WO2024053696A1 - Ventilation device - Google Patents

Ventilation device Download PDF

Info

Publication number
WO2024053696A1
WO2024053696A1 PCT/JP2023/032609 JP2023032609W WO2024053696A1 WO 2024053696 A1 WO2024053696 A1 WO 2024053696A1 JP 2023032609 W JP2023032609 W JP 2023032609W WO 2024053696 A1 WO2024053696 A1 WO 2024053696A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
state
switching mechanism
opening
air
Prior art date
Application number
PCT/JP2023/032609
Other languages
French (fr)
Japanese (ja)
Inventor
智哉 村上
諒 岡元
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024053696A1 publication Critical patent/WO2024053696A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight

Definitions

  • Patent Document 1 Japanese Unexamined Patent Publication No. 2004-286432
  • Patent Document 1 a large-scale damper opening/closing mechanism is used to switch between air supply and exhaust. Therefore, it is desired to simplify the structure for switching between air supply and exhaust.
  • the ventilation device of the first aspect includes a casing, a blower fan, a blowout switching mechanism, a first switching mechanism, and a control section.
  • a first opening and a second opening are formed in the casing.
  • the first opening communicates with a ventilation hose connected to the room.
  • the second opening communicates with the outside.
  • the ventilation fan is installed on a support base that forms a ventilation space at the bottom inside the casing.
  • the ventilation fan draws air from the ventilation space through a suction opening formed in the support base, and blows the air toward the first opening or the second opening.
  • the blowout switching mechanism is capable of switching between a first state and a second state.
  • the first state is a state in which the blower fan and the ventilation hose are in communication with each other, and the blower fan and the second opening are not in communication with each other.
  • the second state is a state in which the blower fan and the second opening are in communication with each other, and the blower fan and the ventilation hose are not in communication with each other.
  • the first switching mechanism is capable of switching between a third state and a fourth state.
  • the third state is a state in which the third opening for communicating the ventilation space and the ventilation hose without using the ventilation fan causes the ventilation space and the ventilation hose to communicate with each other.
  • the fourth state is a state in which the third opening does not allow communication between the ventilation space and the ventilation hose.
  • the control unit performs air supply operation.
  • the air supply operation is an operation that supplies air into the room.
  • the control unit performs air supply operation by setting the blow-off switching mechanism to the first state, setting the first switching mechanism to the fourth state, and driving the blower fan.
  • the control unit performs exhaust operation.
  • the exhaust operation is an operation that exhausts air from the room.
  • the control unit performs exhaust operation by driving the blower fan with the blow-off switching mechanism in the second state and the first switching mechanism in the third state.
  • the air supply operation is an operation in which air is supplied into the room by setting the blow-off switching mechanism to the first state, setting the first switching mechanism to the fourth state, and driving the ventilation fan.
  • the exhaust operation is an operation in which air is discharged from the room by setting the blow-off switching mechanism to the second state, setting the first switching mechanism to the third state, and driving the blower fan.
  • the ventilation device is the ventilation device according to the first aspect, and further includes a humidification rotor.
  • the humidifying rotor adsorbs moisture in the air.
  • a fourth opening is further formed in the casing. The fourth opening communicates with the outside.
  • the control unit performs humidification operation.
  • the humidification operation is an operation in which humidified air taken into the ventilation space from the fourth opening via the humidification rotor is supplied into the room.
  • the control unit performs humidification operation by setting the blow-off switching mechanism to the first state, setting the first switching mechanism to the fourth state, and driving the blower fan.
  • the ventilation device is the ventilation device according to the second aspect, and further includes a second switching mechanism.
  • the second switching mechanism is capable of switching between a fifth state and a sixth state.
  • the fifth state is a state in which the humidifying rotor and the ventilation fan are communicated with each other.
  • the sixth state is a state in which the humidifying rotor and the blower fan are not communicated with each other.
  • the control unit sets the second switching mechanism to the fifth state and performs air supply operation and humidification operation.
  • the control unit sets the second switching mechanism to the sixth state and performs the exhaust operation.
  • the control unit sets the second switching mechanism to the sixth state and performs the exhaust operation.
  • the sixth state is a state in which the humidifying rotor and the blower fan are not communicated with each other.
  • the ventilation device is any one of the ventilation devices according to the first to third aspects, and the control unit performs a regeneration operation.
  • the regeneration operation is an operation in which moisture adsorbed by the humidification rotor is released.
  • the control unit performs regeneration operation with the blow-off switching mechanism in the second state and the first switching mechanism in the fourth state.
  • the ventilation device can use the second opening for both exhaust operation and regeneration operation.
  • the ventilation device is the ventilation device according to the third aspect, in which the control unit switches the states of the blow-off switching mechanism and the second switching mechanism in conjunction with switching the state of the first switching mechanism.
  • the control unit switches the states of the blow-off switching mechanism and the first switching mechanism in conjunction with switching the state of the second switching mechanism.
  • the ventilation device can simplify control of the switching mechanism.
  • FIG. 1 is a schematic configuration diagram of an air conditioner. It is a diagram showing a refrigerant circuit of an air conditioner.
  • FIG. 2 is an exploded perspective view of the ventilation device.
  • FIG. 2 is an exploded perspective view of some components of the ventilation system.
  • FIG. 2 is a cross-sectional view of the ventilation device.
  • FIG. 3 is a top view of the ventilation system with some of its components removed.
  • FIG. 3 is a top view of the ventilation system with some of its components removed.
  • FIG. 3 is a diagram showing the flow of air within the ventilation device during air supply operation.
  • FIG. 3 is a diagram showing the flow of air within the ventilation device during exhaust operation. It is a figure showing the flow of air in a ventilator during humidification operation.
  • FIG. 3 is a diagram showing the flow of air within the ventilation device during regeneration operation.
  • FIG. 3 is a diagram showing the flow of air within the ventilation device during dehumidification operation. It
  • the air conditioner 1 is a device that performs indoor RM air conditioning using a vapor compression type refrigeration cycle.
  • FIG. 1 is a schematic configuration diagram of an air conditioner 1. As shown in FIG. 1, the air conditioner 1 mainly includes an indoor unit 10, an outdoor unit 20, and a ventilation device 30.
  • FIG. 2 is a diagram showing the refrigerant circuit 40 of the air conditioner 1.
  • the indoor refrigerant flow path 43 in the indoor unit 10 and the outdoor refrigerant flow path 44 in the outdoor unit 20 are connected by the liquid refrigerant communication pipe 41 and the gas refrigerant communication pipe 42.
  • a refrigerant circuit 40 is configured. In the refrigerant circuit 40, a vapor compression type refrigeration cycle is repeated in order to perform air conditioning of the indoor RM.
  • the air conditioner 1 has a remote controller 80.
  • the remote controller 80 instructs the air conditioner 1 to start and stop operation, etc.
  • the remote controller 80 can receive various information such as the current operating state from the air conditioner 1 .
  • the indoor unit 10 is installed in the indoor RM.
  • the indoor unit 10 is a wall-mounted unit installed on the wall of the indoor RM.
  • the indoor unit 10 mainly includes an indoor heat exchanger 11, an indoor fan 12, and an indoor control section 19. Moreover, the indoor unit 10 has various sensors (not shown).
  • (2-1-1) Indoor Heat Exchanger In the indoor heat exchanger 11, heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 11 and the air in the indoor RM. As shown in FIG. 2, the indoor unit 10 drives the indoor fan 12 to suck air from the indoor RM through the suction port 13a. The indoor RM air sucked in passes through the indoor heat exchanger 11. At this time, since the refrigerant is flowing through the indoor heat exchanger 11, heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 11 and the air in the indoor RM. As shown in FIG. 2, the air that has passed through the indoor heat exchanger 11 is blown out from the outlet 13b.
  • the indoor heat exchanger 11 is a fin-and-tube heat exchanger that includes a plurality of heat transfer fins and a plurality of heat transfer tubes.
  • one end of the indoor heat exchanger 11 is connected to a liquid refrigerant communication pipe 41 via a refrigerant pipe.
  • the other end of the indoor heat exchanger 11 is connected to a gas refrigerant communication pipe 42 via a refrigerant pipe.
  • refrigerant flows into the indoor heat exchanger 11 from the liquid refrigerant communication pipe 41 side, and the indoor heat exchanger 11 functions as a refrigerant evaporator.
  • refrigerant flows into the indoor heat exchanger 11 from the gas refrigerant communication pipe 42 side, and the indoor heat exchanger 11 functions as a refrigerant condenser.
  • the indoor fan 12 is a fan that supplies indoor RM air to the indoor heat exchanger 11.
  • the indoor fan 12 is a cross flow fan.
  • the indoor fan 12 is driven by an indoor fan motor 12m.
  • the rotation speed of the indoor fan motor 12m can be controlled by an inverter.
  • the indoor control unit 19 controls the operation of each part constituting the indoor unit 10.
  • the indoor control unit 19 is electrically connected to various devices included in the indoor unit 10, including the indoor fan motor 12m, so as to be able to exchange control signals and information. Further, the indoor control unit 19 is communicably connected to various sensors provided in the indoor unit 10.
  • the indoor control unit 19 has a control calculation device and a storage device.
  • the control calculation device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM, and flash memory.
  • the control arithmetic device reads a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part constituting the indoor unit 10. Further, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to a program.
  • the indoor control unit 19 has a timer.
  • the indoor control unit 19 is configured to be able to receive various signals transmitted from the remote controller 80.
  • the various signals include, for example, signals instructing to start and stop driving, and signals related to various settings.
  • Signals related to various settings include, for example, signals related to set temperature and set humidity.
  • the indoor control unit 19 exchanges various signals and the like between the outdoor control unit 29 of the outdoor unit 20 and the ventilation control unit 39 of the ventilation device 30 via the communication line 90.
  • the indoor control section 19, the outdoor control section 29, and the ventilation control section 39 function together as a control section 60.
  • the outdoor unit 20 is installed in an outdoor OT such as a garden or balcony of a building where the air conditioner 1 is installed.
  • the outdoor unit 20 mainly includes a compressor 21, a flow path switching mechanism 22, an accumulator 23, an outdoor heat exchanger 24, an outdoor expansion valve 25, an outdoor fan 26, and an outdoor control It has a section 29.
  • the outdoor unit 20 also includes various sensors (not shown).
  • the compressor 21 sucks in low-pressure refrigerant, compresses the refrigerant using a compression mechanism (not shown), and discharges the compressed refrigerant.
  • the compressor 21 is a displacement compressor such as a rotary type or a scroll type.
  • the compression mechanism (not shown) of the compressor 21 is driven by a compressor motor 21m.
  • the rotation speed of the compressor motor 21m can be controlled by an inverter.
  • the flow path switching mechanism 22 is a mechanism that changes the state of the refrigerant circuit 40 between the seventh state and the eighth state by switching the refrigerant flow path. .
  • the outdoor heat exchanger 24 functions as a refrigerant condenser
  • the indoor heat exchanger 11 functions as a refrigerant evaporator.
  • the outdoor heat exchanger 24 functions as a refrigerant evaporator
  • the indoor heat exchanger 11 functions as a refrigerant condenser.
  • the flow path switching mechanism 22 is a four-way switching valve.
  • the flow path switching mechanism 22 has four ports.
  • the first port P1 of the flow path switching mechanism 22 is connected to the discharge port of the compressor 21.
  • the second port P2 of the flow path switching mechanism 22 is connected to one entrance/exit of the outdoor heat exchanger 24.
  • the third port P3 of the flow path switching mechanism 22 is connected to the accumulator 23.
  • the fourth port P4 of the flow path switching mechanism 22 is connected to one of the entrances and exits of the indoor heat exchanger 11.
  • the flow path switching mechanism 22 sets the state of the refrigerant circuit 40 to the seventh state. In other words, during cooling operation, the flow path switching mechanism 22 communicates with the first port P1 and the second port P2, and communicates with the third port P3 and the second port P2, as shown by the solid line inside the flow path switching mechanism 22 in FIG. 4 port P4.
  • the flow path switching mechanism 22 sets the state of the refrigerant circuit 40 to the eighth state. In other words, during heating operation, the flow path switching mechanism 22 connects the first port P1 and the fourth port P4, and communicates the second port P2 and the fourth port P4, as shown by the broken line in the flow path switching mechanism 22 in FIG. 3 port P3.
  • the accumulator 23 has a gas-liquid separation function that separates the inflowing refrigerant into a gas refrigerant and a liquid refrigerant. As shown in FIG. 2, the accumulator 23 is installed between the third port P3 of the flow path switching mechanism 22 and the suction port of the compressor 21. The refrigerant flowing into the accumulator 23 is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant that collects in the upper space flows out to the compressor 21 .
  • Outdoor Heat Exchanger In the outdoor heat exchanger 24, heat exchange is performed between the refrigerant flowing inside the outdoor heat exchanger 24 and the outdoor OT air. Specifically, as shown in FIG. 2, the outdoor unit 20 drives the outdoor fan 26 to suck in outdoor OT air from the suction port 27a. The outdoor OT air that is sucked in passes through the outdoor heat exchanger 24 . At this time, since the refrigerant is flowing through the outdoor heat exchanger 24, heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 24 and the outdoor OT air. The air that has passed through the outdoor heat exchanger 24 is blown out from the outlet 27b.
  • the outdoor heat exchanger 24 is a fin-and-tube type heat exchanger having a plurality of heat transfer fins and a plurality of heat transfer tubes.
  • One end of the outdoor heat exchanger 24 is connected to an outdoor expansion valve 25 via a refrigerant pipe.
  • the other end of the outdoor heat exchanger 24 is connected to the second port P2 of the flow path switching mechanism 22 via a refrigerant pipe.
  • the outdoor heat exchanger 24 functions as a refrigerant condenser during cooling operation, and functions as a refrigerant evaporator during heating operation.
  • the outdoor expansion valve 25 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the refrigerant circuit 40.
  • the outdoor expansion valve 25 is an electronic expansion valve.
  • the outdoor fan 26 is a fan that supplies air to the outdoor heat exchanger 24.
  • the outdoor fan 26 is a propeller fan.
  • the outdoor fan 26 is driven by an outdoor fan motor 26m.
  • the rotation speed of the outdoor fan motor 26m can be controlled by an inverter.
  • Outdoor Control Unit 29 controls the operation of each part constituting the outdoor unit 20.
  • the outdoor control unit 29 is capable of exchanging control signals and information with various devices included in the outdoor unit 20, including the compressor motor 21m, the flow path switching mechanism 22, the outdoor expansion valve 25, and the outdoor fan motor 26m. are electrically connected so that Further, the indoor control unit 19 is communicably connected to various sensors provided in the outdoor unit 20.
  • the outdoor control unit 29 has a control calculation device and a storage device.
  • the control calculation device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM, and flash memory.
  • the control arithmetic device reads a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part constituting the outdoor unit 20. Further, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to a program.
  • the outdoor control unit 29 has a timer.
  • the outdoor control unit 29 exchanges various signals and the like between the indoor control unit 19 of the indoor unit 10 and the ventilation control unit 39 of the ventilation device 30 via the communication line 90.
  • the indoor control section 19, the outdoor control section 29, and the ventilation control section 39 function together as a control section 60.
  • Ventilation device 30 is installed in the outdoor OT together with the outdoor unit 20.
  • the ventilation device 30 is attached on top of the outdoor unit 20 and is integrated with the outdoor unit 20.
  • the ventilation device 30 and the indoor unit 10 are connected by a ventilation hose 70.
  • FIG. 3 is an exploded perspective view of the ventilation device 30.
  • FIG. 4 is an exploded perspective view of some components of the ventilation system 30.
  • FIG. 5 is a cross-sectional view of the ventilation device 30.
  • 6 and 7 are top views of the ventilation device 30 with some of its components removed.
  • the ventilation device 30 mainly includes a casing 31, a ventilation fan 32 (blow fan), a blowout switching mechanism 33, a first switching mechanism 34, a second switching mechanism 35, and a humidifier. It has a rotor 36, a heater 37, an adsorption fan 38, and a ventilation control section 39.
  • the casing 31 mainly includes a ventilation fan 32, a blowout switching mechanism 33, a first switching mechanism 34, a second switching mechanism 35, and a humidifying rotor. 36, a heater 37, an adsorption fan 38, and a ventilation control section 39.
  • the casing 31 has a first opening 31a, a second opening 31b, a fourth opening 31d, a fifth opening 31e, a sixth opening 31f, and a seventh opening 31g. has been done.
  • the first opening 31a and the fifth opening 31e are formed on the right side surface of the casing 31.
  • the second opening 31b and the fourth opening 31d are formed on the rear side surface of the casing 31.
  • the sixth opening 31f and the seventh opening 31g are formed on the front side surface of the casing 31.
  • the first opening 31a communicates with a ventilation hose 70 connected to the indoor RM.
  • the second opening 31b, the fourth opening 31d, the fifth opening 31e, the sixth opening 31f, and the seventh opening 31g communicate with the outdoor OT.
  • the second opening 31b, the fourth opening 31d, the fifth opening 31e, the sixth opening 31f, and the seventh opening 31g may each be composed of one hole or a plurality of holes. .
  • the first opening 31a is a hole for blowing out air into the indoor RM or sucking air from the indoor RM through the ventilation hose 70 by driving the ventilation fan 32.
  • the second opening 31b is a hole through which air is blown out to the outdoor OT by driving the ventilation fan 32.
  • the fourth opening 31d and the fifth opening 31e are holes for sucking in outdoor OT air by driving the ventilation fan 32.
  • the sixth opening 31f is a hole through which air is blown out to the outdoor OT by driving the suction fan 38.
  • the seventh opening 31g is a hole for sucking in outdoor OT air by driving the suction fan 38.
  • a support stand 50 is installed inside the casing 31.
  • the support stand 50 forms a ventilation space SP1 in the upper part of the casing 31, with which the upper surface of the right half disk portion of the humidification rotor 36 comes into contact. Further, the support stand 50 forms a ventilation space SP2 at the bottom inside the casing 31, which is in contact with the lower surface of the right semicircular portion of the humidifying rotor 36.
  • the support stand 50 is provided with a cylindrical portion 50a.
  • An opening 50b connected to the first opening 31a and an opening 50c connected to the second opening 31b are formed in the cylindrical portion 50a.
  • a ventilation fan 32 is installed inside the cylindrical portion 50a.
  • a suction opening 50d for drawing air into the ventilation fan 32 is formed in the support base 50.
  • a fan cover 51 that covers the ventilation fan 32 is attached to the cylindrical portion 50a of the support stand 50.
  • the support base 50 has a third opening 31c between the opening 50b and the switching member 33a when the blowout switching mechanism 33 is in the second state. is formed.
  • the third opening 31c is a hole for communicating the ventilation space SP2 and the ventilation hose 70 without using the ventilation fan 32.
  • the ventilation space SP2 and the ventilation hose 70 communicate with each other without the ventilation fan 32, as shown in FIG. It means to communicate.
  • the bottom plate of the casing 31 is provided with a cylindrical portion 31h.
  • a suction fan 38 is installed inside the cylindrical portion 31h.
  • a support base 52 that covers the suction fan 38 is attached to the upper surface of the cylindrical portion 31h.
  • a suction opening 52a for drawing air into the suction fan 38 is formed in the support base 52.
  • the ventilation fan 32 is installed inside the cylindrical portion 50a of the support base 50.
  • the ventilation fan 32 draws air from the ventilation space SP2 through the suction opening 50d formed in the support base 50, and blows air toward the first opening 31a or the second opening 31b.
  • the ventilation fan 32 is a centrifugal fan such as a sirocco fan or a turbo fan.
  • the ventilation fan 32 is driven by a ventilation fan motor 32m.
  • the rotation speed of the ventilation fan motor 32m can be controlled by an inverter.
  • the air outlet switching mechanism 33 is provided on the fan cover 51 attached to the cylindrical portion 50a of the support base 50.
  • the blowout switching mechanism 33 includes a switching member 33a.
  • the switching member 33a is rotated by a motor around a rotating shaft 33b.
  • the blowout switching mechanism 33 can be switched between a first state and a second state by rotating the switching member 33a around the rotating shaft 33b.
  • the first state is a state in which the ventilation fan 32 and the ventilation hose 70 are communicated with each other, and the ventilation fan 32 and the second opening 31b are not communicated with each other.
  • the communication between the ventilation fan 32 and the ventilation hose 70 means that the outlet space X of the ventilation fan 32 and the ventilation hose 70 communicate with each other, as shown in FIG. FIG. 6 shows a case where the blowout switching mechanism 33 is in the first state.
  • the second state is a state in which the ventilation fan 32 and the second opening 31b are communicated with each other, and the ventilation fan 32 and the ventilation hose 70 are not communicated with each other.
  • the communication between the ventilation fan 32 and the second opening 31b means that the outlet space X of the ventilation fan 32 and the second opening 31b communicate with each other, as shown in FIG.
  • FIG. 7 shows a case where the blowout switching mechanism 33 is in the second state.
  • the first switching mechanism 34 is installed on the lower surface of the support base 50.
  • the first switching mechanism 34 has a fan-shaped switching member 34a.
  • the switching member 34a is rotated by a motor around a rotating shaft 34b.
  • the first switching mechanism 34 can switch between the third state and the fourth state by rotating the switching member 34a around the rotating shaft 34b.
  • the third state is a state in which the third opening 31c connects the ventilation space SP2 and the ventilation hose 70.
  • FIG. 4 shows a case where the first switching mechanism 34 is in the third state.
  • the fourth state is a state in which the third opening 31c does not allow communication between the ventilation space SP2 and the ventilation hose 70.
