WO2024053244A1 - フッ化物シャトル二次電池およびフッ化物シャトル二次電池の使用方法 - Google Patents
フッ化物シャトル二次電池およびフッ化物シャトル二次電池の使用方法 Download PDFInfo
- Publication number
- WO2024053244A1 WO2024053244A1 PCT/JP2023/025798 JP2023025798W WO2024053244A1 WO 2024053244 A1 WO2024053244 A1 WO 2024053244A1 JP 2023025798 W JP2023025798 W JP 2023025798W WO 2024053244 A1 WO2024053244 A1 WO 2024053244A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- electrode active
- negative electrode
- metal
- fluoride
- Prior art date
Links
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims description 37
- 239000007773 negative electrode material Substances 0.000 claims abstract description 169
- 229910052751 metal Inorganic materials 0.000 claims abstract description 116
- 239000002184 metal Substances 0.000 claims abstract description 116
- 239000007774 positive electrode material Substances 0.000 claims abstract description 110
- 229910001512 metal fluoride Inorganic materials 0.000 claims abstract description 63
- 239000000203 mixture Substances 0.000 claims abstract description 40
- 238000002844 melting Methods 0.000 claims abstract description 36
- 230000008018 melting Effects 0.000 claims abstract description 36
- 239000003792 electrolyte Substances 0.000 claims abstract description 26
- 229910017768 LaF 3 Inorganic materials 0.000 claims description 26
- 239000000155 melt Substances 0.000 claims description 24
- -1 YF 3 Inorganic materials 0.000 claims description 22
- 229910016569 AlF 3 Inorganic materials 0.000 claims description 17
- 229910005690 GdF 3 Inorganic materials 0.000 claims description 16
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 229910016655 EuF 3 Inorganic materials 0.000 claims description 7
- 238000006115 defluorination reaction Methods 0.000 claims description 7
- 238000003682 fluorination reaction Methods 0.000 claims description 7
- 101000929049 Xenopus tropicalis Derriere protein Proteins 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 229910052701 rubidium Inorganic materials 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 description 69
- 239000007784 solid electrolyte Substances 0.000 description 52
- 230000000052 comparative effect Effects 0.000 description 38
- 238000012546 transfer Methods 0.000 description 28
- 239000000463 material Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 24
- 239000011230 binding agent Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 238000007599 discharging Methods 0.000 description 16
- 239000011149 active material Substances 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 13
- 239000000956 alloy Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 11
- 230000005611 electricity Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 239000002482 conductive additive Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000003801 milling Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 229920000459 Nitrile rubber Polymers 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910016036 BaF 2 Inorganic materials 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 229910008449 SnF 2 Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 235000019241 carbon black Nutrition 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VHOQXEIFYTTXJU-UHFFFAOYSA-N Isobutylene-isoprene copolymer Chemical compound CC(C)=C.CC(=C)C=C VHOQXEIFYTTXJU-UHFFFAOYSA-N 0.000 description 1
- 229910002319 LaF3 Inorganic materials 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G21/00—Compounds of lead
- C01G21/16—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
Definitions
- the present disclosure relates to fluoride shuttle secondary batteries and methods of using fluoride shuttle secondary batteries.
- Lithium ion secondary batteries are widely used as secondary batteries with high energy density. Furthermore, a lithium ion all-solid-state battery using a nonflammable inorganic solid electrolyte has been proposed. Such lithium ion all-solid-state batteries have high safety. Therefore, lithium ion all-solid-state batteries have been extensively researched and developed.
- Patent Document 1 discloses a fluoride shuttle secondary battery using aluminum fluoride as a negative electrode material.
- Patent Document 2 discloses a fluoride shuttle secondary battery whose negative electrode contains a fluoride containing La.
- the present disclosure provides a fluoride shuttle secondary battery with improved discharge capacity.
- the fluoride shuttle secondary battery of the present disclosure includes: positive electrode, a negative electrode; and an electrolyte layer provided between the positive electrode and the negative electrode;
- a fluoride shuttle secondary battery comprising: The fluoride shuttle secondary battery satisfies at least one selected from the group consisting of the following (A1) and (B1): (A1) the negative electrode includes a first negative electrode active material and a second negative electrode active material having a different composition from the first negative electrode active material;
- the first negative electrode active material is a first metal fluoride containing metal M1, The metal M1 has a melting point of 0°C or higher and 250°C or lower.
- the positive electrode includes a first positive electrode active material and a second positive electrode active material having a different composition from the first positive electrode active material;
- the first positive electrode active material is a metal M2 in which a metal fluoride represented by M2F x has a melting point of 0° C. or more and 250° C. or less, Here, x represents the valence of M2.
- the present disclosure provides a fluoride shuttle secondary battery with improved discharge capacity.
- FIG. 1 is a cross-sectional view schematically showing a fluoride shuttle secondary battery according to an embodiment of the present disclosure.
- FIG. 2 is a cross-sectional view schematically showing a modification of the fluoride shuttle secondary battery according to the embodiment of the present disclosure.
- FIG. 3 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Example 1.
- FIG. 4A is a cross-sectional SEM image of the evaluation cell of Example 1 before charging and discharging.
- FIG. 4B is a mapping image showing the distribution of Na in the image shown in FIG. 4A obtained from the SEM-EDX measurement results.
- FIG. 5A is a cross-sectional SEM image of the evaluation cell of Example 1 after charging and discharging.
- FIG. 5B is a mapping image showing the distribution of Na in the image shown in FIG. 5A obtained from the SEM-EDX measurement results.
- FIG. 6 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Comparative Example 1.
- FIG. 7 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Comparative Example 2.
- FIG. 8 is a graph showing the charge/discharge results of the second cycle of the charge/discharge test at 140° C. for the evaluation cells of Example 1, Comparative Example 1, and Comparative Example 2.
- FIG. 9 is a graph showing the results of a charge/discharge test at 90° C. for the evaluation cell of Example 1.
- FIG. 9 is a graph showing the results of a charge/discharge test at 90° C. for the evaluation cell of Example 1.
- FIG. 10 is a graph showing the results of a charge/discharge test at 90°C for the evaluation cell of Example 1 after two cycles of operation at 140°C.
- FIG. 11 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Example 2.
- FIG. 12 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Example 3.
- FIG. 13 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Comparative Example 3.
- FIG. 14 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Example 4.
- FIG. 15 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Comparative Example 4.
- a fluoride shuttle secondary battery is a battery that shuttles fluoride ions in an electrolyte to cause a defluorination reaction and a fluorination reaction to proceed at the positive electrode and the negative electrode, respectively, thereby obtaining an electromotive force.
- a fluoride shuttle secondary battery includes a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode, and is selected from the group consisting of (A1) and (B1) below. At least one of the selected conditions is satisfied.
- the negative electrode includes a first negative electrode active material and a second negative electrode active material having a different composition from the first negative electrode active material, and the first negative electrode active material is a first metal fluoride containing metal M1.
- metal M1 has a melting point of 0°C or higher and 250°C or lower.
- the positive electrode includes a first positive electrode active material and a second positive electrode active material having a composition different from the first positive electrode active material, and the first positive electrode active material has a metal fluoride represented by M2F x at 0°C.
- the metal M2 has a melting point of 250° C. or higher and 250° C. or lower, where x represents the valence of M2.
- the negative electrode when the above (A1) is satisfied, the negative electrode includes a first negative electrode active material and a second negative electrode active material having a different composition from the first negative electrode active material.
- the first negative electrode active material is a first metal fluoride containing metal M1 having a melting point of 0°C or higher and 250°C or lower. Therefore, in the fluoride shuttle secondary battery according to the embodiment of the present disclosure, upon charging, the first metal fluoride is defluorinated by a charging reaction of the negative electrode active material to generate metal M1, and the generated metal M1 may be melted.
- the metal M1 generated from the first metal fluoride melts due to charging. According to the above, the molten metal M1 spreads around the negative electrode active material, and good mass transfer between the negative electrode active materials can be realized. Furthermore, when the negative electrode includes a negative electrode active material layer containing a negative electrode active material and a solid electrolyte, good mass transfer between the negative electrode active material and the solid electrolyte can also be achieved. Therefore, the fluoride shuttle secondary battery according to the embodiment of the present disclosure can achieve improved discharge capacity.
- the fluoride shuttle secondary battery according to the embodiment of the present disclosure can achieve improved discharge capacity, for example, compared to a battery using only the second negative electrode active material as the negative electrode active material. Further, the utilization rate of the negative electrode active material and the cycle characteristics of the battery can be improved.
- utilization rate means the ratio of the actual specific capacity of the active material to the theoretical specific capacity of the active material.
- the negative electrode active material when simply described as “negative electrode active material”, the negative electrode active material includes both the first negative electrode active material and the second negative electrode active material.
- the positive electrode active material when simply described as “positive electrode active material”, includes both the first positive electrode active material and the second positive electrode active material.
- the positive electrode when the above (B1) is satisfied, the positive electrode includes a first positive electrode active material and a second positive electrode active material having a composition different from that of the first positive electrode active material.
- the first positive electrode active material is a metal M2 in which the metal fluoride represented by M2F x has a melting point of 0°C or more and 250°C or less. Therefore, in the fluoride shuttle secondary battery according to the embodiment of the present disclosure, the metal fluoride represented by M2F x can be melted at the positive electrode by charging. For example, when a battery operates in an environment at or above the melting point of M2F x , M2F x generated from metal M2 due to charging melts.
- the fluoride shuttle secondary battery according to the embodiment of the present disclosure can achieve improved discharge capacity.
- the fluoride shuttle secondary battery according to the embodiment of the present disclosure can achieve improved discharge capacity, for example, compared to a battery using only the second positive electrode active material as the positive electrode active material. Further, the utilization rate of the positive electrode active material and the cycle characteristics of the battery can be improved.
- the metal M1 when the above (A1) is satisfied, the metal M1 may be melted by charging, and when the above (B1) is satisfied, the metal M2F x may be melted by the charging. good.
- the metal M1 when the above (A1) is satisfied, the metal M1 may melt during charging, and when the above (B1) is satisfied, the metal M2F x may melt during the charging. good.
- the metal M1 generated from the first metal fluoride at the negative electrode is melted by charging, the molten metal M1 spreads around the negative electrode active material, and good mass transfer between the negative electrode active materials can be achieved.
- the negative electrode includes a negative electrode active material layer containing a negative electrode active material and a solid electrolyte
- good mass transfer between the negative electrode active material and the solid electrolyte can also be achieved.
- the first negative electrode active material and the second negative electrode active material can achieve improved specific capacity.
- M2F x generated from metal M2 at the positive electrode is melted by charging, the melted M2F x spreads around the positive electrode active material, and good mass transfer between the positive electrode active materials can be achieved.
- the positive electrode includes a positive electrode active material layer containing a positive electrode active material and a solid electrolyte, good mass transfer between the positive electrode active material and the solid electrolyte can also be realized.
- the first positive electrode active material and the second positive electrode active material can achieve improved specific capacity. Therefore, the fluoride shuttle secondary battery according to the embodiment of the present disclosure can achieve improved discharge capacity. Further, the utilization rate of the negative electrode active material or the positive electrode active material and the cycle characteristics of the battery can be improved.
- the fluoride shuttle secondary battery according to the embodiment of the present disclosure may satisfy both (A1) and (B1) above, or may satisfy any one of them.
- the fluoride shuttle secondary battery according to the embodiment of the present disclosure may satisfy the above (A1).
- FIG. 1 is a cross-sectional view schematically showing a fluoride shuttle secondary battery according to an embodiment of the present disclosure.
- the fluoride shuttle secondary battery 1 shown in FIG. 1 includes a positive electrode 2, an electrolyte layer 3, and a negative electrode 4.
- the electrolyte layer 3 is provided between the positive electrode 2 and the negative electrode 4.
- the positive electrode 2 includes, for example, a positive electrode current collector 5 and a positive electrode active material layer 6.
- the negative electrode 4 includes, for example, a negative electrode current collector 7 and a negative electrode active material layer 8.
- the negative electrode active material layer 8 contains a negative electrode active material.
- the negative electrode active material is a material that can store and release fluoride ions as the battery charges and discharges. Storage and desorption include both forms that involve a chemical reaction with fluoride ions and forms that do not involve a chemical reaction such as intercalation. Chemical reactions include reactions that form compounds and reactions that form non-compound complexes such as alloys and solid solutions.
- the negative electrode active material may be a material that exhibits a more base potential in terms of standard electrode potential than the positive electrode active material combined in the fluoride shuttle secondary battery 1.
- the negative electrode active material layer 8 may include a negative electrode active material and a solid electrolyte.
- the negative electrode active material may include a first negative electrode active material and a second negative electrode active material having a different composition from the first negative electrode active material.
- the negative electrode active material layer 8 includes a first negative electrode active material and a second negative electrode active material having a composition different from that of the first negative electrode active material.
- the first negative electrode active material is a first metal fluoride containing metal M1, and metal M1 has a melting point of 0°C or more and 250°C or less.
- the metal M1 may include at least one selected from the group consisting of Na, K, Rb, In, Ga, Sn, Cs, Se, and Li. Therefore, the first negative electrode active material may be a first metal fluoride containing at least one selected from the group consisting of Na, K, Rb, In, Ga, Sn, Cs, Se, and Li.
- the first metal fluoride is defluorinated by the charging reaction of the negative electrode active material due to charging, and the metal M1 is generated.
- the generated metal M1 is then melted and spread into the negative electrode active material layer 8.
- the metal M1 may have a melting point of 25°C or higher, or may have a melting point of 50°C or higher.
- the metal M1 may have a melting point of 180°C or less, or may have a melting point of 150°C or less.
- the metal M1 may have a melting point of 25°C or higher and 180°C or lower.
- the metal M1 may have a melting point of 50°C or more and 150°C or less.
- the metal M1 may contain Na.
