WO2024053970A1 - 전극 활물질 제조용 소성용기 - Google Patents

전극 활물질 제조용 소성용기 Download PDF

Info

Publication number
WO2024053970A1
WO2024053970A1 PCT/KR2023/013187 KR2023013187W WO2024053970A1 WO 2024053970 A1 WO2024053970 A1 WO 2024053970A1 KR 2023013187 W KR2023013187 W KR 2023013187W WO 2024053970 A1 WO2024053970 A1 WO 2024053970A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
firing
electrode active
active material
vessel
Prior art date
Application number
PCT/KR2023/013187
Other languages
English (en)
French (fr)
Inventor
최청수
오지우
최상규
갈솔이
임진현
정재학
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220113500A external-priority patent/KR20240034469A/ko
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Publication of WO2024053970A1 publication Critical patent/WO2024053970A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/02Combinations of furnaces of kinds not covered by a single preceding main group combined in one structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/04Sintering pots or sintering pans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace

Definitions

  • the present invention increases the reactivity of the active material by improving the flow of fluid when several firing vessels are horizontally arranged and stacked in multi-stage, and compensates for the structural vulnerability of the side wall, reducing the high load applied to the side wall of the multi-stage firing vessel.
  • This relates to a firing container for manufacturing electrode active materials that can be supported firmly to improve productivity and stability.
  • Parts of the present invention are the results of research conducted with support from Daegu Metropolitan City's next-generation battery-centered energy enterprise support project.
  • RHK Roller Hearth Kiln
  • lithium raw materials and metal raw materials are contained in a mixed state, and they react with each other due to the high temperature heat supplied from the horizontal interior, resulting in diffusion and crystal growth.
  • the firing container commonly used in the past has a square box-shaped structure as shown in FIG. 1.
  • This firing vessel 10 has an internal space 16 that can accommodate raw materials by a bottom 12 and a plurality of side walls 14, and the upper surface facing the bottom 12 contains raw materials and It is open for gas inflow.
  • the firing containers 10a and 10b are often stacked in two or three stages, as shown in FIG. 2, and then placed on a conveyor (not shown). In this case, the firing containers located at the center and bottom are unable to discharge the gas generated by the reaction, resulting in a problem in which a uniform reaction is not achieved.
  • the protruding laminated supports 28 formed at the corners as shown in FIG. 3A are It has the disadvantage of acting as an obstacle that prevents the smooth flow of .
  • the laminated support portion 28 has a structure bent in an “L” shape, a vortex or whirlpool phenomenon of fluid occurs in the corner area A, preventing gas from flowing. A problem of being trapped arises.
  • the purpose of the present invention is to solve the above problems of the prior art and technical problems that have been requested in the past.
  • the inventors of the present application have improved reactivity and productivity by suppressing eddy currents or whirlpool phenomena in the fluid during the firing process, as will be explained later, and have increased the reactivity and productivity of the firing vessel during the repeated high-temperature firing process.
  • the firing vessel for producing electrode active material according to the present invention to achieve this purpose,
  • a base forming the bottom surface of the firing vessel
  • At least one laminated support portion extending upward from a portion of the upper end of the side wall portion in a region other than a corner region where adjacent side wall portions contact each other;
  • the corner area The structure in which the laminated support is located in a non-layered area facilitates the internal inflow of air or oxygen and the external discharge of generated gas, thereby improving product quality and productivity through uniform reaction.
  • the firing vessel for producing an electrode active material has at least one structural reinforcement formed to a predetermined thickness from the side wall toward the raw material receiving space in order to structurally stabilize the side wall against heat and load. It may be composed of a structure that includes more.
  • the portion A of the corner area where adjacent side wall portions 14a and 14b contact each other is, for example, the side wall portions. While these mutually support each other at 90 degrees to provide structural stability and suppress outward expansion due to thermal expansion, the side wall portion 14b alone opposes thermal expansion of the base portion 12, and there is no separate support portion, so the outer side wall portion 14b A large gap in direction occurs.
  • a phenomenon occurs in which the central portion (B) of the side wall portion (14b) is pushed outward under the direct influence of thermal expansion of the base portion (12), and a load is applied by the upper plastic containers (not shown). In this case, it was confirmed that damage could easily occur.
  • the central portion of the base 12 swells and the central portion B of the side wall portion 14b is sequentially pushed outward and widened, and this opening phenomenon causes the remaining side wall portions 14a, 14c, It also happens in 14d).
  • the bulged portion thermally expands with the load applied from the top, and the gap between the side wall portions 14a, 14c, 14b, and 14d facing each other widens, As a result, the side walls 14a, 14b, 14c, and 14d collapse outward and the firing vessel 10 is damaged.
  • the inventors of the present application have established that the laminated support portion is formed, for example, in the center of the side wall to ensure smooth fluidity of the generated gas, and at the same time, the structural reinforcement portion formed to a predetermined thickness from the side wall toward the raw material receiving space , it was expected that the destruction of the firing vessel could be prevented if the side walls were structurally stabilized in response to thermal expansion and load, and such smooth gas flow and structural stabilization were confirmed in the actual mass production process.
  • the structural reinforcement portion may be in contact with the side wall portion and the base portion at the same time and may have a structure to fasten them to each other.
  • the structural reinforcement part mutually fixes the side wall and the base, the area where the structural reinforcement part and the side wall come into contact support each other, and the structural reinforcement part and the base part mutually support each other. The areas where the base touches each other support each other, so thermal expansion can be suppressed as much as possible.
  • the structural reinforcement portion is formed with a predetermined thickness from the side wall toward the raw material accommodation space.
  • the thickness of the structural reinforcement portion extended toward the raw material accommodation space is 15 to 75% of the thickness of the side wall portion. You can. The thicker the structural reinforcement section, the more firmly fixed the side wall and improved durability. However, since the internal accommodation space is reduced and the effect of reinforcing the side wall does not significantly increase beyond a certain thickness, it is preferable that it is less than 75% of the thickness of the side wall. do. On the other hand, if the thickness of the structural reinforcement portion is less than 15% of the thickness of the side wall portion, the strengthening effect of the side wall portion may not be realized.
  • the thickness of the structural reinforcement portion may be more preferably in the range of 25 to 65%, particularly preferably in the range of 32 to 52%.
  • the thickness of the structural reinforcement part means the maximum thickness.
  • the strengthening effect of the side wall can be further maximized when the structural reinforcement has a predetermined thickness and satisfies a predetermined height condition.
  • the height of the structural reinforcement may be more than 10% of the maximum height of the firing vessel.
  • the height of the structural reinforcing portion may be 10% or more compared to the sum of the height of the side wall portion and the height of the laminated support portion.
  • the height of the structural reinforcement may be 10 to 100% of the maximum height of the firing vessel, where 100% means that the height of the structural reinforcement is the same as the maximum height of the firing vessel. If the height of the structural reinforcement is less than 10% of the maximum height of the firing vessel, the effect of strengthening the side wall may not be realized. On the other hand, if the height of the structural reinforcement is 100% of the maximum height of the firing vessel, the firing vessel located at the top As the contact area increases, the load applied to the side wall can be more easily shared, but productivity may decrease as the accommodation space is reduced.
  • the height of the structural reinforcement portion may be more preferably 15 to 90%, and particularly preferably 17 to 80%.
  • the height of the structural reinforcement part means the maximum height.
  • the longitudinal center of the laminated support may coincide with the longitudinal center of the side wall portion.
  • the longitudinal direction refers to a direction parallel to the outer periphery of the base.
  • the structural strengthening portion may be formed to be at least adjacent to the position where the laminated support portion is formed.
  • a load is applied to the stacked support portion, so as described above, if the central portion of the base is thermally expanded, there is a high risk that the side wall area where the stacked support portion is formed will be damaged. Therefore, if the structural reinforcement is formed only in the corner area of the firing container, it may not contribute to the effect of preventing damage to the side wall due to thermal expansion.
  • a virtual surface formed by extending vertically downward from both ends of the lower surface of the laminated support portion may be in contact with at least a portion of the contact surface of the structural reinforcement portion with respect to the side wall portion.
  • the structural reinforcement is formed in a location where the laminated support is not formed and at the same time is not a corner area, it is possible to prevent the side walls from opening due to thermal expansion, but it may be difficult to achieve a load sharing effect.
  • the location of the structural reinforcement portion it is possible to simultaneously solve the problem of opening due to thermal expansion of the side walls and the problem of damage due to load.
  • the contact ratio between the virtual surface formed by extending vertically downward from both ends of the lower surface of the laminated support part and the contact surface of the structural reinforcement part with respect to the side wall part may be in the range of 50 to 100%.
  • the longitudinal center of the structural reinforcement portion may be formed at a location that coincides with the longitudinal center of the laminated support portion, thereby maximizing the load sharing effect.
  • the longitudinal direction refers to a direction parallel to the outer periphery of the base.
  • the length of the structural reinforcement may be 30 to 120% of the length of the laminated support.
  • the strengthening effect of the side wall increases, but if it exceeds a certain range, there is no significant change in the strengthening effect, and only the accommodation space may be reduced.
  • the length of the structural reinforcement portion is less than 30% of the length of the laminated support portion, the strengthening effect of the side wall portion may not be realized. Therefore, the length of the structural reinforcement part should be formed at an appropriate ratio to secure the accommodation space and simultaneously realize the strengthening effect of the side wall, preferably 40 to 100% of the length of the laminated support part, and more preferably 57 to 87%. It can be.
  • the length of the structural reinforcement part means the maximum length.
  • the vertical cross-sectional shape of this structural reinforcement portion can be any shape as long as the side wall portion can be strengthened.
  • the horizontal cross-sectional area of the structural reinforcement section gradually increases from the top to the bottom, or it may be in the form of a downward concave arc, and in addition, it may be in the form of a convex arc or polygon.
  • various modifications such as combinations of these are also possible.
  • the firing vessel for producing an electrode active material may have a structure of two or more laminated supports.
  • the firing vessel with this structure not only improves the fluidity of the fluid and provides more uniform reactivity by suppressing the swirling phenomenon of the fluid that may occur near the laminated support portion, thereby producing high-quality active materials, but also enables the production of high-quality active materials, which are the fluid flow passages.
  • the internal inflow of air or oxygen for oxidation reaction and the external discharge of gas generated during the firing process are significantly facilitated, and damage due to thermal expansion of the firing vessel can be suppressed as much as possible.
  • the structure may be such that no laminated support is located at the center of the top of the side wall portion.
  • the firing vessel enters and moves inside the furnace during the firing process.
  • fluid such as air or oxygen is supplied from multiple air supply ports on the side, which has the greatest influence on the progress and diffusion of the fluid in each firing vessel.
  • the affected area may be the central area at the top of the side wall. In other words, if the central part of the top of the side wall is open, some of the fluid flowing there proceeds straight across the firing container and the remaining fluid spreads symmetrically left and right, thereby maximizing the area of the firing container covered by the fluid. It can be. Therefore, when the lamination support is not located at the center of the top of the side wall and is open, the amount of fluid flow per firing container can be maximized.
  • the number of laminated supports located in one side wall portion may be two or more as previously defined, and preferably, the structure may be one in which two laminated supports are formed symmetrically with respect to the center of the side wall portion in the width direction.
  • This structure allows for a structure in which the laminated support is not located at the center of the top of the side wall while greatly increasing the number by subdividing the fluid flow path.
  • the central portion of the side wall which has the highest degree of thermal expansion, is effectively supported by the two laminated supports to suppress thermal expansion, thereby preventing destruction of the firing container.
  • this structure makes it possible to support the load of the upper firing vessel by the remaining undamaged laminated supports if some of the laminated supports are damaged by vibration or impact while the firing vessel is moving.
  • the positions and sizes of the laminated supports are specified within a predetermined range to maximize the desired effect while simultaneously minimizing problems that may be caused. Conditions are presented below.
  • At least one of the laminated supports on one side wall portion has the center of the laminated support portion in the width direction within 67% of the center of the side wall portion with respect to the length from the center of the side wall portion to one end of the side wall portion. It may be a structure located on the street.
  • the value is small, it means that the laminated support part is closer to the center of the side wall, and conversely, if the number is large, it means that the laminated support part is closer to the edge of the side wall part. If the above value is 67% or more, the laminated support portion close to the edge may interact with the laminated support portion on the adjacent side wall portion, resulting in a phenomenon similar to a fluid vortex phenomenon. In some cases, the minimum value of the above value may be set to 10% or more to minimize the possibility that the central portion of the top of the side wall is occluded. The value may preferably be in the range of 40% to 60%, and more preferably in the range of 45% to 55%.
  • a first laminated support portion and a second laminated support portion are formed in one side wall portion symmetrically with respect to the center of the side wall portion in the width direction, and the first laminated support portion has its center in the width direction at the center of the side wall portion. It is located at a distance of less than 67% from the center of the side wall with respect to the length to one end of the side wall, and the center of the second laminated support in the width direction is located at the center of the side wall with respect to the length from the center of the side wall to the other end of the side wall. Examples include structures located within 67% of the center.
  • the sum of the lengths in the width direction of the laminated support portions formed in one side wall portion may be 25% or more of the length of the side wall portion.
  • the maximum value of the above value may be set to 90% or less to minimize the problem of deterioration of fluid fluidity caused by a value higher than that value.
  • the value may preferably be in the range of 40% to 60%, and more preferably in the range of 45% to 55%.
  • the thickness of the laminated support portion may be 50% or more of the thickness of the side wall portion on which it is located.
  • the thickness of the laminated support portion increases by at least 50% or more as described above, it may help improve durability, and if possible, it may need to be 120% or less of the thickness of the side wall portion. If it exceeds 120%, problems may arise in the formability of the firing vessel, and the load on the firing vessel itself may increase, causing excessive load to be applied to the lower firing vessel, which may cause damage.
  • the value may preferably be in the range of 80% to 120%, and more preferably in the range of 90% to 110%.
  • the height of the laminated support portion may be 40% or less of the total height of the firing vessel.
  • the height of the lamination support exceeds 40%, durability may decrease and may be damaged, and when multi-stage lamination of a firing vessel, as the stage height increases, the number of laminated stages that can be secured decreases, which may reduce productivity. If possible, it may be better to secure a sufficient fluid flow path by setting the height of the stacked support portion to 10% or more.
  • the value may preferably be in the range of 10% to 30%, and more preferably in the range of 15% to 25%.
  • the gap between the laminated support parts formed in one side wall portion may be 15% or more of the width direction length of the side wall portion.
  • the fluid flow path widens, so it may be necessary to set it to at least 15% of the width direction length of the side wall.
  • the fluid flow path adjacent to the edge narrows, which may cause a phenomenon similar to a fluid vortex phenomenon, so the above value may need to be 50% or less.
  • the value may preferably be in the range of 17% to 50%, and more preferably in the range of 20% to 30%.
  • the lateral shape of the laminated support is not particularly limited as long as it smoothly supports the load of the upper firing container and does not interfere with the formation of a fluid flow path, for example, one of a polygonal shape or a convex arc shape. , or a combination thereof.
  • laminated supports are formed on the side walls to form a fluid flow path between the laminated supports.
  • the fluid flow path is formed at the top of the side wall portion and serves as a passage through which fluid inside and outside the raw material receiving space can flow, and is formed at the top of at least one side wall portion.
  • the fluid flow path is located at both ends of the side wall having a predetermined thickness, that is, in the corner area of the firing vessel, and the upper part of the side wall is formed in an open shape.
  • the opening surface of the fluid flow path includes a first opening surface formed parallel to the longitudinal direction of the upper surface of the side wall portion, and a second opening surface formed on the side surface of the laminated support portion and in contact with the first opening surface.
  • the first opening surface may be formed in a straight line parallel to the longitudinal direction of the side wall portion, but it is also possible to form uneven portions to facilitate the flow of fluid.
  • the second opening surface connects the first opening surface and the top of the laminated support portion, and may be formed in a vertical direction rather than being inclined.
  • shock and load are concentrated at both ends of the second opening surface and the side wall, and at the contact area between the second opening surface and the first opening surface, so it can be easily damaged. there is. Therefore, in order to ensure high durability in the portion where the fluid flow path is formed, it may be desirable to form the second opening surface to be inclined.
  • the first opening surface is connected to the base and It may be horizontal, and the second opening surface may have a structure inclined to the base.
  • the structure can effectively support and distribute the load of the upper firing vessel to increase structural stability.
  • the inclination of the second opening surface is 45 degrees or more with respect to the first opening surface.
  • the range may be less than 90 degrees.
  • first opening surface and a second opening surface it is described separately into a first opening surface and a second opening surface.
  • it may be composed of only a second opening surface with an inclination without the first opening surface, and may be formed in the shape of an arc or curved surface. can be formed.
  • a fixing portion corresponding to the stacking support of the firing containers located below may be formed at the bottom of the base.
