WO2023216766A1 - 一种定位方法以及相关装置 - Google Patents

一种定位方法以及相关装置 Download PDF

Info

Publication number
WO2023216766A1
WO2023216766A1 PCT/CN2023/085858 CN2023085858W WO2023216766A1 WO 2023216766 A1 WO2023216766 A1 WO 2023216766A1 CN 2023085858 W CN2023085858 W CN 2023085858W WO 2023216766 A1 WO2023216766 A1 WO 2023216766A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
terminal
positioning
information
building
Prior art date
Application number
PCT/CN2023/085858
Other languages
English (en)
French (fr)
Inventor
苏景岚
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2023216766A1 publication Critical patent/WO2023216766A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/33Multimode operation in different systems which transmit time stamped messages, e.g. GPS/GLONASS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type

Definitions

  • the present application relates to the field of positioning technology, and in particular, to a positioning method and related devices.
  • the Global Navigation Satellite System also known as the Global Navigation Satellite System, is a space-based radio that can provide users with all-weather three-dimensional coordinates, speed and time information anywhere on the earth's surface or near-Earth space. Navigation and positioning system. Common systems include the United States’ Global Positioning System (GPS), China’s BeiDou Navigation Satellite System (BDS), and GLONASS, which is the Russian “Global Navigation Satellite System”
  • GPS Global Positioning System
  • BDS BeiDou Navigation Satellite System
  • GLONASS which is the Russian “Global Navigation Satellite System”
  • the four major satellite navigation systems are the Galileo satellite navigation system (GALILEO) and the Galileo satellite navigation system (GALILEO). The first one to appear was the American GPS, which is also the most technically complete positioning system at this stage.
  • Satellite navigation systems have been widely used in communications, personnel following, consumer entertainment, surveying and mapping, timing, vehicle monitoring and management, and car navigation and information services.
  • Embodiments of the present application provide a positioning method and related devices for improving positioning accuracy in scenarios with severe satellite signal obstruction and obvious multipath effects.
  • the present application provides a positioning method, which is executed by a computer device and includes: obtaining the approximate position of the terminal to be positioned; obtaining the satellite signal carrier-to-noise ratio of the satellite signal received by the terminal to be positioned; converting the approximate position
  • the location is sent to the city 3D model server; the 3D building 3D information sent by the city 3D model server is received, and the building 3D information is calculated by the city 3D model server based on the approximate location; based on the approximate location, the building 3D information and
  • the satellite signal carrier-to-noise ratio is calculated to obtain the satellite visibility probability of the target satellite.
  • the target satellite is the corresponding satellite that the terminal to be positioned receives the satellite signal.
  • the satellite visibility probability is used to indicate that the target satellite is in a visible position relative to the terminal to be positioned.
  • the probability value of the visible state; the positioning information of the terminal to be positioned is calculated based on the satellite visibility probability and the satellite signal.
  • the present application provides a positioning device, which is deployed on a computer device and includes: an acquisition module, used to obtain the approximate position of a terminal to be positioned; and to obtain the satellite signal carrier-to-noise ratio of a satellite signal received by the terminal to be positioned;
  • the sending module is used to send the approximate location to the city 3D model server;
  • the receiving module is used to receive the 3D building 3D information sent by the city 3D model server, and the 3D building 3D information is the city 3D model server based on the
  • the approximate position is calculated;
  • the processing module calculates the satellite visibility probability of the target satellite based on the approximate position, the three-dimensional information of the building and the satellite signal carrier-to-noise ratio.
  • the target satellite is the corresponding satellite that the terminal to be positioned receives the satellite signal.
  • the satellite visibility probability is used to indicate the probability value that the target satellite is in a visible state relative to the terminal to be positioned; the positioning information of the terminal to be positioned is calculated based on the satellite visibility probability and the satellite signal.
  • a computer device including: a memory, a processor and a bus system;
  • the memory is used to store computer programs
  • the processor is used to execute the computer program in the memory.
  • the computer program When executed by the processor, it causes the processor to execute the above methods;
  • the bus system is used to connect the memory and the processor so that the memory and the processor can communicate.
  • the computer-readable storage medium stores a computer program, which when run on a computer causes the computer to perform the methods of the above aspects.
  • Another aspect of the present application provides a computer program product, which includes a computer program stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer program from the computer-readable storage medium, and the processor executes the computer program, so that the computer device executes the methods provided by the above aspects.
  • the embodiments of the present application have the following advantages: after the positioning device obtains the approximate position of the terminal to be positioned, it obtains the three-dimensional information of the building in the environment where the terminal to be positioned is located, and based on the three-dimensional information of the building information and the carrier-to-noise ratio of the satellite signal received by the terminal to be positioned determines the satellite visibility probability, that is, determines whether there is an obstruction between the terminal to be positioned and the satellite, thereby reflecting the accuracy of the satellite signal.
  • the signal calculates the final positioning information of the terminal to be positioned, so that the received satellite signal can be corrected based on the satellite visibility probability, which improves the accuracy of the terminal to be positioned based on the satellite signal in scenarios with severe satellite signal occlusion and obvious multipath effects.
  • the accuracy of positioning is based on the satellite visibility probability and the satellite.
  • FIG. 1 is a system architecture diagram of the CORS system
  • Figure 2 is a schematic diagram of the system architecture of RTK differential positioning
  • Figure 3 is an architectural schematic diagram of a communication system in an embodiment of the present application.
  • Figure 4 is an architectural schematic diagram of a communication system in an embodiment of the present application.
  • Figure 5 is a schematic diagram of an embodiment of the positioning method in the embodiment of the present application.
  • Figure 6 is a schematic diagram of a scene of the three-dimensional information of the building in the embodiment of the present application.
  • Figure 7 is a schematic diagram of a scene showing the three-dimensional information of the building and the location of the terminal equipment in the embodiment of the present application;
  • Figure 8 is a schematic diagram of an embodiment of satellite visual distribution information in the embodiment of the present application.
  • Figure 9 is a schematic diagram of another embodiment of satellite visual distribution information in the embodiment of the present application.
  • Figure 10 is a schematic diagram of an embodiment of the positioning device in the embodiment of the present application.
  • Figure 11 is a schematic diagram of another embodiment of the positioning device in the embodiment of the present application.
  • Figure 12 is a schematic diagram of another embodiment of the positioning device in the embodiment of the present application.
  • Embodiments of the present application provide a positioning method and related devices for improving positioning accuracy in scenarios with severe satellite signal obstruction and obvious multipath effects.
  • LBS Location Based Services
  • the Internet provides information resources and basic services to positioning devices.
  • the LBS service integrates mobile communications, Internet, spatial positioning, location information, big data and other information technologies. It uses the mobile Internet service platform for data update and interaction, so that users can obtain corresponding services through spatial positioning.
  • the Global Navigation Satellite System also known as the Global Navigation Satellite System, can provide users with all-weather three-dimensional coordinates, speed and time at any location on the earth's surface or near-Earth space.
  • Information space-based radio navigation and positioning systems Common systems include Global Positioning System (GPS), BeiDou Navigation Satellite System (BDS), GLONASS (abbreviation of "Global Navigation Satellite System” in Russian) and The four major satellite navigation systems of Galileo satellite navigation system (GALILEO). The earliest one is GPS, which is also the most technically complete positioning system at this stage. With the opening of comprehensive services of BDS and GLONASS systems in recent years, especially the BDS system It is developing faster and faster in the civilian field. Satellite navigation systems have been widely used in communications, personnel following, consumer entertainment, surveying and mapping, timing, vehicle monitoring and management, and car navigation and information services.
  • Satellite positioning equipment electronic equipment used to follow and process satellite signals, and measure the geometric distance between the equipment and the satellite (pseudorange observations) and the Doppler effect of the satellite signal (Doppler observations); satellite positioning equipment It usually includes modules such as antennas, satellite signal following loops, and baseband signal processing. Mobile terminals integrating satellite positioning equipment calculate the current position coordinates of the mobile terminal based on pseudorange and Doppler observations. Satellite positioning equipment is widely used in map navigation and surveying.
  • the observation values output by satellite positioning equipment include pseudorange, pseudorange rate and accumulated delta range (ADR) ); pseudorange measures the geometric distance from the satellite to the positioning equipment; pseudorange rate observations measure the Doppler effect caused by the relative motion of the positioning equipment and the satellite; ADR measures the change in the geometric distance from the satellite to the positioning equipment.
  • CORS Continuously operating reference stations
  • It is a network base station that sends and receives differential data through the network, such as GPS differential data, GNSS differential data, etc. After users access CORS, they do not need to set up a separate GPS base station. Differential positioning of GPS rover. Among them, users need a network communication protocol to access the CORS system.
  • the Internet-based RTCM network transmission protocol Networked Transport of RTCM via Internet Protocol, Ntrip
  • Ntrip Networked Transport of RTCM via Internet Protocol, Ntrip
  • the CORS system is a multi-faceted and in-depth product of high-tech technologies such as satellite positioning technology, computer network technology, and digital communication technology.
  • the CORS system It consists of five parts: base station network, data processing center, data transmission system, positioning and navigation data broadcast system, and user application system. Each base station and monitoring and analysis center are connected through a data transmission system to form a dedicated network.
  • An exemplary architecture can be shown in Figure 1.
  • the CORS system includes a ground reference station system, GNSS navigation satellites, a positioning service platform and a user terminal.
  • the user terminal may include a vehicle-mounted terminal, a smart phone, an aircraft, etc.
  • the ground reference station system obtains the original satellite observation data of the GNSS navigation satellite, it sends the original satellite observation data to the positioning service platform; at the same time, the positioning service platform can also obtain the data sent by the user terminal or the positioning service platform sends data to the user.
  • the terminal sends data.
  • a location reporting service can also be performed between the positioning service platform and the user terminal.
  • RTK differential positioning technology a real-time dynamic positioning technology based on carrier phase observations. Its basic principle is to place a GPS receiver on a base station for observation. Based on the known precise coordinates of the base station, the distance correction number from the base station to the satellite is calculated, and the base station sends the correction data in real time. While performing GPS observations, the user receiver also receives the correction data sent by the base station and corrects its positioning results, thereby improving positioning accuracy. Therefore, differential positioning technology can provide the three-dimensional positioning results of the station in the specified coordinate system in real time and achieve centimeter-level accuracy. Compared with single-point positioning, RTK differential positioning can eliminate the effects of atmospheric delay errors, satellite clock errors, and user receiver clock errors.
  • the difference between the RTK differential positioning and the single-point positioning can be shown in Figure 2.
  • the vehicle-mounted terminal receives the GNSS navigation.
  • the satellite observation data sent by the satellite is then positioned based on the satellite observation data. If the vehicle-mounted terminal is still driving during the positioning process, there may be a discrepancy between the location information obtained based on the received observation data and the actual location information of the vehicle-mounted terminal. 5-20 meter error.
  • the vehicle-mounted terminal will eliminate errors with the satellite observation data received by the ground reference station. At this time, the position information obtained by the vehicle-mounted terminal positioning is consistent with the location information of the vehicle-mounted terminal.
  • the actual position information may have an error of only 3-5 cm. At this time, the error may include space system error, propagation error and environmental error.
  • FIG. 3 is an architectural schematic diagram of the communication system in the embodiment of this application.
  • the communication system includes a city three-dimensional model server, a CORS system, a terminal device and Satellites, and the positioning client can be deployed on the terminal device.
  • the positioning client can be run on the terminal device in the form of a browser, or it can be run on the terminal device in the form of an independent application (application, APP), etc. , there is no limitation here on the specific display form of positioning the client.
  • the server involved in this application can be an independent physical server, or a server cluster or distributed system composed of multiple physical servers.
  • the terminal device can be a smartphone, a tablet, a laptop, a handheld computer, a personal computer, a smart TV, a smart watch, a vehicle-mounted device, a wearable device, a vehicle-mounted terminal, etc., but is not limited thereto.
  • the terminal device and the server can be connected directly or indirectly through wired or wireless communication methods, which is not limited in this application. There is no limit on the number of servers and terminal devices.
  • the solution provided by this application can be completed independently by the terminal device, or can be completed independently by the server, or can be completed by the terminal device and the server in cooperation.
  • the terminal device is integrated with a global satellite navigation system positioning chip, which is used to process satellite signals and perform precise positioning of users. It has been widely used in location services.
  • terminal equipment package Contains satellite positioning equipment and the terminal equipment can obtain satellite observation values.
  • the satellite observation values output by the terminal equipment include pseudo range, pseudo range rate and accumulated distance increment (accumulated delta range, ADR); the pseudo range measures the satellite to The geometric distance of the positioning equipment; the pseudorange rate observation value measures the Doppler effect caused by the relative motion of the positioning equipment and the satellite; ADR measures the change in the geometric distance from the satellite to the positioning equipment.
  • the specific process of the positioning method of this application can be as follows: the satellite or the CORS system sends satellite observation data to the terminal device, where the satellite observation data includes base station observation information and pseudo-range observation information. , carrier phase observation information, carrier-to-noise ratio observation information, and Doppler observation information.
  • the terminal device can be a terminal to be positioned at the same time. At this time, the terminal to be positioned itself can be used as a terminal device that performs the positioning method provided by the embodiment of the present application.
  • the terminal device determines the approximate location of the terminal device based on the satellite observation data, and then the terminal device can send the approximate location of the terminal device to the city three-dimensional model server according to the NTRIP protocol, and obtain the approximate location of the terminal device from the city three-dimensional model server. 3D information about the building with the approximate location of the equipment.
  • the terminal device can calculate the satellite visibility probability based on the three-dimensional information of the building and the satellite signal carrier-to-noise ratio of the satellite signal received by the terminal device. Finally, the terminal device determines the positioning information of the terminal device based on the satellite visibility probability and the satellite signal. .
  • FIG 4 is an architectural schematic diagram of the communication system in the embodiment of the application.
  • the communication system includes a three-dimensional city Model server, CORS system, terminal to be positioned, satellite and positioning device, and the positioning client is deployed on the positioning device.
  • the positioning client can run on the positioning device through a browser, or through an independent application ( Application, APP) runs on the positioning device, etc. There is no limit here on the specific display form of the positioning client.
  • the computer device that executes the positioning method provided by the embodiments of the present application can be independent of the terminal to be located, and the computer device that executes the positioning method provided by the embodiments of the present application is called a positioning device.
  • the server involved in this application can be an independent physical server, or a server cluster or distributed system composed of multiple physical servers. It can also provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, Cloud servers for basic cloud computing services such as cloud communications, middleware services, domain name services, security services, Content Delivery Network (CDN), and big data and artificial intelligence platforms.
  • cloud services cloud databases, cloud computing, cloud functions, cloud storage, network services, Cloud servers for basic cloud computing services such as cloud communications, middleware services, domain name services, security services, Content Delivery Network (CDN), and big data and artificial intelligence platforms.
  • CDN Content Delivery Network
  • the terminal to be located can be a smartphone, a tablet, a laptop, a handheld computer, a personal computer, a smart TV, a smart watch, a vehicle-mounted device, a wearable device, a vehicle-mounted terminal, etc., but is not limited thereto.
  • the terminal to be located and the server can be connected directly or indirectly through wired or wireless communication methods, which is not limited in this application. There is no limit on the number of servers and terminals to be located.
  • the positioning device may be another terminal device that is independent of the terminal to be located, or it may be another server that is independent of the terminal to be located.
  • the positioning device and the terminal to be positioned can be connected directly or indirectly through wired or wireless communication.
  • the positioning device and the terminal to be positioned are integrated with a global satellite navigation system positioning chip, which is used to process satellite signals and perform precise positioning of users. It has been widely used in location services.
  • the terminal equipment contains satellite positioning equipment and the terminal equipment can obtain satellite observation values.