- the metal M1 may be Na. That is, the first metal fluoride may be NaF.
- the battery operates in an environment at or above the melting point of Na, the Na melts due to charging.
- the molten Na spreads into the negative electrode active material layer 8, and good mass transfer between negative electrode active materials or between the negative electrode active material and the solid electrolyte can be realized in the negative electrode active material layer 8, and the fluoride shuttle secondary
- the discharge capacity of the battery can be improved.
- the metal M1 may include Na and at least one selected from the group consisting of K, Rb, and Li.
- Metal M1 may contain Na and K.
- the metal M1 may be an alloy of Na and another metal. When the metal M1 is an alloy of Na and other elements, the metal M1 is melted by charging at a low temperature, so a fluoride shuttle secondary battery with improved discharge capacity can be realized when used at a low temperature.
- the metal M1 may be an alloy of Na and K. When metal M1 is an alloy of Na and K, metal M1 melts upon charging at a lower temperature than when Na is used alone, so the fluoride shuttle secondary battery has improved discharge capacity when used at low temperatures. can be realized.
- the first negative electrode active material or metal M1 may be uniformly mixed with other substances in the negative electrode active material layer 8.
- the first negative electrode active material or metal M1 may be uniformly distributed in the negative electrode active material layer 8.
- the distribution of the first negative electrode active material or metal M1 can be confirmed, for example, by SEM-EDX, which is a combination of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).
- SEM-EDX is a combination of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).
- the second negative electrode active material may be a second metal fluoride.
- the second metal fluoride may have a fluorination potential and a defluorination potential of more than ⁇ 3.0 V (vs. Pb/PbF 2 ) and less than ⁇ 1.0 V (vs. Pb/PbF 2 ).
- the fluoride shuttle secondary battery 1 can improve energy density.
- the second metal fluoride is at least one selected from the group consisting of LaF 3 , AlF 3 , MgF 2 , CeF 3 , GdF 3 , YF 3 , EuF 3 , SmF 3 , NdF 3 , and TiF 3 .
- the second negative electrode active material is at least one selected from the group consisting of LaF 3 , AlF 3 , MgF 2 , CeF 3 , GdF 3 , YF 3 , EuF 3 , SmF 3 , NdF 3 , and TiF 3 .
- the fluoride shuttle secondary battery 1 can improve its discharge capacity.
- the first metal fluoride is NaF
- the second metal fluoride consists of LaF 3 , AlF 3 , MgF 2 , CeF 3 , GdF 3 , YF 3 , EuF 3 , SmF 3 , NdF 3 , and TiF 3 It may be at least one selected from the group.
- the second metal fluoride may be at least one selected from the group consisting of LaF 3 , AlF 3 , and GdF 3 .
- the second metal fluoride may be LaF3 .
- the first metal fluoride may be NaF, and the second metal fluoride may be at least one selected from the group consisting of LaF 3 , AlF 3 , and GdF 3 .
- the difference in fluorination potential and defluorination potential between the first metal fluoride and the second metal fluoride may be 0V or more and 1.0V or less.
- the mass ratio of the second negative electrode active material in the negative electrode may be larger than the mass ratio of the first negative electrode active material in the negative electrode.
- the negative electrode 4 may further include a third negative electrode active material having a different composition from the first negative electrode active material and the second negative electrode active material.
- the third negative electrode active material may be a third metal fluoride.
- the third metal fluoride may be, for example, a metal fluoride containing at least one metal fluoride exemplified as the metal M1, or a metal fluoride exemplified as the second metal fluoride.
- the third metal fluoride may contain a metal that can form an alloy or solid solution with the metal M1 contained in the first metal fluoride.
- the third metal fluoride may be KF.
- a material known as a solid electrolyte material having fluoride ion conductivity can be used as the solid electrolyte included in the negative electrode active material layer 8.
- a material known as a solid electrolyte material having fluoride ion conductivity can be used.
- Ce 1-x Sr x F 3-x (0 ⁇ x ⁇ 1)
- La 1-x Ca x F 3-x (0 ⁇ x ⁇ 1)
- La 1-x Ba x F 3-x (0 ⁇ x ⁇ 1)
- La 1-x Sr x F 3-x (0 ⁇ x ⁇ 1)
- Ca 2-x Ba x F 4 (0 ⁇ x ⁇ 2)
- Ce 1-x Ba x F 3- x (0 ⁇ x ⁇ 1)
- the thickness of the negative electrode active material layer 8 is, for example, 1 ⁇ m or more and 500 ⁇ m or less.
- the thickness of the negative electrode active material layer 8 may be 1 ⁇ m or more and 400 ⁇ m or less, and more preferably 30 ⁇ m or more and 200 ⁇ m or less. When the thickness of the negative electrode active material layer 8 is within these ranges, the energy density of the fluoride shuttle secondary battery 1 can be further improved, and more stable operation at high output is possible.
- the positive electrode active material layer 6 contains a positive electrode active material.
- the positive electrode active material is a material that can occlude and release fluoride ions as the fluoride shuttle secondary battery 1 is charged and discharged. Storage and desorption include both forms that involve a chemical reaction with fluoride ions and forms that do not involve a chemical reaction such as intercalation. Chemical reactions include reactions that form compounds and reactions that form non-compound complexes such as alloys and solid solutions.
- the positive electrode active material may be a material that exhibits a nobler potential in terms of standard electrode potential than the negative electrode active material combined in the fluoride shuttle secondary battery 1.
- the positive electrode active material layer 6 in the positive electrode 2 may include, for example, a positive electrode active material and a solid electrolyte.
- the positive electrode active material may contain metal Me.
- the metal Me may include, for example, at least one selected from the group consisting of Cu, Bi, Pb, Sb, Fe, Zn, Ni, Mn, Sn, Ag, Cr, In, Ti, and Co.
- the metal Me may be a simple substance, an alloy, or a composite such as a solid solution.
- the metal Me may be at least one selected from the group consisting of Pb, Cu, Bi, Sn, and Ag. Thereby, the fluoride shuttle secondary battery 1 can further improve the energy density.
- the positive electrode active material layer 6 may include two or more positive electrode active materials having mutually different compositions.
- the positive electrode active material layer 6 includes a first positive electrode active material and a second positive electrode having a composition different from the first positive electrode active material.
- the first positive electrode active material is a metal M2, and the melting point of the metal fluoride is 0°C or more and 250°C or less when the metal M2 is in a metal fluoride state represented by M2Fx .
- x represents the valence of M2.
- M2F x melts due to charging and spreads into the positive electrode active material layer 6.
- good mass transfer between the positive electrode active materials or between the positive electrode active materials and the solid electrolyte can be realized in the positive electrode active material layer 6, and the discharge capacity of the fluoride shuttle secondary battery can be improved.
- M2F x may have a melting point of 25°C or higher and 250°C or lower. M2F x may have a melting point of 50°C or higher and 250°C or lower.
- the metal M2 which is the first positive electrode active material is, for example, at least one selected from the group consisting of Sn, Nb, and Ta.
- the second positive electrode active material may include at least one of the metals mentioned above as the metal Me.
- the second positive electrode active material may be at least one metal mentioned above as metal Me.
- the mass ratio of the second positive electrode active material at the positive electrode may be larger than the mass ratio of the first positive electrode active material at the positive electrode.
- the solid electrolyte included in the positive electrode active material layer 6 a material known as a solid electrolyte material having fluoride ion conductivity can be used.
- the solid electrolyte contained in the positive electrode active material layer 6 may be the material described above as the solid electrolyte contained in the negative electrode active material layer 8.
- the solid electrolyte contained in the positive electrode active material layer 6 may be a material having the same composition as the solid electrolyte contained in the negative electrode active material layer 8.
- the thickness of the positive electrode active material layer 6 is, for example, 1 ⁇ m or more and 500 ⁇ m or less.
- the thickness of the positive electrode active material layer 6 may be greater than or equal to 1 ⁇ m and less than or equal to 400 ⁇ m, and more preferably greater than or equal to 50 ⁇ m and less than or equal to 200 ⁇ m. When the thickness of the positive electrode active material layer 6 is within these ranges, the energy density of the fluoride shuttle secondary battery 1 can be further improved, and more stable operation at high output is possible.
- the fluoride shuttle secondary battery according to the embodiment of the present disclosure may include a positive electrode buffer layer between the positive electrode and the electrolyte layer.
- FIG. 2 is a cross-sectional view schematically showing a modification of the fluoride shuttle secondary battery according to the embodiment of the present disclosure.
- the fluoride shuttle secondary battery 11 includes, for example, a positive electrode buffer layer 9 between the positive electrode active material layer 6 and the electrolyte layer 3.
- the positive electrode buffer layer 9 is, for example, a layer containing a positive electrode buffer material that is a compound containing the same metal element as the metal Me contained in the positive electrode active material. According to the above configuration, deterioration of capacity can be suppressed and cycle characteristics of the fluoride shuttle secondary battery can be improved.
- the positive electrode buffer material may be Pb 1-a Sn a F 2 .
- a may satisfy, for example, 0 ⁇ a ⁇ 1 or 0 ⁇ a ⁇ 1.
- the positive electrode active material layer 6 may contain a conductive additive.
- the negative electrode 4 may contain a conductive additive.
- the resistance of the positive electrode 2 and the negative electrode 4 can be reduced.
- the conductive aid is not limited as long as it has electronic conductivity.
- Conductive aids include, for example, graphites such as natural graphite and artificial graphite; carbon blacks such as acetylene black and Ketjen black; conductive fibers such as carbon fiber and metal fiber; conductive materials such as carbon fluoride and aluminum. Powders; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; and conductive polymer compounds such as polyaniline, polypyrrole, and polythiophene.
- carbon-based conductive additives such as graphites and carbon blacks, the cost of the fluoride shuttle secondary battery 1 can be reduced.
- the positive electrode current collector 5 and the negative electrode current collector 7 have electronic conductivity.
- the positive electrode current collector 5 and the negative electrode current collector 7 may be made of a material that has electron conductivity and is not easily corroded in the charging/discharging environment of the fluoride shuttle secondary battery 1.
- the positive electrode current collector 5 is made of a metal material such as aluminum, gold, platinum, and an alloy thereof.
- the shape of the positive electrode current collector 5 is not limited, and is, for example, a sheet or a film. Sheets and films include foils. Aluminum and its alloys are inexpensive and can be easily formed into thin films.
- the positive electrode current collector 5 may be made of carbon-coated aluminum.
- the thickness of the positive electrode current collector 5 is, for example, 1 ⁇ m or more and 30 ⁇ m or less. When the thickness of the positive electrode current collector 5 is within this range, the strength of the current collector can be more reliably ensured, for example, cracking and tearing of the current collector is suppressed, and the energy of the fluoride shuttle secondary battery 1 is reduced. Density can be ensured more reliably.
- the positive electrode current collector 5 may have a positive electrode terminal.
- the negative electrode current collector 7 is made of a metal material such as platinum, aluminum, or an alloy thereof.
- the shape of the negative electrode current collector 7 is not limited, and is, for example, a sheet or a film. Sheets and films include foils. Aluminum and its alloys are inexpensive and can be easily formed into thin films.
- the negative electrode current collector 7 may be made of carbon-coated aluminum.
- the thickness of the negative electrode current collector 7 is, for example, 1 ⁇ m or more and 30 ⁇ m or less. When the thickness of the negative electrode current collector 7 is within this range, the strength of the current collector can be more reliably ensured, for example, cracking and tearing of the current collector is suppressed, and the energy of the fluoride shuttle secondary battery 1 is reduced. Density can be ensured more reliably.
- the electrolyte layer 3 is a layer having fluoride ion conductivity in the thickness direction, that is, in the lamination direction of the positive electrode 2 and the negative electrode 4. Electrolyte layer 3 typically does not have electronic conductivity in the thickness direction.
- the thickness of the electrolyte layer 3 is, for example, 1 ⁇ m or more and 1000 ⁇ m or less. The thickness of the electrolyte layer 3 may be greater than or equal to 10 ⁇ m and less than or equal to 800 ⁇ m, and more preferably greater than or equal to 20 ⁇ m and less than or equal to 700 ⁇ m.
- the electrolyte layer 3 may contain a solid electrolyte.
- a material known as a solid electrolyte material having fluoride ion conductivity can be used as the solid electrolyte included in the electrolyte layer 3.
- the solid electrolyte included in the electrolyte layer 3 may be the material described above as the solid electrolyte included in the negative electrode active material layer 8.
- the solid electrolyte contained in the electrolyte layer 3 may be a material having the same composition as the solid electrolyte contained in the negative electrode active material layer 8, or may be a material having the same composition as the solid electrolyte contained in the positive electrode active material layer 6. It's okay.
- the electrolyte layer 3 may be a solid electrolyte layer.
- the fluoride shuttle secondary battery 1 can improve the charge/discharge capacity.
- the layer containing particulate material may further include a binder that binds the particles to each other.
- the binder can improve the binding between particles within the layer.
- the binder can improve bonding properties (adhesion strength) with adjacent layers.
- these active material layers further contain a binder, so that the active material layer and the positive electrode adjacent to the active material layer
- the bondability with the current collector 5 or the negative electrode current collector 7 can be improved.
- the binder is not limited.
- the binder may be, for example, a binder made of a fluororesin, a high molecular compound, or a rubbery polymer.
- fluororesin constituting the binder include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-hexafluoroethylene copolymer.
- ECTFE chlorotrifluoroethylene copolymer
- polymer compounds include carboxymethyl cellulose, polyacrylonitrile, polyethylene oxide, polypropylene oxide, polyvinyl chloride, polymethyl methacrylate, polymethyl acrylate, polymethacrylic acid, polyacrylic acid, polyvinyl alcohol, polyvinylidene chloride, polyethyleneimine, methacrylonitrile, polyvinyl acetate, polyimide, polyamic acid, polyamideimide, polyethylene, polypropylene, ethylene-propylene-dien terpolymer, polyvinyl acetate, nitrocellulose, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, Ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, polyester resin, monoalkyltrialkoxysilane polymer, polymer made by copolymerizing monoalkyltrialkoxysilane polymer and tetraalkoxysilane monomer, etc.
