WO2024053092A1 - n型のシリコンのブロック、およびn型のシリコンの基板 - Google Patents

n型のシリコンのブロック、およびn型のシリコンの基板 Download PDF

Info

Publication number
WO2024053092A1
WO2024053092A1 PCT/JP2022/033900 JP2022033900W WO2024053092A1 WO 2024053092 A1 WO2024053092 A1 WO 2024053092A1 JP 2022033900 W JP2022033900 W JP 2022033900W WO 2024053092 A1 WO2024053092 A1 WO 2024053092A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
seed crystal
region
type silicon
single crystal
Prior art date
Application number
PCT/JP2022/033900
Other languages
English (en)
French (fr)
Inventor
整 松尾
英義 田辺
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to PCT/JP2022/033900 priority Critical patent/WO2024053092A1/ja
Publication of WO2024053092A1 publication Critical patent/WO2024053092A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/06Production of homogeneous polycrystalline material with defined structure from liquids by normal freezing or freezing under temperature gradient
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present disclosure relates to an n-type silicon block and an n-type silicon substrate.
  • Patent Document 1 describes a technology for manufacturing a p-type silicon ingot by a monolike casting method, and manufacturing a p-type silicon block and a p-type silicon substrate by cutting out the p-type silicon ingot. Are listed.
  • An n-type silicon block and an n-type silicon substrate are disclosed.
  • n-type silicon block contains a donor that is a group 15 element, an acceptor that is a group 13 element, carbon, and oxygen, and the number of carbon atoms per unit volume is The first region has a larger number of oxygen atoms per unit volume.
  • the number of donor atoms per unit volume is greater than the number of acceptor atoms per unit volume.
  • the donor's segregation coefficient for silicon is greater than the acceptor's segregation coefficient for silicon.
  • the n-type silicon substrate contains a donor that is a group 15 element, an acceptor that is a group 13 element, carbon, and oxygen.
  • the number of atoms of the donor per unit volume is greater than the number of atoms of the acceptor per unit volume
  • the number of atoms of carbon per unit volume is greater than the number of atoms of the acceptor per unit volume. is larger than the number of oxygen atoms.
  • the donor's segregation coefficient for silicon is greater than the acceptor's segregation coefficient for silicon.
  • FIG. 1 is a diagram schematically showing an example of a virtual cross section of the manufacturing apparatus according to the first embodiment.
  • FIG. 2 is a flow chart showing an example of a method for manufacturing a silicon ingot using the manufacturing apparatus according to the first embodiment.
  • FIG. 3 is a diagram schematically showing an example of a virtual cross section of the manufacturing apparatus in a state where a mold release material is formed on the inner wall of the mold in the second step.
  • FIG. 4 is a diagram schematically showing an example of a virtual cross section of the manufacturing apparatus in a state where the seed crystal group is arranged on the bottom of the mold in the second step.
  • FIG. 5 is a diagram schematically showing an example of the arrangement of the seed crystal group placed on the bottom of the mold in the second step.
  • FIG. 6 is a diagram for explaining the ⁇ value.
  • FIG. 7 is a diagram schematically showing an example of a method for preparing a seed crystal section.
  • FIG. 8 is a diagram schematically showing an example of a method for preparing a seed crystal section.
  • FIG. 9 is a diagram schematically showing a hypothetical example of the manufacturing apparatus in a state where the first crucible is filled with a plurality of raw silicon lumps in the second step.
  • FIG. 10 is a graph schematically showing a reference example of the relationship between the position in the height direction and the resistivity in each of a p-type silicon ingot and an n-type silicon ingot manufactured by a monolike casting method.
  • FIG. 10 is a graph schematically showing a reference example of the relationship between the position in the height direction and the resistivity in each of a p-type silicon ingot and an n-type silicon ingot manufactured by a monolike casting method.
  • FIG. 11 is a diagram schematically showing a hypothetical example of the manufacturing apparatus in a state where lifting and rotation of the mold and intake and exhaust of gas have started in the third step.
  • FIG. 12 shows a virtual production apparatus in a state where a silicon melt generated by melting a plurality of raw silicon lumps in the first crucible is poured from the first crucible into the mold in the fourth step.
  • FIG. 2 is a diagram schematically showing an example of a typical cross section.
  • FIG. 13 is a diagram schematically showing an example of a virtual cross section of the manufacturing apparatus in a state where the silicon melt is solidifying in one direction within the mold in the fifth step.
  • FIG. 14 is a cross-sectional view schematically showing an example of the cross section of the silicon ingot according to the first embodiment taken along line XIV-XIV in FIG. 15.
  • FIG. 15 is a cross-sectional view schematically showing an example of the cross section of the silicon ingot according to the first embodiment taken along line XV-XV in FIG. 14.
  • FIG. 16 is a cross-sectional view schematically showing an example of the cross section of the n-type silicon block according to the first embodiment taken along line XVI-XVI in FIG. 17.
  • FIG. 17 is a cross-sectional view schematically showing an example of the cross section of the n-type silicon block according to the first embodiment along the line XVII-XVII in FIG. 16.
  • FIG. 18 is a graph showing an example of the relationship between the position in the height direction and the resistivity in a silicon ingot according to one specific example.
  • FIG. 19 is a graph showing an example of the relationship between the position in the height direction and the number of atoms of phosphorus and gallium per unit volume in a silicon ingot according to one specific example.
  • FIG. 20 is a graph showing an example of the relationship between the position in the height direction and the lifetime in an n-type silicon block according to one specific example.
  • FIG. 21 is a graph showing an example of the relationship between the position in the height direction and the number of carbon and oxygen atoms per unit volume in an n-type silicon block according to one specific example.
  • FIG. 22 is a graph showing an example of the relationship between the position in the height direction and the density of etch pits in an n-type silicon block according to one specific example.
  • FIG. 23 is a graph showing an example of the relationship between the position in the height direction and the occupation ratio of dislocation clusters in an n-type silicon block according to one specific example.
  • FIG. 24 is a front view schematically showing an example of an n-type silicon substrate according to the first embodiment.
  • FIG. 25 is a plan view schematically showing an example of an n-type silicon substrate according to the first embodiment.