  • the fixing part suppresses shaking during the movement of the stacked firing containers and helps the firing containers be fixed in place, and its shape is not particularly limited.
  • a concave-shaped indented fixing part may be formed at the bottom of the base, so that the upper part of the laminated support part of the lower firing vessel may be introduced into the indented fixing part.
  • the present invention also provides a firing device in which a plurality of the firing vessels are arranged horizontally in succession and vertically stacked in multiple stages at the same time, and are introduced into the firing furnace along a rail.
  • firing vessels for producing electrode active materials into which raw materials are injected into the raw material injection space are arranged horizontally and vertically in multiple stages, and flow into the inside of a firing furnace, for example, a horizontal furnace, along a rail.
  • a firing furnace for example, a horizontal furnace, along a rail.
  • It may be a firing device of the RHK (Roller Hearth Kiln) firing method. Since certain devices of the RHK firing method excluding the firing vessel are known in the art, a detailed description thereof will be omitted in this specification.
  • the present invention provides a firing vessel assembly characterized in that a plurality of firing vessels are arranged horizontally in a plane of 2 ⁇ 2 or more.
  • the firing vessel includes a base forming the bottom surface of the firing vessel, side wall parts extending upward from the outer periphery of the base to form a raw material receiving space, and a region other than a corner where adjacent side wall parts contact each other. It is configured to include at least two or more laminated support parts extending upward from the top of each side wall part.
  • the firing vessel of the present invention has the characteristic of enabling a uniform response during firing by providing a plurality of subdivided fluid flow paths due to structural differentiation based on the location, size, number, etc. of the laminated support parts, and this allows for a uniform response during firing.
  • the smallest array unit, a 2 ⁇ 2 horizontal array, has a structure that is different from the prior art.
  • At least six or more fluid flow paths that are parallel to the base of the firing vessel, form a 45° angle with the side wall, and are mutually parallel can be formed. and preferably 6 to 12 fluid flow paths can be formed.
  • the firing vessel according to the present invention can improve the flow of fluid by preventing vortices or whirlpools when several firing vessels are horizontally arranged and stacked in multiple stages.
  • the firing vessel by suppressing irregular thermal expansion due to the high heat generated during the firing process, it is possible to firmly support the high load applied to the side wall of the firing vessel, improving productivity and stability, and preventing the internal inflow of air or oxygen and generated gas. It is very easy to discharge to the outside, which has the effect of improving the fluidity of the fluid and providing uniform reactivity.
  • FIG. 1 is a schematic perspective view of an exemplary firing vessel of the prior art
  • Figure 2 is a schematic diagram of a plurality of firing vessels of Figure 1 arranged horizontally and vertically;
  • Figure 3a is a schematic perspective view of an exemplary firing vessel of the prior art
  • Figure 3b is a schematic diagram showing partial fluid flow in a state in which a plurality of firing vessels of Figure 3a are arranged horizontally;
  • Figure 4 is a plan view schematically expressing the phenomenon in which thermal expansion spreads from the base in a six-sided firing vessel
  • Figure 5 is a side view in the form of a plan view and a partial projection of a firing vessel according to a specific first embodiment of the present invention
  • Figure 6 is a side view in plan and partial projection form of a firing vessel according to another embodiment with respect to Figure 5;
  • Figure 7 is a schematic perspective view of another exemplary firing vessel of the prior art.
  • Figure 8 is a side view schematically showing a state in which two firing vessels according to another embodiment are stacked in relation to Figure 5;
  • Figure 9a is a schematic perspective view of a firing vessel according to a second specific embodiment of the present invention.
  • Figure 9b is a side view of the firing vessel of Figure 9a;
  • Figure 9c is a top view of the firing vessel of Figure 9a;
  • Figure 10 is a schematic side view of a firing vessel according to another embodiment with respect to Figure 9a;
  • Figure 11 is a schematic diagram showing fluid flow paths in a 2 ⁇ 2 horizontally arranged firing vessel assembly based on the firing vessel of Figure 9a;
  • Figure 12 is a schematic diagram showing fluid flow paths in a 2 ⁇ 2 horizontally arranged firing vessel assembly based on a firing vessel in which one laminated support portion is formed on the side wall;
  • Figure 13 is a schematic diagram showing the fluid flow when an n ⁇ n horizontally arranged firing vessel assembly based on Figure 11 progresses into the firing furnace;
  • Figure 14 is a schematic diagram showing the fluid flow when using an n ⁇ n horizontally arranged firing vessel assembly based on Figure 12;
  • Figures 15a and 15b are images showing the fluid simulation results in Figure 13;
  • Figures 16a and 16b are images showing the fluid simulation results in Figure 14.
  • Figures 5 and 6 schematically show exemplary firing vessels.
  • Figures 5 and 6 show a plan view and a side view in the form of a partial projection of the firing vessel, respectively.
  • the firing vessel 100 of the present invention includes a base portion 110.
  • the base 110 forms the bottom surface of the firing container 100 and accommodates a large amount of raw materials inside, while allowing multiple firing containers to be closely arranged in the moving direction and width direction of the conveyor (not shown). It has a polygonal shape.
  • the shape of the base 110 is not particularly limited as long as it is possible to minimize empty space by arranging the firing containers in close contact. However, the shape that allows close contact between the firing containers increases the raw material accommodation space per unit area and increases productivity, so it is triangular, Square or hexagonal shapes may be preferred.
  • the side wall portion 120 extends upward along the outer periphery of the base portion 110, and a raw material receiving space (S) is formed by the base portion 110 and the side wall portion 120 surrounding the base portion 110.
  • the number of these side wall parts 120 corresponds to the shape of the base part 110.
  • the side wall portion 120 is preferably formed around the entire outer periphery of the base portion 110 to prevent the raw material from being lost.
  • the stacking support portion 130 provides a fluid flow path and assists in multi-stage stacking of the firing containers 100, thereby providing a stable stacked structure.
  • the structure may be formed extending from the upper surface of each of the side walls 120, and may be formed only on some of the entire side walls if the load of the upper firing vessel(s) can be balanced according to the shape of the base 110. It could be.
  • One such laminated support portion 130 may be formed on one side wall portion, or two or more may be formed on one side wall portion.
  • the laminated support portion 130 may have a structure formed, for example, in the central area of the upper surface of the side wall portion 120 so that fluid flow paths are located at each end of the side wall portion 120, as shown in FIG. 6. .
  • This structure provides a desirable example for implementing a structure in which the laminated support portion 130 is not located at the top of at least one of the intersection regions (edge regions) where adjacent side wall portions contact each other. do. That is, by allowing fluid to flow without the laminated support 130 being located in the corner area of the firing vessel 100, it can have a structure that is more advantageous for forming a flow path than when the laminated support 130 is formed in the corner area.
  • the structural reinforcement portion 140 has a predetermined thickness from the side wall portion 120 toward the raw material receiving space (S) to structurally stabilize the side wall portion 120 against thermal expansion and load. It is formed. That is, the side wall portion 120 can more firmly withstand the load of the firing container(s) located at the top, and even if the firing container 100 expands due to heat, the side wall portion 100 due to thermal expansion of the base portion 110 ) can prevent damage.
  • the structural reinforcement portion 140 is expanded toward the raw material storage space (S), which may reduce the raw material capacity per unit area. However, by strengthening the side wall portion 120, the number of stacked layers can be increased, thereby realizing the effect of increasing the raw material capacity per unit area. You can.
  • the structural reinforcement portion 140 serves to prevent the side wall portion 120 from being damaged toward the outside of the firing vessel due to thermal expansion, and as shown in the figure, a significant portion of the structural reinforcement portion 140 is attached to the base portion 110. ) and the side wall portion 120 at the same time and are fixed, so that the opening of the base portion 120 and the side wall portion 120 can be more effectively prevented due to structural stability.
  • the structural reinforcement portion 140 is formed in the inner direction from the side wall portion 120, and when comprehensively considering product productivity by firing and structural stability during such a predetermined process, the thickness (t) extended toward the raw material receiving space is It ranges from 15 to 75% of the thickness (T) of the side wall 120, and the height (h) is the maximum height (H) of the firing vessel 100, or the height of the side wall (H 1 ) and the height of the laminated support (H 2 ) may be more than 10% of the sum of the In the drawings, the height H of the firing vessel 100 is equal to the sum of the side wall height H 1 and the stacked support height H 2 .
  • the longitudinal center 130P of the stacking support 130 is the longitudinal center of the side wall 120 ( It is formed to match 120P).
  • the longitudinal center 140P of the structural reinforcement portion 140 is formed at a position substantially coincident with the longitudinal center 130P of the laminated support portion 130 on the same axis, thereby maximizing the load sharing effect. .
  • a virtual surface (P 1 ) formed by extending vertically downward from both ends 131 of the lower surface of the laminated support part 130 and a contact surface (P 2 ) of the structural reinforcement part 140 with respect to the side wall part 120
  • the upper part overlaps and solves the problem of opening due to thermal expansion of the side walls 120 and damage caused by the load of the upper firing container(s).
  • the length (L 1 ) of the structural reinforcement portion 140 in the firing vessel 101 is substantially the same as the length (L 2 ) of the laminated support portion 130, but securing the receiving space and strengthening the side wall portion If the effect can be realized, it may be smaller than the length (L 2 ) of the laminated support portion 130 as shown in FIG. 5 within a certain range, or, contrary to FIG. 5 , may be larger.
  • FIG. 7 shows a firing vessel 10' with a reinforcement portion 30 added to the outside, which has the following structural problems.
  • the reinforcement portion 30 extending to the outside of the firing vessel 10' is a horizontal arrangement of a plurality of firing vessels 10', as the contact area between the firing vessels 10' decreases. Since the containers 10' cannot hold each other firmly, the firing containers 10' loaded on the conveyor (not shown) move slightly due to vibration generated during movement. Since the length of the horizontal path is tens of meters, as small movements of the firing vessels 10' are repeated, the contact parts are misaligned, causing the arrangement of the firing vessels 10' to become distorted, and the thick corners become Damage gets worse when it hits a relatively thin part, and plastic containers loaded on the outside of the conveyor fall out of the conveyor, causing various problems.
  • empty spaces that are not in contact are formed between the arranged firing containers 10', and when arranged, the spaces allow for the number of firing containers 10' and electrode active material raw materials that can be loaded in the same space. The amount decreases, which is also undesirable in terms of productivity.
  • the firing containers 10b located at the bottom during multi-stage stacking are unable to discharge the gas generated by the reaction, resulting in a problem in which a uniform reaction is not achieved.
  • the firing vessels 100 and 101 of the present invention illustrated in FIGS. 5 and 6 solve the structural problems of the firing vessel 10' of FIG. 7 at once, as described above.
  • FIG. 8 illustrating the firing vessel 102 according to the present invention
  • a furnace (F) is formed.
  • the opening surface of the fluid flow path (F) is a first opening surface (S 1 ) formed parallel to the longitudinal direction of the upper surface of the side wall portion 120, and the laminated support portion 130 while contacting the first opening surface (S 1 ). It includes a second opening surface (S 2 ) formed on the side of.
  • the second opening surface (S 2 ) has an upwardly sloping structure.
  • a fixing groove 150 is formed on the bottom of the base of the firing vessel 101 and has a shape corresponding to the corresponding position so that a portion of the upper part of the lamination support 130 can be accommodated. ) is formed.
  • Figure 9a shows a schematic perspective view of a firing vessel according to a specific second embodiment of the present invention
  • Figure 9b shows a side view of the firing vessel
  • Figure 9c shows a top view of the firing vessel.
  • the firing vessel 200 of the present invention includes a base portion 210, a side wall portion 220, a laminated support portion 240, etc.
  • the side wall portion 220 extends upward along the outer periphery of the base portion 210, and a raw material receiving space 230 is formed by the base portion 210 and the side wall portion 220 surrounding the base portion 210.
  • the number of side wall portions 220 corresponds to the shape of the base portion 210. For example, in the case of a square-shaped base portion 210 as shown in the drawing, four side wall portions 220 may be provided.
  • the stacking support portion 240 provides a fluid flow path and assists multi-stage stacking of the firing containers 200 to provide a stable stacked structure. To this end, it has a structure extending from the upper surface of each side wall portion 220. You can.
  • a structure is presented in which two laminated supports (240a, 240b) are formed on one side wall portion 220, and these laminated supports (240a, 240b) are aligned with the side wall portion 220 in the width direction (X). Since it is formed symmetrically with respect to the center (Y), no laminated support portion is located in the center (Y) portion at the top 221 of the side wall portion 220.
  • the space where the stacked supports 240a and 240b are not located forms a fluid flow path S.
  • the laminated support portion is not located at the top of the corner portion W, which is the intersection portion where the adjacent side wall portions 220 and 222 come into contact with each other, so a fluid swirl phenomenon does not occur.
  • three or more laminated supports can be formed, but as the number of laminated supports increases, it becomes more difficult for fluid to pass between the laminated supports, so the optimal lamination to secure the fluid flow path most smoothly is
  • the number of supports may be two.
  • the function of the firing container can be optimized by setting the position, size, etc. of the laminated support portion within a predetermined range as follows.
  • the distance may be within 67% of the length (D 1 ) to one end of the side wall portion 220.
  • the preferred site ratio (D C /D 1 ) ranges from 40% to 60%.
  • the sum of the length (L 1 ) of the laminated support portion 240a formed on the side wall 220 and the length (L 2 ) of the laminated support portion 240b (L 1 + L 2 ) may be 25% or more of the length (L) of the side wall portion 220.
  • a preferred length ratio ((L 1 +L 2 )/L) is in the range of 40% to 60%.
  • the thickness (t) of the laminated supports (240a, 240b) may be 50% or more based on the thickness (T) of the side wall portion (220).
  • a preferred thickness ratio (t/T) ranges from 80% to 120%.
  • the height (h) of the laminated supports (240a, 240b) may be 40% or less based on the total height (H) of the firing vessel 200.
  • a preferred height ratio (h/H) ranges from 10% to 30%.
  • the distance p between the laminated supports 240a and 240b in the side wall 220 may be 15% or more of the length L in the width direction (X) of the side wall 220.
  • a preferred spacing ratio (p/L) ranges from 17% to 50%.
  • Figure 10 schematically shows a side view of a firing vessel according to another embodiment in relation to Figure 9a.
  • the second opening surface Z 2 which is a side surface of the laminated support 240 , is inclined at an angle of 45 degrees or more to less than 90 degrees with respect to the base portion 210 . This structure has the effect of improving stability against load.
  • Figure 11 shows a schematic diagram showing fluid flow paths in a firing vessel assembly in which four firing vessels based on the firing vessel of Figure 9a form a 2 ⁇ 2 horizontal arrangement.
  • Figure 12 shows one stacked support A firing vessel assembly according to a 2 ⁇ 2 horizontal arrangement based on the firing vessel formed on the additional side wall is schematically shown.
  • the firing vessel assembly 300a is parallel to the base of the firing vessel and It can be seen that there are up to five fluid flow paths (F 1 , F 2 , F 3 , F 4 , F 5 ) that form a 45° angle with the side wall and are parallel to each other.
  • the firing vessel assembly 300 based on the firing vessel of FIG. 9A has a total of 9 fluid flow paths under the above-described conditions.
  • An increase in the fluid flow path in the diagonal direction further activates the flow of fluid in the firing vessel and improves reaction uniformity during firing.
  • Figure 13 shows a schematic diagram showing the fluid flow when advancing the n
  • a schematic diagram showing the fluid flow when using an n ⁇ n horizontal array of firing vessels based on 12 is shown.
  • the kiln vessel 200 moves in the direction and receives fluid from the air supply unit 400 located on the side.
  • the firing vessel 200 in which two stacked supports 240 are formed per side wall 220, experiences various fluid progression and diffusion phenomena due to the plurality of fluid flow paths.
  • the firing vessel 200a has one laminated support portion 240a formed at the upper center of the side wall portion 220a, so that the fluid flows to the corner portion where the laminated support portion 240a is not formed. Since it can only flow in, the number of fluid flow paths is very limited, and it can be seen that an overall uniform fluid flow is not formed. In particular, since the central top of the side wall portion 220a is blocked by the laminated support portion 240a, fluid cannot directly enter the center of the firing vessel 200a, so it can be easily expected that fluid fluidity will be greatly reduced.
  • the firing vessel of Figure 9a can increase reaction uniformity by creating an even fluid flow while forming a plurality of subdivided fluid flow paths when forming a firing vessel assembly for firing.
  • the destruction phenomenon can be minimized by increasing thermal stability during firing.
  • the firing vessel inevitably receives high-temperature heat when firing the reactant.
  • the central portion (A) of the side wall portion 220 has the highest degree of thermal expansion, so the side wall portion 220 is the firing container.
  • a collapse phenomenon occurs in the outward direction of (200).
  • two stacked support parts 240a and 240b are formed at symmetrical positions around the central portion A of the side wall 220, so that when stacked, the upper firing vessel (not shown) ) while supporting the load, thermal expansion of the central portion A of the side wall 220 can be suppressed, and this has the effect of preventing damage to the side wall 220 due to thermal expansion.
  • the load of the upper firing container can be supported by the remaining undamaged stacked supports.
  • FIGS. 15A and 15B disclose the fluid simulation results in FIG. 13
  • FIGS. 16A and 16B disclose the fluid simulation results in FIG. 14.
  • the firing vessel assembly of FIG. 13 and the firing vessel assembly of FIG. 14 are each set in a structure in which three layers are stacked top and bottom, and each firing vessel of ⁇ Under 20 m 3 /hr + Side 40 m 3 /hr> Fluid simulation was performed by setting flow conditions.
  • the image on the left shows the results of a first-stage fluid simulation
  • the image on the right shows the results of a three-stage fluid simulation.
  • the fluid inlet is located at the upper center of the side wall, and fluid flows smoothly in both horizontal directions based on the fluid simulation inlet, and fluid flows up to the innermost firing container. You can see that it is arriving well.
  • the fluid inlet is located at the corner of the side wall, and when fluid flows in through this, the fluid inflow is smooth, but the inflow upper and lower widths are relative. Because it is small, the effect of air supply to firing vessels located on the outside is low, and furthermore, the air supply difference between the first stage of the left image and the third stage of the right image is very large, so it can be seen that the reliability of the operation is low.
  • FIG. 16A it can be seen that in the firing vessel assembly of FIG. 14, when the air supply is interrupted by the laminated support portion, the air supply is substantially blocked and the inflow of fluid hardly occurs.
  • the firing vessel assembly based on the firing vessel of Figure 11 provides significantly superior fluid flow through the fluid simulation results of Figures 15a and 15b, compared to the fluid simulation results of Figures 16a and 16b using the firing vessel assembly of Figure 14. It has been proven that it can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