  • the satellite observation values output by the terminal equipment include pseudo-range, pseudo-range rate and ADR; the pseudo-range measures the geometric distance from the satellite to the positioning equipment; Pseudorange rate observations measure the Doppler effect caused by the relative motion of the positioning equipment and the satellite; ADR measures the change in the geometric distance from the satellite to the positioning equipment.
  • the specific process of the positioning method of this application can be as follows: the satellite or the CORS system sends satellite observation data to the terminal to be positioned, where the satellite observation data includes base station observation information, pseudo-range observation information, carrier phase observation information, carrier-to-noise ratio observation information, and Doppler observation information.
  • the terminal to be positioned determines the approximate position of the terminal to be positioned based on the satellite observation data, and then the terminal to be positioned sends the approximate position to the positioning device.
  • the positioning device can then send the approximate location of the terminal device to the city 3D model server according to the NTRIP protocol, and obtain the building 3D information based on the approximate location of the terminal to be located from the city 3D model server.
  • the positioning device calculates the satellite visibility probability based on the three-dimensional information of the building and the satellite signal carrier-to-noise ratio of the satellite signal received by the terminal to be positioned. Finally, the positioning device determines the positioning information of the terminal to be positioned based on the satellite visibility probability and the satellite signal. , the positioning device sends the positioning information of the terminal to be positioned to the terminal to be positioned.
  • the positioning device can also directly receive the approximate position, three-dimensional building information, ephemeris and satellite observation data sent by the terminal device. That is, as long as the terminal to be positioned can be positioned, the specific implementation method is not limited here.
  • the positioning method in this application is described below. Please refer to Figure 5 for details.
  • the terminal to be positioned is used as the positioning execution subject.
  • the terminal device to be positioned is used to indicate the terminal to be positioned.
  • An embodiment of the positioning method in this application includes:
  • the terminal device determines the approximate location of the terminal device.
  • the terminal device can obtain the ephemeris and satellite observation data sent by CORS.
  • the satellite observation data is the satellite observation relative to the terminal to be positioned. data, and then obtain a rough position based on ephemeris and satellite observation data.
  • the ephemeris refers to the precise position or trajectory table of celestial bodies changing with time in GPS measurement, which is a function of time. Specific applications include "broadcast ephemeris" and post-processing "precision ephemeris".
  • the satellite observation data may include base station observation information, pseudo-range observation information, carrier phase observation information, carrier-to-noise ratio observation information, and Doppler observation information.
  • the terminal device sends a request message to the CORS system.
  • the request message is used to request the CORS system to broadcast ephemeris and satellite observation data (see 501 in Figure 5), thereby applying to the CORS system for the current Ephemerides of positioning satellites and satellite observation data.
  • the CORS system After receiving the request message from the terminal device, the CORS system sends the current ephemeris and satellite observation data to the terminal device, that is, the terminal device receives the ephemeris and satellite observation data sent by the CORS system (see 502 in Figure 5 shown).
  • the approximate position of the terminal to be located can be obtained more directly, thereby improving the convenience of positioning.
  • the way for the terminal device to determine the approximate position of the terminal device may be to obtain the ephemeris and satellite observation data sent by the terminal to be positioned, where the satellite observation data is satellite observation data relative to the terminal to be positioned, Then the approximate position is obtained based on the ephemeris and satellite observation data.
  • another positioning device is used to implement the positioning process, thereby avoiding the hardware limitations of the terminal device for positioning and improving the positioning calculation speed.
  • an implementation method for the terminal device to obtain a rough position based on the ephemeris and the satellite observation data may be to use the pseudorange observation values and satellite observation values in the satellite observation data.
  • the approximate position can also be understood as initial positioning information determined by the terminal device based on the ephemeris and the satellite observation data.
  • the current actual location of the terminal device is A
  • the approximate location is that the terminal is at location B, where the distance difference between location B and location A is M meters.
  • the terminal device obtains the satellite signal carrier-to-noise ratio of the satellite signal it receives.
  • the carrier-to-noise ratio (signal-to-noise ratio) is a standard measurement scale used to indicate the relationship between carrier and carrier noise, usually recorded as CNR or C/N (dB).
  • CNR carrier-to-noise ratio
  • Pc power of the carrier
  • Pn power of the noise
  • Carrier-to-noise ratio is similar to signal-to-noise ratio, which is a measure of network channel quality. But signal-to-noise ratio is often used in practical applications.
  • Carrier-to-noise ratio is used in satellite communication systems. The best antenna arrangement can get the best carrier-to-noise ratio value.
  • the terminal device after receiving the satellite signal sent by the navigation satellite, the terminal device can obtain the satellite signal carrier-to-noise ratio of the satellite signal through the carrier power of the satellite signal and the noise power of the satellite signal.
  • the terminal device sends the approximate location to the city three-dimensional model server.
  • the terminal device sends the approximate location to the city three-dimensional model server through the NTRIP protocol or other possible communication protocols.
  • the three-dimensional model of the city is a three-dimensional model based on two-dimensional geographical information. After program development, it has been developed into a three-dimensional geographical information system. This system can be used to analyze the natural elements and construction elements of the city. Through interactive operations, users can get a real and intuitive virtual urban environment experience.
  • the city three-dimensional model server in this embodiment can also be understood as a city three-dimensional model database.
  • the city three-dimensional model server determines the three-dimensional building information based on the approximate location.
  • the city three-dimensional model server finds the area where the approximate location is located from the database, and then obtains the three-dimensional building information of each building near the approximate location. It can be understood that the three-dimensional information of the building includes the coordinates, length, width, height, area, volume, azimuth angle, slope, turning radius and other information of each building.
  • the approximate location of the terminal device is B. Based on the location B, the city 3D model server obtains that the surrounding buildings are C, D, and E. Then the 3D information of the building will include buildings C, Three-dimensional information of Building D and Building E.
  • the terminal device receives the three-dimensional building information sent by the city three-dimensional model server.
  • the city three-dimensional model server After acquiring the three-dimensional building information based on the approximate location of the terminal device, the city three-dimensional model server feeds back the building three-dimensional information to the terminal device.
  • the terminal device calculates the satellite visibility probability of the target satellite based on the approximate position, the three-dimensional information of the building and the satellite signal carrier-to-noise ratio, where the target satellite is the corresponding satellite for which the terminal device receives the satellite signal.
  • the satellite visibility probability is used to indicate the probability value that the target satellite is visible to the terminal device.
  • the terminal device can receive satellite signals from multiple navigation satellites. Therefore, in this embodiment, the terminal device can calculate the satellite availability of each satellite based on its approximate location, three-dimensional information of the building, and the satellite signal carrier-to-noise ratio of the multiple satellites. Depending on the probability.
  • the terminal device calculates the satellite apparent probability of the target satellite based on the approximate position, the three-dimensional information of the building and the satellite signal carrier-to-noise ratio, and can adopt the following technical solution:
  • the terminal device calculates the satellite visual distribution information based on the three-dimensional information of the building and the approximate position.
  • the satellite visual distribution information is used to indicate the visual status of the corresponding satellite that the terminal device can receive the satellite signal; then the terminal device calculates the satellite visual distribution information according to the The visibility probability of the satellite is calculated based on the satellite signal carrier-to-noise ratio and the satellite visualization distribution information.
  • the visual distribution information is calculated based on the three-dimensional information of the building, and then the satellite visibility probability is calculated based on the visual distribution information and the satellite signal carrier-to-noise ratio. This increases the calculation accuracy of the satellite visibility probability, thus improving the reliability of data processing.
  • the terminal device calculates the satellite visual distribution information based on the three-dimensional information of the building and the approximate position
  • the following exemplary solution can be adopted:
  • the intersection point K of the building and the location of the terminal to be positioned and the coordinate information of the intersection K are calculated; according to the coordinate information of the intersection K, the target satellite is calculated relative to the intersection K the altitude angle of the target satellite relative to the terminal to be positioned; when the altitude angle of the target satellite relative to the terminal to be positioned is less than or equal to the altitude angle of the target satellite relative to the intersection point K, it is determined that the target satellite is in an invisible state relative to the terminal to be positioned; when the target When the altitude angle of the satellite relative to the terminal to be positioned is greater than the altitude angle of the target satellite relative to the intersection point K, it is determined that the target satellite is in a visible state relative to the terminal to be positioned. It can be understood that, in addition to the altitude angle of the intersection point K, the azimuth angle of the target satellite relative to the intersection point K can also be calculated based on the coordinate information of the intersection point K.
  • the above method determines the visible state of the satellite connected to the terminal to be positioned based on the probabilistic position of the terminal to be positioned, thereby classifying the accuracy of the satellite signal, thereby improving the positioning accuracy of the terminal to be positioned.
  • the terminal device can adopt the following technical solution when calculating the satellite visibility probability based on the satellite visibility distribution information and the satellite signal carrier-to-noise ratio:
  • the terminal device obtains the visual status values of N satellites based on the satellite visual distribution information, and the value of N is the number of satellites connected to the terminal to be positioned; and calculates the carrier-to-noise ratio status of the N satellites based on the satellite signal carrier-to-noise ratio. value; calculate the satellite visibility probability of the N satellites based on the visibility information of the N satellites and the carrier-to-noise ratio status value of the N satellites.
  • the above method increases the calculation process from satellite visualization distribution information to satellite visibility probability, thereby increasing the achievability of the entire solution.
  • the terminal device calculates the satellite visible distribution information as follows:
  • the altitude angle of satellite j relative to terminal device i is the azimuth angle of satellite j relative to terminal device i; after solving the altitude angle and azimuth angle of the terminal device relative to the satellite, the approximate position of the terminal device and the three-dimensional information of the building based on the approximate position of the terminal device , if the terminal device is at the azimuth angle There is no building obstruction, then satellite j is visible to the terminal device; if the terminal device is in the azimuth angle If there is a building blocking the place, the three-dimensional model of the building is determined based on the three-dimensional information of the building, and the azimuth angle between the highest edge of the building and the terminal device is calculated based on the three-dimensional model of the building.
  • intersection point K of the ray is as shown in Figure 7. Assume that the coordinates of the intersection K are r k , calculate the altitude angle and azimuth angle of satellite j relative to the intersection K according to the following formula (4), formula (5) and formula (6), namely
  • the satellite visible distribution information with the terminal device as the center position can be obtained, as shown in Figure 8 and Figure 9 Show.
  • the satellite When the satellite is located in the white area on the right side of Figure 8, it is visible. When the satellite is located on the shaded area on the right side of Figure 8, it is not visible.
  • the black line represents the boundary line of the satellite's visible area; the light gray in Figure 9 (such as Figure 9 The satellites numbered 14, 88, 31, 10, and 93 on the right side represent visible satellites, and the dark gray satellites (such as the satellites numbered 12, 15, 25, and 95 on the right side of Figure 9) represent invisible satellites.
  • the visible information of N satellites can be calculated from the above steps as in,
  • the satellite visibility probability can be calculated based on the visible information ⁇ and carrier-to-noise ratio ⁇ of N satellites.
  • the to Used to indicate the visible information of N target satellites The value is 1 when it is in the visible state, and the value is 0 when it is in the invisible state.
  • the a 0 , the a 1 , the a 2 , the c, the d, the s min and the s max are known constant values.
  • the measurement of the satellite signal can be performed while performing the action of obtaining the three-dimensional information of the building.
  • Actions of three-dimensional information of objects As long as the terminal device can obtain the three-dimensional information of the building and the carrier-to-noise ratio of the satellite signal, there are no restrictions on the specific circumstances.
  • the terminal device determines the positioning information of the terminal device based on the satellite visibility probability and the satellite signal.
  • the terminal device after the terminal device obtains the satellite visibility probability, it can calculate the final positioning information of the terminal to be positioned based on the satellite visibility probability and satellite signals.
  • the positioning information may include the longitude, latitude and altitude of the location of the terminal device.
  • the implementation of 509 can be based on satellite visibility probability and satellite signals, using RTK differential positioning
  • the positioning information of the terminal to be positioned is calculated, and the positioning information of the terminal device is determined by integrating the satellite visibility probability and RTK differential positioning technology, further improving the positioning accuracy in scenarios with severe satellite signal obstruction and obvious multi-path effects.
  • the terminal device fuses the satellite visibility probability and the satellite signal, and uses RTK differential positioning to determine the positioning information of the terminal device.
  • the specific process can be as follows:
  • the terminal equipment calculates the satellite observation weight matrix based on the satellite visibility probability and the satellite signal carrier-to-noise ratio, and constructs the RTK difference equation based on the satellite signal; then the terminal equipment uses the Gauss-Newton iteration method to calculate the satellite observation matrix and the RTK
  • the differential equation is used to calculate the positioning information of the terminal device.
  • the above method constructs the satellite observation weight matrix and the RTK difference equation, and uses the Gauss-Newton iteration method to calculate the satellite observation weight matrix and the RTK difference equation, thereby improving the accuracy and reliability of the positioning information of the terminal to be positioned.
  • an exemplary solution for the terminal device to calculate the satellite observation weight matrix based on the satellite visibility probability and the satellite signal carrier-to-noise ratio can be as follows:
  • the terminal equipment constructs a terminal pseudo-range observation weight matrix and a terminal carrier phase observation weight matrix based on the satellite visibility probability and the satellite signal carrier-to-noise ratio, where the terminal pseudo-range observation weight matrix and the terminal carrier phase observation weight matrix are as The satellite observation weight matrix.
  • the terminal pseudorange observation weight matrix is:
  • the terminal carrier phase observation weight matrix is:
  • the W ⁇ i is used to indicate the terminal pseudorange observation weight matrix
  • the Used to indicate the terminal carrier phase observation weight matrix the to Used to indicate the satellite signal carrier-to-noise ratio of N target satellites, the and the It is used to indicate the visibility probability of the satellite.
  • the N is used to indicate the number of satellites from which the terminal to be positioned can receive satellite signals.
  • the N is a positive integer.
  • the above method provides a specific implementation method of the satellite observation weight matrix, thereby improving the feasibility and operability of the solution.
  • the terminal equipment can also construct a base station pseudo-range observation weight matrix and a base station carrier phase observation weight matrix.
  • the specific method is similar to the above solution, and will not be described again here.
  • the satellite data may include the pseudorange between the terminal to be positioned and the satellite, and the carrier phase observation value of the terminal to be positioned and the satellite.
  • the terminal device constructs a structure based on the satellite signal.
  • the specific process of the RTK differential equation can be as follows: the terminal equipment constructs the RTK differential positioning constraint equation based on the pseudorange between the terminal equipment and the satellite, and the carrier phase observation value of the terminal equipment and the satellite; and then constructs the RTK differential positioning constraint equation based on the RTK differential positioning constraint equation.
  • the RTK differential constraint correction equation wherein the RTK differential positioning constraint equation and the RTK differential constraint correction equation serve as the RTK differential equation.
  • the RTK differential positioning constraint equation is:
  • satellite 1 is the reference satellite, which is a constant
  • is the wavelength of the satellite signal sent by the satellite, and Used to indicate the pseudo-range between the terminal equipment and the satellite, the Indicates the carrier phase prediction value between the terminal equipment and the satellite;
  • the RTK differential constraint correction equation is:
  • the H i is the Jacobian matrix
  • the ⁇ x is the correction matrix
  • is the wavelength of the satellite signal sent by the satellite, ⁇ r and is used to indicate the correction amount and is a constant.
  • the above method provides a specific implementation method of the RTK differential method, thereby improving the feasibility and operability of the solution.
  • the specific process can be as follows:
  • the terminal equipment determines the estimated parameter correction equation based on the satellite observation weight matrix and the RTK difference equation, and obtains the initial estimated parameters; and then uses the Gauss-Newton iteration method and the estimated parameter correction equation to iteratively calculate the estimated parameter correction amount; When the estimated parameter correction meets the preset condition, the terminal device updates the initial estimated parameter according to the estimated parameter correction to obtain a target estimated parameter, and outputs the target estimated parameter, which is used as the positioning information of the terminal device.
  • the above method provides an updated iteration process of the Gauss-Newton iteration method, thereby improving the feasibility and operability of the solution.
  • the satellite observation weight matrix may include a terminal pseudo-range observation weight matrix and a terminal carrier phase observation weight matrix.
  • the method of determining the estimated parameter correction equation based on the satellite observation weight matrix and the RTK difference equation may be based on the terminal pseudo-range observation weight matrix.
  • the distance observation weight matrix, terminal carrier phase observation weight matrix and RTK difference equation determine the estimated parameter correction equation.
  • the RTK differential equation can include the RTK differential positioning constraint equation and the RTK differential constraint correction equation.
  • the way to determine the estimated parameter correction equation can be based on the terminal pseudorange observation weight matrix, terminal carrier phase observation weight matrix, RTK The differential positioning constraint equation and the RTK differential constraint correction equation determine the estimated parameter correction equation.
  • the estimated parameter correction equation is:
  • the ⁇ x k is used to indicate the estimated parameter correction amount
  • the H ik is used to indicate the Jacobian matrix
  • the T is used to indicate the rotation rank of the Jacobian matrix
  • the W ⁇ i is used to indicate the terminal pseudorange observation weight matrix
  • the Used to indicate the terminal carrier phase observation weight matrix which is used to indicate the RTK differential constraint correction equation
  • the z ⁇ i and the Used to indicate the RTK differential positioning constraint equation.
  • the above method provides a specific construction method of the estimated parameter correction equation, thus providing the feasibility of the solution.
  • the process of updating the initial estimated parameter according to the estimated parameter correction amount may be to add the estimated parameter correction amount to the previous estimated parameter to obtain the next estimated parameter.
  • the ⁇ x k is used to indicate the estimated parameter correction amount obtained by the K-th iteration
  • the x k is used to indicate the estimated parameter after the K-th update
  • the x k+1 is used to indicate the estimated parameter obtained by the K+1-th update.
  • the preset conditions that the estimated parameters need to meet can be as follows: ⁇ x ⁇ ,k ⁇ 10 -4 , that is, the difference between the estimated parameter obtained at the ⁇ th time and the estimated parameter obtained at the Kth time must be less than 10 - 4 . It can also be understood that when the estimated parameter correction amount obtained by the update iteration needs to be less than 10 -4 , the estimated parameter obtained by the next iteration update is output. For example, if the estimated parameter correction obtained by the nth update is less than 10 -4 , then the estimated parameter obtained by the n+1th update is output.
  • the above method provides a specific implementation method for iterative update of the estimated parameters, thus improving the feasibility and operability of the solution.
  • the terminal device can also send the positioning information to the CORS system and the city three-dimensional model server, so that the CORS system and the city three-dimensional model server are updated.
  • the location information of the terminal device thereby optimizing the positioning information.
  • the embodiments of the present application have the following advantages: after the positioning device obtains the approximate position of the terminal to be positioned, it obtains the three-dimensional information of the building in the environment where the terminal to be positioned is located, and based on the three-dimensional information of the building information and the carrier-to-noise ratio of the satellite signal received by the terminal to be positioned determines the satellite visibility probability, that is, determines whether there is an obstruction between the terminal to be positioned and the satellite, thereby reflecting the accuracy of the satellite signal.
  • the signal calculates the final positioning information of the terminal to be positioned, so that the received satellite signal can be corrected based on the satellite visibility probability, which improves the accuracy of the terminal to be positioned based on the satellite signal in scenarios with severe satellite signal occlusion and obvious multipath effects.
  • the accuracy of positioning is based on the satellite visibility probability and the satellite.
  • Figure 10 is a schematic diagram of a positioning device in an embodiment of this application.
  • the positioning device 20 includes:
  • the acquisition module 201 is used to obtain the approximate position of the terminal to be positioned; and obtain the satellite signal carrier-to-noise ratio of the satellite signal received by the terminal to be positioned;
  • the sending module 202 is used to send the approximate location to the city three-dimensional model server;
  • the receiving module 203 is used to receive the three-dimensional building information sent by the city three-dimensional model server.
  • the three-dimensional building information is calculated by the city three-dimensional model server based on the approximate location;
  • the processing module 204 calculates the satellite visibility probability of the target satellite based on the approximate position, the three-dimensional information of the building and the satellite signal carrier-to-noise ratio.
  • the target satellite is the corresponding satellite that receives the satellite signal from the terminal to be positioned.
  • the satellite can The visual probability is used to indicate the probability value that the target satellite is in a visible state relative to the terminal to be positioned; the positioning information of the terminal to be positioned is calculated based on the satellite visibility probability and satellite signals.
  • a positioning device is provided. Using the above device, after obtaining the approximate position of the terminal to be positioned, the three-dimensional information of the building in the environment of the terminal to be positioned is obtained, and the three-dimensional information of the building and the carrier-to-noise ratio of the satellite signal received by the terminal to be positioned are Determine the satellite visibility probability, that is, determine whether there is an obstruction between the terminal to be positioned and the satellite, thereby reflecting the accuracy of the satellite signal, and finally calculate the final positioning information of the terminal to be positioned based on the satellite visibility probability and the satellite signal, so that The received satellite signal is corrected based on the satellite visibility probability, which improves the accuracy of positioning the terminal to be positioned based on the satellite signal in scenarios with severe satellite signal obstruction and obvious multi-path effects.
  • the processing module 204 is specifically used to calculate satellite visualization distribution information based on the three-dimensional information of the building and the approximate position.
  • the satellite visualization distribution information is used to indicate the visualization status of the corresponding satellite that the terminal to be positioned can receive satellite signals; according to the The visibility probability of the satellite is calculated based on the satellite signal carrier-to-noise ratio and the satellite visibility distribution information.
  • a positioning device is provided. Using the above device, the visual distribution information is calculated based on the three-dimensional information of the building, and then the satellite visibility probability is calculated based on the visual distribution information and the satellite signal carrier-to-noise ratio. This increases the calculation accuracy of the satellite visibility probability, thereby improving data processing. reliability.
  • the processing module 204 is specifically used to determine the approximate location according to and the position of the target satellite to determine the altitude angle and azimuth angle of the target satellite relative to the terminal to be positioned;
  • the intersection point K of the building and the location of the terminal to be located and the coordinate information of the intersection K are calculated based on the three-dimensional information of the building and the azimuth angle;
  • the altitude angle of the target satellite relative to the intersection K is calculated based on the coordinate information of the intersection K;
  • the altitude angle of the target satellite relative to the terminal to be positioned is less than or equal to the altitude angle of the target satellite relative to the intersection point K, it is determined that the target satellite is in an invisible state relative to the terminal to be positioned;
  • the altitude angle of the target satellite relative to the terminal to be positioned is greater than the altitude angle of the target satellite relative to the intersection point K, it is determined that the target satellite is in a visible state relative to the terminal to be positioned.
  • a positioning device is provided. Using the above device, the visible state of the satellite connected to the terminal to be positioned can be determined according to the probabilistic position of the terminal to be positioned, thereby classifying the accuracy of the satellite signal, thereby improving the positioning accuracy of the terminal to be positioned.
  • the processing module 204 is specifically configured to obtain the visual status values of N satellites according to the satellite visual distribution information, where the value of N is the number of satellites connected to the terminal to be positioned;
  • the satellite visibility probabilities of the N satellites are calculated based on the visibility information of the N satellites and the carrier-to-noise ratio status values of the N satellites.
  • a positioning device is provided.
  • the use of the above device increases the calculation process from satellite visual distribution information to satellite visibility probability, thus increasing the feasibility of the entire solution.
  • the processing module 204 is specifically used to:
  • real-time dynamic RTK differential positioning is used to calculate the positioning information of the terminal to be positioned.
  • real-time dynamic RTK differential positioning is used to calculate the positioning information of the terminal to be positioned.
  • the processing module 204 is specifically used to calculate a satellite observation weight matrix based on the satellite visibility probability and the satellite signal carrier-to-noise ratio, and construct an RTK difference equation based on the satellite signal;
  • the Gauss-Newton iteration method is used to calculate the satellite observation weight matrix and the RTK difference equation to obtain the positioning information of the terminal to be positioned.
  • a positioning device is provided. Using the above device, the satellite observation weight matrix and the RTK difference equation are constructed, and the Gauss-Newton iteration method is used to calculate the satellite observation weight matrix and the RTK difference equation, thereby improving the accuracy and reliability of the positioning information of the terminal to be positioned. .
  • the processing module 204 is specifically used to perform the positioning according to the satellite
  • the terminal pseudo-range observation weight matrix and the terminal carrier phase observation weight matrix are constructed based on the apparent probability and the satellite signal carrier-to-noise ratio, and the terminal pseudo-range observation weight matrix and the terminal carrier phase observation weight matrix are used as the satellite observation weight matrix.
  • a positioning device is provided.
  • the use of the above device provides a specific implementation method of the satellite observation weight matrix, thereby improving the feasibility and operability of the solution.
  • the satellite data may include the pseudorange between the terminal to be positioned and the satellite, and the carrier phase observation value of the terminal to be positioned and the satellite.
  • the processing module 204 is specifically used to construct an RTK differential positioning constraint equation based on the pseudo-range between the terminal to be positioned and the satellite and the carrier phase observation value of the terminal to be positioned and the satellite.
  • An RTK differential constraint correction equation is constructed based on the RTK differential positioning constraint equation, where the RTK differential constraint correction equation and the RTK differential positioning constraint equation serve as the RTK differential equation.
  • a positioning device is provided. Using the above device provides a specific implementation method of the RTK differential method, thereby improving the feasibility and operability of the solution.
  • the processing module 204 is specifically used to perform the positioning according to the satellite observation rights.
  • the matrix and the RTK difference equation determine the estimated parameter correction equation
  • the Gauss-Newton iteration method and the estimated parameter correction equation are used to iteratively calculate the estimated parameter correction ⁇ x k , and the initial estimated parameter x 0 is iteratively updated according to the estimated parameter correction ⁇ x k to obtain the estimated parameter x k , where k is expressed by to indicate the number of iterations;
  • the estimated parameter x k When the estimated parameter x k meets the preset condition, the estimated parameter x k is output, and the estimated parameter x k is used as the positioning information of the terminal to be positioned.
  • a positioning device is provided. Using the above device, in addition, an updated iteration process of the Gauss-Newton iteration method is provided, thereby improving the feasibility and operability of the solution.
  • the satellite observation weight matrix includes a terminal pseudo-range observation weight matrix and a terminal carrier phase observation weight matrix.
  • the processing module 204 is specifically configured to determine the estimated parameter correction equation according to the terminal pseudorange observation weight matrix, the terminal carrier phase observation weight matrix and the RTK difference equation.
  • a positioning device is provided.
  • the use of the above device provides a specific construction method for the estimated parameter correction equation, thereby improving the feasibility of the solution.
  • the processing module is specifically used to add the initial estimated parameter x 0 and the estimated parameter correction amount ⁇ x 1 to obtain the estimated parameter x 1 after the first iteration update; add the estimated parameter x 1 to the estimated parameter correction amount ⁇ x 2 Add to get the estimated parameter x 2 after the second iteration update; and so on, get the estimated parameter x k after the kth iteration update.
  • a positioning device is provided.
  • the above device is used to provide a specific implementation method for iterative update of the estimated parameters, thereby improving the feasibility and operability of the solution.
  • the acquisition module 201 is specifically used to acquire the ephemeris and satellite observation data sent by the satellite continuous operation reference station system CORS.
  • the satellite observation data is the satellite observation data relative to the terminal to be positioned;
  • the approximate position is obtained based on the ephemeris and the satellite observation data.
  • a positioning device is provided. Using the above device, the approximate position of the terminal to be located can be obtained more directly, thereby improving the convenience of positioning.
  • the acquisition module 201 is specifically used to obtain the ephemeris and satellite observation data sent by the terminal to be positioned, where the satellite observation data is satellite observation data relative to the terminal to be positioned;
  • the approximate position is obtained based on the ephemeris and the satellite observation data.
  • a positioning device is provided. Using the above device, another positioning device is used to implement the positioning process, thereby avoiding hardware limitations of terminal equipment positioning and improving the calculation speed of positioning.
  • FIG. 11 is a schematic structural diagram of a server provided by an embodiment of this application.
  • the server 300 may vary greatly due to different configurations or performance, and may include one or One or more central processing units (CPU) 322 (e.g., one or more processors) and memory 332, one or more storage media 330 (e.g., one or more mass storage devices) storing applications 342 or data 344 equipment).
  • the memory 332 and the storage medium 330 may be short-term storage or persistent storage.
  • the program stored in the storage medium 330 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations on the server.
  • the central processor 322 may be configured to communicate with the storage medium 330 and execute a series of instruction operations in the storage medium 330 on the server 300 .
  • Server 300 may also include one or more power supplies 326, one or more wired or wireless network interfaces 350, one or more input and output interfaces 358, and/or, one or more operating systems 341, such as Windows Server TM , Mac OS X TM , Unix TM , Linux TM , FreeBSD TM and so on.
  • the positioning device provided by this application can be used in terminal equipment. Please refer to Figure 12. For convenience of explanation, only the parts related to the embodiments of this application are shown. If the specific technical details are not disclosed, please refer to the method part of the embodiments of this application.
  • the terminal device is a smartphone as an example for explanation:
  • FIG. 12 shows a block diagram of a partial structure of a smartphone related to the terminal device provided by the embodiment of the present application.
  • the smart phone includes: radio frequency (radio frequency, RF) circuit 410, memory 420, input unit 430, display unit 440, sensor 450, audio circuit 460, wireless fidelity (wireless fidelity, WiFi) module 470, processor 480, and power supply 490 and other components.
  • the input unit 430 may include a touch panel 431 and other input devices 432
  • the display unit 440 may include a display panel 441
  • the audio circuit 460 may include a speaker 461 and a microphone 462 .
  • FIG. 12 does not limit the smart phone and may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the memory 420 can be used to store software programs and modules.
  • the processor 480 executes various functional applications and data processing of the smart phone by running the software programs and modules stored in the memory 420 .
  • the memory 420 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store a program based on Data created by the use of smartphones (such as audio data, phone books, etc.), etc.
  • memory 420 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 480 is the control center of the smartphone, using various interfaces and lines to connect various parts of the entire smartphone, and by running or executing programs stored in the memory 420 The software programs and/or modules call the data stored in the memory 420 to perform various functions of the smartphone and process data, thereby performing overall monitoring of the smartphone.
  • the processor 480 may include one or more processing units; in a possible implementation, the processor 480 may integrate an application processor and a modem processor, where the application processor It mainly handles the operating system, user interface and applications, etc. The modem processor mainly handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 480 .
  • the steps performed by the terminal device in the above embodiment may be based on the terminal device structure shown in FIG. 12 .
  • An embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program that, when run on a computer, causes the computer to perform the methods described in the foregoing embodiments.
  • the embodiments of the present application also provide a computer program product including a computer program, which when run on a computer causes the computer to execute the methods described in the foregoing embodiments.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • Another point, shown The mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例提供了一种定位方法以及相关装置,可应用的领域包括但不限于地图、导航、车联网、车路协同和即时通信等领域,用于提高在卫星信号遮挡严重、多路径效应明显的场景下的定位精度。包括:获取待定位终端的概略位置;获取卫星信号载噪比;将概略位置发送至城市三维模型服务器;接收城市三维模型服务器发送的根据概略位置计算得到建筑物三维信息;根据概略位置、建筑物三维信息和卫星信号载噪比计算得到目标卫星的卫星可视概率,目标卫星为待定位终端接收到卫星信号的对应卫星,卫星可视概率用于指示目标卫星相对待定位终端处于可视状态的概率值;基于卫星可视概率和卫星信号计算得到待定位终端的定位信息。