  • FIG. 5 shows a case where the first switching mechanism 34 is in the fourth state.
  • the second switching mechanism 35 is installed on the bottom plate of the casing 31.
  • the second switching mechanism 35 has rectangular parallelepiped-shaped switching members 35a and 35b.
  • the switching members 35a and 35b are configured such that their respective heights are smaller than the distance between the top surface of the bottom plate of the casing 31 and the bottom surface of the support base 50. Further, the switching members 35a and 35b are configured such that the total height thereof is equal to or greater than the distance between the upper surface of the bottom plate of the casing 31 and the lower surface of the support base 50.
  • the switching member 35b is fixed to the bottom plate of the casing 31.
  • the switching member 35a slides up and down by a motor.
  • the second switching mechanism 35 can switch between the fifth state and the sixth state by sliding the switching member 35a up and down.
  • the fifth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are communicated with each other.
  • the lower surface of the switching member 35a is in contact with the bottom plate of the casing 31.
  • the ventilation fan 32 is driven, air flows from the humidification rotor 36 toward the ventilation fan 32 above the switching members 35a and 35b.
  • FIG. 3 shows a case where the second switching mechanism 35 is in the fifth state.
  • the sixth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are not communicated with each other.
  • FIG. 5 shows a case where the second switching mechanism 35 is in the sixth state.
  • the humidifying rotor 36 is a disc-shaped member.
  • the humidifying rotor 36 is made of, for example, zeolite, silica gel, alumina, or the like.
  • the humidifying rotor 36 adsorbs moisture in the air (the air that has absorbed moisture becomes dry air).
  • moisture is released from the humidifying rotor 36 and moisture is supplied to the heated air (moisture is not supplied). air becomes humidified air).
  • the humidifying rotor 36 is rotated about a rotating shaft 36c by a humidifying rotor motor 36m.
  • the rotation speed of the humidifying rotor motor 36m can be controlled by an inverter.
  • the humidifying rotor 36 heats, for example, moisture adsorbed from the air passing through the left half disk portion of the humidifying rotor 36 by the heater 37 passing through the right half disk portion of the humidifying rotor 36. can be supplied to the air.
  • the heater 37 is disposed between the fourth opening 31d, the fifth opening 31e, and the humidifying rotor 36.
  • the outdoor OT air sucked in through the fourth opening 31d and the fifth opening 31e passes through the heater 37 and then the humidification rotor 36.
  • the heated air heated by the heater 37 passes through the humidifying rotor 36 that has adsorbed moisture, the passed air becomes humidified air.
  • the heater 37 can change the output, and the temperature of the air passing through the heater 37 can be changed depending on the output. Within a specific temperature range, the higher the temperature of the air passing through the humidifying rotor 36, the greater the amount of moisture desorbed from the humidifying rotor 36.
  • the suction fan 38 is installed inside the cylindrical portion 31h of the casing 31.
  • the suction fan 38 sucks outdoor OT air through the seventh opening 31g and causes it to pass through the humidifying rotor 36.
  • the suction fan 38 sucks the air that has passed through the humidifying rotor 36 through a suction opening 52a formed in the support base 52, and blows it out toward the sixth opening 31f.
  • the suction fan 38 causes the humidifying rotor 36 to adsorb moisture by passing outdoor OT air through the humidifying rotor 36 .
  • the suction fan 38 is a centrifugal fan such as a sirocco fan or a turbo fan.
  • the suction fan 38 is driven by a suction fan motor 38m.
  • the rotation speed of the suction fan motor 38m can be controlled by an inverter.
  • Ventilation Control Unit 39 controls the operation of each part constituting the ventilation device 30.
  • the ventilation control unit 39 controls various components of the ventilation device 30, including a ventilation fan motor 32m, a blowout switching mechanism 33, a first switching mechanism 34, a second switching mechanism 35, a humidification rotor motor 36m, a heater 37, and an adsorption fan motor 38m. It is electrically connected to the device so that control signals and information can be exchanged. Further, the ventilation control unit 39 is communicably connected to various sensors provided in the ventilation device 30.
  • the ventilation control unit 39 has a control calculation device and a storage device.
  • the control calculation device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM, and flash memory.
  • the control arithmetic device reads a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part constituting the ventilation device 30. Further, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to a program. Further, the ventilation control unit 39 has a timer.
  • the ventilation control unit 39 exchanges various signals and the like between the indoor control unit 19 of the indoor unit 10 and the outdoor control unit 29 of the outdoor unit 20 via the communication line 90.
  • the indoor control section 19, the outdoor control section 29, and the ventilation control section 39 function together as a control section 60.
  • FIG. 8 is a control block diagram of the air conditioner 1.
  • the control unit 60 allows the indoor control unit 19 of the indoor unit 10, the outdoor control unit 29 of the outdoor unit 20, and the ventilation control unit 39 of the ventilation device 30 to communicate via a communication line 90. It is configured by being able to be connected.
  • the control unit 60 controls the operation of the entire air conditioner 1 by causing the control calculation devices of the indoor control unit 19, the outdoor control unit 29, and the ventilation control unit 39 to execute programs stored in the storage device.
  • the control unit 60 includes an indoor fan motor 12m, a compressor motor 21m, a flow path switching mechanism 22, an outdoor expansion valve 25, an outdoor fan motor 26m, a ventilation fan motor 32m, a blowout switching mechanism 33, a first Exchanges control signals and information with various devices of the indoor unit 10, the outdoor unit 20, and the ventilation system 30, including the switching mechanism 34, the second switching mechanism 35, the humidifying rotor motor 36m, the heater 37, and the suction fan motor 38m. electrically connected so that it is possible to Further, the control unit 60 is communicably connected to various sensors provided in the indoor unit 10, the outdoor unit 20, and the ventilation device 30.
  • the control unit 60 starts and stops the operation of the air conditioner 1 and controls the operation of various devices in the air conditioner 1 based on measurement signals from various sensors and commands that the indoor control unit 19 receives from the remote controller 80. control. Further, the control unit 60 can transmit information such as the current operating state and various notifications to the remote controller 80.
  • the control unit 60 mainly performs air supply operation, exhaust operation, humidification operation, regeneration operation, and dehumidification operation.
  • Air supply operation is an operation that supplies outdoor OT air to the indoor RM.
  • the control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the first state, the first switching mechanism 34 in the fourth state, and the second switching mechanism 35 in the fifth state. Further, the control unit 60 stops the humidifying rotor 36, the heater 37, and the suction fan 38.
  • FIG. 9 is a diagram showing the air flow F1 within the ventilation device 30 during air supply operation.
  • air from the outdoor OT is sucked into the ventilation space SP1 of the ventilation device 30 through the fourth opening 31d and the fifth opening 31e.
  • the sucked air joins in the ventilation space SP1 and flows above the humidification rotor 36.
  • the air flowing above the humidifying rotor 36 passes through the right half disk portion of the humidifying rotor 36 and flows below the humidifying rotor 36. Since the second switching mechanism 35 is in the fifth state, the air flowing below the humidifying rotor 36 flows below the ventilation fan 32 in the ventilation space SP2.
  • the air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d.
  • the ventilation fan 32 can be prevented from sucking air through the third opening 31c.
  • the air sucked by the ventilation fan 32 is blown out toward the first opening 31a because the blowout switching mechanism 33 is in the first state.
  • the air blown toward the first opening 31a is blown out to the ventilation hose 70 through the first opening 31a.
  • the air blown toward the first opening 31a can be prevented from flowing into the ventilation space SP2 through the third opening 31c.
  • the air blown into the ventilation hose 70 is supplied to the indoor RM through the indoor unit 10.
  • Exhaust operation is an operation that exhausts air from the indoor RM.
  • the control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the second state, the first switching mechanism 34 in the third state, and the second switching mechanism 35 in the sixth state. Further, the control unit 60 stops the humidifying rotor 36, the heater 37, and the suction fan 38.
  • FIG. 10 is a diagram showing the air flow F2 within the ventilation device 30 during exhaust operation.
  • the ventilation fan 32 when the ventilation fan 32 is driven, air in the room RM is sucked into the first opening 31a through the ventilation hose 70. Since the blowout switching mechanism 33 is in the second state and the first switching mechanism 34 is in the third state, the sucked air flows into the ventilation space SP2 through the third opening 31c. The air that has entered the ventilation space SP2 flows below the ventilation fan 32. The air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d.
  • the second switching mechanism 35 since the second switching mechanism 35 is in the sixth state, air can be prevented from being sucked into the ventilation fan 32 through the humidifying rotor 36 from the fourth opening 31d and the fifth opening 31e.
  • the air sucked by the ventilation fan 32 is blown out toward the second opening 31b because the blowout switching mechanism 33 is in the second state.
  • the air blown toward the second opening 31b is blown out to the outdoor OT.
  • the humidification operation is an operation in which humidified air taken into the ventilation space SP2 via the humidification rotor 36 from the fourth opening 31d and the fifth opening 31e is supplied to the room RM.
  • the control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the first state, the first switching mechanism 34 in the fourth state, and the second switching mechanism 35 in the fifth state. Furthermore, the control unit 60 drives the humidification rotor 36, the heater 37, and the suction fan 38.
  • FIG. 11 is a diagram showing the air flow F3 within the ventilation device 30 during humidification operation.
  • the humidified air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d.
  • the ventilation fan 32 can be prevented from sucking air through the third opening 31c.
  • the humidified air sucked by the ventilation fan 32 is blown out toward the first opening 31a because the blowout switching mechanism 33 is in the first state.
  • the humidified air blown toward the first opening 31a is blown out to the ventilation hose 70 through the first opening 31a.
  • the humidified air blown toward the first opening 31a can be prevented from flowing into the ventilation space SP2 through the third opening 31c.
  • the humidified air blown into the ventilation hose 70 is supplied to the indoor RM through the indoor unit 10.
  • the humidified air taken into the ventilation space SP2 via the humidification rotor 36 is supplied to the indoor room RM from the fourth opening 31d and the fifth opening 31e.
  • the regeneration operation is an operation in which moisture adsorbed by the humidification rotor 36 is released.
  • the control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the second state, the first switching mechanism 34 in the fourth state, and the second switching mechanism 35 in the fifth state. Furthermore, the control unit 60 drives the heater 37 and the humidification rotor 36, and stops the suction fan 38.
  • FIG. 12 is a diagram showing the air flow F4 within the ventilation device 30 during regeneration operation.
  • the ventilation fan 32 when the ventilation fan 32 is driven, air from the outdoor OT is sucked into the ventilation space SP1 of the ventilation device 30 through the fourth opening 31d and the fifth opening 31e.
  • the sucked air joins in the ventilation space SP1 and flows above the humidification rotor 36.
  • the air flowing above the humidifying rotor 36 passes through the right half disk portion of the humidifying rotor 36 and flows below the humidifying rotor 36.
  • the heater 37 since the heater 37 is being driven, moisture is released from the humidifying rotor 36. Furthermore, since the heater 37 is being driven, the air flowing below the humidifying rotor 36 is humidified air.
  • the humidified air flowing below the humidifying rotor 36 flows below the ventilation fan 32 in the ventilation space SP2.
  • the humidified air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d.
  • the ventilation fan 32 can be prevented from sucking air through the third opening 31c.
  • the humidified air sucked by the ventilation fan 32 is blown out toward the second opening 31b because the blowout switching mechanism 33 is in the second state.
  • the humidified air blown toward the second opening 31b is blown out to the outdoor OT.
  • the dehumidification operation is an operation in which dry air taken into the ventilation space SP2 via the humidification rotor 36 from the fourth opening 31d and the fifth opening 31e is supplied to the room RM.
  • the control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the first state, the first switching mechanism 34 in the fourth state, and the second switching mechanism 35 in the fifth state. Further, the control unit 60 drives the humidification rotor 36 and stops the heater 37 and suction fan 38.
  • FIG. 13 is a diagram showing the air flow F5 within the ventilation device 30 during dehumidification operation.
  • air from the outdoor OT is sucked into the ventilation space SP1 of the ventilation device 30 through the fourth opening 31d and the fifth opening 31e.
  • the sucked air joins in the ventilation space SP1 and flows above the humidification rotor 36.
  • the air flowing above the humidifying rotor 36 passes through the right half disk portion of the humidifying rotor 36 that has adsorbed moisture, and flows below the humidifying rotor 36.
  • the heater 37 is stopped, the air flowing below the humidifying rotor 36 is dry air.
  • the second switching mechanism 35 Since the second switching mechanism 35 is in the fifth state, the dry air flowing below the humidifying rotor 36 flows below the ventilation fan 32 in the ventilation space SP2. The dry air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d. At this time, since the first switching mechanism 34 is in the fourth state, the ventilation fan 32 can be prevented from sucking air through the third opening 31c. The dry air sucked by the ventilation fan 32 is blown out toward the first opening 31a because the blowout switching mechanism 33 is in the first state. The dry air blown toward the first opening 31a is blown out to the ventilation hose 70 through the first opening 31a.
  • the dry air blown toward the first opening 31a can be prevented from flowing into the ventilation space SP2 through the third opening 31c.
  • the dry air blown into the ventilation hose 70 is supplied to the indoor RM through the indoor unit 10.
  • the dry air taken into the ventilation space SP2 via the humidifying rotor 36 is supplied to the indoor room RM from the fourth opening 31d and the fifth opening 31e.
  • the ventilation device 30 of this embodiment includes a casing 31, a ventilation fan 32, a blowout switching mechanism 33, a first switching mechanism 34, and a control section 60.
  • the casing 31 is formed with a first opening 31a and a second opening 31b.
  • the first opening 31a communicates with a ventilation hose 70 connected to the indoor RM.
  • the second opening 31b communicates with the outdoor OT.
  • the ventilation fan 32 is installed on a support base 50 that forms a ventilation space SP2 at the bottom inside the casing 31.
  • the ventilation fan 32 draws air from the ventilation space SP2 through the suction opening 50d formed in the support base 50, and blows air toward the first opening 31a or the second opening 31b.
  • the blowout switching mechanism 33 is capable of switching between a first state and a second state.
  • the first state is a state in which the ventilation fan 32 and the ventilation hose 70 are communicated with each other, and the ventilation fan 32 and the second opening 31b are not communicated with each other.
  • the second state is a state in which the ventilation fan 32 and the second opening 31b are communicated with each other, and the ventilation fan 32 and the ventilation hose 70 are not communicated with each other.
  • the first switching mechanism 34 is capable of switching between a third state and a fourth state.
  • the third state is a state in which the third opening 31c for communicating the ventilation space SP2 and the ventilation hose 70 without using the ventilation fan 32 allows the ventilation space SP2 and the ventilation hose 70 to communicate with each other.
  • the fourth state is a state in which the third opening 31c does not allow communication between the ventilation space SP2 and the ventilation hose 70.
  • the control unit 60 performs air supply operation.
  • the air supply operation is an operation that supplies air to the indoor RM.
  • the control unit 60 performs air supply operation by driving the ventilation fan 32 with the blowout switching mechanism 33 in the first state and the first switching mechanism 34 in the fourth state.
  • the control unit 60 performs exhaust operation.
  • the exhaust operation is an operation for exhausting air from the indoor RM.
  • the control unit 60 performs exhaust operation by driving the ventilation fan 32 with the blowout switching mechanism 33 in the second state and the first switching mechanism 34 in the third state.
  • air supply operation is performed by setting the blow-off switching mechanism 33 in the first state, setting the first switching mechanism 34 in the fourth state, and driving the ventilation fan 32 to supply air to the indoor RM.
  • the exhaust operation is an operation in which air is discharged from the indoor RM by setting the blow-off switching mechanism 33 to the second state, setting the first switching mechanism 34 to the third state, and driving the ventilation fan 32.
  • the ventilation device 30 can switch between supply and exhaust air with a simpler structure.
  • the ventilation device 30 of this embodiment further includes a humidification rotor 36.
  • the humidifying rotor 36 adsorbs moisture in the air.
  • the casing 31 further has a fourth opening 31d formed therein.
  • the fourth opening 31d communicates with the outdoor OT.
  • the control unit 60 performs humidification operation.
  • the humidification operation is an operation in which humidified air taken into the ventilation space SP2 from the fourth opening 31d via the humidification rotor 36 is supplied to the indoor room RM.
  • the control unit 60 performs humidification operation by driving the ventilation fan 32 with the blowout switching mechanism 33 in the first state and the first switching mechanism 34 in the fourth state.
  • the ventilation device 30 of this embodiment further includes a second switching mechanism 35.
  • the second switching mechanism 35 is capable of switching between a fifth state and a sixth state.
  • the fifth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are communicated with each other.
  • the sixth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are not communicated with each other.
  • the control unit 60 sets the second switching mechanism 35 to the fifth state and performs the air supply operation and the humidification operation.
  • the control unit 60 sets the second switching mechanism 35 to the sixth state and performs the exhaust operation.
  • the control unit 60 sets the second switching mechanism 35 to the sixth state and performs the exhaust operation.
  • the sixth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are not communicated with each other. As a result, since the ventilation fan 32 does not suck in air from the humidifying rotor 36 side, the ventilation device 30 can more effectively suck in air from the indoor RM (exhaust air from the indoor RM).
  • control unit 60 performs a regeneration operation.
  • the regeneration operation is an operation in which moisture adsorbed by the humidifying rotor 36 is released.
  • the control unit 60 performs regeneration operation with the blow-off switching mechanism 33 in the second state and the first switching mechanism 34 in the fourth state.
  • the ventilation device 30 can use the second opening 31b for both exhaust operation and regeneration operation.
  • the control unit 60 may switch the states of the blow-off switching mechanism 33 and the second switching mechanism 35 in conjunction with switching the state of the first switching mechanism 34 . Further, the control unit 60 may switch the states of the blow-off switching mechanism 33 and the first switching mechanism 34 in conjunction with switching the state of the second switching mechanism 35.
  • the ventilation device 30 can simplify the control of the switching mechanism.
  • the outdoor unit 20 and the ventilation device 30 are integrated.
  • the outdoor unit 20 and the ventilation device 30 may be separate bodies.
  • the ventilation device 30 is installed next to the outdoor unit 20, for example.
  • the blowout switching mechanism 33 switches between the first state and the second state by rotating the switching member 33a around the rotating shaft 33b.
  • the present invention is not limited to this, and the switching structure of the blowout switching mechanism 33 is arbitrary as long as it can switch between the first state and the second state.
  • the first switching mechanism 34 switches between the third state and the fourth state by rotating the switching member 34a around the rotating shaft 34b.
  • the present invention is not limited to this, and the switching structure of the first switching mechanism 34 is arbitrary as long as it can switch between the third state and the fourth state.
  • the second switching mechanism 35 switches between the fifth state and the sixth state by sliding the switching member 35a up and down.
  • the present invention is not limited to this, and the switching structure of the second switching mechanism 35 is arbitrary as long as it can switch between the fifth state and the sixth state.
  • the third opening 31c is formed in the support base 50 between the opening 50b and the switching member 33a when the blowout switching mechanism 33 is in the second state.
  • the third opening 31c may be formed in a side surface of the casing 31 at a location that directly communicates with the ventilation space SP2.
  • FIG. 14 is a diagram showing the position of the third opening 31c' in this modification.
  • the third opening 31c' is formed on the right side surface of the casing 31 below the hole that constitutes the fifth opening 31e.
  • the third opening 31c' is formed at a location that directly communicates with the ventilation space SP2.
  • the ventilation hose 70 is made to communicate with the first opening 31a and the third opening 31c' by branching the end of the ventilation hose 70 on the side of the ventilation device 30 into two parts.
  • the switching member 34a' of the first switching mechanism 34' is installed, for example, on the right side surface inside the casing 31.
  • the switching member 34a' is slid back and forth by a motor.
  • the first switching mechanism 34' can open and close the third opening 31c' by sliding the switching member 34a' back and forth.
  • the first switching mechanism 34' can switch between the third state and the fourth state by sliding the switching member 34a' back and forth.
  • the control unit 60 performs exhaust operation
  • the ventilation fan 32 when the ventilation fan 32 is driven, the first switching mechanism 34' is in the third state, so the air in the room RM flows through the ventilation hose 70 to the first opening 31a and the first opening 31a. 3 opening 31c'.
  • the air sucked into the first opening 31a is blocked because the blowout switching mechanism 33 is in the second state.
  • the air sucked into the third opening 31c' directly flows into the ventilation space SP2.
  • the third opening 31c' is a hole for communicating the ventilation space SP2 and the ventilation hose 70 without using the ventilation fan 32.
  • Ventilation device 31 Casing 31a First opening 31b Second opening 31c, 31c' Third opening 31d Fourth opening 32 Ventilation fan (blow fan) 33 Blowout switching mechanism 34, 34' First switching mechanism 35 Second switching mechanism 36 Humidification rotor 50 Support stand 50d Suction opening 60 Control unit 70 Ventilation hose OT Outdoor RM Indoor SP2 Ventilation space

