WO2024055473A1 - 定位方法、装置、电子设备及存储介质 - Google Patents

定位方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2024055473A1
WO2024055473A1 PCT/CN2022/143152 CN2022143152W WO2024055473A1 WO 2024055473 A1 WO2024055473 A1 WO 2024055473A1 CN 2022143152 W CN2022143152 W CN 2022143152W WO 2024055473 A1 WO2024055473 A1 WO 2024055473A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
positioning
positioning information
base station
positioning data
Prior art date
Application number
PCT/CN2022/143152
Other languages
English (en)
French (fr)
Inventor
蒋成
Original Assignee
北京易控智驾科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京易控智驾科技有限公司 filed Critical 北京易控智驾科技有限公司
Priority to AU2022453597A priority Critical patent/AU2022453597A1/en
Publication of WO2024055473A1 publication Critical patent/WO2024055473A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0263Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
    • G01S5/0264Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems at least one of the systems being a non-radio wave positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning

Definitions

  • the present disclosure relates to the field of positioning technology, and in particular, to a positioning method, device, electronic equipment and computer-readable storage medium.
  • Open-pit mining is a process of removing the covering on the ore body to obtain the required minerals.
  • the production process includes drilling, blasting, mining, transportation, earth dumping and other operations.
  • driverless mine trucks With the development of driverless technology, the application of driverless mine trucks has emerged.
  • operations such as loading, transportation, and soil removal are mainly completed by driverless mine trucks.
  • RTK technology Real-Time Kinematic carrier phase difference technology
  • GNSS Global Navigation Satellite System
  • a base station and a mobile station for example, an unmanned mine car
  • the base station sends satellite positioning data in real time at a certain transmission frequency through its built-in or plug-in radio station
  • the mobile station receives satellite positioning data in real time at the corresponding transmission frequency through its built-in or plug-in radio station, and performs RTK carrier Phase difference processing to obtain high-precision positioning data.
  • RTK technology In the existing technology, RTK technology must rely on densely deployed base stations, resulting in high construction and maintenance costs of the base stations; in addition, in remote areas or areas with complex geographical environments such as mines and tunnels, the deployment of base stations is very difficult, making it difficult to achieve real-time and accurate positioning. Furthermore, during the transmission of satellite positioning data, the built-in or external radio station may be affected by the electromagnetic environment and/or obstacles between the base station and the unmanned mining vehicle, resulting in the unmanned mining vehicle being unable to receive satellite positioning data in real time, thereby affecting the positioning stability and work efficiency of the unmanned mining vehicle.
  • embodiments of the present disclosure provide a positioning method, device, electronic equipment and computer-readable storage medium to solve the problem that unmanned mine trucks in the existing technology cannot receive satellite positioning data in real time. Issues that affect the positioning stability and work efficiency of driverless mine cars.
  • a first aspect of the embodiment of the present disclosure provides a positioning method, including: receiving first positioning data sent by a base station through a radio, wherein the radio station is set up within a preset range of the base station and is located between the base station and the first vehicle. between the working areas; using real-time dynamic carrier phase difference technology to process the first positioning data and the current positioning data of the first vehicle to obtain the first positioning information of the first vehicle.
  • a second aspect of the embodiment of the present disclosure provides a positioning device, including: a receiving module configured to receive first positioning data sent by a base station through a radio, wherein the radio is set up within a preset range of the base station and located Between the base station and the operating area of the first vehicle; the processing module is configured to use real-time dynamic carrier phase difference technology to process the first positioning data and the current positioning data of the first vehicle to obtain the first positioning information of the first vehicle .
  • a third aspect of the embodiment of the present disclosure provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the steps of the above method are implemented.
  • a fourth aspect of the embodiments of the present disclosure provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the steps of the above method are implemented.
  • At least one of the above technical solutions adopted in the embodiment of the present disclosure can achieve the following beneficial effects: by receiving the first positioning data sent by the base station through the radio, wherein the radio station is set up within the preset range of the base station and is located between the base station and the first vehicle. between the operating areas; use real-time dynamic carrier phase difference technology to process the first positioning data and the current positioning data of the first vehicle to obtain the first positioning information of the first vehicle, which can be done without increasing the construction cost and maintenance of the base station.
  • the first vehicle can obtain centimeter-level positioning accuracy in a short period of time at a low cost, thereby improving the positioning stability of the first vehicle and further improving the working efficiency of the first vehicle.
  • Figure 1 is a schematic diagram of the overall architecture involved in actual application scenarios of positioning methods based on traditional RTK technology in related technologies
  • Figure 2 is a schematic diagram of the overall architecture involved in a practical application scenario of a positioning method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of a positioning method provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of the overall architecture of another positioning method provided by an embodiment of the present disclosure in an actual application scenario
  • Figure 5 is a schematic flowchart of another positioning method provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of the overall architecture involved in yet another positioning method provided by an embodiment of the present disclosure in an actual application scenario
  • Figure 7 is a schematic flowchart of yet another positioning method provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of a positioning device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • network RTK technology is proposed.
  • the linearly attenuated single-point GPS error model is replaced by the regional GPS network error model, that is, a GPS network composed of multiple base stations is used to estimate the GPS error model of a region and provide the model for the network coverage area.
  • User provides correction data. What the user receives is not the data of an actual base station, but the data of a virtual base station and the correction data of a reference grid closer to his position. Therefore, network RTK technology is also called a virtual reference station. (Virtual Reference Station, VRS) technology.
  • VRS Virtual Reference Station
  • network RTK services are usually unavailable because a continuous operating satellite positioning and navigation service system (Continuous Operational Reference System, CORS) has not been established.
  • CORS Continuous Operational Reference System
  • Figure 1 is a schematic diagram of the overall architecture involved in actual application scenarios of positioning methods based on traditional RTK technology in related technologies.
  • the system architecture in this application scenario mainly includes the following contents:
  • the GPS receiver of the base station 10 observes and receives the satellite signal sent by at least one satellite 11 through the antenna, and measures the three-dimensional coordinates of the location of the base station 10 based on the received satellite signals (it should be noted that the three-dimensional coordinates are single-point solutions , that is, inaccurate value), and transmit the carrier phase observation value, station coordinate information, etc.
  • the mobile station located near the base station 10 (corresponding to Figure 1 While observing at least one satellite 11, the GPS receiver of the unmanned minecart 12) also receives the radio signal from the base station 10, and combines the received two sets of carrier phase observations (i.e., the satellite signal and radio signals), and based on the principle of relative positioning, the three-dimensional coordinates of the location of the unmanned mine car 12 are calculated in real time.
  • the carrier phase observations i.e., the satellite signal and radio signals
  • the existing RTK positioning is to set up a base station with known coordinates and set up in an open environment.
  • the base station transmits the carrier phase observations to the mobile station through the data link; the mobile station receives the carrier phase observations from the base station. And combine it with its own carrier phase observation value to obtain the differential correction value, and then use the differential correction value to correct the positioning result of the mobile station's GPS receiver to obtain the precise position of the mobile station.
  • this positioning method is only applicable when the distance between the base station and the mobile station is relatively close (for example, no more than 15 kilometers) and there are no large obstacles between the base station and the mobile station. It cannot guarantee that the distance between the base station and the mobile station will be relatively close. The same is true for long distances (e.g., more than 15 kilometers) and/or when there are large obstacles between the base station and the mobile station.
  • FIG. 2 is a schematic diagram of the overall architecture involved in a practical application scenario of a positioning method provided by an embodiment of the present disclosure.
  • the system architecture in this application scenario mainly includes the following contents:
  • a radio station 21 is set up within a preset range of the reference station 20, and the radio station 21 is located between the reference station 20 and the operating area 221 of the unmanned mine car 22; the GPS receiver of the reference station 20 receives satellite positioning data sent by at least one satellite 23, and sends the received satellite positioning data to the unmanned mine car 22 operating in the operating area 221 in real time through the radio station 21; after the GPS receiver of the unmanned mine car 22 receives the satellite positioning data, the unmanned mine car 22 processes the current positioning data and the satellite positioning data based on the current positioning data of the unmanned mine car 22 and the satellite positioning data using the RTK technology to obtain the precise positioning information of the unmanned mine car 22, that is, the three-dimensional coordinates of the unmanned mine car 22.
  • the specific types, quantities, and combinations of the base station 20, the radio station 21, the satellite 23, and the driverless minecart 22 can be adjusted according to the actual needs of the application scenario, and the embodiments of the present disclosure do not limit this.
  • the unmanned mine car by setting up the radio station within the preset range of the base station and positioning the radio station between the base station and the operating area of the unmanned mine car, it is possible to reduce the construction cost and cost of the base station without increasing the Under the condition of maintenance cost, the unmanned mine car can obtain centimeter-level positioning accuracy in a very short time. Therefore, it solves the problem of the existing base station transmitting satellite positioning data through its built-in or plug-in radio station. It may be affected by the electromagnetic environment and/or obstacles between the base station and the unmanned mine car, causing the unmanned mine car to be unable to receive satellite positioning data in real time, thus affecting the positioning stability of the unmanned mine car. issues of performance and work efficiency.
  • FIG 3 is a schematic flowchart of a positioning method provided by an embodiment of the present disclosure.
  • the positioning method in Figure 3 can be executed by the electronic device in the unmanned mine car 22 in Figure 2 .
  • the positioning method includes:
  • S301 Receive the first positioning data sent by the base station through the radio, where the radio is installed within the preset range of the base station and is located between the base station and the operating area of the first vehicle;
  • S302 Use real-time dynamic carrier phase difference technology to process the first positioning data and the current positioning data of the first vehicle to obtain the first positioning information of the first vehicle.
  • a radio station is set up within the preset range of the base station, and the radio station is located between the base station and the operating area of the first vehicle; when the GPS receiver of the base station observes and collects the satellite sent by at least one satellite in the GNSS When positioning data, the base station uses the collected satellite positioning data as the first positioning data and sends it in real time through the radio station; further, after the first vehicle's GPS receiver receives the first positioning data, the first vehicle obtains The current positioning data of the first vehicle is calculated and processed using RTK technology to obtain the first positioning information of the first vehicle.
  • the reference station is a fixed ground observation station that performs long-term continuous observation of satellite signals and transmits satellite observation data to the data center in real time or regularly by communication facilities.
  • the base station can be a physical station set up at a fixed location that meets the conditions for base station erection, or it can be a virtual base station generated through VRS technology.
  • Mobile Station is a detection station set up on equipment that can move within a certain range of the base station.
  • the base station can be fixedly installed on some open space around the operating area of the unmanned mine car that meets the conditions for the erection of the base station.
  • the mobile station can be installed on the unmanned mine car, or it can be the unmanned mine car.
  • the person drives the minecart itself.
