WO2024053780A1 - 광게이트 단백질 절단 효소를 이용한 광스위치 - Google Patents

광게이트 단백질 절단 효소를 이용한 광스위치 Download PDF

Info

Publication number
WO2024053780A1
WO2024053780A1 PCT/KR2022/017432 KR2022017432W WO2024053780A1 WO 2024053780 A1 WO2024053780 A1 WO 2024053780A1 KR 2022017432 W KR2022017432 W KR 2022017432W WO 2024053780 A1 WO2024053780 A1 WO 2024053780A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
protein
module
fusion protein
nucleic acid
Prior art date
Application number
PCT/KR2022/017432
Other languages
English (en)
French (fr)
Inventor
이동민
최명광
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2024053780A1 publication Critical patent/WO2024053780A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/503Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/635Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/095Fusion polypeptide containing a localisation/targetting motif containing a nuclear export signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site

Definitions

  • the present invention relates to a molecular switch that can remotely control cells using blue light as an input signal.
  • Switchable materials must exhibit clearly different properties depending on the presence or absence of a stimulus, and can be applied in various fields such as catalysts, sensors, photodetectors, memory devices, and drug delivery systems. Light is a very useful stimulus because it can be easily controlled remotely in time and space according to intensity and wavelength.
  • optically switchable organic and inorganic nanocomposite materials are being used in a variety of fields, such as light-stimulated photocatalysts, drug delivery systems, and transparent and flexible next-generation energy conversion devices. Furthermore, the field of application can be expanded by inducing more complex responses by applying stimuli involving one or more responses sequentially or simultaneously.
  • proteolytic process is one of the important protein post-translational modifications, and is a normal part of various biological phenomena such as EDS (ectodomain shedding), apoptosis signaling, precursor processing, and transcription regulation. Plays an important role in performing functions (Neurath, H. Proteolytic processing and physiological regulation. Trends Biochem. Sci.
  • the present inventors have implemented a light-reactive protein cleavage system by implementing a single structural proteome that operates based on the protein cleavage enzyme of a plant-derived virus with high specificity and efficiency and self-cleaves as an output signal in response to blue light as an input signal. was built.
  • the purpose of the present invention is to provide a fusion protein that is self-cleaved by light irradiation to release the payload.
  • an object of the present invention is to provide a gene expression control kit containing the fusion protein of the present invention.
  • an object of the present invention is to provide a use for controlling gene expression or protein activity of the fusion protein of the present invention.
  • the purpose of the present invention is to provide a method of controlling gene expression or protein activity using the fusion protein of the present invention.
  • the present invention includes an anchoring module for fixing a peptide; a light control module for controlling the release of the payload within the secretion module by light irradiation; and a secretion module that is self-cleaved by light irradiation to release the payload.
  • the present invention provides a gene expression control kit containing the fusion protein of the present invention.
  • the present invention provides a use for controlling gene expression or protein activity of the fusion protein of the present invention.
  • the present invention provides a method of controlling gene expression or protein activity using the fusion protein of the present invention.
  • the fusion protein of the present invention induces self-protein cleavage by light of a specific wavelength, uses universal genetic manipulation methods, allows the development of analogs using other similar types of proteolytic enzymes, and has a variety of secretion modules connected in a modular manner. It can be replaced with modules, and is composed of a single proteomic chain, making it easy to transplant into other synthetic biology systems, so it can be used as a platform for various uses within cells, such as a molecular switch that can control cells.
  • FIG. 1 is a diagram showing the engineering of a circularly permuted TEV protein cleavage enzyme (cpTEVp) for the production of a single-structured protein cleavage switch:
  • a Prototype design of a light-inducible single-component protein cleavage switch using cpTEVp (protein cleavage release of tTA in the left panel is suppressed by light-gated TEVseq fused to the terminus of an iLID, and blue light-dependent activation in the right panel). expression of the transgene is induced by the cleaved tTA);
  • d Partial amino acid (aa) sequence and terminally fused TEVp cleavage sequence and site of the sequentially deleted iLID J ⁇ -helix of the cpTEVp-based protein cleavage switch variant (1-135 to 1-143 aa) (orange and red, respectively) ; and
  • FIG. 2 is a diagram showing the development of the LAUNCHER system through screening:
  • c Schematic diagram of the operating mechanism of the LAUNCHER protein cleavage system by blue light (cleavage of the TEVp substrate (TEVseq) is inhibited by the spatial gap between TEVp fragments under dark conditions in the left panel -> light-dependent variable linker and under blue light in the right panel
  • the light-gated substrate induces proteolytic cleavage of tTA, thereby causing the cleaved tTA to move to the nucleus and induce the expression of a reporter gene);
  • Figure 3 is a diagram showing screening of LAUNCHER variants with flexible linkers of various sizes/lengths and the P1' substrate of the TEVp substrate:
  • d SEAP expression level of LAUNCHER variants according to amino acid substitutions (20 types of aa) in the P1' region of the TEV cleavage sequence.
  • Figure 4 is a diagram confirming the characteristics of LAUNCHER:
  • LAUNCHER 1.0 left
  • TRE-SEAP right
  • g Fluorescence image of light-induced tdTomato as a reporter (middle) and EGFP used as a transfection marker (left).
  • Figure 5 is a diagram confirming the spectral characteristics of LAUNCHER:
  • LAUNCHER 1.0 left
  • TRE-SEAP right
  • Figure 6 is a diagram confirming LAUNCHER variants produced using Potyvirus orthologs and their orthogonality:
  • LAUNCHER ortholog LAUNCHER SbMVp in combination with three cleavage sequences (ENLYFQG, ESVSLQG or ETVRFQG);
  • c Schematic diagram of the LAUNCHER ortholog LAUNCHER TVMVp in combination with three cleavage sequences (ENLYFQG, ESVSLQG or ETVRFQG);
  • Figure 7 is a diagram showing an image confirming the protein cleavage characteristics of orthogonal LAUNCHER orthologs using a confocal microscope:
  • TRE-based reporter analysis by blue light of three types of LAUNCHER orthologs (LAUNCHER TEVp , LAUNCHER SbMVp and LAUNCHER TVMVp ) with three cleavage sequences (ENLYFQG, ESVSLQG or ETVRFQG);
  • tdTomato TRE-based reporter of LAUNCHER activity.
  • Figure 8 is a diagram showing the performance improvement effect after combining LAUNCHER with Lee Jong-rae's DRD2-iTango2 system to confirm the PnP (plug-and-play) characteristics of LAUNCHER:
  • Figure 9 is a diagram confirming the characteristics of LAUNCHER-DRD2-iTango2 containing various organelle target sequences as anchor modules:
  • EGFP signal location of target organelle
  • tdTomato signaling LAUNCHER-DRD2-iTango2 activity
  • DAPI signal nuclear location
  • d Heatmap showing ligand-dependent, light-dependent, and light- and ligand-dependent fold change according to intracellular localization.
  • Figure 10 is a diagram showing the dual control LAUNCHER system by doxycycline and blue light:
  • Figure 11 is a diagram showing the photochemical genetic protein cleavage enzyme-based circuit design using LAUNCHER:
  • Red scissors constitutive SbMVp cleavage by dimerization of TetR-FKBP and FRB-VP16 by rapamycin;
  • amino acids referred to by abbreviations in the present invention are described according to the IUPAC-IUB nomenclature as follows:
  • the present invention provides an anchoring module for fixing a peptide; a light control module for controlling the release of payload within the secretion module by light irradiation; and a fusion protein containing a secretion module that is self-cleaved by light irradiation to release the payload, a nucleic acid encoding the same, or a plasmid vector containing the nucleic acid,
  • the anchoring module comprises a first peptide comprising a domain capable of anchoring to a cell organelle or cell membrane;
  • a) comprising a second peptide and a third peptide having protein cleavage enzyme activity by forming a dimer in response to light, wherein the second peptide is a third peptide based on the direction from the N-terminus to the C-terminus within the light control module Located at the front end of
  • the second peptide and the third peptide are fragments of a protein cleaving enzyme, the second peptide is a fragment located at the rear end based on the direction from the N-terminus to the C-terminus of the protein cleavage enzyme, and the third peptide is a fragment located at the front end ego;
  • the second peptide and the third peptide include a target cleavage sequence that is cleaved when the second peptide and the third peptide have protein cleavage enzyme activity by light,
  • the expression of the target gene can be controlled on a cell basis.
  • the anchoring module can target or anchor the peptide to a cell organelle or cell membrane.
  • the first peptide may include a sequence targeting a cell or organelle, and the sequence targeting a cell or organelle is NTOM20, encoded by the nucleic acid sequence of SEQ ID NO: 1, and the nucleic acid sequence of SEQ ID NO: 2. It may be NES encoded, NLS encoded by the nucleic acid sequence of SEQ ID NO: 3, PDGFR encoded by the nucleic acid sequence of SEQ ID NO: 4, or H2B encoded by the nucleic acid sequence of SEQ ID NO: 5.
  • the protein cleaving enzyme may be TEV protease (tobacco etch virus protease (TEVp)), SbMV protease (Soybean Mosaic Virus protease (SbMVp)), or TVMV protease (Tobacco Vein Mottling Virus protease (TVMVp)).
  • TEV protease tobacco etch virus protease
  • SbMV protease Soybean Mosaic Virus protease (SbMVp)
  • TVMV protease Tobacco Vein Mottling Virus protease (TVMVp)
  • the protein cleavage enzyme is a TEV protein cleavage enzyme
  • the second peptide is a C-terminal fragment (aa 119-218) (TevC) of the TEV protein cleavage enzyme encoded by the nucleic acid sequence of SEQ ID NO: 6, and the sequence
  • the third peptide encoded by nucleic acid sequence number 9 may be the N-terminal fragment of TEVp (aa 1-118) (TevN).
  • the fusion protein may include the N-terminal fragment (amino acids (aa) 1-118) and the C-terminal fragment (aa 119-218) of the TEV protein cleaving enzyme in reverse order.
  • the second peptide is a C-terminal fragment (SbMVpC) of the SbMV protein cleavage enzyme encoded by the nucleic acid sequence of SEQ ID NO: 7, and is encoded by the nucleic acid sequence of SEQ ID NO: 10.
  • the third peptide encoded may be the N-terminal fragment of SbMVp (SbMVpN).
  • the second peptide is a C-terminal fragment (TVMVpC) of the TVMV protein cleavage enzyme encoded by the nucleic acid sequence of SEQ ID NO: 8, and is encoded by the nucleic acid sequence of SEQ ID NO: 11.
  • the third peptide encoded may be the N-terminal fragment of TVMVp (TVMVpN).
  • the light control module may further include an improved light-induced dimer (iLID) that causes the second peptide and the third peptide to form a dimer by light to have protein cleavage enzyme activity, and the iLID has a sequence It can be encoded with the nucleic acid sequence number 13.
  • iLID improved light-induced dimer
  • the light control module may further include a nuclear export sequence (NES) containing the amino acid sequence of SEQ ID NO: 14, which is encoded by the nucleic acid sequence of SEQ ID NO: 15, and the extranuclear export sequence is 2. It may be included repeatedly, and may be encoded with the nucleic acid sequence of SEQ ID NO: 16.
  • NES nuclear export sequence
  • the light control module may sequentially include a second peptide, a linker, an iLID, a NES, a third peptide, a linker, and an iLID, and the linker may be composed of 43 amino acids and have the nucleic acid sequence of SEQ ID NO: 12. It can be encrypted.
  • the target cleavage sequence of the secretion module may include ENLYFQG in which the P1' sequence of the cleavage sequence of TEVp is replaced with glycine, and has the nucleic acid sequence of SEQ ID NO: 17. Can be encrypted.
  • the target cleavage sequence of the secretion module may be encoded by the nucleic acid sequence of SEQ ID NO: 18.
  • the target cleavage sequence of the secretion module may be encoded by the nucleic acid sequence of SEQ ID NO: 18.
  • the fusion protein of the present invention is a plasmid vector containing the nucleic acid sequence of SEQ ID NO: 20 (pCMV-PDGFR-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-tTA), the nucleic acid sequence of SEQ ID NO: 21
  • a plasmid vector containing pCMV-PDGFR-SbMVpC-43LK-iLID-NESX2-SbMVpN-iLID-SbMVseq-tTA
  • a plasmid vector containing the nucleic acid sequence of SEQ ID NO: 22 pCMV-PDGFR-TVMVpC-43LK-iLID-NESX2 -TVMVpN-iLID-TVMVseq-tTA).
  • the payload may additionally include an effector module, or the payload may be replaced with an effector module, whereby the expression of the target gene can be dually controlled by blue light and the compound.
  • the effector module when the payload of the secretion module is replaced with an effector module, the effector module may be located downstream of the target cleavage sequence of the protein cleavage enzyme based on the N-terminal to C-terminal direction of the fusion protein.
  • the secretion module when the secretion module includes an effector module, it may sequentially include the target cleavage sequence of the protein cleavage enzyme, the effector module, and the payload in that order based on the direction from the N-terminus to the C-terminus of the fusion protein. there is.
  • the compound may be a tetracycline analog, rapamycin, or rapalog.
  • the effector module may include a reverse tetracycline-controlled transactivator (rtTA) (see Table 3), and rtTA (TetON) may be encoded by the nucleic acid sequence of SEQ ID NO: 23.
  • rtTA reverse tetracycline-controlled transactivator
  • the fusion protein containing the effector module is self-cleaved by light irradiation to release the payload containing the effector module, and the expression of the target gene in the effector module is controlled by a tetracycline analog (e.g., doxycycline). You can control it.
  • a tetracycline analog e.g., doxycycline
  • the fusion protein containing rtTA as an effector module is encoded by a plasmid vector (pCMV-PDGFR-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-TetON) containing the nucleic acid sequence of SEQ ID NO: 24. It can be.
  • the effector module may sequentially include TetR of rtTA, FKBP, target cleavage sequence of protein cleavage enzyme, protein cleavage enzyme, target cleavage sequence of protein cleavage enzyme, FRB, and VP16 of rtTA, in which case,
  • the fusion protein of the present invention includes an anchoring module;
  • a light control module sequentially including a second peptide of the first protein cleavage enzyme, a linker, iLID, NES (X2), a third peptide of the first protein cleavage enzyme, and the iLID;
  • It may include a secretion module (see Table 4
  • TetR may be encoded by the nucleic acid sequence of SEQ ID NO: 25
  • FKBP may be encoded by the nucleic acid sequence of SEQ ID NO: 26
  • FRB may be encoded by the nucleic acid sequence of SEQ ID NO: 27
  • VP16 can be encoded by the nucleic acid sequence of SEQ ID NO: 28.
  • the fusion protein sequentially comprising TetR of rtTA, FKBP, target cleavage sequence of protein cleavage enzyme, protein cleavage enzyme, target cleavage sequence of protein cleavage enzyme, FRB, and VP16 of rtTA as an effector module has SEQ ID NO: It can be encoded by a plasmid vector (pCMV-PDGFR-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-TetR-FKBP-SbMVseq-SbMVp-SbMVseq-FRB-VP16) containing the nucleic acid sequence of 29.
  • a plasmid vector pCMV-PDGFR-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-TetR-FKBP-SbMVseq-SbMVp-SbMVseq-FRB
  • the fusion protein is self-cleaved by light irradiation to release a payload containing an effector module, and the expression of the target gene within the effector module can be dually controlled by a rapamycin analog.
  • the effector module may include ⁇ Arr2 encoded by the nucleic acid sequence of SEQ ID NO: 30, and more preferably includes ⁇ Arr2 and a second peptide.
  • the fusion protein comprising ⁇ Arr2 and the second peptide in the effector module is a plasmid vector containing the nucleic acid sequence of SEQ ID NO: 31 (pCMV-NTOM20-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID- TEVseq- ⁇ Arr2-TevCs), plasmid vector containing the nucleic acid sequence of SEQ ID NO: 32 (pCMV-NES-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevCs), nucleic acid sequence of SEQ ID NO: 33 A plasmid vector containing (pCMV-NLS-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevCs), a plasmid vector containing the nucleic acid sequence of SEQ ID NO
  • the fusion protein of the present invention may include DRD2, a third peptide and iLID in the light control module, and DRD2 may be encoded by the nucleic acid sequence of SEQ ID NO: 37,
  • the fusion protein of the invention may include a targeting cleavage sequence, TetR and FKBP, in the secretion module.
  • the fusion protein of the invention may include FRB and VP16 in the payload.
  • the fusion protein may further include a fluorescent protein, the fluorescent protein being green fluorescent protein (GFP), enhanced green fluorescent protein (EGFP), yellow fluorescent protein ( yellow fluorescent protein (YFP), red fluorescent protein (RFP), orange fluorescent protein (OFP), cyan fluorescent protein (CFP), blue fluorescent protein (BFP) , it may be a far-red fluorescent protein or a tetracysteine motif.
  • GFP green fluorescent protein
  • EGFP enhanced green fluorescent protein
  • YFP yellow fluorescent protein
  • RFP red fluorescent protein
  • OFP orange fluorescent protein
  • CFP cyan fluorescent protein
  • BFP blue fluorescent protein
  • RNA, DNA, antibodies, effectors, drugs, prodrugs, toxins, peptides, or delivery molecules may be additionally conjugated to the fusion proteins, variants thereof, or analogs thereof (Shoari et al. , Pharmaceutics 13:1391, pp. 1-32 (2021)).
  • peptide In the present invention, the terms “peptide”, “polypeptide” and “protein” may be used interchangeably.
  • peptide used in the present invention refers to an amino acid polymer and may include not only natural amino acids but also non-proteinaceous amino acids as components.
  • variant refers to a corresponding amino acid sequence that contains at least one amino acid difference (substitution, insertion or deletion) when compared to a reference material.
  • a “variant” has high amino acid sequence homology and/or conservative amino acid substitutions, deletions and/or insertions when compared to a reference sequence.
  • analogs may include analogs substituted with one or more other functional groups for the side chain of an amino acid or the alpha-amino acid backbone.
  • side chain or backbone modified peptide analogs include, but are not limited to, hydroxyproline or N-methyl glycine “peptoids” in which the pyrrolidine ring is replaced with a hydroxy group.
  • Types of protein analogs are known in the art.
  • Peptide/protein variants according to the present invention are interpreted to include variants in which amino acid residues are conservatively substituted at specific amino acid residue positions.
  • “conservative substitution” refers to a modification of a variant that involves substituting one or more amino acids with an amino acid having similar biochemical properties that does not cause loss of biological or biochemical function of the peptide/protein variant.
  • a “conservative amino acid substitution” is a substitution that replaces an amino acid residue with an amino acid residue having a similar side chain.
  • Classes of amino acid residues with similar side chains are defined and well known in the art. These classes include amino acids with basic side chains (e.g., lysine, arginine, histidine), amino acids with acidic side chains (e.g., aspartic acid, glutamic acid), and amino acids with uncharged polar side chains (e.g., glycine).
  • amino acids with non-polar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains amino acids with aromatic side chains e.g., threonine, valine, isoleucine
  • amino acids with aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine.
  • Fusion proteins according to the present invention can be prepared by standard synthetic methods, recombinant expression systems, or any other art methods. Accordingly, fusion proteins according to the invention can be synthesized by a number of methods, including, for example, methods including:
  • the present invention relates to a nucleic acid encoding the fusion protein of the present invention or a plasmid vector containing the nucleic acid.
  • the plasmid vector encoding the fusion protein of the present invention is SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 38, or SEQ ID NO: 39.
  • the present invention relates to a drug delivery system comprising the fusion protein of the present invention, a variant thereof, or an analog thereof, or a nucleic acid encoding the same, or a plasmid vector containing the nucleic acid.
  • the drug delivery system may be a complex in which RNA, DNA, antibodies, effectors, drugs, prodrugs, toxins, peptides, or delivery molecules are bound to the fusion proteins, variants thereof, or analogs thereof.
  • the present invention relates to a drug delivery system comprising, as an active ingredient, a fusion protein of the present invention, a variant thereof, or an analog thereof, or a nucleic acid encoding the same, or a complex in which a drug is linked to a plasmid vector containing the nucleic acid.
  • the fusion protein of the drug delivery system of the present invention may be combined through a biocompatible polymer or carrier.
  • Biocompatible polymers refer to polymers that have tissue compatibility and anticoagulant properties that do not cause tissue necrosis or blood coagulation in contact with biological tissue or blood.
  • Synthetic polymers as biocompatible polymers include polyester, polyhydroxyalkanoate (PHAs), poly( ⁇ -hydroxyacid), poly( ⁇ -hydroxyacid), and poly(3-hydrosybutyrate-co).
  • PHAs polyhydroxyalkanoate
  • PHBV poly(3-hydroxypropionate
  • PHP poly(3-hydroxyhexanoate
  • PHH poly(4-hydroxy acid), poly(4-hydroxy butyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), poly(esteramide), polycaprolactone, polylactide, polyglycolide, poly(lactide-co-glycoside) ride;
  • PLGA polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acid), polycyano Acrylate, poly(trimethylene carbonate), poly(iminocarbonate),
  • Vinyl ketone polyvinyl aromatics, polystyrene, polyvinyl ester, polyvinyl acetate, ethylene-methyl methacrylate copolymer, acrylonitrile-styrene copolymer, ABS resin and ethylene-vinyl acetate copolymer, polyamide, alkyd resin.
  • polyoxymethylene, polyimide, polyether, polyacrylate, polymethacrylate, polyacrylic acid-co-maleic acid or polyaminoamine, and natural polymers include chitosan, dextran, cellulose, heparin, hyaluronic acid, and alginate. , inulin, starch or glycogen.
  • the drug may bind non-covalently.
  • intercalator agents such as doxorubicin, a type of anticancer drug that exerts its effect by intercalating with nucleic acids
  • doxorubicin a type of anticancer drug that exerts its effect by intercalating with nucleic acids
  • doxorubicin a type of anticancer drug that exerts its effect by intercalating with nucleic acids
  • they can be combined in an intercalation manner. Since an aptamer is an oligonucleotide molecule, there is base stacking of nucleotide bases, and the drug can bind in an intercalation manner between this base stacking.
  • a drug with a fusion protein of the present invention a variant or analog thereof, or a nucleic acid encoding the same or a plasmid vector containing the nucleic acid
  • drugs may be drugs made of any small molecule compounds such as cytotoxic anticancer drugs, recombinant proteins, or any biopharmaceuticals such as siRNA.
  • drugs include anti-inflammatory drugs, analgesics, anti-arthritis drugs, antispasmodics, antidepressants, antipsychotics, tranquilizers, anti-anxiety drugs, narcotic antagonists, anti-Parkinson's disease drugs, cholinergic agonists, anticancer drugs, angiogenesis inhibitors, immunosuppressants, etc.
  • the drug may be a gene, plasmid DNA, antisense oligonucleotide, siRNA, peptide, ribozyme, viral particle, immunomodulator, protein, contrast agent, etc. More specifically, the drug may be a gene encoding Rb94, a variant of the retinoblastoma tumor suppressor gene, a gene encoding apoptin, which induces apoptosis only in tumor cells, and an antisense oligonucleotide against HER-2, which is a therapeutic target. (Sequence: 5'-TCC ATG GTG CTC ACT-3'), and may be a diagnostic contrast agent such as Gd-DTPA, an MRI contrast agent.
  • a diagnostic contrast agent such as Gd-DTPA, an MRI contrast agent.
  • the complex of the present invention can be prepared as a pharmaceutical composition in oral formulation or parenteral formulation depending on the route of administration by a conventional method known in the art, including a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier refers to a carrier or diluent that does not irritate living organisms and does not inhibit the biological activity and properties of the administered compound.
  • Acceptable pharmaceutical carriers in compositions formulated as liquid solutions include those that are sterile and biocompatible, such as saline solution, sterile water, Ringer's solution, buffered saline solution, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and One or more of these ingredients can be mixed and used, and other common additives such as antioxidants, buffers, and bacteriostatic agents can be added as needed.
  • the pharmaceutical composition of the present invention may contain a carrier, diluent, excipient, or a combination of two or more commonly used in biological products.
  • a carrier diluent, excipient, or a combination of two or more commonly used in biological products.
  • pharmaceutically acceptable means that the composition exhibits non-toxic properties to normal cells or humans exposed to the composition.
  • the carrier is not particularly limited as long as it is suitable for in vivo delivery of the composition, for example, Merck Index, 13th ed., Merck & Co. Inc.
  • saline solution sterilized water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these ingredients can be mixed and used, and if necessary, other ingredients such as antioxidants, buffers, and bacteriostatic agents. Normal additives can be added.
  • diluents, dispersants, surfactants, binders, and lubricants can be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions, etc., pills, capsules, granules, or tablets.
  • injectable formulations such as aqueous solutions, suspensions, emulsions, etc., pills, capsules, granules, or tablets.
  • it can be preferably formulated according to each disease or ingredient using an appropriate method in the art or a method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990).
  • the pharmaceutical composition may be one or more formulations selected from the group including oral formulations, topical formulations, suppositories, sterile injectable solutions, and sprays.
  • composition of the present invention may also include carriers, diluents, excipients, or combinations of two or more commonly used in biological products.
  • Pharmaceutically acceptable carriers are not particularly limited as long as they are suitable for in vivo delivery of the composition, for example, Merck Index, 13th ed., Merck & Co. Inc.
  • the compounds described in, saline solution, sterilized water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these ingredients can be mixed and used, and if necessary, other ingredients such as antioxidants, buffers, and bacteriostatic agents. Normal additives can be added.
  • diluents can be additionally added to formulate dosage forms such as aqueous solutions, suspensions, emulsions, etc., into pills, capsules, granules, or tablets.
  • dosage forms such as aqueous solutions, suspensions, emulsions, etc., into pills, capsules, granules, or tablets.
  • it can be preferably formulated according to each disease or ingredient using an appropriate method in the art or a method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990).
  • the present invention relates to a vector containing a nucleic acid encoding the fusion protein of the present invention and a host cell containing the vector.
  • vectors include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, etc.
  • Suitable vectors include expression control elements such as promoters, operators, start codons, stop codons, polyadenylation signals, and enhancers, as well as signal sequences or leader sequences for membrane targeting or secretion, and can be prepared in various ways depending on the purpose.
  • the promoter of the vector may be constitutive or inducible.
  • the signal sequence includes the PhoA signal sequence and OmpA signal sequence when the host is a bacterium of the Escherichia sp., and the ⁇ -amylase signal sequence and subtilis when the host is a bacterium of the genus Bacillus sp.
  • the host is yeast, the MF ⁇ signal sequence, SUC2 signal sequence, etc. can be used, and if the host is an animal cell, the insulin signal sequence, ⁇ -interferon signal sequence, antibody molecule signal sequence, etc. can be used.
  • the vector may also contain a selection marker for selecting host cells containing the vector and, if the vector is replicable, an origin of replication.
  • the vector is a “plasmid”, which refers to a circular double-stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques.
  • the vectors can be delivered in vivo or into cells through electroporation, lipofection, viral vectors, nanoparticles, as well as PTD (Protein translocation domain) fusion protein methods, respectively.
  • PTD Protein translocation domain
  • vector refers to a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating the nucleic acid sequence.
  • Nucleic acid sequences may be exogenous or heterologous.
  • Vectors include, but are not limited to, plasmids, cosmids, and viruses (eg, bacteriophages). Those skilled in the art can construct vectors by standard recombination techniques (Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; and Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, NY, 1994, etc.).
  • expression control sequences such as promoters, terminators, enhancers, etc., membrane targeting, or secretion are added depending on the type of host cell in which the fusion protein is to be produced. Sequences, etc. can be appropriately selected and combined in various ways depending on the purpose.
  • the host cell is selected from the genus Escehreichia sp., Salmonellae sp., Yersinia sp., Shigella sp., and Enterobacter genus. sp.), Pseudomonas sp., Proteus sp., or Klebsiella sp., and Escherichia coli of the Escherichia genus is used for mass production of fusion proteins. It is more desirable.
  • the invention relates to a kit for controlled release of a payload comprising one or more fusion proteins of the invention.
  • the payload can be RNA, DNA, antibody, effector, drug, prodrug, toxin, peptide, or delivery molecule.
  • the kit includes a first fusion protein comprising an anchoring module, a first light control module, and a first secretion module; and a second fusion protein comprising a second light control module and a second secretion module,
  • the first light control module :