Abstract

There is a demand to simplify a structure for switching between air supply and air discharge. This ventilation device comprises a ventilation fan, a jetting switching mechanism (33), a first switching mechanism (34), and a control unit. The jetting switching mechanism (33) is capable of switching between a first state in which a ventilation hose is allowed to communicate with the ventilation fan (32) but a second opening is not allowed to communicate with the ventilation fan (32), and a second state in which the second opening is allowed to communicate with the ventilation fan (32) but the ventilation hose is not allowed to communicate with the ventilation fan (32). The first switching mechanism (34) is capable of switching between a third state in which a third opening (31c) for allowing communication between a flow-through space and the ventilation hose in a manner that bypasses the ventilation fan (32) allows communication between the flow-through space and the ventilation hose, and a fourth state in which the third opening does not allow communication between the flow-through space and the ventilation hose. The control unit sets the jetting switching mechanism (33) in the first state and sets the first switching mechanism (34) in the fourth state to carry out an air supply operation. The control unit sets the jetting switching mechanism (33) in the second state and sets the first switching mechanism (34) in the third state to carry out an air discharge operation.

Description

換気装置ventilation system
 換気装置に関する。 Regarding ventilation equipment.
 特許文献1(特開2004-286432号公報)に示されているように、換気ファンを有する換気装置を室外に設置し、換気ホースを通じて、室内への給気と、室内からの排気を行う技術がある。 As shown in Patent Document 1 (Japanese Unexamined Patent Publication No. 2004-286432), a technology in which a ventilation device having a ventilation fan is installed outdoors, and air is supplied into the room and exhausted from the room through a ventilation hose. There is.
 特許文献1では、給気と排気を切り換えるために、大がかりなダンパ開閉機構が用いられている。そのため、給気と排気の切り換え構造の簡素化が望まれている。 In Patent Document 1, a large-scale damper opening/closing mechanism is used to switch between air supply and exhaust. Therefore, it is desired to simplify the structure for switching between air supply and exhaust.
 第1観点の換気装置は、ケーシングと、送風ファンと、吹出切換機構と、第1切換機構と、制御部と、を備える。ケーシングには、第1開口と、第2開口と、が形成されている。第1開口は、室内に接続される換気ホースに連通する。第2開口は、室外に連通する。送風ファンは、ケーシング内の底部に通風空間を形成する支持台に設置される。送風ファンは、支持台に形成された吸引開口を通じて、通風空間から吸引し、第1開口または第2開口に向けて送風する。吹出切換機構は、第1状態と、第2状態と、を切り換え可能である。第1状態は、送風ファンと換気ホースを連通させ、かつ、送風ファンと第2開口を連通させない状態である。第2状態は、送風ファンと第2開口を連通させ、かつ、送風ファンと換気ホースを連通させない状態である。第1切換機構は、第3状態と、第4状態と、を切り換え可能である。第3状態は、送風ファンを介さずに通風空間と換気ホースとを連通させるための第3開口が、通風空間と換気ホースとを連通させる状態である。第4状態は、第3開口が、通風空間と換気ホースとを連通させない状態である。制御部は、給気運転を行う。給気運転は、室内に空気を供給する運転である。制御部は、吹出切換機構を第1状態とし、第1切換機構を第4状態として、送風ファンを駆動することにより、給気運転を行う。制御部は、排気運転を行う。排気運転は、室内から空気を排出する運転である。制御部は、吹出切換機構を第2状態とし、第1切換機構を第3状態として、送風ファンを駆動することにより、排気運転を行う。 The ventilation device of the first aspect includes a casing, a blower fan, a blowout switching mechanism, a first switching mechanism, and a control section. A first opening and a second opening are formed in the casing. The first opening communicates with a ventilation hose connected to the room. The second opening communicates with the outside. The ventilation fan is installed on a support base that forms a ventilation space at the bottom inside the casing. The ventilation fan draws air from the ventilation space through a suction opening formed in the support base, and blows the air toward the first opening or the second opening. The blowout switching mechanism is capable of switching between a first state and a second state. The first state is a state in which the blower fan and the ventilation hose are in communication with each other, and the blower fan and the second opening are not in communication with each other. The second state is a state in which the blower fan and the second opening are in communication with each other, and the blower fan and the ventilation hose are not in communication with each other. The first switching mechanism is capable of switching between a third state and a fourth state. The third state is a state in which the third opening for communicating the ventilation space and the ventilation hose without using the ventilation fan causes the ventilation space and the ventilation hose to communicate with each other. The fourth state is a state in which the third opening does not allow communication between the ventilation space and the ventilation hose. The control unit performs air supply operation. The air supply operation is an operation that supplies air into the room. The control unit performs air supply operation by setting the blow-off switching mechanism to the first state, setting the first switching mechanism to the fourth state, and driving the blower fan. The control unit performs exhaust operation. The exhaust operation is an operation that exhausts air from the room. The control unit performs exhaust operation by driving the blower fan with the blow-off switching mechanism in the second state and the first switching mechanism in the third state.
 第1観点の換気装置では、給気運転は、吹出切換機構を第1状態とし、第1切換機構を第4状態として、送風ファンを駆動することにより、室内に空気を供給する運転である。排気運転は、吹出切換機構を第2状態とし、第1切換機構を第3状態として、送風ファンを駆動することにより、室内から空気を排出する運転である。その結果、換気装置は、より簡素な構造により、給気と排気を切り換えることができる。 In the ventilation system of the first aspect, the air supply operation is an operation in which air is supplied into the room by setting the blow-off switching mechanism to the first state, setting the first switching mechanism to the fourth state, and driving the ventilation fan. The exhaust operation is an operation in which air is discharged from the room by setting the blow-off switching mechanism to the second state, setting the first switching mechanism to the third state, and driving the blower fan. As a result, the ventilation device can switch between supply and exhaust air with a simpler structure.
 第2観点の換気装置は、第1観点の換気装置であって、加湿ロータをさらに備える。加湿ロータは、空気中の水分を吸着する。ケーシングには、さらに第4開口が形成されている。第4開口は、室外に連通する。制御部は、加湿運転を行う。加湿運転は、第4開口から加湿ロータを介して通風空間に取り入れた加湿空気を、室内に供給する運転である。制御部は、吹出切換機構を第1状態とし、第1切換機構を第4状態として、送風ファンを駆動することにより、加湿運転を行う。 The ventilation device according to the second aspect is the ventilation device according to the first aspect, and further includes a humidification rotor. The humidifying rotor adsorbs moisture in the air. A fourth opening is further formed in the casing. The fourth opening communicates with the outside. The control unit performs humidification operation. The humidification operation is an operation in which humidified air taken into the ventilation space from the fourth opening via the humidification rotor is supplied into the room. The control unit performs humidification operation by setting the blow-off switching mechanism to the first state, setting the first switching mechanism to the fourth state, and driving the blower fan.
 第3観点の換気装置は、第2観点の換気装置であって、第2切換機構をさらに備える。第2切換機構は、第5状態と、第6状態と、を切り換え可能である。第5状態は、加湿ロータと送風ファンとを連通させる状態である。第6状態は、加湿ロータと送風ファンとを連通させない状態である。制御部は、第2切換機構を第5状態として、給気運転および加湿運転を行う。制御部は、第2切換機構を第6状態として、排気運転を行う。 The ventilation device according to the third aspect is the ventilation device according to the second aspect, and further includes a second switching mechanism. The second switching mechanism is capable of switching between a fifth state and a sixth state. The fifth state is a state in which the humidifying rotor and the ventilation fan are communicated with each other. The sixth state is a state in which the humidifying rotor and the blower fan are not communicated with each other. The control unit sets the second switching mechanism to the fifth state and performs air supply operation and humidification operation. The control unit sets the second switching mechanism to the sixth state and performs the exhaust operation.
 第3観点の換気装置では、制御部は、第2切換機構を第6状態として、排気運転を行う。第6状態は、加湿ロータと送風ファンとを連通させない状態である。その結果、換気装置は、送風ファンが加湿ロータ側から空気を吸い込まないため、より効果的に室内の空気を吸い込む(室内から排気する)ことができる。 In the ventilation system according to the third aspect, the control unit sets the second switching mechanism to the sixth state and performs the exhaust operation. The sixth state is a state in which the humidifying rotor and the blower fan are not communicated with each other. As a result, since the ventilation fan does not suck in air from the humidifying rotor side, the ventilation device can more effectively suck in indoor air (exhaust air from the indoor room).
 第4観点の換気装置は、第1観点から第3観点のいずれかの換気装置であって、制御部は、再生運転を行う。再生運転は、加湿ロータに吸着した水分を放出させる運転である。制御部は、吹出切換機構を第2状態とし、第1切換機構を第4状態として、再生運転を行う。 The ventilation device according to the fourth aspect is any one of the ventilation devices according to the first to third aspects, and the control unit performs a regeneration operation. The regeneration operation is an operation in which moisture adsorbed by the humidification rotor is released. The control unit performs regeneration operation with the blow-off switching mechanism in the second state and the first switching mechanism in the fourth state.
 第4観点の換気装置は、このような構成により、第2開口を、排気運転と再生運転の両方に用いることができる。 With such a configuration, the ventilation device according to the fourth aspect can use the second opening for both exhaust operation and regeneration operation.
 第5観点の換気装置は、第3観点の換気装置であって、制御部は、第1切換機構の状態の切り換えに連動して、吹出切換機構および第2切換機構の状態を切り換える。または、制御部は、第2切換機構の状態の切り換えに連動して、吹出切換機構および第1切換機構の状態を切り換える。 The ventilation device according to the fifth aspect is the ventilation device according to the third aspect, in which the control unit switches the states of the blow-off switching mechanism and the second switching mechanism in conjunction with switching the state of the first switching mechanism. Alternatively, the control unit switches the states of the blow-off switching mechanism and the first switching mechanism in conjunction with switching the state of the second switching mechanism.
 第5観点の換気装置は、このような構成により、切換機構の制御を、単純化することができる。 With such a configuration, the ventilation device according to the fifth aspect can simplify control of the switching mechanism.
空気調和装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an air conditioner. 空気調和装置の冷媒回路を示す図である。It is a diagram showing a refrigerant circuit of an air conditioner. 換気装置の分解斜視図である。FIG. 2 is an exploded perspective view of the ventilation device. 換気装置の一部の構成部品の分解斜視図である。FIG. 2 is an exploded perspective view of some components of the ventilation system. 換気装置の断面図である。FIG. 2 is a cross-sectional view of the ventilation device. 換気装置の構成部品の一部を取り外した状態の上面図である。FIG. 3 is a top view of the ventilation system with some of its components removed. 換気装置の構成部品の一部を取り外した状態の上面図である。FIG. 3 is a top view of the ventilation system with some of its components removed. 空気調和装置の制御ブロック図である。It is a control block diagram of an air conditioner. 給気運転時の換気装置内の空気の流れを示す図である。FIG. 3 is a diagram showing the flow of air within the ventilation device during air supply operation. 排気運転時の換気装置内の空気の流れを示す図である。FIG. 3 is a diagram showing the flow of air within the ventilation device during exhaust operation. 加湿運転時の換気装置内の空気の流れを示す図である。It is a figure showing the flow of air in a ventilator during humidification operation. 再生運転時の換気装置内の空気の流れを示す図である。FIG. 3 is a diagram showing the flow of air within the ventilation device during regeneration operation. 除湿運転時の換気装置内の空気の流れを示す図である。FIG. 3 is a diagram showing the flow of air within the ventilation device during dehumidification operation. 変形例1Dにおける第3開口の位置を示す図である。It is a figure which shows the position of the 3rd opening in modification 1D.
 (1)全体構成
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを利用して、室内RMの空気調和を行う装置である。図1は、空気調和装置1の概略構成図である。図1に示すように、空気調和装置1は、主として、室内機10と、室外機20と、換気装置30と、を有する。
(1) Overall configuration The air conditioner 1 is a device that performs indoor RM air conditioning using a vapor compression type refrigeration cycle. FIG. 1 is a schematic configuration diagram of an air conditioner 1. As shown in FIG. As shown in FIG. 1, the air conditioner 1 mainly includes an indoor unit 10, an outdoor unit 20, and a ventilation device 30.
 図2は、空気調和装置1の冷媒回路40を示す図である。図2に示すように、室内機10内の室内冷媒流路43と、室外機20内の室外冷媒流路44とが、液冷媒連絡配管41およびガス冷媒連絡配管42によって接続されることにより、冷媒回路40が構成される。冷媒回路40では、室内RMの空気調和を行うために、蒸気圧縮式の冷凍サイクルが繰り返される。 FIG. 2 is a diagram showing the refrigerant circuit 40 of the air conditioner 1. As shown in FIG. 2, the indoor refrigerant flow path 43 in the indoor unit 10 and the outdoor refrigerant flow path 44 in the outdoor unit 20 are connected by the liquid refrigerant communication pipe 41 and the gas refrigerant communication pipe 42. A refrigerant circuit 40 is configured. In the refrigerant circuit 40, a vapor compression type refrigeration cycle is repeated in order to perform air conditioning of the indoor RM.
 空気調和装置1は、リモートコントローラ80を有する。リモートコントローラ80は、空気調和装置1に対して、運転の開始および停止等の指示を行う。リモートコントローラ80は、空気調和装置1から、現在の運転状態等の各種情報を受信することができる。 The air conditioner 1 has a remote controller 80. The remote controller 80 instructs the air conditioner 1 to start and stop operation, etc. The remote controller 80 can receive various information such as the current operating state from the air conditioner 1 .
 (2)詳細構成
 (2-1)室内機
 図1に示すように、室内機10は、室内RMに設置される。本実施形態では、室内機10は、室内RMの壁に設置される、壁掛型のユニットである。
(2) Detailed configuration (2-1) Indoor unit As shown in FIG. 1, the indoor unit 10 is installed in the indoor RM. In this embodiment, the indoor unit 10 is a wall-mounted unit installed on the wall of the indoor RM.
 図2に示すように、室内機10は、主として、室内熱交換器11と、室内ファン12と、室内制御部19と、を有する。また、室内機10は、各種センサ(図示省略)を有する。 As shown in FIG. 2, the indoor unit 10 mainly includes an indoor heat exchanger 11, an indoor fan 12, and an indoor control section 19. Moreover, the indoor unit 10 has various sensors (not shown).
 (2-1-1)室内熱交換器
 室内熱交換器11では、室内熱交換器11を流れる冷媒と、室内RMの空気との間で熱交換が行われる。図2に示すように、室内機10は、室内ファン12を駆動して、室内RMの空気を吸込口13aから吸い込む。吸い込まれた室内RMの空気は、室内熱交換器11を通過する。このとき、室内熱交換器11には、冷媒が流れているため、室内熱交換器11を流れる冷媒と、室内RMの空気との間で熱交換が行われる。図2に示すように、室内熱交換器11を通過した空気は、吹出口13bから吹き出される。
(2-1-1) Indoor Heat Exchanger In the indoor heat exchanger 11, heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 11 and the air in the indoor RM. As shown in FIG. 2, the indoor unit 10 drives the indoor fan 12 to suck air from the indoor RM through the suction port 13a. The indoor RM air sucked in passes through the indoor heat exchanger 11. At this time, since the refrigerant is flowing through the indoor heat exchanger 11, heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 11 and the air in the indoor RM. As shown in FIG. 2, the air that has passed through the indoor heat exchanger 11 is blown out from the outlet 13b.
 本実施形態では、室内熱交換器11は、複数の伝熱フィンと、複数の伝熱管と、を有するフィン・アンド・チューブ型熱交換器である。 In the present embodiment, the indoor heat exchanger 11 is a fin-and-tube heat exchanger that includes a plurality of heat transfer fins and a plurality of heat transfer tubes.
 図2に示すように、室内熱交換器11の一端は、冷媒配管を介して液冷媒連絡配管41と接続される。室内熱交換器11の他端は、冷媒配管を介してガス冷媒連絡配管42と接続される。冷房運転時には、室内熱交換器11に液冷媒連絡配管41側から冷媒が流入し、室内熱交換器11は冷媒の蒸発器として機能する。暖房運転時には、室内熱交換器11にガス冷媒連絡配管42側から冷媒が流入し、室内熱交換器11は冷媒の凝縮器として機能する。 As shown in FIG. 2, one end of the indoor heat exchanger 11 is connected to a liquid refrigerant communication pipe 41 via a refrigerant pipe. The other end of the indoor heat exchanger 11 is connected to a gas refrigerant communication pipe 42 via a refrigerant pipe. During cooling operation, refrigerant flows into the indoor heat exchanger 11 from the liquid refrigerant communication pipe 41 side, and the indoor heat exchanger 11 functions as a refrigerant evaporator. During heating operation, refrigerant flows into the indoor heat exchanger 11 from the gas refrigerant communication pipe 42 side, and the indoor heat exchanger 11 functions as a refrigerant condenser.
 (2-1-2)室内ファン
 室内ファン12は、室内熱交換器11に、室内RMの空気を供給するファンである。本実施形態では、室内ファン12は、クロスフローファンである。図2に示すように、室内ファン12は、室内ファンモータ12mによって駆動される。室内ファンモータ12mの回転数は、インバータによって制御可能である。
(2-1-2) Indoor fan The indoor fan 12 is a fan that supplies indoor RM air to the indoor heat exchanger 11. In this embodiment, the indoor fan 12 is a cross flow fan. As shown in FIG. 2, the indoor fan 12 is driven by an indoor fan motor 12m. The rotation speed of the indoor fan motor 12m can be controlled by an inverter.
 (2-1-3)室内制御部
 室内制御部19は、室内機10を構成する各部の動作を制御する。
(2-1-3) Indoor Control Unit The indoor control unit 19 controls the operation of each part constituting the indoor unit 10.
 室内制御部19は、室内ファンモータ12mを含む、室内機10が有する各種機器と、制御信号や情報のやりとりを行うことが可能となるように、電気的に接続されている。また、室内制御部19は、室内機10に設けられている各種センサと通信可能に接続されている。 The indoor control unit 19 is electrically connected to various devices included in the indoor unit 10, including the indoor fan motor 12m, so as to be able to exchange control signals and information. Further, the indoor control unit 19 is communicably connected to various sensors provided in the indoor unit 10.
 室内制御部19は、制御演算装置および記憶装置を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM、およびフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、室内機10を構成する各部の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。また、室内制御部19は、タイマーを有する。 The indoor control unit 19 has a control calculation device and a storage device. The control calculation device is a processor such as a CPU or GPU. The storage device is a storage medium such as RAM, ROM, and flash memory. The control arithmetic device reads a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part constituting the indoor unit 10. Further, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to a program. Moreover, the indoor control unit 19 has a timer.
 室内制御部19は、リモートコントローラ80から送信される各種信号を、受信可能に構成されている。各種信号には、例えば、運転の開始および停止を指示する信号や、各種設定に関する信号が含まれる。各種設定に関する信号には、例えば、設定温度や設定湿度に関する信号が含まれる。 The indoor control unit 19 is configured to be able to receive various signals transmitted from the remote controller 80. The various signals include, for example, signals instructing to start and stop driving, and signals related to various settings. Signals related to various settings include, for example, signals related to set temperature and set humidity.
 室内制御部19は、通信回線90を介し、室外機20の室外制御部29と、換気装置30の換気制御部39と、の間で各種信号等のやりとりを行う。室内制御部19、室外制御部29、および換気制御部39は、協働して制御部60として機能する。 The indoor control unit 19 exchanges various signals and the like between the outdoor control unit 29 of the outdoor unit 20 and the ventilation control unit 39 of the ventilation device 30 via the communication line 90. The indoor control section 19, the outdoor control section 29, and the ventilation control section 39 function together as a control section 60.
 (2-2)室外機
 図1に示すように、室外機20は、空気調和装置1が設置される建物の庭やベランダ等の室外OTに設置される。
(2-2) Outdoor Unit As shown in FIG. 1, the outdoor unit 20 is installed in an outdoor OT such as a garden or balcony of a building where the air conditioner 1 is installed.
 図2に示すように、室外機20は、主として、圧縮機21と、流路切換機構22と、アキュムレータ23と、室外熱交換器24と、室外膨張弁25と、室外ファン26と、室外制御部29と、を有する。また、室外機20は、各種センサ(図示省略)を有する。 As shown in FIG. 2, the outdoor unit 20 mainly includes a compressor 21, a flow path switching mechanism 22, an accumulator 23, an outdoor heat exchanger 24, an outdoor expansion valve 25, an outdoor fan 26, and an outdoor control It has a section 29. The outdoor unit 20 also includes various sensors (not shown).
 (2-2-1)圧縮機
 圧縮機21は、低圧の冷媒を吸入し、圧縮機構(図示せず)によって冷媒を圧縮して、圧縮した冷媒を吐出する。本実施形態では、圧縮機21は、ロータリ式やスクロール式等の容積圧縮機である。図2に示すように、圧縮機21の圧縮機構(図示せず)は、圧縮機モータ21mによって駆動される。圧縮機モータ21mの回転数は、インバータにより制御可能である。
(2-2-1) Compressor The compressor 21 sucks in low-pressure refrigerant, compresses the refrigerant using a compression mechanism (not shown), and discharges the compressed refrigerant. In this embodiment, the compressor 21 is a displacement compressor such as a rotary type or a scroll type. As shown in FIG. 2, the compression mechanism (not shown) of the compressor 21 is driven by a compressor motor 21m. The rotation speed of the compressor motor 21m can be controlled by an inverter.
 (2-2-2)流路切換機構