- the rubbery polymer examples include styrene-butadiene rubber (SBR), butadiene rubber (BR), styrene-isoprene copolymer, isobutylene-isoprene copolymer (butyl rubber), acrylonitrile-butadiene rubber, and ethylene-propylene-diene copolymer.
- SBR styrene-butadiene rubber
- BR butadiene rubber
- styrene-isoprene copolymer isobutylene-isoprene copolymer (butyl rubber), acrylonitrile-butadiene rubber, and ethylene-propylene-diene copolymer.
- NBR acrylonitrile-butadiene copolymer
- EPDM ethylene-propylene-diemer
- EPDM ethylene-propylene-diemer
- the binder is an insulating material that does not conduct fluoride ions, an insulating material that does not conduct electrons, or an insulating material that does not conduct fluoride ions and electrons
- the content of the binder in each layer is If it becomes excessively large, the charging/discharging characteristics of the battery may deteriorate or the energy density may even decrease. From this point of view, the content of the binder in the layer containing the binder, which is any of the above-mentioned insulating substances, is, for example, 20% by mass or less, and may be 5% by mass or less.
- the binder may have fluoride ion conductivity.
- the binder having fluoride ion conductivity include ion conductive polymers to which metal fluoride is added.
- the fluoride ion conductivity is improved compared to an insulating binder, and improvements in charge/discharge characteristics and energy density can be expected.
- a method of using a battery in Embodiment 2 is a method of using a fluoride shuttle secondary battery comprising a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode, and includes the following (A2 ) and (B2).
- the negative electrode includes a first negative electrode active material and a second negative electrode active material having a different composition from the first negative electrode active material, and the first negative electrode active material is a first metal fluoride containing metal M1;
- the usage method includes charging at a temperature equal to or higher than the temperature at which the metal M1 melts.
- the positive electrode includes a first positive electrode active material and a second positive electrode active material having a different composition from the first positive electrode active material, the first positive electrode active material is metal M2, and the method of use is M2F x This includes charging at a temperature higher than the temperature at which the fluoride represented by the formula melts.
- x represents the valence of M2.
- the method of use in Embodiment 2 satisfies (A2) above, it includes charging at a temperature equal to or higher than the temperature at which the metal M1 melts. Therefore, upon charging, the metal M1 generated from the first metal fluoride is melted at the negative electrode. According to the above, the molten metal M1 spreads around the negative electrode active material, and good mass transfer between the negative electrode active materials can be realized. Furthermore, when the negative electrode includes a negative electrode active material layer containing a negative electrode active material and a solid electrolyte, good mass transfer between the negative electrode active material and the solid electrolyte can also be achieved. Therefore, the method of use according to the embodiment of the present disclosure can improve the discharge capacity of the fluoride shuttle secondary battery. Additionally, the method of use according to embodiments of the present disclosure can improve the utilization rate of the negative electrode active material and the cycle characteristics of the battery.
- the method of use in Embodiment 2 satisfies (B2) above, it includes charging at a temperature equal to or higher than the temperature at which M2F x melts. Therefore, M2F x generated from metal M2 at the positive electrode is melted by charging. According to the above, the molten M2F x spreads around the positive electrode active material, and good mass transfer between the positive electrode active materials can be achieved. Moreover, when the positive electrode includes a positive electrode active material layer containing a positive electrode active material and a solid electrolyte, good mass transfer between the positive electrode active material and the solid electrolyte can also be realized. Therefore, the method of use according to the embodiment of the present disclosure can improve the discharge capacity of the fluoride shuttle secondary battery. Additionally, methods of use according to embodiments of the present disclosure can improve the utilization rate of the positive electrode active material and the cycle characteristics of the battery.
- the usage method in Embodiment 2 may satisfy the above (A2).
- the fluoride shuttle secondary battery used in the usage method in Embodiment 2 may be the fluoride shuttle secondary battery in Embodiment 1.
- the method of use in Embodiment 2 does not stipulate that when the above (A2) is satisfied, the battery is charged and used only under temperature conditions where M1 melts, but is charged and used at a temperature where M1 melts. It includes all aspects of use. That is, the method of use in Embodiment 2 is such that when the above (A2) is satisfied, the maximum temperature during charging only needs to reach a temperature at which M1 melts, and the minimum temperature is a temperature at which M1 does not melt. Also includes. In addition, the method of use in Embodiment 2 does not stipulate that when the above (B2) is satisfied, the battery is charged and used only under temperature conditions where M2F x melts, but when M2F x melts. Covers all aspects of charging and using at temperature.
- a fluoride shuttle secondary battery comprising: The fluoride shuttle secondary battery satisfies at least one selected from the group consisting of (A1) and (B1) below.
- the negative electrode includes a first negative electrode active material and a second negative electrode active material having a different composition from the first negative electrode active material;
- the first negative electrode active material is a first metal fluoride containing metal M1,
- the metal M1 has a melting point of 0°C or higher and 250°C or lower.
- the positive electrode includes a first positive electrode active material and a second positive electrode active material having a different composition from the first positive electrode active material;
- the first positive electrode active material is a metal M2 in which a metal fluoride represented by M2F x has a melting point of 0° C. or more and 250° C. or less, Here, x represents the valence of M2.
- the metal M1 can be melted at the negative electrode or the metal fluoride M2F x can be melted at the positive electrode by charging.
- the first metal fluoride is defluorinated by a charging reaction of the negative electrode active material to generate the metal M1
- the generated metal M1 is melted.
- the metal M2 is fluorinated by a charging reaction of the positive electrode active material to generate M2F x
- the generated M2F x melts.
- the molten metal M1 or M2F x spreads around the negative electrode active material or the positive electrode active material, and good mass transfer between the negative electrode active materials or between the positive electrode active materials can be realized. Therefore, an improved specific capacity of the negative electrode active material or the positive electrode active material can be achieved. Therefore, the fluoride shuttle secondary battery according to the embodiment of the present disclosure can achieve improved discharge capacity. Moreover, the utilization rate of the active material and the cycle characteristics of the battery can be improved.
- the positive electrode when the positive electrode includes a positive electrode active material layer containing a positive electrode active material and a solid electrolyte, good mass transfer between the positive electrode active material and the solid electrolyte can also be realized. Therefore, a fluoride shuttle secondary battery with improved discharge capacity can be realized. Furthermore, the utilization rate of the active material and the cycle characteristics of the battery can be improved.
- the second negative electrode active material is a second metal fluoride, and the second metal fluoride has a fluorination potential and a defluorination potential of more than -3.0V (vs. Pb/PbF 2 ) and -1.
- the fluoride shuttle secondary battery according to any one of Techniques 1 to 6, which is less than 0V (vs. Pb/PbF 2 ). With this configuration, the energy density of the fluoride shuttle secondary battery can be improved.
- the second negative electrode active material is a second metal fluoride, and the difference in fluorination potential and defluorination potential between the first metal fluoride and the second metal fluoride is 0V or more and 1.0V or less.
- the second negative electrode active material is at least one selected from the group consisting of LaF 3 , AlF 3 , MgF 2 , CeF 3 , GdF 3 , YF 3 , EuF 3 , SmF 3 , NdF 3 , and TiF 3 , the fluoride shuttle secondary battery according to any one of Techniques 1 to 8. With this configuration, the discharge capacity of the fluoride shuttle secondary battery can be improved.
- the metal M1 contains Na
- the second negative electrode active material is at least one selected from the group consisting of LaF 3 , AlF 3 , MgF 2 , CeF 3 , GdF 3 , YF 3 , EuF 3 , SmF 3 , NdF 3 , and TiF 3 , the fluoride shuttle secondary battery according to any one of Techniques 1 to 9. With this configuration, the discharge capacity of the fluoride shuttle secondary battery can be improved.
- a method of using a fluoride shuttle secondary battery comprising: The usage method satisfies at least one selected from the group consisting of the following (A2) and (B2): (A2) the negative electrode includes a first negative electrode active material and a second negative electrode active material having a different composition from the first negative electrode active material; The first negative electrode active material is a first metal fluoride containing metal M1, The method of use includes charging at a temperature higher than the temperature at which the metal M1 melts.
- the positive electrode includes a first positive electrode active material and a second positive electrode active material having a different composition from the first positive electrode active material;
- the first positive electrode active material is metal M2
- the method of use includes charging at a temperature equal to or higher than the temperature at which the fluoride represented by M2F x melts.
- x represents the valence of M2.
- the method of use described in technique 11 can improve the discharge capacity of a fluoride shuttle secondary battery. Moreover, the method of use described in technique 11 can improve the utilization rate of the active material and the cycle characteristics of the battery.
- Example 1 Preparation of solid electrolyte material
- CaF 2 powder manufactured by Kojundo Kagaku Kenkyusho Co., Ltd.
- BaF 2 powder manufactured by Kojundo Kagaku Kenkyusho Co., Ltd.
- planetary Milling was performed using a mold ball mill for 10 hours.
- BCF solid electrolyte material represented by the compositional formula Ca 0.5 Ba 0.5 F 2
- BCF which is a solid electrolyte material prepared as described above
- AB which is a conductive aid
- Example 1 Evaluation of fluoride shuttle secondary battery
- Charge/discharge evaluation was performed using a potentiogalvanostat (manufactured by Biologic Co., Ltd., SP300).
- a constant current charge/discharge test was conducted at a temperature of 140° C. and a current of 40 ⁇ A for charging and 40 ⁇ A for discharging.
- FIG. 3 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Example 1.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- the theoretical specific capacity of the negative electrode used in Example 1 is 450 mAh/g. In Example 1, from the second cycle onward, the discharge capacity was almost as theoretical, and the battery was stable without deterioration.
- FIG. 4A is a cross-sectional SEM image of the evaluation cell of Example 1 before charging and discharging.
- FIG. 4B is a mapping image showing the distribution of Na in the image shown in FIG. 4A obtained from the SEM-EDX measurement results.
- FIG. 5A is a cross-sectional SEM image of the evaluation cell of Example 1 after charging and discharging.
- FIG. 5B is a mapping image showing the distribution of Na in the image shown in FIG. 5A obtained from the SEM-EDX measurement results. It is shown that the concentration of Na is relatively high in the white portion of each mapping image.
- Na element was sparsely present in the negative electrode, but as can be seen from Figure 5B, after charging and discharging, Na element was homogeneously present in the negative electrode.
- Ta is a mapping image showing the distribution of Na in the image shown in FIG. 4A obtained from the SEM-EDX measurement results.
- FIG. 6 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Comparative Example 1.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- the theoretical specific capacity of the negative electrode used in Comparative Example 1 is 410 mAh/g. In Comparative Example 1, the discharge capacity in the second cycle was almost as theoretical, but as the cycles were repeated, the capacity decreased.
- FIG. 7 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Comparative Example 2.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- the discharge capacity in the first cycle was 200 mAh/g
- the discharge capacity in the second and subsequent cycles was small, 50 mAh/g or less, and the charge-discharge characteristics were extremely poor.
- the theoretical specific capacity of the negative electrode used in Comparative Example 2 was 638 mAh/g, and the utilization rate was also extremely low.
- FIG. 8 is a graph showing the charge/discharge results of the second cycle of the charge/discharge test at 140° C. for the evaluation cells of Example 1, Comparative Example 1, and Comparative Example 2.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- the cell of Comparative Example 1 in which the negative electrode contained only LaF 3 as an active material exhibited a discharge capacity of about 400 mAh/g. In Example 1, the discharge capacity was increased compared to Comparative Example 1.
- NaF is defluorinated and Na metal is generated. Since the battery operating temperature is 140° C., which is higher than the melting point (98° C.) of Na metal, the Na metal melts and becomes liquefied. The liquefied Na metal diffuses between the particles of the negative electrode mixture and spreads at the interface between BCF, which is a solid electrolyte, and LaF 3 , which is an active material. It is thought that the spread of Na metal improved the mass transport at the interface, leading to such improvement in battery characteristics.
- BCF which is a solid electrolyte
- LaF 3 which is an active material. It is thought that the spread of Na metal improved the mass transport at the interface, leading to such improvement in battery characteristics.
- FIG. 9 is a graph showing the results of a charge/discharge test at 90° C. for the evaluation cell of Example 1.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- the capacity was 100 mAh/g or less, which was very low. Further, the same cell as the evaluation cell of Example 1 was operated at 140° C.
- FIG. 10 is a graph showing the results of a charge/discharge test at 90°C for the evaluation cell of Example 1 after two cycles of operation at 140°C.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- the discharge capacity was lower than that at 140° C., and the capacity deteriorated with repeated cycles. As a result, good characteristics were not obtained. Therefore, it can be seen that the evaluation cell of Example 1 can achieve good charge/discharge characteristics when the operating temperature of the battery is equal to or higher than the melting point of Na metal.
- FIG. 11 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Example 2.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- the theoretical specific capacity of the negative electrode used in Example 2 was 447 mAh/g, and in the second cycle it showed an excellent discharge capacity that was almost as theoretical.
- Example 3 (Preparation of evaluation cell)
- GdF 3 manufactured by Sigma-Aldrich
- An evaluation cell of Example 3 was prepared in the same manner as Example 1 except that the mixture was mixed in step 1.
- FIG. 12 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Example 3.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- the theoretical specific capacity of the negative electrode used in Example 3 is 418 mAh/g.
- Example 3 from the second cycle onwards, excellent discharge capacity was exhibited, almost as per theory, and there was no deterioration and the battery was stable.
- An evaluation cell of Comparative Example 3 was produced in the same manner as Comparative Example 1.