  • a) comprising a second peptide and a third peptide having protein cleavage enzyme activity by forming a dimer in response to light, wherein the second peptide is a third peptide based on the direction from the N-terminus to the C-terminus within the light control module Located at the front end of
  • the second peptide and the third peptide are fragments of a protein cleaving enzyme, the second peptide is a fragment located at the rear end based on the direction from the N-terminus to the C-terminus of the protein cleavage enzyme, and the third peptide is a fragment located at the front end ego;
  • the second light control module includes DRD2, a third peptide and iLID;
  • the first secretion module includes a target cleavage sequence of a protein cleavage enzyme and an effector module;
  • the second secretion module may include a target cleavage sequence of a protein cleavage enzyme and a payload (see Table 2).
  • the kit of the present invention can control the payload release of the second secretion module optogenetically and chemogenetically by irradiation with a compound and light.
  • the effector module may include ⁇ Arr2 and a second peptide.
  • the kit self-cleaves the first fusion protein by light irradiation to release the effector module; And the second fusion protein is self-cleaved by the GPCR ligand to release the payload of the second fusion protein, so that the release of the target payload can be doubly controlled.
  • the payload can be RNA, DNA, antibody, effector, drug, prodrug, toxin, peptide, or delivery molecule.
  • the second peptide of the released effector module binds to the third peptide of the second fusion protein by a GPCR ligand, thereby causing self-cleavage of the second fusion protein.
  • the kit may replace the payload of the second fusion protein with an effector module or may additionally include an effector module, and the effector module may include TetR and FKBP.
  • the kit may further include a third fusion protein comprising an anchoring module and a payload comprising an effector module, where the effector module may include FRB and VP16 (see Table 5) .
  • the kit includes a first fusion protein comprising a first anchoring module, a first light control module, and a first secretion module; a second fusion protein comprising a second light control module and a second secretion module; and a third fusion protein comprising a second anchoring module and a payload,
  • the first light control module may include a second peptide, a linker, an iLID, an NES (X2), a third peptide and an iLID,
  • the first secretion module may include a target cleavage sequence of a protein cleavage enzyme and an effector module, wherein the effector module may include ⁇ Arr2 and a second peptide,
  • the second light control module may include DRD2, a third peptide and an iLID,
  • the second secretion module may include the target cleavage sequences of protein cleavage enzymes, TetR and FKBP, and
  • the payload may include FRB and VP16 as effector modules.
  • the payload may further include RNA, DNA, antibodies, effectors, drugs, prodrugs, toxins, peptides, or delivery molecules.
  • the kit self-cleaves the first fusion protein by light irradiation to release the effector module; Self-cleavage of the second fusion protein by the GPCR ligand releases TetR-FKBP; And by binding FKBP to FRB of the third fusion protein by rapamycin, the release of the target payload can be triple controlled.
  • the present invention relates to a kit for controlled release of a payload comprising one or more plasmid vectors encoding the fusion protein of the present invention.
  • the payload can be RNA, DNA, antibody, effector, drug, prodrug, toxin, peptide, or delivery molecule.
  • the kit includes a first plasmid vector encoding a first fusion protein comprising an anchoring module comprising a first peptide, a first light control module, and a first secretion module; and a second plasmid vector encoding a second fusion protein comprising a second light control module and a second secretion module,
  • the first light control module :
  • a) comprising a second peptide and a third peptide having protein cleavage enzyme activity by forming a dimer in response to light, wherein the second peptide is a third peptide based on the direction from the N-terminus to the C-terminus within the light control module Located at the front end of
  • the second peptide and the third peptide are fragments of a protein cleaving enzyme, the second peptide is a fragment located at the rear end based on the direction from the N-terminus to the C-terminus of the protein cleavage enzyme, and the third peptide is a fragment located at the front end ego;
  • the second light control module includes DRD2, a third peptide and iLID;
  • the first secretion module includes a target cleavage sequence of a protein cleavage enzyme and an effector module;
  • the second secretion module may include a target cleavage sequence of a protein cleavage enzyme and a payload.
  • the first plasmid vector is a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 1, a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 2, a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 3, and a sequence It may include a nucleic acid selected from the group consisting of a nucleic acid containing the nucleic acid sequence of SEQ ID No. 4, a nucleic acid sequence of a nucleic acid containing the nucleic acid sequence of SEQ ID No. 5, and a combination thereof.
  • the first plasmid vector comprises a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 6, a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 7, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 8. can do.
  • the first plasmid vector comprises a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 9, a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 10, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 11, which encodes the third peptide. can do.
  • the first plasmid vector is a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 12 encoding a linker; A nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 13 encoding iLID; A nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 15 encoding NES; Alternatively, it may include a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 16 encoding NES
  • the first plasmid vector comprises a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 17, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 18, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 19, which encodes the target cleavage sequence. can do.
  • the first plasmid vector may include a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 30 encoding ⁇ Arr2.
  • the second plasmid vector is a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 37 encoding DRD2; A nucleic acid containing the nucleic acid sequence of SEQ ID NO: 9, a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 10, or a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 11, which encodes a third peptide; Alternatively, it may include a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 13 encoding iLID.
  • the second plasmid vector comprises a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 17, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 18, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 19, which encodes the target cleavage sequence. can do.
  • the second plasmid vector may include a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 25 encoding TetR or a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 26 encoding FKBP.
  • the first plasmid vector may include a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, or SEQ ID NO: 36.
  • the second plasmid vector may contain a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 38.
  • the kit of the present invention can control the payload release of the second secretion module optogenetically and chemogenetically by irradiation with a compound and light.
  • the effector module may include ⁇ Arr2 and a second peptide.
  • the kit is expressed in a cell, and then the first fusion protein is self-cleaved by light irradiation to release the effector module; And the second fusion protein is self-cleaved by the GPCR ligand to release the payload of the second fusion protein, so that the release of the target payload can be doubly controlled.
  • the payload can be RNA, DNA, antibody, effector, drug, prodrug, toxin, peptide, or delivery molecule.
  • the second peptide of the released effector module binds to the third peptide of the second fusion protein by a GPCR ligand, thereby causing self-cleavage of the second fusion protein.
  • the payload of the second fusion protein of the kit may be replaced with an effector module or may additionally include an effector module, and the effector module may include TetR and FKBP.
  • the kit may further comprise a third plasmid vector encoding a third fusion protein comprising an anchoring module and a payload comprising an effector module, the effector module comprising FRB and VP16. You can.
  • the third plasmid vector may contain a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 27 encoding FRB or a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 28 encoding VP16.
  • the third plasmid vector may contain a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 39.
  • the kit is expressed in a cell, and then the first fusion protein is self-cleaved by light irradiation to release the effector module; Self-cleavage of the second fusion protein by the GPCR ligand releases TetR-FKBP; And by binding FKBP to FRB of the third fusion protein by rapamycin, the release of the target payload can be triple controlled.
  • the present invention relates to a kit for controlling gene expression or protein activity comprising one or more fusion proteins of the present invention.
  • the kit of the present invention can control gene expression or protein activity optogenetically and chemogenetically by irradiating a compound and light.
  • the payload can be RNA, DNA, antibody, effector, drug, prodrug, toxin, peptide, or delivery molecule.
  • the kit includes a first fusion protein comprising an anchoring module, a first light control module, and a first secretion module; and a second fusion protein comprising a second light control module and a second secretion module,
  • the first light control module :
  • a) comprising a second peptide and a third peptide having protein cleavage enzyme activity by forming a dimer in response to light, wherein the second peptide is a third peptide based on the direction from the N-terminus to the C-terminus within the light control module Located at the front end of
  • the second peptide and the third peptide are fragments of a protein cleaving enzyme, the second peptide is a fragment located at the rear end based on the direction from the N-terminus to the C-terminus of the protein cleavage enzyme, and the third peptide is a fragment located at the front end ego;
  • the second light control module includes DRD2, a third peptide and iLID;
  • the first secretion module includes a target cleavage sequence of a protein cleavage enzyme and an effector module;
  • the second secretion module may include a target cleavage sequence of a protein cleavage enzyme and a payload.
  • the effector module may include ⁇ Arr2 and a second peptide.
  • the kit self-cleaves the first fusion protein by light irradiation to release the effector module; And the second fusion protein is self-cleaved by the GPCR ligand to release the payload of the second fusion protein, so that the expression of the target gene can be dually controlled.
  • the payload can be RNA, DNA, antibody, effector, drug, prodrug, toxin, peptide, or delivery molecule.
  • the second peptide of the released effector module binds to the third peptide of the second fusion protein by a GPCR ligand, thereby causing self-cleavage of the second fusion protein.
  • the first fusion protein is a plasmid vector containing the nucleic acid sequence of SEQ ID NO: 31 (pCMV-NTOM20-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevCs), SEQ ID NO: 32 A plasmid vector containing the nucleic acid sequence of (pCMV-NES-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevCs), a plasmid vector containing the nucleic acid sequence of SEQ ID NO: 33 (pCMV-NLS- EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevCs), a plasmid vector containing the nucleic acid sequence of SEQ ID NO: 34 (pCMV-PDG
  • the kit may replace the payload of the second fusion protein with an effector module or may additionally include an effector module, and the effector module may include TetR and FKBP.
  • the kit may further include a third fusion protein including an anchoring module and a payload, and the payload may include FRB and VP16 as effector modules.
  • the kit includes a first fusion protein comprising a first anchoring module, a first light control module, and a first secretion module; a second fusion protein comprising a second light control module and a second secretion module; and a third fusion protein comprising a second anchoring module and a payload,
  • the first light control module may include a second peptide, a linker, an iLID, an NES (X2), a third peptide and an iLID,
  • the first secretion module may include a target cleavage sequence of a protein cleavage enzyme and an effector module, wherein the effector module may include ⁇ Arr2 and a second peptide,
  • the second light control module may include DRD2, a third peptide and an iLID,
  • the second secretion module may include the target cleavage sequences of protein cleavage enzymes, TetR and FKBP, and
  • the payload may include FRB and VP16 as effector modules.
  • the payload may further include RNA, DNA, antibodies, effectors, drugs, prodrugs, toxins, peptides, or delivery molecules.
  • the kit self-cleaves the first fusion protein by light irradiation to release the effector module; Self-cleavage of the second fusion protein by the GPCR ligand releases TetR-FKBP; And by binding FKBP to the FRB of the payload of the third fusion protein by rapamycin, the expression of the target gene can be triple controlled.
  • the first fusion protein is a plasmid vector containing the nucleic acid sequence of SEQ ID NO: 31 (pCMV-NTOM20-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevCs), SEQ ID NO: 32 A plasmid vector containing the nucleic acid sequence of (pCMV-NES-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevCs), a plasmid vector containing the nucleic acid sequence of SEQ ID NO: 33 (pCMV-NLS- EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevCs), a plasmid vector containing the nucleic acid sequence of SEQ ID NO: 34 (pCMV-PDG
  • the present invention relates to a gene expression or protein activity control kit comprising one or more plasmid vectors encoding the fusion protein of the present invention.
  • the payload can be RNA, DNA, antibody, effector, drug, prodrug, toxin, peptide, or delivery molecule.
  • the kit includes a first plasmid vector encoding a first fusion protein comprising an anchoring module comprising a first peptide, a first light control module, and a first secretion module; and a second plasmid vector encoding a second fusion protein comprising a second light control module and a second secretion module,
  • the first light control module :
  • a) comprising a second peptide and a third peptide having protein cleavage enzyme activity by forming a dimer in response to light, wherein the second peptide is a third peptide based on the direction from the N-terminus to the C-terminus within the light control module Located at the front end of
  • the second peptide and the third peptide are fragments of a protein cleaving enzyme, the second peptide is a fragment located at the rear end based on the direction from the N-terminus to the C-terminus of the protein cleavage enzyme, and the third peptide is a fragment located at the front end ego;
  • the second light control module includes DRD2, a third peptide and iLID;
  • the first secretion module includes a target cleavage sequence of a protein cleavage enzyme and an effector module;
  • the second secretion module may include a target cleavage sequence of a protein cleavage enzyme and a payload.
  • the first plasmid vector containing the first peptide is a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 1, a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 2, a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 3, and a sequence. It may include a nucleic acid selected from the group consisting of a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 4, a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 5, and a combination thereof.
  • the first plasmid vector comprises a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 6, a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 7, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 8. can do.
  • the first plasmid vector comprises a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 9, a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 10, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 11, which encodes the third peptide. can do.
  • the first plasmid vector is a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 12 encoding a linker; A nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 13 encoding iLID; A nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 15 encoding NES; Alternatively, it may include a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 16 encoding NES
  • the first plasmid vector comprises a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 17, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 18, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 19, which encodes the target cleavage sequence. can do.
  • the first plasmid vector may include a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 30 encoding ⁇ Arr2.
  • the second plasmid vector is a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 37 encoding DRD2; A nucleic acid containing the nucleic acid sequence of SEQ ID NO: 9, a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 10, or a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 11, which encodes a third peptide; Alternatively, it may include a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 13 encoding iLID.
  • the second plasmid vector comprises a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 17, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 18, or a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 19, which encodes the target cleavage sequence. can do.
  • the second plasmid vector may include a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 25 encoding TetR or a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 26 encoding FKBP.
  • the first plasmid vector may include a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, or SEQ ID NO: 36.
  • the second plasmid vector may contain a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 38.
  • the kit of the present invention can control the expression of a target gene or the activity of a protein by controlling the release of the payload of the second secretion module optogenetically and chemogenetically using a compound and light irradiation.
  • the effector module may include ⁇ Arr2 and a second peptide.
  • the kit is expressed in a cell, and then the first fusion protein is self-cleaved by light irradiation to release the effector module; And the second fusion protein is self-cleaved by the GPCR ligand to release the payload of the second fusion protein, so that target gene expression or protein activity can be dually controlled.
  • the payload can be RNA, DNA, antibody, effector, drug, prodrug, toxin, peptide, or delivery molecule.
  • the second peptide of the released effector module binds to the third peptide of the second fusion protein by a GPCR ligand, thereby causing self-cleavage of the second fusion protein.
  • the payload of the second fusion protein of the kit may be replaced with an effector module or may additionally include an effector module, and the effector module may include TetR and FKBP.
  • the kit may further comprise a third plasmid vector encoding a third fusion protein comprising an anchoring module and a payload comprising an effector module, the effector module comprising FRB and VP16. You can.
  • the third plasmid vector may contain a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 27 encoding FRB or a nucleic acid containing the nucleic acid sequence of SEQ ID NO: 28 encoding VP16.
  • the third plasmid vector may contain a nucleic acid comprising the nucleic acid sequence of SEQ ID NO: 39.
  • the kit is expressed in a cell, and then the first fusion protein is self-cleaved by light irradiation to release the effector module; Self-cleavage of the second fusion protein by the GPCR ligand releases TetR-FKBP; And by binding FKBP to FRB of the third fusion protein by rapamycin, target gene expression or protein activity can be triple controlled.
  • the present invention relates to the use of the fusion protein of the present invention to control gene expression or protein activity.
  • the present invention relates to a method of controlling gene expression or protein activity using the fusion protein of the present invention.
  • the insert and backbone vector were cut with restriction enzyme (NEB), and the cut backbone vector and insert were ligated with T4 ligase (NEB) and then transformed into DH5 ⁇ competent cells (Enzynomics). Additionally, overlap cloning was performed to quickly clone complex vectors containing multiple insert fragments. For this purpose, multiple DNA fragments and backbone vectors were amplified by PCR using a primer set designed to contain 15 bp of overlapping sequence at both ends, and then multiple DNA fragments and backbones were cloned using the Overlap Cloner DNA Cloning Kit (Elpisbio). Ligation was performed for 1 h at °C.
  • plasmid sequences were confirmed by Sanger sequencing (Cosmo Genetech, Bionics), and the confirmed plasmids were purified using the midi prep scale kit (Macherey-Nagel).
  • SEAP secreted alkaline phosphatase reporter gene analysis was performed in HEK293T cells.
  • sufficiently cultured HEK293T cells were treated with 0.25% trypsin EDTA solution, separated from the culture dish, isolated into single cells, and then distributed 10 5 per 24-well plate. After 24 hours, plasmids were prepared using jetOptimus reagent. They were each transfected.
  • the cells were placed in a constant temperature and humidity chamber equipped with a 470nm blue LED panel (30W 771pcs, GreenergyStar), and the cells expressing the plasmid were irradiated with blue light for a target time in a repetitive cycle of turning the light on for 2 seconds and turning it off for 28 seconds.
  • a quantitative amount of cell culture fluid from all samples was collected, centrifugation was performed to remove precipitates, heat was applied at 60°C for 1 hour to inactivate non-specific phosphorylating enzymes, and SEAP substrate was added to each sample.
  • the degree of chemiluminescence of the sample culture was measured using a microplate absorbance reader (TECAN infinite F50) (absorption wavelength 405 nm).
  • the length of the second linker was set to 0 and mutants (5, 10, 18, 23, 28, 33, 38, 43, and 48 aa) with various changes in the size of the first linker were created.
  • Protein cleavage activity was screened (Figure 2h). The results showed a Goldilocks zone for protein cleavage, suggesting that the medium-sized first linker (23-38 aa) is optimal for optogenetic regulation of cpTEVp configuration ( Figures 2h, 3a and b).
  • the mutant was adjusted by changing the length of the first linker or substituting P1 ⁇ aa, resulting in a first linker of 43 aa;
  • the variant with a second linker of 0 aa, two NESs, and a P1 site of glycine was found to have the highest cpTEVp efficiency, and was named LAUNCHER (Light-Assisted UNcaging switCH for Endoproteolytic Release) 1.0 (FIG. 2j).
  • LAUNCHER thus developed includes an anchoring module comprising an organelle targeting sequence (first peptide); A light control module sequentially comprising a C-terminal fragment of a protein cleavage enzyme (second peptide), an optimized linker, iLID, NES, NES, an N-terminal fragment of a protein cleavage enzyme (third peptide), and iLID; and a secretion module containing the target cleavage sequence and payload of the protein cleavage enzyme (Table 1).
  • first peptide an organelle targeting sequence
  • a light control module sequentially comprising a C-terminal fragment of a protein cleavage enzyme (second peptide), an optimized linker, iLID, NES, NES, an N-terminal fragment of a protein cleavage enzyme (third peptide), and iLID
  • a secretion module containing the target cleavage sequence and payload of the protein cleavage enzyme (Table 1).
  • the optimized LAUNCHER (pCMV-PDGFR-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-tTA) derived in Example 1 was transfected in HEK293T cells, and a digital LED control system (TouchBright, Live Cell Instrument, SEAP expression levels over time (6 hours, 12 hours, and 24 hours) by fixing the blue light pulse duration to 2 seconds on/28 seconds off (duty cycles) using maximum intensity: 3.5 mW/cm 2 ). was confirmed ( Figures 4a and b).
  • the expression level of the transgene showed a positive correlation with the illumination duration (Figure 4c), and at an illumination duration of 6 hours, the SNR (signal-to-noise ratios) ) increased 9-fold, and increased 19.0-fold at 24 hours, showing the highest gene expression efficiency (Figure 4d), and these results indicated that the LAUNCHER system was well regulated by light. Similar to the results for light-pulse duration above, gene expression levels gradually increased with increasing light intensity (FIGS. 5A and B). In addition, to characterize the color of LAUNCHER, HEK293T cells transfected with LAUNCHER were irradiated with light of three wavelengths (blue: 470, green: 520, and red: 630 nm).
  • blue light is the SEAP gene. While expression was strongly induced, green light and red light showed little activity, proving the blue light specificity of LAUNCHER (Figure 5c).
  • various duty cycles of blue light pulses at various frequencies (4/60 Hz, 2/60 Hz and 1/60 Hz) were checked ( As a result (Figure 5d left panel), no significant difference was observed (Figure 5d right panel).
  • a photomask was used to confirm whether fluorescent target gene expression was spatially controlled. Specifically, a plasmid vector containing EGFP (enhanced green fluorescent protein) as a transfection marker, a TRE-tdTomato reporter plasmid vector, and a LAUNCHER plasmid vector ( Figure 4e) were transfected into HEK293T cells, and then the space was irradiated with blue light. To limit the scope, an acrylic photomask with the word “LAUNCHER” laser cut was placed on a cell culture dish, blue light was projected, and the light-induced tdTomato expression was scanned using a laser scanner (Typhoon FLA 9500, GE Healthcare).
  • EGFP enhanced green fluorescent protein
  • the information carried by each protein-cleaving enzyme must be uninterrupted by other protein-cleaving enzymes. Accordingly, since the LAUNCHER system of the present invention was developed based on TEVp (Tobacco etch virus protease), a type of plant-derived potyvirus, many orthologs of potyviruses adapted to various plants interfere with each other during the protein cleavage process.
  • TEVp tobacco etch virus protease
  • SbMVp protein cleavage enzyme of Soybean Mosaic Virus
  • TVMVp protein cleavage enzyme of Tobacco Vein Mottling Virus
  • substrate sequences ENLYFQG, ESVSLQG or ETVRFQG
  • Figures 6a to 6c were prepared by combining 9 LAUNCHER orthologs ( Figures 6a to 6c), then they were transfected into cells and irradiated with blue light to confirm the expression of the reporter gene.
  • LAUNCHER orthologs EGFP, and TRE-tdTomato were co-transfected into cells on coverslips, fixed with 200 ⁇ l of 4% paraformaldehyde (CURRBIO) for 30 minutes, and washed three times with PBS. Then, the nuclei were stained by treating them with 200 ⁇ L of 300 nM DAPI (Invitrogen). The stained cells were mounted on a glass slice using a mounting solution (Biomeda), and images were taken with an LSM 800 confocal microscope (Zeiss).
  • LAUNCHER TEVp LAUNCHER TEVp
  • LAUNCHER SbMVp pCMV-PDGFR-SbMVpC-43LK-iLID-NESX2-SbMVpN-iLID-SbMVseq-tTA
  • LAUNCHER TVMVp pCMV- Only PDGFR-TVMVpC-43LK-iLID-NESX2-TVMVpN-iLID-TVMVseq-tTA
  • the iTango2 system genetically encodes a GPCR sensor that responds to both blue light and GPCR ligands
  • DRD2-iTango2 has two components: the plasma membrane-bound DRD2-TevN-iLID-TEVseq-tTA and the cytoplasmic ⁇ Arr2 ( ⁇ arrestin2)-TevC. It consists of individual peptides, and these two elements had the problem of causing non-specific protein cleavage release of tTA through free diffusion-mediated interaction.
  • LAUNCHER was fused with cytoplasmic ⁇ Arr2-TEV-C and an NTOM20 domain capable of anchoring to intracellular mitochondria was inserted at the N terminus, thereby binding the secretion module of LAUNCHER.
  • tTA (second plasmid vector) was constructed (Table 2) and co-transfected into cells to tether the LAUNCHER- ⁇ Arr2-TevC module to the mitochondria (Layer 1 in Figure 8a) and the DRD2-TevN-iLID-TEVseq-tTA module. was prepared in a state bound to the plasma membrane (Layer 2 in Figure 8a) (due to mitochondrial immobilization of LAUNCHER TEVp - ⁇ Arr2-TevC, non-specific protein cleavage release of tTA is suppressed in the absence of blue light).
  • LAUNCHER and its orthologs are easily compatible with various existing biological circuits in a PnP manner.
  • NOM20 mitochondrial targeting
  • NES cytoplasmic targeting
  • NLS nuclear targeting
  • PDGFR plasma membrane targeting
  • H2B nuclear DNA targeting
  • LAUNCHER-iTango system with anchoring module (pCMV-NTOM20-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevC; pCMV-NES-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID -TEVseq- ⁇ Arr2-TevC;pCMV-NLS-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevC;pCMV-PDGFR-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq - ⁇ Arr2-TevC; pCMV-H2B-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq- ⁇ Arr2-TevC
  • tTA which was simply used as the payload of LAUNCHER, was replaced with rtTA (reverse tetracycline-controlled transactivator), an effector module that can bind to the Tet operator sequence only in the presence of tetracycline analogues such as doxycycline.
  • rtTA reverse tetracycline-controlled transactivator
  • doxycycline is used as a means to prevent expression of the unwanted transgene (Figure 10a).
  • Figure 10b As a result of transfecting the LAUNCHER mutant into cells and confirming selective gene expression by simultaneously treating blue light and doxycycline, it was found that the reporter gene was expressed only when both blue light and doxycycline were treated (FIG. 10b).
  • rapamycin-induced FRB FKBP12-rapamycin-binding
  • FKBP FK506-binding protein
  • CID chemically induced dimerization
  • LAUNCHER photocleavable LAUNCHER
  • the tTA (TetR-VP16) site in LAUNCHER was cleaved into TetR-FRB and FKBP-VP16, and then SbMVp and its substrate sequence were inserted into the junction of the two fragments to connect them.
  • Single-component LAUNCHER variants dually controlled by rapamycin and blue light (pCMV-PDGFR-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-TetR-FKBP-SbMVseq-SbMVp-SbMVseq -FRB-VP16) was produced (FIG. 11a).
  • split tTA (FRB/FKBP system of Example 5-2) capable of rapamycin control was fused to LAUNCHER-DRD2-iTango2 of Example 4-1 ( Figure 11d), a system controlled by three types of input signals: GPCR ligand, rapamycin, and blue light (Table 5) (pCMV-NTOM20-SbMVpC-43LK-iLID-NESX2-SbMVpN-iLID-SbMVseq- ⁇ Arr2-TevC-P2A -EGFP; pCMV-DRD2-V2tail-TevN-ILID-TEVseq-TetR-FKBP; pCMV-NLS-FRB-VP16; and TRE-SEAP) were constructed (FIG.
  • LAUNCHER can be used as a versatile optical switch to create custom composite circuits controlled in multiple modes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 청색광을 입력 신호로 사용하여 원격으로 세포를 제어할 수 있는 분자 스위치에 관한 것으로, 본 발명의 융합 단백질은 특정 파장의 빛에 의해 자가 단백질 절단이 유도되며, 보편적 유전자 조작 방법을 사용하며 다른 유사한 종류의 단백절단효소를 이용한 유사체 개발이 가능하고, 모듈 방식으로 연결되는 분비 모듈을 다양한 모듈로 교체 가능하며, 단일 단백체 사슬로 구성되어 다른 합성 생물학 시스템에 이식이 용이하므로, 세포를 제어할 수 있는 분자 스위치와 같은 세포 내 다양한 활용이 가능한 플랫폼으로 이용할 수 있다.