  • both base stations and mobile stations will observe certain satellites in GNSS and obtain corresponding satellite observation data.
  • Radio is a wireless terminal device for point-to-multipoint communication.
  • the radio station may be a general communication data transmission radio station or a long-distance communication data transmission radio station that supports long-distance communication.
  • the embodiments of the present disclosure are not limited to this.
  • the radio in order to avoid unstable signal quality due to signal interference, can be set up within a range of 500 meters from the base station.
  • the preset range refers to the effective coverage range of the base station, that is, the area formed by the longest distance that the wireless signal transmitted by the base station can be transmitted as the radius.
  • the base station can be set up 15 kilometers away from the mobile station. Within the range; when using network RTK technology, multiple base stations can be set up within a range of 50 kilometers to 100 kilometers from the mine car's operating area. Therefore, the distance between the mobile station and the nearest base station may exceed 15 kilometer.
  • the first vehicle may be an ordinary vehicle driving in the mining area that can obtain satellite observation data and the precise location of the vehicle itself, or it may be a vehicle with autonomous driving capabilities. Generally speaking, the first vehicle only needs to have the function of providing satellite observation data obtained by the GPS receiver and the precise position of the vehicle itself.
  • ordinary vehicles can also serve as the first vehicle, considering the factors of cost and scenario, advanced vehicles Vehicles with autonomous driving functions can perform the corresponding acquisitions fully automatically and therefore are more suitable as first vehicles.
  • the first vehicle is an unmanned mine car or an autonomous mine car.
  • the operation area refers to the area where the first vehicle is located during loading, transportation, earth dumping and other operations in the mining area, that is, the area range that the first vehicle can identify along the direction of travel.
  • the working area can be in a closed space, an open space, or an unopened space environment. Enclosed spaces can be, for example, mining environments, which can be divided into loading areas, dumpsites, roads, and unclassified areas based on actual operating conditions.
  • RTK technology is a differential method that processes the carrier phase observations of two measurement stations in real time.
  • the carrier phase collected by the base station is sent to the user receiver for differential calculation of coordinates.
  • the key to RTK technology is to use the carrier phase observations of GPS and use the spatial correlation of the observation errors between the base station and the mobile station to remove most of the errors in the satellite observation data of the mobile station through differential methods, thereby achieving high Positioning with precision (decimeters or even centimeters).
  • the first positioning data is satellite observation data collected from at least one satellite in the GNSS by the GPS receiver of the base station.
  • the first positioning data may include one or more information such as the number of satellites, satellite numbers, Dilution of Precision (DOP), terminal equipment location, base station location, and other information.
  • the current positioning data is the positioning data currently being used by the first vehicle.
  • the first positioning information is positioning information obtained by RTK calculation based on the first positioning data and the current positioning data, including but not limited to the longitude information, latitude information, positioning time information, satellite elevation angle information and signal-to-noise of the location of the first vehicle. than information.
  • the radio station by receiving the first positioning data sent by the base station through the radio, where the radio station is set up within the preset range of the base station and is located between the base station and the operating area of the first vehicle; using The real-time dynamic carrier phase difference technology processes the first positioning data and the current positioning data of the first vehicle to obtain the first positioning information of the first vehicle, which can enable the third positioning information without increasing the construction cost and maintenance cost of the base station.
  • the first vehicle obtains centimeter-level positioning accuracy in a very short time, thus improving the positioning stability of the first vehicle and further improving the work efficiency of the first vehicle.
  • the positioning method further includes: receiving second positioning information sent by the cloud server through the second base station, wherein the second positioning information is the cloud server using real-time dynamic carrier phase difference technology to compare the second positioning data and the third
  • the second positioning data is obtained by processing the positioning data.
  • the second positioning data is uploaded by the base station through the first base station.
  • the third positioning data is uploaded by the first vehicle through the second base station. Based on the first positioning data received within the preset time interval. The sequence of the information and the second positioning information determines whether the first positioning information or the second positioning information is the target positioning information of the first vehicle.
  • the base station uses the collected satellite observation data as second positioning data and uploads it in real time through the first base station.
  • the first vehicle uses the acquired current positioning data of the first vehicle as the third positioning data, and uploads it to the cloud server in real time through the second base station; after receiving the second positioning data and the third positioning data,
  • the cloud server uses RTK technology to solve and process the second positioning data and the third positioning data to obtain the second positioning information, and sends the second positioning information to the first vehicle through the second base station; further, the first vehicle can According to the sequence of the first positioning information and the second positioning information received within the preset time interval, the first positioning information or the second positioning information is determined as the target positioning information of the first vehicle.
  • the cloud server can be an independent physical cloud server, or a cloud server cluster or distributed system composed of multiple physical cloud servers, or it can also provide cloud database, cloud storage, cloud computing, cloud Servers for basic cloud computing services such as communications.
  • a cloud server refers to a server that runs in the cloud and has functions such as RTK resolution.
  • Base Station that is, a public mobile communication base station, refers to a radio transceiver station that transmits information between a mobile communication switching center and a mobile phone terminal in a certain radio coverage area.
  • the first base station refers to a base station installed within a preset range of the base station and between the base station and the cloud server
  • the second base station refers to a base station installed within the operating area of the first vehicle.
  • the first base station can be installed within a range of no more than 500 meters from the base station.
  • the type and number of the first base station and the second base station can be adjusted according to the actual needs of the application scenario, and this is not limited in the embodiments of the present disclosure.
  • the preset time interval may be a time interval preset by the user based on experience data, or may be a time interval obtained after the user adjusts the set time interval according to actual needs.
  • the embodiments of the present disclosure do not limit this.
  • the preset time interval can be anywhere from 1 millisecond to 10 milliseconds. Preferably, in the embodiment of the present disclosure, the preset time interval is 5 milliseconds.
  • the second positioning data is satellite observation data collected from at least one satellite in the GNSS by the GPS receiver of the base station.
  • the third positioning data is the current positioning data of the first vehicle.
  • the second positioning information is positioning information obtained by RTK calculation based on the second positioning data and the third positioning data, including but not limited to the longitude information, latitude information, positioning time information, satellite elevation angle information and signal of the first vehicle's location. Noise ratio information.
  • the cloud server by using the cloud server to perform RTK calculations on the second positioning data uploaded by the base station and the third positioning data uploaded by the first vehicle, the calculation amount of the first vehicle can be reduced, and the calculation amount of the first vehicle can be reduced.
  • the computing pressure of one vehicle improves the working efficiency of the first vehicle.
  • the second positioning information is calculated based on the positioning data uploaded by the base station and the first vehicle, the validity and accuracy of the positioning information are ensured.
  • the second positioning information includes target positioning information of at least one second vehicle in the work area
  • the positioning method further includes: when it is determined that the second positioning information is the target positioning information of the first vehicle, The second positioning information is sent to the second vehicle closest to the first vehicle among the at least one second vehicle.
  • the first vehicle may select the closest vehicle from the at least one second vehicle. of the second vehicle, and sends the second positioning information to the second vehicle. Since the second positioning information includes the target positioning information of the second vehicle, the second vehicle can be positioned based on the second positioning information.
  • the target positioning information may include but is not limited to longitude information, latitude information, positioning time information, satellite elevation angle information and signal-to-noise ratio information of the location of the second vehicle.
  • the second vehicle can be an ordinary vehicle driving in the mining area that can obtain satellite observation data and the precise position of the vehicle itself, or it can be a vehicle with autonomous driving functions, or it can also be an autonomous driving fleet composed of vehicles with autonomous driving functions.
  • a vehicle network that is, a fleet local area network, can be constructed based on the first vehicle and the multiple second vehicles.
  • the vehicle network refers to a network that performs wireless communication and information exchange between vehicles and objects (such as cars, pedestrians, roadside equipment, and the Internet) according to communication protocols and data interaction standards.
  • Vehicle network communication may include but is not limited to Vehicle-to-Vehicle (V2V), Vehicle-to-Network (V2N), Vehicle-to-Infrastructure (V2I), Vehicle-to-Cloud Vehicle-to-People (V2P) and WiFi.
  • V2V Vehicle-to-Vehicle
  • V2N Vehicle-to-Network
  • V2I Vehicle-to-Infrastructure
  • V2P Vehicle-to-Cloud Vehicle-to-People
  • WiFi Wireless Fidelity
  • the vehicle information sharing capability is improved, and the vehicle's perception capability is further improved.
  • sending the second positioning information to the second vehicle of the at least one second vehicle that is closest to the first vehicle includes: obtaining the current location of each of the at least one second vehicle, and Calculate the first distance between the current position of the first vehicle and the current position of the second vehicle respectively; select the second vehicle corresponding to the minimum distance among all the first distances as the first target vehicle, and use the second positioning information Sent to the first target vehicle.
  • the first vehicle after receiving the second positioning information issued by the cloud server, the first vehicle obtains the current position of each second vehicle in the at least one second vehicle, and calculates the first vehicle's current position based on the current position of the first vehicle. The first distance between the first vehicle and the second vehicle; further, the first vehicle selects the second vehicle corresponding to the minimum distance from all the calculated first distances as the first target vehicle, and sends the second positioning information to the first target vehicle. target vehicle.
  • the ability to share vehicle information and the transmission speed of vehicle information can be improved. Therefore, the positioning stability and operation of the second vehicle are improved. efficiency.
  • the positioning method further includes: obtaining the current position of each of the at least one other second vehicle in the at least one second vehicle, and respectively calculating the current position of the first target vehicle and the other second vehicles. the second distance between the current positions of the second vehicles; select other second vehicles corresponding to the minimum distance among all second distances as the second target vehicle, send the second positioning information to the second target vehicle, and execute The above iterative processing process is performed until each of the at least one second vehicle receives the second positioning information.
  • the first target vehicle after determining the first target vehicle, obtains the current position of each of the at least one other second vehicle in the at least one second vehicle, and determines the current position of the first target vehicle based on the current position of the first target vehicle. Calculate the second distances between the first target vehicle and other second vehicles respectively; further, the first target vehicle selects the other second vehicles corresponding to the smallest second distance from all the calculated second distances as the second target. vehicle, and sends the second positioning information to the second target vehicle; and so on, until all second vehicles receive the second positioning information.
  • the sending efficiency of the second positioning information can be improved.
  • the timeliness of issuance of the second positioning information is ensured, thus improving the positioning stability and work efficiency of the second vehicle.
  • the positioning method further includes: receiving satellite positioning data sent by at least one satellite in the global navigation satellite system, and using real-time dynamic carrier phase difference technology to process the satellite positioning data and the current positioning data to obtain the first The third positioning information of the vehicle; when it is determined that the signal reception quality meets the preset quality requirements, select the third positioning information as the target positioning information of the first vehicle; when it is determined that the signal reception quality does not meet the preset quality requirements, The first positioning information is selected as the target positioning information of the first vehicle.