본 발명은, 소성용기의 바닥면을 형성하는 기저부, 기저부의 외주변들로부터 상향으로 연장되어 원료 수용공간을 형성하는 측벽부들, 및 인접한 측벽부들이 상호 접하는 모서리 영역이 아닌 부위에서, 측벽부의 상단 일부로부터 상향 연장되어 형성된 적어도 하나 이상의 적층 지지부를 포함하고 있는 것을 특징으로 하는 전극 활물질 제조용 소성용기를 제공한다.

Description

전극 활물질 제조용 소성용기
본 발명은 소성용기 여러 개를 수평 배열 및 다단 적층할 때 유체의 흐름을 개선하여 활물질의 반응성을 증가시키고 측벽부의 구조적 취약성을 보완하여, 다단으로 적층된 소성용기의 측벽부에 가해지는 높은 하중을 견고하게 지지할 수 있어 생산성 및 안정성을 향상시킬 수 있는 전극 활물질 제조용 소성용기에 관한 것이다.
본 발명의 일부 내용은 대구광역시 차세대 배터리 중심 에너지 기업지원사업으로 지원을 받아 수행된 연구 결과물이다.
양극 활물질과 같은 전극 활물질을 제조하기 위해서는 소성 공정이 필수적으로 수반된다. 전극 활물질을 소성하기 위한 대표적인 방법으로 Roller Hearth Kiln (RHK) 소성 방식이 당업계에 널리 알려져 있으며, 산업현장에서 제품의 양산에 적용되고 있다.
이러한 RHK 소성 방식은, 분말 형상의 리튬 원료와 금속 원료를 혼합하여 소성용기에 넣고, 각 구역(zone) 별로 온도 설정이 되어있는 수평로(Horizontal furnace) 내에 소성용기를 투입한 후, 컨베이어를 따라 수십 미터를 이동시키면서 연속 소성을 진행하는 과정으로 이루어진다.
컨베이어를 타고 이동하는 소성용기의 내부에는 리튬 원료와 금속 원료가 혼합된 상태로 수용되어 있으며, 수평로 내부에서 공급되는 높은 온도의 열에 의해 서로 반응하여 확산 및 결정 성장이 이루어진다.
이때, 리튬 소스와 메탈 소스의 반응 시 가스가 발생되는데, 이러한 발생 가스가 소성 용기 및 수평로의 외부로 원활하게 배출되지 못하면 리튬 소스와 메탈 소스의 표면이 가스에 의해 뒤덮여 균일한 산화분위기가 유지되지 못하고, 그에 따라 균일한 반응이 이루어지지 못하는 문제가 발생된다.
종래에 일반적으로 사용하던 소성 용기는 도 1과 같이 사각 박스 형상의 구조로 이루어져 있다. 이러한 소성 용기(10)는 바닥면(12)과 다수의 측벽들(14)에 의해 원료가 수용될 수 있는 내부공간(16)이 형성되어 있고, 바닥면(12)에 대면하는 상면은 원료 및 가스 유입을 위해 개방되어 있다.
산업 현장에서는 생산성의 극대화를 위해 도 2와 같이 소성 용기들(10a, 10b)을 2단, 3단 등 다단으로 적층한 상태에서 컨베이어(도시하지 않음)에 투입하는 경우가 많다. 이 경우, 중앙부와 하단에 위치한 소성용기들은 반응에 의한 발생 가스가 배출되지 못하여 균일한 반응이 이루어지지 못하는 문제가 발생한다.
이에, 도 3a에서와 같이, 상향으로 돌출된 적층 지지부들(28)을 소성 용기(10')의 모서리 영역에 형성하고, 적층 지지부들(28) 사이에 유체 유동로(25)를 형성하여, 상기 문제들을 해결하고자 하였다.
그러나, 도 3a와 같이 모서리 부위에 형성된 적층 지지부들(28)은 다수 개의 소성 용기들(10')을 수평로의 폭 방향 및 길이 방향으로 배열하였을 때, 돌출된 적층 지지부들(28)이 유체의 원활한 유동을 방해하는 장애물로 작용하는 단점이 있다. 구체적으로, 도 3b에서 보는 바와 같이, 적층 지지부(28)가 "ㄱ" 모양으로 절곡된 구조를 가짐에 따라, 모서리 영역(A)에서 유체의 와류 내지 소용돌이 현상이 발생하여, 가스가 유동하지 못하고 갇히는 문제가 발생한다.
따라서, 소성을 통해 제조되는 전극 활물질에 대해 최근에 더욱 우수한 특성이 요구되고 있으므로, 이를 위해 반응 균일성을 현저히 높일 수 있도록, 보다 향상된 유체 유동성을 제공할 수 있는 구조의 소성용기에 대한 필요성이 당업계에 존재한다.
또한, 소성용기가 수십 시간 동안 소성 공정을 거치면서 열에너지와 하중을 받게 될 때 소성 용기가 팽창하면서 파손되는 문제가 발생하는 것으로 확인되었고, 이와 같은 문제점도 제조 공정에서 실질적으로 부각되고 있으므로, 이러한 문제점들을 해결할 수 있는 기술의 개발 필요성이 높다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 소성 공정에서 유체의 와류 내지 소용돌이 현상을 억제하여 반응성과 생산성을 높이면서, 반복되는 고온 소성 과정 중에 소성용기의 열팽창에 따른 파손 현상을 방지할 수 있는 구조적 안정성이 우수한 소성용기를 개발하기에 이르렀다.
이러한 목적을 달성하기 위한 본 발명에 따른 전극 활물질 제조용 소성용기는,
소성용기의 바닥면을 형성하는 기저부;
기저부의 외주변들로부터 상향으로 연장되어 원료 수용공간을 형성하는 측벽부들; 및
인접한 측벽부들이 상호 접하는 모서리 영역이 아닌 부위에서, 측벽부의 상단 일부로부터 상향 연장되어 형성된 적어도 하나 이상의 적층 지지부;
를 포함하고 있다.
앞서 설명한 바와 같이, 모서리 영역에 적층 지지부가 위치하는 소성용기는 유체의 와류 내지 소용돌이 현상에 의해 가스가 균일하게 유동하지 못하여 제품의 품질이 떨어지고 생산성이 저하되는 반면에, 본 발명과 같이 모서리 영역이 아닌 부위에 적층 지지부가 위치하는 구조는, 공기 내지 산소의 내부 유입과 발생 가스의 외부 배출이 용이하여, 균일한 반응에 의해 제품의 품질 향상과 생산성 향상을 달성할 수 있다.
본 발명의 구체적인 첫 번째 실시예에서, 상기 전극 활물질 제조용 소성용기는, 열과 하중에 대해 측벽부를 구조적으로 안정화시키기 위해, 측벽부로부터 원료 수용공간 쪽으로 소정의 두께로 형성되어 있는 적어도 하나 이상의 구조 강화부를 더 포함하는 구조로 이루어질 수 있다.
본 출원의 발명자들이 검토한 바로는, 소성 과정에서 고열의 에너지가 소성용기로 장시간에 걸쳐 가해지면 소성용기의 기저부 중앙에 열축적이 일어나고, 이렇게 축적된 열로 인하여 기저부 중앙으로부터 방사형으로 열팽창이 발생하며, 기저부의 차별적인 열팽창에 의해 측벽부가 외측으로 벌어져 파손되는 문제가 발생하는 것을 확인할 수 있었다.
구체적으로, 육면체인 소성용기의 평면도가 모식적으로 도시되어 있는 도 4를 참조하여 설명하면, 인접한 측벽부들(14a, 14b)이 상호 접하는 모서리 영역의 부위(A)는, 예를 들어, 측벽부들이 서로 90도로 상호 지지하여 구조적 안정성을 제공하면서 열팽창에 의한 외측 방향으로의 벌어짐을 억제하는 반면에, 측벽부(14b) 단독으로 기저부(12)의 열팽창에 맞서는 부위는 별도의 지지 부위가 없어서 외측 방향으로의 벌어짐이 크게 일어나게 된다. 특히, 측벽부(14b)의 중앙 부위(B)가 기저부(12)의 열팽창에 직접적인 영향을 받아 외측으로 밀려나면서 벌어지는 현상이 발생하며, 상부 소성용기들(도시하지 않음)에 의해 하중이 인가된 경우에서 파손이 쉽게 일어날 수 있는 것을 확인하였다.
결과적으로, 열팽창 과정에서 기저부(12)의 중앙 부위가 부풀어오르면서 순차적으로 측벽부(14b)의 중앙 부위(B)가 외측으로 밀려나며 벌어지고, 이러한 벌어짐 현상은 나머지 측벽부들(14a, 14c, 14d)에서도 일어난다. 다수의 소성용기들(10)이 적층된 상태에서는, 상부로부터 가해지는 하중과 함께 상기 부풀어오른 부위가 열팽창 되면서, 서로 대면하는 측벽부들(14a, 14c) (14b, 14d)의 간격이 벌어지고, 결과적으로 측벽부들(14a, 14b, 14c, 14d)이 외측 방향으로 무너지며 소성용기(10)가 파손되는 현상이 일어난다.
따라서, 본 출원의 발명자들은, 적층 지지부가 예를 들어 측벽부 중앙에 형성되어 발생 가스의 원활한 유동성을 확보함과 동시에, 측벽부로부터 원료 수용공간 쪽으로 소정의 두께로 형성되어 있는 구조 강화부에 의해, 측벽부를 열팽창과 하중에 대응하여 구조적으로 안정화시킨다면, 소성용기가 파괴되는 것을 방지할 수 있을 것으로 예상하였고, 이러한 원활한 가스 유동성 및 구조적 안정화를 실제 양산 공정에서 확인할 수 있었다.
하나의 상세한 예에서, 상기 구조 강화부의 적어도 일부는 측벽부 및 기저부와 동시에 접하여 상호 고정시키는 구조일 수 있다. 앞서 설명한 바와 같이, 적층 구조로 인해 하중이 인가된 상태에서 열팽창이 일어날 때, 구조 강화부가 측벽부와 기저부를 상호 고정하고 있으면, 구조 강화부와 측벽부가 접하는 부위가 상호 지지하고, 구조 강화부와 기저부가 접하는 부위가 상호 지지하여, 열팽창을 최대한 억제할 수 있다.
앞서 정의한 바와 같이, 구조 강화부는 측벽부로부터 원료 수용공간 쪽으로 소정의 두께로 형성되어 있는 바, 하나의 바람직한 예에서, 구조 강화부가 원료 수용공간 쪽으로 확장된 두께는 측벽부의 두께 대비 15 ~ 75%일 수 있다. 구조 강화부의 두께는 두꺼울수록 측벽부를 견고하게 고정하여 내구성이 향상될 수 있지만, 내부 수용공간이 줄어들고 일정 두께 이상으로는 측벽부 강화 효과가 유의미하게 증가하지 않으므로, 측벽부의 두께 대비 75% 이하인 것이 바람직하다. 반면에, 구조 강화부의 두께가 측벽부 두께 대비 15% 미만이면, 측벽부의 강화 효과를 구현하지 못할 수 있다. 구조 강화부의 두께는 더욱 바람직하게는 25 ~ 65%, 특히 바람직하게는 32 ~ 52%의 범위일 수 있다. 여기서, 구조 강화부가 일정하지 않은 두께를 가진 형상인 경우, 구조 강화부의 두께는 최대 두께를 의미한다.
구조 강화는 소정의 두께를 가짐과 동시에 소정의 높이 조건을 만족할 때 측벽부의 강화 효과를 더욱 극대화될 수 있다. 하나의 상세한 예에서, 구조 강화부의 높이는 소성용기의 최대 높이의 10% 이상일 수 있다. 구조 강화부의 적어도 일부가 적층 지지부에 접해 있을 경우, 구조 강화부의 높이는 측벽부 높이와 적층 지지부 높이의 합 대비 10% 이상일 수 있다.
하나의 바람직한 예에서, 구조 강화부의 높이는 소성용기의 최대 높이 대비 10 ~ 100%일 수 있으며, 이때 100%인 경우는 구조 강화부의 높이가 소성용기의 최대 높이와 동일한 것을 의미한다. 구조 강화부의 높이가 소성용기의 최대 높이 대비 10% 미만이면, 측벽부 강화 효과를 구현하지 못할 수 있고, 반면에, 구조 강화부의 높이가 소성용기의 최대 높이 대비 100%이면, 상부에 위치한 소성용기에 대한 접촉면적이 늘어나서 측벽부에 가해지는 하중을 보다 쉽게 분담할 수 있으나 수용공간이 줄어들어 생산성이 떨어질 수 있다. 구조 강화부의 높이는 더욱 바람직하게는 15 ~ 90%일 수 있고, 특히 바람직하게는 17 ~ 80%일 수 있다. 여기서, 구조 강화부가 일정하지 않은 높이를 가진 형상인 경우, 구조 강화부의 높이는 최대 높이를 의미한다.
하나의 상세한 예에서, 적층 지지부의 길이방향 중심은 측벽부의 길이방향 중심과 일치할 수 있다.
상부에 적층되어 있는 소성용기에 의한 하중을 고려할 때, 각 측벽부에 위치한 적층 지지부들의 위치가 비대칭이거나, 상호 마주보는 적층 지지부들의 위치가 어긋나면, 소성용기 적층시 하중 균형이 맞지 않아 안정성 문제가 발생할 수 있다. 즉, 적층 지지부들이 측벽부의 길이방향 중심에 위치하면 안정적인 소성용기 적층이 가능해진다. 여기서, 상기 길이방향은 기저부의 외주변과 평행한 방향을 의미한다.
한편, 측벽부의 강화 효과를 보다 효과적으로 구현하기 위하여, 구조 강화부는 적층 지지부가 형성되는 위치에 적어도 인접하도록 형성될 수 있다. 소성용기가 적층된 경우에 적층 지지부에 하중이 가해지므로, 앞서 설명한 바와 같이, 기저부의 중앙 부분이 열팽창 되면 적층 지지부가 형성된 측벽부 영역이 파손될 위험성이 크다. 따라서, 소성용기의 모서리 영역에만 구조 강화부가 형성되면, 열팽창에 의한 측벽부의 파손방지 효과에 기여하지 못할 수 있다.