 流路切換機構22は、冷媒の流路を切り換えることで、冷媒回路40の状態を、第7状態と第8状態との間で変更する機構である。冷媒回路40が第7状態にある時には、室外熱交換器24が冷媒の凝縮器として機能し、室内熱交換器11が冷媒の蒸発器として機能する。冷媒回路40が第8状態にあるときには、室外熱交換器24が冷媒の蒸発器として機能し、室内熱交換器11が冷媒の凝縮器として機能する。
(2-2-2) Flow path switching mechanism The flow path switching mechanism 22 is a mechanism that changes the state of the refrigerant circuit 40 between the seventh state and the eighth state by switching the refrigerant flow path. . When the refrigerant circuit 40 is in the seventh state, the outdoor heat exchanger 24 functions as a refrigerant condenser, and the indoor heat exchanger 11 functions as a refrigerant evaporator. When the refrigerant circuit 40 is in the eighth state, the outdoor heat exchanger 24 functions as a refrigerant evaporator, and the indoor heat exchanger 11 functions as a refrigerant condenser.
 本実施形態では、流路切換機構22は、四路切換弁である。 In this embodiment, the flow path switching mechanism 22 is a four-way switching valve.
 流路切換機構22は、4つのポートを有している。流路切換機構22の第1ポートP1は、圧縮機21の吐出口に接続されている。流路切換機構22の第2ポートP2は、室外熱交換器24の一方の出入口に接続されている。流路切換機構22の第3ポートP3は、アキュムレータ23に接続されている。流路切換機構22の第4ポートP4は、室内熱交換器11の一方の出入口に接続されている。 The flow path switching mechanism 22 has four ports. The first port P1 of the flow path switching mechanism 22 is connected to the discharge port of the compressor 21. The second port P2 of the flow path switching mechanism 22 is connected to one entrance/exit of the outdoor heat exchanger 24. The third port P3 of the flow path switching mechanism 22 is connected to the accumulator 23. The fourth port P4 of the flow path switching mechanism 22 is connected to one of the entrances and exits of the indoor heat exchanger 11.
 冷房運転時には、流路切換機構22は冷媒回路40の状態を第7状態とする。言い換えると、冷房運転時には、流路切換機構22は、図2の流路切換機構22内の実線で示すように、第1ポートP1と第2ポートP2とを連通させ、第3ポートP3と第4ポートP4とを連通させる。 During cooling operation, the flow path switching mechanism 22 sets the state of the refrigerant circuit 40 to the seventh state. In other words, during cooling operation, the flow path switching mechanism 22 communicates with the first port P1 and the second port P2, and communicates with the third port P3 and the second port P2, as shown by the solid line inside the flow path switching mechanism 22 in FIG. 4 port P4.
 暖房運転時には、流路切換機構22は、冷媒回路40の状態を第8状態とする。言い換えると、暖房運転時には、流路切換機構22は、図2の流路切換機構22内の破線で示すように、第1ポートP1と第4ポートP4とを連通させ、第2ポートP2と第3ポートP3とを連通させる。 During heating operation, the flow path switching mechanism 22 sets the state of the refrigerant circuit 40 to the eighth state. In other words, during heating operation, the flow path switching mechanism 22 connects the first port P1 and the fourth port P4, and communicates the second port P2 and the fourth port P4, as shown by the broken line in the flow path switching mechanism 22 in FIG. 3 port P3.
 (2-2-3)アキュムレータ
 アキュムレータ23は、流入する冷媒を、ガス冷媒と液冷媒とに分離する気液分離機能を有する。図2に示すように、アキュムレータ23は、流路切換機構22の第3ポートP3と、圧縮機21の吸入口と、の間に設置される。アキュムレータ23に流入する冷媒は、ガス冷媒と液冷媒とに分離され、上部空間に集まるガス冷媒が、圧縮機21へと流出する。
(2-2-3) Accumulator The accumulator 23 has a gas-liquid separation function that separates the inflowing refrigerant into a gas refrigerant and a liquid refrigerant. As shown in FIG. 2, the accumulator 23 is installed between the third port P3 of the flow path switching mechanism 22 and the suction port of the compressor 21. The refrigerant flowing into the accumulator 23 is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant that collects in the upper space flows out to the compressor 21 .
 (2-2-4)室外熱交換器
 室外熱交換器24では、室外熱交換器24の内部を流れる冷媒と、室外OTの空気との間で熱交換が行われる。具体的には、図2に示すように、室外機20は、室外ファン26を駆動して、室外OTの空気を吸込口27aから吸い込む。吸い込まれた室外OTの空気は、室外熱交換器24を通過する。このとき、室外熱交換器24には、冷媒が流れているため、室外熱交換器24を流れる冷媒と、室外OTの空気との間で熱交換が行われる。室外熱交換器24を通過した空気は、吹出口27bから吹き出される。
(2-2-4) Outdoor Heat Exchanger In the outdoor heat exchanger 24, heat exchange is performed between the refrigerant flowing inside the outdoor heat exchanger 24 and the outdoor OT air. Specifically, as shown in FIG. 2, the outdoor unit 20 drives the outdoor fan 26 to suck in outdoor OT air from the suction port 27a. The outdoor OT air that is sucked in passes through the outdoor heat exchanger 24 . At this time, since the refrigerant is flowing through the outdoor heat exchanger 24, heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 24 and the outdoor OT air. The air that has passed through the outdoor heat exchanger 24 is blown out from the outlet 27b.
 本実施形態では、室外熱交換器24は、複数の伝熱フィンと、複数の伝熱管と、を有するフィン・アンド・チューブ型熱交換器である。 In the present embodiment, the outdoor heat exchanger 24 is a fin-and-tube type heat exchanger having a plurality of heat transfer fins and a plurality of heat transfer tubes.
 室外熱交換器24の一端は、冷媒配管を介して室外膨張弁25に接続されている。室外熱交換器24の他端は、冷媒配管を介して流路切換機構22の第2ポートP2に接続されている。 One end of the outdoor heat exchanger 24 is connected to an outdoor expansion valve 25 via a refrigerant pipe. The other end of the outdoor heat exchanger 24 is connected to the second port P2 of the flow path switching mechanism 22 via a refrigerant pipe.
 室外熱交換器24は、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。 The outdoor heat exchanger 24 functions as a refrigerant condenser during cooling operation, and functions as a refrigerant evaporator during heating operation.
 (2-2-5)室外膨張弁
 室外膨張弁25は、冷媒回路40を流れる冷媒の圧力や流量を調節するための機構である。本実施形態では、室外膨張弁25は、電子膨張弁である。
(2-2-5) Outdoor Expansion Valve The outdoor expansion valve 25 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the refrigerant circuit 40. In this embodiment, the outdoor expansion valve 25 is an electronic expansion valve.
 (2-2-6)室外ファン
 室外ファン26は、室外熱交換器24に空気を供給するファンである。本実施形態では、室外ファン26は、プロペラファンである。室外ファン26は、室外ファンモータ26mによって駆動される。室外ファンモータ26mの回転数は、インバータにより制御可能である。
(2-2-6) Outdoor Fan The outdoor fan 26 is a fan that supplies air to the outdoor heat exchanger 24. In this embodiment, the outdoor fan 26 is a propeller fan. The outdoor fan 26 is driven by an outdoor fan motor 26m. The rotation speed of the outdoor fan motor 26m can be controlled by an inverter.
 (2-2-7)室外制御部
 室外制御部29は、室外機20を構成する各部の動作を制御する。
(2-2-7) Outdoor Control Unit The outdoor control unit 29 controls the operation of each part constituting the outdoor unit 20.
 室外制御部29は、圧縮機モータ21m、流路切換機構22、室外膨張弁25、室外ファンモータ26mを含む、室外機20が有する各種機器と、制御信号や情報のやりとりを行うことが可能となるように、電気的に接続されている。また、室内制御部19は、室外機20に設けられている各種センサと通信可能に接続されている。 The outdoor control unit 29 is capable of exchanging control signals and information with various devices included in the outdoor unit 20, including the compressor motor 21m, the flow path switching mechanism 22, the outdoor expansion valve 25, and the outdoor fan motor 26m. are electrically connected so that Further, the indoor control unit 19 is communicably connected to various sensors provided in the outdoor unit 20.
 室外制御部29は、制御演算装置および記憶装置を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM、およびフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、室外機20を構成する各部の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。また、室外制御部29は、タイマーを有する。 The outdoor control unit 29 has a control calculation device and a storage device. The control calculation device is a processor such as a CPU or GPU. The storage device is a storage medium such as RAM, ROM, and flash memory. The control arithmetic device reads a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part constituting the outdoor unit 20. Further, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to a program. Moreover, the outdoor control unit 29 has a timer.
 室外制御部29は、通信回線90を介し、室内機10の室内制御部19と、換気装置30の換気制御部39と、の間で各種信号等のやりとりを行う。室内制御部19、室外制御部29、および換気制御部39は、協働して制御部60として機能する。 The outdoor control unit 29 exchanges various signals and the like between the indoor control unit 19 of the indoor unit 10 and the ventilation control unit 39 of the ventilation device 30 via the communication line 90. The indoor control section 19, the outdoor control section 29, and the ventilation control section 39 function together as a control section 60.
 (2-3)換気装置
 換気装置30は、室外機20と共に室外OTに設置される。本実施形態では、図1に示すように、換気装置30は、室外機20の上に取り付けられ、室外機20と一体化されている。換気装置30と室内機10とは、換気ホース70によって接続されている。
(2-3) Ventilation device The ventilation device 30 is installed in the outdoor OT together with the outdoor unit 20. In this embodiment, as shown in FIG. 1, the ventilation device 30 is attached on top of the outdoor unit 20 and is integrated with the outdoor unit 20. The ventilation device 30 and the indoor unit 10 are connected by a ventilation hose 70.
 図3は、換気装置30の分解斜視図である。図4は、換気装置30の一部の構成部品の分解斜視図である。図5は、換気装置30の断面図である。図6、7は、換気装置30の構成部品の一部を取り外した状態の上面図である。図2、3に示すように、換気装置30は、主として、ケーシング31と、換気ファン32(送風ファン)と、吹出切換機構33と、第1切換機構34と、第2切換機構35と、加湿ロータ36と、ヒータ37と、吸着ファン38と、換気制御部39と、を有する。 FIG. 3 is an exploded perspective view of the ventilation device 30. FIG. 4 is an exploded perspective view of some components of the ventilation system 30. FIG. 5 is a cross-sectional view of the ventilation device 30. 6 and 7 are top views of the ventilation device 30 with some of its components removed. As shown in FIGS. 2 and 3, the ventilation device 30 mainly includes a casing 31, a ventilation fan 32 (blow fan), a blowout switching mechanism 33, a first switching mechanism 34, a second switching mechanism 35, and a humidifier. It has a rotor 36, a heater 37, an adsorption fan 38, and a ventilation control section 39.
 (2-3-1)ケーシング
 図2、3に示すように、ケーシング31は、主として、換気ファン32と、吹出切換機構33と、第1切換機構34と、第2切換機構35と、加湿ロータ36と、ヒータ37と、吸着ファン38と、換気制御部39と、を収容する。
(2-3-1) Casing As shown in FIGS. 2 and 3, the casing 31 mainly includes a ventilation fan 32, a blowout switching mechanism 33, a first switching mechanism 34, a second switching mechanism 35, and a humidifying rotor. 36, a heater 37, an adsorption fan 38, and a ventilation control section 39.
 図3に示すように、ケーシング31には、第1開口31aと、第2開口31bと、第4開口31dと、第5開口31eと、第6開口31fと、第7開口31gと、が形成されている。第1開口31a、および第5開口31eは、ケーシング31の右方側面に形成されている。第2開口31b、および第4開口31dは、ケーシング31の後方側面に形成されている。第6開口31f、および第7開口31gは、ケーシング31の前方側面に形成されている。第1開口31aは、室内RMに接続される換気ホース70に連通する。第2開口31b、第4開口31d、第5開口31e、第6開口31f、および第7開口31gは、室外OTに連通する。第2開口31b、第4開口31d、第5開口31e、第6開口31f、および第7開口31gはそれぞれ、1つの孔から構成されていてもよいし、複数の孔から構成されていてもよい。 As shown in FIG. 3, the casing 31 has a first opening 31a, a second opening 31b, a fourth opening 31d, a fifth opening 31e, a sixth opening 31f, and a seventh opening 31g. has been done. The first opening 31a and the fifth opening 31e are formed on the right side surface of the casing 31. The second opening 31b and the fourth opening 31d are formed on the rear side surface of the casing 31. The sixth opening 31f and the seventh opening 31g are formed on the front side surface of the casing 31. The first opening 31a communicates with a ventilation hose 70 connected to the indoor RM. The second opening 31b, the fourth opening 31d, the fifth opening 31e, the sixth opening 31f, and the seventh opening 31g communicate with the outdoor OT. The second opening 31b, the fourth opening 31d, the fifth opening 31e, the sixth opening 31f, and the seventh opening 31g may each be composed of one hole or a plurality of holes. .
 第1開口31aは、換気ファン32を駆動することにより、換気ホース70を通じて、室内RMに空気を吹き出す、または、室内RMの空気を吸い込む、ための孔である。第2開口31bは、換気ファン32を駆動することにより、室外OTに空気を吹き出すための孔である。第4開口31dおよび第5開口31eは、換気ファン32を駆動することにより、室外OTの空気を吸い込むための孔である。第6開口31fは、吸着ファン38を駆動することにより、室外OTに空気を吹き出すための孔である。第7開口31gは、吸着ファン38を駆動することにより、室外OTの空気を吸い込むための孔である。 The first opening 31a is a hole for blowing out air into the indoor RM or sucking air from the indoor RM through the ventilation hose 70 by driving the ventilation fan 32. The second opening 31b is a hole through which air is blown out to the outdoor OT by driving the ventilation fan 32. The fourth opening 31d and the fifth opening 31e are holes for sucking in outdoor OT air by driving the ventilation fan 32. The sixth opening 31f is a hole through which air is blown out to the outdoor OT by driving the suction fan 38. The seventh opening 31g is a hole for sucking in outdoor OT air by driving the suction fan 38.
 図3、5に示すように、ケーシング31の内部には、支持台50が設置されている。支持台50は、ケーシング31内の上部に、加湿ロータ36の右側半円盤部分の上面が接する通風空間SP1を形成する。また、支持台50は、ケーシング31内の底部に、加湿ロータ36の右側半円盤部分の下面が接する通風空間SP2を形成する。支持台50には、円筒状部50aが設けられている。円筒状部50aには、第1開口31aに接続する開口50bと、第2開口31bに接続する開口50cと、が形成されている。円筒状部50aの内側には、換気ファン32が設置される。支持台50には、換気ファン32に空気を取り込むための吸引開口50dが形成されている。支持台50の円筒状部50aには、換気ファン32を覆うファンカバー51が取り付けられる。図4-7(特に、図7)に示すように、支持台50には、開口50bと、吹出切換機構33が第2状態である場合の切換部材33aと、の間に、第3開口31cが形成されている。第3開口31cは、換気ファン32を介さずに通風空間SP2と換気ホース70とを連通させるための孔である。換気ファン32を介さずに、通風空間SP2と換気ホース70とが連通するとは、図7に示すように、通風空間SP2と換気ホース70とが、換気ファン32の吹出空間Xを介さずに、連通することを意味する。 As shown in FIGS. 3 and 5, a support stand 50 is installed inside the casing 31. The support stand 50 forms a ventilation space SP1 in the upper part of the casing 31, with which the upper surface of the right half disk portion of the humidification rotor 36 comes into contact. Further, the support stand 50 forms a ventilation space SP2 at the bottom inside the casing 31, which is in contact with the lower surface of the right semicircular portion of the humidifying rotor 36. The support stand 50 is provided with a cylindrical portion 50a. An opening 50b connected to the first opening 31a and an opening 50c connected to the second opening 31b are formed in the cylindrical portion 50a. A ventilation fan 32 is installed inside the cylindrical portion 50a. A suction opening 50d for drawing air into the ventilation fan 32 is formed in the support base 50. A fan cover 51 that covers the ventilation fan 32 is attached to the cylindrical portion 50a of the support stand 50. As shown in FIGS. 4-7 (in particular, FIG. 7), the support base 50 has a third opening 31c between the opening 50b and the switching member 33a when the blowout switching mechanism 33 is in the second state. is formed. The third opening 31c is a hole for communicating the ventilation space SP2 and the ventilation hose 70 without using the ventilation fan 32. The ventilation space SP2 and the ventilation hose 70 communicate with each other without the ventilation fan 32, as shown in FIG. It means to communicate.
 図3、5に示すように、ケーシング31の底板には、円筒状部31hが設けられている。円筒状部31hの内側には、吸着ファン38が設置される。円筒状部31hの上面には、吸着ファン38を覆う支持台52が取り付けられている。支持台52には、吸着ファン38に空気を取り込むための吸引開口52aが形成されている。 As shown in FIGS. 3 and 5, the bottom plate of the casing 31 is provided with a cylindrical portion 31h. A suction fan 38 is installed inside the cylindrical portion 31h. A support base 52 that covers the suction fan 38 is attached to the upper surface of the cylindrical portion 31h. A suction opening 52a for drawing air into the suction fan 38 is formed in the support base 52.
 (2-3-2)換気ファン
 図3に示すように、換気ファン32は、支持台50の円筒状部50aの内側に設置される。換気ファン32は、支持台50に形成された吸引開口50dを通じて、通風空間SP2から吸引し、第1開口31aまたは第2開口31bに向けて送風する。本実施形態では、換気ファン32は、シロッコファンや、ターボファン等の遠心ファンである。換気ファン32は、換気ファンモータ32mによって駆動される。換気ファンモータ32mの回転数は、インバータにより制御可能である。
(2-3-2) Ventilation Fan As shown in FIG. 3, the ventilation fan 32 is installed inside the cylindrical portion 50a of the support base 50. The ventilation fan 32 draws air from the ventilation space SP2 through the suction opening 50d formed in the support base 50, and blows air toward the first opening 31a or the second opening 31b. In this embodiment, the ventilation fan 32 is a centrifugal fan such as a sirocco fan or a turbo fan. The ventilation fan 32 is driven by a ventilation fan motor 32m. The rotation speed of the ventilation fan motor 32m can be controlled by an inverter.
 (2-3-3)吹出切換機構
 図3に示すように、吹出切換機構33は、支持台50の円筒状部50aに取り付けられたファンカバー51に設けられている。図6、7に示すように、吹出切換機構33は、切換部材33aを有する。切換部材33aは、モータによって、回転軸33bを中心に回転する。吹出切換機構33は、回転軸33bを中心に切換部材33aを回転させることにより、第1状態と、第2状態と、を切り換え可能である。第1状態は、換気ファン32と換気ホース70を連通させ、かつ、換気ファン32と第2開口31bを連通させない状態である。換気ファン32と、換気ホース70とが連通するとは、図6に示すように、換気ファン32の吹出空間Xと、換気ホース70とが連通することを意味する。図6は、吹出切換機構33が第1状態である場合を示している。第2状態は、換気ファン32と第2開口31bを連通させ、かつ、換気ファン32と換気ホース70を連通させない状態である。換気ファン32と、第2開口31bとが連通するとは、図7に示すように、換気ファン32の吹出空間Xと、第2開口31bとが連通することを意味する。図7は、吹出切換機構33が第2状態である場合を示している。
(2-3-3) Air Outlet Switching Mechanism As shown in FIG. 3, the air outlet switching mechanism 33 is provided on the fan cover 51 attached to the cylindrical portion 50a of the support base 50. As shown in FIGS. 6 and 7, the blowout switching mechanism 33 includes a switching member 33a. The switching member 33a is rotated by a motor around a rotating shaft 33b. The blowout switching mechanism 33 can be switched between a first state and a second state by rotating the switching member 33a around the rotating shaft 33b. The first state is a state in which the ventilation fan 32 and the ventilation hose 70 are communicated with each other, and the ventilation fan 32 and the second opening 31b are not communicated with each other. The communication between the ventilation fan 32 and the ventilation hose 70 means that the outlet space X of the ventilation fan 32 and the ventilation hose 70 communicate with each other, as shown in FIG. FIG. 6 shows a case where the blowout switching mechanism 33 is in the first state. The second state is a state in which the ventilation fan 32 and the second opening 31b are communicated with each other, and the ventilation fan 32 and the ventilation hose 70 are not communicated with each other. The communication between the ventilation fan 32 and the second opening 31b means that the outlet space X of the ventilation fan 32 and the second opening 31b communicate with each other, as shown in FIG. FIG. 7 shows a case where the blowout switching mechanism 33 is in the second state.
 (2-3-4)第1切換機構
 図4、5に示すように、第1切換機構34は、支持台50の下面に設置される。第1切換機構34は、扇状の切換部材34aを有する。切換部材34aは、モータによって、回転軸34bを中心に回転する。第1切換機構34は、回転軸34bを中心に切換部材34aを回転させることにより、第3状態と、第4状態と、を切り換え可能である。第3状態は、第3開口31cが、通風空間SP2と換気ホース70とを連通させる状態である。図4は、第1切換機構34が第3状態である場合を示している。第4状態は、第3開口31cが、通風空間SP2と換気ホース70とを連通させない状態である。図5は、第1切換機構34が第4状態である場合を示している。
(2-3-4) First Switching Mechanism As shown in FIGS. 4 and 5, the first switching mechanism 34 is installed on the lower surface of the support base 50. The first switching mechanism 34 has a fan-shaped switching member 34a. The switching member 34a is rotated by a motor around a rotating shaft 34b. The first switching mechanism 34 can switch between the third state and the fourth state by rotating the switching member 34a around the rotating shaft 34b. The third state is a state in which the third opening 31c connects the ventilation space SP2 and the ventilation hose 70. FIG. 4 shows a case where the first switching mechanism 34 is in the third state. The fourth state is a state in which the third opening 31c does not allow communication between the ventilation space SP2 and the ventilation hose 70. FIG. 5 shows a case where the first switching mechanism 34 is in the fourth state.
 (2-3-5)第2切換機構
 図3に示すように、第2切換機構35は、ケーシング31の底板に設置される。第2切換機構35は、直方体状の切換部材35a,35bを有する。切換部材35a,35bは、それぞれの高さが、ケーシング31の底板の上面と、支持台50の下面との間の距離よりも小さくなるように、構成されている。さらに、切換部材35a,35bは、これらの高さの合計が、ケーシング31の底板の上面と、支持台50の下面との間の距離以上となるように、構成されている。切換部材35bは、ケーシング31の底板に固定されている。切換部材35aは、モータによって、上下にスライドする。第2切換機構35は、切換部材35aを上下にスライドさせることにより、第5状態と、第6状態と、を切り換え可能である。第5状態は、加湿ロータ36と換気ファン32とを連通させる状態である。第2切換機構35が第5状態であるとき、切換部材35aの下面は、ケーシング31の底板に接触している。第2切換機構35が第5状態であるとき、換気ファン32が駆動すると、加湿ロータ36から換気ファン32に向けて、切換部材35a,35bの上側を空気が流れる。図3は、第2切換機構35が第5状態である場合を示している。第6状態は、加湿ロータ36と換気ファン32とを連通させない状態である。第2切換機構35が第6状態であるとき、切換部材35aの上面は、支持台50の下面に接触している。第2切換機構35が第6状態であるとき、換気ファン32が駆動しても、加湿ロータ36から換気ファン32に向かう空気の流れは、遮断される。図5は、第2切換機構35が第6状態である場合を示している。
