,例如,在本实施例中,初始电压按照以下公式计算:
Figure PCTCN2021124309-appb-000001
使用电压按照以下公式计算:
Figure PCTCN2021124309-appb-000002
其中,U0为初始电压,U2为使用电压,P1为雾化芯使用的额定功率,R为雾化芯的电阻值。在本实施例中,雾化芯使用的额定功率P1可以设定为20W,最大功率(也即最大电压对应的功率值)为30W。
可以理解,步骤S11~S12仅为该实施例的一种实施方式,其实施方式并不限定于步骤S11~S12。
请参阅图6,步骤S2:在第二预设时间内保持所述加热电压,以加热雾化芯。步骤S2具体包括步骤S21~S22。具体为:
步骤S21:读取预设的常温值和检测当前雾化芯温度,计算第二预设时间;及
步骤S22:根据第二预设时间,保持所述加热电压稳定施加于雾化芯,以加热雾化芯。
可以理解,在步骤S21中,雾化芯在未使用时的温度与预设的常温值有关,且常温值越高,则雾化芯的温度就越高,反之则越低。在一些特别的情况下,例如用户在使用完毕后,下一次的使用距离上一次的使用间隔时间较短,使得雾化芯尚未冷却后继续工作,使得此时雾化芯开始工作时的温度高于环境的常温。故通过步骤S21检测常温与当前雾化芯启动的温度,以确定第二预设时间的数值,以准确计算雾化芯在加热电压下的持续时间,避免雾化芯长时间高负荷工作。
可以理解,在步骤S22中,检测雾化芯的温度是通过设置温控电阻(或称为热敏电阻)进行温度检测,当温度变化时,电阻阻值变化,则通过电阻可以测出温度值。
具体地,请结合图6和图7,所述第二预设时间通过以下步骤计算:
步骤S211:基于常温值,将雾化芯温度与常温值进行对比;
步骤S212:判断常温值是否大于雾化芯温度,若是,进入步骤S214,若否,则进入步骤S213;
步骤S213:基于第一预设方程计算所述第二预设时间;
步骤S214:基于第二预设方程计算所述第二预设时间。
可以理解,在步骤S213和步骤S214中,所述第一预设方程为:
t=t0-(T1/T2)*K(当T1大于T2时)
所述第二预设方程为:
t=t0+[(T2-T1)/T2]*K(当T1小于T2时)
其中,t为第二预设时间,t0为参考时间,T1为雾化芯温度,T2为常温值,K为比例系数。其中,t0优选为12。
可以理解,在本实施例中,第二预设时间t随雾化芯温度增大而减少,反之,则随雾化芯温度降低而增大。
可以理解,步骤S21~S22仅为该实施例的一种实施方式,其实施方式并不限定于步骤S21~S22。
请参阅图8,本申请第二实施例提供一种雾化芯加热系统,该雾化芯加热系统可以包括:
加压单元1,用于获取启动指令,控制雾化芯的电压逐渐上升,以在第一预设时间内达到加热电压,所述第一预设时间大于零。
雾化芯加热单元2,用于在第二预设时间内保持所述加热电压,以加热雾化芯。及
降压单元3,用于基于加热的雾化芯,降低所述加热电压,获得使用电压。
请参阅图9,上述雾化芯加热单元2具体包括:
测温单元21,用于读取预设的常温值和检测当前雾化芯温度,计算第二预设时间。及
升温保持单元22,用于根据第二预设时间,保持所述加热电压稳定施加于雾化芯,以加热雾化芯。
可以理解,本申请第二实施例提供的雾化芯加热系统特别适用于气溶胶产生装置中的雾化芯电压加热系统中,使得雾化芯可基于逐渐变化的电压获得较平稳的启动机制,避免瞬时提高电压到最大值时带来的烧糊或烧毁雾化芯的问题,也避免了由于液体渗漏导致短路风险带来的短路电压过大的问题,提高了用户使用的安全性。同时,通过第一预设时间对雾化芯平稳启动的预热后,在第二预设时间内将雾化芯加热至初步形成气溶胶,使得雾化芯在加热电压下的第二预设时间缩短,减少了雾化芯在最大电压的工作时间,提高了雾化芯的使用寿命,降低了雾化芯的使用强度。进一步,通过对加热完毕后的雾化芯调整电压降低至使用电压,进一步降低雾化芯的使用强度。
请参阅图10,本申请第三实施例提供一种实施上述雾化芯加热方法的气溶胶产生装置,所述气溶胶产生装置包括存储器10和电压控制器20,所述存储器10中存储有运算机程序,所述运算机程序被设置为运行时执行上述任一项雾化芯加热方法实施例中的步骤。所述电压控制器20被设置为通过所述运算机程序执行上述任一项雾化芯加热方法实施例中的步骤。
与现有技术相比,本申请提供的雾化芯加热方法、系统及气溶胶产生装置具有以下优点:
通过在启动时,启动雾化芯在第一预设时间内逐渐升高至加热电压,使得雾化芯可基于逐渐变化的电压获得较平稳的启动机制,避免瞬时提高电压到最大值时带来的烧糊或烧毁雾化芯的问题,也避免了由于液体渗漏导致短路风险带来的短路电压过大的问题,提高了用户使用的安全性,同时,平稳启动的雾化芯也能避免直接最大电压驱动带来的电源啸叫问题。进一步地,通过第一预设时间对雾化芯平稳启动的预热后,在第二预设时间内将雾化芯加热至初步形成气溶胶,使得雾化芯在加热电压下的第二预设时间缩短,减少了雾化芯在最 大电压的工作时间,提高了雾化芯的使用寿命,降低了雾化芯的使用强度。再进一步,通过对加热完毕后的雾化芯调整电压降低至使用电压,进一步降低雾化芯的使用强度。也即,本申请提供的雾化芯加热方法通过将雾化芯的电压设定为升高、保持和降压平稳使用三个阶段,以实现对雾化芯的保护作用,也降低了启动时的瞬时电压,提高使用安全性。
前述对本申请的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本申请限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本申请的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本申请的各种不同的示例性实施方案以及各种不同的选择和改变。本申请的范围意在由权利要求书及其等同形式所限定。
本部分将详细描述本申请创造的具体实施例,本申请创造之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本申请创造的每个技术特征和整体技术方案,但其不能理解为对本申请创造保护范围的限制。
在本申请创造的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请创造和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请创造的限制。
在本申请创造的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包 括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请创造的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。