  • FIG. 26 is a diagram schematically showing an example of the arrangement of the seed crystal group arranged on the bottom of the mold in the second step according to the second embodiment.
  • FIG. 27 is a cross-sectional view schematically showing an example of a cross section of the silicon ingot according to the second embodiment along line XXVII-XXVII in FIG. 28.
  • FIG. 28 is a cross-sectional view schematically showing an example of the cross section of the silicon ingot according to the second embodiment taken along line XXVIII-XXVIII in FIG. 27.
  • FIG. 29 is a cross-sectional view schematically showing an example of the cross section of the silicon block according to the second embodiment taken along line XXIX-XXIX in FIG. 30.
  • FIG. 30 is a cross-sectional view schematically showing an example of a cross section of the silicon block according to the second embodiment taken along line XXX-XXX in FIG. 29.
  • FIG. 31 is a diagram schematically showing an example of the arrangement of the seed crystal group arranged on the bottom of the mold in the second step according to the third embodiment.
  • FIG. 32 is a cross-sectional view schematically showing an example of the cross section of the silicon ingot according to the third embodiment taken along line XXXII-XXXII in FIG. 33.
  • FIG. 33 is a cross-sectional view schematically showing an example of the cross section of the silicon ingot according to the third embodiment taken along line XXXIII-XXXIII in FIG. 32.
  • FIG. 34 is a cross-sectional view schematically showing an example of the cross section of the n-type silicon block according to the third embodiment taken along line XXXIV-XXXIV in FIG. 35.
  • FIG. 35 is a cross-sectional view schematically showing an example of the cross section of the n-type silicon block according to the third embodiment taken along line XXXV-XXXV in FIG. 34.
  • FIG. 36 is a plan view schematically showing an example of an n-type silicon substrate according to the third embodiment.
  • Solar cells using polycrystalline silicon substrates have relatively high conversion efficiency and are suitable for mass production. Further, silicon can be obtained, for example, from silicon oxide, which exists in large quantities on the earth. Further, a polycrystalline silicon substrate can be obtained relatively easily, for example, by thinly slicing a p-type silicon block cut from a p-type silicon ingot obtained by a casting method. For this reason, solar cells using polycrystalline silicon substrates have continued to occupy a high share of the total production of solar cells for many years.
  • a monolike cast method (also called seed cast method) is used to manufacture p-type silicon ingots as a type of cast growth method.
  • molten silicon also referred to as silicon melt
  • a p-type silicon ingot having a pseudo single crystal also referred to as pseudo single crystal or monolike crystal
  • the pseudo single crystal is formed by inheriting the crystal orientation of the seed crystal and growing in one direction. For example, a certain number of dislocations or grain boundaries may exist in this pseudo single crystal.
  • a solar cell using a polycrystalline silicon substrate can be produced. It is expected that the conversion efficiency will be improved.
  • the inventor of the present disclosure has created a technology that can improve the quality of n-type silicon blocks and n-type silicon substrates.
  • FIGS. 1, 3 to 5, 9, 11 to 17, and 24 to 36 A right-handed XYZ coordinate system is attached to FIGS. 1, 3 to 5, 9, 11 to 17, and 24 to 36.
  • this XYZ coordinate system one line is aligned along each of the height direction of the manufacturing equipment 1, the height direction of the silicon ingot 2, the height direction of the n-type silicon block 3, and the thickness direction of the n-type silicon substrate 4.
  • the direction is the +Z direction as the first direction.
  • one direction along the width direction of each of the manufacturing apparatus 1, silicon ingot 2, n-type silicon block 3, and n-type silicon substrate 4 is the +X direction as the second direction.
  • one direction that is orthogonal to both the +X direction and the +Z direction is the +Y direction as the third direction.
  • a direction opposite to the first direction is defined as a -Z direction as a fourth direction.
  • the manufacturing apparatus 1 produces a pseudo single crystal (also called pseudo single crystal or monolike crystal) region (also called pseudo single crystal or monolike crystal) by a monolike casting method (also called seed casting method) in which crystal grains are grown using a silicon seed crystal part as a starting point.
  • the pseudo-single crystal may be a so-called single crystal in which dislocations and grain boundaries do not exist, or it may have a structure close to a single crystal in which a certain number of defects and dislocations exist. , it may have a structure close to a single crystal in which a certain number of grain boundaries exist.
  • CZ Czochralski
  • Bridgman method single crystals produced by the monolike cast method are called pseudo-single crystals. It is called a crystal or monolike crystal.
  • the manufacturing apparatus 1 uses a method (also referred to as a pouring method) in which a molten silicon liquid (also referred to as silicon melt) poured into a mold 141 from a first crucible 131 is solidified within the mold 141 (also referred to as a pouring method). can be manufactured.
  • the silicon ingot 2 consists of a silicon block (also referred to as an n-type silicon block) 3 that uses free electrons as the main carrier for carrying charge and an n-type silicon substrate (an n-type silicon substrate). It is a lump of silicon for manufacturing 4).
  • the manufacturing apparatus 1 includes, for example, a housing 11, a heat insulating material 12, an upper unit 13, a lower unit 14, and a control section 15.
  • the housing 11 houses an upper unit 13 and a lower unit 14.
  • a water cooling jacket is applied to the housing 11.
  • a water cooling jacket has a structure in which a flow path through which a refrigerant such as water flows is formed inside a member made of a highly thermally conductive metal such as stainless steel. This water cooling jacket has the role of cooling the manufacturing apparatus 1 and the role of reducing radiation of heat generated within the manufacturing apparatus 1 to the outside of the manufacturing apparatus 1.
  • the heat insulating material 12 is located in each area between the housing 11 and the upper unit 13 and between the housing 11 and the lower unit 14.
  • the heat insulating material 12 has the role of reducing heat dissipation from the upper unit 13 and the lower unit 14.
  • the heat insulating material 12 may be located in an area between the upper unit 13 and the lower unit 14, avoiding the path through which the silicon melt passes from the upper unit 13 to the lower unit 14.
  • a heat insulating material made of carbon such as carbon fiber is applied as the heat insulating material 12.
  • the upper unit 13 includes, for example, a first crucible 131, a first heater 132, a second heater 133, and a first air supply section 134.
