WO2024055391A1 - 一种直角头分度自动补偿方法、设备、介质及产品 - Google Patents

一种直角头分度自动补偿方法、设备、介质及产品 Download PDF

Info

Publication number
WO2024055391A1
WO2024055391A1 PCT/CN2022/128524 CN2022128524W WO2024055391A1 WO 2024055391 A1 WO2024055391 A1 WO 2024055391A1 CN 2022128524 W CN2022128524 W CN 2022128524W WO 2024055391 A1 WO2024055391 A1 WO 2024055391A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
value
compensation
deviation
target
Prior art date
Application number
PCT/CN2022/128524
Other languages
English (en)
French (fr)
Inventor
吴静飞
管强
秦海泉
Original Assignee
纽威数控装备(苏州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纽威数控装备(苏州)股份有限公司 filed Critical 纽威数控装备(苏州)股份有限公司
Publication of WO2024055391A1 publication Critical patent/WO2024055391A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35408Calculate new position data from actual data to compensate for contour error

Definitions

  • the invention relates to the technical field of image target area extraction, and in particular to a right-angle head indexing automatic compensation method, equipment, media and products.
  • the right-angle head is suitable for boring and milling inside slotted holes, end face trimming, bevel chamfering and complex parts. Due to factors such as component processing tolerances and assembly tolerances during production, the finished right-angle head will eventually have axis deviations, resulting in angle and position deviations.
  • the traditional right-angle head compensation method is: each time the right-angle head is indexed, the deviation from the target position is measured by the operator and then the processing program is changed to compensate for the XYZ axis. The operation is cumbersome and the efficiency is low. Therefore, there is an urgent need for an automatic compensation method for right-angle head indexing to improve processing efficiency and processing accuracy.
  • the first object of the present invention is to provide an automatic compensation method for right angle head indexing, which includes the following steps:
  • the target angle compensation is performed through the current angle of the right-angle head, the target angle value and the compensation value;
  • Position deviation compensation obtain the position deviation value of the current angle and the position deviation value of the target angle value, and perform target position compensation based on the position deviation value of the current angle and the position deviation value of the target angle value.
  • angle deviation compensation includes the following steps:
  • the current angle value is updated by the target angle value.
  • the position deviation compensation includes the following steps:
  • the position of the target angle value in the preset direction is compensated by the deviation value of the current angle in the preset direction and the deviation value of the target angle value in the preset direction.
  • obtaining the deviation value of the target angle value in the preset direction specifically uses a linear interpolation method to calculate the deviation value of the target angle value in the preset direction.
  • linear interpolation method to calculate the deviation value of the target angle value in the preset direction includes the following steps:
  • the deviation value of the target angle value in the preset direction is
  • the method further includes the step of determining whether the position deviation value exceeds the set compensation value range, and if so, a system alarm is issued; otherwise, the system jumps to the position deviation compensation step.
  • angle intervals include (0, 90°], (90°, 180°], (180°, 270°], (270°, 360°].
  • a second object of the present invention is to provide an electronic device, including: a memory having program code stored thereon; a processor coupled to the memory, and when the program code is executed by the processor, a An automatic compensation method for right angle head indexing.
  • the third object of the present invention is to provide a computer-readable storage medium on which program instructions are stored. When the program instructions are executed, an automatic compensation method for right-angle head indexing is implemented.
  • the fourth object of the present invention is to provide a computer program product, including a computer program/instruction, which implements an automatic right-angle head indexing compensation method when executed by a processor.
  • the invention provides an automatic compensation method for right-angle head indexing.
  • the user When performing indexing, the user only needs to specify the target angle, and the program automatically executes the indexing program to complete the right-angle head indexing; at the same time, during the execution of the indexing program , automatically call the angle deviation compensation program and position deviation compensation program, that is, automatically compensate the angle and position deviation at the end of each indexing; realize automatic compensation of angle deviation and position deviation during the indexing process through macro programs and PMC, improving processing efficiency And the processing accuracy is improved, without the user having to significantly change the processing program, the operation is simple and the efficiency is high; by setting the compensation value range, over-compensation can be avoided.
  • Figure 1 is a flow chart of an automatic compensation method for right-angle head indexing in Embodiment 1;
  • Figure 2 is a schematic diagram of deviation measurement in Embodiment 1;
  • Figure 3 is a schematic diagram 2 of the deviation measurement in Embodiment 1;
  • Figure 4 is a schematic diagram of the electronic device of Embodiment 2.
  • Figure 5 is a schematic diagram of a computer-readable storage medium in Embodiment 3.
  • An automatic compensation method for right-angle head indexing which automatically compensates angle deviation and position deviation through macro programs and PMC to improve processing efficiency and processing accuracy. As shown in Figure 1, it includes the following steps:
  • the program automatically executes the indexing program to complete the right-angle head indexing; at the same time, during the execution of the indexing program, the angle deviation compensation program and the position deviation compensation program are automatically called, that is, Automatically compensates for angle and position deviation at the end of each indexing.