  • the unmanned mine car observes and collects satellite positioning data sent by at least one satellite in GNSS in real time through the GPS receiver, and based on the received satellite positioning data, the unmanned mine car is positioned based on the RTK carrier phase differential positioning principle.
  • the current positioning data is calibrated to obtain the third positioning information of the unmanned mine car.
  • the driverless mine car uses the third positioning information as the target positioning information; when it is determined that the signal reception quality does not meet the preset quality requirements, the driverless mine car The minecart uses the first positioning information as the target positioning information.
  • GNSS is a space-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any location on the earth's surface or near-Earth space.
  • GNSS may include but is not limited to GPS, Global Navigation Satellite System (GLONASS), Galileo satellite navigation system (Galileo), BeiDou Navigation Satellite System (BDS), regional systems and Enhance the system.
  • GLONASS Global Navigation Satellite System
  • Galileo Galileo satellite navigation system
  • BDS BeiDou Navigation Satellite System
  • Enhance the system Enhance the system.
  • the satellite may be one or more of GPS satellites, GLONASS satellites, Galileo satellites, and Beidou satellites.
  • the embodiments of the present disclosure do not limit the specific type and number of satellites. Satellite positioning refers to the use of two-way communication between satellites and receivers to determine the location of the receiver, and can provide users with accurate location coordinates and related attribute characteristics in real time around the world. Satellite positioning data may include, but is not limited to, longitude data, latitude data, elevation (altitude) data, time data, and measurement accuracy data.
  • a GPS receiver installed in an unmanned minecart receives a satellite positioning signal sent by a satellite
  • the GPS receiver has a clock that is accurately synchronized with the satellite clock
  • the arrival of the satellite positioning signal can be measured. time, and then calculate the propagation time of the satellite positioning signal in space; then, multiply the propagation time by the propagation speed of the satellite positioning signal in space to calculate the distance between the GPS receiver and the satellite (also called "pseudorange") .
  • the distance between each satellite and the unmanned mine cart can be calculated separately (for example, a system of equations is listed and solved), and the unmanned mine cart can be obtained.
  • the three-dimensional coordinates of the car i.e., longitude, latitude, and elevation
  • Signal reception quality can be characterized by data such as received signal strength (Received Signal Strength Indication, RSSI), bit error rate (Symbol Error Rate, SER), and picture loss rate.
  • RSSI Receiveived Signal Strength Indication
  • SER bit error rate
  • picture loss rate the signal reception strength is an indication of the received signal strength. It measures the distance between the signal point and the receiving point through the received signal strength, and performs positioning calculations based on the corresponding data to determine the connection quality and whether to increase the broadcast transmission strength; bit error
  • the bit error rate is a measure of the accuracy of data transmission within a specified time.
  • the bit error rate bit errors during transmission/the total number of bits transmitted ⁇ 100%;
  • the image loss rate is the number of images received during the transmission process and the The ratio between the total number of images.
  • the preset quality requirements may be that the signal reception strength is greater than the first preset threshold, the bit error rate is less than the second preset threshold, and the image loss rate is less than the third preset threshold; it may also be that the signal reception strength is greater than the first preset threshold and the error rate is less than the second preset threshold. or , it may also be that the signal reception strength is greater than the first preset threshold, the bit error rate is less than the second preset threshold, and the picture loss rate is less than the third preset threshold.
  • first preset threshold, the second preset threshold and the third preset threshold can be set to the same or different values according to actual needs.
  • the wireless technology can be improved. Positioning stability of a human-driven minecart.
  • FIG. 4 is a schematic diagram of the overall architecture of another positioning method provided by an embodiment of the present disclosure in an actual application scenario.
  • the system architecture in this application scenario mainly includes the following contents:
  • the GPS receiver of the base station 40 observes and collects satellite observation data sent by at least one satellite 41 in the GNSS.
  • the base station 40 will collect the satellite observation data as the first positioning data, and send it to the satellites in the operation area 431 in real time through the radio station 42
  • the first vehicle 43 further, the base station 40 will also collect the satellite observation data as the second positioning data, and upload it to the cloud server 45 in real time through the first base station 44; the first vehicle 43 will obtain the first vehicle 43
  • the current positioning data is used as the third positioning data and is uploaded to the cloud server 45 in real time through the second base station 46; after receiving the second positioning data and the third positioning data, the cloud server 45 uses RTK technology to compare the second positioning data and the third positioning data.
  • the three positioning data are solved and processed to obtain the second positioning information, and the second positioning information is sent to the first vehicle 43 through the second base station 46; the first vehicle 43 can obtain the second positioning information according to the first positioning information received within the preset time interval.
  • the sequence of the information and the second positioning information determines the first positioning information or the second positioning information as the target positioning information of the first vehicle 43 .
  • the cloud server by using the cloud server to perform RTK calculations on the second positioning data uploaded by the base station and the third positioning data uploaded by the first vehicle, the calculation amount of the first vehicle can be reduced, and the calculation amount of the first vehicle can be reduced.
  • the computing pressure of one vehicle improves the working efficiency of the first vehicle.
  • the second positioning information is calculated based on the positioning data uploaded by the base station and the first vehicle, the validity and accuracy of the positioning information are ensured.
  • FIG. 5 is a schematic flowchart of another positioning method provided by an embodiment of the present disclosure.
  • the positioning method of Figure 5 can be executed by the electronic device in the unmanned mine car 43 of Figure 4 .
  • the positioning method includes:
  • S501 Receive the first positioning data sent by the base station through the radio, where the radio is installed within the preset range of the base station and is located between the base station and the operating area of the first vehicle;
  • S502 Use real-time dynamic carrier phase difference technology to process the first positioning data and the current positioning data of the first vehicle to obtain the first positioning information of the first vehicle;
  • S503. Receive the second positioning information sent by the cloud server through the second base station.
  • the second positioning information is obtained by the cloud server using real-time dynamic carrier phase difference technology to process the second positioning data and the third positioning data.
  • the second positioning information The data is uploaded by the base station through the first base station, and the third positioning data is uploaded by the first vehicle through the second base station;
  • S504 Based on the sequence of the first positioning information and the second positioning information received within the preset time interval, determine the first positioning information or the second positioning information as the target positioning information of the first vehicle.
  • the cloud server by using the cloud server to perform RTK calculations on the second positioning data uploaded by the base station and the third positioning data uploaded by the first vehicle, the calculation amount of the first vehicle can be reduced, and the calculation amount of the first vehicle can be reduced.
  • the computing pressure of one vehicle improves the working efficiency of the first vehicle.
  • the second positioning information is calculated based on the positioning data uploaded by the base station and the first vehicle, the validity and accuracy of the positioning information are ensured.
  • FIG. 6 is a schematic diagram of the overall architecture of yet another positioning method provided by an embodiment of the present disclosure in an actual application scenario.
  • the system architecture in this application scenario mainly includes the following contents:
  • the satellite observation data sent by the satellite 61 will be collected by the base station 60 as the first positioning data and sent to the first vehicle 63 in the operation area 631 in real time through the radio station 62; further, the base station 60 will also collect The satellite observation data is used as the second positioning data, and is uploaded to the cloud server 65 in real time through the first base station 64; the first vehicle 63 uses the acquired current positioning data of the first vehicle 63 as the third positioning data, and is uploaded to the cloud server 65 through the second base station. 66 is uploaded to the cloud server 65 in real time.
  • the cloud server 65 After receiving the second positioning data and the third positioning data, the cloud server 65 uses RTK technology to solve the second positioning data and the third positioning data to obtain the second positioning information, and transmits the second positioning information to the second base station 66 through the second base station 66 .
  • the positioning information is sent to the first vehicle 63; after receiving the second positioning information sent by the cloud server 65, the first vehicle 63 obtains the current positioning information of the second vehicle 67, the second vehicle 68 and the second vehicle 69 in the working area 631.
  • the first vehicle 63 calculates the first distance between the first vehicle 63 and the second vehicle 67, the second vehicle 68 and the second vehicle 69 respectively; further, the first vehicle 63 is calculated from Select the second vehicle (ie, the second vehicle 67 ) corresponding to the smallest first distance among all the first distances as the first target vehicle, and send the second positioning information to the second vehicle 67 .
  • the second vehicle 67 After determining that the second vehicle 67 is the first target vehicle, the second vehicle 67 obtains the current position of at least one other second vehicle (ie, the second vehicle 58 and the second vehicle 59 ) among the at least one second vehicle, and based on Based on the current position of the second vehicle 67, the second distances between the second vehicle 67, the second vehicle 58 and the second vehicle 69 are respectively calculated; further, the second vehicle 67 selects the smallest one from all the calculated second distances.
  • the second vehicle corresponding to the second distance ie, the second vehicle 58 ) serves as the second target vehicle and sends the second positioning information to the second vehicle 58 ; and by analogy, the second vehicle 58 sends the second positioning information to Second vehicle 59.
  • the ability to share vehicle information and the transmission speed of vehicle information can be improved; in addition, by calculating the distance between vehicles, and based on the distance Sending the second positioning information to each second vehicle one by one in order from near to far can improve the sending efficiency of the second positioning information and ensure the timeliness of the issuance of the second positioning information. Therefore, the positioning stability of the second vehicle is improved. performance and work efficiency.
  • FIG. 7 is a schematic flowchart of yet another positioning method provided by an embodiment of the present disclosure.
  • the interaction subjects involved in Figure 7 are the base station (corresponding to the base station 60 of Figure 6), the cloud server (corresponding to the cloud server 65 of Figure 6), the first vehicle (corresponding to the first vehicle 63 of Figure 6), the second vehicle (corresponding to the second vehicle 67 of FIG. 6 ) and other second vehicles (corresponding to the second vehicle 68 and the second vehicle 69 of FIG. 6 ).
  • the positioning method includes:
  • the base station receives satellite positioning data sent by at least one satellite in the GNSS, and uses the received satellite positioning data as the first positioning data, and sends it to the first vehicle in real time through the radio;
  • the base station receives the satellite positioning data sent by at least one satellite in the GNSS, and uses the received satellite positioning data as the second positioning data, and uploads it to the cloud server in real time through the first base;
  • the first vehicle uses RTK technology to solve the first positioning data and the current positioning data of the first vehicle to obtain the first positioning information
  • the first vehicle uses the obtained current positioning data of the first vehicle as the third positioning data, and uploads it to the cloud server in real time through the second base station;
  • the cloud server uses RTK technology to solve and process the second positioning data and the third positioning data to obtain the second positioning information
  • the cloud server sends the second positioning information to the first vehicle
  • the first vehicle determines that the second positioning information is the target positioning information of the first vehicle based on the sequence of the received first positioning information and the second positioning information;
  • the first vehicle obtains the current position of each second vehicle in at least one second vehicle within the first vehicle's working area
  • the first vehicle calculates the first distance between the first vehicle and the second vehicle based on the current location of the first vehicle;
  • the first vehicle selects the second vehicle corresponding to the minimum distance from all first distances
  • the first vehicle sends the second positioning information to the second vehicle
  • the second vehicle obtains the current location of each other second vehicle in at least one other second vehicle in the at least one second vehicle;
  • the second vehicle calculates the second distance between the second vehicle and other second vehicles based on the current location of the second vehicle;
  • the second vehicle selects other second vehicles corresponding to the minimum distance from all second distances;
  • the second vehicle sends the second positioning information to other second vehicles, and returns to S712 until all second vehicles receive the second positioning information.