  • the first crucible 131 is a container for melting a silicon lump (also referred to as a raw silicon lump) 71 (see FIG. 9, etc.) that becomes the base material of the silicon ingot 2.
  • the first crucible 131 has, for example, a cylindrical shape with a bottom.
  • the first crucible 131 forms a space (also referred to as a first internal space) 131i surrounded by the first crucible 131.
  • the first crucible 131 has, for example, an upper opening (also referred to as a first upper opening) 131o and a lower opening (also referred to as a first lower opening) 131h.
  • the first upper opening 131o connects the first internal space 131i to the space above the first crucible 131.
  • the first lower opening 131h is located so as to penetrate through the bottom of the first crucible 131.
  • the first lower opening 131h allows the silicon (silicon melt) melted in the first internal space 131i to flow out toward the lower unit 14.
  • the material of the first crucible 131 is, for example, quartz glass.
  • the first crucible 131 may be made of a material other than silica glass, for example, as long as it is resistant to melting, deformation, decomposition, and reaction with silicon at temperatures above the melting point of silicon, and has a low content of impurities. may be applied.
  • the first crucible 131 is fixed to the housing 11 via a heat-resistant member such as a member made of graphite, for example.
  • the first heater 132 can heat the raw silicon lump 71 and the like located in the first internal space 131i from above.
  • the first heater 132 is located above the first internal space 131i.
  • the first heater 132 is located in an annular shape.
  • the second heater 133 can heat the raw silicon lump 71 and the like located in the first internal space 131i from the side.
  • the second heater 133 is located so as to surround the first crucible 131 from the side.
  • the second heater 133 is positioned so as to surround the first crucible 131 in an annular shape when viewed from above in the -Z direction.
  • graphite heaters for performing resistance heating are applied to the first heater 132 and the second heater 133, respectively.
  • a heater made of a material other than graphite for performing resistance heating may be applied to one or more of the first heater 132 and the second heater 133.
  • Each of the first heater 132 and the second heater 133 can generate heat by supplying electric power according to control by the control unit 15, for example.
  • Each of the first heater 132 and the second heater 133 is fixed to the housing 11 via a heat-resistant member such as a member made of graphite, for example.
  • the first air supply section 134 can supply inert gas toward the first internal space 131i through the opening formed by the first upper opening 131o.
  • the first air supply section 134 has a pipe (also referred to as a first supply pipe) that can blow out inert gas from above into the first internal space 131i.
  • a pipe also referred to as a first supply pipe
  • argon (Ar) gas is applied as the inert gas.
  • a rare gas other than argon, nitrogen gas, or the like may be used as the inert gas.
  • FIG. 1 an example of an image of how inert gas blows out from the first air supply part 134 toward the first internal space 131i is shown by a virtual arrow drawn with a thin two-dot chain line.
  • the upper unit 13 may include a second crucible 135 located along the outer surface of the first crucible 131.
  • the second crucible 135 has a cylindrical shape with a bottom.
  • the second crucible 135 has, for example, a lower opening (also referred to as a second lower opening) 135h.
  • the second lower opening 135h is located so as to penetrate through the bottom of the second crucible 135.
  • the second lower opening 135h is connected to the first lower opening 131h directly below the first lower opening 131h. In other words, the first lower opening 131h and the second lower opening 135h are lined up downward, thereby forming one through hole.
  • the silicon melt flows downward from the first internal space 131i through the first lower opening 131h. , is unlikely to come into contact with the inner wall of the second lower opening 135h.
  • the material of the second crucible 135 is, for example, a material with excellent heat resistance such as graphite.
  • the second crucible 135 may be made of, for example, a material other than graphite as long as it has excellent heat resistance.
  • the second crucible 135 is fixed to the housing 11 via a heat-resistant member such as a member made of graphite, for example.
  • the first crucible 131 is fixed to the housing 11 via the second crucible 135 as the first member having heat resistance and the second member having heat resistance.
  • the first crucible 131 and the second crucible 135 can be reinforced.
  • carbon fiber reinforced carbon composite material (C/C composite) is used as the material of the reinforcing ring.
  • the first internal space 131i of the first crucible 131 is filled with a plurality of raw silicon lumps 71 in the upper unit 13.
  • the plurality of raw silicon lumps 71 may include powdered silicon (also referred to as silicon powder).
  • the plurality of raw silicon lumps 71 filled in the first internal space 131i are melted by heating by the first heater 132 and the second heater 133.
  • the silicon melt 72 (see FIG. 12, etc.) in the first internal space 131i is transferred to the first lower opening. It is poured into the mold 141 of the lower unit 14 through the opening of the portion 131h.
  • the first crucible 131 does not have the first lower opening 131h, and due to the inclination of the first crucible 131, the inside of the first crucible 131 enters the mold 141 of the lower unit 14.
  • the silicon melt 72 may be poured toward the target.
  • the lower unit 14 includes, for example, a mold 141, a holding section 142, a third heater 143, a fourth heater 144, a cooling mechanism 145, a second air supply section 146, and an exhaust section 147.
  • the mold 141 is a mold for producing the silicon ingot 2 by growing crystal grains upward from the silicon seed crystal part using the silicon melt 72.
  • the mold 141 has, for example, a rectangular cylindrical shape with a bottom as a whole.
  • the mold 141 has, for example, a bottom portion 141b and a side wall portion 141s.
  • the bottom portion 141b is, for example, a plate-shaped portion having a rectangular outer shape when viewed from above in the ⁇ Z direction.
  • the side wall portion 141s is, for example, a rectangular tube-shaped portion extending upward from the outer peripheral portion of the bottom portion 141b.
  • the mold 141 forms a space (also referred to as a second internal space) 141i surrounded by the mold 141.
  • the mold 141 has, for example, an upper opening (also referred to as a second upper opening) 141o.
  • the second upper opening 141o connects the second internal space 141i to the space above the mold 141.
  • the second upper opening 141o is open in the +Z direction as the first direction.
  • the second upper opening 141o is located, for example, at the end of the mold 141 in the +Z direction.
  • One side of the bottom portion 141b and the second upper opening 141o is, for example, approximately 300 millimeters (mm) to 800 mm.