  • the right-angle head 0° is used as the benchmark, no compensation is performed, and angle compensation is performed at 90°, 180°, and 270°. . If you want to refine it, you can add macro variables and statement judgments.
  • the power of right-angle head indexing relies on the ram spindle, and the ram spindle drives the right-angle head for indexing through splines.
  • the target angle compensation is performed through the current angle of the right-angle head, the target angle value and the compensation value. Specifically, it includes the following steps:
  • target angle value - current angle value 90°. Due to factors such as gaps and assembly tolerances in the machinery, part of the angle is offset during movement. The system advances by 90° by default. The actual right-angle head may only advance by 89°, so a compensation of 1° is required, which is corresponding to the target angle value. The compensation value is 1°.
  • Update the current angle value with the target angle value For example, update the current angle value to 90°.
  • a coordinate relationship has been established between a standard 3-axis machine tool and the workpiece. When a right-angle head is attached, the coordinate relationship of the 3 axes will be used. Without adding an additional coordinate system, position deviation will appear in the three-dimensional space due to factors such as assembly tolerances. At this time, position compensation needs to be performed on the spatial position to compensate for the deviation relative to the 3-axis position.
  • Position deviation compensation obtain the position deviation value of the current angle and the position deviation value of the target angle value, and perform target position compensation through the position deviation value of the current angle and the position deviation value of the target angle value. Specifically, it includes the following steps:
  • the position of the target angle value in the preset direction is compensated by the deviation value of the current angle in the preset direction and the deviation value of the target angle value in the preset direction.
  • the position compensation data of the right-angle head is set according to the C-axis position, and is divided into four groups, namely 0°, 90°, 180° and 270°. Each group is divided into three axes: X/Y/Z.
  • Direction, compensation data input unit is mm.
  • the deviation is measured in the form of a square, as shown in Figures 2 and 3.
  • the milling surfaces and milling methods are shown in Table 1.
  • the influencing factor is the axis deviation of the right-angle head in the Z direction. If surface A is higher than surface B, it means that the axis of the right-angle head is downward in the Z direction, and it is necessary to compensate the positive value to the Z direction compensation variable. Half of the step height difference is the Z direction deviation value;
  • the influencing factor is the axis deviation of the right-angle head in the Y direction. If the C surface is higher than the D surface, it means that the axis of the right-angle head is forward in the Y direction, and the negative value needs to be compensated to the compensation variable in the Y direction.
  • Half of the step height difference is the Y direction deviation value;
  • the influencing factor is the axis deviation of the right-angle head in the X direction. If the G surface is higher than the H surface, it means that the axis of the right-angle head is offset in the X direction, and the negative value needs to be compensated to the compensation variable in the X direction. Half of the difference in step height is the X direction deviation;
  • the spatial deviation values are difficult to measure. That is, when the target angle value does not belong to 0°, 90°, 180° and 270°, in order to facilitate the calculation of the deviation value of the target angle value in the preset direction, the linear interpolation method is used to calculate the deviation value of the target angle value in the preset direction. .
  • a linear function is constructed by using the deviation values of 0 degrees and 90 degrees, 90 degrees and 180 degrees, 180 degrees and 270 degrees, and 270 and 0 degrees. Specifically, it includes the following steps:
  • the angle interval includes (0, 90°], (90°, 180°], (180°, 270°], (270°, 360°].
  • the deviation value of the target angle value in the preset direction is
  • the deviation value of 0° in the X direction is X 0° and the deviation value of 90° in the X direction is X 90 ° , that is, two coordinates (0°,X 0° ) and ( 90° , 45°-0°)/(90°-0°)+X 0° , deviations in other directions are calculated using the same method.
  • the system uses the method of reading macro variables by PMC to inform the system of the compensation value, and the system issues compensation instructions to ultimately realize the offset of the coordinate axis.
  • the expanded external origin offset overlaps with error compensation functions such as pitch error compensation and straightness compensation, and the coordinate values are not updated.
  • set compensation value range such as (-0.5mm to +0.5mm
  • An electronic device 200 includes but is not limited to: a memory 201, on which program code is stored; a processor 202, which is connected to the memory, and when the program code is executed by the processor, a right-angle Automatic compensation method for head indexing.
  • a memory 201 on which program code is stored
  • a processor 202 which is connected to the memory, and when the program code is executed by the processor, a right-angle Automatic compensation method for head indexing.
  • a computer-readable storage medium as shown in Figure 5, has program instructions stored thereon, and an automatic right-angle head indexing compensation method is implemented when the program instructions are executed.
  • an automatic right-angle head indexing compensation method is implemented when the program instructions are executed.
  • a computer program product includes a computer program/instruction, which implements an automatic compensation method for right angle head indexing when executed by a processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