(2-3-5) Second Switching Mechanism As shown in FIG. 3, the second switching mechanism 35 is installed on the bottom plate of the casing 31. The second switching mechanism 35 has rectangular parallelepiped-shaped switching members 35a and 35b. The switching members 35a and 35b are configured such that their respective heights are smaller than the distance between the top surface of the bottom plate of the casing 31 and the bottom surface of the support base 50. Further, the switching members 35a and 35b are configured such that the total height thereof is equal to or greater than the distance between the upper surface of the bottom plate of the casing 31 and the lower surface of the support base 50. The switching member 35b is fixed to the bottom plate of the casing 31. The switching member 35a slides up and down by a motor. The second switching mechanism 35 can switch between the fifth state and the sixth state by sliding the switching member 35a up and down. The fifth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are communicated with each other. When the second switching mechanism 35 is in the fifth state, the lower surface of the switching member 35a is in contact with the bottom plate of the casing 31. When the second switching mechanism 35 is in the fifth state, when the ventilation fan 32 is driven, air flows from the humidification rotor 36 toward the ventilation fan 32 above the switching members 35a and 35b. FIG. 3 shows a case where the second switching mechanism 35 is in the fifth state. The sixth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are not communicated with each other. When the second switching mechanism 35 is in the sixth state, the upper surface of the switching member 35a is in contact with the lower surface of the support base 50. When the second switching mechanism 35 is in the sixth state, even if the ventilation fan 32 is driven, the flow of air from the humidification rotor 36 toward the ventilation fan 32 is blocked. FIG. 5 shows a case where the second switching mechanism 35 is in the sixth state.
 (2-3-6)加湿ロータ
 図3に示すように、加湿ロータ36は、円盤状の部材である。加湿ロータ36には、例えば、ゼオライト、シリカゲル、およびアルミナ等が用いられる。ヒータ37によって加熱されていない室外OTの空気が、加湿ロータ36を通過するとき、加湿ロータ36は空気中の水分を吸着する(水分を吸着された空気は、乾燥空気となる)。一方、ヒータ37によって加熱された室外OTの空気が、水分を吸着した加湿ロータ36を通過するとき、加湿ロータ36から水分が放出され、加熱された空気に水分が供給される(水分が供給された空気は、加湿空気となる)。加湿ロータ36は、加湿ロータモータ36mによって、回転軸36cを中心に回転する。加湿ロータモータ36mの回転数は、インバータにより制御可能である。
(2-3-6) Humidifying Rotor As shown in FIG. 3, the humidifying rotor 36 is a disc-shaped member. The humidifying rotor 36 is made of, for example, zeolite, silica gel, alumina, or the like. When outdoor OT air that has not been heated by the heater 37 passes through the humidifying rotor 36, the humidifying rotor 36 adsorbs moisture in the air (the air that has absorbed moisture becomes dry air). On the other hand, when outdoor OT air heated by the heater 37 passes through the humidifying rotor 36 that has adsorbed moisture, moisture is released from the humidifying rotor 36 and moisture is supplied to the heated air (moisture is not supplied). air becomes humidified air). The humidifying rotor 36 is rotated about a rotating shaft 36c by a humidifying rotor motor 36m. The rotation speed of the humidifying rotor motor 36m can be controlled by an inverter.
 加湿ロータ36が回転することにより、加湿ロータ36は、例えば、加湿ロータ36の左側半円盤部分を通過する空気から吸着した水分を、加湿ロータ36の右側半円盤部分を通過する、ヒータ37によって加熱された空気に供給することができる。 As the humidifying rotor 36 rotates, the humidifying rotor 36 heats, for example, moisture adsorbed from the air passing through the left half disk portion of the humidifying rotor 36 by the heater 37 passing through the right half disk portion of the humidifying rotor 36. can be supplied to the air.
 (2-3-7)ヒータ
 図2、5に示すように、ヒータ37は、第4開口31dおよび第5開口31eと、加湿ロータ36と、の間に配置されている。第4開口31dおよび第5開口31eから吸い込まれた室外OTの空気は、ヒータ37を通過した後、加湿ロータ36を通過する。ヒータ37によって加熱された室外OTの空気が、水分を吸着した加湿ロータ36を通過すると、通過した空気は加湿空気となる。ヒータ37は、出力を変化させることができ、ヒータ37を通過した空気の温度を出力に応じて変化させることができる。加湿ロータ36は、特定の温度範囲内では、加湿ロータ36を通過する空気の温度が高いほど脱離する水分量が多くなる。
(2-3-7) Heater As shown in FIGS. 2 and 5, the heater 37 is disposed between the fourth opening 31d, the fifth opening 31e, and the humidifying rotor 36. The outdoor OT air sucked in through the fourth opening 31d and the fifth opening 31e passes through the heater 37 and then the humidification rotor 36. When the outdoor OT air heated by the heater 37 passes through the humidifying rotor 36 that has adsorbed moisture, the passed air becomes humidified air. The heater 37 can change the output, and the temperature of the air passing through the heater 37 can be changed depending on the output. Within a specific temperature range, the higher the temperature of the air passing through the humidifying rotor 36, the greater the amount of moisture desorbed from the humidifying rotor 36.
 (2-3-8)吸着ファン
 図3に示すように、吸着ファン38は、ケーシング31の円筒状部31hの内側に設置される。吸着ファン38は、第7開口31gから室外OTの空気を吸い込み、加湿ロータ36を通過させる。吸着ファン38は、加湿ロータ36を通過した空気を、支持台52に形成された吸引開口52aを通じて吸引し、第6開口31fに向けて吹き出す。吸着ファン38は、加湿ロータ36に室外OTの空気を通過させることにより、加湿ロータ36に水分を吸着させる。本実施形態では、吸着ファン38は、シロッコファンや、ターボファン等の遠心ファンである。吸着ファン38は、吸着ファンモータ38mよって駆動される。吸着ファンモータ38mの回転数は、インバータにより制御可能である。
(2-3-8) Suction Fan As shown in FIG. 3, the suction fan 38 is installed inside the cylindrical portion 31h of the casing 31. The suction fan 38 sucks outdoor OT air through the seventh opening 31g and causes it to pass through the humidifying rotor 36. The suction fan 38 sucks the air that has passed through the humidifying rotor 36 through a suction opening 52a formed in the support base 52, and blows it out toward the sixth opening 31f. The suction fan 38 causes the humidifying rotor 36 to adsorb moisture by passing outdoor OT air through the humidifying rotor 36 . In this embodiment, the suction fan 38 is a centrifugal fan such as a sirocco fan or a turbo fan. The suction fan 38 is driven by a suction fan motor 38m. The rotation speed of the suction fan motor 38m can be controlled by an inverter.
 (2-3-9)換気制御部
 換気制御部39は、換気装置30を構成する各部の動作を制御する。
(2-3-9) Ventilation Control Unit The ventilation control unit 39 controls the operation of each part constituting the ventilation device 30.
 換気制御部39は、換気ファンモータ32m、吹出切換機構33の、第1切換機構34、第2切換機構35、加湿ロータモータ36m、ヒータ37、および吸着ファンモータ38mを含む、換気装置30が有する各種機器と、制御信号や情報のやりとりを行うことが可能となるように、電気的に接続されている。また、換気制御部39は、換気装置30に設けられている各種センサと通信可能に接続されている。 The ventilation control unit 39 controls various components of the ventilation device 30, including a ventilation fan motor 32m, a blowout switching mechanism 33, a first switching mechanism 34, a second switching mechanism 35, a humidification rotor motor 36m, a heater 37, and an adsorption fan motor 38m. It is electrically connected to the device so that control signals and information can be exchanged. Further, the ventilation control unit 39 is communicably connected to various sensors provided in the ventilation device 30.
 換気制御部39は、制御演算装置および記憶装置を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM、およびフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、換気装置30を構成する各部の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。また、換気制御部39は、タイマーを有する。 The ventilation control unit 39 has a control calculation device and a storage device. The control calculation device is a processor such as a CPU or GPU. The storage device is a storage medium such as RAM, ROM, and flash memory. The control arithmetic device reads a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part constituting the ventilation device 30. Further, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to a program. Further, the ventilation control unit 39 has a timer.
 換気制御部39は、通信回線90を介し、室内機10の室内制御部19と、室外機20の室外制御部29と、の間で各種信号等のやりとりを行う。室内制御部19、室外制御部29、および換気制御部39は、協働して制御部60として機能する。 The ventilation control unit 39 exchanges various signals and the like between the indoor control unit 19 of the indoor unit 10 and the outdoor control unit 29 of the outdoor unit 20 via the communication line 90. The indoor control section 19, the outdoor control section 29, and the ventilation control section 39 function together as a control section 60.
 (2-4)制御部
 図8は、空気調和装置1の制御ブロック図である。図8に示すように、制御部60は、室内機10の室内制御部19と、室外機20の室外制御部29と、換気装置30の換気制御部39とが、通信回線90を介して通信可能に接続されることによって構成されている。制御部60は、室内制御部19、室外制御部29、および換気制御部39の制御演算装置が、記憶装置に記憶されたプログラムを実行することで、空気調和装置1全体の動作を制御する。
(2-4) Control Unit FIG. 8 is a control block diagram of the air conditioner 1. As shown in FIG. 8, the control unit 60 allows the indoor control unit 19 of the indoor unit 10, the outdoor control unit 29 of the outdoor unit 20, and the ventilation control unit 39 of the ventilation device 30 to communicate via a communication line 90. It is configured by being able to be connected. The control unit 60 controls the operation of the entire air conditioner 1 by causing the control calculation devices of the indoor control unit 19, the outdoor control unit 29, and the ventilation control unit 39 to execute programs stored in the storage device.
 図8に示すように、制御部60は、室内ファンモータ12m、圧縮機モータ21m、流路切換機構22、室外膨張弁25、室外ファンモータ26m、換気ファンモータ32m、吹出切換機構33、第1切換機構34、第2切換機構35、加湿ロータモータ36m、ヒータ37、および吸着ファンモータ38mを含む、室内機10、室外機20、および換気装置30の各種機器と、制御信号や情報のやりとりを行うことが可能となるように、電気的に接続されている。また、制御部60は、室内機10、室外機20、および換気装置30に設けられている各種センサと通信可能に接続されている。 As shown in FIG. 8, the control unit 60 includes an indoor fan motor 12m, a compressor motor 21m, a flow path switching mechanism 22, an outdoor expansion valve 25, an outdoor fan motor 26m, a ventilation fan motor 32m, a blowout switching mechanism 33, a first Exchanges control signals and information with various devices of the indoor unit 10, the outdoor unit 20, and the ventilation system 30, including the switching mechanism 34, the second switching mechanism 35, the humidifying rotor motor 36m, the heater 37, and the suction fan motor 38m. electrically connected so that it is possible to Further, the control unit 60 is communicably connected to various sensors provided in the indoor unit 10, the outdoor unit 20, and the ventilation device 30.
 制御部60は、各種センサの計測信号や、室内制御部19がリモートコントローラ80から受信する指令等に基づいて、空気調和装置1の運転の開始および停止や、空気調和装置1の各種機器の動作を制御する。また、制御部60は、今の運転状態等の情報や、各種報知を、リモートコントローラ80に送信することができる。 The control unit 60 starts and stops the operation of the air conditioner 1 and controls the operation of various devices in the air conditioner 1 based on measurement signals from various sensors and commands that the indoor control unit 19 receives from the remote controller 80. control. Further, the control unit 60 can transmit information such as the current operating state and various notifications to the remote controller 80.
 制御部60は、主として、給気運転、排気運転、加湿運転、再生運転、および除湿運転を行う。 The control unit 60 mainly performs air supply operation, exhaust operation, humidification operation, regeneration operation, and dehumidification operation.
 (2-4-1)給気運転
 給気運転は、室内RMに室外OTの空気を供給する運転である。制御部60は、吹出切換機構33を第1状態とし、第1切換機構34を第4状態とし、第2切換機構35を第5状態として、換気ファン32を駆動する。さらに、制御部60は、加湿ロータ36、ヒータ37、および吸着ファン38を停止する。
(2-4-1) Air supply operation Air supply operation is an operation that supplies outdoor OT air to the indoor RM. The control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the first state, the first switching mechanism 34 in the fourth state, and the second switching mechanism 35 in the fifth state. Further, the control unit 60 stops the humidifying rotor 36, the heater 37, and the suction fan 38.
 図9は、給気運転時の換気装置30内の空気の流れF1を示す図である。図9に示すように、換気ファン32が駆動すると、室外OTの空気が、第4開口31dおよび第5開口31eから、換気装置30の通風空間SP1に吸い込まれる。吸い込まれた空気は、通風空間SP1で合流し、加湿ロータ36の上方に流れる。加湿ロータ36の上方に流れた空気は、加湿ロータ36の右側半円盤部分を通過し、加湿ロータ36の下方に流れる。加湿ロータ36の下方に流れた空気は、第2切換機構35が第5状態であるため、通風空間SP2内を、換気ファン32の下方に流れる。換気ファン32の下方に流れた空気は、吸引開口50dを通じて、換気ファン32によって吸引される。このとき、第1切換機構34が第4状態であるため、換気ファン32が、第3開口31cを通じて、空気を吸い込むことを防止することができる。換気ファン32によって吸引された空気は、吹出切換機構33が第1状態であるため、第1開口31aに向けて吹き出される。第1開口31aに向けて吹き出された空気は、第1開口31aを通じて、換気ホース70に吹き出される。このとき、第1切換機構34が第4状態であるため、第1開口31aに向けて吹き出された空気が、第3開口31cを通じて、通風空間SP2に流入することを防止することができる。換気ホース70に吹き出された空気は、室内機10を通じて、室内RMに供給される。 FIG. 9 is a diagram showing the air flow F1 within the ventilation device 30 during air supply operation. As shown in FIG. 9, when the ventilation fan 32 is driven, air from the outdoor OT is sucked into the ventilation space SP1 of the ventilation device 30 through the fourth opening 31d and the fifth opening 31e. The sucked air joins in the ventilation space SP1 and flows above the humidification rotor 36. The air flowing above the humidifying rotor 36 passes through the right half disk portion of the humidifying rotor 36 and flows below the humidifying rotor 36. Since the second switching mechanism 35 is in the fifth state, the air flowing below the humidifying rotor 36 flows below the ventilation fan 32 in the ventilation space SP2. The air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d. At this time, since the first switching mechanism 34 is in the fourth state, the ventilation fan 32 can be prevented from sucking air through the third opening 31c. The air sucked by the ventilation fan 32 is blown out toward the first opening 31a because the blowout switching mechanism 33 is in the first state. The air blown toward the first opening 31a is blown out to the ventilation hose 70 through the first opening 31a. At this time, since the first switching mechanism 34 is in the fourth state, the air blown toward the first opening 31a can be prevented from flowing into the ventilation space SP2 through the third opening 31c. The air blown into the ventilation hose 70 is supplied to the indoor RM through the indoor unit 10.
 その結果、室内RMに室外OTの空気が供給される。 As a result, outdoor OT air is supplied to the indoor RM.
 (2-4-2)排気運転
 排気運転は、室内RMから空気を排出する運転である。制御部60は、吹出切換機構33を第2状態とし、第1切換機構34を第3状態とし、第2切換機構35を第6状態として、換気ファン32を駆動する。さらに、制御部60は、加湿ロータ36、ヒータ37、および吸着ファン38を停止する。
(2-4-2) Exhaust operation Exhaust operation is an operation that exhausts air from the indoor RM. The control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the second state, the first switching mechanism 34 in the third state, and the second switching mechanism 35 in the sixth state. Further, the control unit 60 stops the humidifying rotor 36, the heater 37, and the suction fan 38.
 図10は、排気運転時の換気装置30内の空気の流れF2を示す図である。図10に示すように、換気ファン32が駆動すると、室内RMの空気が、換気ホース70を通じて、第1開口31aに吸い込まれる。吸い込まれた空気は、吹出切換機構33が第2状態であり、第1切換機構34が第3状態であるため、第3開口31cを通じて、通風空間SP2に流入する。通風空間SP2に流入した空気は、換気ファン32の下方に流れる。換気ファン32の下方に流れた空気は、吸引開口50dを通じて、換気ファン32によって吸引される。このとき、第2切換機構35が第6状態であるため、第4開口31dおよび第5開口31eから、加湿ロータ36を通じて、換気ファン32に空気が吸い込まれることを防止することができる。換気ファン32によって吸引された空気は、吹出切換機構33が第2状態であるため、第2開口31bに向けて吹き出される。第2開口31bに向けて吹き出された空気は、室外OTに吹き出される。 FIG. 10 is a diagram showing the air flow F2 within the ventilation device 30 during exhaust operation. As shown in FIG. 10, when the ventilation fan 32 is driven, air in the room RM is sucked into the first opening 31a through the ventilation hose 70. Since the blowout switching mechanism 33 is in the second state and the first switching mechanism 34 is in the third state, the sucked air flows into the ventilation space SP2 through the third opening 31c. The air that has entered the ventilation space SP2 flows below the ventilation fan 32. The air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d. At this time, since the second switching mechanism 35 is in the sixth state, air can be prevented from being sucked into the ventilation fan 32 through the humidifying rotor 36 from the fourth opening 31d and the fifth opening 31e. The air sucked by the ventilation fan 32 is blown out toward the second opening 31b because the blowout switching mechanism 33 is in the second state. The air blown toward the second opening 31b is blown out to the outdoor OT.
 その結果、室内RMから空気が排出される。 As a result, air is exhausted from the indoor RM.
 (2-4-3)加湿運転
 加湿運転は、第4開口31dおよび第5開口31eから、加湿ロータ36を介して通風空間SP2に取り入れた加湿空気を、室内RMに供給する運転である。制御部60は、吹出切換機構33を第1状態とし、第1切換機構34を第4状態とし、第2切換機構35を第5状態として、換気ファン32を駆動する。さらに、制御部60は、加湿ロータ36、ヒータ37、および吸着ファン38を駆動する。
(2-4-3) Humidification Operation The humidification operation is an operation in which humidified air taken into the ventilation space SP2 via the humidification rotor 36 from the fourth opening 31d and the fifth opening 31e is supplied to the room RM. The control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the first state, the first switching mechanism 34 in the fourth state, and the second switching mechanism 35 in the fifth state. Furthermore, the control unit 60 drives the humidification rotor 36, the heater 37, and the suction fan 38.
 図11は、加湿運転時の換気装置30内の空気の流れF3を示す図である。 FIG. 11 is a diagram showing the air flow F3 within the ventilation device 30 during humidification operation.
 図11の左側に示すように、吸着ファン38が駆動すると、室外OTの空気が、第7開口31gから、ケーシング31内の底部に吸い込まれる。吸い込まれた空気は、加湿ロータ36の左側半円盤部分を通過し、加湿ロータ36の上方に流れる。このとき、加湿ロータ36に、空気中の水分が吸着する。加湿ロータ36の上方に流れた空気は、吸着ファン38の上方に流れる。吸着ファン38の上方に流れた空気は、吸引開口52aを通じて、吸着ファン38によって吸引される。吸着ファン38によって吸引された空気は、第6開口31fに向けて吹き出される。第6開口31fに向けて吹き出された空気は、室外OTに吹き出される。 As shown on the left side of FIG. 11, when the suction fan 38 is driven, air from the outdoor OT is sucked into the bottom of the casing 31 through the seventh opening 31g. The sucked air passes through the left half disk portion of the humidifying rotor 36 and flows above the humidifying rotor 36. At this time, the humidifying rotor 36 adsorbs moisture in the air. The air flowing above the humidifying rotor 36 flows above the suction fan 38. The air flowing above the suction fan 38 is sucked by the suction fan 38 through the suction opening 52a. The air sucked by the suction fan 38 is blown out toward the sixth opening 31f. The air blown toward the sixth opening 31f is blown out to the outdoor OT.
 一方、図11の右側に示すように、換気ファン32が駆動すると、室外OTの空気が、第4開口31dおよび第5開口31eから、換気装置30の通風空間SP1に吸い込まれる。吸い込まれた空気は、通風空間SP1で合流し、加湿ロータ36の上方に流れる。加湿ロータ36の上方に流れた空気は、水分を吸着した加湿ロータ36の右側半円盤部分を通過し、加湿ロータ36の下方に流れる。このとき、ヒータ37が駆動しているため、加湿ロータ36の下方に流れた空気は、加湿空気である。加湿ロータ36の下方に流れた加湿空気は、第2切換機構35が第5状態であるため、通風空間SP2内を、換気ファン32の下方に流れる。換気ファン32の下方に流れた加湿空気は、吸引開口50dを通じて、換気ファン32によって吸引される。このとき、第1切換機構34が第4状態であるため、換気ファン32が、第3開口31cを通じて、空気を吸い込むことを防止することができる。換気ファン32によって吸引された加湿空気は、吹出切換機構33が第1状態であるため、第1開口31aに向けて吹き出される。第1開口31aに向けて吹き出された加湿空気は、第1開口31aを通じて、換気ホース70に吹き出される。このとき、第1切換機構34が第4状態であるため、第1開口31aに向けて吹き出された加湿空気が、第3開口31cを通じて、通風空間SP2に流入することを防止することができる。換気ホース70に吹き出された加湿空気は、室内機10を通じて、室内RMに供給される。 On the other hand, as shown on the right side of FIG. 11, when the ventilation fan 32 is driven, air from the outdoor OT is sucked into the ventilation space SP1 of the ventilation device 30 through the fourth opening 31d and the fifth opening 31e. The sucked air joins in the ventilation space SP1 and flows above the humidification rotor 36. The air flowing above the humidifying rotor 36 passes through the right half disk portion of the humidifying rotor 36 that has adsorbed moisture, and flows below the humidifying rotor 36. At this time, since the heater 37 is being driven, the air flowing below the humidifying rotor 36 is humidified air. Since the second switching mechanism 35 is in the fifth state, the humidified air flowing below the humidifying rotor 36 flows below the ventilation fan 32 in the ventilation space SP2. The humidified air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d. At this time, since the first switching mechanism 34 is in the fourth state, the ventilation fan 32 can be prevented from sucking air through the third opening 31c. The humidified air sucked by the ventilation fan 32 is blown out toward the first opening 31a because the blowout switching mechanism 33 is in the first state. The humidified air blown toward the first opening 31a is blown out to the ventilation hose 70 through the first opening 31a. At this time, since the first switching mechanism 34 is in the fourth state, the humidified air blown toward the first opening 31a can be prevented from flowing into the ventilation space SP2 through the third opening 31c. The humidified air blown into the ventilation hose 70 is supplied to the indoor RM through the indoor unit 10.
 その結果、第4開口31dおよび第5開口31eから、加湿ロータ36を介して通風空間SP2に取り入れた加湿空気が、室内RMに供給される。 As a result, the humidified air taken into the ventilation space SP2 via the humidification rotor 36 is supplied to the indoor room RM from the fourth opening 31d and the fifth opening 31e.
 (2-4-4)再生運転
 再生運転は、加湿ロータ36に吸着した水分を放出させる運転である。制御部60は、吹出切換機構33を第2状態とし、第1切換機構34を第4状態とし、第2切換機構35を第5状態として、換気ファン32を駆動する。さらに、制御部60は、ヒータ37、および加湿ロータ36を駆動し、吸着ファン38を停止する。
(2-4-4) Regeneration operation The regeneration operation is an operation in which moisture adsorbed by the humidification rotor 36 is released. The control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the second state, the first switching mechanism 34 in the fourth state, and the second switching mechanism 35 in the fifth state. Furthermore, the control unit 60 drives the heater 37 and the humidification rotor 36, and stops the suction fan 38.