따라서, 적층 지지부의 하면 양측 단부에서 수직으로 하향 연장되어 형성되는 가상의 면과, 측벽부에 대한 구조 강화부의 접촉면의 적어도 일부가 접할 수 있다. 이러한 구조에 의해, 소성용기들의 적층시 적층 지지부를 통해 전달되는 상부 소성용기(들)의 하중을 구조 강화부가 원활히 분담하여 파손을 방지할 수 있는 효과를 구현할 수 있으며, 구조 강화부가 소성용기의 모서리 영역이 아닌 상대적으로 측벽부 중앙 부분에 형성되어 열팽창에 의한 측벽부의 파손방지 효과를 구현할 수 있다. 적층 지지부가 형성되지 않는 위치이면서 동시에 모서리 영역이 아닌 위치에 구조 강화부가 형성되면, 열팽창에 의한 측벽부들의 벌어짐 현상을 방지할 수는 있으나, 하중 분담효과는 달성하기 어려울 수 있다. 즉, 구조 강화부의 위치 한정을 통해 측벽부들의 열팽창에 따른 벌어짐 문제와 하중에 의한 파손 문제를 동시에 달성할 수 있다. 바람직하게는, 적층 지지부의 하면 양측 단부에서 수직으로 하향 연장되어 형성되는 가상의 면과 측벽부에 대한 구조 강화부의 접촉면이 접하는 비율이 50 ~ 100%의 범위일 수 있다.
더욱 바람직하게는, 구조 강화부의 길이방향 중심이 적층 지지부의 길이방향 중심과 일치하는 위치에 형성될 수 있으며, 이를 통해 하중 분담 효과를 극대화할 수 있다. 여기서, 상기 길이방향은 기저부의 외주변과 평행한 방향을 의미한다.
하나의 상세한 예에서, 구조 강화부의 길이는 적층 지지부의 길이 대비 30 ~ 120%일 수 있다. 구조 강화부의 길이는 늘어날수록 측벽부의 강화 효과가 커지지만, 일정 범위 이상이면 강화 효과에 큰 변화가 없으며, 수용공간 만이 줄어들 수 있다. 반대로, 구조 강화부의 길이가 적층 지지부 길이 대비 30% 미만이면, 측벽부의 강화 효과를 구현하지 못할 수 있다. 따라서, 구조 강화부의 길이는 수용공간 확보와 동시에 측벽부의 강화 효과를 구현할 수 있는 적정 비율의 길이로 형성해야 하며, 바람직하게는 적층 지지부의 길이 대비 40 ~ 100%, 더욱 바람직하게는 57 ~ 87%일 수 있다. 여기서, 구조 강화부가 일정하지 않은 길이를 가진 형상인 경우, 구조 강화부의 길이는 최대 길이를 의미한다.
이러한 구조 강화부의 수직 단면상 형상은 측벽부를 강화할 수만 있다면 어떠한 형상이든지 가능하다. 일례로, 원료 수용공간을 극대화하며 측벽부 강화 효과를 구현할 수 있도록, 구조 강화부의 상단에서 하단으로 갈수록 수평 단면적이 점진적으로 커지는 형태이거나, 또는 아래로 오목한 원호 형태일 수 있으며, 이외에도 볼록 원호, 다각형 또는 이들의 조합 등 다양한 변형 형태도 가능함은 물론이다.
본 발명의 구체적인 두 번째 실시예에서, 상기 전극 활물질 제조용 소성용기는 적층 지지부가 둘 이상인 구조로 이루어질 수 있다.
이러한 구조의 소성용기는, 적층 지지부의 부근에서 발생할 수 있는 유체의 소용돌이 현상을 억제함으로써 유체의 유동성 향상과 더욱 균일한 반응성을 제공하여 우수한 품질의 활물질을 생산할 수 있을 뿐만 아니라, 유체의 유동 통로인 유체 유동로들의 개수를 최대한으로 증가시켜 산화 반응을 위한 공기 또는 산소의 내부 유입과 소성 과정에서 발생한 가스의 외부 배출을 현저히 용이하게 하고, 소성용기의 열팽창에 의한 파손도 최대한 억제할 수 있다.
본 출원의 발명자들은 다양한 접근 방식에 의한 기술적 시도를 통해, 상기와 같은 효과들의 발현을 담보할 수 있는 소성용기의 제조를 위해서는 적층 지지부의 기술적 최적화가 특히 중요하다는 점을 확인할 수 있었고, 이를 바탕으로 한 보다 상세한 내용들을 이하에서 설명한다.
하나의 상세한 예에서, 상기 측벽부의 상단에서 중앙 부위에는 적층 지지부가 위치하지 않는 구조일 수 있다.
소성용기는 소성 과정에서 소성로 내부로 진입하여 이동하게 되는데, 이때 측면 쪽에 위한 다수의 급기부들로부터 공기 또는 산소와 같은 유체가 공급되는 바, 개개의 소성용기에서 유체의 진행 및 확산에 가장 크게 영향을 미치는 부위는 측벽부의 상단 중에서 중앙 부위일 수 있다. 즉, 측벽부 상단의 중앙 부위가 개방되어 있으면, 그곳으로 유입된 유체 중의 일부가 소성용기를 가로질러 직진으로 진행되고 나머지 유체는 좌우 대칭으로 확산되므로, 유체에 의해 커버되는 소성용기의 면적이 최대화될 수 있다. 따라서, 측벽부 상단의 중앙 부위에 적층 지지부가 위치하지 않고 개방되어 있을 경우, 소성용기 당 유체 유동량을 최대화할 수 있다.
하나의 측벽부에 위치하는 적층 지지부의 개수는 앞서 정의한 바와 같이 둘 이상일 수 있으며, 바람직하게는 폭 방향으로 측벽부의 중앙에 대해 대칭으로 2개의 적층 지지부들이 형성되어 있는 구조일 수 있다.
이러한 구조는 유체 유동로를 세분화하여 개수를 크게 증가시키면서 측벽부 상단의 중앙 부위에 적층 지지부가 위치하지 않는 구조를 가능하게 한다. 또한, 소성 중에 열팽창도가 가장 높은 측벽부의 중앙 부위가 2개의 적층 지지부들에 의해 효과적으로 지지되어 열팽창을 억제함으로써 소성용기가 파괴되는 것을 방지할 수 있다.
추가적으로 이러한 구조는, 소성용기가 이동 중에 일부 적층 지지부가 진동 또는 충격에 의해 파손되는 경우, 파손되지 않은 나머지 적층 지지부에 의해 상부 소성용기의 하중을 지탱하는 것을 가능하게 한다.
또 다른 상세한 예에서, 적층 지지부의 위치, 크기 등이 소정의 범위로 특정되어 목적하는 효과를 극대화하면서 그와 동시에 유발될 수 있는 문제점을 최소화할 수 있는 조건들이 이하에 제시되어 있다.
제 1 예시에서, 하나의 측벽부 상에 적층 지지부들 중의 적어도 하나의 적층 지지부는 폭 방향으로 적층 지지부의 중심이 측벽부의 중앙에서 측벽부의 일측 단부까지의 길이에 대해 측벽부의 중앙으로부터 67% 이내의 거리에 위치하는 구조일 수 있다.
상기 수치가 작으면 적층 지지부가 측벽부의 중앙에 가까워지는 것을 의미하고, 반대로 상기 수치가 커지면 적층 지지부가 측벽부의 모서리에 가까워지는 것을 의미한다. 상기 수치가 67% 이상인 경우, 모서리에 가까워진 적층 지지부는 인접한 측벽부 상의 적층 지지부와 상호 작용에 의해 유체의 소용돌이 현상에 유사한 현상을 초래할 수도 있다. 경우에 따라서는, 상기 수치의 최저값을 10% 이상으로 설정하여, 측벽부 상단의 중앙 부위가 폐쇄될 가능성을 최소화할 수도 있다. 상기 수치는 바람직하게는 40% 내지 60%의 범위이고, 더욱 바람직하게는 45% 내지 55%의 범위일 수 있다.
바람직한 예에서, 하나의 측벽부에는 폭 방향으로 측벽부의 중앙에 대해 대칭으로 제 1 적층 지지부와 제 2 적층 지지부가 형성되어 있고, 상기 제 1 적층 지지부는 폭 방향으로 그것의 중심이 측벽부의 중앙에서 측벽부의 일측 단부까지의 길이에 대해 측벽부의 중앙으로부터 67% 이내의 거리에 위치하며, 상기 제 2 적층 지지부는 폭 방향으로 그것의 중심이 측벽부의 중앙에서 측벽부의 타측 단부까지의 길이에 대해 측벽부의 중앙으로부터 67% 이내의 거리에 위치하는 구조를 들 수 있다.
제 2 예시에서, 하나의 측벽부에 형성된 적층 지지부들의 폭 방향의 길이 합은 측벽부의 길이의 25% 이상일 수 있다.
하나의 측벽부에 형성되어 있는 적층 지지부들에서 폭 방향의 길이 합은 작을수록 유체 유동로의 확보에 유리하지만, 측벽부의 길이의 25% 미만인 경우에는 내구성이 떨어져서 적층시 상부의 소성용기에 의해 파손될 수 있다. 경우에 따라서는, 상기 수치의 최대값을 90% 이하로 설정하여, 그 이상의 수치에서 초래되는 유체 유동성이 저하되는 문제점을 최소화할 수도 있다. 상기 수치는 바람직하게는 40% 내지 60%의 범위이고, 더욱 바람직하게는 45% 내지 55%의 범위일 수 있다.
제 3 예시에서, 상기 적층 지지부의 두께는 그것이 위치한 측벽부 두께의 50% 이상일 수 있다.
적층 지지부의 두께는 적어도 상기와 같이 50% 이상의 조건에서 커질수록 내구성 향상에 도움이 될 수 있으며, 가능하면 측벽부 두께의 120% 이하인 것이 필요할 수 있다. 120%를 초과하면, 소성용기의 성형성에 문제가 발생하고, 소성용기 자체의 하중이 커져서 하부 소성용기에 과한 하중이 인가되어 파손될 수도 있기 때문이다. 상기 수치는 바람직하게는 80% 내지 120%의 범위이고, 더욱 바람직하게는 90% 내지 110%의 범위일 수 있다.
제 4 예시에서, 상기 적층 지지부의 높이는 소성용기 전체 높이 대비 40% 이하일 수 있다.
적층 지지부의 높이가 40%를 초과하면, 내구성이 떨어져서 파손될 수 있으며, 소성용기의 다단 적층 시 단 높이가 증가함에 따라 확보가능한 적층 단수가 줄어들어서 생산성이 떨어질 수 있다. 가능하면, 적층 지지부의 높이를 10% 이상으로 설정하여 충분한 유체 유동로를 확보하는 것이 좋을 수 있다. 상기 수치는 바람직하게는 10% 내지 30%의 범위이고, 더욱 바람직하게는 15% 내지 25%의 범위일 수 있다.
제 5 예시에서, 하나의 측벽부에 형성된 적층 지지부들 사이의 간격은 측벽부의 폭 방향 길이의 15% 이상일 수 있다.
하나의 측벽부에서 적층 지지부들 사이의 간격이 넓어지면 유체 유동로가 넓어지므로, 적어도 측벽부의 폭 방향 길이의 15% 이상으로 설정하는 것이 필요할 수 있다. 그러나, 적층 지지부들 사이의 간격이 넓어지면 모서리 부위에 인접한 유체 유동로가 좁아져 유체의 소용돌이 현상에 유사한 현상을 초래할 수도 있으므로, 상기 수치는 50% 이하인 것이 필요할 수 있다. 상기 수치는 바람직하게는 17% 내지 50%의 범위이고, 더욱 바람직하게는 20% 내지 30%의 범위일 수 있다.
이상의 조건들과는 달리, 적층 지지부의 측면 형상은 상부 소성용기의 하중을 원활하게 지지하면서 유체 유동로의 형성에 방해되지 않는 형상이라면 특별히 제한되지 않으며, 예를 들어, 다각형 형상, 볼록 원호 형상 중의 하나이거나, 또는 이들의 조합일 수 있다.
본 발명의 소성용기는 적층 지지부를 측벽부 위에 형성하여 적층 지지부들 사이에 유체 유동로를 형성한다. 유체 유동로는 측벽부의 상단에 형성되어 원료 수용공간 내외부의 유체가 유동할 수 있는 통로 역할을 하며, 적어도 하나 이상의 측벽부의 상단에 형성된다. 일 실시예에서, 유체 유동로는 소정의 두께를 갖는 측벽부의 양 끝단, 즉, 소성용기의 모서리 영역에 위치하며, 측벽부의 상단 일부가 개구된 형태로 형성된다.
유체 유동로의 개구면은 측벽부의 상면 길이방향과 평행하게 형성된 제 1 개구면과, 상기 제 1 개구면과 맞닿으면서 적층 지지부의 측면에 형성된 제 2 개구면을 포함한다. 제 1 개구면은 측벽부의 길이방향과 평행하게 일직선으로 형성되는 것도 가능하지만, 유체의 유동을 원활히 하기 위해 요철부를 형성하는 것도 가능하다. 제 2 개구면은 제 1 개구면과 적층 지지부의 상단을 연결하는데, 경사지게 형성되지 않고 수직 방향으로 형성될 수도 있다. 다만, 수직 방향으로 형성될 경우, 소성용기를 다단으로 적재할 때, 제 2 개구면과 측벽부의 양 끝단 및 제 2 개구면과 제 1 개구면이 접하는 부분에 충격과 하중이 집중되어 쉽게 파손될 수 있다. 따라서, 유체 유동로가 형성된 부분에 높은 내구성을 확보하기 위해서는 제 2 개구면을 경사지도록 형성하는 것이 바람직할 수 있다.
따라서, 하나의 상세한 예에서, 상기 적층 지지부의 상면을 제 1 개구면이라고 하고 상기 제 1 개구면과 맞닿아 있는 적층 지지부의 측면을 제 2 개구면이라고 할 때, 상기 제 1 개구면은 기저부와 수평이고, 상기 제 2 개구면은 기저부와 경사를 이루고 있는 구조일 수 있다.
상기 구조는 상부 소성용기의 하중을 효과적으로 지지하면서 분산시켜 구조적 안정성을 높일 수 있는 바, 예를 들어, 사다리꼴 형상을 이루도록, 상기 제 2 개구면의 경사도는 제 1 개구면을 기준으로 45도 이상 내지 90도 미만의 범위일 수 있다.
본 발명에서는 설명의 편의를 위해 제 1 개구면과 제 2 개구면으로 구분하여 설명하고 있으나, 필요에 따라 제 1 개구면 없이 경사를 가진 제 2 개구면으로만 이루어질 수도 있고, 원호 또는 곡면의 형상으로 형성될 수 있다.