  • the sending efficiency of the second positioning information can be improved.
  • the timeliness of issuance of the second positioning information is ensured, thus improving the positioning stability and work efficiency of the second vehicle.
  • FIG 8 is a schematic structural diagram of a positioning device according to an embodiment of the present disclosure. As shown in Figure 8, the positioning device includes:
  • the receiving module 801 is configured to receive the first positioning data sent by the base station through the radio, where the radio is set up within the preset range of the base station and is located between the base station and the operating area of the first vehicle;
  • the processing module 802 is configured to use real-time dynamic carrier phase difference technology to process the first positioning data and the current positioning data of the first vehicle to obtain the first positioning information of the first vehicle.
  • the radio station by receiving the first positioning data sent by the base station through the radio, where the radio station is set up within the preset range of the base station and is located between the base station and the operating area of the first vehicle; using The real-time dynamic carrier phase difference technology processes the first positioning data and the current positioning data of the first vehicle to obtain the first positioning information of the first vehicle, which can enable the third positioning information without increasing the construction cost and maintenance cost of the base station.
  • the first vehicle obtains centimeter-level positioning accuracy in a very short time, thus improving the positioning stability of the first vehicle and further improving the work efficiency of the first vehicle.
  • the positioning device of Figure 8 also includes: a determination module 803, wherein the receiving module 801 also receives the second positioning information sent by the cloud server through the second base station, wherein the second positioning information is the cloud server using real-time dynamics.
  • the carrier phase difference technology is used to process the second positioning data and the third positioning data.
  • the second positioning data is uploaded by the base station through the first base station, and the third positioning data is uploaded by the first vehicle through the second base station;
  • the determination module 803 is configured to determine that the first positioning information or the second positioning information is the target positioning information of the first vehicle based on the sequence of the first positioning information and the second positioning information received within the preset time interval.
  • the second positioning information includes target positioning information of at least one second vehicle in the working area.
  • the positioning device of Figure 8 further includes: a sending module 804 configured to determine that the second positioning information is the first vehicle. In the case of target positioning information, the second positioning information is sent to the second vehicle among the at least one second vehicle that is closest to the first vehicle.
  • the sending module 804 of Figure 8 obtains the current position of each second vehicle in at least one second vehicle, and calculates the first distance between the current position of the first vehicle and the current position of the second vehicle respectively; and selects the second vehicle corresponding to the minimum distance among all the first distances as the first target vehicle, and sends the second positioning information to the first target vehicle.
  • the sending module 804 of FIG. 8 also obtains the current position of each of the at least one other second vehicle in the at least one second vehicle, and respectively calculates the current position of the first target vehicle and a second distance between the current positions of other second vehicles; and selecting other second vehicles corresponding to the minimum distance among all second distances as the second target vehicle, and sending the second positioning information to the second target vehicle, And the above iterative processing process is performed until each second vehicle in the at least one second vehicle receives the second positioning information.
  • the positioning device of Figure 8 also includes: a selection module 805, wherein the receiving module 801 also receives satellite positioning data sent by at least one satellite in the global navigation satellite system; the processing module 802 also uses real-time dynamic carrier phase difference The technology processes the satellite positioning data and the current positioning data to obtain the third positioning information of the first vehicle; the selection module 805 is configured to select the third positioning information as the first positioning information when it is determined that the signal reception quality meets the preset quality requirements. Target positioning information of the vehicle; and if it is determined that the signal reception quality does not meet the preset quality requirements, select the first positioning information as the target positioning information of the first vehicle.
  • the first vehicle includes a driverless mine cart or a self-driving mine cart.
  • FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 90 of this embodiment includes: a processor 901 , a memory 902 , and a computer program 903 stored in the memory 902 and capable of running on the processor 901 .
  • the processor 901 executes the computer program 903 stored in the memory 902 and capable of running on the processor 901 .
  • the processor 901 executes the computer program 903
  • the steps in each of the above method embodiments are implemented.
  • the processor 901 executes the computer program 903, it implements the functions of each module/unit in each of the above device embodiments.
  • the computer program 903 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 902 and executed by the processor 901 to complete the present disclosure.
  • One or more modules/units may be a series of computer program instruction segments capable of completing specific functions. The instruction segments are used to describe the execution process of the computer program 903 in the electronic device 90 .