 図12は、再生運転時の換気装置30内の空気の流れF4を示す図である。図12に示すように、換気ファン32が駆動すると、室外OTの空気が、第4開口31dおよび第5開口31eから、換気装置30の通風空間SP1に吸い込まれる。吸い込まれた空気は、通風空間SP1で合流し、加湿ロータ36の上方に流れる。加湿ロータ36の上方に流れた空気は、加湿ロータ36の右側半円盤部分を通過し、加湿ロータ36の下方に流れる。このとき、ヒータ37が駆動しているため、加湿ロータ36から水分が放出される。また、ヒータ37が駆動しているため、加湿ロータ36の下方に流れた空気は、加湿空気である。加湿ロータ36の下方に流れた加湿空気は、第2切換機構35が第5状態であるため、通風空間SP2内を、換気ファン32の下方に流れる。換気ファン32の下方に流れた加湿空気は、吸引開口50dを通じて、換気ファン32によって吸引される。このとき、第1切換機構34が第4状態であるため、換気ファン32が、第3開口31cを通じて、空気を吸い込むことを防止することができる。換気ファン32によって吸引された加湿空気は、吹出切換機構33が第2状態であるため、第2開口31bに向けて吹き出される。第2開口31bに向けて吹き出された加湿空気は、室外OTに吹き出される。 FIG. 12 is a diagram showing the air flow F4 within the ventilation device 30 during regeneration operation. As shown in FIG. 12, when the ventilation fan 32 is driven, air from the outdoor OT is sucked into the ventilation space SP1 of the ventilation device 30 through the fourth opening 31d and the fifth opening 31e. The sucked air joins in the ventilation space SP1 and flows above the humidification rotor 36. The air flowing above the humidifying rotor 36 passes through the right half disk portion of the humidifying rotor 36 and flows below the humidifying rotor 36. At this time, since the heater 37 is being driven, moisture is released from the humidifying rotor 36. Furthermore, since the heater 37 is being driven, the air flowing below the humidifying rotor 36 is humidified air. Since the second switching mechanism 35 is in the fifth state, the humidified air flowing below the humidifying rotor 36 flows below the ventilation fan 32 in the ventilation space SP2. The humidified air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d. At this time, since the first switching mechanism 34 is in the fourth state, the ventilation fan 32 can be prevented from sucking air through the third opening 31c. The humidified air sucked by the ventilation fan 32 is blown out toward the second opening 31b because the blowout switching mechanism 33 is in the second state. The humidified air blown toward the second opening 31b is blown out to the outdoor OT.
 その結果、加湿ロータ36に吸着した水分が放出される。 As a result, the moisture adsorbed on the humidifying rotor 36 is released.
 (2-4-5)除湿運転
 除湿運転は、第4開口31dおよび第5開口31eから、加湿ロータ36を介して通風空間SP2に取り入れた乾燥空気を、室内RMに供給する運転である。制御部60は、吹出切換機構33を第1状態とし、第1切換機構34を第4状態とし、第2切換機構35を第5状態として、換気ファン32を駆動する。さらに、制御部60は、加湿ロータ36を駆動し、ヒータ37、および吸着ファン38を停止する。
(2-4-5) Dehumidification Operation The dehumidification operation is an operation in which dry air taken into the ventilation space SP2 via the humidification rotor 36 from the fourth opening 31d and the fifth opening 31e is supplied to the room RM. The control unit 60 drives the ventilation fan 32 with the blowout switching mechanism 33 in the first state, the first switching mechanism 34 in the fourth state, and the second switching mechanism 35 in the fifth state. Further, the control unit 60 drives the humidification rotor 36 and stops the heater 37 and suction fan 38.
 図13は、除湿運転時の換気装置30内の空気の流れF5を示す図である。図13に示すように、換気ファン32が駆動すると、室外OTの空気が、第4開口31dおよび第5開口31eから、換気装置30の通風空間SP1に吸い込まれる。吸い込まれた空気は、通風空間SP1で合流し、加湿ロータ36の上方に流れる。加湿ロータ36の上方に流れた空気は、水分を吸着した加湿ロータ36の右側半円盤部分を通過し、加湿ロータ36の下方に流れる。このとき、ヒータ37が停止しているため、加湿ロータ36の下方に流れた空気は、乾燥空気である。加湿ロータ36の下方に流れた乾燥空気は、第2切換機構35が第5状態であるため、通風空間SP2内を、換気ファン32の下方に流れる。換気ファン32の下方に流れた乾燥空気は、吸引開口50dを通じて、換気ファン32によって吸引される。このとき、第1切換機構34が第4状態であるため、換気ファン32が、第3開口31cを通じて、空気を吸い込むことを防止することができる。換気ファン32によって吸引された乾燥空気は、吹出切換機構33が第1状態であるため、第1開口31aに向けて吹き出される。第1開口31aに向けて吹き出された乾燥空気は、第1開口31aを通じて、換気ホース70に吹き出される。このとき、第1切換機構34が第4状態であるため、第1開口31aに向けて吹き出された乾燥空気が、第3開口31cを通じて、通風空間SP2に流入することを防止することができる。換気ホース70に吹き出された乾燥空気は、室内機10を通じて、室内RMに供給される。 FIG. 13 is a diagram showing the air flow F5 within the ventilation device 30 during dehumidification operation. As shown in FIG. 13, when the ventilation fan 32 is driven, air from the outdoor OT is sucked into the ventilation space SP1 of the ventilation device 30 through the fourth opening 31d and the fifth opening 31e. The sucked air joins in the ventilation space SP1 and flows above the humidification rotor 36. The air flowing above the humidifying rotor 36 passes through the right half disk portion of the humidifying rotor 36 that has adsorbed moisture, and flows below the humidifying rotor 36. At this time, since the heater 37 is stopped, the air flowing below the humidifying rotor 36 is dry air. Since the second switching mechanism 35 is in the fifth state, the dry air flowing below the humidifying rotor 36 flows below the ventilation fan 32 in the ventilation space SP2. The dry air flowing below the ventilation fan 32 is sucked by the ventilation fan 32 through the suction opening 50d. At this time, since the first switching mechanism 34 is in the fourth state, the ventilation fan 32 can be prevented from sucking air through the third opening 31c. The dry air sucked by the ventilation fan 32 is blown out toward the first opening 31a because the blowout switching mechanism 33 is in the first state. The dry air blown toward the first opening 31a is blown out to the ventilation hose 70 through the first opening 31a. At this time, since the first switching mechanism 34 is in the fourth state, the dry air blown toward the first opening 31a can be prevented from flowing into the ventilation space SP2 through the third opening 31c. The dry air blown into the ventilation hose 70 is supplied to the indoor RM through the indoor unit 10.
 その結果、第4開口31dおよび第5開口31eから、加湿ロータ36を介して通風空間SP2に取り入れた乾燥空気が、室内RMに供給される。 As a result, the dry air taken into the ventilation space SP2 via the humidifying rotor 36 is supplied to the indoor room RM from the fourth opening 31d and the fifth opening 31e.
 (3)特徴
 (3-1)
 従来、換気ファンを有する換気装置を室外に設置し、換気ホースを通じて、室内への給気と、室内からの排気を行う技術がある。
(3) Features (3-1)
Conventionally, there is a technique in which a ventilation device having a ventilation fan is installed outdoors, and air is supplied into the room and exhausted from the room through a ventilation hose.
 従来の技術では、給気と排気を切り換えるために、大がかりなダンパ開閉機構が用いられている。そのため、給気と排気の切り換え構造の簡素化が望まれている。 In conventional technology, a large-scale damper opening/closing mechanism is used to switch between air supply and exhaust. Therefore, it is desired to simplify the structure for switching between air supply and exhaust.
 本実施形態の換気装置30は、ケーシング31と、換気ファン32と、吹出切換機構33と、第1切換機構34と、制御部60と、を備える。ケーシング31には、第1開口31aと、第2開口31bと、が形成されている。第1開口31aは、室内RMに接続される換気ホース70に連通する。第2開口31bは、室外OTに連通する。換気ファン32は、ケーシング31内の底部に通風空間SP2を形成する支持台50に設置される。換気ファン32は、支持台50に形成された吸引開口50dを通じて、通風空間SP2から吸引し、第1開口31aまたは第2開口31bに向けて送風する。吹出切換機構33は、第1状態と、第2状態と、を切り換え可能である。第1状態は、換気ファン32と換気ホース70を連通させ、かつ、換気ファン32と第2開口31bを連通させない状態である。第2状態は、換気ファン32と第2開口31bを連通させ、かつ、換気ファン32と換気ホース70を連通させない状態である。第1切換機構34は、第3状態と、第4状態と、を切り換え可能である。第3状態は、換気ファン32を介さずに通風空間SP2と換気ホース70とを連通させるための第3開口31cが、通風空間SP2と換気ホース70とを連通させる状態である。第4状態は、第3開口31cが、通風空間SP2と換気ホース70とを連通させない状態である。制御部60は、給気運転を行う。給気運転は、室内RMに空気を供給する運転である。制御部60は、吹出切換機構33を第1状態とし、第1切換機構34を第4状態として、換気ファン32を駆動することにより、給気運転を行う。制御部60は、排気運転を行う。排気運転は、室内RMから空気を排出する運転である。制御部60は、吹出切換機構33を第2状態とし、第1切換機構34を第3状態として、換気ファン32を駆動することにより、排気運転を行う。 The ventilation device 30 of this embodiment includes a casing 31, a ventilation fan 32, a blowout switching mechanism 33, a first switching mechanism 34, and a control section 60. The casing 31 is formed with a first opening 31a and a second opening 31b. The first opening 31a communicates with a ventilation hose 70 connected to the indoor RM. The second opening 31b communicates with the outdoor OT. The ventilation fan 32 is installed on a support base 50 that forms a ventilation space SP2 at the bottom inside the casing 31. The ventilation fan 32 draws air from the ventilation space SP2 through the suction opening 50d formed in the support base 50, and blows air toward the first opening 31a or the second opening 31b. The blowout switching mechanism 33 is capable of switching between a first state and a second state. The first state is a state in which the ventilation fan 32 and the ventilation hose 70 are communicated with each other, and the ventilation fan 32 and the second opening 31b are not communicated with each other. The second state is a state in which the ventilation fan 32 and the second opening 31b are communicated with each other, and the ventilation fan 32 and the ventilation hose 70 are not communicated with each other. The first switching mechanism 34 is capable of switching between a third state and a fourth state. The third state is a state in which the third opening 31c for communicating the ventilation space SP2 and the ventilation hose 70 without using the ventilation fan 32 allows the ventilation space SP2 and the ventilation hose 70 to communicate with each other. The fourth state is a state in which the third opening 31c does not allow communication between the ventilation space SP2 and the ventilation hose 70. The control unit 60 performs air supply operation. The air supply operation is an operation that supplies air to the indoor RM. The control unit 60 performs air supply operation by driving the ventilation fan 32 with the blowout switching mechanism 33 in the first state and the first switching mechanism 34 in the fourth state. The control unit 60 performs exhaust operation. The exhaust operation is an operation for exhausting air from the indoor RM. The control unit 60 performs exhaust operation by driving the ventilation fan 32 with the blowout switching mechanism 33 in the second state and the first switching mechanism 34 in the third state.
 本実施形態の換気装置30では、給気運転は、吹出切換機構33を第1状態とし、第1切換機構34を第4状態として、換気ファン32を駆動することにより、室内RMに空気を供給する運転である。排気運転は、吹出切換機構33を第2状態とし、第1切換機構34を第3状態として、換気ファン32を駆動することにより、室内RMから空気を排出する運転である。その結果、換気装置30は、より簡素な構造により、給気と排気を切り換えることができる。 In the ventilation device 30 of this embodiment, air supply operation is performed by setting the blow-off switching mechanism 33 in the first state, setting the first switching mechanism 34 in the fourth state, and driving the ventilation fan 32 to supply air to the indoor RM. This is a driving style. The exhaust operation is an operation in which air is discharged from the indoor RM by setting the blow-off switching mechanism 33 to the second state, setting the first switching mechanism 34 to the third state, and driving the ventilation fan 32. As a result, the ventilation device 30 can switch between supply and exhaust air with a simpler structure.
 (3-2)
 本実施形態の換気装置30は、加湿ロータ36をさらに備える。加湿ロータ36は、空気中の水分を吸着する。ケーシング31には、さらに第4開口31dが形成されている。第4開口31dは、室外OTに連通する。制御部60は、加湿運転を行う。加湿運転は、第4開口31dから加湿ロータ36を介して通風空間SP2に取り入れた加湿空気を、室内RMに供給する運転である。制御部60は、吹出切換機構33を第1状態とし、第1切換機構34を第4状態として、換気ファン32を駆動することにより、加湿運転を行う。
(3-2)
The ventilation device 30 of this embodiment further includes a humidification rotor 36. The humidifying rotor 36 adsorbs moisture in the air. The casing 31 further has a fourth opening 31d formed therein. The fourth opening 31d communicates with the outdoor OT. The control unit 60 performs humidification operation. The humidification operation is an operation in which humidified air taken into the ventilation space SP2 from the fourth opening 31d via the humidification rotor 36 is supplied to the indoor room RM. The control unit 60 performs humidification operation by driving the ventilation fan 32 with the blowout switching mechanism 33 in the first state and the first switching mechanism 34 in the fourth state.
 (3-3)
 本実施形態の換気装置30は、第2切換機構35をさらに備える。第2切換機構35は、第5状態と、第6状態と、を切り換え可能である。第5状態は、加湿ロータ36と換気ファン32とを連通させる状態である。第6状態は、加湿ロータ36と換気ファン32とを連通させない状態である。制御部60は、第2切換機構35を第5状態として、給気運転および加湿運転を行う。制御部60は、第2切換機構35を第6状態として、排気運転を行う。
(3-3)
The ventilation device 30 of this embodiment further includes a second switching mechanism 35. The second switching mechanism 35 is capable of switching between a fifth state and a sixth state. The fifth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are communicated with each other. The sixth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are not communicated with each other. The control unit 60 sets the second switching mechanism 35 to the fifth state and performs the air supply operation and the humidification operation. The control unit 60 sets the second switching mechanism 35 to the sixth state and performs the exhaust operation.
 本実施形態の換気装置30では、制御部60は、第2切換機構35を第6状態として、排気運転を行う。第6状態は、加湿ロータ36と換気ファン32とを連通させない状態である。その結果、換気装置30は、換気ファン32が加湿ロータ36側から空気を吸い込まないため、より効果的に室内RMの空気を吸い込む(室内RMから排気する)ことができる。 In the ventilation device 30 of this embodiment, the control unit 60 sets the second switching mechanism 35 to the sixth state and performs the exhaust operation. The sixth state is a state in which the humidifying rotor 36 and the ventilation fan 32 are not communicated with each other. As a result, since the ventilation fan 32 does not suck in air from the humidifying rotor 36 side, the ventilation device 30 can more effectively suck in air from the indoor RM (exhaust air from the indoor RM).
 (3-4)
 本実施形態の換気装置30では、制御部60は、再生運転を行う。再生運転は、加湿ロータ36に吸着した水分を放出させる運転である。制御部60は、吹出切換機構33を第2状態とし、第1切換機構34を第4状態として、再生運転を行う。
(3-4)
In the ventilation device 30 of this embodiment, the control unit 60 performs a regeneration operation. The regeneration operation is an operation in which moisture adsorbed by the humidifying rotor 36 is released. The control unit 60 performs regeneration operation with the blow-off switching mechanism 33 in the second state and the first switching mechanism 34 in the fourth state.
 その結果、換気装置30は、第2開口31bを、排気運転と再生運転の両方に用いることができる。 As a result, the ventilation device 30 can use the second opening 31b for both exhaust operation and regeneration operation.
 (4)変形例
 (4-1)変形例1A
 制御部60は、第1切換機構34の状態の切り換えに連動して、吹出切換機構33および第2切換機構35の状態を切り換えてもよい。また、制御部60は、第2切換機構35の状態の切り換えに連動して、吹出切換機構33および第1切換機構34の状態を切り換えてもよい。
(4) Modification (4-1) Modification 1A
The control unit 60 may switch the states of the blow-off switching mechanism 33 and the second switching mechanism 35 in conjunction with switching the state of the first switching mechanism 34 . Further, the control unit 60 may switch the states of the blow-off switching mechanism 33 and the first switching mechanism 34 in conjunction with switching the state of the second switching mechanism 35.
 その結果、換気装置30は、切換機構の制御を、単純化することができる。 As a result, the ventilation device 30 can simplify the control of the switching mechanism.
 (4-2)変形例1B
 本実施形態では、室外機20と、換気装置30とは、一体化されていた。しかし、室外機20と、換気装置30とは、別体であってもよい。このとき、換気装置30は、例えば、室外機20の横に設置される。
(4-2) Modification 1B
In this embodiment, the outdoor unit 20 and the ventilation device 30 are integrated. However, the outdoor unit 20 and the ventilation device 30 may be separate bodies. At this time, the ventilation device 30 is installed next to the outdoor unit 20, for example.
 (4-3)変形例1C
 本実施形態では、吹出切換機構33は、回転軸33bを中心に切換部材33aを回転させることにより、第1状態と、第2状態と、を切り換えた。しかし、これに限定されず、第1状態と、第2状態と、を切り換えることができれば、吹出切換機構33の切換構造は任意である。
(4-3) Modification example 1C
In this embodiment, the blowout switching mechanism 33 switches between the first state and the second state by rotating the switching member 33a around the rotating shaft 33b. However, the present invention is not limited to this, and the switching structure of the blowout switching mechanism 33 is arbitrary as long as it can switch between the first state and the second state.
 本実施形態では、第1切換機構34は、回転軸34bを中心に切換部材34aを回転させることにより、第3状態と、第4状態と、を切り換えた。しかし、これに限定されず、第3状態と、第4状態と、を切り換えることができれば、第1切換機構34の切換構造は任意である。 In the present embodiment, the first switching mechanism 34 switches between the third state and the fourth state by rotating the switching member 34a around the rotating shaft 34b. However, the present invention is not limited to this, and the switching structure of the first switching mechanism 34 is arbitrary as long as it can switch between the third state and the fourth state.
 本実施形態では、第2切換機構35は、切換部材35aを上下にスライドさせることにより、第5状態と、第6状態と、を切り換えた。しかし、これに限定されず、第5状態と、第6状態と、を切り換えることができれば、第2切換機構35の切換構造は任意である。 In the present embodiment, the second switching mechanism 35 switches between the fifth state and the sixth state by sliding the switching member 35a up and down. However, the present invention is not limited to this, and the switching structure of the second switching mechanism 35 is arbitrary as long as it can switch between the fifth state and the sixth state.
 (4-4)変形例1D
 本実施形態では、支持台50には、開口50bと、吹出切換機構33が第2状態である場合の切換部材33aと、の間に、第3開口31cが形成されていた。しかし、第3開口31cは、ケーシング31の側面であって、通風空間SP2と直接連通する箇所に形成されてもよい。図14は、本変形例における第3開口31c’の位置を示す図である。図14では、第3開口31c’は、ケーシング31の右方側面であって、第5開口31eを構成する孔の下方に形成されている。第3開口31c’は、通風空間SP2と直接連通する箇所に形成されている。図14では、換気ホース70の換気装置30側の端を2つに分岐させることにより、換気ホース70を第1開口31aと第3開口31c’に連通させている。
(4-4) Modification example 1D
In this embodiment, the third opening 31c is formed in the support base 50 between the opening 50b and the switching member 33a when the blowout switching mechanism 33 is in the second state. However, the third opening 31c may be formed in a side surface of the casing 31 at a location that directly communicates with the ventilation space SP2. FIG. 14 is a diagram showing the position of the third opening 31c' in this modification. In FIG. 14, the third opening 31c' is formed on the right side surface of the casing 31 below the hole that constitutes the fifth opening 31e. The third opening 31c' is formed at a location that directly communicates with the ventilation space SP2. In FIG. 14, the ventilation hose 70 is made to communicate with the first opening 31a and the third opening 31c' by branching the end of the ventilation hose 70 on the side of the ventilation device 30 into two parts.
 このとき、第1切換機構34’の切換部材34a’は、例えば、ケーシング31内の右方側面に設置される。切換部材34a’は、モータによって前後にスライドする。第1切換機構34’は、切換部材34a’を前後にスライドさせることにより、第3開口31c’を開閉することができる。言い換えると、第1切換機構34’は、切換部材34a’を前後にスライドさせることにより、第3状態と、第4状態と、を切り換え可能である。 At this time, the switching member 34a' of the first switching mechanism 34' is installed, for example, on the right side surface inside the casing 31. The switching member 34a' is slid back and forth by a motor. The first switching mechanism 34' can open and close the third opening 31c' by sliding the switching member 34a' back and forth. In other words, the first switching mechanism 34' can switch between the third state and the fourth state by sliding the switching member 34a' back and forth.
 例えば、制御部60が排気運転を行う場合、換気ファン32が駆動すると、第1切換機構34’が第3状態であるため、室内RMの空気は、換気ホース70を通じて、第1開口31aと第3開口31c’に吸い込まれる。第1開口31aに吸い込まれた空気は、吹出切換機構33が第2状態であるため、遮断される。第3開口31c’に吸い込まれた空気は、直接、通風空間SP2に流入する。言い換えると、第3開口31c’は、換気ファン32を介さずに通風空間SP2と換気ホース70とを連通させるための孔である。 For example, when the control unit 60 performs exhaust operation, when the ventilation fan 32 is driven, the first switching mechanism 34' is in the third state, so the air in the room RM flows through the ventilation hose 70 to the first opening 31a and the first opening 31a. 3 opening 31c'. The air sucked into the first opening 31a is blocked because the blowout switching mechanism 33 is in the second state. The air sucked into the third opening 31c' directly flows into the ventilation space SP2. In other words, the third opening 31c' is a hole for communicating the ventilation space SP2 and the ventilation hose 70 without using the ventilation fan 32.
 (4-5)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
(4-5)
Although the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure as described in the claims. .
 30       換気装置
 31       ケーシング
 31a      第1開口
 31b      第2開口
 31c,31c’ 第3開口
 31d      第4開口
 32       換気ファン(送風ファン)
 33       吹出切換機構
 34,34’   第1切換機構
 35       第2切換機構
 36       加湿ロータ
 50       支持台
 50d      吸引開口
 60       制御部
 70       換気ホース
 OT       室外
 RM       室内
 SP2      通風空間
30 Ventilation device 31 Casing 31a First opening 31b Second opening 31c, 31c' Third opening 31d Fourth opening 32 Ventilation fan (blow fan)
33 Blowout switching mechanism 34, 34' First switching mechanism 35 Second switching mechanism 36 Humidification rotor 50 Support stand 50d Suction opening 60 Control unit 70 Ventilation hose OT Outdoor RM Indoor SP2 Ventilation space
特開2004-286432号公報Japanese Patent Application Publication No. 2004-286432