Description

一种定位方法以及相关装置
本申请要求于2022年5月13日提交中国专利局、申请号202210520192.3、申请名称为“一种定位方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及一种定位方法以及相关装置。
背景技术
全球卫星导航系统(the Global Navigation Satellite System,GNSS),也称为全球导航卫星系统,是能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息的空基无线电导航定位系统。常见系统有美国的全球定位系统(global positioning system,GPS)、中国的北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)、格洛纳斯(GLONASS,是俄语“全球卫星导航系统(Global Navigation Satellite System的缩写)和伽利略卫星导航系统(Galileo satellite navigation system,GALILEO)四大卫星导航系统。最早出现的是美国的GPS,也是现阶段技术最完善定位系统。随着近年来BDS、GLONASS系统在亚太地区的全面服务开启,尤其是BDS系统在民用领域发展越来越快。卫星导航系统已经在通信、人员跟随、消费娱乐、测绘、授时、车辆监测管理和汽车导航与信息服务等方面广泛使用。
虽然目前GNSS的定位性通有了较大提高,但是若仅仅使用GNSS卫星信号进行定位,民用用户的实时定位精度一般为10米左右,无法满足用户的更高精度定位需求。同时由于城市内高楼林立,导致卫星信号遮挡严重、多路径效应明显,这样导致用户的定位精度更受限。
发明内容
本申请实施例提供了一种定位方法以及相关装置,用于提高在卫星信号遮挡严重、多路径效应明显的场景下的定位精度。
有鉴于此,本申请一方面提供一种定位方法,该方法由计算机设备执行,包括:获取待定位终端的概略位置;获取该待定位终端接收的卫星信号的卫星信号载噪比;将该概略位置发送至城市三维模型服务器;接收该城市三维模型服务器发送的建筑物三维信息,该建筑物三维信息为该城市三维模型服务器根据该概略位置计算得到;根据该概略位置、该建筑物三维信息和该卫星信号载噪比计算得到目标卫星的卫星可视概率,该目标卫星为该待定位终端接收到卫星信号的对应卫星,该卫星可视概率用于指示该目标卫星相对该待定位终端处于可视状态的概率值;基于该卫星可视概率和该卫星信号计算得到该待定位终端的定位信息。
本申请另一方面提供一种定位装置,该装置部署在计算机设备上,包括:获取模块,用于获取待定位终端的概略位置;获取该待定位终端接收的卫星信号的卫星信号载噪比;发送模块,用于将该概略位置发送至城市三维模型服务器;接收模块,用于接收该城市三维模型服务器发送的建筑物三维信息,该建筑物三维信息为该城市三维模型服务器根据该 概略位置计算得到;处理模块,根据该概略位置、该建筑物三维信息和该卫星信号载噪比计算得到目标卫星的卫星可视概率,该目标卫星为该待定位终端接收到卫星信号的对应卫星,该卫星可视概率用于指示该目标卫星相对该待定位终端处于可视状态的概率值;基于该卫星可视概率和该卫星信号计算得到该待定位终端的定位信息。
本申请另一方面提供一种计算机设备,包括:存储器、处理器以及总线系统;
其中,存储器用于存储计算机程序;
处理器用于执行存储器中的计算机程序,计算机程序被处理器执行时,使得处理器执行上述各方面的方法;
总线系统用于连接存储器以及处理器,以使存储器以及处理器进行通信。
本申请的另一方面提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行上述各方面的方法。
本申请的另一个方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机程序,处理器执行该计算机程序,使得该计算机设备执行上述各方面所提供的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:定位装置在获取到待定位终端的概略位置之后,获取该待定位终端所处环境下的建筑物三维信息,并根据该建筑物三维信息和该待定位终端接收到的卫星信号载噪比确定卫星可视概率,即确定该待定位终端与卫星之间是否有遮挡,从而体现卫星信号的精度,最后再根据卫星可视概率与卫星信号计算该待定位终端的最终定位信息,这样便可以基于卫星可视概率对接收到的卫星信号进行校正,提高了在卫星信号遮挡严重、多路径效应明显的场景下,基于卫星信号对待定位终端进行定位的精度。
附图说明
图1为CORS系统的一个系统架构示意图;
图2为RTK差分定位的一个系统架构示意图;
图3为本申请实施例中通信系统的一个架构示意图;
图4为本申请实施例中通信系统的一个架构示意图;
图5为本申请实施例中定位方法的一个实施例示意图;
图6为本申请实施例中建筑物三维信息的一个场景示意图;
图7为本申请实施例中建筑物三维信息与终端设备位置的一个场景示意图;
图8为本申请实施例中卫星可视化分布信息的一个实施例示意图;
图9为本申请实施例中卫星可视化分布信息的另一个实施例示意图;
图10为本申请实施例中定位装置的一个实施例示意图;
图11为本申请实施例中定位装置的另一个实施例示意图;
图12为本申请实施例中定位装置的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种定位方法以及相关装置,用于提高在卫星信号遮挡严重、多路径效应明显的场景下的定位精度。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“对应于”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了方便理解,下面对本申请涉及的部分名词进行描述:
位置服务:位置服务(Location Based Services,LBS)是无线运营公司为用户提供的一种与位置有关的服务;基于位置的服务是利用各类型的定位技术来获取定位设备当前的所在位置,通过移动互联网向定位设备提供信息资源和基础服务。LBS服务中融合了移动通讯、互联网络、空间定位、位置信息、大数据等多种信息技术,利用移动互联网络服务平台进行数据更新和交互,使用户可以通过空间定位来获取相应的服务。
全球卫星导航系统:全球卫星导航系统(the Global Navigation Satellite System,GNSS),也称为全球导航卫星系统,是能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息的空基无线电导航定位系统。常见系统有全球定位系统(global positioning system,GPS)、北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)、格洛纳斯(GLONASS,是俄语“全球卫星导航系统(Global Navigation Satellite System的缩写)和伽利略卫星导航系统(Galileo satellite navigation system,GALILEO)四大卫星导航系统。最早出现的是GPS,也是现阶段技术最完善定位系统。随着近年来BDS、GLONASS系统的全面服务开启,尤其是BDS系统在民用领域发展越来越快。卫星导航系统已经在通信、人员跟随、消费娱乐、测绘、授时、车辆监测管理和汽车导航与信息服务等方面广泛使用。
卫星定位设备:用于跟随和处理卫星信号,并测量设备与卫星之间的几何距离(伪距观测值)以及卫星信号的多普勒效应(多普勒观测值)的电子设备;卫星定位设备通常包括有天线、卫星信号跟随环路、基带信号处理等模块,集成卫星定位设备的移动终端根据伪距和多普勒观测值计算移动终端当前位置坐标,卫星定位设备广泛应用于地图导航、测绘、位置服务以及深空探测等领域,例如智能手机地图导航、高精度大地测量、民航等;由卫星定位设备输出观测值包括有伪距、伪距率和累加距离增量(accumulated delta range,ADR);伪距测量的是卫星至定位设备的几何距离;伪距率观测值测量的是定位设备与卫星相对运动产生的多普勒效应;ADR测量的是卫星至定位设备几何距离变化量。
连续运行参考站(continuously operating reference stations,CORS)系统:是网络基准站,通过网络收发差分数据,例如GPS差分数据、GNSS差分数据等,用户访问CORS后,不用单独架设GPS基准站,即可实现GPS流动站的差分定位。其中,用户访问CORS系统,就需要网络通讯协议,基于互联网的RTCM网络传输的协议(Networked Transport of RTCM via Internet Protocol,Ntrip)是CORS系统的通讯协议之一。CORS系统是卫星定位技术、计算机网络技术、数字通讯技术等高新科技多方位、深度结晶的产物。CORS系统 由基准站网、数据处理中心、数据传输系统、定位导航数据播发系统、用户应用系统五个部分组成,各基准站与监测分析中心间通过数据传输系统连接成一体,形成专用网络。一个示例性架构可以如图1所示,该CORS系统包括地面参考站系统、GNSS导航卫星、定位服务平台以及用户终端。其中,该用户终端可以包括车载终端、智能手机、飞行器等等。该地面参考站系统获取GNSS导航卫星的原始卫星观测数据之后,将该原始卫星观测数据发送至定位服务平台;同时,该定位服务平台还可以获取用户终端发送的数据或者该定位服务平台向该用户终端发送数据。在一种可能的实现方式中,该定位服务平台与该用户终端之间还可以进行位置上报服务。
RTK差分定位技术:基于载波相位观测值的实时动态定位技术,其基本原理为:将一台GPS接收机安置在基准站上进行观测。根据基准站已知精密坐标,计算出基准站到卫星的距离校正数,并由基准站实时将校正数据发送出去。用户接收机在进行GPS观测的同时,也接收到基准站发出的校正数据,并对其定位结果进行校正,从而提高定位精度。因此差分定位技术能够实时地提供测站点在指定坐标系中的三维定位结果并达到厘米级精度。相比单点定位,RTK差分定位能够消除大气延迟误差、卫星钟差以及用户接收机钟差的影响。一种示例性方案中,该RTK差分定位与该单点定位之间的区别可以如图2所示,以用户接收机是车载终端为例,在单点定位中,该车载终端接收该GNSS导航卫星发送的卫星观测数据,然后根据卫星观测数据定位,若车载终端在定位过程中还在行驶,则其根据接收到的观测数据定位得到的位置信息与车载终端的实际位置信息可能存在5-20米的误差。而在采用RTK差分定位时,该车载终端在接收到卫星观测数据后会与地面参考站接收到的卫星观测数据之间进行误差消除,此时,该车载终端定位得到的位置信息与车载终端的实际位置信息可能误差仅在3-5厘米。此时该误差可以包括空间系统误差、传播误差以及环境误差。
本申请提供的方法应用于如图3所示的通信系统,图3为本申请实施例中通信系统的一个架构示意图,如图所示,通信系统包括城市三维模型服务器、CORS系统、终端设备和卫星,且定位客户端可以部署于终端设备上,其中,定位客户端可以通过浏览器的形式运行于终端设备上,也可以通过独立的应用程序(application,APP)的形式运行于终端设备上等,对于定位客户端的具体展现形式,此处不做限定。本申请涉及的服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、内容分发网络(Content Delivery Network,CDN)、以及大数据和人工智能平台等基础云计算服务的云服务器。终端设备可以是智能手机、平板电脑、笔记本电脑、掌上电脑、个人电脑、智能电视、智能手表、车载设备、可穿戴设备、车载终端等,但并不局限于此。终端设备以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本申请在此不做限制。服务器和终端设备的数量也不做限制。本申请提供的方案可以由终端设备独立完成,也可以由服务器独立完成,还可以由终端设备与服务器配合完成,对此,本申请并不做具体限定。本申请中,终端设备集成有全球卫星导航系统定位芯片,用于处理卫星信号以及进行用户的精准定位,目前已广泛用于位置服务。通常终端设备包 含有卫星定位设备而且终端设备能够获取得到卫星观测值,由终端设备输出的卫星观测值包括有伪距、伪距率和累加距离增量(accumulated delta range,ADR);伪距测量的是卫星至定位设备的几何距离;伪距率观测值测量的是定位设备与卫星相对运动产生的多普勒效应;ADR测量的是卫星至定位设备几何距离变化量。