- FIG. 13 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Comparative Example 3.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- the theoretical specific capacity of the negative electrode used in Comparative Example 3 was 375 mAh/g, the discharge capacity of Comparative Example 3 was lower than the theoretical specific capacity, and the capacity further decreased with repeated cycles.
- FIG. 14 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Example 4.
- the horizontal axis is the specific capacity, which means the capacity per unit mass of the negative electrode active material, and represents the amount of electricity that is charged or discharged.
- Example 4 an excellent discharge capacity of about 600 mAh/g was exhibited from the second cycle onwards, and the battery was stable without deterioration. Note that the theoretical specific capacity of the negative electrode used in Example 4 was 851 mAh/g.
- An evaluation cell of Comparative Example 4 was prepared in the same manner as Comparative Example 1.
- FIG. 15 is a graph showing the results of a charge/discharge test at 140° C. for the evaluation cell of Comparative Example 4. Although the theoretical specific capacity of the negative electrode used in Comparative Example 4 was 957 mAh/g, it exhibited a discharge capacity of only about 400 mAh/g, which was smaller than the battery of Example 4.
- Example 4 As can be seen from Example 4 and Comparative Example 4, when AlF 3 was included as the negative electrode active material, the discharge capacity of the battery was improved by adding NaF, as in the case where LaF 3 was included. We were also able to confirm an improvement in the utilization rate.
- the fluoride shuttle secondary battery of the present disclosure is not limited to the embodiments described above, and various modifications and changes can be made within the scope of the invention described in the claims.
- the technical features shown in the embodiments described in the detailed description may be used to solve some or all of the above-mentioned problems or to achieve some or all of the above-mentioned effects. It is possible to replace or combine them as appropriate. Further, unless the technical feature is described as essential in this specification, it can be deleted as appropriate.
- the fluoride shuttle secondary battery of the present disclosure is expected to be applied to various uses as a secondary battery with improved discharge capacity.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本開示のフッ化物シャトル二次電池1は、正極2と、負極4と、正極2および負極4の間に設けられている電解質層3と、を備えるフッ化物シャトル二次電池であって、以下の(A1)および(B1)からなる群より選択される少なくとも1つを満たす。 (A1)負極4は、第一負極活物質および前記第一負極活物質とは異なる組成を有する第二負極活物質を含み、前記第一負極活物質は、金属M1を含有する第一金属フッ化物であり、前記金属M1は、0℃以上かつ250℃以下の融点を有する。 (B1)正極2は、第一正極活物質および前記第一正極活物質とは異なる組成を有する第二正極活物質を含み、前記第一正極活物質は、M2Fxで表される金属フッ化物が0℃以上かつ250℃以下の融点を有する金属M2であり、ここで、xはM2の価数を表す。
Description
本開示は、フッ化物シャトル二次電池およびフッ化物シャトル二次電池の使用方法に関する。
高エネルギー密度を有する二次電池として、リチウムイオン二次電池が広く普及している。また、不燃性の無機の固体電解質を用いたリチウムイオン全固体電池が提案されている。このようなリチウムイオン全固体電池は、高い安全性を有する。したがって、リチウムイオン全固体電池は、広く研究開発されている。
上記のような固体電解質を用いた電池の一種として、フッ化物イオン(F-)が移動するフッ化物シャトル二次電池が提案されている。フッ化物シャトル二次電池は、高い理論エネルギー密度を有する。負極材料としては、AlF3またはLaF3を用いる例が報告されている。特許文献1には、負極材料としてフッ化アルミニウムを用いたフッ化物シャトル二次電池が開示されている。特許文献2には、負極がLaを含むフッ化物を含むフッ化物シャトル二次電池が開示されている。
本開示は、放電容量の向上したフッ化物シャトル二次電池を提供する。
本開示のフッ化物シャトル二次電池は、
正極、
負極、および
前記正極および前記負極の間に設けられている電解質層、
を備えるフッ化物シャトル二次電池であって、
前記フッ化物シャトル二次電池は、以下の(A1)および(B1)からなる群より選択される少なくとも1つを満たす:
(A1)前記負極は、第一負極活物質および前記第一負極活物質とは異なる組成を有する第二負極活物質を含み、
前記第一負極活物質は、金属M1を含有する第一金属フッ化物であり、
前記金属M1は、0℃以上かつ250℃以下の融点を有する。
(B1)前記正極は、第一正極活物質および前記第一正極活物質とは異なる組成を有する第二正極活物質を含み、
前記第一正極活物質は、M2Fxで表される金属フッ化物が0℃以上かつ250℃以下の融点を有する金属M2であり、
ここで、xはM2の価数を表す。
正極、
負極、および
前記正極および前記負極の間に設けられている電解質層、
を備えるフッ化物シャトル二次電池であって、
前記フッ化物シャトル二次電池は、以下の(A1)および(B1)からなる群より選択される少なくとも1つを満たす:
(A1)前記負極は、第一負極活物質および前記第一負極活物質とは異なる組成を有する第二負極活物質を含み、
前記第一負極活物質は、金属M1を含有する第一金属フッ化物であり、
前記金属M1は、0℃以上かつ250℃以下の融点を有する。
(B1)前記正極は、第一正極活物質および前記第一正極活物質とは異なる組成を有する第二正極活物質を含み、
前記第一正極活物質は、M2Fxで表される金属フッ化物が0℃以上かつ250℃以下の融点を有する金属M2であり、
ここで、xはM2の価数を表す。
本開示は、放電容量が向上したフッ化物シャトル二次電池を提供する。
<本開示の実施形態>
以下、本開示の実施形態によるフッ化物シャトル二次電池を、図面を参照しながら詳細に説明する。
以下、本開示の実施形態によるフッ化物シャトル二次電池を、図面を参照しながら詳細に説明する。
(実施の形態1)
フッ化物シャトル二次電池は、フッ化物イオンを電解質中でシャトルさせることで、正極および負極において、脱フッ化反応およびフッ化反応をそれぞれ進行させて起電力を得る電池である。
フッ化物シャトル二次電池は、フッ化物イオンを電解質中でシャトルさせることで、正極および負極において、脱フッ化反応およびフッ化反応をそれぞれ進行させて起電力を得る電池である。
本開示の実施形態によるフッ化物シャトル二次電池は、正極と、負極と、正極および負極の間に設けられている電解質層と、を備え、以下の(A1)および(B1)からなる群より選択される少なくとも1つを満たしている。
(A1)負極は、第一負極活物質および第一負極活物質とは異なる組成を有する第二負極活物質を含み、第一負極活物質は、金属M1を含有する第一金属フッ化物であり、金属M1は、0℃以上かつ250℃以下の融点を有する。
(B1)正極は、第一正極活物質および第一正極活物質とは異なる組成を有する第二正極活物質を含み、第一正極活物質は、M2Fxで表される金属フッ化物が0℃以上かつ250℃以下の融点を有する金属M2であり、ここで、xはM2の価数を表す。
(A1)負極は、第一負極活物質および第一負極活物質とは異なる組成を有する第二負極活物質を含み、第一負極活物質は、金属M1を含有する第一金属フッ化物であり、金属M1は、0℃以上かつ250℃以下の融点を有する。
(B1)正極は、第一正極活物質および第一正極活物質とは異なる組成を有する第二正極活物質を含み、第一正極活物質は、M2Fxで表される金属フッ化物が0℃以上かつ250℃以下の融点を有する金属M2であり、ここで、xはM2の価数を表す。
本開示の実施形態によるフッ化物シャトル二次電池は、上記(A1)を満たす場合、負極が第一負極活物質と、第一負極活物質とは異なる組成を有する第二負極活物質とを含む。第一負極活物質は、0℃以上かつ250℃以下の融点を有する金属M1を含有する第一金属フッ化物である。したがって、本開示の実施形態によるフッ化物シャトル二次電池では、充電により負極活物質の充電反応で第一金属フッ化物が脱フッ化して金属M1が生成し、生成した金属M1が溶融し得る。例えば、金属M1の融点以上の環境で電池が動作すると、充電により第一金属フッ化物から生じた金属M1が溶融する。以上によれば、溶融した金属M1が負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。このため、本開示の実施形態によるフッ化物シャトル二次電池は、向上した放電容量を実現できる。本開示の実施形態によるフッ化物シャトル二次電池は、例えば、第二負極活物質のみを負極活物質として使用した電池と比較して、向上した放電容量を実現できる。また、負極活物質の利用率および電池のサイクル特性を向上でき得る。
本開示において、利用率とは、活物質の理論比容量に対する、活物質の実際の比容量の比を意味する。本開示において、単に「負極活物質」と記載する場合、負極活物質には、第一負極活物質と第二負極活物質との両方が含まれる。本開示において、単に「正極活物質」と記載する場合、正極活物質には、第一正極活物質と第二正極活物質との両方が含まれる。
本開示の実施形態によるフッ化物シャトル二次電池は、上記(B1)を満たす場合、正極が第一正極活物質と、第一正極活物質とは異なる組成を有する第二正極活物質とを含み、第一正極活物質は、M2Fxで表される金属フッ化物が0℃以上かつ250℃以下の融点を有する、金属M2である。したがって、本開示の実施形態によるフッ化物シャトル二次電池では、充電により正極においてM2Fxで表される金属フッ化物が溶融し得る。例えば、M2Fxの融点以上の環境で電池が動作すると、充電により金属M2から生じたM2Fxが溶融する。以上によれば、溶融したM2Fxが正極活物質の周囲に広がり、正極活物質同士における良好な物質移動を実現できる。また、正極が正極活物質および固体電解質を含有する正極活物質層を含む場合は、正極活物質および固体電解質の間における良好な物質移動も実現できる。このため、本開示の実施形態によるフッ化物シャトル二次電池は、向上した放電容量を実現できる。本開示の実施形態によるフッ化物シャトル二次電池は、例えば、第二正極活物質のみを正極活物質として使用した電池と比較して、向上した放電容量を実現できる。また、正極活物質の利用率および電池のサイクル特性を向上でき得る。
本開示の実施形態によるフッ化物シャトル二次電池は、上記(A1)を満たすとき、金属M1が充電により溶融してもよく、上記(B1)を満たすとき、M2Fxが充電により溶融してもよい。本開示の実施形態によるフッ化物シャトル二次電池は、上記(A1)を満たすとき、金属M1が充電時に溶融してもよく、上記(B1)を満たすとき、M2Fxが充電時に溶融してもよい。充電により負極において第一金属フッ化物から生じた金属M1が溶融すると、溶融した金属M1が負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。これにより、第一負極活物質および第二負極活物質が向上した比容量を実現できる。充電により正極において金属M2から生じたM2Fxが溶融すると、溶融したM2Fxが正極活物質の周囲に広がり、正極活物質同士における良好な物質移動を実現できる。また、正極が正極活物質および固体電解質を含有する正極活物質層を含む場合は、正極活物質および固体電解質の間における良好な物質移動も実現できる。これにより、第一正極活物質および第二正極活物質が向上した比容量を実現できる。したがって、本開示の実施形態によるフッ化物シャトル二次電池は、向上した放電容量を実現できる。また、負極活物質または正極活物質の利用率および電池のサイクル特性を向上できる。
本開示の実施形態によるフッ化物シャトル二次電池は、上記(A1)および(B1)の両方を満たしてもよいし、いずれか1つを満たしていてもよい。本開示の実施形態によるフッ化物シャトル二次電池は、上記(A1)を満たしてもよい。
図1は、本開示の実施形態によるフッ化物シャトル二次電池を模式的に示す断面図である。図1に示されるフッ化物シャトル二次電池1は、正極2と、電解質層3と、負極4とを備える。
電解質層3は、正極2と負極4との間に設けられている。正極2は、例えば、正極集電体5および正極活物質層6を備える。負極4は、例えば、負極集電体7および負極活物質層8を備える。
負極活物質層8は、負極活物質を含む。負極活物質は、電池の充放電に伴ってフッ化物イオンを吸蔵および放出できる材料である。吸蔵および放出には、フッ化物イオンとの化学反応を伴う形態、およびインターカレーション等の化学反応を伴わない形態の双方が含まれる。化学反応には、化合物を形成する反応と、合金および固溶体等の化合物ではない複合体を形成する反応とが含まれる。
負極活物質は、フッ化物シャトル二次電池1において組み合わされる正極活物質に比べて、標準電極電位で表示して卑の電位を示す物質でありうる。