Claims (5)

  1.  室内(RM)に接続される換気ホース(70)に連通する第1開口(31a)と、室外(OT)に連通する第2開口(31b)と、が形成されたケーシング(31)と、
     前記ケーシング内の底部に通風空間(SP2)を形成する支持台(50)に設置され、前記支持台に形成された吸引開口(50d)を通じて、前記通風空間から吸引し、前記第1開口または前記第2開口に向けて送風する送風ファン(32)と、
     前記送風ファンと前記換気ホースを連通させ、かつ、前記送風ファンと前記第2開口を連通させない第1状態と、前記送風ファンと前記第2開口を連通させ、かつ、前記送風ファンと前記換気ホースを連通させない第2状態と、を切り換え可能な吹出切換機構(33)と、
     前記送風ファンを介さずに前記通風空間と前記換気ホースとを連通させるための第3開口(31c,31c’)を、前記通風空間と前記換気ホースとを連通させる第3状態と、前記通風空間と前記換気ホースとを連通させない第4状態と、に切り換え可能な第1切換機構(34,34’)と、
     制御部(60)と、
    を備え、
     前記制御部は、
      前記吹出切換機構を前記第1状態とし、前記第1切換機構を前記第4状態として、前記送風ファンを駆動することにより、前記室内に空気を供給する給気運転を行い、
      前記吹出切換機構を前記第2状態とし、前記第1切換機構を前記第3状態として、前記送風ファンを駆動することにより、前記室内から空気を排出する排気運転を行う、
    換気装置(30)。
    a casing (31) formed with a first opening (31a) communicating with a ventilation hose (70) connected to the room (RM) and a second opening (31b) communicating with the outdoors (OT);
    It is installed on a support base (50) that forms a ventilation space (SP2) at the bottom of the casing, and suction is drawn from the ventilation space through a suction opening (50d) formed in the support base, and the first opening or the a blower fan (32) that blows air toward the second opening;
    a first state in which the blower fan and the ventilation hose are in communication and the blower fan and the second opening are not in communication; and a first state in which the blower fan and the second opening are in communication and the blower fan and the ventilation hose are in communication with each other. a second state in which no communication is made; and a blowout switching mechanism (33) capable of switching between
    A third opening (31c, 31c') for communicating the ventilation space and the ventilation hose without using the ventilation fan, a third state in which the ventilation space and the ventilation hose communicate with each other, and the ventilation space. a first switching mechanism (34, 34') capable of switching to a fourth state in which the ventilation hose and the ventilation hose are not communicated with each other;
    a control unit (60);
    Equipped with
    The control unit includes:
    performing an air supply operation for supplying air into the room by driving the blower fan with the blow-off switching mechanism in the first state and the first switching mechanism in the fourth state;
    performing an exhaust operation of discharging air from the room by driving the blower fan with the blow-off switching mechanism in the second state and the first switching mechanism in the third state;
    Ventilation device (30).
  2.  空気中の水分を吸着するための加湿ロータ(36)、
    をさらに備え、
     前記ケーシングには、さらに前記室外に連通する第4開口(31d)が形成され、
     前記制御部は、前記吹出切換機構を前記第1状態とし、前記第1切換機構を前記第4状態として、前記送風ファンを駆動することにより、前記第4開口から前記加湿ロータを介して前記通風空間に取り入れた加湿空気を、前記室内に供給する加湿運転を行う、
    請求項1に記載の換気装置(30)。
    a humidifying rotor (36) for adsorbing moisture in the air;
    Furthermore,
    The casing is further formed with a fourth opening (31d) communicating with the outside,
    The control unit sets the blow-off switching mechanism to the first state, sets the first switching mechanism to the fourth state, and drives the ventilation fan, thereby blowing the ventilation from the fourth opening through the humidifying rotor. performing a humidification operation to supply humidified air taken into the space into the room;
    Ventilation device (30) according to claim 1.
  3.  前記加湿ロータと前記送風ファンとを連通させる第5状態と、前記加湿ロータと前記送風ファンとを連通させない第6状態と、を切り換え可能な第2切換機構(35)、
    をさらに備え、
     前記制御部は、
      前記第2切換機構を前記第5状態として、給気運転および加湿運転を行い、
      前記第2切換機構を前記第6状態として、排気運転を行う、
    請求項2に記載の換気装置(30)。
    a second switching mechanism (35) capable of switching between a fifth state in which the humidification rotor and the blower fan communicate with each other and a sixth state in which the humidification rotor and the blower fan do not communicate with each other;
    Furthermore,
    The control unit includes:
    performing an air supply operation and a humidification operation with the second switching mechanism in the fifth state;
    performing exhaust operation with the second switching mechanism in the sixth state;
    Ventilation device (30) according to claim 2.
  4.  前記制御部は、前記吹出切換機構を前記第2状態とし、前記第1切換機構を前記第4状態として、前記加湿ロータに吸着した水分を放出させる再生運転を行う、
    請求項1から3のいずれか1項に記載の換気装置(30)。
    The control unit sets the blow-off switching mechanism to the second state, sets the first switching mechanism to the fourth state, and performs a regeneration operation in which moisture adsorbed by the humidifying rotor is released.
    Ventilation device (30) according to any one of claims 1 to 3.
  5.  前記制御部は、
      前記第1切換機構の状態の切り換えに連動して、前記吹出切換機構および前記第2切換機構の状態を切り換える、または、
      前記第2切換機構の状態の切り換えに連動して、前記吹出切換機構および前記第1切換機構の状態を切り換える、
    請求項3に記載の換気装置(30)。
    The control unit includes:
    switching the states of the blow-off switching mechanism and the second switching mechanism in conjunction with switching the state of the first switching mechanism, or
    switching the states of the blow-off switching mechanism and the first switching mechanism in conjunction with switching the state of the second switching mechanism;
    Ventilation device (30) according to claim 3.
PCT/JP2023/032609 2022-09-09 2023-09-07 Ventilation device WO2024053696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022144192A JP7436897B1 (en) 2022-09-09 2022-09-09 ventilation system
JP2022-144192 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053696A1 true WO2024053696A1 (en) 2024-03-14