  • the electronic device 90 may be a desktop computer, a notebook, a handheld computer, a cloud server, and other electronic devices.
  • Electronic device 90 may include, but is not limited to, processor 901 and memory 902.
  • FIG. 9 is only an example of the electronic device 90 and does not constitute a limitation on the electronic device 90. It may include more or fewer components than shown in the figure, or some components may be combined, or different components may be used. , for example, electronic devices may also include input and output devices, network access devices, buses, etc.
  • the processor 901 can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or an on-site processor.
  • Programmable gate array Field-Programmable Gate Array, FPGA or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory 902 may be an internal storage unit of the electronic device 90 , such as a hard disk or memory of the electronic device 90 .
  • the memory 902 may also be an external storage device of the electronic device 90, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card ( Flash Card), etc.
  • the memory 902 may also include both an internal storage unit of the electronic device 90 and an external storage device.
  • Memory 902 is used to store computer programs and other programs and data required by the electronic device.
  • the memory 902 may also be used to temporarily store data that has been output or is to be output.
  • Module completion means dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above.
  • Each functional unit and module in the embodiment can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be hardware-based. It can also be implemented in the form of software functional units.
  • the specific names of each functional unit and module are only for the convenience of distinguishing each other and are not used to limit the scope of the present disclosure. For the specific working processes of the units and modules in the above system, please refer to the corresponding processes in the foregoing method embodiments, and will not be described again here.
  • the disclosed devices/electronic devices and methods can be implemented in other ways.
  • the apparatus/electronic equipment embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be The combination can either be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated modules/units can be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products. Based on this understanding, the present disclosure can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and the computer program can be processed after being processed. When the processor is executed, the steps of each of the above method embodiments can be implemented.
  • a computer program may include computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • Computer-readable media can include: any entity or device that can carry computer program code, recording media, USB flash drives, mobile hard drives, magnetic disks, optical disks, computer memory, read-only memory (Read-Only Memory, ROM), random access Memory (Random Access Memory, RAM), electrical carrier signals, telecommunications signals, and software distribution media, etc. It should be noted that the content contained in the computer-readable medium can be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, the computer-readable medium is not Including electrical carrier signals and telecommunications signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种定位方法、装置、电子设备及存储介质,该方法应用于无人车,即无人驾驶设备或自动驾驶设备,包括:接收基准站通过电台发送的第一定位数据,其中,电台架设在基准站的预设范围内且位于基准站与第一车辆的作业区域之间(S301);利用实时动态载波相位差分技术对第一定位数据和第一车辆的当前定位数据进行处理,得到第一车辆的第一定位信息(S302)。该方法能够在不增加基准站的建设成本和维护成本的情况下,使第一车辆在很短的时间内获得厘米级定位精度,因此,提高了第一车辆的定位稳定性,并进一步提高了第一车辆的工作效率。

Description

定位方法、装置、电子设备及存储介质 技术领域
本公开涉及定位技术领域,尤其涉及一种定位方法、装置、电子设备及计算机可读存储介质。
背景技术
露天采矿是一个移走矿体上的覆盖物,得到所需矿物的过程,其生产过程包括穿孔、爆破、采装、运输、排土等作业流程。随着无人驾驶技术的发展,无人驾驶在矿车上的应用应运而生,目前,诸如装载、运输、排土等作业主要由无人驾驶矿车完成。
众所周知,高精度定位技术是实现无人驾驶的必要条件。目前,适用于无人驾驶矿车的定位技术是实时动态(Real-Time Kinematic,RTK)载波相位差分技术(下文简称为“RTK技术”)。在实际应用中,除了全球导航卫星系统(Global Navigation Satellite System,GNSS)中的至少一个卫星之外,实现RTK定位功能需要基准站和移动站(例如,无人驾驶矿车)。基准站通过其内置或外挂的电台实时地将卫星定位数据以一定的传输频点进行发送,移动站通过其内置或外挂的电台以对应的传输频点实时地接收卫星定位数据,并进行RTK载波相位差分处理,得到高精度的定位数据。
现有技术中,RTK技术必须依托密集部署的基准站,导致基准站的建设成本和维护成本较高;另外,在诸如矿山、隧道等偏远或有复杂地理环境的地区,基准站的部署非常困难,导致难以实现实时精准的定位。进一步地,在卫星定位数据的传输过程中,内置或外挂的电台可能会受到电磁环境和/或基准站与无人驾驶矿车之间的障碍物的影响,导致无人驾驶矿车无法实时地接收到卫星定位数据,因此,影响了无人驾驶矿车的定位稳定性和工作效率。
发明内容
有鉴于此,本公开实施例提供了一种定位方法、装置、电子设备及计算机可读存储介质,以解决现有技术中存在的无人驾驶矿车无法实时地接收到卫星定位数据,因此,影响了无人驾驶矿车的定位稳定性和工作效率的问题。
本公开实施例的第一方面,提供了一种定位方法,包括:接收基准站通过电台发送的第一定位数据,其中,电台架设在基准站的预设范围内且位于基准站与第一车辆的作业区域之间;利用实时动态载波相位差分技术对第一定位数据和第一车辆的当前定位数据进行处理,得到第一车辆的第一定位信息。
本公开实施例的第二方面,提供了一种定位装置,包括:接收模块,被配置为接收基准站通过电台发送的第一定位数据,其中,电台架设在基准站的预设范围内且位于基准站与第一车辆的作业区域之间;处理模块,被配置为利用实时动态载波相位差分技术对第一定位数据和第一车辆的当前定位数据进行处理,得到第一车辆的第一定位信息。
本公开实施例的第三方面,提供了一种电子设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,该处理器执行计算机程序时实现上述方法 的步骤。
本公开实施例的第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述方法的步骤。
本公开实施例采用的上述至少一个技术方案能够达到以下有益效果:通过接收基准站通过电台发送的第一定位数据,其中,电台架设在基准站的预设范围内且位于基准站与第一车辆的作业区域之间;利用实时动态载波相位差分技术对第一定位数据和第一车辆的当前定位数据进行处理,得到第一车辆的第一定位信息,能够在不增加基准站的建设成本和维护成本的情况下,使第一车辆在很短的时间内获得厘米级定位精度,因此,提高了第一车辆的定位稳定性,并进一步提高了第一车辆的工作效率。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是相关技术中基于传统RTK技术的定位方法在实际应用场景下涉及的整体架构示意图;
图2是本公开实施例提供的一种定位方法在实际应用场景下涉及的整体架构示意图;
图3是本公开实施例提供的一种定位方法的流程示意图;
图4是本公开实施例提供的另一种定位方法在实际应用场景下涉及的整体架构示意图;
图5是本公开实施例提供的另一种定位方法的流程示意图;
图6是本公开实施例提供的再一种定位方法在实际应用场景下涉及的整体架构示意图;
图7是本公开实施例提供的再一种定位方法的流程示意图;
图8是本公开实施例的一种定位装置的结构示意图;
图9是本公开实施例的一种电子设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不 脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在无人驾驶领域,高精度定位技术是实现无人驾驶的必要条件。目前,适用于无人驾驶设备的定位技术是RTK技术。传统RTK技术在实际应用中遇到的最大问题是基准站校正数据的有效作用距离。全球定位系统(Global Positioning System,GPS)误差的空间相关性随基准站与移动站之间的距离的增加而逐渐失去线性,因此,在较长距离下(例如,单频>10km,双频>30km),经过差分处理后的用户数据仍存在很大的观测误差,导致定位精度降低以及无法解算载波相位的整周模糊。因此,为了确保获得满意的定位精度,传统的单机RTK的作业距离都非常有限。
为了克服传统RTK技术的缺陷,提出了网络RTK技术。在网络RTK技术中,线性衰减的单点GPS误差模型被区域型的GPS网络误差模型所取代,即用多个基准站组成的GPS网络来估计一个地区的GPS误差模型,并为网络覆盖地区的用户提供校正数据。用户收到的也不是某一个实际基准站的数据,而是一个虚拟基准站的数据和距离自己位置较近的某个参考网格的校正数据,因此,网络RTK技术又被称为虚拟参考站(Virtual Reference Station,VRS)技术。然而,在诸如矿山、隧道等偏远或有复杂地理环境的地区,由于未建立起连续运行卫星定位导航服务系统(Continuous Operational Reference System,CORS)因此,网络RTK服务通常无法使用。
目前,现有技术中通过基于传统RTK技术的定位方法对无人驾驶设备进行定位。下面结合附图对相关技术中基于传统RTK技术的定位方法的场景进行说明。图1是相关技术中基于传统RTK技术的定位方法在实际应用场景下涉及的整体架构示意图。如图1所示,该应用场景下的系统架构主要包括以下内容:
基准站10的GPS接收机通过天线观测并接收至少一个卫星11发送的卫星信号,根据接收到的卫星信号测出基准站10所在位置的三维坐标(需要说明的是,该三维坐标为单点解,即不准确值),并将载波相位观测值、测站坐标信息等通过数据链(对应于图1中的电台101)实时地进行发送;位于基准站10附近的移动站(对应于图1中的无人驾驶矿车12)的GPS接收机在对至少一个卫星11进行观测的同时,也接收来自基准站10的电台信号,并将接收到的两组载波相位观测值(即,卫星信号和电台信号)组成方程组,根据相对定位原理,实时解算出无人驾驶矿车12所在位置的三维坐标。
可见,现有的RTK定位是设置一个坐标已知、架设在开阔环境下的基准站,基准站通过数据链将载波相位观测值传送给移动站;移动站接收来自基准站的载波相位观测值,并结合自身的载波相位观测值得到差分修正值,再利用差分修正值对移动站的GPS接收机的定位结果进行修正,得到移动站的精确位置。然而,这种定位方法仅适用于基准站与移动站之间的距离较近(例如,不超过15公里)且基准站与移动站之间不存在大的障碍物的情况,而无法保证在较长距离(例如,超过15公里)和/或基准站与移动站之间存在大的障碍物的情况下同样适用。
下面结合附图对本公开实施例改进后的基于传统RTK技术的定位方法的场景进行说明。图2是本公开实施例提供的一种定位方法在实际应用场景下涉及的整体架构示意图。如图2所示,该应用场景下的系统架构主要包括以下内容:
在基准站20的预设范围内架设电台21,并使电台21位于基准站20与无人驾驶矿车22的作业区域221之间;基准站20的GPS接收机接收至少一个卫星23发送的卫星定位数据,并通过电台21将接收到的卫星定位数据实时发送给正在作业区域221内作业的无人驾驶矿车22;在无人驾驶矿车22的GPS接收机接收到卫星定位数据后,无人驾驶矿车22基于无人驾驶矿车22的当前定位数据和卫星定位数据,利用RTK技术对当前定位数据和卫星定位数据进行处理,得到无人驾驶矿车22的精确定位信息,即,无人驾驶矿车22的三维坐标。
需要说明的是,基准站20、电台21、卫星23和无人驾驶矿车22的具体类型、数量和组合可以根据应用场景的实际需求进行调整,本公开实施例对此不作限制。
根据本公开实施例提供的系统架构,通过在基准站的预设范围内架设电台,并使电台位于基准站与无人驾驶矿车的作业区域之间,能够在不增加基准站的建设成本和维护成本的情况下,使无人驾驶矿车在很短的时间内获得厘米级定位精度,因此,解决了现有的基准站在通过其内置或外挂的电台传送卫星定位数据的过程中,电台可能会受到电磁环境和/或基准站与无人驾驶矿车之间的障碍物的影响,导致无人驾驶矿车无法实时地接收到卫星定位数据,进而影响了无人驾驶矿车的定位稳定性和工作效率的问题。
接下来,结合附图对本公开实施例进行详细说明。
图3是本公开实施例提供的一种定位方法的流程示意图。图3的定位方法可以由图2的无人驾驶矿车22中的电子设备执行。如图3所示,该定位方法包括:
S301,接收基准站通过电台发送的第一定位数据,其中,电台架设在基准站的预设范围内且位于基准站与第一车辆的作业区域之间;
S302,利用实时动态载波相位差分技术对第一定位数据和第一车辆的当前定位数据进行处理,得到第一车辆的第一定位信息。
具体地,在基准站的预设范围内架设电台,并使电台位于基准站与第一车辆的作业区域之间;当基准站的GPS接收机观测并采集到GNSS中的至少一个卫星发送的卫星定位数据时,基准站将采集到的卫星定位数据作为第一定位数据,并通过电台实时地进行发送;进一步地,在第一车辆的GPS接收机接收到第一定位数据后,第一车辆获取该第一车辆的当前定位数据,并利用RTK技术对第一定位数据和当前定位数据进行解算处理,得到第一车辆的第一定位信息。
这里,基准站(Reference Station)是对卫星信号进行长期连续观测,并由通信设施将卫星观测数据实时或定时传送至数据中心的地面固定观测站。在实际应用中,基准站可以是在某一个符合基准站架设条件的固定位置所架设的实体站,也可以是通过VRS技术生成的一个虚拟基准站。
移动站(Mobile Station)是在基准站的一定范围内可移动作业的设备上设立的探测站。例如,在露天采矿场景下,基准站可以固定安装在无人驾驶矿车的作业区域周边一些符合基准站架设条件的空地上,移动站可以设置在无人驾驶矿车上,或者可以是该无人驾驶矿车本身。在实际应用中,基准站和移动站都会对GNSS中的某些卫星进行观测,并获得相应的卫星观测数据。
电台,即无线电台(Radio Station)的简称,是一种无线的一点对多点进行通信的终端设备。电台可以是通用通信数传电台,也可以是支持长距离通信的长距离通信数传电 台,本公开实施例对此不作限制。此外,为了避免由于信号受到干扰导致信号质量不稳定的情况,可以将电台架设在距离基准站500米的范围内。
预设范围是指基准站的有效覆盖范围,即,以基准站发射的无线信号能够传输的最长距离为半径所形成的区域。在实际应用中,为了避免在无人驾驶矿车的作业过程中出现信号被阻挡或距离过长导致的通信中断等情况,当采用传统RTK技术时,可以将基准站架设在距离移动站15公里的范围内;当采用网络RTK技术时,可以在距离矿车的作业区域50公里至100公里的范围内架设多个基准站,因此,移动站与最近的基准站之间的距离可能会超过15公里。
第一车辆可以是在矿区行驶的能够获取卫星观测数据和车辆自身的精确位置的普通车辆,也可以是具有自主驾驶功能的车辆。一般来说,第一车辆只需要具有提供由GPS接收机获得的卫星观测数据和车辆自身的精确位置的功能,尽管普通车辆也可以作为第一车辆,但考虑到成本和场景的因素,具有高级自主驾驶功能的车辆可以完全自动化地实施相应的采集,因此,其更适于作为第一车辆。优选地,在本公开实施例中,为了提高采集效率和采集数据的准确性,第一车辆为无人驾驶矿车或自动驾驶矿车。
作业区域是指第一车辆在矿区执行装载、运输、排土等作业过程中所处的区域,即,第一车辆沿行进方向能够识别的区域范围。作业区域可以处于封闭式空间,也可以处于开放式空间,或者还可以是未开辟道路的空间环境。封闭式空间可以是例如矿区环境,矿区又可以根据实际操作情况分为装载区、排土场、道路和未分类区。
RTK技术是实时处理两个测量站载波相位观测量的差分方法,将基准站采集的载波相位发给用户接收机,进行求差解算坐标。RTK技术的关键在于使用GPS的载波相位观测量,并利用基准站与移动站之间的观测误差的空间相关性,通过差分的方式除去移动站的卫星观测数据中的大部分误差,从而实现高精度(分米甚至厘米级)的定位。
第一定位数据是基准站的GPS接收机从GNSS中的至少一个卫星采集到的卫星观测数据。第一定位数据可以包括卫星数量、卫星编号、精度衰减因子(Dilution of Precision,DOP)、终端设备的位置、基站的位置等信息中的一种或多种。当前定位数据是第一车辆当前正在使用的定位数据。第一定位信息是基于第一定位数据和当前定位数据进行RTK解算得到的定位信息,包括但不限于第一车辆所处位置的经度信息、纬度信息、定位时间信息、卫星仰角信息和信噪比信息。
根据本公开实施例提供的技术方案,通过接收基准站通过电台发送的第一定位数据,其中,电台架设在基准站的预设范围内且位于基准站与第一车辆的作业区域之间;利用实时动态载波相位差分技术对第一定位数据和第一车辆的当前定位数据进行处理,得到第一车辆的第一定位信息,能够在不增加基准站的建设成本和维护成本的情况下,使第一车辆在很短的时间内获得厘米级定位精度,因此,提高了第一车辆的定位稳定性,并进一步提高了第一车辆的工作效率。
在一些实施例中,该定位方法还包括:接收云服务器通过第二基站发送的第二定位信息,其中,第二定位信息是云服务器利用实时动态载波相位差分技术对第二定位数据和第三定位数据进行处理得到的,第二定位数据是由基准站通过第一基站上传的,第三定位数据是由第一车辆通过第二基站上传的;基于预设时间间隔内接收到的第一定位信息和第二定位信息的先后顺序,确定第一定位信息或第二定位信息为第一车辆的目标定 位信息。
具体地,在基准站的GPS接收机观测并采集到GNSS中的至少一个卫星发送的卫星观测数据后,基准站将采集到的卫星观测数据作为第二定位数据,并通过第一基站实时地上传至云服务器;第一车辆将获取到的第一车辆的当前定位数据作为第三定位数据,并通过第二基站实时地上传至云服务器;在接收到第二定位数据和第三定位数据后,云服务器利用RTK技术对第二定位数据和第三定位数据进行解算处理,得到第二定位信息,并通过第二基站将第二定位信息下发至第一车辆;进一步地,第一车辆可以根据预设时间间隔内接收到的第一定位信息和第二定位信息的先后顺序,将第一定位信息或第二定位信息确定为第一车辆的目标定位信息。
这里,云服务器(Cloud Server)可以是独立的物理云服务器,也可以是由多个物理云服务器构成的云服务器集群或分布式系统,或者还可以是提供云数据库、云存储、云计算、云通信等基础云计算服务的服务器。在本公开实施例中,云服务器是指在云端运行且具备RTK解算等功能的服务器。
基站(Base Station),即公用移动通信基站,是指在一定的无线电覆盖区中,通过移动通信交换中心与移动电话终端之间进行信息传递的无线电收发信电台。在本公开实施例中,第一基站是指架设在基准站的预设范围内且位于基准站与云服务器之间的基站,第二基站是指架设在第一车辆的作业区域内的基站。此外,为了提高信号的传输速率和抗干扰能力,可以将第一基站架设在距离基准站不超过500米的范围内。
需要说明的是,第一基站和第二基站的类型和数量可以根据应用场景的实际需求进行调整,本公开实施例对此不作限制。
预设时间间隔可以是用户根据经验数据预先设置的时间间隔,也可以是用户根据实际需要对已设置的时间间隔进行调整后得到的时间间隔,本公开实施例对此不作限制。预设时间间隔可以是1毫秒至10毫秒范围内的任一值。优选地,在本公开实施例中,预设时间间隔为5毫秒。
第二定位数据是基准站的GPS接收机从GNSS中的至少一个卫星采集到的卫星观测数据。第三定位数据是第一车辆的当前定位数据。第二定位信息是基于第二定位数据和第三定位数据进行RTK解算得到的定位信息,包括但不限于第一车辆所处位置的经度信息、纬度信息、定位时间信息、卫星仰角信息和信噪比信息。
根据本公开实施例提供的技术方案,通过利用云服务器对基准站上传的第二定位数据和第一车辆上传的第三定位数据进行RTK解算,能够降低第一车辆的运算量,减小第一车辆的运算压力,提高第一车辆的工作效率。另外,由于第二定位信息是基于基准站和第一车辆上传的定位数据解算得到的,因此,确保了定位信息的有效性和准确性。
在一些实施例中,第二定位信息包括作业区域内的至少一个第二车辆的目标定位信息,该定位方法还包括:在确定第二定位信息为第一车辆的目标定位信息的情况下,将第二定位信息发送至至少一个第二车辆中与第一车辆距离最近的第二车辆。
具体地,第一车辆的作业区域内还可能存在至少一个第二车辆,如果确定第二定位信息为第一车辆的目标定位信息,则第一车辆可以从至少一个第二车辆中选取与其距离最近的第二车辆,并将第二定位信息发送给该第二车辆,由于第二定位信息中包括该第二车辆的目标定位信息,因此,可以基于第二定位信息对第二车辆进行定位。这里,目 标定位信息可以包括但不限于第二车辆所处位置的经度信息、纬度信息、定位时间信息、卫星仰角信息和信噪比信息。
第二车辆可以是在矿区行驶的能够获取卫星观测数据和车辆自身的精确位置的普通车辆,也可以是具有自主驾驶功能的车辆,或者还可以是由具有自主驾驶功能的车辆组成的自主驾驶车队。在作业区域内存在多个第二车辆的情况下,可以基于第一车辆和多个第二车辆构建车辆网络,即,车队局域网。这里,车辆网络是指根据通信协议和数据交互标准在车辆与对象(例如,汽车、行人、路边设备和互联网)之间执行无线通信和信息交换的网络。车辆网络通信可以包括但不限于车与车(Vehicle-to-Vehicle,V2V)、车与云(Vehicle-to-Network,V2N)、车与基础设施(Vehicle-to-Infrastructure,V2I)、车与人(Vehicle-to-People,V2P)和WiFi。
根据本公开实施例提供的技术方案,通过构建车辆网络,提高了车辆信息共享的能力,并进一步提升了车辆的感知能力。
在一些实施例中,将第二定位信息发送至至少一个第二车辆中与第一车辆距离最近的第二车辆,包括:获取至少一个第二车辆中的每个第二车辆的当前位置,并分别计算第一车辆的当前位置与第二车辆的当前位置之间的第一距离;选取与所有的第一距离中的最小距离对应的第二车辆作为第一目标车辆,并将第二定位信息发送至第一目标车辆。
具体地,在接收到云服务器下发的第二定位信息后,第一车辆获取至少一个第二车辆中的每个第二车辆的当前位置,并基于第一车辆的当前位置分别计算第一车辆与第二车辆之间的第一距离;进一步地,第一车辆从计算出的所有第一距离中选取最小距离对应的第二车辆作为第一目标车辆,并将第二定位信息发送给第一目标车辆。
根据本公开实施例提供的技术方案,通过构建车辆网络来进行第二定位信息的发送,能够提高车辆信息共享的能力和车辆信息的传输速度,因此,提高了第二车辆的定位稳定性和工作效率。
在一些实施例中,该定位方法还包括:获取至少一个第二车辆中的至少一个其他第二车辆中的每个其他第二车辆的当前位置,并分别计算第一目标车辆的当前位置与其他第二车辆的当前位置之间的第二距离;选取与所有的第二距离中的最小距离对应的其他第二车辆作为第二目标车辆,将第二定位信息发送至第二目标车辆,并执行以上迭代处理过程,直至至少一个第二车辆中的每个第二车辆接收到第二定位信息。
具体地,在确定第一目标车辆后,第一目标车辆获取至少一个第二车辆中的至少一个其他第二车辆中的每个其他第二车辆的当前位置,并基于第一目标车辆的当前位置分别计算第一目标车辆与其他第二车辆之间的第二距离;进一步地,第一目标车辆从计算出的所有第二距离中选取最小的第二距离对应的其他第二车辆作为第二目标车辆,并将第二定位信息发送给第二目标车辆;以此类推,直至所有的第二车辆均接收到第二定位信息。
根据本公开实施例提供的技术方案,通过计算车辆之间的距离,并按照距离由近及远的顺序将第二定位信息逐一发送给各个第二车辆,能够提高第二定位信息的发送效率,确保第二定位信息的下发及时性,因此,提高了第二车辆的定位稳定性和工作效率。
在一些实施例中,该定位方法还包括:接收全球导航卫星系统中的至少一个卫星发送的卫星定位数据,并利用实时动态载波相位差分技术对卫星定位数据和当前定位数据 进行处理,得到第一车辆的第三定位信息;在确定信号接收质量满足预设质量要求的情况下,选择第三定位信息作为第一车辆的目标定位信息;在确定信号接收质量未满足预设质量要求的情况下,选择第一定位信息作为第一车辆的目标定位信息。
具体地,无人驾驶矿车通过GPS接收机实时观测并采集GNSS中的至少一个卫星发送的卫星定位数据,并基于接收到卫星定位数据,根据RTK载波相位差分定位原理对无人驾驶矿车的当前定位数据进行校准处理,得到无人驾驶矿车的第三定位信息。进一步地,在确定信号接收质量满足预设质量要求的情况下,无人驾驶矿车将第三定位信息作为目标定位信息;在确定信号接收质量未满足预设质量要求的情况下,无人驾驶矿车将第一定位信息作为目标定位信息。