一种直角头分度自动补偿方法、设备、介质及产品,方法包括步骤:获取目标角度值,判断目标角度值是否为直角头预设分度的整数倍,是则跳转至角度偏差补偿;角度偏差补偿,通过直角头的当前角度、目标角度值及补偿值进行目标角度补偿;位置偏差补偿,获取当前角度的位置偏差值和目标角度值的位置偏差值,通过当前角度的位置偏差值和目标角度值的位置偏差值进行目标位置补偿。用户进行分度时,只需给定目标角度,程序自动执行分度程序,完成直角头分度;在执行分度程序过程中,自动调用角度偏差补偿程序和位置偏差补偿程序,不用用户大幅度更改加工程序,操作简易,提高了加工效率和加工精度。

Description

一种直角头分度自动补偿方法、设备、介质及产品 技术领域
本发明涉及图像目标区域提取技术领域,特别涉及一种直角头分度自动补偿方法、设备、介质及产品。
背景技术
直角头适合槽孔内部的搪铣、端面整修、斜面倒角及复杂零件等加工工作。因在生产中零部件加工公差、装配公差等因素,最终会使直角头成品存在轴线偏差,造成角度和位置偏差。传统的直角头补偿方法为:每次直角头分度后与目标位置的偏差,由操作人员测量后更改加工程序进行XYZ轴补偿,操作繁琐,效率低。因此,急需一种直角头分度自动补偿方法,提高加工效率和改善加工精度。
发明内容
为了实现根据本发明的上述目的和其他优点,本发明的第一目的是提供一种直角头分度自动补偿方法,包括以下步骤:
获取目标角度值,判断所述目标角度值是否为直角头预设分度的整数倍,是则跳转至角度偏差补偿步骤;
角度偏差补偿,通过直角头的当前角度、所述目标角度值及补偿值进行目标角度补偿;
位置偏差补偿,获取当前角度的位置偏差值和所述目标角度值的位置偏差值,通过所述当前角度的位置偏差值和所述目标角度值的位置偏差值进行目标位置补偿。
进一步地,所述角度偏差补偿包括以下步骤:
获取当前角度值和所述目标角度值对应的补偿值;
通过所述目标角度值、所述当前角度值和所述目标角度值对应的补偿值计算实际转动角度;
通过所述实际转动角度进行目标角度补偿;
通过所述目标角度值更新所述当前角度值。
进一步地,所述位置偏差补偿包括以下步骤:
获取当前角度在预设方向的偏差值;
获取目标角度值在预设方向的偏差值;
通过所述当前角度在预设方向的偏差值和所述目标角度值在预设方向的偏差值对所述目标角度值在预设方向的位置进行补偿。
进一步地,所述获取目标角度值在预设方向的偏差值具体为采用线性插补法计算目标角度值在预设方向的偏差值。
进一步地,所述采用线性插补法计算目标角度值在预设方向的偏差值包括以下步骤:
判断所述目标角度值所在角度区间;
若所述目标角度值在(θ 0,θ 1]范围内,则所述目标角度值在预设方向的偏差值为
Figure PCTCN2022128524-appb-000001
其中,
Figure PCTCN2022128524-appb-000002
为θ 1在当前方向的偏差值,
Figure PCTCN2022128524-appb-000003
为θ 0在当前方向的偏差值,θ为当前角度值。
进一步地,还包括步骤:判断位置偏差值是否超过设定的补偿值范围,是则进行系统报警,否则跳转至所述位置偏差补偿步骤。
进一步地,所述角度区间包括(0,90°],(90°,180°],(180°,270°],(270°,360°]。
本发明的第二目的是提供一种电子设备,包括:存储器,其上存储有程序代码;处理器,其与所述存储器联接,并且当所述程序代码被所述处理器执行时,实现一种直角头分度自动补偿方法。
本发明的第三目的是提供一种计算机可读存储介质,其上存储有程序指令,所述程序指令被执行时实现一种直角头分度自动补偿方法。
本发明的第四目的是提供一种计算机程序产品,包括计算机程序/指令,该计算机程序/指令被处理器执行时实现一种直角头分度自动补偿方法。