負極活物質層8は、負極活物質と、固体電解質とを含んでもよい。負極活物質は、第一負極活物質および当該第一負極活物質とは異なる組成を有する第二負極活物質を含んでもよい。本開示の実施形態によるフッ化物シャトル二次電池が上記(A1)を満たす場合、負極活物質層8は、第一負極活物質および当該第一負極活物質とは異なる組成を有する第二負極活物質を含み、第一負極活物質は、金属M1を含有する第一金属フッ化物であり、金属M1は、0℃以上かつ250℃以下の融点を有する。
金属M1は、Na、K、Rb、In、Ga、Sn、Cs、Se、およびLiからなる群から選択される少なくとも1つを含んでいてもよい。したがって、第一負極活物質は、Na、K、Rb、In、Ga、Sn、Cs、Se、およびLiからなる群から選択される少なくとも1つを含む第一金属フッ化物であってもよい。
以上によれば、金属M1の融点以上の環境で電池が動作すると、充電により負極活物質の充電反応で第一金属フッ化物が脱フッ化して金属M1が生成する。そして当該生成した金属M1が溶融し、負極活物質層8の中に広がる。これにより、負極活物質層8において負極活物質同士または負極活物質および固体電解質の間における良好な物質移動が実現でき、フッ化物シャトル二次電池の放電容量を向上できる。
金属M1は、25℃以上の融点を有していてもよく、50℃以上の融点を有していてもよい。金属M1は、180℃以下の融点を有していてもよく、150℃以下の融点を有していてもよい。金属M1は、25℃以上かつ180℃以下の融点を有していてもよい。金属M1は、50℃以上かつ150℃以下の融点を有していてもよい。
金属M1は、Naを含んでいてもよい。金属M1は、Naであってもよい。すなわち、第一金属フッ化物は、NaFであってもよい。以上によれば、Naの融点以上の環境で電池が動作すると、充電によりNaが溶融する。これにより、溶融したNaが負極活物質層8の中に広がり、負極活物質層8において負極活物質同士または負極活物質および固体電解質の間における良好な物質移動が実現でき、フッ化物シャトル二次電池の放電容量を向上できる。
金属M1は、Naと、K、Rb、およびLiからなる群より選択される少なくとも1つと、を含んでいてもよい。金属M1は、NaおよびKを含んでいてもよい。金属M1は、Naと他の金属との合金であってもよい。金属M1がNaと他の元素との合金である場合、低い温度で充電により金属M1が溶融するため、低い温度での使用で放電容量が向上したフッ化物シャトル二次電池を実現できる。金属M1は、NaとKとの合金であってもよい。金属M1がNaとKとの合金である場合、Na単体である場合よりもより低い温度で充電により金属M1が溶融するため、低い温度での使用で放電容量が向上したフッ化物シャトル二次電池を実現できる。
第一負極活物質または金属M1は、負極活物質層8中の他の物質と一様に混ざり合っていてもよい。第一負極活物質または金属M1は、負極活物質層8中に均一に分布していてもよい。これにより、負極活物質同士または負極活物質および固体電解質の間における良好な物質移動が実現でき、フッ化物シャトル二次電池の放電容量を向上できる。
第一負極活物質または金属M1の分布は、例えば、走査型電子顕微鏡(SEM)とエネルギー分散型X線分光法(EDX)とを組み合わせたSEM-EDXによって確認できる。
第二負極活物質は、第二金属フッ化物であってもよい。第二金属フッ化物は、フッ化電位および脱フッ化電位が-3.0V(vs.Pb/PbF2)超かつ-1.0V(vs.Pb/PbF2)未満であってもよい。このような第二負極活物質を含むことにより、フッ化物シャトル二次電池1は、エネルギー密度を向上させることができる。
第二金属フッ化物は、LaF3、AlF3、MgF2、CeF3、GdF3、YF3、EuF3、SmF3、NdF3、およびTiF3からなる群より選択される少なくとも1つであってもよい。すなわち、第二負極活物質は、LaF3、AlF3、MgF2、CeF3、GdF3、YF3、EuF3、SmF3、NdF3、およびTiF3からなる群より選択される少なくとも1つであってもよい。このような第二負極活物質を含むことにより、フッ化物シャトル二次電池1は、放電容量を向上させることができる。第一金属フッ化物がNaFであり、かつ第二金属フッ化物が、LaF3、AlF3、MgF2、CeF3、GdF3、YF3、EuF3、SmF3、NdF3、およびTiF3からなる群より選択される少なくとも1つであってもよい。
第二金属フッ化物は、LaF3、AlF3、およびGdF3からなる群より選択される少なくとも1つであってもよい。第二金属フッ化物は、LaF3であってもよい。第一金属フッ化物がNaFであり、かつ第二金属フッ化物が、LaF3、AlF3、およびGdF3からなる群より選択される少なくとも1つであってもよい。
第一金属フッ化物と第二金属フッ化物とのフッ化電位および脱フッ化電位の差は、0V以上かつ1.0V以下であってもよい。
第二負極活物質の負極における質量比は、第一負極活物質の負極における質量比よりも大きくてもよい。
負極4は、第一負極活物質および第二負極活物質とは異なる組成を有する第三負極活物質をさらに含んでいてもよい。第三負極活物質は、第三金属フッ化物であってもよい。第三金属フッ化物は、例えば、金属M1として例示した少なくとも1つを含む金属フッ化物であってもよいし、第二金属フッ化物として例示した金属フッ化物であってもよい。第三金属フッ化物は、第一金属フッ化物が含有する金属M1と合金または固溶体を形成し得る金属を含んでいてもよい。第三金属フッ化物は、KFであってもよい。
負極活物質層8に含まれる固体電解質としては、フッ化物イオン伝導性を有する固体電解質材料として公知の材料を用いることができる。例えば、Ce1-xSrxF3-x(0≦x≦1)、La1-xCaxF3-x(0≦x≦1)、La1-xBaxF3-x(0≦x≦1)、La1-xSrxF3-x(0≦x≦1)、Ca2-xBaxF4(0≦x≦2)、およびCe1-xBaxF3-x(0≦x≦1)等が挙げられる。
負極活物質層8の厚さは、例えば、1μm以上かつ500μm以下である。負極活物質層8の厚さは、1μm以上かつ400μm以下、さらには30μm以上かつ200μm以下でありうる。負極活物質層8の厚さがこれらの範囲にある場合、フッ化物シャトル二次電池1のエネルギー密度をより向上できるとともに、高出力でのより安定した動作が可能となる。
正極活物質層6は、正極活物質を含む。正極活物質は、フッ化物シャトル二次電池1の充放電に伴ってフッ化物イオンを吸蔵および放出できる材料である。吸蔵および放出には、フッ化物イオンとの化学反応を伴う形態、およびインターカレーション等の化学反応を伴わない形態の双方が含まれる。化学反応には、化合物を形成する反応と、合金および固溶体等の化合物ではない複合体を形成する反応とが含まれる。
正極活物質は、フッ化物シャトル二次電池1において組み合わされる負極活物質に比べて、標準電極電位で表示して貴の電位を示す物質でありうる。
正極2における正極活物質層6は、例えば、正極活物質と、固体電解質とを含んでもよい。正極活物質は、金属Meを含んでいてもよい。
金属Meは、例えば、Cu、Bi、Pb、Sb、Fe、Zn、Ni、Mn、Sn、Ag、Cr、In、Ti、およびCoからなる群から選択される少なくとも1つを含んでもよい。正極2において、金属Meは、単体、合金および固溶体などの複合体であり得る。このような金属Meを含む正極2を備えることにより、フッ化物シャトル二次電池1は、充放電容量を向上させることができる。
金属Meは、Pb、Cu、Bi、SnおよびAgからなる群より選択される少なくとも1つであってもよい。これにより、フッ化物シャトル二次電池1は、エネルギー密度をより向上させることができる。
正極活物質層6は、互いに異なる組成を有する2以上の正極活物質を含んでいてもよい。
本開示の実施形態によるフッ化物シャトル二次電池が、上記(B1)を満たす場合、正極活物質層6は、第一正極活物質および上記第一正極活物質とは異なる組成を有する第二正極活物質を含み、第一正極活物質は、金属M2であり、金属M2がM2Fxで表される金属フッ化物の状態にあるときの金属フッ化物の融点が0℃以上かつ250℃以下である。ここで、xはM2の価数を表す。
以上によれば、M2Fxの融点以上の環境で電池が動作すると、充電によりM2Fxが溶融し、正極活物質層6の中に広がる。これにより、正極活物質層6において正極活物質同士または正極活物質および固体電解質の間における良好な物質移動が実現でき、フッ化物シャトル二次電池の放電容量を向上できる。
M2Fxは、25℃以上かつ250℃以下の融点を有していてもよい。M2Fxは、50℃以上かつ250℃以下の融点を有していてもよい。
第一正極活物質である金属M2は、例えば、Sn、Nb、およびTaからなる群より選択される少なくとも1つである。
第二正極活物質は、金属Meとして上述した少なくとも一つの金属を含んでもよい。第二正極活物質は、金属Meとして上述した少なくとも一つの金属であってもよい。
第二正極活物質の正極における質量比は、第一正極活物質の正極における質量比よりも大きくてもよい。
正極活物質層6に含まれる固体電解質としては、フッ化物イオン伝導性を有する固体電解質材料として公知の材料を用いることができる。正極活物質層6に含まれる固体電解質は、負極活物質層8に含まれる固体電解質として上述した材料であってもよい。正極活物質層6に含まれる固体電解質は、負極活物質層8に含まれる固体電解質と同じ組成を有する材料であってもよい。
正極活物質層6の厚さは、例えば、1μm以上かつ500μm以下である。正極活物質層6の厚さは、1μm以上かつ400μm以下、さらには50μm以上かつ200μm以下でありうる。正極活物質層6の厚さがこれらの範囲にある場合、フッ化物シャトル二次電池1のエネルギー密度をより向上できるとともに、高出力でのより安定した動作が可能となる。
本開示の実施形態によるフッ化物シャトル二次電池は、正極と電解質層との間に、正極バッファ層を備えてもよい。図2は、本開示の実施形態によるフッ化物シャトル二次電池の変形例を模式的に示す断面図である。図2に示されるように、フッ化物シャトル二次電池11は、例えば、正極活物質層6と電解質層3との間に、正極バッファ層9を備える。
正極バッファ層9は、例えば、正極活物質に含まれる金属Meと同じ金属元素を含む化合物である正極バッファ材料を含む層である。以上の構成によれば、容量の劣化を抑制でき、フッ化物シャトル二次電池のサイクル特性を向上できる。例えば、正極活物質が鉛である場合、正極バッファ材料は、Pb1-aSnaF2であってもよい。ここで、aは、例えば0≦a≦1を満たしてもよく、0<a<1を満たしてもよい。
正極2において、例えば正極活物質層6は、導電助剤を含んでいてもよい。また、負極4において、例えば負極活物質層8は、導電助剤を含んでいてもよい。導電助剤が含まれる場合、正極2および負極4の抵抗が低減され得る。
導電助剤は、電子伝導性を有する限り限定されない。導電助剤は、例えば、天然黒鉛、人造黒鉛等のグラファイト類;アセチレンブラック、ケッチェンブラック等のカーボンブラック類;炭素繊維、金属繊維等の導電性繊維類;フッ化カーボン、アルミニウム等の導電性粉末類;酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類;酸化チタン等の導電性金属酸化物;およびポリアニリン、ポリピロール、ポリチオフェン等の導電性高分子化合物である。例えば、グラファイト類およびカーボンブラック類といった炭素系導電助剤の使用により、フッ化物シャトル二次電池1の低コスト化を図ることができる。
正極集電体5および負極集電体7は、電子伝導性を有する。正極集電体5および負極集電体7は、電子伝導性を有し、かつフッ化物シャトル二次電池1の充放電環境下において腐食し難い材料から構成されうる。
正極集電体5は、例えば、アルミニウム、金、白金、およびこれらの合金等の金属材料から構成される。正極集電体5の形状は限定されず、例えば、シートまたはフィルムである。シートおよびフィルムには、箔が含まれる。アルミニウムおよびその合金は、安価であるとともに、薄膜化し易い。正極集電体5は、カーボンコーティングされたアルミニウムから構成されうる。正極集電体5の厚さは、例えば、1μm以上かつ30μm以下である。正極集電体5の厚さがこの範囲にある場合、集電体の強度をより確実に確保でき、例えば集電体の割れおよび破れが抑制されるとともに、フッ化物シャトル二次電池1のエネルギー密度をより確実に確保できる。
正極集電体5は、正極端子を有しうる。
負極集電体7は、例えば、白金、アルミニウム、およびこれらの合金等の金属材料から構成される。負極集電体7の形状は限定されず、例えば、シートまたはフィルムである。シートおよびフィルムには、箔が含まれる。アルミニウムおよびその合金は、安価であるとともに、薄膜化し易い。負極集電体7は、カーボンコーティングされたアルミニウムから構成されうる。負極集電体7の厚さは、例えば、1μm以上かつ30μm以下である。負極集電体7の厚さがこの範囲にある場合、集電体の強度をより確実に確保でき、例えば集電体の割れおよび破れが抑制されるとともに、フッ化物シャトル二次電池1のエネルギー密度をより確実に確保できる。
電解質層3は、厚さ方向、すなわち正極2および負極4の積層方向にフッ化物イオン伝導性を有する層である。電解質層3は、典型的には、厚さ方向に電子伝導性を有さない。電解質層3の厚さは、例えば、1μm以上かつ1000μm以下である。電解質層3の厚さは、10μm以上かつ800μm以下、さらには20μm以上かつ700μm以下でありうる。電解質層3の厚さがこれらの範囲にある場合、正極2と負極4との電気的な短絡が抑制されるとともに、フッ化物イオンの伝導性をより確実に確保できる。フッ化物イオンの伝導性をより確実に確保できることにより、より高い出力特性を有するフッ化物シャトル二次電池1を構築することができる。
電解質層3は、固体電解質を含んでいてもよい。電解質層3に含まれる固体電解質としては、フッ化物イオン伝導性を有する固体電解質材料として公知の材料を用いることができる。電解質層3に含まれる固体電解質は、負極活物質層8に含まれる固体電解質として上述した材料であってもよい。電解質層3に含まれる固体電解質は、負極活物質層8に含まれる固体電解質と同じ組成を有する材料であってもよく、正極活物質層6に含まれる固体電解質と同じ組成を有する材料であってもよい。電解質層3は、固体電解質層であってもよい。
電解質層3が上記の構成を有することにより、フッ化物シャトル二次電池1は充放電容量を向上させることができる。
粒子状の材料を含む層は、当該粒子を互いに結着する結着剤をさらに含みうる。結着剤により、層内における粒子間の結着性を向上できる。また、結着剤により、隣接する層との接合性(密着強度)を向上できる。例えば、正極活物質層6または負極活物質層8が粒子状の材料を含む場合、これらの活物質層が結着剤をさらに含むことで、当該活物質層と当該活物質層に隣接する正極集電体5または負極集電体7との接合性を向上できる。これら接合性の向上は、各層の薄膜化に寄与する。例えば、正極活物質層6および負極活物質層8では、電極活物質同士をより確実に接触させることができるためである。電解質層3では、電解質同士をより確実に接触させることができる。各層の薄膜化によって、フッ化物シャトル二次電池1のエネルギー密度のさらなる向上が可能となる。
結着剤は限定されない。結着剤は、例えば、フッ素系樹脂から構成されるバインダー、高分子化合物、またはゴム質重合体であってもよい。バインダーを構成するフッ素系樹脂は、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、ポリ(フッ化ビニリデン)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)等である。高分子化合物は、例えば、カルボキシメチルセルロース、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリ塩化ビニル、ポリメチルメタクリレート、ポリメチルアクリレート、ポリメタクリル酸、ポリアクリル酸、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンイミン、ポリメタクリロニトリル、ポリビニルアセテート、ポリイミド、ポリアミック酸、ポリアミドイミド、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー、ポリ酢酸ビニル、ニトロセルロース、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体、ポリエステル樹脂、モノアルキルトリアルコキシシラン重合体、モノアルキルトリアルコキシシラン重合体とテトラアルコキシシランモノマーとを共重合させた高分子等である。ゴム質重合体は、例えば、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、スチレン-イソプレン共重合体、イソブチレン-イソプレン共重合体(ブチルゴム)、アクリロニトリル-ブタジエンゴム、エチレン-プロピレン-ジエン共重合体、アクリロニトリル-ブタジエン共重合体(NBR)、水素化SBR、水素化NBR、エチレン-プロピレン-ジエンマー(EPDM)、スルホン化EPDM等である。