경우에 따라서는, 소성용기의 다단 적층 시 적층 상태를 안정적으로 지지할 수 있도록, 기저부의 하단 부위에는 하부에 위치하는 소성용기의 적층 지지부에 대응되는 고정부가 형성되는 구조일 수도 있다.
상기 고정부는 적층된 소성용기들이 이동되는 과정에서의 흔들림을 억제하여 소성용기들이 정위치에 고정될 수 있도록 도와주며, 그것의 형상이 특별히 제한되는 것은 아니다. 예를 들어, 상부 소성용기에서 기저부의 하단 부위에 오목한 형상의 만입 고정부가 형성되어 있어서, 하부 소성용기의 적층 지지부의 상단 부위가 상기 만입 고정부에 도입되는 구조일 수 있다.
본 발명은 또한 상기 소성용기 다수 개가, 수평으로 연속 배열되고 동시에 다단으로 수직 적층된 상태에서, 레일을 따라 소성로 내부로 유입되는 소성 장치를 제공한다.
이러한 소성 장치는, 원료 주입 공간에 원료가 주입된 전극 활물질 제조용 소성용기들이, 수평으로 연속 배열되고 동시에 다단으로 수직 적층된 상태에서, 레일을 따라 소성로, 예를 들어, 수평로의 내부로 유입되는 RHK (Roller Hearth Kiln) 소성 방식의 소성 장치일 수 있는 바, 소성용기를 제외한 RHK 소성 방식의 소정 장치는 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
또한, 본 발명은 소성용기 다수 개가 평면 상으로 2×2 이상의 수평 배열을 이루고 있는 것을 특징으로 하는 소성용기 집합체를 제공한다.
상기 소성용기는 앞서 정의한 바와 같이, 소성용기의 바닥면을 형성하는 기저부, 기저부의 외주변들로부터 상향으로 연장되어 원료 수용 공간을 형성하는 측벽부들, 및 인접한 측벽부들이 상호 접하는 모서리 부위가 아닌 부위에서, 각각의 측벽부의 상단으로부터 상향 연장되어 형성된 적어도 둘 이상의 적층 지지부들을 포함하는 것으로 구성되어 있다.
따라서, 본 발명의 소성용기는 적층 지지부의 위치, 크기, 개수 등에 기반한 구조적 차별성으로 인해 세분화된 다수의 유체 유동로들을 제공하여 소성시 균일한 반응을 가능하게 하는 특징을 가지며, 이로 인해 수평 배열시 가장 작은 배열 단위인 2×2 수평 배열은 그 자체로 종래기술과는 차별적인 구조를 가진다.
하나의 상세한 예에서, 소성용기들이 평면 상으로 2×2 수평 배열을 이룰 때, 소성용기의 기저부와 평행하고 측벽부와 45° 각도를 이루며 상호 평행한 유체 유동로들이 적어도 6개 이상 형성될 수 있으며, 바람직하게는 6 내지 12개의 유체 유동로들이 형성될 수 있다.
이상 설명한 바와 같이, 본 발명에 따른 소성용기는, 여러 개를 수평 배열 및 다단 적층할 때, 와류 내지 소용돌이의 방지에 의해 유체의 흐름을 개선할 수 있다. 또한, 소성 과정에서 발생하는 고열에 의한 불규칙한 열팽창을 억제하여 소성용기의 측벽부에 가해지는 높은 하중을 견고하게 지지할 수 있어서 생산성 및 안정성을 향상시킬 수 있고, 공기 또는 산소의 내부 유입과 발생 가스의 외부 배출이 매우 용이하여 유체의 유동성 향상과 균일한 반응성을 제공할 수 있는 효과가 있다.
도 1은 종래기술의 하나의 예시적인 소성용기에 대한 모식적인 사시도이다;
도 2는 도 1의 소성용기 다수 개를 수평 배열 및 수직 배열한 상태의 모식도이다;
도 3a는 종래기술의 예시적인 소성용기에 대한 모식적인 사시도이다;
도 3b는 도 3a의 소성용기 다수 개를 수평 배열한 상태에서 부분적인 유체 흐름을 보여주는 모식도이다;
도 4는 육면체인 소성용기에서 열팽창이 기저부로부터 퍼져나가는 현상을 모식적으로 표현한 평면도이다;
도 5는 본 발명의 구체적인 첫 번째 실시예에 따른 소성용기의 평면도와 부분 투영도 형태의 측면도이다;
도 6은 도 5와 관련하여 다른 실시예에 따른 소성용기의 평면도와 부분 투영도 형태의 측면도이다;
도 7은 종래기술의 또 다른 예시적인 소성용기에 대한 모식적인 사시도이다;
도 8은 도 5와 관련하여 또 다른 실시예에 따른 소성용기 2개를 적층한 상태를 모식적으로 표현한 측면도이다;
도 9a는 본 발명의 구체적인 두 번째 실시예에 따른 소성용기의 모식적인 사시도이다;
도 9b는 도 9a의 소성용기의 측면도이다;
도 9c는 도 9a의 소성용기의 평면도이다;
도 10은 도 9a와 관련하여 또 다른 실시예에 따른 소성용기의 모식적인 측면도이다;
도 11은 도 9a의 소성용기에 기반한 2×2 수평 배열의 소성용기 집합체에서 유체 유동로들을 나타낸 모식도이다;
도 12는 1개의 적층 지지부가 측벽부에 형성되어 있는 소성용기에 기반한 2×2 수평 배열의 소성용기 집합체에서 유체 유동로들을 나타낸 모식도이다;
도 13은 도 11에 기반한 n×n 수평 배열의 소성용기 집합체가 소성로 내부로 진행될 때의 유체 흐름을 보여주는 모식도이다;
도 14는 도 12에 기반한 n×n 수평 배열의 소성용기 집합체를 사용할 때의 유체 흐름을 보여주는 모식도이다;
도 15a 및 15b는 도 13에서의 유체 시뮬레이션 결과를 보여주는 이미지들이다;
도 16a 및 16b에는 도 14에서의 유체 시뮬레이션 결과를 보여주는 이미지들이다.
이하, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
본 발명의 구체적인 첫 번째 실시예에 따른 소성 용기와 관련하여, 그것의 예시적인 소성용기들이 모식적으로 도시되어 있는 도 5 및 6을 참조하여 설명한다. 도 5와 6에는 각각 소성용기의 평면도와 부분 투영도 형태의 측면도가 함께 도시되어 있다.
우선, 도 5를 참조하면, 본 발명의 소성용기(100)는 기저부(110)를 포함한다. 기저부(110)는 소성용기(100)의 바닥면을 형성하며 내부에 많은 양의 원료를 수용함과 동시에 컨베이어(도시하지 않음)의 진행방향 및 폭방향으로 다수 개의 소성용기들을 밀착 배열할 수 있도록 다각형 형상을 가진다. 기저부(110)의 형상은 소성용기들을 밀착 배열하여 빈공간을 최소화할 수 있는 것이라면 특별히 한정되는 것은 아니나, 소성용기들 간에 밀착이 가능한 형상일수록 단위 면적당 원료 수용공간이 늘어나서 생산성이 증대되므로, 삼각형, 사각형, 육각형이 바람직할 수 있다.
측벽부(120)는 기저부(110)의 외주변을 따라 상향 연장되며, 기저부(110)와 기저부(110)를 둘러싸는 측벽부(120)에 의해 원료 수용공간(S)이 형성된다. 이러한 측벽부(120)의 개수는 기저부(110)의 형상에 대응되며, 일례로 사각 형상의 기저부(110)일 경우에 4개의 측벽부들(120)이 구비될 수 있으며, 육각 형상의 기저부(110)일 경우에 6개의 측벽부들(120)이 구비될 수 있다. 분말 형태의 원료 물질을 수용하는 전극 활물질용 소성용기(100)의 특성상, 측벽부(120)는 원료 물질이 유실되지 않도록 기저부(110)의 모든 외주변에 형성되는 것이 바람직하다.
적층 지지부(130)는 유체 유동로를 제공하면서 소성 용기들(100)의 다단 적층을 도와 안정적인 적층 구조를 제공한다. 이를 위해, 각각의 측벽부들(120)의 상면에서 연장되어 형성되는 구조일 수 있으며, 기저부(110)의 형상에 따라 상부 소성용기(들)의 하중 균형을 이룰 수 있다면 전체 측벽부들 중 일부에만 형성될 수도 있다. 이러한 적층 지지부(130)는 1개의 측벽부에 1개가 형성되어 수도 있고, 2개 이상이 형성되어 있을 수도 있다.
적층 지지부(130)는, 도 6에서와 같이, 측벽부(120)의 양측 단부에 각각 유체 유동로가 위치하도록, 예를 들어, 측벽부(120) 상면 중앙 영역에 형성되어 있는 구조일 수 있다. 이러한 구조는, 앞서 정의한 바와 같이, 서로 이웃하는 측벽부들이 상호 접하는 교차 부위들(모서리 영역) 중의 적어도 하나 이상의 교차 부위의 상단에 적층 지지부(130)가 위치하지 않는 구조를 구현하는데 바람직한 예를 제공한다. 즉, 소성용기(100)의 모서리 영역에 적층 지지부(130)가 위치하지 않고 유체가 유동할 수 있도록 함으로써 모서리 영역에 적층 지지부(130)가 형성되었을 때보다 유로 형성에 유리한 구조를 가질 수 있다.
다시 도 5를 참조하면, 구조 강화부(140)는, 열팽창과 하중에 대해 측벽부(120)를 구조적으로 안정화시킬 수 있도록, 측벽부(120)로부터 원료 수용공간(S) 쪽으로 소정의 두께로 형성되어 있다. 즉, 상부에 위치한 소성용기(들)의 하중으로부터 측벽부(120)를 더욱 견고하게 견딜 수 있도록 하고, 소성용기(100)가 열을 받아 팽창하더라도 기저부(110)의 열팽창으로 인한 측벽부(100)의 파손을 방지할 수 있다. 구조 강화부(140)가 원료 수용공간(S) 쪽으로 확장되어 단위면적당 원료 수용량이 줄어들 수 있으나, 측벽부(120)의 강화를 통해 오히려 적층 단수를 늘릴 수 있으므로 단위면적당 원료 수용량이 늘어나는 효과를 구현할 수 있다.
따라서, 구조 강화부(140)는 측벽부(120)가 열팽창에 의해 소성용기 외측방향으로 파손되는 것을 막아주는 역할을 하며, 도면에서와 같이, 구조 강화부(140)의 상당 부분이 기저부(110)와 측벽부(120)에 동시에 접하면서 고정되어 있어서, 구조적 안정성에 의해 기저부(120)와 측벽부(120)의 벌어짐을 더욱 효과적으로 방지할 수 있다.
구조 강화부(140)는 측벽부(120)에서 내측 방향으로 형성되어 있고, 소성에 의한 제품 생산성과 그러한 소정 과정에서의 구조적 안정성을 종합적으로 고려할 때, 원료 수용공간 쪽으로 확장된 두께(t)는 측벽부(120)의 두께(T)의 15 ~ 75% 범위이고, 높이(h)는 소성용기(100)의 최대 높이(H), 또는 측벽부 높이(H1)와 적층 지지부 높이(H2)의 합 대비 10% 이상일 수 있다. 도면들에서, 소성용기(100)의 높이(H)는 측벽부 높이(H1)와 적층 지지부 높이(H2)의 합과 동일하다.
상부에 적층되어 있는 소성용기(도시하지 않음)에 의한 하중이 균형 있게 부가되어 안정적인 적층이 가능할 수 있도록, 적층 지지부(130)의 길이방향 중심(130P)은 측벽부(120)의 길이방향 중심(120P)과 일치하도록 형성되어 있다.
유사하게, 구조 강화부(140)의 길이방향 중심(140P)이 적층 지지부(130)의 길이방향 중심(130P)과 동일축 상에서 실질적으로 일치하는 위치에 형성되어 있어서, 하중 분담 효과를 극대화하고 있다.
또한, 적층 지지부(130)의 하면 양측 단부(131)에서 수직으로 하향 연장되어 형성되는 가상의 면(P1)과, 측벽부(120)에 대한 구조 강화부(140)의 접촉면(P2)는 상단 부분 중첩되어 있고, 측벽부들(120)의 열팽창으로 인한 벌어짐 문제와 상부 소성용기(들)의 하중에 의한 파손 문제를 해결하고 있다.
도 6을 참조하면, 소성용기(101)에서 구조 강화부(140)의 길이(L1)은 적층 지지부(130)의 길이(L2)와 실질적으로 동일하지만, 수용공간의 확보와 측벽부의 강화 효과를 구현할 수 있다면, 일정한 범위에서 도 5에서와 같이 적층 지지부(130)의 길이(L2)보다 작을 수도 있고, 도 5와는 반대로 클 수도 있다.
이상에서 설명한 바와 같은 본 발명에 따른 소성용기(100, 101)의 구조는, 도 7에서와 같이, 측벽부를 외측에서 강화한 종래기술의 구조와 구별된다. 도 5 및 6의 구조와 달리, 도 7에는 강화부(30)를 외측에 부가한 소성용기(10')가 제시되어 있는 바, 이는 다음과 같은 구조적 문제점이 존재한다.
구체적으로, 소성용기(10')의 외측으로 확장된 강화부(30)는, 다수 소성용기들(10')의 수평배열 시, 소성용기들(10') 간의 접촉면적이 적어짐에 따라 소성용기들(10')끼리 견고하게 잡아주지 못하게 되어, 이동시 발생되는 진동에 의해 컨베이어(도시하지 않음)에 적재된 소성용기들(10')이 조금씩 움직이는 현상이 발생된다. 수평로의 길이가 수십 미터에 달하기 때문에 소성용기들(10')의 작은 움직임들이 반복됨에 따라, 접촉된 부분이 어긋나게 되어 소성용기들(10')의 배열이 틀어지게 되고, 두꺼운 모서리 부위가 상대적으로 얇은 부위와 부딪혀 오히려 파손이 심해지며, 컨베이어 바깥쪽에 적재된 소성용기들은 컨베이어 밖으로 이탈되는 등 여러 문제가 발생된다. 또한, 배열된 소성용기들(10') 사이에 접촉되지 않는 빈 공간이 형성되는데, 배열하였을 때 해당 공간들로 인해 동일 공간에 적재할 수 있는 소성용기들(10')의 개수와 전극 활물질 원료의 양이 감소하게 되어, 생산성 측면에서도 바람직하지 않다.