  • the second upper opening 141o can receive injection of the silicon melt 72 from the first crucible 131 into the second internal space 141i.
  • silica is used as the material for the mold 141.
  • the mold 141 may be made of a material other than silica, for example, as long as it is resistant to melting, deformation, decomposition, and reaction with silicon at temperatures above the melting point of silicon, and has a low content of impurities
  • the holding part 142 is a part that holds the mold 141.
  • the holding portion 142 has, for example, a portion (also referred to as a first holding portion) 1421 located along the outer surface of the mold 141 on the opposite side from the second internal space 141i.
  • the first holding part 1421 is, for example, located along a plate-shaped part (also referred to as a bottom plate part) that is in close contact with the lower surface of the bottom part 141b of the mold 141 and the outer peripheral surface of the side wall part 141s of the mold 141. It has a cylindrical part (also referred to as a lateral cylindrical part).
  • the side wall portion 141s of the mold 141 can be reinforced by the side cylindrical portion.
  • a carbon fiber-reinforced carbon composite material is applied to the material of the first holding portion 1421.
  • the holding portion 142 may include a portion (also referred to as a second holding portion) 1422 that holds the first holding portion 1421 from below.
  • the second holding part 1422 includes, for example, a plate-shaped part (also referred to as a plate-shaped part) that is in close contact with the lower surface of the first holding part 1421, and a state that projects downward on the lower surface side of this plate-shaped part. It has a certain annular portion (also referred to as an annular protrusion).
  • a material with high heat conductivity such as graphite is applied.
  • annular heat insulating part (also referred to as an annular heat insulating part) 148 may be located around the side cylindrical part of the first holding part 1421, or an annular reinforcing part (also referred to as an annular reinforcing part) ) 149 may be located.
  • a heat insulating material made of graphite is applied to the annular heat insulating portion 148.
  • a carbon fiber-reinforced carbon composite material is applied to the material of the annular reinforcing portion 149.
  • a heat insulating member may be interposed between the bottom portion 141b of the mold 141 and the holding portion 142 in a desired pattern. For example, felt is used as the material for the heat insulating member.
  • the third heater 143 can heat the silicon seed crystal group 6 (see FIGS. 4 and 5, etc.), the silicon melt 72, etc. located in the second internal space 141i from above.
  • the third heater 143 is located above the second internal space 141i of the mold 141, for example.
  • the third heater 143 is located in an annular shape when viewed from above in the -Z direction.
  • the ring shape may be a circular ring, a triangular ring, a quadrangular ring, a polygonal ring, or the like.
  • the fourth heater 144 can heat the silicon seed crystal group 6, silicon melt 72, etc. located in the second internal space 141i from the side.
  • the fourth heater 144 is positioned with the mold 141 sandwiched therebetween. More specifically, for example, the fourth heater 144 is located on both sides of the mold 141 in the X direction.
  • the fourth heater 144 may be positioned to surround the mold 141 from the sides. In other words, the fourth heater 144 may be positioned so as to surround the mold 141 in an annular shape when viewed from above in the ⁇ Z direction.
  • a graphite heater for performing resistance heating is applied to each of the third heater 143 and the fourth heater 144.
  • a heater made of a material other than graphite for performing resistance heating may be applied to one or more of the third heater 143 and the fourth heater 144.
  • Each of the third heater 143 and the fourth heater 144 can generate heat by supplying electric power according to control by the control unit 15, for example.
  • the fourth heater 144 may be divided into a plurality of regions in the vertical direction, and the heat generation state of each of the plurality of regions may be controlled independently.
  • Each of the third heater 143 and the fourth heater 144 is fixed to the housing 11 via a heat-resistant member such as a member made of graphite, for example.
  • the cooling mechanism 145 includes, for example, a cooling plate 145b, a rotating shaft 145s, and a drive device 145m.
  • the cooling plate 145b is fixed to the upper end of the rotating shaft 145s.
  • the rotating shaft 145s is located along the vertical direction.
  • the rotating shaft 145s can be moved up and down and rotated by the driving force of the drive device 145m.
  • the rotation shaft 145s may be raised and lowered in the vertical direction along the longitudinal direction of the rotation shaft 145s.
  • the rotation of the rotating shaft 145s may be performed around a virtual axis that passes through the center of the XY cross section of the rotating shaft 145s and extends in the vertical direction.
  • the XY cross section of the rotating shaft 145s is a virtual cross section of the rotating shaft 145s along a horizontal plane that is the XY plane.
  • the drive device 145m may include, for example, a cylinder that raises and lowers the rotating shaft 145s, a motor that rotates the rotating shaft 145s, and the like.
  • the cooling plate 145b can be raised in response to the rise of the rotation shaft 145s, and can be lowered in response to the fall of the rotation shaft 145s.
  • the cooling plate 145b can come into contact with the lower surface of the holding portion 142 by rising in accordance with the rise of the rotating shaft 145s.
  • the cooling plate 145b can separate from the lower surface of the holding part 142 by lowering in accordance with the lowering of the rotating shaft 145s.
  • Each of the cooling plate 145b and the rotating shaft 145s has a structure in which a flow path through which a coolant such as water flows is formed inside a member made of a highly thermally conductive metal such as stainless steel. Therefore, when manufacturing the silicon ingot 2 using the manufacturing apparatus 1, for example, the cooling plate 145b contacts the lower surface of the holding part 142 to cool the silicon melt in the second internal space 141i of the mold 141. 72 may be cooled. At this time, the heat of the silicon melt 72 is transmitted to the cooling plate 145b via, for example, the bottom 141b of the mold 141 and the holding part 142. Therefore, for example, the silicon melt 72 is cooled from the bottom 141b side by the cooling plate 145b. Thereby, the silicon melt 72 can be solidified from the bottom to the top (also referred to as unidirectional solidification) in the second internal space 141i of the mold 141.
  • the cooling plate 145b can lift the mold 141 and the holding part 142 by pushing up the holding part 142 placed on the mounting part 140 in accordance with the rise of the rotating shaft 145s.
  • the placing part 140 is fixed to the housing 11, and is a part on which both ends of the lower surface of the holding part 142 can be placed.