結着剤がフッ化物イオンを伝導しない絶縁性の物質、電子を伝導しない絶縁性の物質、またはフッ化物イオンおよび電子を伝導しない絶縁性の物質である場合、各層における結着剤の含有率が過度に大きくなると、電池の充放電特性が低下したり、エネルギー密度が却って低下したりすることがある。この観点から、上記いずれかの絶縁性の物質である結着剤を含む層における結着剤の含有率は、例えば20質量%以下であり、5質量%以下でありうる。
結着剤はフッ化物イオン伝導性を有していてもよい。フッ化物イオン伝導性を有する結着剤としては、例えば、金属フッ化物が添加されたイオン伝導性高分子などが挙げられる。結着剤がフッ化物イオン伝導性を有している場合、絶縁性の結着剤に比べフッ化物イオン伝導性が向上し、充放電特性およびエネルギー密度の向上が期待できる。
(実施の形態2)
実施の形態2における電池の使用方法は、正極と、負極と、正極および負極の間に設けられている電解質層と、を備えるフッ化物シャトル二次電池の使用方法であって、以下の(A2)および(B2)からなる群より選択される少なくとも1つを満たしている。
(A2)負極は、第一負極活物質および第一負極活物質とは異なる組成を有する第二負極活物質を含み、第一負極活物質が金属M1を含有する第一金属フッ化物であり、当該使用方法は、金属M1が溶融する温度以上で充電することを含む。
(B2)正極は、第一正極活物質および第一正極活物質とは異なる組成を有する第二正極活物質を含み、第一正極活物質は、金属M2であり、当該使用方法は、M2Fxで表されるフッ化物が溶融する温度以上で充電することを含む。ここで、xはM2の価数を表す。
実施の形態2における電池の使用方法は、正極と、負極と、正極および負極の間に設けられている電解質層と、を備えるフッ化物シャトル二次電池の使用方法であって、以下の(A2)および(B2)からなる群より選択される少なくとも1つを満たしている。
(A2)負極は、第一負極活物質および第一負極活物質とは異なる組成を有する第二負極活物質を含み、第一負極活物質が金属M1を含有する第一金属フッ化物であり、当該使用方法は、金属M1が溶融する温度以上で充電することを含む。
(B2)正極は、第一正極活物質および第一正極活物質とは異なる組成を有する第二正極活物質を含み、第一正極活物質は、金属M2であり、当該使用方法は、M2Fxで表されるフッ化物が溶融する温度以上で充電することを含む。ここで、xはM2の価数を表す。
実施の形態2における使用方法が上記(A2)を満たす場合、金属M1が溶融する温度以上で充電することを含む。したがって、充電により負極において第一金属フッ化物から生じた金属M1が溶融する。以上によれば、溶融した金属M1が負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。このため、本開示の実施形態による使用方法は、フッ化物シャトル二次電池の放電容量を向上できる。また、本開示の実施形態による使用方法は、負極活物質の利用率および電池のサイクル特性を向上できる。
実施の形態2における使用方法が上記(B2)を満たす場合、M2Fxが溶融する温度以上で充電することを含む。したがって、充電により正極において金属M2から生じたM2Fxが溶融する。以上によれば、溶融したM2Fxが正極活物質の周囲に広がり、正極活物質同士における良好な物質移動を実現できる。また、正極が正極活物質および固体電解質を含有する正極活物質層を含む場合は、正極活物質および固体電解質の間における良好な物質移動も実現できる。このため、本開示の実施形態による使用方法は、フッ化物シャトル二次電池の放電容量を向上できる。また、本開示の実施形態による使用方法は、正極活物質の利用率および電池のサイクル特性を向上できる。
実施の形態2における使用方法は上記(A2)を満たしてもよい。
実施の形態2における使用方法で使用される上記フッ化物シャトル二次電池は、実施の形態1におけるフッ化物シャトル二次電池であってもよい。
実施の形態2における使用方法は、上記(A2)を満たす場合、M1が溶融する温度条件下のみで電池を充電および使用することを規定しているのではなく、M1が溶融する温度で充電および使用するすべての態様を包含する。すなわち、実施の形態2における使用方法は、上記(A2)を満たす場合、充電時の最高温度はM1が溶融する温度に達すればよく、最低温度はM1が溶融しない温度である環境で使用する態様も包含する。また、実施の形態2における使用方法は、上記(B2)を満たす場合、M2Fxが溶融する温度条件下のみで電池を充電および使用することを規定しているのではなく、M2Fxが溶融する温度で充電および使用するすべての態様を包含する。すなわち、実施の形態2における使用方法は、上記(B2)を満たす場合、充電時の最高温度はM2Fxが溶融する温度に達すればよく、最低温度はM2Fxが溶融しない温度である環境で使用する態様も包含する。
(他の実施の形態)
(付記)
以上の実施形態の記載により、下記の技術が開示される。
(付記)
以上の実施形態の記載により、下記の技術が開示される。
(技術1)
正極、
負極、および
前記正極および前記負極の間に設けられている電解質層、
を備えるフッ化物シャトル二次電池であって、
前記フッ化物シャトル二次電池は、以下の(A1)および(B1)からなる群より選択される少なくとも1つを満たす、フッ化物シャトル二次電池。
(A1)前記負極は、第一負極活物質および前記第一負極活物質とは異なる組成を有する第二負極活物質を含み、
前記第一負極活物質は、金属M1を含有する第一金属フッ化物であり、
前記金属M1は、0℃以上かつ250℃以下の融点を有する。
(B1)前記正極は、第一正極活物質および前記第一正極活物質とは異なる組成を有する第二正極活物質を含み、
前記第一正極活物質は、M2Fxで表される金属フッ化物が0℃以上かつ250℃以下の融点を有する金属M2であり、
ここで、xはM2の価数を表す。
正極、
負極、および
前記正極および前記負極の間に設けられている電解質層、
を備えるフッ化物シャトル二次電池であって、
前記フッ化物シャトル二次電池は、以下の(A1)および(B1)からなる群より選択される少なくとも1つを満たす、フッ化物シャトル二次電池。
(A1)前記負極は、第一負極活物質および前記第一負極活物質とは異なる組成を有する第二負極活物質を含み、
前記第一負極活物質は、金属M1を含有する第一金属フッ化物であり、
前記金属M1は、0℃以上かつ250℃以下の融点を有する。
(B1)前記正極は、第一正極活物質および前記第一正極活物質とは異なる組成を有する第二正極活物質を含み、
前記第一正極活物質は、M2Fxで表される金属フッ化物が0℃以上かつ250℃以下の融点を有する金属M2であり、
ここで、xはM2の価数を表す。
この構成によって、充電により、負極において金属M1が溶融または正極において金属フッ化物M2Fxが溶融し得る。例えば、金属M1の融点以上の環境で電池が動作すると、充電により負極活物質の充電反応で第一金属フッ化物が脱フッ化して金属M1が生成し、生成した金属M1が溶融する。M2Fxの融点以上の環境で電池が動作すると、充電により正極活物質の充電反応で金属M2がフッ化してM2Fxが生成し、生成したM2Fxが溶融する。以上によれば、溶融した金属M1またはM2Fxが負極活物質または正極活物質の周囲に広がり、負極活物質同士または正極活物質同士における良好な物質移動を実現できる。このため、負極活物質または正極活物質が向上した比容量を実現できる。したがって、本開示の実施形態によるフッ化物シャトル二次電池は、向上した放電容量を実現できる。また、活物質の利用率および電池のサイクル特性を向上でき得る。
(技術2)
前記(A1)を満たすとき、前記金属M1が充電により溶融し、前記(B1)を満たすとき、前記M2Fxが充電により溶融する、技術1に記載のフッ化物シャトル二次電池。この構成によって、溶融した金属M1が負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。または、溶融したM2Fxが正極活物質の周囲に広がり、正極活物質同士における良好な物質移動を実現できる。また、正極が正極活物質および固体電解質を含有する正極活物質層を含む場合は、正極活物質および固体電解質の間における良好な物質移動も実現できる。したがって、放電容量の向上したフッ化物シャトル二次電池を実現できる。また、活物質の利用率および電池のサイクル特性を向上できる。
前記(A1)を満たすとき、前記金属M1が充電により溶融し、前記(B1)を満たすとき、前記M2Fxが充電により溶融する、技術1に記載のフッ化物シャトル二次電池。この構成によって、溶融した金属M1が負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。または、溶融したM2Fxが正極活物質の周囲に広がり、正極活物質同士における良好な物質移動を実現できる。また、正極が正極活物質および固体電解質を含有する正極活物質層を含む場合は、正極活物質および固体電解質の間における良好な物質移動も実現できる。したがって、放電容量の向上したフッ化物シャトル二次電池を実現できる。また、活物質の利用率および電池のサイクル特性を向上できる。
(技術3)
前記(A1)を満たす、技術1または2に記載のフッ化物シャトル二次電池。この構成によって、充電により第一金属フッ化物から生成され溶融した金属M1が負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。これにより、放電容量の向上したフッ化物シャトル二次電池を実現できる。また、負極活物質の利用率および電池のサイクル特性を向上できる。
前記(A1)を満たす、技術1または2に記載のフッ化物シャトル二次電池。この構成によって、充電により第一金属フッ化物から生成され溶融した金属M1が負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。これにより、放電容量の向上したフッ化物シャトル二次電池を実現できる。また、負極活物質の利用率および電池のサイクル特性を向上できる。
(技術4)
前記金属M1は、25℃以上かつ180℃以下の融点を有する、技術1から3のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、上記融点より高い温度で動作した際に、金属M1が溶融する。これにより、第一金属フッ化物から生じて溶融した金属M1が負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。これにより、放電容量の向上したフッ化物シャトル二次電池を実現できる。また、負極活物質の利用率および電池のサイクル特性を向上できる。
前記金属M1は、25℃以上かつ180℃以下の融点を有する、技術1から3のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、上記融点より高い温度で動作した際に、金属M1が溶融する。これにより、第一金属フッ化物から生じて溶融した金属M1が負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。これにより、放電容量の向上したフッ化物シャトル二次電池を実現できる。また、負極活物質の利用率および電池のサイクル特性を向上できる。
(技術5)
前記金属M1は、Naを含む、技術1から4のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、Naの融点以上の環境で電池が動作すると、充電により第一金属フッ化物から生じたNaが溶融する。これにより、溶融したNaが負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。これにより、フッ化物シャトル二次電池の放電容量を向上できる。
前記金属M1は、Naを含む、技術1から4のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、Naの融点以上の環境で電池が動作すると、充電により第一金属フッ化物から生じたNaが溶融する。これにより、溶融したNaが負極活物質の周囲に広がり、負極活物質同士における良好な物質移動を実現できる。また、負極が負極活物質および固体電解質を含有する負極活物質層を含む場合は、負極活物質および固体電解質の間における良好な物質移動も実現できる。これにより、フッ化物シャトル二次電池の放電容量を向上できる。
(技術6)
前記金属M1は、Naと、K、Rb、およびLiからなる群より選択される少なくとも1つと、を含む、技術1から5のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、低い温度での使用で放電容量が向上したフッ化物シャトル二次電池を実現できる。
前記金属M1は、Naと、K、Rb、およびLiからなる群より選択される少なくとも1つと、を含む、技術1から5のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、低い温度での使用で放電容量が向上したフッ化物シャトル二次電池を実現できる。
(技術7)
前記第二負極活物質は、第二金属フッ化物であり、前記第二金属フッ化物は、フッ化電位および脱フッ化電位が-3.0V(vs.Pb/PbF2)超かつ-1.0V(vs.Pb/PbF2)未満である、技術1から6のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、フッ化物シャトル二次電池のエネルギー密度を向上できる。
前記第二負極活物質は、第二金属フッ化物であり、前記第二金属フッ化物は、フッ化電位および脱フッ化電位が-3.0V(vs.Pb/PbF2)超かつ-1.0V(vs.Pb/PbF2)未満である、技術1から6のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、フッ化物シャトル二次電池のエネルギー密度を向上できる。
(技術8)
前記第二負極活物質は第二金属フッ化物であり、前記第一金属フッ化物と前記第二金属フッ化物とのフッ化電位および脱フッ化電位の差は、0V以上かつ1.0V以下である、技術1から7のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、フッ化物シャトル二次電池の放電容量を向上できる。
前記第二負極活物質は第二金属フッ化物であり、前記第一金属フッ化物と前記第二金属フッ化物とのフッ化電位および脱フッ化電位の差は、0V以上かつ1.0V以下である、技術1から7のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、フッ化物シャトル二次電池の放電容量を向上できる。
(技術9)
前記第二負極活物質は、LaF3、AlF3、MgF2、CeF3、GdF3、YF3、EuF3、SmF3、NdF3、およびTiF3からなる群より選択される少なくとも1つである、技術1から8のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、フッ化物シャトル二次電池の放電容量を向上できる。
前記第二負極活物質は、LaF3、AlF3、MgF2、CeF3、GdF3、YF3、EuF3、SmF3、NdF3、およびTiF3からなる群より選択される少なくとも1つである、技術1から8のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、フッ化物シャトル二次電池の放電容量を向上できる。
(技術10)
前記金属M1は、Naを含み、
前記第二負極活物質は、LaF3、AlF3、MgF2、CeF3、GdF3、YF3、EuF3、SmF3、NdF3、およびTiF3からなる群より選択される少なくとも1つである、技術1から9のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、フッ化物シャトル二次電池の放電容量を向上できる。
前記金属M1は、Naを含み、