Description

광게이트 단백질 절단 효소를 이용한 광스위치
본 발명은 청색광을 입력 신호로 사용하여 원격으로 세포를 제어할 수 있는 분자 스위치에 관한 것이다.
초분자 화학에서 최근 활발히 연구되어지고 있는 분자 스위치는 광학적, 전기적, 화학적인 여러가지 제어 수단과 함께 폭 넓은 응용성을 가지고 연구되고 있다. 이러한 자극을 가하여 복합소재의 특성을 큰 폭으로 변화시킬 수 있다면 이를 ON/OFF 스위치에 적용할 수 있다. 스위치성 물질은 자극의 유무에 따라 명확하게 다른 특성을 나타내야 하고, 촉매, 센서, 광검출기, 메모리장치 및 약물 전달 시스템과 같은 다양한 분야에서 응용될 수 있다. 빛은 세기 및 파장에 따라 쉽게 시공간적으로 원격 조절이 가능하기 때문에 매우 유용한 자극이다. 따라서, 빛을 자극으로 한 광촉매, 약물 전달 시스템, 투명하고 유연한 차세대 에너지 전환 장치 등 광스위치성 유·무기 나노복합소재는 다양한 분야에 활용되고 있다. 나아가 한 개 이상의 반응을 수반하는 자극을 순차적으로, 또는 동시에 가하여 보다 복잡한 반응을 유도함으로써 활용 분야를 확장시킬 수 있다.
한편, 다양한 유형의 단백질 절단(분해) 효소들(proteases)은 단순한 미생물에서 복잡한 식물 및 동물에 이르는 유기체의 프로테옴에서 확인되었다 (Lopez-Otin, C. & Bond, J. S. Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433-30437 (2008)). 특히, 단백질 절단 과정(proteolytic process)은 중요한 단백질 번역후 과정(post-translational modification) 중의 하나로, EDS(ectodomain shedding), 세포사멸 신호전달, 전구체 프로세싱(precursor processing) 및 전사 조절 등 다양한 생물학적 현상의 정상적인 기능 수행에 중요한 역할을 담당한다 (Neurath, H. Proteolytic processing and physiological regulation. Trends Biochem. Sci. 14, 268-271 (1989).). 합성 생물학에서, 다양한 단백질 절단 효소들을 RASER(Rewiring of Aberrant Signaling to Effector Release), MESA(Modular Extracellular Sensor Architecture) 및 SPOC(Split-Protease-cleavable Orthogonal-CC-based) 로직과 같은 다목적 분자 스위치로 활용하기 위한 혁신적인 생명공학적 시도가 추구되었다 (Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115-122 (2019)). 식물 바이러스의 단백질 절단 효소들은 인간과 계통발생학적으로 멀고 인간 프로테옴에 자연적인 기질이 없으며 서열 특이성을 나타내기 때문에 이와 같은 단백질 절단 스위치의 가장 합리적인 후보로 여겨진다.
이에, 본 발명자들은 고도의 특이성과 효율성을 가진 식물 유래 바이러스의 단백질 절단 효소를 기반으로 작동하며, 입력 신호인 청색광에 반응하여 출력 신호로 자가 절단되는 단일 구조 단백체를 구현함으로써, 광반응성 단백질 절단 시스템을 구축하였다.
본 발명의 목적은 광조사에 의하여 자가 절단되어 페이로드를 방출하는 융합 단백질을 제공하는 것이다.
또한, 본 발명의 목적은 본 발명의 융합 단백질을 포함하는 유전자 발현 제어 키트를 제공하는 것이다.
또한, 본 발명의 목적은 본 발명의 융합 단백질의 유전자 발현 또는 단백질의 활성 제어 용도를 제공하는 것이다.
아울러, 본 발명의 목적은 본 발명의 융합 단백질을 이용하여 유전자의 발현 또는 단백질의 활성을 제어하는 방법을 제공하는 것이다.
상기 목적의 달성을 위해, 본 발명은 펩타이드를 고정시키기 위한 앵커링 모듈; 광조사에 의하여 분비 모듈 내의 페이로드의 방출을 조절하기 위한 광 제어 모듈; 및 광조사에 의하여 자가 절단되어 페이로드를 방출하는 분비 모듈을 포함하는 융합 단백질을 제공한다.
또한, 본 발명은 본 발명의 융합 단백질을 포함하는 유전자 발현 제어 키트를 제공한다.
또한, 본 발명은 본 발명의 융합 단백질의 유전자 발현 또는 단백질의 활성 제어 용도를 제공한다.
아울러, 본 발명은 본 발명의 융합 단백질을 이용하여 유전자의 발현 또는 단백질의 활성을 제어하는 방법을 제공한다.
본 발명의 융합 단백질은 특정 파장의 빛에 의해 자가 단백질 절단이 유도되며, 보편적 유전자 조작 방법을 사용하며 다른 유사한 종류의 단백절단효소를 이용한 유사체 개발이 가능하고, 모듈 방식으로 연결되는 분비 모듈을 다양한 모듈로 교체 가능하며, 단일 단백체 사슬로 구성되어 다른 합성 생물학 시스템에 이식이 용이하므로, 세포를 제어할 수 있는 분자 스위치와 같은 세포 내 다양한 활용이 가능한 플랫폼으로 이용할 수 있다.
도 1은 단일 구조로 이루어진 단백 절단 스위치 제작을 위한 순환치환(circularly permuted) TEV 단백질 절단 효소 (cpTEVp)의 엔지니어링을 나타낸 도이다:
a: cpTEVp를 이용한 광-유도성 단일-구성 단백 절단 스위치의 프로토타입 설계 (왼쪽 패널의 tTA의 단백 절단 방출을 iLID의 말단에 융합된 광-게이트 TEVseq에 의해 억제되고, 오른쪽 패널의 청색광-의존적으로 절단된 tTA에 의해 트랜스진의 발현이 유도됨);
b: TEVp-기반 단백 절단 스위치 (상단) 및 cpTEVp-기반 단백 절단 스위치 (하단)의 구조 모식도;
c: 청색광 조사 하에 TEVp-기반 단백 절단 스위치 및 cpTEVp-기반 단백 절단 스위치의 SEAP 발현 분석;
d: cpTEVp-기반 단백 절단 스위치 변이체 (1-135 내지 1-143 aa)의 연속적으로 결실된 iLID Jα-헬릭스의 부분 아미노산 (aa) 서열 및 말단 융합된 TEVp 절단 서열 및 부위 (각각 오렌지색 및 빨간색); 및
e: 청색광 조사 후 cpTEVp-기반 단백 절단 스위치 변이체의 SEAP 발현 수준.
도 2는 스크리닝을 통해 LAUNCHER 시스템을 개발하는 것을 나타낸 도이다:
a: 연성 링커의 부재 (No LK, 상단) 또는 존재 (LK, 하단)하에 연결된 cpTEVp 및 광-게이트(Light-gated) 기질의 프로토타입 디자인;
b: 연성 링커의 부재 (No LK) 또는 존재 (LK)시 cpTEVp 단백 절단 활성의 SEAP 분석;
c: 청색광에 의한 LAUNCHER 단백 절단 시스템의 작동 기전 모식도 (왼쪽 패널의 암조건에서 TEVp 단편들 간의 공간 간격에 의해 TEVp 기질(TEVseq)의 절단이 억제됨->오른쪽 패널의 청색광 하에 광-의존적 가변 링커 및 광-게이트 기질이 tTA의 단백질 가수분해적(proteolytic) 절단을 유도함으로써 절단된 tTA가 핵으로 이동하여 리포터 유전자의 발현을 유도함);
d: LAUNCHER 단백 절단 시스템의 구조;
e: LAUNCHER 단백 절단 시스템을 세포에서 발현시킨 뒤 청색광 조사에 의한 SEAP 리포터 발현 분석 프로토콜;
f: 모듈 연결 가변 링커들 (1st LK 및 2nd LK) 길이 조합에 따른 SEAP 발현 수준 변화 히트맵;
g: 가변 링커 길이에 따른 광-의존적 SEAP 발현 수준;
h: 제 1 링커(1st LK) 길이에 따른 SEAP 발현 수준 변화 히트맵;
i: 제 1 링커의 길이 및 NES의 갯수에 따른 SEAP 발현 수준 변화 히트맵; 및
j: 청색광 유도된 SEAP 발현 수준 변화 히트맵 (상단) 및 히스토그램 (하단).
도 3은 다양한 크기/길이의 연성 링커 및 TEVp 기질의 P1' 기질을 가진 LAUNCHER 변이체들을 스크리닝한 도이다:
a: 다양한 길이의 연성 링커-TevC를 가진 LAUNCHER 변이체들;
b: 모듈 간 링커 크기에 따른 광-의존적 SEAP 발현 및 fold-change;
c: 도 2h 및 i에서 스크리닝한 모든 후보 변이체의 SEAP 활성; 및
d: TEV 절단 서열의 P1' 부위의 아미노산 치환 (20종의 aa)에 따른 LAUNCHER 변이체의 SEAP 발현 수준.
도 4는 LAUNCHER의 특성을 확인한 도이다:
a: SEAP-기반 LAUNCHER 특성화를 위한 LAUNCHER 1.0 (좌측) 및 TRE-SEAP (우측);
b: 청색광 조명 지속 시간 및 SEAP 샘플링 시점을 나타낸 5일 간의 실험 스캐쥴;
c: 다양한 조명 지속 시간 경과에 따른 LAUNCHER-매개 SEAP 발현 수준;
d: 조명 지속 시간 및 샘플링 시점에 따른 SEAP 발현 fold-change를 나타낸 히트맵;
e: LAUNCHER의 공간해상도(spatial resolution)를 평가하기 위한 TRE-tdTomato 및 EGFP를 포함하는 컨스트럭트의 구조 모식도;
f: LAUNCHER의 공간해상도를 시각화하기 위한 형광-기반 포토마스킹 실험 절차; 및
g: 리포터로서 광-유도된 tdTomato (중간) 및 트랜스펙션 마커로서 사용된 EGFP (왼쪽)의 형광 이미지.
도 5는 LAUNCHER의 스펙트럼 특성을 확인한 도이다:
a: LAUNCHER의 스펙트럼 특성 분석에 사용된 LAUNCHER 1.0 (왼쪽) 및 TRE-SEAP (오른쪽)의 모식도;
b: 증가하는 광도 (0 내지 100%)에 따른 LAUNCHER의 SEAP 발현 수준;
c: LAUNCHER 시스템의 스펙트럼 특이성; 및
d: 다양한 주파수 (4/60 Hz, 2/60 Hz 및 1/60 Hz)에 따른 광 듀티 사이클 및 이에 따른 SEAP 발현 수준.
도 6은 포티바이러스(Potyvirus) 오솔로그(ortholog)를 이용하여 제작한 LAUNCHER 변이체들 및 이들의 직교성(orthogonality)을 확인한 도이다:
a: 세 가지 절단 서열(기질 서열)들 (ENLYFQG, ESVSLQG 또는 ETVRFQG)과 조합된 LAUNCHERTEVp의 모식도;
b: 세 가지 절단 서열들 (ENLYFQG, ESVSLQG 또는 ETVRFQG)과 조합된 LAUNCHER 오솔로그 LAUNCHERSbMVp의 모식도;
c: 세 가지 절단 서열들 (ENLYFQG, ESVSLQG 또는 ETVRFQG)과 조합된 LAUNCHER 오솔로그 LAUNCHERTVMVp의 모식도;
d: 각 절단 서열을 가진 LAUNCHERTEVp의 직교(orthogonal) 단백 절단 분석의 SEAP 결과;
e: 각 절단 서열을 가진 LAUNCHERSbMVp의 직교 단백 절단 분석의 SEAP 결과;
f: 각 절단 서열을 가진 LAUNCHERTVMVp의 직교 단백 절단 분석의 SEAP 결과;
g: 세 가지 절단 서열들 (ENLYFQG, ESVSLQG 또는 ETVRFQG)과 조합된 LAUNCHER 오솔로그 LAUNCHERTVMVp 조합에 따른 SEAP 발현 수준 변화 히트맵; 및
h: 세 가지 절단 서열들 (ENLYFQG, ESVSLQG 또는 ETVRFQG)과 조합된 LAUNCHER 오솔로그 LAUNCHERTVMVp 조합에 따른 유전자 발현 변화를 확인한 콘포칼 현미경 이미지.
도 7은 콘포칼 현미경을 이용하여 직교 LAUNCHER 오솔로그들의 단백 절단 특성을 확인한 이미지를 나타낸 도이다:
a 내지 c: 세 가지 절단 서열 (ENLYFQG, ESVSLQG 또는 ETVRFQG)을 갖는 세 가지 유형의 LAUNCHER 오솔로그들 (LAUNCHERTEVp, LAUNCHERSbMVp 및 LAUNCHERTVMVp)의 청색광에 의한 TRE 기반 리포터 분석;
EGFP: 형질감염 마커; 및
tdTomato: LAUNCHER 활성의 TRE-기반 리포터.
도 8은 LAUNCHER의 PnP(plug-and-play) 특성을 확인하기 위해 LAUNCHER를 이종래의 DRD2-iTango2 시스템에 결합시킨 뒤 이의 성능 개선 효과를 확인한 도이다:
a: LAUNCHER의 DRD2-iTango2 시스템에 대한 PnP 특성 개략도:
회색 점선: LAUNCHER 구성 요소의 다층 구획화;
화살표: 절단된 구성 요소의 층 간 흐름;
b: 원형의 DRD2-iTango2 시스템 (상단) 및 LAUNCHER TEVp-DRD2-iTango2 시스템 (하단)의 플라스미드 구성;
c: 청색광 유/무 및 DRD2 길항제 (25μM HA)/작용제 (10μM QU)의 존재에 따른 DRD2-iTango2 및 LAUNCHER TEVp-DRD2-iTango2의 SEAP 발현;
d: 형광 리포터로서 TRE-tdTomato를 포함하는 LAUNCHER SbMVp-DRD2-iTango2 컨스트럭트의 구조; 및
e: LAUNCHER SbMVp-DRD2-iTango2의 콘포칼 이미지.
도 9는 다양한 세포 소기관 표적 서열을 앵커 모듈로 포함하는 LAUNCHER-DRD2-iTango2의 특성을 확인한 도이다:
a: LAUNCHER-DRD2-iTango2 및 해당 표적화 서열을 통해 LAUNCHER를 다양한 세포 소기관에 고정시키는 N-말단 앵커 모듈의 모식도;
b: 5가지 표적화 서열 (NTOM20, NES, NLS, PDGFR 및 H2B)을 각각 앵커 모듈에 가지는 LAUNCHER-DRD2-iTango2를 발현하는 세포의 콘포칼 이미지;
EGFP 신호: 표적 세포 소기관의 위치;
tdTomato 신호: LAUNCHER-DRD2-iTango2 활성;
DAPI 신호: 핵 위치;
c: LAUNCHER-DRD2-iTango2를 발현하는 HEK293T 세포의 SEAP 정량; 및
d: 세포 내 국소화에 따른 리간드-의존적, 광-의존적, 및 광- 및 리간드-의존적 fold change를 나타낸 히트맵.
도 10은 독시사이클린 및 청색광에 의한 이중 제어 LAUNCHER 시스템을 나타낸 도이다:
a: Tet-ON 시스템의 rtTA를 이용한 독시사이클린 및 청색광에 의한 AND-게이트 LAUNCHER 시스템의 개락도; 및
b: rtTA를 이용한 독시사이클린 및 청색광에 의한 AND-게이트 LAUNCHER 시스템의 SEAP 정량화.
도 11은 LAUNCHER를 이용한 광화학유전적 단백질 절단 효소-기반 회로 설계를 나타낸 도이다:
a: 단일 구성의 청색광 및 라파마이신의 이중 제어 LAUNCHER 시스템의 모식도;
노란색 가위: TEVp를 통한 청색광 유도성 단백 절단;
빨간색 가위: 라파마이신에 의한 TetR-FKBP 및 FRB-VP16의 이량체화에 의한 구성적 SbMVp 절단;
b: 청색광 및 라파마이신에 의한 SEAP 발현;
c: 청색광 및 라파마이신에 의한 tdTomato 발현을 확인한 콘포칼 이미지;
d: 단일 AND-게이트를 포함하는 LAUNCHER SbMVp -DRD2-iTango2 회로 (하단) 및 DRD2-리간드, 청색광 및 라파마이신 매개 삼중 입력신호를 통한 직렬 AND-게이트를 포함하는 LAUNCHER SbMVp -DRD2-iTango2 회로 (상단)를 수립하는데 사용된 컨스트럭트의 모식도;
e: 직렬 AND-게이트를 포함하는 LAUNCHER SbMVp -DRD2-iTango2의 작용 개략도; 및
f: 청색광, DRD2 작용제 및 라파마이신에 의해 유도된 직렬 AND-게이트를 포함하는 LAUNCHER SbMVp -DRD2-iTango2의 SEAP 발현.
이하, 첨부된 도면을 참조하여 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.
또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 통합된다.
본 명세서 전반을 통하여, 천연적으로 존재하는 아미노산에 대한 통상의 1문자 및 3문자 코드가 사용될 뿐만 아니라 Aib(α-아미노이소부티르산), Sar(N-methylglycine) 등과 같은 다른 아미노산에 대해 일반적으로 허용되는 3문자 코드가 사용된다. 또한 본 발명에서 약어로 언급된 아미노산은 하기와 같이 IUPAC-IUB 명명법에 따라 기재되었다:
알라닌: A, 아르기닌: R, 아스파라긴: N, 아스파르트산: D, 시스테인: C, 글루탐산: E, 글루타민: Q, 글리신: G, 히스티딘: H, 이소류신: I, 류신: L, 리신: K, 메티오닌: M, 페닐알라닌: F, 프롤린: P, 세린: S, 트레오닌: T, 트립토판: W, 티로신: Y 및 발린: V.
일 측면에서, 본 발명은 펩타이드를 고정시키기 위한 앵커링(anchoring) 모듈; 광조사에 의하여 분비 모듈 내의 페이로드(payload)의 방출을 조절하기 위한 광 제어 모듈; 및 광조사에 의하여 자가 절단되어 페이로드를 방출하는 분비 모듈을 포함하는 융합 단백질, 이를 암호화하는 핵산 또는 상기 핵산을 포함하는 플라스미드 벡터에 관한 것으로,
1) 앵커링 모듈은 세포 소기관 또는 세포막에 앵커링할 수 있는 도메인을 포함하는 제 1 펩타이드를 포함하며;
2) 광 제어 모듈은
a) 광에 반응하여 이합체를 형성하여 단백질 절단 효소 활성을 갖는 제 2 펩타이드 및 제 3 펩타이드를 포함하고, 제 2 펩타이드는 광 조절 모듈 내에서 N-말단에서 C-말단 방향을 기준으로 제 3 펩타이드의 전단에 위치하며,
b) 제 2 펩타이드 및 제 3 펩타이드는 단백질 절단 효소의 절편이고, 제 2 펩타이드는 단백질 절단 효소의 N-말단에서 C-말단 방향을 기준으로 후단에 위치한 절편이며, 제 3 펩타이드는 전단에 위치한 절편이고; 및
3) 분비 모듈은
a) 제 2 펩타이드 및 제 3 펩타이드가 광에 의하여 단백질 절단 효소 활성을 갖는 경우 절단되는 표적 절단 서열을 포함하며,
b) 표적 절단 서열이 절단되는 경우, 페이로드가 방출된다.
일 구현예에서, 페이로드에 전사인자 및 DNA 결합 단백질을 탑재할 경우 표적 유전자의 발현을 세포 단위로 제어할 수 있다.
일 구현예에서, 앵커링 모듈은 세포 소기관 또는 세포막에 펩타이드를 표적화시키거나 고정시킬 수 있다.
일 구현예에서, 제 1 펩타이드는 세포 또는 세포소기관을 표적화하는 서열을 포함할 수 있으며, 세포 또는 세포소기관을 표적화하는 서열은 서열번호 1의 핵산서열로 암호화되는 NTOM20, 서열번호 2의 핵산서열로 암호화되는 NES, 서열번호 3의 핵산서열로 암호화되는 NLS, 서열번호 4의 핵산서열로 암호화되는 PDGFR 또는 서열번호 5의 핵산서열로 암호화되는 H2B일 수 있다.
일 구현예에서, 단백질 절단 효소는 TEV 단백질 절단 효소(tobacco etch virus protease, TEVp), SbMV 단백질 절단 효소(Soybean Mosaic Virus protease, SbMVp) 또는 TVMV 단백질 절단 효소(Tobacco Vein Mottling Virus protease, TVMVp)일 수 있다.
일 구현예에서, 상기 단백질 절단 효소가 TEV 단백질 절단 효소인 경우 제 2 펩타이드는 서열번호 6의 핵산서열로 암호화되는 TEV 단백질 절단 효소의 C-말단 절편 (aa 119-218) (TevC)이고, 서열번호 9의 핵산서열로 암호화되는 제 3 펩타이드는 TEVp의 N-말단 절편 (aa 1-118) (TevN)일 수 있다.
일 구현예에서, 상기 융합 단백질은 TEV 단백질 절단 효소의 N-말단 절편(단편) (아미노산 (aa) 1-118) 및 C-말단 절편 (aa 119-218)을 역순으로 포함할 수 있다.
일 구현예에서, 상기 단백질 절단 효소가 SbMV 단백질 절단 효소인 경우 제 2 펩타이드는 서열번호 7의 핵산서열로 암호화되는 SbMV 단백질 절단효소의 C-말단 절편 (SbMVpC)이고, 서열번호 10의 핵산서열로 암호화되는 제 3 펩타이드는 SbMVp의 N-말단 절편 (SbMVpN)일 수 있다.
일 구현예에서, 상기 단백질 절단 효소가 TVMV 단백질 절단 효소인 경우 제 2 펩타이드는 서열번호 8의 핵산서열로 암호화되는 TVMV 단백질 절단효소의 C-말단 절편 (TVMVpC)이고, 서열번호 11의 핵산서열로 암호화되는 제 3 펩타이드는 TVMVp의 N-말단 절편 (TVMVpN)일 수 있다.
일 구현예에서, 광 제어 모듈은 제 2 펩타이드 및 제 3 펩타이드가 광에 의하여 이합체를 형성하여 단백질 절단 효소 활성을 갖도록 하는 iLID(improved light-induced dimer)를 추가로 포함할 수 있으며, iLID는 서열번호 13의 핵산서열로 암호화될 수 있다.
일 구현예에서, 광 제어 모듈은 서열번호 15의 핵산서열로 암호화되는 서열번호 14의 아미노산 서열을 포함하는 핵외수송서열(nuclear export seqeunce, NES)을 추가로 포함할 수 있으며, 핵외수송서열을 2번 반복하여 포함할 수 있고, 이는 서열번호 16의 핵산서열로 암호화될 수 있다.
일 구현예에서, 광 제어 모듈은 제 2 펩타이드, 링커, iLID, NES, 제 3 펩타이드, 링커 및 iLID를 순차적으로 포함할 수 있으며, 링커는 43개의 아미노산으로 이루어질 수 있고, 서열번호 12의 핵산서열로 암호화될 수 있다.
일 구현예에서, 상기 단백질 절단 효소가 TEV 단백질 절단 효소인 경우 분비 모듈의 표적 절단 서열은 TEVp의 절단 서열의 P1'서열이 글라이신으로 치환된 ENLYFQG를 포함할 수 있으며, 서열번호 17의 핵산서열로 암호화될 수 있다.
일 구현예에서, 상기 단백질 절단 효소가 SbMV 단백질 절단 효소인 경우 분비 모듈의 표적 절단 서열은 서열번호 18의 핵산서열로 암호화될 수 있다.
일 구현예에서, 상기 단백질 절단 효소가 TVMV 단백질 절단 효소인 경우 분비 모듈의 표적 절단 서열은 서열번호 18의 핵산서열로 암호화될 수 있다.
일 구현예에서, 본 발명의 융합 단백질은 서열번호 20의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-PDGFR-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-tTA), 서열번호 21의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-PDGFR-SbMVpC-43LK-iLID-NESX2-SbMVpN-iLID-SbMVseq-tTA), 서열번호 22의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-PDGFR-TVMVpC-43LK-iLID-NESX2-TVMVpN-iLID-TVMVseq-tTA)에 의해 암호화될 수 있다.
일 구현예에서, 상기 페이로드에 이펙터 모듈을 추가로 포함하거나, 페이로드를 이펙터 모듈로 교체할 수 있으며, 이로 인해 청색광 및 화합물에 의해 표적 유전자의 발현을 이중으로 제어할 수 있다.
일 구현예에서, 분비 모듈의 페이로드가 이펙터 모듈로 교체된 경우 이펙터 모듈은 융합 단백질의 N-말단에서 C-말단 방향을 기준으로 단백질 절단 효소의 표적 절단 서열의 후단에 위치할 수 있다.
일 구현예에서, 분비 모듈이 이펙터 모듈을 포함하는 경우, 융합 단백질의 N-말단에서 C-말단 방향을 기준으로 단백질 절단 효소의 표적 절단 서열, 이펙터 모듈 및 페이로드의 순서로 순차적으로 포함할 수 있다.
일 구현예에서, 화합물은 테트라사이클린 유사체, 라파마이신 또는 라파로그일 수 있다.
일 구현예에서, 이펙터 모듈은 rtTA(reverse tetracycline-controlled transactivator)을 포함할 수 있으며 (표 3 참조), rtTA (TetON)는 서열번호 23의 핵산서열에 의해 암호화될 수 있다.
일 구현예에서, 상기 이펙터 모듈을 포함하는 융합 단백질은 광조사에 의해 자가 절단되어 이펙터 모듈을 포함하는 페이로드를 방출하며, 테트라사이클린 유사체 (예, 독시사이클린)에 의해 이펙터 모듈 내의 표적 유전자의 발현을 제어할 수 있다.
일 구현예에서, 이펙터 모듈로서 rtTA를 포함하는 융합 단백질은 서열번호 24의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-PDGFR-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-TetON)에 의해 암호화될 수 있다.