  • the cooling plate 145b can rotate the mold 141 and the holding part 142 about the rotating shaft 145s in response to the rotation of the rotating shaft 145s, with the mold 141 and the holding part 142 lifted up. Therefore, when manufacturing the silicon ingot 2 using the manufacturing apparatus 1, the mold 141 can be rotated about the rotating shaft 145s, for example. Thereby, natural convection occurring in the silicon melt 72 within the second internal space 141i can be reduced.
  • the second air supply section 146 can supply inert gas toward the second internal space 141i through the second upper opening 141o.
  • the second air supply section 146 has a pipe (also referred to as a second supply pipe) that can blow out inert gas from above into the second internal space 141i.
  • a pipe also referred to as a second supply pipe
  • argon (Ar) gas is used as the inert gas.
  • a rare gas other than argon, nitrogen gas, or the like may be used as the inert gas.
  • FIG. 1 an example of an image of how inert gas blows out from the second air supply part 146 toward the second internal space 141i is shown by a virtual arrow drawn with a thin two-dot chain line.
  • the exhaust section 147 can exhaust air from inside the casing 11.
  • exhaust piping is applied to the exhaust section 147.
  • the exhaust pipe connects the internal space and external space of the housing 11.
  • the internal space of the casing 11 has a higher pressure than the external space, and the pressure inside the housing 11 is increased through the exhaust section 147. Evacuation of the space to the outside space may take place. Thereby, for example, the oxygen partial pressure in the internal space of the housing 11 can be reduced.
  • the control unit 15 can control the overall operation of the manufacturing apparatus 1, for example.
  • the control unit 15 includes, for example, a processor, a memory, a storage unit, and the like.
  • the control unit 15 can perform various controls by, for example, executing a program stored in a storage unit using a processor.
  • control unit 15 can control the amount of heat generated in each of the first heater 132, second heater 133, third heater 143, and fourth heater 144.
  • the control section 15 may respond to at least one of the temperature obtained using the one or more temperature measuring sections and the passage of time.
  • the temperature measuring section is configured to be capable of measuring temperature using, for example, a thermocouple covered with a thin tube made of alumina or carbon.
  • one temperature measuring part may be located near the fourth heater 144, or one temperature measuring part may be located near the lower surface of the center part of the bottom 141b of the mold 141. It may be located.
  • control unit 15 can control the elevation and rotation of the rotating shaft 145s by the drive device 145m.
  • the control unit 15 can control the elevation and rotation of the rotating shaft 145s by the drive device 145m depending on the passage of time and the like.
  • control unit 15 can control the timing of starting and stopping the supply of inert gas by the first air supply unit 134 and the amount of inert gas supplied by the first air supply unit 134.
  • the amount of inert gas supplied by the first air supply unit 134 is controlled by, for example, controlling the opening degree of a valve located on the path from the inert gas supply source to the first supply pipe using a signal from the control unit 15. This can be achieved by adjusting accordingly.
  • control unit 15 can control the timing of starting and stopping the supply of inert gas by the second air supply unit 146 and the amount of inert gas supplied by the second air supply unit 146.
  • the amount of inert gas supplied by the second air supply unit 146 is controlled by, for example, controlling the opening degree of a valve located on the path from the inert gas supply source to the second supply pipe using a signal from the control unit 15. This can be achieved by adjusting accordingly.
  • Silicon ingot manufacturing method> A method for manufacturing silicon ingot 2 using manufacturing apparatus 1 will be described with reference to FIGS. 2 to 13.
  • a first process of step Sp1, a second process of step Sp2, a third process of step Sp3, and a step Sp4 are performed.
  • the fourth step, the fifth step Sp5, and the sixth step Sp6 are performed in the order described.
  • 3, 4, 9, and 11 to 13 show the states of the first crucible 131, the mold 141, the holding part 142, the cooling plate 145b, and the rotating shaft 145s, the first air supply part 134, and the rotating shaft 145s for each process.
  • the state of supply of inert gas by the second air supply unit 146 and the state of heating by the first heater 132, second heater 133, third heater 143, and fourth heater 144 are schematically shown.
  • step Sp1 the manufacturing apparatus 1 described above is prepared.
  • This manufacturing apparatus 1 includes, for example, a mold 141 having a second upper opening 141o that opens in the +Z direction.
  • step Sp2 In the second step of step Sp2, for example, three steps of step Sp21, step Sp22, and step Sp23 are performed in the order described.
  • step Sp21 for example, as shown in FIG. 3, a layer of mold release material (also referred to as mold release material layer) 5 is formed on the inner wall surface of the mold 141.
  • the release material layer 5 makes it difficult for the silicon ingot 2 to be fused to the inner wall surface of the mold 141, for example, when the silicon melt 72 solidifies within the mold 141.
  • the release material layer 5 reduces the mixing of oxygen (O) from the mold 141 into the silicon melt 72.
  • silicon nitride (Si 3 N 4 ), silicon oxide (SiO 2 ), and a binder are used as the material for the mold release material layer 5 .
  • the mold release material layer 5 can be formed by applying or spraying a slurry containing silicon nitride and silicon oxide onto the inner wall surface of the mold 141.
  • the slurry was produced, for example, by adding powder of a mixture of silicon nitride and silicon oxide into a solution mainly containing an organic binder such as polyvinyl alcohol (PVA) or an inorganic binder such as colloidal silica and a solvent. It is produced by stirring a solution.
  • PVA polyvinyl alcohol
  • colloidal silica colloidal silica and a solvent.
  • the mold release material layer 5 can be made denser. Thereby, when the silicon melt 72 exists in the mold 141, the mixing of oxygen (O) from the mold 141 into the silicon melt 72 is further reduced.
  • the material for the mold release material layer 5 is not limited to a material that is a mixture of silicon nitride and silicon oxide, and for example, one or more of silicon nitride, silicon carbide, silicon oxide, etc. may be used.
  • step Sp22 As shown in FIGS. 4 and 5, a silicon seed crystal group 6 is placed on the bottom 141b in the mold 141. More specifically, a silicon seed crystal group 6 is placed on the release material layer 5 formed on the inner wall surface of the bottom portion 141b.