与现有技术相比,本发明的有益效果是:
本发明提供了一种直角头分度自动补偿方法,用户在进行分度时,只需给定目标角度,程序自动执行分度程序,完成直角头分度;同时在执行分度程序的过程中,自动调用角度偏差补偿程序和位置偏差补偿程序,即在每次分度结束自动补偿角度和位置偏差;通过宏程序及PMC实现分度过程中角度偏差和位置偏差的自动补偿,提高了加工效率和改善了加工精度,不用用户大幅度的更改加工程序,操作简易,效率高;通过设定补偿值范围,能够避免过度补偿。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为实施例1的一种直角头分度自动补偿方法流程图;
图2为实施例1的偏差测量示意图一;
图3为实施例1的偏差测量示意图二;
图4为实施例2的电子设备示意图;
图5为实施例3的计算机可读存储介质示意图。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
实施例1
一种直角头分度自动补偿方法,通过宏程序及PMC进行角度偏差和位置偏差的自动补偿以提高加工效率和改善加工精度。如图1所示,包括以下步 骤:
用户在进行分度时,只需给定目标角度,程序自动执行分度程序,完成直角头分度;同时在执行分度程序的过程中,自动调用角度偏差补偿程序和位置偏差补偿程序,即在每次分度结束自动补偿角度和位置偏差。
获取目标角度值,判断目标角度值是否为直角头预设分度的整数倍,是则跳转至角度偏差补偿步骤;否则系统报警。以90°一分的直角头为例,补偿角度可设定360°/90°=4个,通常以直角头0°为基准,不进行补偿,在90°、180°、270°进行角度补偿。若要进行细化,可增加宏变量和语句判断。以5°一分的直角头为例,补偿角度可设定360°/5°=72个,以直角头0°为基准,在5°、10°、…、355°进行角度补偿。
直角头分度的动力依托于滑枕主轴,滑枕主轴通过花键带动直角头进行分度。
角度偏差补偿,通过直角头的当前角度、目标角度值及补偿值进行目标角度补偿。具体地,包括以下步骤:
获取当前角度值和目标角度值对应的补偿值;以当前角度值为0°,目标角度值为90°为例,理论上直角头需要运动的距离:目标角度值-当前角度值=90°。由于机械存在间隙、装配公差等因素,导致运动时部分角度被抵消,系统默认前进了90°,实际直角头可能只前进了89°,故需要进行1°度的补偿,即目标角度值对应的补偿值为1°。
通过目标角度值、当前角度值和目标角度值对应的补偿值计算实际转动角度;因此直角头实际运动距离:目标角度值-当前角度值+补偿值=90°-0°+1°=91°。
通过实际转动角度进行目标角度补偿;
通过目标角度值更新当前角度值。如将当前角度值更新为90°。
标准3轴机床与工件已建立坐标关系。当附加直角头后,沿用3轴的坐标关系,在不另外增加坐标系的情况下,因装配公差等因素的影响,在三维空间上表现出位置偏差。此时需要对空间位置进行位置补偿,以弥补相对于3轴位置的偏差。
位置偏差补偿,获取当前角度的位置偏差值和目标角度值的位置偏差值, 通过当前角度的位置偏差值和目标角度值的位置偏差值进行目标位置补偿。具体地,包括以下步骤:
获取当前角度在预设方向的偏差值;
获取目标角度值在预设方向的偏差值;
通过当前角度在预设方向的偏差值和目标角度值在预设方向的偏差值对目标角度值在预设方向的位置进行补偿。
本实施例中,直角头各位置补偿数据按照C轴位置进行设定,共分成四组,分别为0°、90°、180°和270°,每组都分成X/Y/Z三个轴方向,补偿数据输入单位是mm。
在一实施例中,以目标角度值90°的位置偏差补偿为例,采用切方的形式进行测量偏差,如图2、图3所示。铣削面和铣削方法如表1所示。
表1铣削面和铣削方法
序号 铣削面 铣削方法
1 A 滑枕主轴正铣
2 B 直角头主轴侧铣
3 C 滑枕主轴侧铣