일 구현예에서, 이펙터 모듈은 rtTA의 TetR, FKBP, 단백질 절단 효소의 표적 절단 서열, 단백질 절단 효소, 단백질 절단 효소의 표적 절단 서열, FRB 및 rtTA의 VP16를 순차적으로 포함할 수 있으며, 이 경우, 본 발명의 융합 단백질은 앵커링 모듈; 제 1 단백질 절단 효소의 제 2 펩타이드, 링커, iLID, NES (X2), 제 1 단백질 절단 효소의 제 3 펩타이드 및 iLID를 순차적으로 포함하는 광 제어 모듈; 및 제 1 단백질 절단 효소의 표적 절단 서열, TetR, FKBP, 제 2 단백질 절단 효소의 표적 절단 서열, 제 2 단백질 절단 효소, 제 2 단백질 절단 효소의 표적 절단 서열, FRB 및 rtTA의 VP16를 순차적으로 포함하는 분비 모듈을 포함할 수 있다 (표 4 참조).
일 구현예에서, TetR은 서열번호 25의 핵산서열에 의해 암호화될 수 있고, FKBP는 서열번호 26의 핵산서열에 의해 암호화될 수 있으며, FRB는 서열번호 27의 핵산서열에 의해 암호화될 수 있고, VP16는 서열번호 28의 핵산서열에 의해 암호화될 수 있다.
일 구현예에서, 이펙터 모듈로서 rtTA의 TetR, FKBP, 단백질 절단 효소의 표적 절단 서열, 단백질 절단 효소, 단백질 절단 효소의 표적 절단 서열, FRB 및 rtTA의 VP16를 순차적으로 포함하는 상기 융합 단백질은 서열번호 29의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-PDGFR-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-TetR-FKBP-SbMVseq-SbMVp-SbMVseq-FRB-VP16)에 의해 암호화될 수 있다.
일 구현예에서, 상기 융합 단백질은 광조사에 의하여 자가 절단되어 이펙터 모듈을 포함하는 페이로드를 방출하며, 라파마이신 유사체에 의해 이펙터 모듈 내의 표적 유전자의 발현을 이중으로 제어할 수 있다.
일 구현예에서, 이펙터 모듈은 서열번호 30의 핵산서열에 의해 암호화되는 βArr2을 포함할 수 있으며, βArr2 및 제 2 펩타이드를 포함하는 것이 더욱 바람직하다.
일 구현예에서, 이펙터 모듈에 βArr2 및 제 2 펩타이드를 포함하는 상기 융합 단백질은 서열번호 31의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NTOM20-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 32의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NES-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 33의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NLS-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 34의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-PDGFR-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 35의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-H2B-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs) 또는 서열번호 36의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NTOM20-SbMVpC-43LK-iLID-NESX2-SbMVpN-iLID-SbMVseq-bArr2-TevCs-P2A-EGFP)에 의해 암호화될 수 있다.
일 구현예에서, 본 발명의 융합 단백질은 광 제어 모듈에 DRD2, 제 3 펩타이드 및 iLID를 포함할 수 있으며, DRD2는 서열번호 37의 핵산서열에 의해 암호화될 수 있고,
일 구현예에서, 본 발명의 융합 단백질은 분비 모듈에 표적 절단 서열, TetR 및 FKBP를 포함할 수 있다.
일 구현예에서, 본 발명의 융합 단백질은 페이로드에 FRB 및 VP16을 포함할 수 있다.
일 구현예에서, 상기 융합 단백질은 형광 단백질을 추가로 포함할 수 있으며, 형광 단백질은 녹색형광단백질(green fluorescent protein, GFP), 향상 녹색형광단백질(Enhanced Green Fluorescent Protein, EGFP), 황색형광단백질(yellow fluorescent protein, YFP), 적색형광단백질(red fluorescent protein, RFP), 주황형광단백질(orange fluorescent protein, OFP), 청록색형광단백질(cyan fluorescent protein, CFP), 청색형광단백질(blue fluorescent protein, BFP), 원적색형광단백질(far-red fluorescent protein) 또는 테트라시스테인 모티프(tetracystein motif)일 수 있다.
일 구현예에서, 상기 융합 단백질, 이의 변이체 또는 이들의 유사체에 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자가 추가로 접합(conjugate)될 수 있다 (Shoari et al., Pharmaceutics 13:1391, pp. 1-32 (2021) 참조).
본 발명에서, 용어 "펩타이드", "폴리펩타이드" 및 "단백질"은 서로 혼용될 수 있다.
본 발명에서 사용된 용어 "펩타이드"는 아미노산 중합체로서, 천연 아미노산 뿐 아니라, 비단백질성 아미노산도 구성요소로 포함할 수 있다.
본 발명에서 사용된, 용어 "변이체"는 기준 물질과 비교하였을 때 최소한 한개의 아미노산 차이(치환, 삽입 또는 결손)를 포함하는 대응하는 아미노산 서열을 말한다. 특정 구체예들에 있어서 "변이체"는 기준 서열과 비교하였을 때 높은 아미노산 서열 상동성(homology) 및/또는 보존적 아미노산 치환, 결손 및/또는 삽입을 가진다.
본 발명에서 사용된, 용어 "유사체"는 아미노산의 측쇄 또는 알파-아미노산 백본에 대하여 하나 이상의 다른 기능기로 치환된 유사체를 포함할 수 있다. 측쇄 또는 백본 개질화 펩타이드 유사체의 예로는 피롤리딘 고리가 하이드록시기로 치환된 하이드록시프롤린이나, N-메틸 글리신 "펩토이드"를 들 수 있으나, 이로 제한되지 않는다. 단백질 유사체의 종류에 대해서는 당업계에 공지되어 있다.
본 발명에 따른 펩타이드/단백질 변이체는 특정 아미노산 잔기 위치에서 아미노산 잔기가 보존적으로 치환된 변이체도 포함하는 의미로 해석된다.
본 발명에서 "보존적 치환"이란 1개 이상의 아미노산을 해당 펩타이드/단백질 변이체의 생물학적 또는 생화학적 기능의 손실을 야기하지 않는 유사한 생화학적 특성을 갖는 아미노산으로 치환하는 것을 포함하는 변이체의 변형을 의미한다. "보존적 아미노산 치환"은 아미노산 잔기를 유사한 측쇄를 갖는 아미노산 잔기로 대체시키는 치환이다. 유사한 측쇄를 갖는 아미노산 잔기 부류는 해당 기술분야에 규정되어 있으며, 잘 알려져 있다. 이들 부류는 염기성 측쇄를 갖는 아미노산 (예를 들어, 라이신, 아르기닌, 히스티딘), 산성 측쇄를 갖는 아미노산 (예를 들어, 아스파르트산, 글루탐산), 대전되지 않은 극성 측쇄를 갖는 아미노산 (예를 들어, 글리신, 아스파라진, 글루타민, 세린, 트레오닌, 티로신, 시스테인), 비-극성 측쇄를 갖는 아미노산 (예를 들어, 알라닌, 발린, 류신, 이소류신, 프롤린, 페닐알라닌, 메티오닌, 트립토판), 베타-분지된 측쇄를 갖는 아미노산(예를 들어, 트레오닌, 발린, 이소류신) 및 방향족 측쇄를 갖는 아미노산 (예를 들어, 티로신, 페닐알라닌, 트립토판, 히스티딘)을 포함한다.
본 발명에 따른 융합 단백질은 표준 합성 방법, 재조합 발현 시스템, 또는 임의의 다른 당해 분야의 방법에 의해 제조될 수 있다. 따라서, 본 발명에 따른 융합 단백질은, 예를 들어 하기를 포함하는 방법을 포함하는 다수의 방법으로 합성될 수 있다:
(a) 단백질을 고체상 또는 액체상 방법의 수단으로 단계적으로 또는 단편 조립에 의해 합성하고, 최종 단백질 생성물을 분리 및 정제하는 방법; 또는
(b) 단백질을 인코딩하는 핵산 작제물을 숙주세포 내에서 발현시키고, 발현 생성물을 숙주 세포 배양물로부터 회수하는 방법; 또는
(c) 단백질을 인코딩하는 핵산 작제물의 무세포 시험관 내 발현을 수행하고, 발현 생성물을 회수하는 방법; 또는
(a), (b) 및 (c)의 임의의 조합으로 단백질 단편을 수득하고, 이어서 단편을 연결시켜 단백질을 수득하고, 당해 단백질을 회수하는 방법.
일 측면에서, 본 발명은 본 발명의 융합 단백질을 암호화하는 핵산 또는 상기 핵산을 포함하는 플라스미드 벡터에 관한 것이다.
일 구현예에서, 본 발명의 융합 단백질을 암호화하는 플라스미드 벡터는 서열번호 20, 서열번호 21, 서열번호 22, 서열번호 24, 서열번호 29, 서열번호 31, 서열번호 32, 서열번호 33, 서열번호 34, 서열번호 35, 서열번호 36, 서열번호 38 또는 서열번호 39의 핵산서열을 포함할 수 있다.
일 측면에서, 본 발명은 본 발명의 융합 단백질, 이의 변이체 또는 이들의 유사체, 또는 이를 암호화하는 핵산 또는 상기 핵산을 포함하는 플라스미드 벡터를 포함하는 약물 전달체에 관한 것이다.
일 구현예에서, 약물 전달체는 상기 융합 단백질, 이의 변이체 또는 이들의 유사체에 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자가 결합된 복합체일 수 있다.
일 측면에서, 본 발명은 본 발명의 융합 단백질, 이의 변이체 또는 이들의 유사체, 또는 이를 암호화하는 핵산 또는 상기 핵산을 포함하는 플라스미드 벡터에 약물이 연결된 복합체를 유효성분으로 포함하는 약물 전달 시스템에 관한 것이다.
본 발명의 약물 전달 시스템의 융합 단백질, 이의 변이체 또는 이들의 유사체, 또는 이를 암호화하는 핵산 또는 상기 핵산을 포함하는 플라스미드 벡터와 약물은 생체 적합성 고분자를 매개로 또는 캐리어로 하여 결합될 수도 있다. 생체적합성 고분자는 생체조직 또는 혈액과 접촉하여 조직을 괴사시키거나 혈액을 응고시키지 않는 조직적합성(tissue compatibility) 및 항응혈성(blood compatibility)을 가지고 있는 고분자를 의미한다.
상기 생체적합성 고분자로서의 합성 중합체는 폴리에스테르, 폴리하이드 록시알카노에이트(PHAs), 폴리(α-하이드록시액시드), 폴리(β-하이드록시액시드), 폴리(3-하이드로식부티레이트-co-발러레이트; PHBV), 폴리(3-하이드록시프로프리오네이트; PHP), 폴리(3-하이드록시헥사노에이트; PHH), 폴리(4-하이드록시액시드), 폴리(4-하이드록시부티레이트), 폴리(4-하이드록시발러레이트), 폴리(4-하이드록시헥사노에이트), 폴리(에스테르아마이드), 폴리카프로락톤, 폴리락타이드, 폴리글리코라이드, 폴리(락타이드-co-글리코라이드; PLGA), 폴리디옥사논, 폴리오르토에스테르, 폴리언하이드라이드, 폴리(글리콜산-co-트리메틸렌카보네이트), 폴리포스포에스테르, 폴리포스포에스테르 우레탄, 폴리(아미노산), 폴리사이아노아크릴레이트, 폴리(트리메틸렌 카보네이트), 폴리(이미노카보네이트), 폴리(타이로신 카보네이트), 폴리카보네이트, 폴리(타이로신 아릴레이트), 폴리알킬렌 옥살레이트, 폴리포스파젠스, PHA-PEG, 에틸렌 비닐 알코올 코폴리머(EVOH), 폴리우레탄, 실리콘, 폴리에스테르, 폴리올레핀, 폴리이소부틸렌과 에틸렌-알파올레핀 공중합체, 스틸렌-이소브틸렌-스틸렌 트리블록 공중합체, 아크릴 중합체 및 공중합체, 비닐 할라이드 중합체 및 공중합체, 폴리비닐 클로라이드, 폴리비닐 에테르, 폴리비닐 메틸에테르, 폴리비닐리덴 할라이드, 폴리비닐리덴 플루오라이드, 폴리비닐리덴 클로라이드, 폴리플루오로알켄, 폴리퍼플루오로알켄, 폴리아크릴로니트릴, 폴리비닐 케톤, 폴리비닐 아로마틱스, 폴리스틸렌, 폴리비닐 에스테르, 폴리비닐 아세테이트, 에틸렌-메틸 메타크릴레이트 공중합체, 아크릴로니트릴-스틸렌 공중합체, ABS 수지와 에틸렌-비닐 아세테이트 공중합체, 폴리아마이드, 알키드 수지, 폴리옥시메틸렌, 폴리이미드, 폴리에테르, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리아크릴산-co-말레산 또는 폴리아미노아민이며, 천연 중합체는 키토산, 덱스트란, 셀룰로오스, 헤파린, 히알루론산, 알기네이트, 이눌린, 녹말 또는 글리코겐이다.
본 발명의 융합 단백질, 이의 변이체 또는 이들의 유사체, 또는 이를 암호화하는 핵산 또는 상기 핵산을 포함하는 플라스미드 벡터와 약물의 복합체에서, 약물은 비공유적으로 결합할 수도 있다. 예컨대 핵산에 인터컬레이션(intercalation)되어 효과를 발휘하는, 항암제 일종인 독소루비신과 같은 인터컬레이터제(intercalator agents)는 약물 전달 시스템의 세포 표적화 영역으로서 압타머를 사용할 경우에 압타머에 비공유적으로 인터컬레이션(intercalation) 방식으로 결합될 수 있다. 압타머는 올리고뉴클레오타이드 분자이기 때문에, 뉴클레오타이드 염기들의 염기 스태킹(base stacking)이 있으며, 이 염기 스태킹 사이에 약물이 인터컬레이션(intercalation) 방식으로 결합할 수 있게 된다.
본 발명의 융합 단백질, 이의 변이체 또는 이들의 유사체, 또는 이를 암호화하는 핵산 또는 상기 핵산을 포함하는 플라스미드 벡터와 약물의 복합체에서, 약물은 그것이 세포 내로 이동하여 효과를 발휘할 수 있는 약물이면 특별한 제한이 없다. 그러한 약물은 세포독성 항암제 등의 임의의 저분자 화합물로 된 약물, 재조합 단백질, siRNA 등의 임의의 바이오의약품일 수 있다. 또한 약물은 효능 면에서 항염증제, 진통제, 항관절염제, 진경제, 항우울증제, 항정신병약물, 신경안정제, 항불안제, 마약길항제, 항파킨스 질환 약물, 콜린성 아고니스트, 항암제, 혈관신생억제제, 면역억제제, 면역촉진제, 항바이러스제, 항생제, 식욕억제제, 진통제, 항콜린제, 항히스타민제, 항편두통제, 호르몬제, 관상혈관, 혈관 확장제, 피임약, 항혈전제, 이뇨제, 항고혈압제, 심혈관질환치료제, 조영제 등의 진단제 등일 수 있다.
또한, 약물은 유전자, 플라스미드 DNA, 안티센스 올리고뉴클레오티드, siRNA, 펩타이드, 리보자임, 바이러스 입자, 면역조절제, 단백질, 조영제 등일 수도 있다. 보다 구체적으로 약물은 망막모세포종 종양 서프레서 유전자의 변이체인 Rb94를 코딩하는 유전자, 종양 세포에서만 세포자멸을 유도하는 아폽틴을 코딩하는 유전자일 수 있고, 치료 표적이 되는 HER-2 등에 대한 안티센스 올리고뉴클레오티드(서열: 5'-TCC ATG GTG CTC ACT-3')수 있으며, MRI 조영제인 Gd-DTPA 물질 등의 진단 조영제일 수도 있다.
본 발명의 복합체는 약제학적으로 허용되는 담체를 포함하여 당업계에 공지된 통상의 방법으로 투여 경로에 따라 경구용 제형 또는 비경구용 제형의 약학적 조성물로 제조될 수 있다. 여기서 "약학적으로 허용가능한 담체"는 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다.
본 발명의 약학적 조성물은 생물학적 제제에 통상적으로 사용되는 담체, 희석제, 부형제 또는 둘 이상의 이들의 조합을 포함할 수 있다. 본 발명에서 사용되는 용어, "약학적으로 허용가능한"이란 상기 조성물에 노출되는 정상 세포나 인간에게 독성이 없는 특성을 나타내는 것을 의미한다. 상기 담체는 조성물을 생체 내 전달에 적합한 것이면 특별히 제한되지 않으며, 예를 들면, Merck Index, 13th ed., Merck & Co. Inc. 에 기재된 화합물, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주입용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(Mack Publishing Company, Easton PA, 18th, 1990)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.
일 구현예에서, 상기 약학적 조성물은 경구형 제형, 외용제, 좌제, 멸균 주사용액 및 분무제를 포함하는 군으로부터 선택되는 하나 이상의 제형일 수 있다.
본 발명의 조성물은 또한 생물학적 제제에 통상적으로 사용되는 담체, 희석제, 부형제 또는 둘 이상의 이들의 조합을 포함할 수 있다. 약학적으로 허용 가능한 담체는 조성물을 생체 내 전달에 적합한 것이면 특별히 제한되지 않으며, 예를 들면, Merck Index, 13th ed., Merck & Co. Inc. 에 기재된 화합물, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주이용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(Mack Publishing Company, Easton PA, 18th, 1990)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.
일 측면에서, 본 발명은 본 발명의 융합 단백질을 암호화하는 핵산을 포함하는 벡터 및 상기 벡터를 포함하는 숙주세포에 관한 것이다.
일 구현예에서, 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오 파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 상기 시그널 서열에는 숙주가 에스케리치아 속(Escherichia sp.) 박테리아인 경우에는 PhoA 시그널 서열, OmpA 시그널 서열 등이, 숙주가 바실러스속(Bacillus sp.) 박테리아인 경우에는 α-아밀라아제 시그널 서열, 서브틸리신 시그널 서열 등이, 숙주가 효모(yeast)인 경우에는 MFα 시그널 서열, SUC2 시그널 서열 등이, 숙주가 동물세포인 경우에는 인슐린 시그널 서열, α-인터페론 시그널 서열, 항체 분자 시그널 서열 등을 이용할 수 있으나, 이에 제한되지 않는다. 또한 벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택 마커를 포함할 수 있고, 복제 가능한 벡터인 경우 복제 기원을 포함한다. 예를 들어, 상기 벡터는 "플라스미드"이며, 환형의 이중 가닥 DNA 루프를 지칭하는 것으로서, 여기에 예컨대, 표준 분자 클로닝 기법에 의해 추가적인 DNA 세그먼트가 삽입될 수 있다.
상기 벡터는 각각 전기천공법 (electroporation), 리포펙션, 바이러스 벡터, 나노파티클 (nanoparticles) 뿐만 아니라, PTD (Protein translocation domain) 융합 단백질 방법 등을 통해 생체 내 또는 세포 내로 전달될 수 있다.
본 발명에서 용어, "벡터"는 핵산서열을 복제할 수 있는 세포로의 도입을 위해서 핵산서열을 삽입할 수 있는 전달체를 의미한다. 핵산서열은 외생 (exogenous) 또는 이종 (heterologous)일 수 있다. 벡터로서는 플라스미드, 코스미드 및 바이러스(예를 들면 박테리오파지)를 들 수 있으나, 이에 제한되지 않는다. 당업자는 표준적인 재조합 기술에 의해 벡터를 구축할 수 있다(Maniatis, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; 및 Ausubel et al., In: Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994 등).
일 구현예에서, 상기 벡터의 제작 시, 상기 융합 단백질을 생산하고자 하는 숙주세포의 종류에 따라 프로모터(promoter), 종결자(terminator), 인핸서(enhancer) 등과 같은 발현조절 서열, 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다.
일 구현예에서, 숙주세포는 에스케리치아 속(Escehreichia sp.), 살모넬라 속(Salmonellae sp.), 예르시니아 속(Yersinia sp.), 쉬겔라 속(Shigella sp.), 엔테로박터 속(Enterobacter sp.), 슈도모나스 속(Pseudomonas sp.), 프로테우스 속(Proteus sp.) 또는 클레브시엘라 속(Klebsiella sp.)의 박테리아일 수 있으며, 에스케리치아 속의 Escherichia coli인 것이 융합 단백질의 대량 생산에 더욱 바람직하다.
일 측면에서, 본 발명은 본 발명의 융합 단백질을 하나 이상 포함하는 페이로드의 방출 제어 키트에 관한 것이다.
일 구현예에서, 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자일 수 있다.
일 구현예에서, 상기 키트는 앵커링 모듈, 제 1 광 제어 모듈 및 제 1 분비 모듈을 포함하는 제 1 융합 단백질; 및 제 2 광 제어 모듈 및 제 2 분비 모듈을 포함하는 제 2 융합 단백질을 포함할 수 있으며,
상기에서, 제 1 광 제어 모듈은:
a) 광에 반응하여 이합체를 형성하여 단백질 절단 효소 활성을 갖는 제 2 펩타이드 및 제 3 펩타이드를 포함하고, 제 2 펩타이드는 광 조절 모듈 내에서 N-말단에서 C-말단 방향을 기준으로 제 3 펩타이드의 전단에 위치하며,
b) 제 2 펩타이드 및 제 3 펩타이드는 단백질 절단 효소의 절편이고, 제 2 펩타이드는 단백질 절단 효소의 N-말단에서 C-말단 방향을 기준으로 후단에 위치한 절편이며, 제 3 펩타이드는 전단에 위치한 절편이고;
상기에서, 제 2 광 제어 모듈은 DRD2, 제 3 펩타이드 및 iLID를 포함하며;
상기에서, 제 1 분비 모듈은 단백질 절단 효소의 표적 절단 서열, 이펙터 모듈(effector module)을 포함하고; 및
상기에서, 제 2 분비 모듈은 단백질 절단 효소의 표적 절단 서열 및 페이로드를 포함할 수 있다 (표 2 참조).
일 구현예에서, 본 발명의 키트는 화합물 및 광조사에 의해 광유전학적 및 화학유전학적으로 제 2 분비 모듈의 페이로드 방출을 제어할 수 있다.
일 구현예에서, 이펙터 모듈은 βArr2 및 제 2 펩타이드를 포함할 수 있다.
일 구현예에서, 상기 키트는 광조사에 의해 제 1 융합 단백질이 자가 절단되어 이펙터 모듈을 방출하고; 및 GPCR 리간드에 의해 제 2 융합 단백질이 자가 절단되어 제 2 융합 단백질의 페이로드가 방출되어, 목적 페이로드의 방출이 이중으로 제어될 수 있다.
일 구현예에서, 상기 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자일 수 있다.
일 구현예에서, 상기 방출된 이펙터 모듈의 제 2 펩타이드가 GPCR 리간드에 의해 제 2 융합 단백질의 제 3 펩타이드와 결합하여 제 2 융합 단백질이 자가 절단될 수 있다.
일 구현예에서, 상기 키트는 제 2 융합 단백질의 페이로드가 이펙터 모듈로 교체되거나 이펙터 모듈을 추가로 포함할 수 있으며, 상기 이펙터 모듈은 TetR 및 FKBP를 포함할 수 있다.
일 구현예에서, 상기 키트는 앵커링 모듈, 및 이펙터 모듈을 포함하는 페이로드를 포함하는 제 3 융합 단백질을 추가로 포함할 수 있으며, 이펙터 모듈은 FRB 및 VP16를 포함할 수 있다 (표 5 참조).
일 구현예에서, 상기 키트는 제 1 앵커링 모듈, 제 1 광 제어 모듈 및 제 1 분비 모듈을 포함하는 제 1 융합 단백질; 제 2 광 제어 모듈 및 제 2 분비 모듈을 포함하는 제 2 융합 단백질; 및 제 2 앵커링 모듈 및 페이로드를 포함하는 제 3 융합 단백질을 포함할 수 있으며,
제 1 광 제어 모듈에 제 2 펩타이드, 링커, iLID, NES (X2), 제 3 펩타이드 및 iLID를 포함할 수 있고,
제 1 분비 모듈은 단백질 절단 효소의 표적 절단 서열 및 이펙터 모듈을 포함할 수 있으며, 상기 이펙터 모듈은 βArr2 및 제 2 펩타이드를 포함할 수 있고,
제 2 광 제어 모듈은 DRD2, 제 3 펩타이드 및 iLID를 포함할 수 있으며,
제 2 분비 모듈은 단백질 절단 효소의 표적 절단 서열, TetR 및 FKBP를 포함할 수 있고, 및