  • the seed crystal group 6 can be easily manufactured. . Further, for example, the speed of crystal growth during unidirectional solidification of the silicon melt 72 described below can be improved.
  • the upper surface of the seed crystal group 6 has a rectangular or square outer shape when viewed from above in the -Z direction.
  • the thickness of the seed crystal group 6 is set, for example, to such a thickness that the seed crystal group 6 does not melt to the bottom 141b when the silicon melt 72 is injected from the first crucible 131 into the mold 141. Ru.
  • the thickness of the seed crystal group 6 is set to, for example, about 5 mm to 70 mm. Further, the thickness of the seed crystal group 6 may be, for example, about 10 mm to 30 mm.
  • the seed crystal part group 6 includes a main seed crystal part (also referred to as main seed crystal part) 61 and a plurality of elongated rod-shaped rods arranged in the gap between the main seed crystal part 61 and the side wall part 141s.
  • a seed crystal portion (also referred to as a long seed crystal portion) 62 is included. Thereby, defects in the silicon ingot 2 can be reduced.
  • the same material of single crystal silicon also referred to as single crystal silicon is applied to each of the main seed crystal part 61 and the plurality of elongated seed crystal parts 62.
  • the main seed crystal portion 61 has a rectangular shape having a pair of sides along the X direction and a pair of sides along the Y direction, when viewed in plan facing the -Z direction. It has a shape.
  • the front and back surfaces of the main seed crystal portion 61 have a rectangular shape.
  • Each side of the front and back surfaces of the main seed crystal portion 61 is, for example, about 200 mm to 320 mm.
  • the shapes of the front and back surfaces of the main seed crystal portion 61 are not limited to a rectangular shape, and may be other shapes such as a polygonal shape.
  • Each of the plurality of elongated seed crystal parts 62 has an elongated rectangular shape having a pair of sides respectively along the X direction and a pair of sides respectively along the Y direction when viewed in plan facing the ⁇ Z direction. It has a shape. In other words, the front and back surfaces of each of the plurality of elongated seed crystal portions 62 have an elongated rectangular shape.
  • a first predetermined number of elongated seed crystal parts 62 are located in the gap between the main seed crystal part 61 and the side wall part 141s on the -X direction side as the second direction of the main seed crystal part 61, and A second predetermined number of elongated seed crystal portions 62 are located in the gap between the main seed crystal portion 61 and the side wall portion 141s on the side of the portion 61 in the +X direction.
  • the first predetermined number of elongated seed crystal portions 62, the main seed crystal portion 61, and the second predetermined number of elongated seed crystal portions 62 are arranged in this order. They are lined up.
  • the first predetermined number of elongated seed crystal portions 62 and the second predetermined number of elongated seed crystal portions 62 each have a longitudinal direction along the +Y direction as the third direction.
  • the length in the longitudinal direction along the +Y direction is, for example, approximately 200 mm to 400 mm.
  • the length (also referred to as width) in the lateral direction along the +X direction is set to, for example, about 5 mm to 20 mm.
  • the first predetermined number of elongated seed crystal portions 62 and the second predetermined number of elongated seed crystal portions 62 may each be made of one single crystal silicon, or two elongated seed crystal portions arranged in the +Y direction. It may be composed of two or more single crystal silicons. Here, the interval between two or more single crystal silicons may be, for example, about 0 mm to 3 mm, or about 0 mm to 1 mm.
  • a third predetermined number of elongated seed crystal parts 62 are located in the gap between the main seed crystal part 61 and the side wall part 141s on the ⁇ Y direction side of the main seed crystal part 61, and A fourth predetermined number of elongated seed crystal portions 62 are located in the gap between the main seed crystal portion 61 and the side wall portion 141s on the side.
  • the third predetermined number of elongated seed crystal portions 62, the main seed crystal portion 61, and the fourth predetermined number of elongated seed crystal portions 62 are arranged in this order. They are lined up.
  • the third predetermined number of elongated seed crystal portions 62 and the fourth predetermined number of elongated seed crystal portions 62 each have a longitudinal direction along the +X direction.
  • the length in the longitudinal direction along the +X direction is, for example, approximately 200 mm to 400 mm.
  • the length (also referred to as width) in the lateral direction along the +Y direction is set to, for example, about 5 mm to 20 mm.
  • the third predetermined number of elongated seed crystal portions 62 and the fourth predetermined number of elongated seed crystal portions 62 may each be made of one single crystal silicon, or two elongated seed crystal portions arranged in the +X direction. It may be composed of two or more single crystal silicons. Here, the interval between two or more single crystal silicons may be, for example, about 0 mm to 3 mm, or about 0 mm to 1 mm.
  • the first predetermined number is 7, the second predetermined number is 7, the third predetermined number is 3, and the fourth predetermined number is 3. It's a book.
  • Each of the first predetermined number and the second predetermined number is not limited to seven, and may be one or any number of two or more.
  • Each of the third predetermined number and the fourth predetermined number is not limited to three, and may be one or any number of two or more.
  • the direction of rotation of the single crystal silicon around the virtual axis along the +Z direction is Let the angular relationship be a first rotation angle relationship.
  • the direction of rotation of the single crystal silicon around the virtual axis along the +Z direction between the two elongated seed crystal parts 62 that are adjacent to each other among the first predetermined number of elongated seed crystal parts 62 Let the angular relationship be the second rotation angle relationship.
  • the direction of rotation of the single crystal silicon around the virtual axis along the +Z direction between the two elongated seed crystal parts 62 that are adjacent to each other among the second predetermined number of elongated seed crystal parts 62 Let the angular relationship be the third rotation angle relationship.
  • Let the angular relationship be the fourth rotation angle relationship.
  • the direction of rotation of single crystal silicon around the virtual axis along the +Z direction between two mutually adjacent elongated seed crystal parts 62 of the fourth predetermined number of elongated seed crystal parts 62 Let the angular relationship be the fifth rotation angle relationship.
  • each of the first rotation angle relationship, the second rotation angle relationship, the third rotation angle relationship, the fourth rotation angle relationship, and the fifth rotation angle relationship corresponds to the corresponding grain boundary.