또한, 이러한 경우, 다단 적층시 하부에 위치한 소성 용기들(10b)은 반응에 의한 발생 가스가 배출되지 못하여, 균일한 반응이 이루어지지 못하는 문제가 발생한다.
반면에, 도 5 및 6에 예시되어 있는 본 발명의 소성용기(100, 101)는, 앞서 설명한 바와 같이, 도 7의 소성용기(10')의 구조적 문제점들을 일거에 해결하고 있다.
한편, 본 발명에 따른 소성용기(102)가 예시되어 있는 도 8을 참조하면, 도면에서 보는 바와 같이, 다수의 소성용기들(102)이 적층되었을 때, 소성용기들(102) 사이에는 유체 유동로(F)가 형성된다. 유체 유동로(F)의 개구면은 측벽부(120)의 상면 길이방향과 평행하게 형성된 제 1 개구면(S1)과, 제 1 개구면(S1)과 맞닿으면서 적층 지지부(130)의 측면에 형성된 제 2 개구면(S2)을 포함한다. 유체 유동로(F)가 형성된 부위에 높은 내구성을 제공할 수 있도록, 제 2 개구면(S2)은 상향 경사 구조로 이루어져 있다.
또한, 진동에 의한 흔들림에도 안정적인 적층 상태를 유지할 수 있도록, 소성용기(101)의 기저부 하면에는 적층 지지부(130)의 상단 일부가 수용될 수 있도록 대응되는 위치에 대응되는 형상을 가지는 고정홈(150)이 형성되어 있다.
도 9a에는 본 발명의 구체적인 두 번째 실시예에 따른 소성용기의 모식적인 사시도가 도시되어 있고, 도 9b에는 소성용기의 측면도가 도시되어 있으며, 도 9c에는 소성용기의 평면도가 도시되어 있다.
이들 도면을 함께 참조하면, 본 발명의 소성용기(200)는 기저부(210), 측벽부(220), 적층 지지부(240) 등을 포함하고 있다.
측벽부(220)는 기저부(210)의 외주변을 따라 상향 연장되며, 기저부(210)와 기저부(210)를 둘러싸는 측벽부(220)에 의해 원료 수용공간(230)이 형성된다. 이러한 측벽부(220)의 개수는 기저부(210)의 형상에 대응되며, 일 예로 도면에서와 같이 사각 형상의 기저부(210)일 경우 4개의 측벽부(220)가 구비될 수 있다.
적층 지지부(240)는 유체 유동로를 제공하면서 소성용기들(200)의 다단 적층을 도와 안정적인 적층 구조를 제공하며, 이를 위해 각각의 측벽부(220)의 상면에서 연장되어 형성되어 있는 구조를 가질 수 있다.
1개의 측벽부(220)에 2개의 적층 지지부들(240a, 240b)이 형성되어 있는 구조가 제시되어 있는 바, 이러한 적층 지지부들(240a, 240b)은 폭 방향(X)으로 측벽부(220)의 중앙(Y)에 대해 대칭으로 형성되어 있어서, 측벽부(220)의 상단(221)에서 중앙(Y) 부위에는 어떠한 적층 지지부도 위치하지 않는다. 적층 지지부들(240a, 240b)이 위치하지 않는 공간은 유체 유동로(S)를 형성한다.
도 9c에서 보는 바와 같이, 서로 이웃하는 측벽부들(220, 222)이 상호 접하는 교차 부위인 모서리 부위(W)의 상단에는 적층 지지부가 위치하지 않으므로 유체의 소용돌이 현상이 발생하지 않는다.
유체 유동로를 더욱 확보하기 위해 적층 지지부들을 3개 이상 형성할 수 있으나, 적층 지지부들이 많아질수록 오히려 적층 지지부들 사이로 유체가 통과하기 어려워지므로, 유체 유동로를 가장 원활히 확보할 수 있는 최적의 적층 지지부의 개수는 2개일 수 있다.
적층 지지부의 위치, 크기 등은 하기와 같이 소정의 범위에서 설정됨으로써, 소성용기의 기능이 최적화될 수 있다.
첫째, 폭 방향(X)을 기준으로, 적층 지지부(240a)의 중심이 측벽부(220)의 중앙(Y)으로부터 이격되어 있는 거리(DC)는 측벽부(220)의 중앙(Y)에서부터 측벽부(220)의 일측 단부까지의 길이(D1)를 기준으로 67% 이내의 거리일 수 있다. 바람직한 위치 비율(DC/D1)은 40% 내지 60%인 범위이다.
둘째, 폭 방향(X)을 기준으로, 측벽부(220)에 형성된 적층 지지부(240a)의 길이(L1)과 적층 지지부(240b)의 길이(L2)의 합(L1+L2)은 측벽부(220)의 길이(L)의 25% 이상일 수 있다. 바람직한 길이 비율((L1+L2)/L)은 40% 내지 60%인 범위이다.
셋째, 적층 지지부(240a, 240b)의 두께(t)는 측벽부(220)의 두께(T)를 기준으로 50% 이상일 수 있다. 바람직한 두께 비율(t/T)는 80% 내지 120%인 범위이다.
넷째 예에서, 적층 지지부(240a, 240b)의 높이(h)는 소성용기(200)의 전체 높이(H)를 기준으로 40% 이하일 수 있다. 바람직한 높이 비율(h/H)은 10% 내지 30%인 범위이다.
다섯 째, 측벽부(220)에서 적층 지지부들(240a, 240b) 사이의 간격(p)은 측벽부(220)의 폭 방향(X) 길이(L)의 15% 이상일 수 있다. 바람직한 간격 비율(p/L)은 17% 내지 50%인 범위이다.
도 10에는 도 9a와 관련하여 또 다른 실시예에 따른 소성용기의 측면도가 모식적으로 도시되어 있다.
도 10을 참조하면, 소성용기(201)에서, 적층 지지부(240)의 상면인 제 1 개구면(Z1)은 기저부(210)와 수평이고, 제 1 개구면(Z1)과 맞닿아 있는 적층 지지부(240)의 측면인 제 2 개구면(Z2)는 기저부(210)에 대해 45도 이상 내지 90도 미만의 경사도 기울어져 있다. 이러한 구조는 하중에 대한 안정성을 향상시키는 효과를 가진다.
도 11에는 도 9a의 소성용기에 기반한 4개의 소성용기들이 2×2 수평 배열을 이루고 있는 소성용기 집합체에서 유체 유동로들을 나타낸 모식도가 도시되어 있고, 이와 비교하기 위하여, 도 12에는 1개의 적층 지지부가 측벽부에 형성되어 있는 소성용기에 기반한 2×2 수평 배열에 따른 소성용기 집합체가 모식적으로 도시되어 있다.
우선, 도 12를 참조하면, 측벽부에 1개의 적층 지지대가 형성되어 있는 소성용기(200a)를 사용하여 형성된 2×2 수평 배열의 소성용기 집합체(300a)에 있어서, 소성용기의 기저부와 평행하고 측벽부와 45° 각도를 이루며 상호 평행한 유체 유동로들(F1, F2, F3, F4, F5)이 최대 5개인 것을 확인할 수 있다.
반면에, 도 11를 참조하면, 도 9a의 소성용기에 기반한 소성용기 집합체(300)는 상기와 같은 조건의 유체 유동로들이 더욱 세분화되어 총 9개인 것을 확인할 수 있다. 대각선 방향의 유체 유동로의 증가는 소성용기에서 유체의 흐름을 더욱 활성화하여 소성시 반응 균일성을 향상시킨다.
도 13에는 도 11에 기반한 n×n 수평 배열의 소성용기 집합체를 급기부로부터 유체가 공급되는 소성로 내부로 진행시킬 때의 유체 흐름을 보여주는 모식도가 도시되어 있고, 이와 비교하기 위하여, 도 14에는 도 12에 기반한 n×n 수평 배열의 소성용기 집합체를 사용할 때의 유체 흐름을 보여주는 모식도가 도시되어 있다.
도 13을 참조하면, 소성로 내부에서 소성용기(200)는 진행 방향으로 이동하면서 측면에 위치한 급기부(400)로부터 유체를 공급받는다. 이때, 측벽부(220) 당 2개의 적층 지지부들(240)이 형성되어 있는 소성용기(200)는 다수의 유체 유동로들로 인해 유체의 진행 및 확산 현상이 다양하게 일어남을 알 수 있다.
반면에, 도 14를 참조하면, 소성용기(200a)는 측벽부(220a)의 중앙 상단에 1개의 적층 지지부(240a)가 형성되어 있어서, 유체는 적층 지지부(240a)가 형성되어 있지 않은 모서리 부위에서만 유입될 수 있어서, 유체 유동로의 개수가 매우 제한적이고, 전반적으로 균일한 유체 흐름을 형성하지 못함을 알 수 있다. 특히, 측벽부(220a)의 중앙 상단이 적층 지지부(240a)에 의해 가로막혀 있어서 소성용기(200a)의 중앙으로 유체가 직접 진입하지 못함으로 인해, 유체 유동성이 크게 떨어지는 것을 쉽게 예상할 수 있다.
도 11 및 도 13에서 보는 바와 같이, 도 9a의 소성용기는 소성을 위한 소성용기 집합체를 구성할 때, 세분화된 다수의 유체 유동로들을 형성하면서 고른 유체 흐름을 생성하여 반응 균일성을 높일 수 있을 뿐만 아니라, 소성 중에 열적 안정성을 높여 파괴되는 현상을 최소화할 수 있다.
소성용기는 반응물 소성시 필연적으로 고온의 열을 받게 되는데, 이와 관련하여, 도 9a를 참조하면, 측벽부(220)의 중앙 부위(A)가 열팽창도가 가장 높아서 측벽부(220)가 소성용기(200)의 바깥쪽 방향으로 무너지는 현상이 발생한다.
그러나, 소성용기(200)에서는, 측벽부(220)의 중앙 부위(A)를 중심으로 대칭 위치에 2개의 적층 지지부들(240a, 240b)이 형성되어 있어서, 적층시 상부 소성용기(도시하지 않음)의 하중을 지탱하면서, 측벽부(220)의 중앙 부위(A)가 열팽창 되는 것을 억제할 수 있으며, 이를 통해 열팽창에 의한 측벽부(220)의 파손을 방지할 수 있는 효과도 있다.
또한, 소성용기(200)가 이동 중에 일부 적층 지지부가 진동 또는 충격에 의해 파손되는 경우, 파손되지 않은 나머지 적층 지지부에 의해 상부 소성용기의 하중을 지탱할 수 있다.
도 15a 및 15b에는 도 13에서의 유체 시뮬레이션 결과가 개시되어 있고, 도 16a 및 16b에는 도 14에서의 유체 시뮬레이션 결과가 개시되어 있다.
상세하게는, 도 13의 소성용기 집합체와 도 14의 소성용기 집합체를 각각 3개의 층으로 상하 적층한 구조로 설정하고, <Under 20 m3/hr + Side 40 m3/hr>의 소성용기별 유량 조건을 설정하여 유체 시뮬레이션을 수행하였다. 각각의 도면들에서, 좌측 이미지는 1단의 유체 시뮬레이션 결과를 나타낸 것이고, 우측 이미지는 3단의 유체 시뮬레이션 결과를 나타낸 것이다.
또한, 소성용기 집합체가 급기부를 통과할 때, 소성용기의 측벽부의 중앙 상단 부위에서 급기가 일어날 때의 결과가 도 15a 및 도 16a에 각각 개시되어 있고, 모서리에 인접한 부위에서 급기가 일어날 때의 결과가 도 15b 및 도 16b에 각각 개시되어 있다.
우선, 도 15a를 참조하면, 도 13의 소성용기 집합체에서는, 유체 유입구가 측벽부의 중앙 상단 부위에 위치하게 되고, 유체 시뮬레이션 유입구 기준으로 수평 양방향으로 유체가 원활하게 유입되며 가장 안쪽의 소성용기까지 유체가 잘 도달하는 것을 확인할 수 있다.
이에 대응하여, 도 16b를 참조보면, 도 14의 소성용기 집합체에서는 유체 유입구가 측벽부의 모서리 부위에 위치하게 되고, 이를 통해 유체가 유입될 때, 유체 유입이 원활하기는 하지만, 유입 상하 폭이 상대적으로 작아서 외곽 부위에 위치한 소성용기들에 대한 급기 효과가 떨어지고, 더욱이, 좌측 이미지의 1단과 우측 이미지의 3단에서의 급기 편차가 매우 커서 작업 신뢰가 낮은 것을 확인할 수 있다.
다음으로, 도 15b를 참조하면, 도 13의 소성용기 집합체에서는, 소성용기 집합체가 이동함에 따라 급기가 적층 지지부에 의해 방해를 받는 경우에도, 사선 방향으로 유체가 일부 유입되는 것을 확인할 수 있다.
이에 대응하여, 도 16a를 참조하면, 도 14의 소성용기 집합체에서는 급기가 적층 지지부에 의해 방해를 받을 때 실질적으로 급기가 막혀서 유체 유입이 거의 일어나지 못하는 것을 확인할 수 있다.
따라서, 도 11의 소성용기에 기반한 소성용기 집합체는 도 15a 및 15b의 유체 시뮬레이션 결과를 통해, 도 14의 소성용기 집합체를 사용한 도 16a 및 16b의 유체 시뮬레이션 결과와 비교할 때, 월등히 우수한 유체 흐름을 제공할 수 있음이 입증되었다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형이 가능할 것이다.