Claims (16)

  1. 一种雾化芯加热方法,包括以下步骤:
    步骤S1:获取启动指令,控制雾化芯的电压逐渐上升,以在第一预设时间内达到加热电压,所述第一预设时间大于零;
    步骤S2:在第二预设时间内保持所述加热电压,以加热雾化芯;及
    步骤S3:基于加热的雾化芯,降低所述加热电压,获得使用电压。
  2. 如权利要求1中所述雾化芯加热方法,其中,上述步骤S1具体包括以下步骤:
    步骤S11:获取启动指令,将雾化芯的电压施加至初始电压,所述初始电压小于所述使用电压;及
    步骤S12:基于所述初始电压,在所述第一预设时间内将所述初始电压提高至加热电压。
  3. 如权利要求2中所述雾化芯加热方法,其中,所述使用电压是初始电压的两倍。
  4. 如权利要求1中所述雾化芯加热方法,其中,所述第一预设时间对应的电压变化曲线的斜率范围为0-1之间。
  5. 如权利要求1中所述雾化芯加热方法,其中,上述步骤S2具体包括以下步骤:
    步骤S21:读取预设的常温值和检测当前雾化芯温度,计算第二预设时间;及
    步骤S22:根据第二预设时间,保持所述加热电压稳定施加于雾化芯,以加热雾化芯。
  6. 如权利要求5中所述雾化芯加热方法,其中,所述第二预设时间通过以下步骤计算:
    步骤S211:基于常温值,将雾化芯温度与常温值进行对比;
    步骤S212:判断常温值是否大于雾化芯温度,若是,进入步骤S214,若否,则进入步骤S213;
    步骤S213:基于第一预设方程计算所述第二预设时间;
    步骤S214:基于第二预设方程计算所述第二预设时间。
  7. 如权利要求6中所述雾化芯加热方法,其中,所述第一预设方程为:
    t=t0-(T1/T2)*K
    所述第二预设方程为:
    t=t0+[(T2-T1)/T2]*K
    其中,t为第二预设时间,t0为参考时间,T1为雾化芯温度,T2为常温值,K为比例系数。
  8. 一种雾化芯加热系统,其中,包括:
    加压单元,用于获取启动指令,控制雾化芯的电压逐渐上升,以在第一预设时间内达到加热电压,所述第一预设时间大于零;
    雾化芯加热单元,用于在第二预设时间内保持所述加热电压,以加热雾化芯;及
    降压单元,用于基于加热的雾化芯,降低所述加热电压,获得使用电压。
  9. 如权利要求8中所述雾化芯加热系统,其中,所述雾化芯加热单元具体包括:
    测温单元,用于读取预设的常温值和检测当前雾化芯的温度,计算第二预设时间;及
    升温保持单元,用于根据第二预设时间,保持所述加热电压稳定施加于雾化芯,以加热雾化芯。
  10. 一种气溶胶产生装置,其中,包括存储器及电压控制器;
    所述存储器中存储有计算机程序,所述计算机程序被设置为运行时执行雾化芯加热方法;
    所述电压控制器被设置为通过所述计算机程序执行所述雾化芯加热方法;
    所述雾化芯加热方法包括以下步骤:
    步骤S1:获取启动指令,控制雾化芯的电压逐渐上升,以在第一预设时间内达到加热电压,所述第一预设时间大于零;
    步骤S2:在第二预设时间内保持所述加热电压,以加热雾化芯;及
    步骤S3:基于加热的雾化芯,降低所述加热电压,获得使用电压。
  11. 如权利要求10中所述气溶胶产生装置,其中,上述步骤S1具体包括以下步骤:
    步骤S11:获取启动指令,将雾化芯的电压施加至初始电压,所述初始电压小于所述使用电压;及
    步骤S12:基于所述初始电压,在所述第一预设时间内将所述初始电压提高至加热电压。
  12. 如权利要求11中所述气溶胶产生装置,其中,所述使用电压是初始电压的两倍。
  13. 如权利要求10中所述气溶胶产生装置,其中,所述第一预设时间对应的电压变化曲线的斜率范围为0-1之间。
  14. 如权利要求10中所述气溶胶产生装置,其中,上述步骤S2具体包括以下步骤:
    步骤S21:读取预设的常温值和检测当前雾化芯温度,计算第二预设时间;及
    步骤S22:根据第二预设时间,保持所述加热电压稳定施加于雾化芯,以加热雾化芯。
  15. 如权利要求14中所述气溶胶产生装置,其中,所述第二预设时间通过以下步骤计算:
    步骤S211:基于常温值,将雾化芯温度与常温值进行对比;
    步骤S212:判断常温值是否大于雾化芯温度,若是,进入步骤S214,若否,则进入步骤S213;
    步骤S213:基于第一预设方程计算所述第二预设时间;
    步骤S214:基于第二预设方程计算所述第二预设时间。
  16. 如权利要求15中所述气溶胶产生装置,其中,所述第一预设方程为:
    t=t0-(T1/T2)*K
    所述第二预设方程为:
    t=t0+[(T2-T1)/T2]*K
    其中,t为第二预设时间,t0为参考时间,T1为雾化芯温度,T2为常温值,K为比例系数。
PCT/CN2021/124309 2020-12-01 2021-10-18 一种雾化芯加热方法、系统及气溶胶产生装置 WO2022116713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011385060.1A CN112586808A (zh) 2020-12-01 2020-12-01 一种雾化芯加热方法、系统及气溶胶产生装置
CN202011385060.1 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022116713A1 true WO2022116713A1 (zh) 2022-06-09