这里,GNSS是能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息的空基无线电导航定位系统。GNSS可以包括但不限于GPS、全球卫星导航系统(Global Navigation Satellite System,GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system,Galileo)、北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)、区域系统和增强系统。
卫星可以是GPS卫星、GLONASS卫星、Galileo卫星、北斗卫星中的一个或多个,本公开实施例对卫星的具体类型和数量不作限制。卫星定位是指通过利用卫星和接收机的双向通信来确定接收机的位置,并且可以在全球范围内实时地为用户提供准确的位置坐标和相关的属性特征。卫星定位数据可以包括但不限于经度数据、纬度数据、高程(海拔高度)数据、时间数据和测量精度数据。
在实际应用中,当设置在无人驾驶矿车中的GPS接收机接收到卫星发送的卫星定位信号时,如果GPS接收机有与卫星钟准确同步的时钟,则可以测量出卫星定位信号的到达时间,进而计算出卫星定位信号在空间的传播时间;然后,用传播时间乘以卫星定位信号在空间的传播速度就可以计算出GPS接收机与卫星之间的距离(也称“伪距”)。在观测到多个(例如,4个)卫星发送的卫星定位信号后,可以分别计算各个卫星与无人驾驶矿车之间的距离(例如,列出方程组并求解),得到无人驾驶矿车的三维坐标(即,经度、纬度和高程),进而根据三维坐标对无人驾驶矿车进行定位。
信号接收质量可以通过信号接收强度(Received Signal Strength Indication,RSSI)、误码率(Symbol Error Rate,SER)、丢图率等数据表征。这里,信号接收强度是接收的信号强度指示,其通过接收到的信号强弱测定信号点与接收点的距离,根据相应数据进行定位计算,以判断连接质量以及是否增大广播发送强度;误码率是衡量数据在规定时间内数据传输精确性的指标,误码率=传输中的误码/所传输的总码数×100%;丢图率是传输过程中接收到的图像数量与应接收图像总数之间的比值。
预设质量要求可以是信号接收强度大于第一预设阈值、误码率小于第二预设阈值、丢图率小于第三预设阈值;也可以是信号接收强度大于第一预设阈值且误码率小于第二预设阈值、信号接收强度大于第一预设阈值且丢图率小于第三预设阈值、误码率小于第二预设阈值且丢图率小于第三预设阈值;或者,还可以是信号接收强度大于第一预设阈值、误码率小于第二预设阈值且丢图率小于第三预设阈值。
需要说明的是,第一预设阈值、第二预设阈值和第三预设阈值可以根据实际需要设置为相同或不同的值。
根据本公开实施例提供的技术方案,通过判断信号接收质量是否满足预设质量要求,能够确保在弱信号的情况下依然可以获取到无人驾驶矿车的精确的定位信息,因此,提高了无人驾驶矿车的定位稳定性。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。此外,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
图4是本公开实施例提供的另一种定位方法在实际应用场景下涉及的整体架构示意图。如图4所示,该应用场景下的系统架构主要包括以下内容:
基准站40的GPS接收机观测并采集GNSS中的至少一个卫星41发送的卫星观测数据,基准站40将采集到卫星观测数据作为第一定位数据,并通过电台42实时发送至作业区域431内的第一车辆43;进一步地,基准站40还将采集到的卫星观测数据作为第二定位数据,并通过第一基站44实时上传至云服务器45;第一车辆43将获取到的第一车辆43的当前定位数据作为第三定位数据,并通过第二基站46实时上传至云服务器45;在接收到第二定位数据和第三定位数据后,云服务器45利用RTK技术对第二定位数据和第三定位数据进行解算处理,得到第二定位信息,并通过第二基站46将第二定位信息下发至第一车辆43;第一车辆43可以根据预设时间间隔内接收到的第一定位信息和第二定位信息的先后顺序,将第一定位信息或第二定位信息确定为第一车辆43的目标定位信息。
根据本公开实施例提供的技术方案,通过利用云服务器对基准站上传的第二定位数据和第一车辆上传的第三定位数据进行RTK解算,能够降低第一车辆的运算量,减小第一车辆的运算压力,提高第一车辆的工作效率。另外,由于第二定位信息是基于基准站和第一车辆上传的定位数据解算得到的,因此,确保了定位信息的有效性和准确性。
图5是本公开实施例提供的另一种定位方法的流程示意图。图5的定位方法可以由图4的无人驾驶矿车43中的电子设备执行。如图5所示,该定位方法包括:
S501,接收基准站通过电台发送的第一定位数据,其中,电台架设在基准站的预设范围内且位于基准站与第一车辆的作业区域之间;
S502,利用实时动态载波相位差分技术对第一定位数据和第一车辆的当前定位数据进行处理,得到第一车辆的第一定位信息;
S503,接收云服务器通过第二基站发送的第二定位信息,其中,第二定位信息是云服务器利用实时动态载波相位差分技术对第二定位数据和第三定位数据进行处理得到的,第二定位数据是由基准站通过第一基站上传的,第三定位数据是由第一车辆通过第二基站上传的;
S504,基于预设时间间隔内接收到的第一定位信息和第二定位信息的先后顺序,确定第一定位信息或第二定位信息为第一车辆的目标定位信息。
根据本公开实施例提供的技术方案,通过利用云服务器对基准站上传的第二定位数据和第一车辆上传的第三定位数据进行RTK解算,能够降低第一车辆的运算量,减小第一车辆的运算压力,提高第一车辆的工作效率。另外,由于第二定位信息是基于基准站和第一车辆上传的定位数据解算得到的,因此,确保了定位信息的有效性和准确性。
图6是本公开实施例提供的再一种定位方法在实际应用场景下涉及的整体架构示意图。如图6所示,该应用场景下的系统架构主要包括以下内容:
在基准站60的预设范围内架设电台62,并使电台62位于基准站60与无人驾驶矿车63的作业区域631之间;基准站60的GPS接收机观测并采集GNSS中的至少一个卫星61发送的卫星观测数据,基准站60将采集到卫星观测数据作为第一定位数据,并通过电台62实时发送至作业区域631内的第一车辆63;进一步地,基准站60还将采集到的卫星观测数据作为第二定位数据,并通过第一基站64实时上传至云服务器65;第一车辆63将获取到的第一车辆63的当前定位数据作为第三定位数据,并通过第二基站66实时上传至云服务器65。
在接收到第二定位数据和第三定位数据后,云服务器65利用RTK技术对第二定位数据和第三定位数据进行解算处理,得到第二定位信息,并通过第二基站66将第二定位信息下发至第一车辆63;在接收到云服务器65发送的第二定位信息后,第一车辆63获取作业区域631内的第二车辆67、第二车辆68和第二车辆69的当前位置,并基于第一车辆63的当前位置,分别计算第一车辆63与第二车辆67、第二车辆68和第二车辆69之间的第一距离;进一步地,第一车辆63从计算出的所有第一距离中选取最小的第一距离对应的第二车辆(即,第二车辆67)作为第一目标车辆,并将第二定位信息发送至第二车辆67。
在确定第二车辆67为第一目标车辆后,第二车辆67获取至少一个第二车辆中的至少一个其他第二车辆(即,第二车辆58和第二车辆59)的当前位置,并基于第二车辆67的当前位置,分别计算第二车辆67与第二车辆58和第二车辆69之间的第二距离;进一步地,第二车辆67从计算出的所有第二距离中选取最小的第二距离对应的第二车辆(即,第二车辆58)作为第二目标车辆,并将第二定位信息发送至第二车辆58;以此类推,第二车辆58将第二定位信息发送至第二车辆59。
根据本公开实施例提供的技术方案,通过构建车辆网络来进行第二定位信息的发送,能够提高车辆信息共享的能力和车辆信息的传输速度;另外,通过计算车辆之间的距离,并按照距离由近及远的顺序将第二定位信息逐一发送给各个第二车辆,能够提高第二定位信息的发送效率,确保第二定位信息的下发及时性,因此,提高了第二车辆的定位稳定性和工作效率。
图7是本公开实施例提供的再一种定位方法的流程示意图。图7涉及的交互主体为基准站(对应于图6的基准站60)、云服务器(对应于图6的云服务器65)、第一车辆(对应于图6的第一车辆63)、第二车辆(对应于图6的第二车辆67)和其他第二车辆(对应于图6的第二车辆68和第二车辆69)。如图7所示,该定位方法包括:
S701,基准站接收GNSS中的至少一个卫星发送的卫星定位数据,并将接收到的卫星定位数据作为第一定位数据,通过电台实时发送至第一车辆;
S702,基准站接收GNSS中的至少一个卫星发送的卫星定位数据,并将接收到的卫星定位数据作为第二定位数据,通过第一基实时上传至云服务器;
S703,第一车辆利用RTK技术对第一定位数据和第一车辆的当前定位数据进行解算处理,得到第一定位信息;
S704,第一车辆将获取到的第一车辆的当前定位数据作为第三定位数据,并通过第 二基站实时上传至云服务器;
S705,云服务器利用RTK技术对第二定位数据和第三定位数据进行解算处理,得到第二定位信息;
S706,云服务器将第二定位信息下发至第一车辆;
S707,第一车辆基于接收到的第一定位信息和第二定位信息的先后顺序,确定第二定位信息为第一车辆的目标定位信息;
S708,第一车辆获取第一车辆的作业区域内的至少一个第二车辆中的每个第二车辆的当前位置;
S709,第一车辆基于该第一车辆的当前位置,计算第一车辆与第二车辆之间的第一距离;
S710,第一车辆从所有第一距离中选取最小距离对应的第二车辆;
S711,第一车辆将第二定位信息发送至第二车辆;
S712,第二车辆获取至少一个第二车辆中的至少一个其他第二车辆中的每个其他第二车辆的当前位置;
S713,第二车辆基于该第二车辆的当前位置,计算第二车辆与其他第二车辆之间的第二距离;
S714,第二车辆从所有第二距离中选取最小距离对应的其他第二车辆;
S715,第二车辆将第二定位信息发送至其他第二车辆,返回执行S712,直至所有第二车辆均接收到第二定位信息。
根据本公开实施例提供的技术方案,通过计算车辆之间的距离,并按照距离由近及远的顺序将第二定位信息逐一发送给各个第二车辆,能够提高第二定位信息的发送效率,确保第二定位信息的下发及时性,因此,提高了第二车辆的定位稳定性和工作效率。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图8是本公开实施例的一种定位装置的结构示意图。如图8所示,该定位装置包括:
接收模块801,被配置为接收基准站通过电台发送的第一定位数据,其中,电台架设在基准站的预设范围内且位于基准站与第一车辆的作业区域之间;
处理模块802,被配置为利用实时动态载波相位差分技术对第一定位数据和第一车辆的当前定位数据进行处理,得到第一车辆的第一定位信息。
根据本公开实施例提供的技术方案,通过接收基准站通过电台发送的第一定位数据,其中,电台架设在基准站的预设范围内且位于基准站与第一车辆的作业区域之间;利用实时动态载波相位差分技术对第一定位数据和第一车辆的当前定位数据进行处理,得到第一车辆的第一定位信息,能够在不增加基准站的建设成本和维护成本的情况下,使第一车辆在很短的时间内获得厘米级定位精度,因此,提高了第一车辆的定位稳定性,并进一步提高了第一车辆的工作效率。
在一些实施例中,图8的定位装置还包括:确定模块803,其中,接收模块801还接收云服务器通过第二基站发送的第二定位信息,其中,第二定位信息是云服务器利用实时动态载波相位差分技术对第二定位数据和第三定位数据进行处理得到的,第二定位数据是由基准站通过第一基站上传的,第三定位数据是由第一车辆通过第二基站上传的; 确定模块803被配置为基于预设时间间隔内接收到的第一定位信息和第二定位信息的先后顺序,确定第一定位信息或第二定位信息为第一车辆的目标定位信息。
在一些实施例中,第二定位信息包括作业区域内的至少一个第二车辆的目标定位信息,图8的定位装置还包括:发送模块804,被配置为在确定第二定位信息为第一车辆的目标定位信息的情况下,将第二定位信息发送至至少一个第二车辆中与第一车辆距离最近的第二车辆。
在一些实施例中,图8的发送模块804获取至少一个第二车辆中的每个第二车辆的当前位置,并分别计算第一车辆的当前位置与第二车辆的当前位置之间的第一距离;以及选取与所有的第一距离中的最小距离对应的第二车辆作为第一目标车辆,并将第二定位信息发送至第一目标车辆。
在一些实施例中,图8的发送模块804还获取至少一个第二车辆中的至少一个其他第二车辆中的每个其他第二车辆的当前位置,并分别计算第一目标车辆的当前位置与其他第二车辆的当前位置之间的第二距离;以及选取与所有的第二距离中的最小距离对应的其他第二车辆作为第二目标车辆,将第二定位信息发送至第二目标车辆,并执行以上迭代处理过程,直至至少一个第二车辆中的每个第二车辆接收到第二定位信息。
在一些实施例中,图8的定位装置还包括:选择模块805,其中,接收模块801还接收全球导航卫星系统中的至少一个卫星发送的卫星定位数据;处理模块802还利用实时动态载波相位差分技术对卫星定位数据和当前定位数据进行处理,得到第一车辆的第三定位信息;选择模块805被配置为在确定信号接收质量满足预设质量要求的情况下,选择第三定位信息作为第一车辆的目标定位信息;以及在确定信号接收质量未满足预设质量要求的情况下,选择第一定位信息作为第一车辆的目标定位信息。
在一些实施例中,第一车辆包括无人驾驶矿车或自动驾驶矿车。
上述装置中各个模块的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
图9是本公开实施例的一种电子设备的结构示意图。如图9所示,该实施例的电子设备90包括:处理器901、存储器902以及存储在该存储器902中并且可以在处理器901上运行的计算机程序903。处理器901执行计算机程序903时实现上述各个方法实施例中的步骤。或者,处理器901执行计算机程序903时实现上述各装置实施例中各模块/单元的功能。
示例性地,计算机程序903可以被分割成一个或多个模块/单元,一个或多个模块/单元被存储在存储器902中,并由处理器901执行,以完成本公开。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序903在电子设备90中的执行过程。
电子设备90可以是桌上型计算机、笔记本、掌上电脑及云端服务器等电子设备。电子设备90可以包括但不仅限于处理器901和存储器902。本领域技术人员可以理解,图9仅仅是电子设备90的示例,并不构成对电子设备90的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如,电子设备还可以包括输入输出设备、网络接入设备、总线等。