Claims (25)

  1. 소성용기의 바닥면을 형성하는 기저부;
    기저부의 외주변들로부터 상향으로 연장되어 원료 수용공간을 형성하는 측벽부들; 및
    인접한 측벽부들이 상호 접하는 모서리 영역이 아닌 부위에서, 측벽부의 상단 일부로부터 상향 연장되어 형성된 적어도 하나 이상의 적층 지지부;
    를 포함하고 있는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  2. 제 1 항에 있어서, 열과 하중에 대해 측벽부를 구조적으로 안정화시키기 위해, 측벽부로부터 원료 수용공간 쪽으로 소정의 두께로 형성되어 있는 적어도 하나 이상의 구조 강화부를 포함하고 있는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  3. 제 2 항에 있어서, 상기 구조 강화부의 적어도 일부는 측벽부 및 기저부와 동시에 접하여 상호 고정시키는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  4. 제 2 항에 있어서, 상기 구조 강화부가 원료 수용공간 쪽으로 확장된 두께는 측벽부의 두께 대비 15 ~ 75%인 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  5. 제 2 항 또는 제 4 항에 있어서, 상기 구조 강화부의 높이는 소성용기의 최대 높이 대비 10% 이상인 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  6. 제 2 항에 있어서, 상기 적층 지지부의 길이방향 중심은 측벽부의 길이방향 중심과 일치하는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  7. 제 2 항에 있어서, 상기 적층 지지부의 하면 양측 단부에서 수직으로 하향 연장되어 형성되는 가상의 면과, 측벽부에 대한 구조 강화부의 접촉면의 적어도 일부가 접하는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  8. 제 2 항에 있어서, 상기 구조 강화부의 길이방향 중심은 적층 지지부의 길이방향 중심과 동일축 상에서 일치하는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  9. 제 6 항 내지 제 8 항 중 어느 하나에 있어서, 상기 구조 강화부 길이는 적층 지지부 길이의 30 ~ 120%인 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  10. 제 1 항에 있어서, 상기 적층 지지부는 적어도 둘 이상 형성되어 있는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  11. 제 10 항에 있어서, 상기 측벽부의 상단에서 중앙 부위에는 적층 지지부가 위치하지 않는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  12. 제 10 항에 있어서, 하나의 측벽부에는 폭 방향으로 측벽부의 중앙에 대해 대칭으로 2개의 적층 지지부들이 형성되어 있는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  13. 제 10 항에 있어서, 하나의 측벽부 상에서 적층 지지부들 중의 적어도 하나의 적층 지지부는 폭 방향으로 적층 지지부의 중심이 측벽부의 중앙에서 측벽부의 일측 단부까지의 길이에 대해 측벽부의 중앙으로부터 67% 이내의 거리에 위치하는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  14. 제 10 항에 있어서,
    하나의 측벽부에는 폭 방향으로 측벽부의 중앙에 대해 대칭으로 제 1 적층 지지부와 제 2 적층 지지부가 형성되어 있고;
    상기 제 1 적층 지지부는 폭 방향으로 그것의 중심이 측벽부의 중앙에서 측벽부의 일측 단부까지의 길이에 대해 측벽부의 중앙으로부터 67% 이내의 거리에 위치하며;
    상기 제 2 적층 지지부는 폭 방향으로 그것의 중심이 측벽부의 중앙에서 측벽부의 타측 단부까지의 길이에 대해 측벽부의 중앙으로부터 67% 이내의 거리에 위치하는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  15. 제 10 항에 있어서, 하나의 측벽부에 형성된 적층 지지부들의 폭 방향의 길이 합은 측벽부의 길이의 25% 이상인 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  16. 제 10 항에 있어서, 상기 적층 지지부의 두께는 그것이 위치한 측벽부 두께의 50% 이상인 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  17. 제 10 항에 있어서, 상기 적층 지지부의 높이는 소성용기 전체 높이 대비 40% 이하인 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  18. 제 10 항에 있어서, 하나의 측벽부에 형성된 적층 지지부들 사이의 간격은 측벽부의 폭 방향 길이의 15% 이상인 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  19. 제 2 항에 있어서, 수직 단면상에서 상기 구조 강화부는 오목 원호, 볼록 원호, 다각형 형상 중 하나이거나, 또는 이들의 둘 이상의 조합인 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  20. 제 2 항 또는 제 10 항에 있어서, 상기 적층 지지부의 상면을 제 1 개구면이라고 하고 상기 제 1 개구면과 맞닿아 있는 적층 지지부의 측면을 제 2 개구면이라고 할 때, 상기 제 1 개구면은 기저부와 수평이고, 상기 제 2 개구면은 기저부와 경사를 형성하는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  21. 제 2 항 또는 제 10 항에 있어서, 소성용기의 다단 적층 시 안정적으로 지지할 수 있도록, 상기 기저부의 하단 부위에는 하부에 위치하는 소성 용기의 적층 지지부와 대응되는 고정부가 형성되는 것을 특징으로 하는 전극 활물질 제조용 소성용기.
  22. 원료 주입 공간에 원료가 주입된 제 1 항에 따른 전극 활물질 제조용 소성 용기들이, 수평으로 연속 배열되고 동시에 다단으로 수직 적층된 상태에서, 레일을 따라 소성로 내부로 유입되는 것을 특징으로 하는 RHK (Roller Hearth Kiln) 소성 방식의 소성 장치.
  23. 소성용기 다수 개가 평면 상으로 2×2 이상의 수평 배열을 이루고 있고, 상기 소성용기는,
    소성용기의 바닥면을 형성하는 기저부;
    기저부의 외주변들로부터 상향으로 연장되어 원료 수용 공간을 형성하는 측벽부들; 및
    인접한 측벽부들이 상호 접하는 모서리 부위가 아닌 부위에서, 각각의 측벽부의 상단으로부터 상향 연장되어 형성된 적어도 둘 이상의 적층 지지부들;
    을 포함하는 것을 특징으로 하는 소성용기 집합체.
  24. 제 23 항에 있어서, 소성용기들이 평면 상으로 2×2 수평 배열을 이룰 때, 소성용기의 기저부와 평행하고 측벽부와 45° 각도를 이루며 상호 평행한 유체 유동로들이 적어도 6개 이상 형성되는 것을 특징으로 하는 소성용기 집합체.
  25. 제 24 항에 있어서, 상기 유체 유동로들은 6 내지 12개인 것을 특징으로 하는 소성용기 집합체.
PCT/KR2023/013187 2022-09-07 2023-09-04 전극 활물질 제조용 소성용기 WO2024053970A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220113500A KR20240034469A (ko) 2022-09-07 2022-09-07 전극 활물질 제조용 소성용기
KR10-2022-0113500 2022-09-07
KR20230038073 2023-03-23
KR10-2023-0038073 2023-03-23