페이로드는 이펙터 모듈로서 FRB 및 VP16을 포함할 수 있다.
일 구현예에서, 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자를 추가로 포함할 수 있다.
일 구현예에서, 상기 키트는 광조사에 의해 제 1 융합 단백질이 자가 절단되어 이펙터 모듈을 방출하고; GPCR 리간드에 의해 제 2 융합 단백질이 자가 절단되어 TetR-FKBP가 방출되며; 및 라파마이신에 의해 FKBP가 제 3 융합 단백질의 FRB와 결합함으로써, 목적으로 하는 페이로드의 방출이 삼중으로 제어될 수 있다.
일 측면에서, 본 발명은 본 발명의 융합 단백질을 암호화하는 플라스미드 벡터를 하나 이상 포함하는 페이로드의 방출 제어 키트에 관한 것이다.
일 구현예에서, 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자일 수 있다.
일 구현예에서, 상기 키트는 제 1 펩타이드를 포함하는 앵커링 모듈, 제 1 광 제어 모듈 및 제 1 분비 모듈을 포함하는 제 1 융합 단백질을 암호화하는 제 1 플라스미드 벡터; 및 제 2 광 제어 모듈 및 제 2 분비 모듈을 포함하는 제 2 융합 단백질을 암호화하는 제 2 플라스미드 벡터를 포함할 수 있으며,
상기에서, 제 1 광 제어 모듈은:
a) 광에 반응하여 이합체를 형성하여 단백질 절단 효소 활성을 갖는 제 2 펩타이드 및 제 3 펩타이드를 포함하고, 제 2 펩타이드는 광 조절 모듈 내에서 N-말단에서 C-말단 방향을 기준으로 제 3 펩타이드의 전단에 위치하며,
b) 제 2 펩타이드 및 제 3 펩타이드는 단백질 절단 효소의 절편이고, 제 2 펩타이드는 단백질 절단 효소의 N-말단에서 C-말단 방향을 기준으로 후단에 위치한 절편이며, 제 3 펩타이드는 전단에 위치한 절편이고;
상기에서, 제 2 광 제어 모듈은 DRD2, 제 3 펩타이드 및 iLID를 포함하며;
상기에서, 제 1 분비 모듈은 단백질 절단 효소의 표적 절단 서열, 이펙터 모듈(effector module)을 포함하고; 및
상기에서, 제 2 분비 모듈은 단백질 절단 효소의 표적 절단 서열 및 페이로드를 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 제 1 펩타이드를 암호화하는 서열번호 1의 핵산서열을 포함하는 핵산, 서열번호 2의 핵산서열을 포함하는 핵산, 서열번호 3의 핵산서열을 포함하는 핵산, 서열번호 4의 핵산서열을 포함하는 핵산, 서열번호 5의 핵산서열을 포함하는 핵산의 핵산서열 및 이들의 조합으로 이루어진 군으로부터 선택되는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 제 2 펩타이드를 암호화하는 서열번호 6의 핵산서열을 포함하는 핵산, 서열번호 7의 핵산서열을 포함하는 핵산 또는 서열번호 8의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 제 3 펩타이드를 암호화하는 서열번호 9의 핵산서열을 포함하는 핵산, 서열번호 10의 핵산서열을 포함하는 핵산 또는 서열번호 11의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 링커를 암호화하는 서열번호 12의 핵산서열을 포함하는 핵산; iLID를 암호화하는 서열번호 13의 핵산서열을 포함하는 핵산; NES를 암호화하는 서열번호 15의 핵산서열을 포함하는 핵산; 또는 NES X2 (2 반복 NES)를 암호화하는 서열번호 16의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 표적 절단 서열을 암호화하는 서열번호 17의 핵산서열을 포함하는 핵산 또는 서열번호 18의 핵산서열을 포함하는 핵산 또는 서열번호 19의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 βArr2을 암호화하는 서열번호 30의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 2 플라스미드 벡터는 DRD2를 암호화하는 서열번호 37의 핵산서열을 포함하는 핵산; 제 3 펩타이드를 암호화하는 서열번호 9의 핵산서열을 포함하는 핵산, 서열번호 10의 핵산서열을 포함하는 핵산 또는 서열번호 11의 핵산서열을 포함하는 핵산; 또는 iLID를 암호화하는 서열번호 13의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 2 플라스미드 벡터는 표적 절단 서열을 암호화하는 서열번호 17의 핵산서열을 포함하는 핵산 또는 서열번호 18의 핵산서열을 포함하는 핵산 또는 서열번호 19의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 2 플라스미드 벡터는 TetR을 암호화하는 서열번호 25의 핵산서열을 포함하는 핵산 또는 FKBP을 암호화하는 서열번호 26의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 서열번호 31, 서열번호 32, 서열번호 33, 서열번호 34, 서열번호 35 또는 서열번호 36의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 2 플라스미드 벡터는 서열번호 38의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 본 발명의 키트는 화합물 및 광조사에 의해 광유전학적 및 화학유전학적으로 제 2 분비 모듈의 페이로드 방출을 제어할 수 있다.
일 구현예에서, 이펙터 모듈은 βArr2 및 제 2 펩타이드를 포함할 수 있다.
일 구현예에서, 상기 키트는 세포 내에서 발현 후, 광조사에 의해 제 1 융합 단백질이 자가 절단되어 이펙터 모듈을 방출하고; 및 GPCR 리간드에 의해 제 2 융합 단백질이 자가 절단되어 제 2 융합 단백질의 페이로드가 방출되어, 목적 페이로드의 방출이 이중으로 제어될 수 있다.
일 구현예에서, 상기 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자일 수 있다.
일 구현예에서, 상기 방출된 이펙터 모듈의 제 2 펩타이드가 GPCR 리간드에 의해 제 2 융합 단백질의 제 3 펩타이드와 결합하여 제 2 융합 단백질이 자가 절단될 수 있다.
일 구현예에서, 상기 키트의 제 2 융합 단백질의 페이로드가 이펙터 모듈로 교체되거나 이펙터 모듈을 추가로 포함할 수 있으며, 상기 이펙터 모듈은 TetR 및 FKBP를 포함할 수 있다.
일 구현예에서, 상기 키트는 앵커링 모듈, 및 이펙터 모듈을 포함하는 페이로드를 포함하는 제 3 융합 단백질을 암호화하는 제 3 플라스미드 벡터를 추가로 포함할 수 있으며, 이펙터 모듈은 FRB 및 VP16를 포함할 수 있다.
일 구현예에서, 제 3 플라스미드 벡터는 FRB를 암호화하는 서열번호 27의 핵산서열을 포함하는 핵산 또는 VP16을 암호화하는 서열번호 28의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 3 플라스미드 벡터는 서열번호 39의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 상기 키트는 세포 내에서 발현 후, 광조사에 의해 제 1 융합 단백질이 자가 절단되어 이펙터 모듈을 방출하고; GPCR 리간드에 의해 제 2 융합 단백질이 자가 절단되어 TetR-FKBP가 방출되며; 및 라파마이신에 의해 FKBP가 제 3 융합 단백질의 FRB와 결합함으로써, 목적으로 하는 페이로드의 방출이 삼중으로 제어될 수 있다.
일 측면에서, 본 발명은 본 발명의 융합 단백질을 하나 이상 포함하는 유전자 발현 또는 단백질 활성 제어 키트에 관한 것이다.
일 구현예에서, 본 발명의 키트는 화합물 및 광조사에 의해 광유전학적 및 화학유전학적으로 유전자 발현 또는 단백질 활성을 제어할 수 있다.
일 구현예에서, 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자일 수 있다.
일 구현예에서, 상기 키트는 앵커링 모듈, 제 1 광 제어 모듈 및 제 1 분비 모듈을 포함하는 제 1 융합 단백질; 및 제 2 광 제어 모듈 및 제 2 분비 모듈을 포함하는 제 2 융합 단백질을 포함할 수 있으며,
상기에서, 제 1 광 제어 모듈은:
a) 광에 반응하여 이합체를 형성하여 단백질 절단 효소 활성을 갖는 제 2 펩타이드 및 제 3 펩타이드를 포함하고, 제 2 펩타이드는 광 조절 모듈 내에서 N-말단에서 C-말단 방향을 기준으로 제 3 펩타이드의 전단에 위치하며,
b) 제 2 펩타이드 및 제 3 펩타이드는 단백질 절단 효소의 절편이고, 제 2 펩타이드는 단백질 절단 효소의 N-말단에서 C-말단 방향을 기준으로 후단에 위치한 절편이며, 제 3 펩타이드는 전단에 위치한 절편이고;
상기에서, 제 2 광 제어 모듈은 DRD2, 제 3 펩타이드 및 iLID를 포함하며;
상기에서, 제 1 분비 모듈은 단백질 절단 효소의 표적 절단 서열, 이펙터 모듈(effector module)을 포함하고; 및
상기에서, 제 2 분비 모듈은 단백질 절단 효소의 표적 절단 서열 및 페이로드를 포함할 수 있다.
일 구현예에서, 이펙터 모듈은 βArr2 및 제 2 펩타이드를 포함할 수 있다.
일 구현예에서, 상기 키트는 광조사에 의해 제 1 융합 단백질이 자가 절단되어 이펙터 모듈을 방출하고; 및 GPCR 리간드에 의해 제 2 융합 단백질이 자가 절단되어 제 2 융합 단백질의 페이로드가 방출되어, 표적 유전자의 발현이 이중으로 제어될 수 있다.
일 구현예에서, 상기 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자일 수 있다.
일 구현예에서, 상기 방출된 이펙터 모듈의 제 2 펩타이드가 GPCR 리간드에 의해 제 2 융합 단백질의 제 3 펩타이드와 결합하여 제 2 융합 단백질이 자가 절단될 수 있다.
일 구현예에서, 제 1 융합 단백질은 서열번호 31의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NTOM20-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 32의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NES-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 33의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NLS-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 34의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-PDGFR-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 35의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-H2B-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs) 또는 서열번호 36의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NTOM20-SbMVpC-43LK-iLID-NESX2-SbMVpN-iLID-SbMVseq-bArr2-TevCs-P2A-EGFP)에 의해 암호화될 수 있으며; 및 제 2 융합 단백질은 서열번호 38의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-DRD2-V2tail-TevN-ILID-TEVseq-TetR-FKBP)에 의해 암호화될 수 있다.
일 구현예에서, 상기 키트는 제 2 융합 단백질의 페이로드가 이펙터 모듈로 교체되거나 이펙터 모듈을 추가로 포함할 수 있으며, 상기 이펙터 모듈은 이펙터 모듈은 TetR 및 FKBP를 포함할 수 있다.
일 구현예에서, 상기 키트는 앵커링 모듈 및 페이로드를 포함하는 제 3 융합 단백질을 추가로 포함할 수 있으며, 상기 페이로드는 이펙터 모듈로서 FRB 및 VP16를 포함할 수 있다.
일 구현예에서, 상기 키트는 제 1 앵커링 모듈, 제 1 광 제어 모듈 및 제 1 분비 모듈을 포함하는 제 1 융합 단백질; 제 2 광 제어 모듈 및 제 2 분비 모듈을 포함하는 제 2 융합 단백질; 및 제 2 앵커링 모듈 및 페이로드를 포함하는 제 3 융합 단백질을 포함할 수 있으며,
제 1 광 제어 모듈에 제 2 펩타이드, 링커, iLID, NES (X2), 제 3 펩타이드 및 iLID를 포함할 수 있고,
제 1 분비 모듈은 단백질 절단 효소의 표적 절단 서열 및 이펙터 모듈을 포함할 수 있으며, 상기 이펙터 모듈은 βArr2 및 제 2 펩타이드를 포함할 수 있고,
제 2 광 제어 모듈은 DRD2, 제 3 펩타이드 및 iLID를 포함할 수 있으며,
제 2 분비 모듈은 단백질 절단 효소의 표적 절단 서열, TetR 및 FKBP를 포함할 수 있고, 및
페이로드는 이펙터 모듈로서 FRB 및 VP16을 포함할 수 있다.
일 구현예에서, 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자를 추가로 포함할 수 있다.
일 구현예에서, 상기 키트는 광조사에 의해 제 1 융합 단백질이 자가 절단되어 이펙터 모듈을 방출하고; GPCR 리간드에 의해 제 2 융합 단백질이 자가 절단되어 TetR-FKBP가 방출되며; 및 라파마이신에 의해 FKBP가 제 3 융합 단백질의 페이로드의 FRB와 결합함으로써, 표적 유전자의 발현이 삼중으로 제어될 수 있다.
일 구현예에서, 제 1 융합 단백질은 서열번호 31의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NTOM20-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 32의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NES-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 33의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NLS-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 34의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-PDGFR-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs), 서열번호 35의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-H2B-EGFP-TevCs-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevCs) 또는 서열번호 36의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NTOM20-SbMVpC-43LK-iLID-NESX2-SbMVpN-iLID-SbMVseq-bArr2-TevCs-P2A-EGFP)에 의해 암호화될 수 있으며; 제 2 융합 단백질은 서열번호 38의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-DRD2-V2tail-TevN-ILID-TEVseq-TetR-FKBP)에 의해 암호화될 수 있고; 및 제 3 융합 단백질은 서열번호 39의 핵산서열을 포함하는 플라스미드 벡터 (pCMV-NLS-FRB-VP16)에 의해 암호화될 수 있다.
일 측면에서, 본 발명은 본 발명의 융합 단백질을 암호화하는 플라스미드 벡터를 하나 이상 포함하는 유전자 발현 또는 단백질 활성 제어 키트에 관한 것이다.
일 구현예에서, 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자일 수 있다.
일 구현예에서, 상기 키트는 제 1 펩타이드를 포함하는 앵커링 모듈, 제 1 광 제어 모듈 및 제 1 분비 모듈을 포함하는 제 1 융합 단백질을 암호화하는 제 1 플라스미드 벡터; 및 제 2 광 제어 모듈 및 제 2 분비 모듈을 포함하는 제 2 융합 단백질을 암호화하는 제 2 플라스미드 벡터를 포함할 수 있으며,
상기에서, 제 1 광 제어 모듈은:
a) 광에 반응하여 이합체를 형성하여 단백질 절단 효소 활성을 갖는 제 2 펩타이드 및 제 3 펩타이드를 포함하고, 제 2 펩타이드는 광 조절 모듈 내에서 N-말단에서 C-말단 방향을 기준으로 제 3 펩타이드의 전단에 위치하며,
b) 제 2 펩타이드 및 제 3 펩타이드는 단백질 절단 효소의 절편이고, 제 2 펩타이드는 단백질 절단 효소의 N-말단에서 C-말단 방향을 기준으로 후단에 위치한 절편이며, 제 3 펩타이드는 전단에 위치한 절편이고;
상기에서, 제 2 광 제어 모듈은 DRD2, 제 3 펩타이드 및 iLID를 포함하며;
상기에서, 제 1 분비 모듈은 단백질 절단 효소의 표적 절단 서열, 이펙터 모듈(effector module)을 포함하고; 및
상기에서, 제 2 분비 모듈은 단백질 절단 효소의 표적 절단 서열 및 페이로드를 포함할 수 있다.
일 구현예에서, 제 1 펩타이드를 포함하는 제 1 플라스미드 벡터는 서열번호 1의 핵산서열을 포함하는 핵산, 서열번호 2의 핵산서열을 포함하는 핵산, 서열번호 3의 핵산서열을 포함하는 핵산, 서열번호 4의 핵산서열을 포함하는 핵산, 서열번호 5의 핵산서열을 포함하는 핵산 및 이들의 조합으로 이루어진 군으로부터 선택되는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 제 2 펩타이드를 암호화하는 서열번호 6의 핵산서열을 포함하는 핵산, 서열번호 7의 핵산서열을 포함하는 핵산 또는 서열번호 8의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 제 3 펩타이드를 암호화하는 서열번호 9의 핵산서열을 포함하는 핵산, 서열번호 10의 핵산서열을 포함하는 핵산 또는 서열번호 11의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 링커를 암호화하는 서열번호 12의 핵산서열을 포함하는 핵산; iLID를 암호화하는 서열번호 13의 핵산서열을 포함하는 핵산; NES를 암호화하는 서열번호 15의 핵산서열을 포함하는 핵산; 또는 NES X2 (2 반복 NES)를 암호화하는 서열번호 16의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 표적 절단 서열을 암호화하는 서열번호 17의 핵산서열을 포함하는 핵산 또는 서열번호 18의 핵산서열을 포함하는 핵산 또는 서열번호 19의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 βArr2을 암호화하는 서열번호 30의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 2 플라스미드 벡터는 DRD2를 암호화하는 서열번호 37의 핵산서열을 포함하는 핵산; 제 3 펩타이드를 암호화하는 서열번호 9의 핵산서열을 포함하는 핵산, 서열번호 10의 핵산서열을 포함하는 핵산 또는 서열번호 11의 핵산서열을 포함하는 핵산; 또는 iLID를 암호화하는 서열번호 13의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 2 플라스미드 벡터는 표적 절단 서열을 암호화하는 서열번호 17의 핵산서열을 포함하는 핵산 또는 서열번호 18의 핵산서열을 포함하는 핵산 또는 서열번호 19의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 2 플라스미드 벡터는 TetR을 암호화하는 서열번호 25의 핵산서열을 포함하는 핵산 또는 FKBP을 암호화하는 서열번호 26의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 1 플라스미드 벡터는 서열번호 31, 서열번호 32, 서열번호 33, 서열번호 34, 서열번호 35 또는 서열번호 36의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 2 플라스미드 벡터는 서열번호 38의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 본 발명의 키트는 화합물 및 광조사에 의해 광유전학적 및 화학유전학적으로 제 2 분비 모듈의 페이로드 방출을 제어하여 표적 유전자의 발현 또는 단백질의 활성을 제어할 수 있다.
일 구현예에서, 이펙터 모듈은 βArr2 및 제 2 펩타이드를 포함할 수 있다.
일 구현예에서, 상기 키트는 세포 내에서 발현 후, 광조사에 의해 제 1 융합 단백질이 자가 절단되어 이펙터 모듈을 방출하고; 및 GPCR 리간드에 의해 제 2 융합 단백질이 자가 절단되어 제 2 융합 단백질의 페이로드가 방출되어, 목적 유전자 발현 또는 단백질 활성이 이중으로 제어될 수 있다.
일 구현예에서, 상기 페이로드는 RNA, DNA, 항체, 이펙터, 약물, 전구약물, 독소, 펩타이드 또는 전달 분자일 수 있다.
일 구현예에서, 상기 방출된 이펙터 모듈의 제 2 펩타이드가 GPCR 리간드에 의해 제 2 융합 단백질의 제 3 펩타이드와 결합하여 제 2 융합 단백질이 자가 절단될 수 있다.
일 구현예에서, 상기 키트의 제 2 융합 단백질의 페이로드가 이펙터 모듈로 교체되거나 이펙터 모듈을 추가로 포함할 수 있으며, 상기 이펙터 모듈은 TetR 및 FKBP를 포함할 수 있다.
일 구현예에서, 상기 키트는 앵커링 모듈, 및 이펙터 모듈을 포함하는 페이로드를 포함하는 제 3 융합 단백질을 암호화하는 제 3 플라스미드 벡터를 추가로 포함할 수 있으며, 이펙터 모듈은 FRB 및 VP16를 포함할 수 있다.
일 구현예에서, 제 3 플라스미드 벡터는 FRB를 암호화하는 서열번호 27의 핵산서열을 포함하는 핵산 또는 VP16을 암호화하는 서열번호 28의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 제 3 플라스미드 벡터는 서열번호 39의 핵산서열을 포함하는 핵산을 포함할 수 있다.
일 구현예에서, 상기 키트는 세포 내에서 발현 후, 광조사에 의해 제 1 융합 단백질이 자가 절단되어 이펙터 모듈을 방출하고; GPCR 리간드에 의해 제 2 융합 단백질이 자가 절단되어 TetR-FKBP가 방출되며; 및 라파마이신에 의해 FKBP가 제 3 융합 단백질의 FRB와 결합함으로써, 목적으로 하는 유전자 발현 또는 단백질 활성이 삼중으로 제어될 수 있다.
일 측면에서, 본 발명은 본 발명의 융합 단백질의 유전자 발현 또는 단백질의 활성 제어 용도에 관한 것이다.
일 측면에서, 본 발명은 본 발명의 융합 단백질을 이용하여 유전자의 발현 또는 단백질의 활성을 제어하는 방법에 관한 것이다.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.
실시예 1. 광-반응성 자가 절단 시스템 제작
1-1. 프로토타입 설계