前記第二負極活物質は、LaF3、AlF3、MgF2、CeF3、GdF3、YF3、EuF3、SmF3、NdF3、およびTiF3からなる群より選択される少なくとも1つである、技術1から9のいずれか1項に記載のフッ化物シャトル二次電池。この構成によって、フッ化物シャトル二次電池の放電容量を向上できる。
(技術11)
正極、
負極、および
前記正極および前記負極の間に設けられている電解質層、
を備えるフッ化物シャトル二次電池の使用方法であって、
前記使用方法は、以下の(A2)および(B2)からなる群より選択される少なくとも1つを満たす:
(A2)前記負極は、第一負極活物質および前記第一負極活物質とは異なる組成を有する第二負極活物質を含み、
前記第一負極活物質が金属M1を含有する第一金属フッ化物であり、
前記使用方法は、前記金属M1が溶融する温度以上で充電することを含む。
(B2)前記正極は、第一正極活物質および前記第一正極活物質とは異なる組成を有する第二正極活物質を含み、
前記第一正極活物質は、金属M2であり、
前記使用方法は、M2Fxで表されるフッ化物が溶融する温度以上で充電することを含む。
ここで、xはM2の価数を表す。
正極、
負極、および
前記正極および前記負極の間に設けられている電解質層、
を備えるフッ化物シャトル二次電池の使用方法であって、
前記使用方法は、以下の(A2)および(B2)からなる群より選択される少なくとも1つを満たす:
(A2)前記負極は、第一負極活物質および前記第一負極活物質とは異なる組成を有する第二負極活物質を含み、
前記第一負極活物質が金属M1を含有する第一金属フッ化物であり、
前記使用方法は、前記金属M1が溶融する温度以上で充電することを含む。
(B2)前記正極は、第一正極活物質および前記第一正極活物質とは異なる組成を有する第二正極活物質を含み、
前記第一正極活物質は、金属M2であり、
前記使用方法は、M2Fxで表されるフッ化物が溶融する温度以上で充電することを含む。
ここで、xはM2の価数を表す。
この構成によって、充電により負極において充電反応で第一金属フッ化物が脱フッ化して金属M1が生成し、生成した金属M1が溶融する。または、充電により正極において充電反応で金属M2がフッ化してM2Fxが生成し、生成したM2Fxが溶融する。そのため、溶融した金属M1またはM2Fxが負極活物質層の中または正極活物質層の中に広がり、活物質の粒子間における良好な物質移動を実現できる。したがって、技術11に記載の使用方法は、フッ化物シャトル二次電池の放電容量を向上できる。また、技術11に記載の使用方法は、活物質の利用率および電池のサイクル特性を向上できる。
以下、実施例を用いて、本開示がより詳細に説明される。以下の実施例は一態様を挙げたに過ぎず、これに限定されない。
[実施例1]
(固体電解質材料の作製)
CaF2の粉体(高純度化学研究所社製)およびBaF2の粉体(高純度化学研究所社製)が、CaF2:BaF2=1:1のモル比で混合された後、遊星型ボールミルを用いて10時間ミリング処理された。これにより、組成式Ca0.5Ba0.5F2により表される固体電解質材料(以下、BCFと記載する)を得た。
(固体電解質材料の作製)
CaF2の粉体(高純度化学研究所社製)およびBaF2の粉体(高純度化学研究所社製)が、CaF2:BaF2=1:1のモル比で混合された後、遊星型ボールミルを用いて10時間ミリング処理された。これにより、組成式Ca0.5Ba0.5F2により表される固体電解質材料(以下、BCFと記載する)を得た。
(正極バッファ材料の作製)
PbF2の粉体(高純度化学研究所社製)およびSnF2の粉体(高純度化学研究所社製)を、PbF2:SnF2=15:7の重量比で混合した後、遊星型ボールミルを用いて24時間ミリング処理した。これにより、組成式Pb0.58Sn0.42F2により表される化合物(以下、PSFと記載する)を得た。
PbF2の粉体(高純度化学研究所社製)およびSnF2の粉体(高純度化学研究所社製)を、PbF2:SnF2=15:7の重量比で混合した後、遊星型ボールミルを用いて24時間ミリング処理した。これにより、組成式Pb0.58Sn0.42F2により表される化合物(以下、PSFと記載する)を得た。
上述のように準備したPSFと、導電助剤となるアセチレンブラック(以下、ABと記載する)(デンカ株式会社製)とを、PSF:AB=14:1の質量比で混合した後、遊星型ボールミルを用いて10時間ミリング処理した。これにより、PSF+ABで構成される正極バッファ材料を得た。
(負極合剤の作製)
上述のように準備された固体電解質材料であるBCFと、導電助剤となるABとを、BCF:AB=61:4の質量比で混合した後、遊星型ボールミルを用いて10時間ミリング処理した。
上述のように準備された固体電解質材料であるBCFと、導電助剤となるABとを、BCF:AB=61:4の質量比で混合した後、遊星型ボールミルを用いて10時間ミリング処理した。
上述の混合物BCF+ABに、活物質としてNaF粉体(シグマアルドリッチ社製)およびLaF3(シグマアルドリッチ社製)を加えた。BCF+AB:NaF:LaF3=65:6:29の質量比で混合した後、遊星型ボールミルを用いて10時間ミリング処理した。このようにして、負極合剤が得られた。
(評価用セルの作製)
上述のように準備された負極合剤の粉末10mg、固体電解質材料であるBCFの粉末100mg、正極バッファ材料であるPSF+ABの粉末30mg、正極活物質層となる鉛箔(ニラコ社製、厚さ200μm)、および正極集電体となるアルミ箔(ニラコ社製、厚さ10μm)が、この順で直径10mmφの金型中で積層されて、加圧成形された。得られた積層体における負極合剤からなる層(すなわち、負極活物質層)の上部に負極集電体としての白金箔(ニラコ社製、厚さ20μm)を配置し、実施例1の評価用セルを得た。
上述のように準備された負極合剤の粉末10mg、固体電解質材料であるBCFの粉末100mg、正極バッファ材料であるPSF+ABの粉末30mg、正極活物質層となる鉛箔(ニラコ社製、厚さ200μm)、および正極集電体となるアルミ箔(ニラコ社製、厚さ10μm)が、この順で直径10mmφの金型中で積層されて、加圧成形された。得られた積層体における負極合剤からなる層(すなわち、負極活物質層)の上部に負極集電体としての白金箔(ニラコ社製、厚さ20μm)を配置し、実施例1の評価用セルを得た。
(フッ化物シャトル二次電池の評価)
実施例1の評価用セルを用いて、フッ化物シャトル二次電池の充放電評価が行われた。充放電評価は、ポテンショガルバノスタット(バイオロジック社製、SP300)を用いて行われた。温度は140℃とし、充電40μA、放電40μAの電流にて、定電流充放電試験が実施された。図3は、実施例1の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。実施例1で用いられた負極の理論比容量は450mAh/gである。実施例1では2サイクル目以降、ほぼ理論通りの放電容量を示し、劣化が無く安定であった。
実施例1の評価用セルを用いて、フッ化物シャトル二次電池の充放電評価が行われた。充放電評価は、ポテンショガルバノスタット(バイオロジック社製、SP300)を用いて行われた。温度は140℃とし、充電40μA、放電40μAの電流にて、定電流充放電試験が実施された。図3は、実施例1の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。実施例1で用いられた負極の理論比容量は450mAh/gである。実施例1では2サイクル目以降、ほぼ理論通りの放電容量を示し、劣化が無く安定であった。
充放電前後の実施例1の評価用セルの断面がSEM-EDXに供された。図4Aは、充放電前の実施例1の評価用セルの断面SEM画像である。図4Bは、SEM-EDXの測定結果から得られた図4Aに示す画像におけるNaの分布を示すマッピング像である。図5Aは、充放電後の実施例1の評価用セルの断面SEM画像である。図5Bは、SEM-EDXの測定結果から得られた図5Aに示す画像におけるNaの分布を示すマッピング像である。各マッピング像の白色の箇所においてNaの濃度が比較的高いことを示している。図4Bからわかるように、充放電前では、Na元素は負極中にまばらに存在していたが、図5Bからわかるように、充放電後においては、Na元素は負極中に均質に存在していた。
[比較例1]
(評価用セルの作製)
負極合剤の作製において、NaFを加えず、BCF+ABおよびLaF3をBCF+AB:LaF3=65:35の質量比で混合したこと以外は、実施例1と同様にして、比較例1の評価用セルを作製した。
(評価用セルの作製)
負極合剤の作製において、NaFを加えず、BCF+ABおよびLaF3をBCF+AB:LaF3=65:35の質量比で混合したこと以外は、実施例1と同様にして、比較例1の評価用セルを作製した。
(フッ化物シャトル二次電池の評価)
実施例1と同様にして、比較例1の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図6は、比較例1の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。比較例1で用いられた負極の理論比容量は410mAh/gである。比較例1では、2サイクル目はほぼ理論通りの放電容量を示したが、サイクルを重ねると容量は低下した。
実施例1と同様にして、比較例1の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図6は、比較例1の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。比較例1で用いられた負極の理論比容量は410mAh/gである。比較例1では、2サイクル目はほぼ理論通りの放電容量を示したが、サイクルを重ねると容量は低下した。
[比較例2]
(評価用セルの作製)
負極合剤の作製にてLaF3を加えず、BCF+ABおよびNaFをBCF+AB:NaF=65:35の質量比で混合したこと以外は、実施例1と同様にして比較例2の評価用セルを作製した。
(評価用セルの作製)
負極合剤の作製にてLaF3を加えず、BCF+ABおよびNaFをBCF+AB:NaF=65:35の質量比で混合したこと以外は、実施例1と同様にして比較例2の評価用セルを作製した。
(フッ化物シャトル二次電池の評価)
実施例1と同様にして、比較例2の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図7は、比較例2の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。比較例2では、1サイクル目の放電容量は200mAh/g、2サイクル目以降の放電容量は50mAh/g以下で小さく、極めて充放電特性が低かった。また、比較例2で用いられた負極の理論比容量は638mAh/gであり、利用率も極めて低かった。
実施例1と同様にして、比較例2の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図7は、比較例2の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。比較例2では、1サイクル目の放電容量は200mAh/g、2サイクル目以降の放電容量は50mAh/g以下で小さく、極めて充放電特性が低かった。また、比較例2で用いられた負極の理論比容量は638mAh/gであり、利用率も極めて低かった。
図8は、実施例1、比較例1、および比較例2の評価用セルに対する140℃での充放電試験の2サイクル目の充放電結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。負極が活物質としてNaFおよびLaF3を含む実施例1のセルは、450mAh/g程度の放電容量を発現した。負極が活物質としてLaF3のみを含む比較例1のセルは、400mAh/g程度の放電容量を発現した。実施例1は、比較例1と比べて放電容量が増大した。負極が活物質としてNaFのみを含む比較例2のセルは、充放電容量がほとんど発現しなかった。
これらの結果から、NaFを添加した電池の特性の良化について、以下のような仮説が考えられる。
充電によりNaFが脱フッ化してNa金属が生成する。電池動作温度は140℃でNa金属の融点(98℃)以上である為、Na金属は溶融し液状化する。液状化したNa金属は、負極合剤の粒子間を拡散し、固体電解質であるBCFおよび活物質であるLaF3の界面に広がる。広がったNa金属により界面の物質輸送が良化し、このような電池特性の良化につながったと考えられる。
この仮説を検証するために、温度を90℃にして実施例1の評価用セルと同じセルに対して実施例1と同様に充放電試験を行った。図9は、実施例1の評価用セルに対する90℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。Na金属の融点より低い温度である90℃で充放電特性を測定した結果、容量は100mAh/g以下であり、非常に低かった。また、実施例1の評価用セルと同じセルを140℃で2サイクル動作させた後に温度を90℃に設定して充放電特性を測定した。図10は、140℃で2サイクル動作させた後の実施例1の評価用セルに対する90℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。図10からわかるように、140℃の場合よりも放電容量は低く、かつサイクルを重ねると容量が劣化した。その結果、良い特性は得られなかった。したがって、電池の動作温度がNa金属の融点以上であると、実施例1の評価用セルはよい充放電特性を実現できることがわかる。
[実施例2]
(評価用セルの作製)
負極合剤の作製において、NaFの代わりにKF(シグマアルドリッチ社製)を10mol%加えたNaFを使用した。すなわち、BCF+AB、NaF、KF、およびLaF3を、BCF+AB:NaF:KF:LaF3=65:5.15:0.85:29の質量比で混合した。この事項以外は、実施例1と同様にして、実施例2の評価用セルを作製した。
(評価用セルの作製)
負極合剤の作製において、NaFの代わりにKF(シグマアルドリッチ社製)を10mol%加えたNaFを使用した。すなわち、BCF+AB、NaF、KF、およびLaF3を、BCF+AB:NaF:KF:LaF3=65:5.15:0.85:29の質量比で混合した。この事項以外は、実施例1と同様にして、実施例2の評価用セルを作製した。
(フッ化物シャトル二次電池の評価)
実施例1と同様にして、実施例2の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図11は、実施例2の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。実施例2で用いられた負極の理論比容量は447mAh/gであり、2サイクル目にほぼ理論通りの優れた放電容量を示した。
実施例1と同様にして、実施例2の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図11は、実施例2の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。実施例2で用いられた負極の理論比容量は447mAh/gであり、2サイクル目にほぼ理論通りの優れた放電容量を示した。
図11で示される結果から、負極活物質としてさらにKFを含む場合も、良好な放電容量を確認できた。
[実施例3]
(評価用セルの作製)
負極合剤の作製において、LaF3の代わりにGdF3(シグマアルドリッチ社製)を使用したこと、すなわちBCF+AB、NaF、およびGdF3を、BCF+AB:NaF:GdF3=65:6:29の質量比で混合したこと以外は、実施例1と同様にして、実施例3の評価用セルを作製した。
(評価用セルの作製)
負極合剤の作製において、LaF3の代わりにGdF3(シグマアルドリッチ社製)を使用したこと、すなわちBCF+AB、NaF、およびGdF3を、BCF+AB:NaF:GdF3=65:6:29の質量比で混合したこと以外は、実施例1と同様にして、実施例3の評価用セルを作製した。
(フッ化物シャトル二次電池の評価)
実施例1と同様にして、実施例3の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図12は、実施例3の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。実施例3で用いられた負極の理論比容量は418mAh/gである。実施例3では2サイクル目以降、ほぼ理論通りの優れた放電容量を示し、劣化が無く安定であった。