4 D 直角头主轴正铣
5 G 滑枕主轴侧铣
6 H 直角头主轴侧铣
A、B面比较:影响因素是直角头在Z方向的轴线偏差。若A面高于B面,则说明直角头轴线在Z方向偏下,则需要补偿正值至Z方向的补偿变量中,台阶高低差值的一半即是Z方向偏差值;
C、D面比较:影响因素是直角头在Y方向的轴线偏差。若C面高于D面,则说明直角头轴线在Y方向偏前,则需要补偿负值至Y方向的补偿变量中,台阶高低差值的一半即是Y方向偏差值;
G、H面比较:影响因素是直角头在X方向的轴线偏差。若G面高于H面,则说明直角头轴线在X方向偏后,则需要补偿负值至X方向的补偿变量中,台阶高低差值的一半即是X方向偏差;
同理,可以测试出其余方向的偏差值。
在其余倾斜角度上,空间上的偏差值比较难测。即当目标角度值不属于0°、90°、180°和270°时,为了便于计算目标角度值在预设方向的偏差值,采用线性插补法计算目标角度值在预设方向的偏差值。为了统一计算,通过使用0度和90度、90度和180度、180度和270度、270和0度的偏差值,构建线性函数。具体地,包括以下步骤:
判断目标角度值所在角度区间;本实施例中,角度区间包括(0,90°],(90°,180°],(180°,270°],(270°,360°]。
若目标角度值在(θ 0,θ 1]范围内,则目标角度值在预设方向的偏差值为
Figure PCTCN2022128524-appb-000004
其中,
Figure PCTCN2022128524-appb-000005
为θ 1在当前方向的偏差值,
Figure PCTCN2022128524-appb-000006
为θ 0在当前方向的偏差值,θ为当前角度值。
如计算目标角度值45°在X方向的偏差时,由于45°在0°和90°之间,0°在X方向的偏差值为X ,90°在X方向的偏差值为X 90°,即得两个坐标(0°,X )和(90°,X 90°),那么目标角度值45°在X方向的偏差值为:(X 90°-X )*(45°-0°)/(90°-0°)+X ,其他方向的偏差采用相同方法计算。
利用PMC读取宏变量的方式,将补偿值告知系统,由系统发出补偿指令,最终实现坐标轴的偏移。扩展的外部原点偏移与螺距误差补偿、直线度补偿等误差补偿功能重叠输出,不进行坐标值的更新。
为了避免过度补偿,还包括步骤:判断位置偏差值是否超过设定的补偿值范围,如(-0.5mm至+0.5mm),是则进行系统报警,否则跳转至位置偏差补偿步骤。
实施例2
一种电子设备200,如图4所示,包括但不限于:存储器201,其上存储有程序代码;处理器202,其与存储器联接,并且当程序代码被处理器执行时,实现一种直角头分度自动补偿方法。关于方法的详细描述,可以参照上述方法实施例中的对应描述,在此不再赘述。
实施例3
一种计算机可读存储介质,如图5所示,其上存储有程序指令,程序指 令被执行时实现的一种直角头分度自动补偿方法。关于方法的详细描述,可以参照上述方法实施例中的对应描述,在此不再赘述。
实施例4
一种计算机程序产品,包括计算机程序/指令,该计算机程序/指令被处理器执行时实现一种直角头分度自动补偿方法。关于方法的详细描述,可以参照上述方法实施例中的对应描述,在此不再赘述。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上仅为本说明书实施例而已,并不用于限制本说明书一个或多个实施例。对于本领域技术人员来说,本说明书一个或多个实施例可以有各种更改和变换。凡在本说明书一个或多个实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书一个或多个实施例的权利要求范围之内。本说明书一个或多个实施例本说明书一个或多个实施例本说明书一个或多个实施例本说明书一个或多个实施例。