Family

ID=75189036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124309 WO2022116713A1 (zh) 2020-12-01 2021-10-18 一种雾化芯加热方法、系统及气溶胶产生装置

Country Status (2)

Country Link
CN (1) CN112586808A (zh)
WO (1) WO2022116713A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112586808A (zh) * 2020-12-01 2021-04-02 深圳市吉迩科技有限公司 一种雾化芯加热方法、系统及气溶胶产生装置
CN114403513A (zh) * 2022-01-27 2022-04-29 深圳市吉迩技术有限公司 一种基于双波形的雾化输出方法、及其相关设备
CN114532597A (zh) * 2022-01-27 2022-05-27 深圳市吉迩技术有限公司 一种基于正弦波的雾化输出方法、及其相关设备
CN114532616A (zh) * 2022-01-27 2022-05-27 深圳市吉迩技术有限公司 一种雾化输出保护方法、装置、计算机设备及存储介质
CN117717196A (zh) * 2022-09-19 2024-03-19 深圳市合元科技有限公司 电子雾化装置及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251324A1 (en) * 2013-03-05 2014-09-11 Zhiyong Xiang Method and device for heating control of an electronic cigarette
CN107095343A (zh) * 2017-05-24 2017-08-29 惠州市新泓威科技有限公司 电子烟具的加热方法
CN107296301A (zh) * 2017-08-18 2017-10-27 深圳市卓力能电子有限公司 一种加热非燃烧电子烟的功率与温度分时控制方法及烟具
CN107373759A (zh) * 2017-07-21 2017-11-24 深圳市新宜康电子技术有限公司 电子烟雾化器快速加热的启动方法
CN109875132A (zh) * 2019-04-23 2019-06-14 深圳市吉迩科技有限公司 一种电子烟自适应功率控制方法及其装置
CN109998182A (zh) * 2019-05-28 2019-07-12 珠海市香之君科技股份有限公司 一种电子烟的加热方法
WO2019154143A1 (zh) * 2018-02-10 2019-08-15 常州市派腾电子技术服务有限公司 发热组件、雾化器及电子烟
KR20200000981A (ko) * 2018-06-26 2020-01-06 주식회사 이엠텍 전기가열식 에어로졸 발생기
CN112586808A (zh) * 2020-12-01 2021-04-02 深圳市吉迩科技有限公司 一种雾化芯加热方法、系统及气溶胶产生装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109002066B (zh) * 2018-04-13 2020-02-28 赫斯提亚深圳生物科技有限公司 一种电子烟及其温度检测控制方法
CN108783602A (zh) * 2018-06-27 2018-11-13 威滔电子科技(深圳)有限公司 控制气溶胶产生装置产生气溶胶的方法及装置
CN110200326B (zh) * 2019-06-26 2020-07-17 深圳市吉迩科技有限公司 一种电子烟功率递增控制方法及系统
CN110326820B (zh) * 2019-08-08 2020-04-21 深圳市吉迩科技有限公司 一种电子烟功率控制方法、装置和系统
CN110604344B (zh) * 2019-10-18 2023-08-01 惠州市新泓威科技有限公司 预判吸烟动作后自动预热的电子烟及其控制方法
CN111869929A (zh) * 2020-05-29 2020-11-03 深圳市基克纳科技有限公司 雾化装置的控制方法、装置、雾化设备及可读存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251324A1 (en) * 2013-03-05 2014-09-11 Zhiyong Xiang Method and device for heating control of an electronic cigarette
CN107095343A (zh) * 2017-05-24 2017-08-29 惠州市新泓威科技有限公司 电子烟具的加热方法