  • the seed crystal portion group 6 is arranged in an angular relationship with respect to the rotation direction of single crystal silicon.
  • a "corresponding grain boundary" is a case where two adjacent crystal grains having the same crystal lattice with a grain boundary in between have a relationship in which they are relatively rotated around a common crystal orientation as a rotation axis. This refers to a grain boundary where the positions of the crystal lattice common to these two crystal grains form regularly arranged lattice points.
  • N is a natural number of 2 or more. If each lattice point is common to the lattice point of the crystal lattice of the second crystal grain, the numerical value N indicating the period of appearance of this lattice point is called the " ⁇ value" of the corresponding grain boundary.
  • the position of the lattice point Lp1 on the (100) plane of the Miller index of the simple cubic lattice is indicated by the intersection of a plurality of vertical lines drawn with a solid line La1 and a plurality of horizontal lines that are perpendicular to each other.
  • the unit cell (also referred to as the first unit cell) Uc1 of the simple cubic lattice is a square portion surrounded by thick solid lines.
  • Figure 6 shows a mirror of the simple cubic lattice after the simple cubic lattice has been rotated clockwise by 36.52 degrees (36.52°) with the crystal axis along the [100] direction in the Miller index as the rotation axis.
  • the position of the lattice point Lp2 on the (100) plane of the index is indicated by the intersection of a plurality of mutually orthogonal straight lines drawn by broken lines La2.
  • a point Lp12 also referred to as a corresponding lattice point
  • black circles are attached to the positions of a plurality of periodic corresponding grid points Lp12.
  • FIG. 6 black circles are attached to the positions of a plurality of periodic corresponding grid points Lp12.
  • a unit lattice (also referred to as a corresponding unit lattice) Uc12 in a lattice (also referred to as a corresponding lattice) composed of a plurality of corresponding lattice points Lp12 is a square portion surrounded by thick broken lines.
  • the simple cubic lattice before rotation also referred to as the first lattice
  • the simple cubic lattice after rotation in which the position of lattice point Lp2 is shown at the intersection of broken line La2.
  • the ⁇ value is used as an index indicating the degree of correspondence (density of corresponding lattice points) between the cubic lattice (also referred to as the second lattice).
  • the ⁇ value can be calculated, for example, by dividing the area S12 of the corresponding unit cell Uc12 shown in FIG. 6 by the area S1 of the first unit cell Uc1.
  • This ⁇ value can be used as an index indicating the degree of correspondence between a first grating and a second grating that are adjacent to each other across a grain boundary and have a predetermined angular relationship in the rotation direction.
  • the ⁇ value is the degree of correspondence between two crystal grains that are adjacent to each other across a grain boundary, have a predetermined angular relationship in the rotation direction, and have the same crystal lattice. can be used as an indicator.
  • an error of about 1 to 3 degrees can be allowed in the angular relationship of the rotation direction of single crystal silicon corresponding to the corresponding grain boundaries.
  • This error occurs, for example, in cutting when preparing the main seed crystal part 61 and the elongated seed crystal part 62, and in arranging the main seed crystal part 61 and the plurality of elongated seed crystal parts 62. Including errors, etc. These errors can be reduced, for example, when the silicon melt 72 is unidirectionally solidified, which will be described later.
  • the plane orientation of the upper surface facing the +Z direction of each of the main seed crystal part 61 and the plurality of elongated seed crystal parts 62 is (100) in Miller index.
  • the crystal orientation along the +Z direction in each of the main seed crystal portion 61 and the plurality of elongated seed crystal portions 62 is ⁇ 100> in terms of Miller index.
  • the corresponding grain boundaries include a corresponding grain boundary with a ⁇ value of 5, a corresponding grain boundary with a ⁇ value of 13, a corresponding grain boundary with a ⁇ value of 17, a corresponding grain boundary with a ⁇ value of 25, and a corresponding grain boundary with a ⁇ value of Any one of the 29 corresponding grain boundaries is applied.
  • the angular relationship of the rotation direction of single crystal silicon corresponding to the corresponding grain boundary with a ⁇ value of 5 is, for example, about 36 degrees to 37 degrees, or may be about 35 degrees to 38 degrees.
  • the angular relationship in the rotation direction of single crystal silicon corresponding to the corresponding grain boundary with a ⁇ value of 13 is, for example, about 22 degrees to 23 degrees, or may be about 21 degrees to 24 degrees.
  • the angular relationship in the rotation direction of single crystal silicon corresponding to the corresponding grain boundary with a ⁇ value of 17 is, for example, about 26 degrees to 27 degrees, or may be about 25 degrees to 28 degrees.
  • the angular relationship in the rotation direction of single crystal silicon corresponding to the corresponding grain boundary with a ⁇ value of 25 is, for example, about 16 degrees to 17 degrees, or may be about 15 degrees to 18 degrees.
  • the angular relationship of the rotation direction of single crystal silicon corresponding to the corresponding grain boundary (also called random grain boundary) with a ⁇ value of 29 is, for example, about 43 degrees to 44 degrees, even if it is about 42 degrees to 45 degrees. good.
  • the crystal orientation in each of the main seed crystal portion 61 and the plurality of elongated seed crystal portions 62 can be confirmed by measurement using an X-ray diffraction method, an electron back scatter diffraction pattern (EBSD) method, or the like.
  • the main seed crystal portion 61 and the plurality of elongated seed crystal portions 62 are positioned with the top surface of the silicon crystal having a (100) plane orientation in the Miller index facing the +Z direction. Place each one. This can improve the speed of crystal growth when, for example, unidirectional solidification of the silicon melt 72 is performed, which will be described later. As a result, a pseudo single crystal (pseudo single crystal) is easily formed by crystal grains growing upward from the main seed crystal part 61 and the plurality of elongated seed crystal parts 62, respectively. can get. Therefore, the quality of the silicon ingot 2 can be easily improved.
  • the first rotation angle relationship between the main seed crystal part 61 and the elongated seed crystal part 62 adjacent to this main seed crystal part 61 is set to the corresponding grain boundary with a ⁇ value of 29.
  • the corresponding 45 degrees can be set.