단일 구조로 이루어진 단백 절단표소(protease)-기반 광 절단 가능한(photocleavable) 스위치를 제작하기 위해, 멤브레인-결박된(membrane-tethered) TEVp를 이의 청색광-게이트(blue-light-gated) 기질 및 트랜스 활성화 도메인 (transactivation domain, tTA)과 인테그레이션한 컨스트럭트를 제작하였으며 (도 1a 및 b), 청색광-게이트 기질은 TEVp 기질 (ENLYFQG)을 iLID(improved light-induced dimer) 포토센서의 말단에 융합하여 생성하였다 (Lee, D. et al. Nat. Methods 14, 495-503 (2017)). 인서트는 KOD Hot Start DNA Polymerase (Novagen)를 이용하여 기존의 PCR로 증폭하였고 전기영동 및 겔 추출 (HiYield Plus, RBC)로 정제하였다. 인서트 및 백본 벡터를 제한효소 (NEB)로 절단하고, 절단된 백본 벡터 및 인서트를 T4 라이게이즈 (NEB)로 라이게이션한 뒤 DH5α 컴피턴트 세포 (Enzynomics)에 트랜스포메이션하였다. 또한, 다중 인서트 단편이 포함된 복잡한 벡터를 빠르게 클로닝하기 위해 오버랩 클로닝을 수행하였다. 이를 위해, 다중 DNA 단편 및 벡본 벡터가 양 말단에 15bp의 중복 서열을 포함하도록 설계된 프라이머 세트를 이용하여 PCR로 증폭한 뒤, Overlap Cloner DNA Cloning Kit (Elpisbio)를 이용하여 다중 DNA 단편 및 백본을 37℃에서 1 h 동안 라이게이션하였다. 제작된 모든 플라스미드 서열은 생어 시퀀싱(Sanger sequencing) (Cosmo Genetech, Bionics)으로 확인하였으며, 확인된 플라스미드를 midi prep scale kit (Macherey-Nagel)를 이용하여 정제하였다. 이렇게 제작된 플라스미드들의 광-의존성 단백질 분해 효율을 측정하기 위해, HEK293T 세포에서 SEAP(secreted alkaline phosphatase) 리포터 유전자 분석을 수행하였다. 이를 위해, 충분히 배양한 HEK293T 세포에 0.25% trypsin EDTA 용액을 처리하여 배양접시에서 분리시키고 단일세포로 분리한 뒤, 24웰 플레이트 기준으로 105개씩 분주하고 24 시간 뒤 jetOptimus reagent를 이용하여 제작된 플라스미드들을 각각 트랜스펙션하였다. 이 후, 470nm의 blue LED 패널 (30W 771pcs, GreenergyStar)가 설치된 항온항습기에 넣어 플라스미드가 발현된 세포에 청색광을 빛은 2초간 켜지고 28초간 꺼지는 반복주기로 목표한 시간 동안 조사하였다. 광 자극을 준 시점으로부터 24시간 뒤 모든 샘플의 세포배양액을 정량만큼 수집하여 원심분리로 침전물을 제거한 뒤, 1시간 동안 60°C의 열을 가하여 비특이적 인산화 효소를 비활성화시키고, SEAP 기질을 첨가하여 각 샘플 배양액의 화학발광 정도를 마이크로 플레이트 흡광도 리더기 (TECAN infinite F50) (흡수 파장 405nm)로 측정하였다.
그 결과, 단순하게 TEVp 및 이의 광-게이트 기질을 단일 사슬 서열로 연결하는 것은 광-의존적 SEAP 발현을 나타내지 않았다 (도 1b 및 c의 상단 패널). 이에, N-말단 (아미노산 (aa) 1-118) 및 C-말단 (aa 119-218)으로 분할한 단편을 역순으로 포함하는 순환치환(circularly permuted) TEV 단백질 절단 효소 (cpTEVp)를 도입한 경우 (도 1b의 하단 패널), cpTEVp는 TEVp보다 낮은 단백 절단 활성을 나타냈지만, 광-의존적 유전자 발현을 나타내 (도 1c 하단 패널), 광유전적 제어를 통한 단백질 절단/분해 활성 조절 가능성을 나타냈다. 이에, 이 후에 cpTEVp 스위치를 최적화하기 전에, 케이지 효과(caging effect)의 부족이 iLID 내의 기질 펩타이드 국소화로 인한 것이 아님을 확인하기 위해, 광-게이트 기질인 TEVp 기질 부위에서 부위 특이적 돌연변이(site-directed mutagenesis)를 유도하여 확인하였다 (도 1d 및 e).
1-2. 시스템 최적화 및 LAUNCHER 제작
단편의 불충분한 입체 접근성(steric accessibility)이 cpTEVp의 효과적인 시스-상보성(complementation)을 방해할 것이기 때문에, cpTEVp의 분할 단편을 연결하는 연성(flexible) 펩타이드 링커를 추가하여 이의 길이에 따른 cpTEVp의 단백분해 활성을 확인하였다 (도 2a). 그 결과, 25개의 아미노산 연성 링커 (GGGGSS Ⅹ 5)를 가진 변이체는 그렇지 않은 경우에 비해 더 높은 (19.4-배) 단백 절단 활성을 나타냈다 (도 2b). 다음으로, 크기 조정이 가능한 광-조절 링커를 개발하기 위해, 추가적인 iLID 및 NES(nuclear export sequence/nuclear export signal)를 TEVp 단편들 사이에 삽입하였다 (도 2c 및 d). 이중 포토센서 및 모듈 간 링커의 긴밀한 조정이 근접-의존적인 방식으로 cpTEVp 활성의 차등 전환을 생성할 것으로 예상하여 (도 2c), 두 개의 iLID 및 TEVp 단편을 연결하는 모듈 간 링커 (제 1 링커: 5, 10, 18, 23 및 28 aa; 및 제 2 링커: 0, 5, 7 및 12 aa)의 사이즈에 따른 cpTEVp 활성을 조사한 결과 (도 2e), 제 1 링커가 길수록, 제 2 링커가 짧을수록 청색광 조사에 의한 cpTEVp 활성이 증가하는 것으로 나타났다 (도 2f 및 g). 더욱 최적화하기 위해, 제 2링커의 길이를 0으로 설정하고 제 1 링커의 사이즈를 다양하게 변경한 변이체들 (5, 10, 18, 23, 28, 33, 38, 43 및 48 aa)을 제작하여 단백 절단 활성을 스크리닝하였다 (도 2h). 그 결과, 중간 크기의 제 1 링커 (23-38 aa)가 cpTEVp 구성의 광유전적 조절에 최적임을 시사하는 단백 절단 Goldilocks zone을 나타냈다 (도 2h, 도 3a 및 b). 또한, 다양한 길이 (23, 28, 33 및 38 aa)의 제 1 링커 및 직렬(tandem) NES (0-3)의 2차원 스크리닝을 통해, 38-aa 링커 및 2개의 NES를 가진 변이체가 가장 높은 광-의존적 유전자 발현을 나타냈다 (도 2i 및 도 3c). 아울러, 추가적인 NES 삽입 및 P1¢ 기질 부위의 aa 치환이 cpTEVp 효율에 영향을 줄 수 있으므로, 제 1 링커의 길이를 변경하거나 P1¢aa를 치환하여 변이체를 조정한 결과, 43 aa의 제 1 링커, 0 aa의 제 2 링커, 2개의 NES 및 P1¢ 부위가 글라이신인 변이체가 가장 높은 cpTEVp 효율을 가지는 것으로 나타나, 이를 LAUNCHER(Light-Assisted UNcaging switCH for Endoproteolytic Release) 1.0으로 명명하였다 (도 2j). 이렇게 개발된 LAUNCHER는 세포 소기관 표적화 서열 (제 1 펩타이드)를 포함하는 앵커링 모듈; 단백질 절단 효소의 C-말단 절편 (제 2 펩타이드), 최적화 링커, iLID, NES, NES, 단백질 절단 효소의 N-말단 절편 (제 3 펩타이드) 및 iLID를 순차적으로 포함하는 광 제어 모듈; 및 상기 단백질 절단 효소의 표적 절단 서열 및 페이로드를 포함하는 분비 모듈을 포함한다 (표 1).
모듈명 서열번호
앵커링 모듈 제 1 펩타이드 NTOM20 1
NES 2
NLS 3
PDGFR 4
H2B 5
광 제어 모듈 제 2 펩타이드 TevC 6
SbMVC 7
TVMVC 8
링커 12
iLID 13
NES 아미노산 14
NES 15
NES X 2 16
제 3 펩타이드 TevN 9
SbMVN 10
TVMVN 11
iLID 13
분비 모듈 표적 절단 서열 TEVseq 17
SbMVseq 18
TVMVseq 19
페이로드 tTA(TRE-VP16)
실시예 2. LAUNCHER의 특성 확인
2-1. 광학 유도 프로파일 확인
상기 실시예 1에서 도출한 최적화 LAUNCHER (pCMV-PDGFR-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-tTA)를 HEK293T 세포에서 트랜스펙션시키고, digital LED control system (TouchBright, Live Cell Instrument, maximum intensity: 3.5 mW/cm2)를 이용하여 청색광 펄스 지속 기간을 2초 켬/28초 끔의 주기 (duty cycles)로 고정하여 시간 경과 (6시간, 12시간 및 24시간)에 따른 SEAP 발현 수준을 확인하였다 (도 4a 및 b). 그 결과, 트랜스진(transgene)의 발현 수준이 조명(illumination) 지속 시간과 양의 상관관계를 나타냈으며 (도 4c), 6시간의 조명 지속 시간에서는 SNR(잡음대비 신호, signal-to-noise ratios)가 9배 증가하였으며, 24시간에서는 19.0-배 증가하여 가장 높은 유전자 발현 효율을 나타냈으며 (도 4d), 이러한 결과는 LAUNCHER 시스템이 빛에 의해서 잘 조절됨을 나타냈다. 상기 광-펄스 지속 기간에 대한 결과와 유사하게, 유전자 발현 수준은 광도(light intensity)가 증가함에 따라 점진적으로 증가하였다 (도 5a 및 b). 또한, LAUNCHER의 색채 특성화를 위해, LAUNCHER를 트랜스펙션한 HEK293T 세포에 3가지 파장 (blue: 470, green: 520 및 red: 630 nm)의 빛을 조사한 결과, 도 2에서와 같이 청색광은 SEAP 유전자 발현을 강력하게 유도한 반면, 녹색광 및 적색광은 거의 활성이 나타나지 않아 LAUNCHER의 청색광 특이성을 입증하였다 (도 5c). 아울러, LAUNCHER의 광학(optical) 유도를 최적화하기 위해, 다양한 주파수(frequency) (4/60 Hz, 2/60 Hz 및 1/60 Hz)로 청색광 펄스의 다양한 작동 주기(duty cycles)를 확인한 결과 (도 5d 왼쪽 패널) 결과, 유의미한 차이가 나타나지 않았다 (도 5d 오른쪽 패널).
2-2. 공간분해능
LAUNCHER 시스템의 공간분해능을 확인하기 위해, 포토마스크를 활용하여 형광 표적 유전자 발현이 공간적으로 제어되는지 확인하였다. 구체적으로, 트랜스펙션 마커로서 EGFP(enhanced green fluorescent protein)를 포함하는 플라스미드 벡터, TRE-tdTomato 리포터 플라스미드 벡터 및 LAUNCHER 플라스미드 벡터 (도 4e)를 HEK293T 세포에 트랜스펙션한 뒤, 공간 상에 청색광 조사 범위를 제한하기 위해 제작한 “LAUNCHER”라는 단어가 레이저 커팅된 아크릴 포토마스크를 세포 배양 접시 위에 올리고 청색광을 투사한 뒤, 광-유도 발현된 tdTomato 발현을 레이저 스캐너 (Typhoon FLA 9500, GE Healthcare)로 확인하였다 (도 4f). 그 결과, 포토마스크의 영역과 정확하게 일치되는 영역의 세포에서만 청색광에 의해 리포터 단백질인 tdTomato가 선택적으로 발현된 것으로 나타나 (도 4g), 청색광에 의해 LAUNCHER 시스템에서 절단되어 방출된 tTA가 핵으로 이동하여 TRE에 결합하여 리포터 유전자인 tdTomato가 발현되고, 이와 같은 시스템이 빛에 의해서 공간적으로 조절할 수 있음을 확인하였다.
실시예 3. 다수의 단백질 절단 효소 기반 회로 설계를 위한 오솔로그(ortholog) 특이성 확인
다중 단백질 절단 효소 기반 회로의 경우 각 개졀 단백질 절단 효소에 의해 전달되는 정보가 다른 단백질 절단 효소에 의해 방해받지 않아야 한다. 이에, 본 발명의 LAUNCHER 시스템이 식물 유래의 포티바이러스(Potyvirus)의 1종인 TEVp(Tobacco etch virus protease)를 기반으로 개발되었으므로, 다양한 식물에 적응한 많은 포티바이러스의 오솔로그들이 단백 절단 과정에서 서로 간섭하지 않고 특이성을 가지는지 확인하고자, TEVp, 다른 포티바이러스 오솔로그인 SbMVp (Soybean Mosaic Virus의 단백질 절단 효소) 또는 TVMVp (Tobacco Vein Mottling Virus의 단백질 절단 효소)와 이들의 기질 서열들 (ENLYFQG, ESVSLQG 또는 ETVRFQG)로 조합하여 구성된 9종의 LAUNCHER 오솔로그들을 제작한 뒤 (도 6a 내지 c), 이들을 세포에 트랜스펙션하고 청색광을 조사하여 리포터유전자의 발현을 확인하였다. 또한, 9종의 LAUNCHER 오솔로그들과 EGFP 및 TRE-tdTomato을 커버슬립 상의 세포에 함께 트랜스펙션한 뒤, 4% 파라포름알데하이드 (CURRBIO) 200 μ로 30분 동안 고정하고, PBS로 3회 세척하고 300 nM DAPI (Invitrogen) 200 μL를 처리하여 핵을 염색하였다. 염색된 세포를 마운팅 용액 (Biomeda)을 이용하여 글라스 슬라이스 상에 마운팅한 뒤, LSM 800 콘포칼 현미경 (Zeiss)으로 이미지를 촬영하였다.
그 결과, 단백질 절단 효소와 이의 기질 서열로 매칭된 세 쌍의 LAUNCHER 시스템 LAUNCHERTEVp, LAUNCHERSbMVp (pCMV-PDGFR-SbMVpC-43LK-iLID-NESX2-SbMVpN-iLID-SbMVseq-tTA) 및 LAUNCHERTVMVp (pCMV-PDGFR-TVMVpC-43LK-iLID-NESX2-TVMVpN-iLID-TVMVseq-tTA)에서만 광-의존적 유전자 발현이 나타났으며, 나머지 6종의 미스매치된 쌍을 포함하는 LAUNCHER 시스템에서는 광-의존적 유전자 발현이 나타나지 않았다 (도 6d 내지 f). 또한, 광-의존적 발현 변화의 히트맵에서 상기 세 LAUNCHER 오솔로그들의 강한 직교성(orthogonality)이 나타났다 (도 6g). 또한, 콘포칼 현미경 이미지에서도 단백질 절단 효소와 거기에 대응되는 단백 절단 서열 (기질 서열)을 포함한 LAUNCHER 시스템 (LAUNCHERTEVp, LAUNCHERSbMVp, 및 LAUNCHERTVMVp)에서만 청색광에 의해 유전자 발현이 일어나는 것을 확인하였다 (도 6h 및 도 7a 내지 c).
이를 통해, 다양한 종류의 포티바이러스를 이용한 LAUNCHER 유사체 개발이 가능한 LAUNCHER 시스템의 확장성을 확인할 수 있었다.
실시예 4. LAUNCHER의 PnP(plug-and-play) 특성 확인
4-1. 종래의 시스템 모듈과의 결합
본 발명의 LAUNCHER 시스템의 PnP 특성을 확인하기 위해 종래의 시스템 모듈인 iTango2 시스템에 도입하여 기존의 iTango 시스템과 신호전달 성능을 비교하였다. 구체적으로, iTango2 시스템은 청색광 및 GPCR 리간드 모두에 반응하는 GPCR 센서를 유전적으로 인코딩하고, DRD2-iTango2는 원형질막에 결박된 DRD2-TevN-iLID-TEVseq-tTA 및 세포질 βArr2(βarrestin2)-TevC의 두 가지 개별 펩타이드로 구성되며, 이 두 요소는 자유 확산-매개 상호작용을 통한 tTA의 비-특이적 단백 절단 방출이 유발되는 문제점이 있었다. 이와 같은 배경 신호를 최소화하고 AND-게이트 패턴을 개선하기 위해, LAUNCHER와 세포질 βArr2-TEV-C를 융합하고 N 말단에 세포내 미토콘드리아에 고정할 수 있는 NTOM20 도메인을 삽입하여, LAUNCHER의 분비 모듈의 페이로드에 이펙터 모듈로서 βArr2-TevC를 포함하는 LAUNCHER-βArr2-TevC (제 1 융합 단백질)를 발현하는 pCMV-NTOM20-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevC (제 1 플라스미드 벡터) (도 8b)을 제작한 뒤, tTA를 페이로드로서 포함하는 DRD2-TevN-iLID-TEVseq-tTA (제 2 융합 단백질)를 발현하는 pCMV-DRD2-V2tail-TevN-ILID-TEVseq-tTA (제 2 플라스미드 벡터)를 제작하여 (표 2) 세포에 함께 트랜스펙션함으로써 LAUNCHER-βArr2-TevC 모듈을 미토콘드리아에 결박시키고 (도 8a의 Layer 1), DRD2-TevN-iLID-TEVseq-tTA 모듈을 원형질막에 결박시킨 상태 (도 8a의 Layer 2)로 준비하였다 (LAUNCHERTEVp-βArr2-TevC의 미토콘드리아 고정화로 인해 청색광이 없을 때 tTA의 비특이적 단백 절단 방출이 억제됨). 이 후, 세포에 청색광과 DRD2R 작용제(agonist) QU(quinpirole) 또는 DRD2R 길항제(antagonist) HA(haloperidol)를 처리하여 SEAP 분석을 수행하였다. 또한, 형광 tdTomato 리포터 및 LAUNCHERSbMVp ortholog (도 8d)를 이용하여 콘포칼 현미경 이미지를 확인하였다.
앵커링 모듈 광 제어 모듈 분비 모듈
표적 절단 서열 페이로드
표적 절단 서열 이펙터 모듈 페이로드
제 1 융합 단백질 제 1 펩타이드 제 2 펩타이드-링커-iLID-NESX2-제 3 펩타이드-iLID 표적 절단 서열 βArr2-제 2 펩타이드 -
제 2 융합 단백질 - DRD2-제 3 펩타이드-iLID 표적 절단 서열 - tTA
그 결과, LAUNCHER와 결합된 iTango 시스템 (LAUNCHERTEVp-DRD2-iTango2 시스템, 도 8b)에서 오직 청색광 및 QU 존재하에서만 SEAP이 검출되었으며, 기존의 iTango 시스템에 비해 현저히 우수한 현저히 향상된 잡음 대비 신호(SNR) 효과 및 명백한 AND-게이트 패턴을 나타냈다 (도 8c). 또한, LAUNCHERSbMVp ortholog를 iTango 시스템에 결합한 경우에도 청색광 및 QU 존재하에서만 tdTomato 신호가 감지되었다 (도 8d).
이와 같은 효과들이 추가 엔지니어링 없이 단순히 LAUNCHER 모듈을 기존의 회로에 삽입함으로써 달성되었으므로, LAUNCHER 및 이의 오솔로그가 기존의 다양한 생물학적 회로와 PnP 방식으로 쉽게 호환될 수 있음을 알 수 있다.
4-2. 앵커링 모듈 확장
다양한 종류의 세포소기관 표적 서열 (NTOM20: 미토콘드리아 표적화; NES: 세포질 표적화; NLS: 핵 표적화; PDGFR: 원형질막 표적화; 및 H2B: 핵 DNA 표적화)을 LAUNCHER-iTango 시스템의 N-말단에 연결시켜 5종의 앵커링 모듈을 가진 LAUNCHER-iTango 시스템 (pCMV-NTOM20-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevC; pCMV-NES-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevC; pCMV-NLS-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevC; pCMV-PDGFR-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevC; pCMV-H2B-EGFP-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-βArr2-TevC)을 제작한 뒤 (도 9a), 이들의 세포 내 표적화를 확인하였다.
그 결과, 세포소기관 표적 서열에 따라 상이한 유전자 발현 효율을 보였으나, 대체적으로 잘 작동하였고, 특히, 미토콘드리아 표적화 서열인 NTOM20를 앵커링 모듈로 이용한 경우 가장 우수한 SNR 및 두드러진 AND-게이트 패턴을 나타냈다 (도 9 b 내지 d).
실시예 5. 시스템 제어 확장성 확인
5-1. 독시사이클린 및 청색광에 의한 이중 제어
광학 단독 제어는 주변 광원으로 인한 누출 문제와 같은 한계를 극복하기 위해, 광화학 조작의 이중 제어 방식으로 LAUNCHER 시스템을 확장하고자, 기본적으로 LAUNCHER 시스템의 원래 구조를 유지하면서 분비 모듈의 페이로드를 이펙터 모듈(effector module)로 교체함으로써 소분자약물과 청색광이 동시에 존재할 때 표적 유전자를 발현시키는 단일 구조의 합성 단백질을 제작하였다. 이를 위해, 단순히 LAUNCHER의 페이로드로 사용한 tTA를 독시사이클린(doxycycline)과 같은 테트라사이클린 유사체(tetracycline analogues)의 존재시에만 Tet 오퍼레이터 서열에 결합할 수 있는 이펙터 모듈인 rtTA(reverse tetracycline-controlled transactivator)로 대체하여 독시사이클린과 청색광에 의해 이중으로 제어되는 LAUNCHER 변이체 (pCMV-PDGFR-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-TetON)를 제작하였으며 (표 3), 이 시스템은 독시사이클린이 rtTA에 결합하면 구조적 변화가 발생하여 Tet 오퍼레이터 서열에 결합하여 하류 표적 유전자 발현을 유도하므로, 독시사이클린이 원치 않는 트랜스진의 발현을 방지하는 수단으로 사용된다 (도 10a). 상기 LAUNCHER 변이체를 세포에 트랜스펙션시키고 청색광 및 독시사이클린을 동시에 처리하여 선택적 유전자 발현을 확인한 결과, 청색광과 독시사이클린이 모두 처리된 경우에만 리포터 유전자가 발현되는 것으로 나타났다 (도 10b).
앵커링 모듈 광 제어 모듈 분비 모듈
표적 절단 서열 페이로드
표적 절단 서열 이펙터 모듈 페이로드
제 1 펩타이드 제 2 펩타이드-링커-iLID-NESX2-제 3 펩타이드-iLID 표적 절단 서열 rtTA -
5-2. 라파마이신 및 청색광에 의한 이중 제어
CID(chemically induced dimerization) 툴킷 중 하나인 라파마이신-유도 FRB(FKBP12-rapamycin-binding)/FKBP(FK506-binding protein) 및 광 절단 가능한 LAUNCHER를 결합하여 단일-전사 광화학유전적(optochemogenetic) 회로로서, 소분자약물인 라파마이신과 청색광이 동시에 존재할 때 표적 유전자를 발현시키는 단일 구조의 합성 단백질을 제작하였다. 라파마이신을 통한 화학적으로 유도된 스위치를 구현하기 위해, LAUNCHER에서 tTA (TetR-VP16) 부위를 TetR-FRB 및 FKBP-VP16로 분할한 다음, SbMVp 및 이의 기질 서열을 두 단편의 접합부에 삽입하여 연결하여 라파미이신과 청색광에 의해 이중으로 제어되는 단일 구성 요소의 LAUNCHER 변이체 (표 4) (pCMV-PDGFR-TevC-43LK-iLID-NESx2-TevN-ILID-TEVseq-TetR-FKBP-SbMVseq-SbMVp-SbMVseq-FRB-VP16)를 제작하였다 (도 11a). 이렇게 제작한 단일 구조 단백체를 이용하여 HEK293T 세포에서 청색광 및/또는 라파마이신에 따른 리포터 유전자의 발현을 확인한 결과, 청색광과 라파마이신을 동시에 처리한 경우에만 리포터 유전자의 발현이 관찰되었으며 (도 11b), 현저한 AND-게이트 패턴을 나타냈다 (도 11c).
앵커링 모듈 광 제어 모듈 분비 모듈
표적 절단 서열 페이로드
표적 절단 서열 이펙터 모듈 페이로드
제 1 펩타이드 제 1 단백질 절단 효소의 제 2 펩타이드-링커-iLID-NESX2-제 1 단백질 절단 효소의 제 3 펩타이드-iLID 제 1 단백질 절단 효소의 표적 절단 서열 TetR-FKBP-제 2 단백질 절단 효소의 표적 절단 서열-제 2 단백질 절단 효소-제 2 단백질 절단 효소의 표적 절단 서열-FRB-VP16 -
5-3. 삼중 제어
삼중 제어가 가능한 광화학유전적 시스템을 제작하기 위해, 상기 실시예 4-1의 LAUNCHER-DRD2-iTango2에 라파마이신 제어가 가능한 분할 tTA (실시예 5-2의 FRB/FKBP 시스템)를 융합하여 (도 11d), 3가지 종류의 입력신호인 GPCR 리간드, 라파마이신 및 청색광에 의해 제어되는 시스템 (표 5) (pCMV-NTOM20-SbMVpC-43LK-iLID-NESX2-SbMVpN-iLID-SbMVseq-βArr2-TevC-P2A-EGFP; pCMV-DRD2-V2tail-TevN-ILID-TEVseq-TetR-FKBP; pCMV-NLS-FRB-VP16; 및 TRE-SEAP)을 제작하였다 (도 11e). 이렇게 제작한 시스템을 HEK293T에서 시험한 결과, GPCR 리간드, 라파마이신 및 청색광이 동시에 처리된 세포에서만 현저하게 유전자 발현이 관찰되었다 (도 11f). 이를 통해, LAUNCHER가 다중 모드로 제어되는 맞춤형 합성 회로를 생성하기 위한 다목적 광학 스위치로서 사용될 수 있음을 알 수 있다.
앵커링 모듈 광 제어 모듈 분비 모듈
표적 절단 서열 페이로드
표적 절단 서열 이펙터 모듈 페이로드
제 1 융합 단백질 제 1 펩타이드 제 2 펩타이드-링커-iLID-NESX2-제 3 펩타이드-iLID 표적 절단 서열 βArr2-제 2 펩타이드
제 2 융합 단백질 - DRD2-제 3 펩타이드-iLID 표적 절단 서열 TetR-FKBP
제 3 융합 단백질 제 1 펩타이드 - - FRB-VP16