Claims (10)

  1. 一种直角头分度自动补偿方法,其特征在于,包括以下步骤:
    获取目标角度值,判断所述目标角度值是否为直角头预设分度的整数倍,是则跳转至角度偏差补偿步骤;
    角度偏差补偿,通过直角头的当前角度、所述目标角度值及补偿值进行目标角度补偿;
    位置偏差补偿,获取当前角度的位置偏差值和所述目标角度值的位置偏差值,通过所述当前角度的位置偏差值和所述目标角度值的位置偏差值进行目标位置补偿。
  2. 根据权利要求1所述的一种直角头分度自动补偿方法,其特征在于,所述角度偏差补偿包括以下步骤:
    获取当前角度值和所述目标角度值对应的补偿值;
    通过所述目标角度值、所述当前角度值和所述目标角度值对应的补偿值计算实际转动角度;
    通过所述实际转动角度进行目标角度补偿;
    通过所述目标角度值更新所述当前角度值。
  3. 根据权利要求2所述的一种直角头分度自动补偿方法,其特征在于,所述位置偏差补偿包括以下步骤:
    获取当前角度在预设方向的偏差值;
    获取目标角度值在预设方向的偏差值;
    通过所述当前角度在预设方向的偏差值和所述目标角度值在预设方向的偏差值对所述目标角度值在预设方向的位置进行补偿。
  4. 根据权利要求3所述的一种直角头分度自动补偿方法,其特征在于:所述获取目标角度值在预设方向的偏差值具体为采用线性插补法计算目标角度值在预设方向的偏差值。
  5. 根据权利要求4所述的一种直角头分度自动补偿方法,其特征在于,所述采用线性插补法计算目标角度值在预设方向的偏差值包括以下步骤:
    判断所述目标角度值所在角度区间;
    若所述目标角度值在(θ 0,θ 1]范围内,则所述目标角度值在预设方向的 偏差值为
    Figure PCTCN2022128524-appb-100001
    其中,
    Figure PCTCN2022128524-appb-100002
    为θ 1在当前方向的偏差值,
    Figure PCTCN2022128524-appb-100003
    为θ 0在当前方向的偏差值,θ为当前角度值。
  6. 根据权利要求1所述的一种直角头分度自动补偿方法,其特征在于,还包括步骤:判断位置偏差值是否超过设定的补偿值范围,是则进行系统报警,否则跳转至所述位置偏差补偿步骤。
  7. 根据权利要求5所述的一种直角头分度自动补偿方法,其特征在于:所述角度区间包括(0,90°],(90°,180°],(180°,270°],(270°,360°]。
  8. 一种电子设备,其特征在于,包括:存储器,其上存储有程序代码;处理器,其与所述存储器联接,并且当所述程序代码被所述处理器执行时,实现如权利要求1至7中任一项所述的方法。
  9. 一种计算机可读存储介质,其特征在于,其上存储有程序指令,所述程序指令被执行时实现如权利要求1至7中任意一项所述的方法。
  10. 一种计算机程序产品,包括计算机程序/指令,其特征在于,该计算机程序/指令被处理器执行时实现如权利要求1至7中任意一项所述的方法。
PCT/CN2022/128524 2022-09-16 2022-10-31 一种直角头分度自动补偿方法、设备、介质及产品 WO2024055391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211133186.9A CN115562160A (zh) 2022-09-16 2022-09-16 一种直角头分度自动补偿方法、设备、介质及产品
CN202211133186.9 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055391A1 true WO2024055391A1 (zh) 2024-03-21

Family

ID=84741756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128524 WO2024055391A1 (zh) 2022-09-16 2022-10-31 一种直角头分度自动补偿方法、设备、介质及产品

Country Status (2)