基于图3所示的通信系统,本申请的定位方法的具体流程可以如下:该卫星或者该CORS系统向该终端设备发送卫星观测数据,其中,该卫星观测数据包括基站观测信息、伪距观测信息、载波相位观测信息、载噪比观测信息、多普勒观测信息,该终端设备同时可以是待定位终端,此时,待定位终端自身可以作为执行本申请实施例提供的定位方法的终端设备。该终端设备根据该卫星观测数据确定该终端设备的概略位置,然后该终端设备可以根据NTRIP协议向该城市三维模型服务器向发送该终端设备的概略位置,并从该城市三维模型服务器获取基于该终端设备的概略位置的建筑物三维信息。该终端设备可以根据该建筑物三维信息以及该终端设备接收的卫星信号的卫星信号载噪比计算卫星可视概率,最后该终端设备基于该卫星可视概率以及卫星信号确定该终端设备的定位信息。
可以理解的是,本申请中,该定位方法还可以应用于如图4所示的通信系统,图4为本申请实施例中通信系统的一个架构示意图,如图所示,通信系统包括城市三维模型服务器、CORS系统、待定位终端、卫星和定位设备,且定位客户端部署于定位设备上,其中,定位客户端可以通过浏览器的形式运行于定位设备上,也可以通过独立的应用程序(application,APP)的形式运行于定位设备上等,对于定位客户端的具体展现形式,此处不做限定。也就是说,执行本申请实施例提供的定位方法的计算机设备可以独立于待定位终端,将执行本申请实施例提供的定位方法的计算机设备称为定位设备。本申请涉及的服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、内容分发网络(Content Delivery Network,CDN)、以及大数据和人工智能平台等基础云计算服务的云服务器。待定位终端可以是智能手机、平板电脑、笔记本电脑、掌上电脑、个人电脑、智能电视、智能手表、车载设备、可穿戴设备、车载终端等,但并不局限于此。待定位终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本申请在此不做限制。服务器和待定位终端的数量也不做限制。该定位设备可以是与待定位终端相互独立的另一个终端设备,也可以是与该待定位终端相互独立的另一个服务器。而该定位设备与该待定位终端之间可以通过有线或无线通信方式进行直接或间接的连接。本申请提供的方案可以由待定位终端与定位设备配合完成,对此,本申请并不做具体限定。本申请中,该定位设备与该待定位终端集成有全球卫星导航系统定位芯片,用于处理卫星信号以及进行用户的精准定位,目前已广泛用于位置服务。通常终端设备包含有卫星定位设备而且终端设备能够获取得到卫星观测值,由终端设备输出的卫星观测值包括有伪距、伪距率和ADR;伪距测量的是卫星至定位设备的几何距离;伪距率观测值测量的是定位设备与卫星相对运动产生的多普勒效应;ADR测量的是卫星至定位设备几何距离变化量。
基于图4所示的通信系统,本申请的定位方法的具体流程可以如下:该卫星或者该CORS系统向该待定位终端发送卫星观测数据,其中,该卫星观测数据包括基站观测信息、伪距观测信息、载波相位观测信息、载噪比观测信息、多普勒观测信息。该待定位终端根据该卫星观测数据确定该待定位终端的概略位置,然后该待定位终端将该概略位置发送至该定位设备。然后该定位设备可以根据NTRIP协议向该城市三维模型服务器向送该终端设备的概略位置,并从该城市三维模型服务器获取基于该待定位终端的概略位置的建筑物三维信息。该定位设备根据该建筑物三维信息以及待定位终端接收的卫星信号的卫星信号载噪比计算卫星可视概率,最后该定位设备基于该卫星可视概率以及卫星信号确定该待定位终端的定位信息,该定位设备将该待定位终端的定位信息发送至该待定位终端。
可以理解的是,在该定位方法应用于独立于待定位终端的定位设备时,该定位设备还可以直接接收到该终端设备发送的概略位置、建筑物三维信息、星历以及卫星观测数据。即只要可以实现该待定位终端的定位即可,具体实现方式,此处不做限定。
结合上述描述,下面对本申请中定位方法进行描述,具体请参阅图5所示,本实施例中,以待定位终端为定位执行主体进行说明,下面均以终端设备指示该待定位终端。本申请中定位方法的一个实施例包括:
503、该终端设备确定该终端设备的概略位置。
需要说明的是,确定概率位置的方式可以有很多,在一种可能的实现方式中,终端设备可以获取CORS发送的星历和卫星观测数据,该卫星观测数据为相对于待定位终端的卫星观测数据,进而根据星历和和卫星观测数据得到概略位置。本实施例中,该星历是指在GPS测量中,天体运行随时间而变的精确位置或轨迹表,它是时间的函数。具体应用中有“广播星历”与后处理“精密星历”之分。该卫星观测数据可以包括基站观测信息、伪距观测信息、载波相位观测信息、载噪比观测信息、多普勒观测信息。
在这种实现方式下,终端设备向CORS系统发送请求消息,该请求消息用于请求该CORS系统播发星历和和卫星观测数据(参见图5中501所示),从而向该CORS系统申请当前定位卫星的星历以及卫星观测数据。该CORS系统在接收到该终端设备的请求消息之后,向该终端设备发送当前的星历以卫星观测数据,即该终端设备接收该CORS系统发送的星历和卫星观测数据(参见图5中502所示)。
通过上述方法可以更直接的获取该待定位终端的概略位置,提升定位的方便性。
在另一种可能的实现方式中,终端设备确定该终端设备的概略位置的方式可以是获取待定位终端发送的星历和卫星观测数据,卫星观测数据为相对于待定位终端的卫星观测数据,进而根据星历和和卫星观测数据得到概略位置。
通过上述方法使用另外的定位设备来实现定位过程,从而避免了终端设备进行定位对于硬件限制,可以提升定位的计算速度。
该终端设备在获取到该星历和该卫星观测数据之后,该终端设备根据星历和和卫星观测数据得到概略位置的一种实现方式可以是使用该卫星观测数据中的伪距观测值以及星历用最小二乘计算得到的概略位置。
可以理解的是,该概略位置也可以理解为该终端设备根据该星历和该卫星观测数据确定出的一个初始定位信息。比如该终端设备当前实际所处的位置为A,而该概略位置为该终端处于位置B,其中,该位置B与位置A之间距离相差为M米。
504、该终端设备获取自身接收的卫星信号的卫星信号载噪比。
本实施例中,载噪比(信噪比)是用来标示载波与载波噪音关系的标准测量尺度,通常记作CNR或者C/N(dB)。高的载噪比可以提供更好的网络接收率、更好的网络通信质量以及更好的网络可靠率。载噪比中,载波的功率用Pc表示,噪音的功率用Pn表示。那么载噪比的分贝单位公式表示为:C/N=10lg(Pc/Pn)。载噪比与信噪比相似为表示网络信道质量的尺度。但是信噪比通常在实际应用中使用。载噪比则用于卫星通讯系统中。最佳的天线排列可以得到最佳载噪比值。
由上述描述可知,该终端设备在接收到导航卫星发送的卫星信号之后可以通过该卫星信号的载波功率以该卫星信号的噪间功率得到该卫星信号的卫星信号载噪比。
505、该终端设备将该概略位置发送至城市三维模型服务器。
该终端设备通过NTRIP协议或者其他可能通信协议将该概略位置发送至该城市三维模型服务器。
可以理解的是,该城市三维模型是在二维地理信息基础上制作出的一种三维模型,经过程序开发,已发展成为三维地理信息系统,可以利用该系统分析城市的自然要素和建设要素,用户通过交互操作,得到一种真实、直观的虚拟城市环境感受。而本实施例中的城市三维模型服务器也可以理解为城市三维模型数据库。
506、该城市三维模型服务器根据该概略位置确定建筑物三维信息。
该城市三维模型服务器在获取到该终端设备的概略位置之后,从数据库中找该概略位置所处的区域,然后获取该概略位置附近各个建筑物的建筑物三维信息。可以理解的是,该建筑物三维信息包括各个建筑物的坐标、长、宽、高、面积、体积、方位角、坡度、转弯半径等等信息。如图6所示,该终端设备的概略位置为B,该城市三维模型服务器根据该位置B获取到其周边的建筑物为C、D、E,则该建筑物三维信息将包括建筑物C、建筑物D和建筑物E的三维信息。
507、该终端设备接收该城市三维模型服务器发送的建筑物三维信息。
该城市三维模型服务器在获取到基于该终端设备的概略位置的建筑物三维信息之后,将该建筑物三维信息反馈到该终端设备。
508、该终端设备根据该概略位置、该建筑物三维信息和该卫星信号载噪比计算得到目标卫星的卫星可视概率,其中,该目标卫星为该终端设备接收到卫星信号的对应卫星,该卫星可视概率用于指示该目标卫星相对该终端设备处于可视状态的概率值。
该终端设备可以接收多个导航卫星的卫星信号,因此在本实施例中,该终端设备可以根据其概略位置、建筑物三维信息以及多个卫星的卫星信号载噪比计算得到各个卫星的卫星可视概率。
一种可能实现方式中,该终端设备根据该概略位置、该建筑物三维信息和该卫星信号载噪比计算得到该目标卫星的卫星视概率可以采用如下技术方案:
该终端设备根据该建筑物三维信息和该概略位置计算得到卫星可视化分布信息,该卫星可视化分布信息用于指示该终端设备可以接收到卫星信号的对应卫星的可视化状态;然后该终端设备再根据该卫星信号载噪比和该卫星可视化分布信息计算得到该卫星可视概率。
根据建筑物三维信息计算可视化分布信息,然后根据可视化分布信息和卫星信号载噪比计算得到卫星可视概率,由此,增加了对卫星可视概率的计算精度,从而提升数据处理的可靠性。
在一种可能的实现方式中,该终端设备根据该建筑物三维信息和该概略位置计算得到卫星可视化分布信息时,具体可以采用如下一种示例性方案:
在根据该建筑物三维信息确定在该方位角无建筑物遮挡时,确定该目标卫星相对于该待定位终端为可视状态;在根据该建筑物三维信息确定在该方位角有建筑物遮挡时,根据该建筑物三维信息和该方位角计算得到建筑物与该待定位终端所处位置的交点K以及交点K的坐标信息;根据该交点K的坐标信息计算得到该目标卫星相对于该交点K的高度角;在该目标卫星相对该待定位终端的高度角小于或等于该目标卫星相对于该交点K的高度角时,确定该目标卫星相对于该待定位终端为不可视状态;在该目标卫星相对该待定位终端的高度角大于该目标卫星相对于该交点K的高度角时,确定该目标卫星相对于该待定位终端为可视状态。可以理解的是,除了交点K的高度角,还可以基于该交点K的坐标信息计算得到该目标卫星相对于该交点K的方位角。
上述方法根据待定位终端的概率位置确定与该待定位终端相连的卫星的可视状态,从而实现对该卫星信号的精度的分类,从而提升待定位终端的定位准确度。
在一种可能的实现方式中,该终端设备在根据该卫星可视化分布信息和该卫星信号载噪比计算得到卫星可视概率时可以采用如下技术方案:
该终端设备根据该卫星可视化分布信息获取N个卫星的可视状态值,该N取值为该待定位终端连接的卫星数量;根据该卫星信号载噪比计算该N个卫星的载噪比状态值;根据该N个卫星的可视信息和该N个卫星的载噪比状态值计算得到该N个卫星的卫星可视概率。
上述方法增加了由卫星可视化分布信息至卫星可视概率的计算过程,从而增加了整个方案的可实现性。
一种示例性场景中,该终端设备计算该卫星可视分布信息可以如下:
假设该终端设备i的地心地固坐标系(Earth-Centered,Earth-Fixed,ECEF)的坐标为ri,该终端设备i接收到卫星信号的对应卫星j的ECEF坐标为rj,此时可以根据下述公式(1)、公式(2)和公式(3)计算卫星j相对于终端设备i的高度角和方位角,即