Claims (29)

  1. (1) 펩타이드를 고정시키기 위한 앵커링(anchoring) 모듈;
    (2) 광조사에 의하여 분비 모듈 내의 페이로드(payload)의 방출을 조절하기 위한 광 제어 모듈; 및
    (3) 광조사에 의하여 자가 절단되어 페이로드를 방출하는 분비 모듈을 포함하는 융합 단백질로서,
    1) 앵커링 모듈은 세포 소기관 또는 세포막에 앵커링할 수 있는 도메인을 포함하는 제 1 펩타이드를 포함하며;
    2) 광 제어 모듈은
    a) 광에 반응하여 이합체를 형성하여 단백질 절단 효소 활성을 갖는 제 2 펩타이드 및 제 3 펩타이드를 포함하고, 제 2 펩타이드는 광 조절 모듈 내에서 N-말단에서 C-말단 방향을 기준으로 제 3 펩타이드의 전단에 위치하며,
    b) 제 2 펩타이드 및 제 3 펩타이드는 단백질 절단 효소의 절편이고, 제 2 펩타이드는 단백질 절단 효소의 N-말단에서 C-말단 방향을 기준으로 후단에 위치한 절편이며, 제 3 펩타이드는 전단에 위치한 절편이고; 및
    3) 분비 모듈은
    a) 제 2 펩타이드 및 제 3 펩타이드가 광에 의하여 단백질 절단 효소 활성을 갖는 경우 절단되는 표적 절단 서열을 포함하며
    b) 표적 절단 서열이 절단되는 경우, 페이로드가 방출되는; 융합 단백질.
  2. 제 1항에 있어서, 제 1 펩타이드는 세포 또는 세포소기관 표적화 서열을 포함하는, 융합 단백질.
  3. 제 1항에 있어서, 단백질 절단 효소는 TEV 단백질 절단 효소(tobacco etch virus protease, TEVp), SbMV 단백질 절단 효소(Soybean Mosaic Virus protease, SbMVp) 또는 TVMV 단백질 절단 효소(Tobacco Vein Mottling Virus protease, TVMVp)인, 융합 단백질.
  4. 제 1항에 있어서, 광 제어 모듈은 제 2 펩타이드 및 제 3 펩타이드가 광에 의하여 이합체를 형성하여 단백질 절단 효소 활성을 갖도록 하는 iLID(improved light-induced dimer)를 추가로 포함하는 것인, 융합 단백질.
  5. 제 1항에 있어서, 광 제어 모듈은 핵외수송서열(nuclear export seqeunce, NES)을 추가로 포함하는 융합 단백질.
  6. 제 1항에 있어서, 광 제어 모듈은 제 2 펩타이드, 링커, iLID, NES, 제 3 펩타이드 및 iLID를 순차적으로 포함하는 융합 단백질.
  7. 제 6항에 있어서, 핵외수송서열을 2번 반복하여 포함하는, 융합 단백질.
  8. 제 6항에 있어서, 링커는 43개의 아미노산으로 이루어진, 융합 단백질.
  9. 제 1항에 있어서, 페이로드에 이펙터 모듈을 추가로 포함하는, 융합 단백질.
  10. 제 9항에 있어서, 이펙터 모듈은 rtTA(reverse tetracycline-controlled transactivator)을 포함하는, 융합 단백질.
  11. 제 10항에 있어서, 융합 단백질은 광조사에 의해 자가 절단되어 이펙터 모듈을 포함하는 페이로드를 방출하며, 테트라사이클린 유사체에 의해 이펙터 모듈 내의 표적 유전자의 발현이 제어되는, 융합 단백질.
  12. 제 9항에 있어서, 이펙터 모듈은 rtTA의 TetR, FKBP, 단백질 절단 효소의 표적 절단 서열, 단백질 절단 효소, 단백질 절단 효소의 표적 절단 서열, FRB 및 rtTA의 VP16를 순차적으로 포함하는 것인, 융합 단백질.
  13. 제 12항에 있어서, 융합 단백질은 광조사에 의하여 자가 절단되어 이펙터 모듈을 포함하는 페이로드를 방출하며, 라파마이신 유사체에 의하여 이펙터 모듈 내의 표적 유전자의 발현이 제어되는, 융합 단백질.
  14. 제 1항의 융합 단백질을 암호화하는 플라스미드 벡터.
  15. 앵커링 모듈, 제 1 광 제어 모듈 및 제 1 분비 모듈을 포함하는 제 1 융합 단백질; 및
    제 2 광 제어 모듈 및 제 2 분비 모듈을 포함하는 제 2 융합 단백질을 포함하는, 유전자 발현 또는 단백질 활성 제어 키트로서,
    1) 제 1 광 제어 모듈은:
    a) 광에 반응하여 이합체를 형성하여 단백질 절단 효소 활성을 갖는 제 2 펩타이드 및 제 3 펩타이드를 포함하고, 제 2 펩타이드는 광 조절 모듈 내에서 N-말단에서 C-말단 방향을 기준으로 제 3 펩타이드의 전단에 위치하며,
    b) 제 2 펩타이드 및 제 3 펩타이드는 단백질 절단 효소의 절편이고, 제 2 펩타이드는 단백질 절단 효소의 N-말단에서 C-말단 방향을 기준으로 후단에 위치한 절편이며, 제 3 펩타이드는 전단에 위치한 절편이고;
    2) 제 2 광 제어 모듈은 DRD2, 제 3 펩타이드 및 iLID를 포함하며;
    3) 제 1 분비 모듈은 단백질 절단 효소의 표적 절단 서열, 이펙터 모듈(effector module)을 포함하고; 및
    4) 제 2 분비 모듈은 단백질 절단 효소의 표적 절단 서열 및 페이로드를 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  16. 제 15항에 있어서, 이펙터 모듈은 βArr2 및 제 2 펩타이드를 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  17. 제 15항에 있어서, 광조사에 의해 제 1 융합 단백질이 자가 절단되어 이펙터 모듈을 방출하고, 및 GPCR 리간드에 의해 제 2 융합 단백질이 자가 절단되어 페이로드가 방출되어 유전자의 발현이 제어되는, 유전자 발현 또는 단백질 활성 제어 키트.
  18. 제 15항에 있어서, 제 2 융합 단백질의 페이로드에 이펙터 모듈을 추가로 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  19. 제 18항에 있어서, 이펙터 모듈은 TetR 및 FKBP를 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  20. 제 18항에 있어서, 앵커링 모듈 및 페이로드를 포함하는 제 3 융합 단백질을 추가로 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  21. 제 20항에 있어서, 페이로드는 FRB 및 VP16를 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  22. 앵커링 모듈, 제 1 광 제어 모듈 및 제 1 분비 모듈을 포함하는 제 1 융합 단백질을 암호화하는 제 1 플라스미드 벡터; 및
    제 2 광 제어 모듈 및 제 2 분비 모듈을 포함하는 제 2 융합 단백질을 암호화하는 제 2 플라스미드 벡터를 포함하는, 유전자 발현 또는 단백질 활성 제어 키트로서,
    1) 제 1 광 제어 모듈은:
    a) 광에 반응하여 이합체를 형성하여 단백질 절단 효소 활성을 갖는 제 2 펩타이드 및 제 3 펩타이드를 암호화하는 핵산서열을 포함하고, 제 2 펩타이드는 광 조절 모듈 내에서 N-말단에서 C-말단 방향을 기준으로 제 3 펩타이드의 전단에 위치하며,
    b) 제 2 펩타이드 및 제 3 펩타이드는 단백질 절단 효소의 절편이고, 제 2 펩타이드는 단백질 절단 효소의 N-말단에서 C-말단 방향을 기준으로 후단에 위치한 절편이며, 제 3 펩타이드는 전단에 위치한 절편이고;
    2) 제 2 광 제어 모듈은 DRD2, 제 3 펩타이드 및 iLID를 암호화하는 핵산서열을 포함하며;
    3) 제 1 분비 모듈은 단백질 절단 효소의 표적 절단 서열, 이펙터 모듈(effector module)을 암호화하는 핵산서열을 포함하고; 및
    4) 제 2 분비 모듈은 단백질 절단 효소의 표적 절단 서열 및 페이로드를 암호화하는 핵산서열을 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  23. 제 22항에 있어서, 이펙터 모듈은 βArr2 및 제 2 펩타이드를 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  24. 제 22항에 있어서, 제 2 융합 단백질의 페이로드에 이펙터 모듈을 추가로 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  25. 제 24항에 있어서, 이펙터 모듈은 TetR 및 FKBP를 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  26. 제 24항에 있어서, 앵커링 모듈 및 페이로드를 포함하는 제 3 융합 단백질을 암호화하는 제 3 플라스미드 벡터를 추가로 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  27. 제 26항에 있어서, 페이로드는 FRB 및 VP16를 포함하는, 유전자 발현 또는 단백질 활성 제어 키트.
  28. 제 1항의 융합 단백질의 유전자 발현 또는 단백질의 활성 제어 용도.
  29. 제 1항의 융합 단백질을 이용하여 유전자의 발현 또는 단백질의 활성을 제어하는 방법.
PCT/KR2022/017432 2022-09-08 2022-11-08 광게이트 단백질 절단 효소를 이용한 광스위치 WO2024053780A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0113964 2022-09-08
KR1020220113964A KR20240035653A (ko) 2022-09-08 2022-09-08 광게이트 단백질 절단 효소를 이용한 광스위치