Country Link
CN (1) CN115562160A (zh)
WO (1) WO2024055391A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116543052B (zh) * 2023-06-15 2023-11-10 深圳荣耀智能机器有限公司 一种对位偏差处理方法和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581705A (zh) * 2012-03-09 2012-07-18 南京航空航天大学 一种铣削加工工件误差的分度补偿方法
DE102013210462A1 (de) * 2013-02-07 2014-08-07 Deckel Maho Pfronten Gmbh Verfahren und Vorrichtung zum Ermitteln einer Spindelkompensation an einer numerisch gesteuerten Werkzeugmaschine
CN104615082A (zh) * 2014-12-19 2015-05-13 北京理工大学 一种切削过程中导轨耦合误差实时在位补偿装置及方法
KR20190050019A (ko) * 2017-11-02 2019-05-10 현대위아 주식회사 공작기계의 변위 보상장치 및 그 방법
CN111367237A (zh) * 2020-04-10 2020-07-03 山东理工大学 一种非正交五轴立卧转换数控机床后处理方法
CN112139855A (zh) * 2020-08-21 2020-12-29 成都飞机工业(集团)有限责任公司 一种机床刀具补偿方法
CN112846934A (zh) * 2021-01-07 2021-05-28 宁波天瑞精工机械有限公司 一种全自动交换多向摇摆头自动分度控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581705A (zh) * 2012-03-09 2012-07-18 南京航空航天大学 一种铣削加工工件误差的分度补偿方法
DE102013210462A1 (de) * 2013-02-07 2014-08-07 Deckel Maho Pfronten Gmbh Verfahren und Vorrichtung zum Ermitteln einer Spindelkompensation an einer numerisch gesteuerten Werkzeugmaschine
CN104615082A (zh) * 2014-12-19 2015-05-13 北京理工大学 一种切削过程中导轨耦合误差实时在位补偿装置及方法
KR20190050019A (ko) * 2017-11-02 2019-05-10 현대위아 주식회사 공작기계의 변위 보상장치 및 그 방법
CN111367237A (zh) * 2020-04-10 2020-07-03 山东理工大学 一种非正交五轴立卧转换数控机床后处理方法
CN112139855A (zh) * 2020-08-21 2020-12-29 成都飞机工业(集团)有限责任公司 一种机床刀具补偿方法
CN112846934A (zh) * 2021-01-07 2021-05-28 宁波天瑞精工机械有限公司 一种全自动交换多向摇摆头自动分度控制方法及装置

Also Published As

Publication number Publication date
CN115562160A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
US8229594B2 (en) Automatic finishing machine and control method thereof
WO2024055391A1 (zh) 一种直角头分度自动补偿方法、设备、介质及产品
CN109318058A (zh) 一种基于数控机床的自适应加工方法
WO2022170841A1 (zh) 一种面向大部件群孔加工孔位误差最小的基准选取方法
US10732604B2 (en) System and method for virtually calibrating a computer numeric controlled machine to compensate for surface distortions
CN108195327A (zh) 一种基于机器人的附加轴标定方法及终端
CN106054814B (zh) 基于图像灰度的计算机辅助加工方法
CN109483545B (zh) 一种焊缝重构方法、智能机器人焊接方法及系统
CN114012724B (zh) 一种基于探针的工业机器人坐标系自动标定方法
JP2017037460A (ja) 加工システム及び加工方法
CN111251189A (zh) 一种用于铸件打磨的视觉定位方法
CN110487233A (zh) 校正机器人用户坐标系的方法及系统
CN1202924C (zh) 模具的制造方法及其制造装置
TW201521940A (zh) 加工治具、雙輪廓加工系統及方法
CN110561400A (zh) 圆周均匀分布零件的高效精准定位系统及定位方法
CN114820820B (zh) 一种电脑后壳的3d检测方法
JPH0195889A (ja) レーザ加工装置およびレーザ加工方法
CN111266575B (zh) 一种定量修复增材件表面缺陷的方法
CN108592838B (zh) 工具坐标系的标定方法、装置以及计算机存储介质
CN112857214A (zh) 数控机床空间型面的测量方法
CN106735484B (zh) 屏蔽电机定子铁心齿压板端部铣槽加工工艺
TWI766781B (zh) 精密加工的非對稱尋邊補正方法
CN117506030A (zh) 一种侧面放电电极自动控制方法、装置、设备及介质
TW201621493A (zh) 高精度平面加工系統及方法
US20240085882A1 (en) Method of computer numerical control (cnc) machining and hybrid manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958580

Country of ref document: EP

Kind code of ref document: A1