其中,为卫星j相对于终端设备i的高度角,为卫星j相对于终端设备i的方位角;在求解出该终端设备相对于该卫星的高度角和方位角之后,针对该终端设备的概略位置和基于该终端设备的概略位置的建筑物三维信息,若终端设备在方位角处无建筑物遮挡,则卫星j对于终端设备是可视状态;若终端设备在方位角处有建筑物遮挡,则根据建筑物三维信息确定该建筑物的三维模型,并根据该建筑物三维模型求出建筑物最高处边缘与终端设备的方位角处射线的交点K,如图7所示。假设交点K的坐标为rk,根据下述公式(4)、公式(5)和公式(6)计算卫星j相对于交点K的高度角和方位角,即


式中,为卫星j相对于交点K的高度角,为卫星j相对于交点K的方位角,且如图7所示,K点为建筑物最高处边缘与终端设备在方位角处射线的交点,i和j为终端设备和卫星,2和3为可视区域,1和4为不可视区域;
时,则卫星j对于终端设备i是可视的;
时,则卫星j对于终端设备i是不可视的;
对该终端设备接收到卫星信号的所有卫星做上述处理,即可得初步卫星可视化分布信息;由上述步骤可得到以该终端设备为中心位置的卫星可视分布信息,如图8和图9所示。当卫星位于图8右侧图中白色区域时可视,当卫星位于图8右侧图中阴影区域时不可视,黑线表示卫星可视区域的边界线;图9中浅灰色(比如图9右侧标号为14、88、31、10、93的卫星)卫星表示可视卫星,深灰色卫星(比如图9右侧标号为12、15、25、95的卫星)表示不可视卫星。
假设该终端设备接收到N颗卫星的卫星信号,则可由上述步骤计算出N颗卫星的可视信息为其中,
与此同时,假设N颗卫星信号的载噪比为则根据N颗卫星的可视信息Ω和载噪比Φ可计算出卫星可视概率
其中,
其中,该用于指示N个目标卫星的可视信息,为可视状态时取值为1,为不可视状态时取值为0,该用于指示N个目标卫星的卫星信号载噪比,该a0、该a1、该a2、该c、该d、该smin和该smax为已知常数值。
可以理解的是,本实施例中,该建筑物三维信息与该卫星信号载噪比的获取并无时间上的限制,即可以在执行获取该建筑物三维信息的动作时也执行测量该卫星信号载噪比的动作;也可以先执行获取该建筑物三维信息的动作然后再执行测量该卫星信号载噪比的动作;也可以先执行测量该卫星信号载噪比的动作然后再执行获取该建筑物三维信息的动作。只要可以实现该终端设备获取到该建筑物三维信息和该卫星信号载噪比即可,具体情况此处不做限制。
509、该终端设备根据该卫星可视概率和该卫星信号确定该终端设备的定位信息。
本实施例中,该终端设备获取到该卫星可视概率之后,便可以基于卫星可视概率与卫星信号计算该待定位终端的最终定位信息。其中,该定位信息可以包括该终端设备所处位置的经度、纬度以及高度。
在一种可能的实现方式中,考虑到RTK差分定位技术的特点,为了进一步提高定位精度,在本申请实施例中,509的实现方式可以是基于卫星可视概率和卫星信号,利用RTK差分定位计算得到待定位终端的定位信息,从而融合该卫星可视概率和RTK差分定位技术确定该终端设备的定位信息,进一步提高卫星信号遮挡严重、多路径效应明显的场景下的定位精度。
一个示例性方案中,该终端设备融合该卫星可视概率和和卫星信号,利用RTK差分定位确定该终端设备的定位信息的具体流程可以如下:
该终端设备根据该卫星可视概率和该卫星信号载噪比计算卫星观权矩阵,并根据该卫星信号构建RTK差分方程;然后该终端设备利用高斯-牛顿迭代法对该卫星观测矩阵和该RTK差分方程进行计算得到该终端设备的定位信息。
上述方法构建卫星观测权矩阵和RTK差分方程,并利用高斯-牛顿迭代法对该卫星观测权矩阵和该RTK差分方程进行计算,从而提升该待定位终端的定位信息的准确性和可靠性。
可以理解的是,该终端设备根据该卫星可视概率和该卫星信号载噪比计算卫星观测权矩阵的一个示例性方案可以如下:
该终端设备根据该卫星可视概率和该卫星信号载噪比构建终端端伪距观测权矩阵和终端载波相位观测权矩阵,其中,该终端伪距观测权矩阵和该终端载波相位观测权矩阵作为该卫星观测权矩阵。其中,该终端伪距观测权矩阵为:
该终端载波相位观测权矩阵为:
其中,该Wρi用于指示该终端伪距观测权矩阵,该用于指示该终端载波相位观测权矩阵,该用于指示N个目标卫星的卫星信号载噪比,该和该用于指示该卫星可视概率,该N用于指示该待定位终端可接收卫星信号的卫星数量,该N为正整数。
通过上述方法提供了该卫星观测权矩阵的具体实现方式,从而提升方案的可行性和可操作性。
可以理解的是,该终端设备还可以构建基站伪距观测权矩阵和基站载波相位观测权矩阵,具体方式与上述方案类似,具体此处不再赘述。
可以理解的是,在一些情况下,卫星数据中可以包括待定位终端与卫星的伪距,以及待定位终端与卫星的载波相位观测值,在这种情况下,该终端设备根据该卫星信号构建RTK差分方程的具体过程可以如下:该终端设备根据该终端设备与卫星的伪距,以及该终端设备与卫星的载波相位观测值构建RTK差分定位约束方程;然后再根据该RTK差分定位约束方程构建该RTK差分约束修正方程,其中,该RTK差分定位约束方程和该RTK差分约束修正方程作为该RTK差分方程。其中,该RTK差分定位约束方程为:

其中,表示该终端设备与卫星j的几何距离, 以此类推;为双差电离层延迟, 为双差对流层延迟;卫星1为参考卫星,该为常数,该λ为卫星发送的卫星信号的波长,该用于指示该终端设备与卫星之间的伪距,该指示该终端设备与卫星之间的载波相位预测值;
该RTK差分约束修正方程为:
其中,该Hi为雅克比矩阵,该δx为修正矩阵;
为该终端设备至卫星的单位观测向量,该λ为卫星发送卫星信号的波长,该δr和该为用于指示修正量,为常数。
上述方法提供了该RTK差分方法的具体实现方式,从而提升方案的可行性和可操作性。
在此方案中,该终端设备利用高斯-牛顿迭代法对该卫星观测权矩阵和该RTK差分方程进行计算得到定位信息时,具体流程可以如下:
该终端设备根据该卫星观测权矩阵和该RTK差分方程确定估计参数修正量方程,并获取初始估计参数;然后再利用高斯-牛顿迭代法和该估计参数修正量方程迭代计算得到估计参数修正量;在该估计参数修正量满足预设条件时,该终端设备根据该估计参数修正量更新该初始估计参数得到目标估计参数,并输出该目标估计参数,该目标估计参数作为该终端设备的定位信息。
上述方法提供了该高斯-牛顿迭代方法的更新迭代过程,从而提升方案的可行性和可操作性。
在一些情况下,卫星观测权矩阵可以包括终端伪距观测权矩阵和终端载波相位观测权矩阵,此时,根据卫星观测权矩阵和RTK差分方程确定估计参数修正量方程的方式可以是根据终端伪距观测权矩阵、终端载波相位观测权矩阵和RTK差分方程确定估计参数修正量方程。通过上述介绍,RTK差分方程可以包括RTK差分定位约束方程和RTK差分约束修正方程,相应的,确定估计参数修正量方程的方式可以是根据终端伪距观测权矩阵、终端载波相位观测权矩阵、RTK差分定位约束方程和RTK差分约束修正方程确定估计参数修正量方程。
其中,该估计参数修正量方程为:
该Δxk用于指示估计参数修正量,该Hik用于指示雅克比矩阵,该T用于指示对该雅克比矩阵求转秩,该Wρi用于指示该终端伪距观测权矩阵,该用于指示终端载波相位观测权矩阵,该用于指示该RTK差分约束修正方程,该zρi和该用于指示该RTK差分定位约束方程。
上述方法提供了该估计参数修正量方程的具体构建方式,从而提供了方案的可实行性。
本实施例中根据估计参数修正量更新该初始估计参数的过程,可以是将前一次的估计参数加上估计参数修正量得到下一次的估计参数。具体方式可以如下:xk+1=xk+Δxk
其中,该Δxk用于指示第K次迭代得到的估计参数修正量,该xk用于指示第K次更新后的估计参数,该xk+1用于指示第K+1次更新得到的估计参数。
而该估计参数需要满足的预设条件可以如下:‖Δxρ,k‖<10-4,即该第ρ次得到的估计参数与第K次得到的估计参数之间的差值要小于10-4。也可以理解为更新迭代得到的估计参数修正量需要小于10-4时,输出下一次迭代更新得到的估计参数。比如第n次更新得到的估计参数修正量小于10-4,则输出第n+1次更新得到的估计参数。
上述方法提供该估计参数迭代更新的具体实现方式,由此,提升方案的可行性和可操作性。
可以理解的是,本实施例中,该终端设备在确定得到该定位信息之后,还可以将该定位信息发送至该CORS系统以及城市三维模型服务器,以使得该CORS系统和该城市三维模型服务器更新该终端设备的位置信息,从而优化定位信息。
从以上技术方案可以看出,本申请实施例具有以下优点:定位装置在获取到待定位终端的概略位置之后,获取该待定位终端所处环境下的建筑物三维信息,并根据该建筑物三维信息和该待定位终端接收到的卫星信号载噪比确定卫星可视概率,即确定该待定位终端与卫星之间是否有遮挡,从而体现卫星信号的精度,最后再根据卫星可视概率与卫星信号计算该待定位终端的最终定位信息,这样便可以基于卫星可视概率对接收到的卫星信号进行校正,提高了在卫星信号遮挡严重、多路径效应明显的场景下,基于卫星信号对待定位终端进行定位的精度。
下面对本申请中的定位装置进行详细描述,请参阅图10,图10为本申请实施例中出定位装置的一个实施例示意图,定位装置20包括:
获取模块201,用于获取待定位终端的概略位置;获取该待定位终端接收的卫星信号的卫星信号载噪比;
发送模块202,用于将该概略位置发送至城市三维模型服务器;
接收模块203,用于接收该城市三维模型服务器发送的建筑物三维信息,该建筑物三维信息为该城市三维模型服务器根据该概略位置计算得到;
处理模块204,根据该概略位置、该建筑物三维信息和该卫星信号载噪比计算得到目标卫星的卫星可视概率,该目标卫星为该待定位终端接收到卫星信号的对应卫星,该卫星可视概率用于指示该目标卫星相对该待定位终端处于可视状态的概率值;基于该卫星可视概率和卫星信号计算得到该待定位终端的定位信息。
本申请实施例中,提供了一种定位装置。采用上述装置,在获取到待定位终端的概略位置之后,获取该待定位终端所处环境下的建筑物三维信息,并根据该建筑物三维信息和该待定位终端接收到的卫星信号载噪比确定卫星可视概率,即确定该待定位终端与卫星之间是否有遮挡,从而体现卫星信号的精度,最后再根据卫星可视概率与卫星信号计算该待定位终端的最终定位信息,这样便可以基于卫星可视概率对接收到的卫星信号进行校正,提高了在卫星信号遮挡严重、多路径效应明显的场景下,基于卫星信号对待定位终端进行定位的精度。
在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,
处理模块204,具体用于根据该建筑物三维信息和该概略位置计算得到卫星可视化分布信息,该卫星可视化分布信息用于指示该待定位终端可接收到卫星信号的对应卫星的可视化状态;根据该卫星信号载噪比和该卫星可视化分布信息计算得到该卫星可视概率。
本申请实施例中,提供了一种定位装置。采用上述装置,根据建筑物三维信息计算可视化分布信息,然后根据可视化分布信息和卫星信号载噪比计算得到卫星可视概率,由此,增加了对卫星可视概率的计算精度,从而提升数据处理的可靠性。
在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,该处理模块204,具体用于根据该概略位置和该目标卫星的位置确定该目标卫星相对该待定位终端的高度角和方位角;
在根据该建筑物三维信息确定在该方位角无建筑物遮挡时,确定该目标卫星相对于该待定位终端为可视状态;
在根据该建筑物三维信息确定在该方位角有建筑物遮挡时,根据该建筑物三维信息和该方位角计算得到建筑物与该待定位终端所处位置的交点K以及交点K的坐标信息;
根据该交点K的坐标信息计算得到该目标卫星相对于该交点K的高度角;
在该目标卫星相对该待定位终端的高度角小于或等于该目标卫星相对于该交点K的高度角时,确定该目标卫星相对于该待定位终端为不可视状态;
在该目标卫星相对该待定位终端的高度角大于该目标卫星相对于该交点K的高度角时,确定该目标卫星相对于该待定位终端为可视状态。
本申请实施例中,提供了一种定位装置。采用上述装置,可以根据待定位终端的概率位置确定与该待定位终端相连的卫星的可视状态,从而实现对该卫星信号的精度的分类,从而提升待定位终端的定位准确度。
在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,
处理模块204,具体用于根据该卫星可视化分布信息获取N个卫星的可视状态值,该N取值为该待定位终端连接的卫星数量;
根据该卫星信号载噪比计算该N个卫星的载噪比状态值;
根据该N个卫星的可视信息和该N个卫星的载噪比状态值计算得到该N个卫星的卫星可视概率。
本申请实施例中,提供了一种定位装置。采用上述装置,增加了由卫星可视化分布信息至卫星可视概率的计算过程,从而增加了整个方案的可实现性。
在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,处理模块204,具体用于:
基于该卫星可视概率和该卫星信号,利用实时动态RTK差分定位计算得到该待定位终端的定位信息。在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,
处理模块204,具体用于根据该卫星可视概率和该卫星信号载噪比计算卫星观测权矩阵,并根据该卫星信号构建RTK差分方程;
利用高斯-牛顿迭代法对该卫星观测权矩阵和该RTK差分方程进行计算得到该待定位终端的定位信息。
本申请实施例中,提供了一种定位装置。采用上述装置,构建卫星观测权矩阵和RTK差分方程,并利用高斯-牛顿迭代法对该卫星观测权矩阵和该RTK差分方程进行计算,从而提升该待定位终端的定位信息的准确性和可靠性。
在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,该处理模块204,具体用于根据该卫星可视概率和该卫星信号载噪比构建终端伪距观测权矩阵和终端载波相位观测权矩阵,该终端伪距观测权矩阵和该终端载波相位观测权矩阵作为该卫星观测权矩阵。
本申请实施例中,提供了一种定位装置。采用上述装置,提供了该卫星观测权矩阵的具体实现方式,从而提升方案的可行性和可操作性。
在一种可能的实现方式中,卫星数据中可以包括待定位终端与卫星的伪距,以及待定位终端与卫星的载波相位观测值,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,该处理模块204,具体用于根据该待定位终端与卫星的伪距以及该待定位终端与卫星的载波相位观测值构建RTK差分定位约束方程;
根据该RTK差分定位约束方程构建RTK差分约束修正方程,其中,该RTK差分约束修正方程与该RTK差分定位约束方程作为该RTK差分方程。
本申请实施例中,提供了一种定位装置。采用上述装置,提供了该RTK差分方法的具体实现方式,从而提升方案的可行性和可操作性。
在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,处理模块204,具体用于根据该卫星观测权矩阵和该RTK差分方程确定估计参数修正量方程;
获取初始估计参数x0
利用高斯-牛顿迭代法和该估计参数修正量方程迭代计算得到估计参数修正量Δxk,并根据该估计参数修正量Δxk迭代更新该初始估计参数x0得到估计参数xk,其中该k用于指示迭代次数;
在该估计参数xk满足预设条件时,输出该估计参数xk,该估计参数xk作为该待定位终端的定位信息。
本申请实施例中,提供了一种定位装置。采用上述装置,此外,提供了该高斯-牛顿迭代方法的更新迭代过程,从而提升方案的可行性和可操作性。
在一种可能的实现方式中,卫星观测权矩阵包括终端伪距观测权矩阵和终端载波相位观测权矩阵,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,
该处理模块204,具体用于根据终端伪距观测权矩阵、终端载波相位观测权矩阵和该RTK差分方程确定该估计参数修正量方程。
本申请实施例中,提供了一种定位装置。采用上述装置,提供了该估计参数修正量方程的具体构建方式,从而提供了方案的可实行性。
在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,
该处理模块,具体用于将该初始估计参数x0与估计参数修正量Δx1相加得到第一次迭代更新后的估计参数x1;将该估计参数x1与估计参数修正量Δx2相加得到第二次迭代更新后的估计参数x2;依此类推,得到第k次迭代更新后的该估计参数xk
本申请实施例中,提供了一种定位装置。采用上述装置,提供该估计参数迭代更新的具体实现方式,由此,提升方案的可行性和可操作性。
在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,
获取模块201,具体用于获取卫星连续运行参考站系统CORS发送的星历和卫星观测数据,该卫星观测数据为相对于该待定位终端的卫星观测数据;
根据该星历和和该卫星观测数据得到该概略位置。
本申请实施例中,提供了一种定位装置。采用上述装置,可以更直接的获取该待定位终端的概略位置,提升定位的方便性。
在一种可能的实现方式中,在上述图10所对应的实施例的基础上,本申请实施例提供的定位装置20的另一实施例中,
获取模块201,具体用于获取该待定位终端发送的星历和卫星观测数据,该卫星观测数据为相对于该待定位终端的卫星观测数据;
根据该星历和和该卫星观测数据得到该概略位置。
本申请实施例中,提供了一种定位装置。采用上述装置,使用另外的定位装置来实现定位过程,从而避免了终端设备进行定位对于硬件限制,可以提升定位的计算速度。
本申请提供的定位装置可用于服务器,请参阅图11,图11是本申请实施例提供的一种服务器结构示意图,该服务器300可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)322(例如,一个或一个以上处理器)和存储器332,一个或一个以上存储应用程序342或数据344的存储介质330(例如一个或一个以上海量存储设备)。其中,存储器332和存储介质330可以是短暂存储或持久存储。存储在存储介质330的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器322可以设置为与存储介质330通信,在服务器300上执行存储介质330中的一系列指令操作。
服务器300还可以包括一个或一个以上电源326,一个或一个以上有线或无线网络接口350,一个或一个以上输入输出接口358,和/或,一个或一个以上操作系统341,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中终端设备所执行的步骤也可以应用于基于该图11所示的服务器结构。
本申请提供的定位装置可用于终端设备,请参阅图12,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。在本申请实施例中,以终端设备为智能手机为例进行说明:
图12示出的是与本申请实施例提供的终端设备相关的智能手机的部分结构的框图。参考图12,智能手机包括:射频(radio frequency,RF)电路410、存储器420、输入单元430、显示单元440、传感器450、音频电路460、无线保真(wireless fidelity,WiFi)模块470、处理器480、以及电源490等部件。输入单元430可包括触控面板431以及其他输入设备432,显示单元440可包括显示面板441,音频电路460可以包括扬声器461和传声器462。本领域技术人员可以理解,图12中示出的智能手机结构并不构成对智能手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
存储器420可用于存储软件程序以及模块,处理器480通过运行存储在存储器420的软件程序以及模块,从而执行智能手机的各种功能应用以及数据处理。存储器420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据智能手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
在一种可能的实现方式中在一种可能的实现方式中处理器480是智能手机的控制中心,利用各种接口和线路连接整个智能手机的各个部分,通过运行或执行存储在存储器420内的软件程序和/或模块,以及调用存储在存储器420内的数据,执行智能手机的各种功能和处理数据,从而对智能手机进行整体监测。在一种可能的实现方式中,处理器480可包括一个或多个处理单元;在一种可能的实现方式中,处理器480可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器480中。
在一种可能的实现方式中上述实施例中由终端设备所执行的步骤可以基于该图12所示的终端设备结构。
本申请实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如前述各个实施例描述的方法。
本申请实施例中还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行前述各个实施例描述的方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种定位方法,所述方法由计算机设备执行,包括:
    获取待定位终端的概略位置;
    获取所述待定位终端接收的卫星信号的卫星信号载噪比;
    将所述概略位置发送至城市三维模型服务器;
    接收所述城市三维模型服务器发送的建筑物三维信息,所述建筑物三维信息为所述城市三维模型服务器根据所述概略位置计算得到;
    根据所述概略位置、所述建筑物三维信息和所述卫星信号载噪比计算得到目标卫星的卫星可视概率,所述目标卫星为所述待定位终端接收到卫星信号的对应卫星,所述卫星可视概率用于指示所述目标卫星相对所述待定位终端处于可视状态的概率值;
    基于所述卫星可视概率和所述卫星信号计算得到所述待定位终端的定位信息。
  2. 根据权利要求1所述的定位方法,所述根据所述概略位置、所述建筑物三维信息和所述卫星信号载噪比计算得到目标卫星的卫星可视概率,包括:
    根据所述建筑物三维信息和所述概略位置计算得到卫星可视化分布信息,所述卫星可视化分布信息用于指示所述待定位终端可接收到卫星信号的对应卫星的可视化状态;
    根据所述卫星信号载噪比和所述卫星可视化分布信息计算得到所述卫星可视概率。
  3. 根据权利要求2所述的定位方法,所述根据所述建筑物三维信息和所述概略位置计算得到卫星可视化分布信息,包括:
    根据所述概略位置和所述目标卫星的位置确定所述目标卫星相对所述待定位终端的高度角和方位角;
    在根据所述建筑物三维信息确定在所述方位角无建筑物遮挡时,确定所述目标卫星相对于所述待定位终端为可视状态;
    在根据所述建筑物三维信息确定在所述方位角有建筑物遮挡时,根据所述建筑物三维信息和所述方位角计算得到建筑物与所述待定位终端所处位置的交点K以及交点K的坐标信息;
    根据所述交点K的坐标信息计算得到所述目标卫星相对于所述交点K的高度角;
    在所述目标卫星相对所述待定位终端的高度角小于或等于所述目标卫星相对于所述交点K的高度角时,确定所述目标卫星相对于所述待定位终端为不可视状态;
    在所述目标卫星相对所述待定位终端的高度角大于所述目标卫星相对于所述交点K的高度角时,确定所述目标卫星相对于所述待定位终端为可视状态。
  4. 根据权利要求2或3所述的定位方法,所述根据所述卫星信号载噪比和所述卫星可视化分布信息计算得到所述卫星可视概率,包括:
    根据所述卫星可视化分布信息获取N个卫星的可视状态值,所述N取值为所述待定位终端连接的卫星数量;
    根据所述卫星信号载噪比计算所述N个卫星的载噪比状态值;
    根据所述N个卫星的可视信息和所述N个卫星的载噪比状态值计算得到所述N个卫星的卫星可视概率。
  5. 根据权利要求1所述的定位方法,所述基于所述卫星可视概率和所述卫星信号计算得到所述待定位终端的定位信息,包括:
    基于所述卫星可视概率和所述卫星信号,利用实时动态RTK差分定位计算得到所述待定位终端的定位信息。
  6. 根据权利要求5所述的定位方法,所述基于所述卫星可视概率和所述卫星信号,利用实时动态RTK差分定位计算得到所述待定位终端的定位信息,包括:
    根据所述卫星可视概率和所述卫星信号载噪比计算卫星观测权矩阵,并根据所述卫星信号构建RTK差分方程;
    利用高斯-牛顿迭代法对所述卫星观测权矩阵和所述RTK差分方程进行计算得到所述待定位终端的定位信息。
  7. 根据权利要求6所述的定位方法,所述根据所述卫星可视概率和所述卫星信号载噪比计算卫星观测权矩阵,包括:
    根据所述卫星可视概率和所述卫星信号载噪比构建终端伪距观测权矩阵和终端载波相位观测权矩阵,所述终端伪距观测权矩阵和所述终端载波相位观测权矩阵作为所述卫星观测权矩阵。
  8. 根据权利要求6或7所述的定位方法,所述卫星信号中包括所述待定位终端与卫星的伪距,以及所述待定位终端与卫星的载波相位观测值,所述根据所述卫星信号构建RTK差分方程,包括:
    根据所述待定位终端与卫星的伪距,以及所述待定位终端与卫星的载波相位观测值构建RTK差分定位约束方程;
    根据所述RTK差分定位约束方程构建RTK差分约束修正方程,其中,所述RTK差分约束修正方程与所述RTK差分定位约束方程作为所述RTK差分方程。
  9. 根据权利要求6所述的定位方法,所述利用高斯-牛顿迭代法对所述卫星观测权矩阵和所述RTK差分方程进行计算得到所述待定位终端的定位信息,包括:
    根据所述卫星观测权矩阵和所述RTK差分方程确定估计参数修正量方程;
    获取初始估计参数x0
    利用高斯-牛顿迭代法和所述估计参数修正量方程迭代计算得到估计参数修正量Δxk,并根据所述估计参数修正量Δxk迭代更新所述初始估计参数x0得到估计参数xk,其中所述k用于指示迭代次数;
    在所述估计参数xk满足预设条件时,输出所述估计参数xk,所述估计参数xk作为所述待定位终端的定位信息。
  10. 根据权利要求9所述定位方法,所述卫星观测权矩阵包括终端伪距观测权矩阵和终端载波相位观测权矩阵,所述根据所述卫星观测权矩阵和所述RTK差分方程确定估计参数修正量方程,包括:
    根据所述终端伪距观测权矩阵、所述终端载波相位观测权矩阵和所述RTK差分方程确定所述估计参数修正量方程。
  11. 根据权利要求9所述的定位方法,所述根据所述估计参数修正量Δxk迭代更新所述初始估计参数x0得到估计参数xk,包括:
    将所述初始估计参数x0与估计参数修正量Δx1相加得到第一次迭代更新后的估计参数x1
    将所述估计参数x1与估计参数修正量Δx2相加得到第二次迭代更新后的估计参数x2
    依此类推,得到所述估计参数xk
  12. 根据权利要求1所述的定位方法,所述获取待定位终端所处的概略位置,包括:
    获取卫星连续运行参考站系统CORS发送的星历和卫星观测数据,所述卫星观测数据为相对于所述待定位终端的卫星观测数据;
    根据所述星历和和所述卫星观测数据得到所述概略位置。
  13. 根据权利要求1所述的定位方法,所述获取待定位终端所处的概略位置,包括:
    获取所述待定位终端发送的星历和卫星观测数据,所述卫星观测数据为相对于所述待定位终端的卫星观测数据;
    根据所述星历和和所述卫星观测数据得到所述概略位置。
  14. 一种定位装置,所述装置部署在计算机设备上,包括:
    获取模块,用于获取待定位终端的概略位置;获取所述待定位终端接收的卫星信号的卫星信号载噪比;
    发送模块,用于将所述概略位置发送至城市三维模型服务器;
    接收模块,用于接收所述城市三维模型服务器发送的建筑物三维信息,所述建筑物三维信息为所述城市三维模型服务器根据所述概略位置计算得到;
    处理模块,根据所述概略位置、所述建筑物三维信息和所述卫星信号载噪比计算得到目标卫星的卫星可视概率,所述目标卫星为所述待定位终端接收到卫星信号的对应卫星,所述卫星可视概率用于指示所述目标卫星相对所述待定位终端处于可视状态的概率值;基于所述卫星可视概率和所述卫星信号计算得到所述待定位终端的定位信息。
  15. 一种计算机设备,包括:存储器、处理器以及总线系统;
    其中,所述存储器用于存储计算机程序;
    所述处理器用于执行所述存储器中的计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行权利要求1至13中任一项所述的方法;
    所述总线系统用于连接所述存储器以及所述处理器,以使所述存储器以及所述处理器进行通信。
  16. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得计算机执行如权利要求1至13中任一项所述的方法。
  17. 一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现如权利要求1-13中任一项所述的方法。
PCT/CN2023/085858 2022-05-13 2023-04-03 一种定位方法以及相关装置 WO2023216766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210520192.3 2022-05-13
CN202210520192.3A CN117092672A (zh) 2022-05-13 2022-05-13 一种定位方法以及相关装置