Publications (1)

Publication Number Publication Date
WO2024053780A1 true WO2024053780A1 (ko) 2024-03-14

Family

ID=90191365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017432 WO2024053780A1 (ko) 2022-09-08 2022-11-08 광게이트 단백질 절단 효소를 이용한 광스위치

Country Status (2)

Country Link
KR (1) KR20240035653A (ko)
WO (1) WO2024053780A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200010513A1 (en) * 2016-02-24 2020-01-09 Max Planck Florida Institute for Neuroscience Light-gated signaling modulation
US20200291075A1 (en) * 2017-12-01 2020-09-17 The Trustees Of Princeton University Light-Responsive Fusion Proteins For Controlling Binding To Targets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200010513A1 (en) * 2016-02-24 2020-01-09 Max Planck Florida Institute for Neuroscience Light-gated signaling modulation
US20200291075A1 (en) * 2017-12-01 2020-09-17 The Trustees Of Princeton University Light-Responsive Fusion Proteins For Controlling Binding To Targets

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Development of optogenetic technique labeling and manipulating neuronal engram", RESEARCH REPORT KOREA UNIVERSITY, October 2020 (2020-10-01), pages 1 - 26 *
"Thesis for the Degree of Master of Science", 1 August 2020, KOREA UNIVERSITY GRADUATE SCHOOL, Korea, article BAN, SUNG HWAN: "Development of light-activated unimolecular switch for intracellular release. ", pages: 1 - 61, XP009553105 *
CUI MINGGUANG, LEE SEUNGHWAN, BAN SUNG HWAN, KIM JIN YOUNG, CHOI SEUL KI, HAN JAEMIN, KIM YOONHEE, HAN KIHOON, LEE DONGHUN, KWON H: "LAUNCHER: A single-component, light-assisted uncaging switch for endoproteolytic release", RESEARCH SQUARE, 6 May 2022 (2022-05-06), XP093146892, Retrieved from the Internet <URL:https://www.researchsquare.com/article/rs-1628455/v1> DOI: 10.21203/rs.3.rs-1628455/v1 *

Also Published As

Publication number Publication date
KR20240035653A (ko) 2024-03-18

Similar Documents

Publication Publication Date Title
WO2018062866A2 (en) CELL-PERMEABLE (CP)-Cas9 RECOMBINANT PROTEIN AND USES THEREOF
WO2017116205A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2016028036A1 (en) Advanced macromolecule transduction domain (amtd) sequences for improvement of cell-permeability, polynucleotides encoding the same, method to identify the unique features of amtds comprising the same, method to develop the amtd sequences comprising the same
WO2014035179A1 (ko) 미토콘드리아 타겟팅 펩타이드
WO2017078440A1 (ko) 신경세포 손실 예방 및 재생 효능을 가지는 펩티드 및 이를 포함하는 조성물
WO2015152618A1 (ko) 면역글로불린 fc 단편 결합을 이용한 단백질 및 펩타이드의 용해도를 개선시키는 방법
WO2012128580A1 (en) Water-soluble polypeptides comprised of repeat modules, method for preparing the same and method for a target-specific polypeptide and analysis of biological activity thereof
WO2018030806A1 (ko) 항체 중쇄불변부위 이종이중체에 융합된 사이토카인 및 이를 포함하는 약제학적 조성물
CN101328210A (zh) Hiv肽,抗原,疫苗组合物,检测hiv所诱导的抗体的免疫测定试剂盒及方法
WO2017018787A1 (en) Improved cell-permeable (icp) parkin recombinant protein and use thereof
WO2017116207A1 (ko) Fgf21 아날로그, fgf21 결합체, 및 이의 용도
WO2011142514A1 (ko) Pias3을 유효성분으로 포함하는 암 또는 면역질환의 예방 또는 치료용 조성물
WO2015167278A1 (en) A protein secretory factor with high secretory efficiency and an expression vector comprising the same
WO2019066586A1 (ko) 글루카곤 유사 펩타이드-2(glp-2) 유도체의 지속형 결합체
WO2014126332A1 (ko) 금나노입자-앱타머 결합체를 기반으로 하는 단백질 전달체 및 이의 제조 방법
WO2024053780A1 (ko) 광게이트 단백질 절단 효소를 이용한 광스위치
WO2022065913A1 (ko) 요산산화효소-알부민 접합체, 그 제조방법 및 용도
CN1330666C (zh) 低氧-诱导因子1αHIF-1α变体和鉴定HIF-1α调节剂的方法
WO2020251284A1 (ko) 아프리카 돼지 열병 바이러스 유래 p72, p104, p205 단백질 절편 및 이의 용도
WO2022131764A1 (ko) 세포막 투과성을 갖는 신규 펩타이드
WO2022019665A1 (ko) 면역 치료제용 펩타이드
WO2019132579A2 (ko) 세포질 침투 항체에 융합된 rna 분해효소를 포함하는 면역독소
EP3334755A1 (en) Improved cell-permeable reprogramming factor (icp-rf) recombinant protein and use thereof
WO2020214013A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 또는 이의 결합체의 고지혈증에 대한 치료적 용도
WO2019225899A1 (ko) 단편화된 grs 폴리펩타이드, 이의 변이체 및 이들의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958234

Country of ref document: EP

Kind code of ref document: A1