处理器901可以是中央处理单元(Central Processing Unit,CPU),也可以是其它 通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器902可以是电子设备90的内部存储单元,例如,电子设备90的硬盘或内存。存储器902也可以是电子设备90的外部存储设备,例如,电子设备90上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器902还可以既包括电子设备90的内部存储单元也包括外部存储设备。存储器902用于存储计算机程序以及电子设备所需的其它程序和数据。存储器902还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本公开的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
在本公开所提供的实施例中,应该理解到,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可以存储在一个计算机可读存储介质中。基于这样的理解,本公开实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,计算机程序可以存储在计算机可读存储介质中,该计算机程序在被处理器执行时,可以实现上述各个方法实施例的步骤。计算机程序可以包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如,在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种定位方法,其特征在于,包括:
    接收基准站通过电台发送的第一定位数据,其中,所述电台架设在所述基准站的预设范围内且位于所述基准站与第一车辆的作业区域之间;
    利用实时动态载波相位差分技术对所述第一定位数据和所述第一车辆的当前定位数据进行处理,得到所述第一车辆的第一定位信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收云服务器通过第二基站发送的第二定位信息,其中,所述第二定位信息是所述云服务器利用所述实时动态载波相位差分技术对第二定位数据和第三定位数据进行处理得到的,所述第二定位数据是由所述基准站通过第一基站上传的,所述第三定位数据是由所述第一车辆通过所述第二基站上传的;
    基于预设时间间隔内接收到的所述第一定位信息和所述第二定位信息的先后顺序,确定所述第一定位信息或所述第二定位信息为所述第一车辆的目标定位信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第二定位信息包括所述作业区域内的至少一个第二车辆的目标定位信息,所述方法还包括:
    在确定所述第二定位信息为所述第一车辆的目标定位信息的情况下,将所述第二定位信息发送至所述至少一个第二车辆中与所述第一车辆距离最近的第二车辆。
  4. 根据权利要求3所述的方法,其特征在于,所述将所述第二定位信息发送至所述至少一个第二车辆中与所述第一车辆距离最近的第二车辆,包括:
    获取所述至少一个第二车辆中的每个第二车辆的当前位置,并分别计算所述第一车辆的当前位置与所述第二车辆的当前位置之间的第一距离;
    选取与所有的所述第一距离中的最小距离对应的第二车辆作为第一目标车辆,并将所述第二定位信息发送至所述第一目标车辆。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    获取所述至少一个第二车辆中的至少一个其他第二车辆中的每个其他第二车辆的当前位置,并分别计算所述第一目标车辆的当前位置与所述其他第二车辆的当前位置之间的第二距离;
    选取与所有的所述第二距离中的最小距离对应的其他第二车辆作为第二目标车辆,将所述第二定位信息发送至所述第二目标车辆,并执行以上迭代处理过程,直至所述至少一个第二车辆中的每个第二车辆接收到所述第二定位信息。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收全球导航卫星系统中的至少一个卫星发送的卫星定位数据;
    利用所述实时动态载波相位差分技术对所述卫星定位数据和所述当前定位数据进行处理,得到所述第一车辆的第三定位信息;
    在确定信号接收质量满足预设质量要求的情况下,选择所述第三定位信息作为所述第一车辆的目标定位信息;
    在确定所述信号接收质量未满足所述预设质量要求的情况下,选择所述第一定位信息作为所述第一车辆的目标定位信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一车辆包括无人驾驶矿车或自动驾驶矿车。
  8. 一种定位装置,其特征在于,包括:
    接收模块,被配置为接收基准站通过电台发送的第一定位数据,其中,所述电台架设在所述基准站的预设范围内且位于所述基准站与第一车辆的作业区域之间;
    处理模块,被配置为利用实时动态载波相位差分技术对所述第一定位数据和所述第一车辆的当前定位数据进行处理,得到所述第一车辆的第一定位信息。
  9. 一种电子设备,包括处理器、存储器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7中任一项所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述方法的步骤。
PCT/CN2022/143152 2022-09-13 2022-12-29 定位方法、装置、电子设备及存储介质 WO2024055473A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022453597A AU2022453597A1 (en) 2022-09-13 2022-12-29 Positioning method, apparatus, electronic device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211111334.7 2022-09-13
CN202211111334.7A CN115184863B (zh) 2022-09-13 2022-09-13 定位方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024055473A1 true WO2024055473A1 (zh) 2024-03-21

Family

ID=83524486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143152 WO2024055473A1 (zh) 2022-09-13 2022-12-29 定位方法、装置、电子设备及存储介质

Country Status (3)

Country Link
CN (1) CN115184863B (zh)
AU (1) AU2022453597A1 (zh)
WO (1) WO2024055473A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184863B (zh) * 2022-09-13 2023-01-24 北京易控智驾科技有限公司 定位方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311124A (ja) * 2001-04-11 2002-10-23 Mitsui & Co Ltd 衛星測位システム
US20150168560A1 (en) * 2013-12-18 2015-06-18 Agco Corporation System and method of communicating gnss information between mobile machines
CN106597480A (zh) * 2016-12-08 2017-04-26 深圳大学 用于卫星导航rtk发射电台的抗干扰定位方法及系统
WO2021195971A1 (zh) * 2020-03-31 2021-10-07 深圳市大疆创新科技有限公司 定位方法、控制方法、控制终端及可移动平台
WO2022038980A1 (ja) * 2020-08-21 2022-02-24 ヤンマーホールディングス株式会社 測位装置、作業車両、測位方法、及び測位プログラム
CN115184863A (zh) * 2022-09-13 2022-10-14 北京易控智驾科技有限公司 定位方法、装置、电子设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019336B (zh) * 2015-08-28 2019-07-23 千寻位置网络有限公司 全球导航卫星系统的差分中继方法及其装置
FR3064798A1 (fr) * 2017-03-30 2018-10-05 Ldl Technology Procede et dispositif de surveillance de parametres pour vehicules terrestres
CN107255566A (zh) * 2017-06-08 2017-10-17 武汉科技大学 一种车载式车辆行驶跑偏检测装置和检测方法
CN109291989A (zh) * 2018-10-24 2019-02-01 山东农业大学 一种用于农业机械的电动方向盘及自动驾驶方法
CN114814917A (zh) * 2022-03-18 2022-07-29 深圳市正浩创新科技股份有限公司 基准站的位置确定方法、监控方法、计算机设备及介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311124A (ja) * 2001-04-11 2002-10-23 Mitsui & Co Ltd 衛星測位システム
US20150168560A1 (en) * 2013-12-18 2015-06-18 Agco Corporation System and method of communicating gnss information between mobile machines
CN106597480A (zh) * 2016-12-08 2017-04-26 深圳大学 用于卫星导航rtk发射电台的抗干扰定位方法及系统
WO2021195971A1 (zh) * 2020-03-31 2021-10-07 深圳市大疆创新科技有限公司 定位方法、控制方法、控制终端及可移动平台
WO2022038980A1 (ja) * 2020-08-21 2022-02-24 ヤンマーホールディングス株式会社 測位装置、作業車両、測位方法、及び測位プログラム
CN115184863A (zh) * 2022-09-13 2022-10-14 北京易控智驾科技有限公司 定位方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN115184863A (zh) 2022-10-14
AU2022453597A1 (en) 2024-03-28
CN115184863B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
US11366194B2 (en) Method for providing and improving a positional probability distribution for GNSS received data
US7855683B2 (en) Methods and apparatuses for GPS coordinates extrapolation when GPS signals are not available
US20200003907A1 (en) Grouping for efficient cooperative positioning calculations
US20230072669A1 (en) Vehicle positioning using pseudo range observation and doppler observation values
US11531118B2 (en) GNSS signal modeling
EP2156208B1 (en) Positioning using a reference station
EP2876463B1 (en) Method for determining location of vehicle
US20160313450A1 (en) Automotive gnss real time kinematic dead reckoning receiver
JP2002532679A5 (zh)
CN102426374A (zh) Gps移动基站快速定位与解算方法
WO2024055473A1 (zh) 定位方法、装置、电子设备及存储介质
WO2016160497A1 (en) Automotive ad hoc real time kinematics roving network
CN108885269B (zh) 导航方法、导航装置和导航系统
CN113406683A (zh) 基于多模式立体联合定位的全场景定位系统及方法
Basnayake et al. Can GNSS Drive V2X?
CN112904390B (zh) 定位方法、装置、计算机设备和存储介质
CN114047536A (zh) 基于救援装备运动约束的ppp-rtk快速收敛方法
US11500110B2 (en) Localization using bearing from environmental features
CN111045061B (zh) 基于v2v的车辆间协作定位及距离感知方法与装置
WO2023216766A1 (zh) 一种定位方法以及相关装置
KR102617409B1 (ko) 위치정보 보정방법
Zhang et al. GNSS position-aided delay-locked loops for accurate urban navigation
Martı́nez et al. A new method of generating differential GPS corrections
CN115113252A (zh) 一种终端位置的确定方法、装置、设备及存储介质
Hadaller Mitigating gps error in mobile environments

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022453597

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022453597

Country of ref document: AU

Date of ref document: 20221229

Kind code of ref document: A