Publications (1)

Publication Number Publication Date
WO2023216766A1 true WO2023216766A1 (zh) 2023-11-16

Family

ID=88729635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085858 WO2023216766A1 (zh) 2022-05-13 2023-04-03 一种定位方法以及相关装置

Country Status (2)

Country Link
CN (1) CN117092672A (zh)
WO (1) WO2023216766A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966724A (zh) * 2017-11-27 2018-04-27 南京航空航天大学 一种基于3d城市模型辅助的城市峡谷内卫星定位方法
CN112444834A (zh) * 2019-08-29 2021-03-05 华为技术有限公司 一种定位方法及电子设备
CN112666588A (zh) * 2020-11-06 2021-04-16 南京航空航天大学 一种城市峡谷环境下基于景象匹配与机器学习的定位方法
CN112924997A (zh) * 2021-01-22 2021-06-08 腾讯科技(深圳)有限公司 目标终端定位方法、装置和存储介质及电子设备
US20210239849A1 (en) * 2020-02-05 2021-08-05 Tupaia Ltd. Providing an accurate location for a gnss device in urban environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966724A (zh) * 2017-11-27 2018-04-27 南京航空航天大学 一种基于3d城市模型辅助的城市峡谷内卫星定位方法
CN112444834A (zh) * 2019-08-29 2021-03-05 华为技术有限公司 一种定位方法及电子设备
US20210239849A1 (en) * 2020-02-05 2021-08-05 Tupaia Ltd. Providing an accurate location for a gnss device in urban environments
CN112666588A (zh) * 2020-11-06 2021-04-16 南京航空航天大学 一种城市峡谷环境下基于景象匹配与机器学习的定位方法
CN112924997A (zh) * 2021-01-22 2021-06-08 腾讯科技(深圳)有限公司 目标终端定位方法、装置和存储介质及电子设备

Also Published As

Publication number Publication date
CN117092672A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
CN110275192B (zh) 一种基于智能手机的高精度单点定位方法与装置
US20190107630A1 (en) Localization and Tracking Using Location, Signal Strength, and Pseudorange Data
US9544737B2 (en) Performing data collection based on external raw observables using a mobile data collection platform
WO2022174756A1 (zh) 一种车辆定位的方法、相关装置、设备以及存储介质
US11531118B2 (en) GNSS signal modeling
US20130099965A1 (en) Satellite Based Positioning
US20140292573A1 (en) Methods for generating accuracy information on an ionosphere model for satellite navigation applications
CN113050142B (zh) 终端设备的定位方法、装置、电子设备及可读存储介质
Groves It’s time for 3D mapping–aided GNSS
CN112505735B (zh) 对终端进行定位的方法、装置和存储介质
CN113848569B (zh) 虚拟基准站的定位校验方法、存储介质和电子设备
WO2023236643A1 (zh) 定位方法、装置、设备及存储介质
WO2024055473A1 (zh) 定位方法、装置、电子设备及存储介质
WO2023216766A1 (zh) 一种定位方法以及相关装置
Di Pietra et al. Seamless navigation using uwb-based multisensor system
CN116088019A (zh) 一种实时动态定位方法、装置、电子设备及存储介质
US11500110B2 (en) Localization using bearing from environmental features
Li et al. Accuracy evaluation of multi-GNSS Doppler velocity estimation using android smartphones
US20220276394A1 (en) Map-aided satellite selection
CN113917509B (zh) 一种双差模糊度固定方法、设备以及可读存储介质
Suurinkeroinen Centimeter-level real-time position tracking options with a short initialization time for outdoor applications
CN115113252A (zh) 一种终端位置的确定方法、装置、设备及存储介质
Soumphonphakdy et al. Comparison of the GNSS Position Accuracy on Mobile Phones in Vientiane, Laos
EP3980815A1 (en) Single-epoch pseudo-range positioning under varying ionosphere delays
WO2023235328A1 (en) Methods and systems for excess path length corrections for gnss receivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802542

Country of ref document: EP

Kind code of ref document: A1