Publications (1)

Publication Number Publication Date
WO2024053970A1 true WO2024053970A1 (ko) 2024-03-14

Family

ID=90191422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013187 WO2024053970A1 (ko) 2022-09-07 2023-09-04 전극 활물질 제조용 소성용기

Country Status (1)

Country Link
WO (1) WO2024053970A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748038B2 (ja) * 1989-12-05 1995-05-24 株式会社村田製作所 セラミック焼成用匣
KR20120012333A (ko) * 2010-07-30 2012-02-09 엘지이노텍 주식회사 진공 열처리 장치
KR200468934Y1 (ko) * 2013-04-24 2013-09-10 이철휘 다단 적재용 박스형 새거
CN208398652U (zh) * 2018-06-01 2019-01-18 湖南省美程陶瓷科技有限公司 一种电子陶瓷烧结用匣钵
KR102067579B1 (ko) * 2018-10-19 2020-02-11 (주)포스코케미칼 이차전지 활물질 합성용 내화갑
KR20210000077A (ko) * 2019-06-24 2021-01-04 주식회사 엘 앤 에프 전극 활물질 제조용 소성 용기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748038B2 (ja) * 1989-12-05 1995-05-24 株式会社村田製作所 セラミック焼成用匣
KR20120012333A (ko) * 2010-07-30 2012-02-09 엘지이노텍 주식회사 진공 열처리 장치
KR200468934Y1 (ko) * 2013-04-24 2013-09-10 이철휘 다단 적재용 박스형 새거
CN208398652U (zh) * 2018-06-01 2019-01-18 湖南省美程陶瓷科技有限公司 一种电子陶瓷烧结用匣钵
KR102067579B1 (ko) * 2018-10-19 2020-02-11 (주)포스코케미칼 이차전지 활물질 합성용 내화갑
KR20210000077A (ko) * 2019-06-24 2021-01-04 주식회사 엘 앤 에프 전극 활물질 제조용 소성 용기

Similar Documents

Publication Publication Date Title
WO2024053970A1 (ko) 전극 활물질 제조용 소성용기
WO2010011013A1 (en) Multi-workpiece processing chamber and workpiece processing system including the same
WO2009148286A2 (ko) 슬래브 속에 매설되는 개방형 스페이서
ES2582863T3 (es) Cúpula de estufa cowper y estufa cowper
WO2018105802A1 (ko) 블록 구조체, 용기 및 블록 구조체의 시공 방법
US6017487A (en) Lid of preformed refractory material for metallurgical melting furnace
JPH10339581A (ja) 材料の高温熱処理方法と高温炉用炉底構造
JPH0682164A (ja) 円筒状工業炉
WO2021054736A1 (ko) 물품 적재용 조립식 팔레트
JP2000256716A (ja) 炉体の耐火物保持構造
US10281150B2 (en) Refractory ceramic lining brick and corresponding refractory ceramic lining
KR20240034469A (ko) 전극 활물질 제조용 소성용기
EP0786067B1 (en) Heat insulating arrangement
WO2024005580A1 (ko) 배터리 팩
WO2023234574A1 (ko) 배터리 컨테이너 및 이를 포함하는 에너지 저장 시스템
JP4659289B2 (ja) 内燃式熱風炉の解体方法
WO2022177122A1 (ko) 경사질 수 있는 지지판을 구비한 랙
JPS6159183A (ja) 工業炉のための耐火性屋根要素、耐火性屋根要素からなる工業炉のための屋根ならびにそのような屋根を有する工業炉
US3789780A (en) Suspended roof and end wall construction for reverberatory furnace
JPH06221771A (ja) ローラハース炉用搬送台
KR200349967Y1 (ko) 터널 킬른용 내화갑 받침판
US3832959A (en) Suspended roof and end wall construction for reverberatory furnace
WO2023234573A1 (ko) 배터리 컨테이너 및 이를 포함하는 에너지 저장 시스템
WO2024010126A1 (ko) 선형 증발원
CN113606933A (zh) 一种软磁材料双推板烧结炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863442

Country of ref document: EP

Kind code of ref document: A1