Family

ID=89904558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032609 WO2024053696A1 (en) 2022-09-09 2023-09-07 Ventilation device

Country Status (2)

Country Link
JP (2) JP7436897B1 (en)
WO (1) WO2024053696A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077084A (en) * 2002-08-21 2004-03-11 Daikin Ind Ltd Air supply-exhaust unit, outdoor machine for air conditioner and air exhaust unit
JP2006078113A (en) * 2004-09-10 2006-03-23 Sanyo Electric Co Ltd Air conditioner
JP2006090625A (en) * 2004-09-24 2006-04-06 Hitachi Home & Life Solutions Inc Blowing device and air conditioner using the same
JP2008175472A (en) * 2007-01-19 2008-07-31 Matsushita Electric Ind Co Ltd Air conditioner
KR20200030200A (en) * 2018-09-12 2020-03-20 오텍캐리어 주식회사 Air Conditioner with Ventilation Function
WO2022074917A1 (en) * 2020-10-05 2022-04-14 パナソニックIpマネジメント株式会社 Air conditioner
JP2022060872A (en) * 2020-10-05 2022-04-15 パナソニックIpマネジメント株式会社 Air conditioner
JP2022060875A (en) * 2020-10-05 2022-04-15 パナソニックIpマネジメント株式会社 Air conditioner
CN217057723U (en) * 2021-12-31 2022-07-26 大金工业株式会社 Air treatment device and air treatment system
WO2022172485A1 (en) * 2021-02-15 2022-08-18 パナソニックIpマネジメント株式会社 Ventilator and air conditioner equipped with ventilator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422056B (en) 2013-09-10 2017-03-29 广东美的制冷设备有限公司 Air interchanger
JP7126175B2 (en) 2020-10-05 2022-08-26 パナソニックIpマネジメント株式会社 air conditioner
JP2023000450A (en) 2021-06-18 2023-01-04 パナソニックIpマネジメント株式会社 air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077084A (en) * 2002-08-21 2004-03-11 Daikin Ind Ltd Air supply-exhaust unit, outdoor machine for air conditioner and air exhaust unit
JP2006078113A (en) * 2004-09-10 2006-03-23 Sanyo Electric Co Ltd Air conditioner
JP2006090625A (en) * 2004-09-24 2006-04-06 Hitachi Home & Life Solutions Inc Blowing device and air conditioner using the same
JP2008175472A (en) * 2007-01-19 2008-07-31 Matsushita Electric Ind Co Ltd Air conditioner
KR20200030200A (en) * 2018-09-12 2020-03-20 오텍캐리어 주식회사 Air Conditioner with Ventilation Function
WO2022074917A1 (en) * 2020-10-05 2022-04-14 パナソニックIpマネジメント株式会社 Air conditioner
JP2022060872A (en) * 2020-10-05 2022-04-15 パナソニックIpマネジメント株式会社 Air conditioner
JP2022060875A (en) * 2020-10-05 2022-04-15 パナソニックIpマネジメント株式会社 Air conditioner
WO2022172485A1 (en) * 2021-02-15 2022-08-18 パナソニックIpマネジメント株式会社 Ventilator and air conditioner equipped with ventilator
CN217057723U (en) * 2021-12-31 2022-07-26 大金工业株式会社 Air treatment device and air treatment system

Also Published As

Publication number Publication date
JP2024039655A (en) 2024-03-22
JP7436897B1 (en) 2024-02-22
JP2024039551A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
CN112823262B (en) Air conditioner
JP5862266B2 (en) Ventilation system
JP2000220877A (en) Ventilating air conditioner
JP2004225945A (en) Air conditioner and control method of air conditioner
JP7436897B1 (en) ventilation system
WO2023032738A1 (en) Air-conditioning device
WO2023013588A1 (en) Air-conditioning indoor unit
JP7093047B1 (en) Humidifier and air conditioner
WO2023013586A1 (en) Air-conditioning indoor unit
WO2023013587A1 (en) Air-conditioning indoor device
JP7368751B2 (en) air conditioner
JP7335521B2 (en) air conditioner
WO2022270513A1 (en) Air-conditioning device
WO2023085166A1 (en) Air-conditioning device
WO2023032731A1 (en) Air conditioning system
WO2023032397A1 (en) Air conditioner
JP2024039432A (en) air conditioner
CN117501052A (en) Air conditioning device
JP2023034999A (en) humidifier
JP2023035801A (en) humidifier
JP2022112418A (en) Humidity control device
JP2008145019A (en) Air conditioner
JP2018179362A (en) Humidity control unit
JP2004301503A (en) Ventilating device and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863234

Country of ref document: EP

Kind code of ref document: A1