CN107373759A (zh) * 2017-07-21 2017-11-24 深圳市新宜康电子技术有限公司 电子烟雾化器快速加热的启动方法
CN107296301A (zh) * 2017-08-18 2017-10-27 深圳市卓力能电子有限公司 一种加热非燃烧电子烟的功率与温度分时控制方法及烟具
WO2019154143A1 (zh) * 2018-02-10 2019-08-15 常州市派腾电子技术服务有限公司 发热组件、雾化器及电子烟
KR20200000981A (ko) * 2018-06-26 2020-01-06 주식회사 이엠텍 전기가열식 에어로졸 발생기
CN109875132A (zh) * 2019-04-23 2019-06-14 深圳市吉迩科技有限公司 一种电子烟自适应功率控制方法及其装置
CN109998182A (zh) * 2019-05-28 2019-07-12 珠海市香之君科技股份有限公司 一种电子烟的加热方法
CN112586808A (zh) * 2020-12-01 2021-04-02 深圳市吉迩科技有限公司 一种雾化芯加热方法、系统及气溶胶产生装置

Also Published As

Publication number Publication date
CN112586808A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2022116713A1 (zh) 一种雾化芯加热方法、系统及气溶胶产生装置
US11454996B2 (en) Electronic cigarette temperature control system and method, and electronic cigarette with the same
EP3771351A1 (en) Electronic atomization devices, methods for heating control, and computer program products
WO2020029923A1 (zh) 电子烟控制方法、电子烟具和计算机存储介质
US9949511B2 (en) Electronic cigarette and control method therefor
WO2019196514A1 (zh) 一种气溶胶生成装置及其加热控制方法
US11445761B2 (en) Method for controlling the output power of a power supply of electronic cigarette and electronic cigarette
KR20050037386A (ko) 디젤엔진용 글로우 플러그의 가열방법
CN106509998A (zh) 电子雾化装置的温度控制方法和系统
WO2016145634A1 (zh) 一种电子烟雾化器发热丝加热方法和电子烟
WO2021185011A1 (zh) 一种恒温控制方法、装置、电子设备和存储介质
BR112016002959B1 (pt) Controlador de um vaporizador eletrônico; vaporizador eletrônico e método para controlar um vaporizador eletrônico
WO2019218893A1 (zh) 电子烟控制方法、电子烟及计算机存储介质
CN105739559A (zh) 一种温度控制方法及系统
TW200917014A (en) Sectional start-up timing control method
CN112535324B (zh) 一种电子烟的加热监测方法及电子烟
CN113080525A (zh) 气溶胶产生装置、干烧检测方法及计算机程序产品
CN110068141B (zh) 一种恒温加热控制方法和装置
WO2020143697A1 (zh) 电子烟的控制方法和装置
CN112369707A (zh) 加热不燃烧烟草器具及供电控制方法
CN110973704A (zh) 温度曲线调节方法及气溶胶产生装置
JP2009244236A (ja) 臭い検知装置
WO2022227335A1 (zh) 移动设备的防冻方法、装置、移动设备、外壳套及介质
US20230413920A1 (en) Aerosol generation device, dry burning detection method, and computer program product
JP6234239B2 (ja) 燃焼装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899747

Country of ref document: EP

Kind code of ref document: A1