実施例1と同様にして、実施例3の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図12は、実施例3の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。実施例3で用いられた負極の理論比容量は418mAh/gである。実施例3では2サイクル目以降、ほぼ理論通りの優れた放電容量を示し、劣化が無く安定であった。
[比較例3]
(評価用セルの作製)
負極合剤の作製にてLaF3の代わりGdF3(シグマアルドリッチ社製)を使用したこと、すなわち、BCF+ABおよびGdF3を、BCF+AB:GdF3=65:35の質量比で混合したこと以外は、比較例1と同様にして、比較例3の評価用セルを作製した。
(評価用セルの作製)
負極合剤の作製にてLaF3の代わりGdF3(シグマアルドリッチ社製)を使用したこと、すなわち、BCF+ABおよびGdF3を、BCF+AB:GdF3=65:35の質量比で混合したこと以外は、比較例1と同様にして、比較例3の評価用セルを作製した。
(フッ化物シャトル二次電池の評価)
実施例1と同様にして、比較例3の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図13は、比較例3の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。比較例3で用いられた負極の理論比容量は375mAh/gであるが、比較例3の放電容量は理論比容量よりも低く、サイクルを重ねると容量はさらに低下した。
実施例1と同様にして、比較例3の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図13は、比較例3の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。比較例3で用いられた負極の理論比容量は375mAh/gであるが、比較例3の放電容量は理論比容量よりも低く、サイクルを重ねると容量はさらに低下した。
実施例3および比較例3からわかるように、負極活物質としてGdF3を含む場合も、LaF3を含む場合と同様に、NaFを添加することで電池の放電容量が向上した。また、サイクル特性および利用率の向上も確認することが出来た。
[実施例4]
(評価用セルの作製)
負極合剤の作製において、LaF3の代わりにAlF3(シグマアルドリッチ社製)を使用したこと、すなわち、BCF+AB、NaF、およびAlF3を、BCF+AB:NaF:AlF3=65:6:29の質量比で混合したこと以外は、実施例1と同様にして、実施例4の評価用セルを作製した。
(評価用セルの作製)
負極合剤の作製において、LaF3の代わりにAlF3(シグマアルドリッチ社製)を使用したこと、すなわち、BCF+AB、NaF、およびAlF3を、BCF+AB:NaF:AlF3=65:6:29の質量比で混合したこと以外は、実施例1と同様にして、実施例4の評価用セルを作製した。
(フッ化物シャトル二次電池の評価)
実施例1と同様にして、実施例4の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図14は、実施例4の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。実施例4では2サイクル目以降、600mAh/g程度の優れた放電容量を示し、劣化が無く安定であった。なお実施例4で用いられた負極の理論比容量は851mAh/gである。
実施例1と同様にして、実施例4の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図14は、実施例4の評価用セルに対する140℃での充放電試験の結果を示すグラフである。横軸は、負極活物質の単位質量あたりの容量を意味する比容量であり、充電または放電される電気量を表す。実施例4では2サイクル目以降、600mAh/g程度の優れた放電容量を示し、劣化が無く安定であった。なお実施例4で用いられた負極の理論比容量は851mAh/gである。
[比較例4]
(評価用セルの作製)
負極合剤の作製において、LaF3の代わりにAlF3(シグマアルドリッチ社製)を使用したこと、すなわち、BCF+ABおよびAlF3を、BCF+AB:AlF3=65:35の質量比で混合したこと以外は、比較例1と同様にして、比較例4の評価用セルを作製した。
(評価用セルの作製)
負極合剤の作製において、LaF3の代わりにAlF3(シグマアルドリッチ社製)を使用したこと、すなわち、BCF+ABおよびAlF3を、BCF+AB:AlF3=65:35の質量比で混合したこと以外は、比較例1と同様にして、比較例4の評価用セルを作製した。
(フッ化物シャトル二次電池の評価)
実施例1と同様にして、比較例4の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図15は、比較例4の評価用セルに対する140℃での充放電試験の結果を示すグラフである。比較例4で用いられた負極の理論比容量は957mAh/gであるが、400mAh/g程度の放電容量しか示さず、実施例4の電池よりも放電容量が小さかった。
実施例1と同様にして、比較例4の評価用セルを用いてフッ化物シャトル二次電池の充放電評価が行われた。図15は、比較例4の評価用セルに対する140℃での充放電試験の結果を示すグラフである。比較例4で用いられた負極の理論比容量は957mAh/gであるが、400mAh/g程度の放電容量しか示さず、実施例4の電池よりも放電容量が小さかった。
実施例4および比較例4からわかるように、負極活物質としてAlF3を含む場合も、LaF3を含む場合と同様に、NaFを添加することで電池の放電容量が向上した。また、利用率の向上も確認することが出来た。
本開示のフッ化物シャトル二次電池は、上述した各実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形、変更が可能である。例えば、発明を実施するための形態に記載した実施形態に示された技術的特徴は、上述の課題の一部または全部を解決するため、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
本開示のフッ化物シャトル二次電池は、放電容量が向上した二次電池として、種々の用途への応用が期待される。
Claims (11)
- 正極、
負極、および
前記正極および前記負極の間に設けられている電解質層、
を備えるフッ化物シャトル二次電池であって、
前記フッ化物シャトル二次電池は、以下の(A1)および(B1)からなる群より選択される少なくとも1つを満たす:
(A1)前記負極は、第一負極活物質および前記第一負極活物質とは異なる組成を有する第二負極活物質を含み、
前記第一負極活物質は、金属M1を含有する第一金属フッ化物であり、
前記金属M1は、0℃以上かつ250℃以下の融点を有する。
(B1)前記正極は、第一正極活物質および前記第一正極活物質とは異なる組成を有する第二正極活物質を含み、
前記第一正極活物質は、M2Fxで表される金属フッ化物が0℃以上かつ250℃以下の融点を有する金属M2であり、
ここで、xはM2の価数を表す。 - 前記(A1)を満たすとき、前記金属M1が充電により溶融し、
前記(B1)を満たすとき、前記M2Fxが充電により溶融する、
請求項1に記載のフッ化物シャトル二次電池。 - 前記(A1)を満たす、
請求項1に記載のフッ化物シャトル二次電池。 - 前記金属M1は、25℃以上かつ180℃以下の融点を有する、
請求項1に記載のフッ化物シャトル二次電池。 - 前記金属M1は、Naを含む、
請求項1に記載のフッ化物シャトル二次電池。 - 前記金属M1は、Naと、K、Rb、およびLiからなる群より選択される少なくとも1つと、を含む、
請求項1に記載のフッ化物シャトル二次電池。 - 前記第二負極活物質は、第二金属フッ化物であり、
前記第二金属フッ化物のフッ化電位および脱フッ化電位が-3.0V(vs.Pb/PbF2)超かつ-1.0V(vs.Pb/PbF2)未満である、
請求項1に記載のフッ化物シャトル二次電池。 - 前記第二負極活物質は、第二金属フッ化物であり、
前記第一金属フッ化物と前記第二金属フッ化物とのフッ化電位および脱フッ化電位の差は、0V以上かつ1.0V以下である、
請求項1に記載のフッ化物シャトル二次電池。 - 前記第二負極活物質は、LaF3、AlF3、MgF2、CeF3、GdF3、YF3、EuF3、SmF3、NdF3、およびTiF3からなる群より選択される少なくとも1つである、
請求項1に記載のフッ化物シャトル二次電池。 - 前記金属M1は、Naを含み、
前記第二負極活物質は、LaF3、AlF3、MgF2、CeF3、GdF3、YF3、EuF3、SmF3、NdF3、およびTiF3からなる群より選択される少なくとも1つである、
請求項1に記載のフッ化物シャトル二次電池。 - 正極、
負極、および
前記正極および前記負極の間に設けられている電解質層、
を備えるフッ化物シャトル二次電池の使用方法であって、
前記使用方法は、以下の(A2)および(B2)からなる群より選択される少なくとも1つを満たす:
(A2)前記負極は、第一負極活物質および前記第一負極活物質とは異なる組成を有する第二負極活物質を含み、
前記第一負極活物質が金属M1を含有する第一金属フッ化物であり、
前記使用方法は、前記金属M1が溶融する温度以上で充電することを含む。
(B2)前記正極は、第一正極活物質および前記第一正極活物質とは異なる組成を有する第二正極活物質を含み、
前記第一正極活物質は、金属M2であり、
前記使用方法は、M2Fxで表されるフッ化物が溶融する温度以上で充電することを含む。
ここで、xはM2の価数を表す。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022141552 | 2022-09-06 | ||
JP2022-141552 | 2022-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024053244A1 true WO2024053244A1 (ja) | 2024-03-14 |
Family
ID=90192388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/025798 WO2024053244A1 (ja) | 2022-09-06 | 2023-07-12 | フッ化物シャトル二次電池およびフッ化物シャトル二次電池の使用方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024053244A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018198130A (ja) * | 2017-05-23 | 2018-12-13 | トヨタ自動車株式会社 | フッ化物イオン電池 |
JP2019029206A (ja) * | 2017-07-31 | 2019-02-21 | トヨタ自動車株式会社 | フッ化物イオン電池 |
JP2020129531A (ja) * | 2018-05-22 | 2020-08-27 | パナソニックIpマネジメント株式会社 | フッ化物イオン二次電池用活物質、及びそれを用いたフッ化物イオン二次電池 |
JP2020170656A (ja) * | 2019-04-04 | 2020-10-15 | トヨタ自動車株式会社 | 電解液およびフッ化物イオン電池 |
-
2023
- 2023-07-12 WO PCT/JP2023/025798 patent/WO2024053244A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018198130A (ja) * | 2017-05-23 | 2018-12-13 | トヨタ自動車株式会社 | フッ化物イオン電池 |
JP2019029206A (ja) * | 2017-07-31 | 2019-02-21 | トヨタ自動車株式会社 | フッ化物イオン電池 |
JP2020129531A (ja) * | 2018-05-22 | 2020-08-27 | パナソニックIpマネジメント株式会社 | フッ化物イオン二次電池用活物質、及びそれを用いたフッ化物イオン二次電池 |
JP2020170656A (ja) * | 2019-04-04 | 2020-10-15 | トヨタ自動車株式会社 | 電解液およびフッ化物イオン電池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019146295A1 (ja) | 負極材料およびそれを用いた電池 | |
US11456447B2 (en) | Predoping method for negative electrode active material, manufacturing method for negative electrode, and manufacturing method for power storage device | |
EP2717357B1 (en) | Negative electrode active material for electrical device, negative electrode for electrical device and electrical device | |
KR101660100B1 (ko) | 전기 디바이스용 부극 활물질 | |
KR101720832B1 (ko) | 전기 디바이스용 부극 활물질 | |
US20190006709A1 (en) | Fluoride shuttle secondary battery | |
US20210273222A1 (en) | Active material, negative electrode active material, and fluoride ion secondary battery | |
US10530010B2 (en) | Fluoride shuttle secondary battery | |
JP7140648B2 (ja) | フッ化物イオン伝導体およびフッ化物イオン二次電池 | |
EP2717356B1 (en) | Negative electrode active material for electrical devices | |
CN115088096A (zh) | 正极材料及电池 | |
US20240128462A1 (en) | Coated positive electrode active material, positive electrode material, and battery | |
JP6112200B2 (ja) | 電気デバイス用負極活物質、およびこれを用いた電気デバイス | |
US20230090463A1 (en) | Battery | |
WO2024053244A1 (ja) | フッ化物シャトル二次電池およびフッ化物シャトル二次電池の使用方法 | |
WO2021215086A1 (ja) | 電池 | |
JP7140647B2 (ja) | フッ化物イオン伝導体およびフッ化物イオン二次電池 | |
WO2023286554A1 (ja) | フッ化物イオン伝導材料およびフッ化物シャトル型電池 | |
JP6292317B2 (ja) | 電気デバイス用負極活物質、およびこれを用いた電気デバイス | |
US20240105936A1 (en) | Positive electrode material and battery | |
EP4141995A1 (en) | Battery | |
CN114846642A (zh) | 电极及电池 | |
JPWO2016098207A1 (ja) | 電気デバイス用負極活物質、およびこれを用いた電気デバイス | |
CN114846643A (zh) | 电极及电池 | |
JP2016027526A (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23862788 Country of ref document: EP Kind code of ref document: A1 |