  • the crystal orientation of the main seed crystal portion 61 along the +X direction is ⁇ 100> in the Miller index
  • the crystal orientation of the elongated seed crystal portion 62 adjacent to the main seed crystal portion 61 is An embodiment may be adopted in which the crystal orientation along the mirror index is ⁇ 110>.
  • the first predetermined number of elongated seed crystal parts 62 located on the -X direction side of the main seed crystal part 61 two elongated seeds of all combinations adjacent in the -X direction
  • the second rotation angle relationship between the crystal portions 62 can be set to 45 degrees, which corresponds to the corresponding grain boundary with a ⁇ value of 29.
  • the long seed crystal portions 62 which are odd numbered in the order in which they are lined up in the ⁇ X direction from the main seed crystal portion 61 side are selected as the first long seed crystal portions 62. This is referred to as a seed crystal portion 621.
  • the elongated seed crystal portions 62 that are even-numbered in the order in which they are lined up in the ⁇ X direction from the main seed crystal portion 61 side are used as a second elongated seed crystal portion. 622.
  • the crystal orientation of the first elongated seed crystal part 621 along the -X direction is ⁇ 110> in the Miller index
  • the crystal orientation of the second elongated seed crystal part 622 along the -X direction is ⁇ 110> in the Miller index.
  • An embodiment in which the Miller index is ⁇ 100> may be adopted.
  • the third rotation angle relationship between 62 and 62 can be set to 45 degrees, which corresponds to a corresponding grain boundary with a ⁇ value of 29.
  • the elongated seed crystal portions 62 that are odd-numbered in the order in which they are lined up in the +X direction from the main seed crystal portion 61 side are selected as the first elongated seed crystal portions.
  • a crystal part 621 is used.
  • the elongated seed crystal portions 62 that are even numbered in the order in which they are lined up in the +X direction from the main seed crystal portion 61 side are selected as the second elongated seed crystal portion 622.
  • the crystal orientation of the first elongated seed crystal portion 621 along the +X direction is ⁇ 110> in the Miller index
  • the crystal orientation of the second elongated seed crystal portion 622 along the +X direction is the Miller index.
  • An embodiment in which ⁇ 100> in ⁇ 100> may be adopted.
  • the fourth rotational angle relationship between the crystal parts 62 can be set to 45 degrees, which corresponds to the corresponding grain boundary with a ⁇ value of 29.
  • the elongated seed crystal portions 62 that are odd-numbered in the order in which they are lined up in the -Y direction from the main seed crystal portion 61 side are selected as the third elongated seed crystal portions 62. This is referred to as a seed crystal portion 623.
  • the elongated seed crystal portions 62 that are even-numbered in the order in which they are lined up in the -Y direction from the main seed crystal portion 61 side are used as a fourth elongated seed crystal portion. 624.
  • the crystal orientation of the third elongated seed crystal part 623 along the -Y direction is ⁇ 110> in the Miller index
  • the crystal orientation of the fourth elongated seed crystal part 624 along the -Y direction is ⁇ 110> in the Miller index.
  • An embodiment in which the Miller index is ⁇ 100> may be adopted.
  • the fourth predetermined number of long seed crystal parts 62 located on the +Y direction side of the main seed crystal part 61 all the combinations of two long seed crystal parts adjacent in the +Y direction
  • the fifth rotational angle relationship between 62 and 62 can be set to 45 degrees, which corresponds to a corresponding grain boundary with a ⁇ value of 29.
  • the elongated seed crystal portions 62 that are odd-numbered in the order in which they are lined up in the +Y direction from the main seed crystal portion 61 side are used as the third elongated seed crystal portions.
  • a crystal part 623 is used.
  • the elongated seed crystal portions 62 that are even numbered in the order in which they are lined up in the +Y direction from the main seed crystal portion 61 side are selected as the fourth elongated seed crystal portion 624.
  • the crystal orientation of the third elongated seed crystal portion 623 along the +Y direction is ⁇ 110> in the Miller index
  • the crystal orientation of the fourth elongated seed crystal portion 624 along the +Y direction is the Miller index.
  • An embodiment in which ⁇ 100> in ⁇ 100> may be adopted.
  • the main seed crystal portion 61 and the plurality of elongated seed crystal portions 62 may be prepared, for example, in the next step.
  • a lump (also called a single crystal silicon lump) Mc0 is obtained.
  • the single crystal silicon lump Mc0 has an upper surface Pu0 whose plane orientation is (100) in Miller index, and an outer circumferential surface Pp0 where a specific linear region Ln0 whose plane orientation is (110) in Miller index exists. Assume that we have the following. In this case, next, as shown in FIG.
  • the single crystal silicon lump Mc0 is cut using the linear region Ln0 existing on the outer peripheral surface Pp0 of the single crystal silicon lump Mc0 as a reference.
  • an example of a position where the single crystal silicon lump Mc0 is cut (also referred to as a position to be cut) is virtually drawn with a thin two-dot chain line Ln1.
  • a plurality of single-crystal silicon plates (single-crystal Bd0 (also called silicon plate) can be cut out.
  • the plurality of single crystal silicon plates Bd0 may be used as the main seed crystal section 61, for example.
  • one or more raw silicon chunks 71 are placed on the silicon seed crystal group 6 disposed on the bottom 141b in the mold 141. May be placed.
  • a relatively fine block-shaped silicon lump is applied to the one or more raw silicon lumps 71.
  • a plurality of raw silicon chunks 71 are introduced into the first internal space 131i of the first crucible 131.
  • a plurality of raw silicon lumps 71 are filled in the first crucible 131 from the lower region to the upper region.
  • an element that becomes a dopant in the silicon ingot 2 is added to the plurality of raw silicon lumps 71.
  • a polysilicon lump as a raw material for the silicon ingot 2 is applied to each of the plurality of raw silicon lumps 71.
  • a relatively fine block-shaped silicon mass is applied to the polysilicon mass.
  • a group 15 element as an n-type dopant is added to the plurality of raw silicon lumps 71.
  • dopant segregation with respect to silicon means that there is no change in the movement of impurities into and out of the silicon melt 72 due to evaporation, etc., and even in an ideal state where the silicon melt 72 is very well stirred, the silicon melt 72 is not melted. This is a phenomenon in which when the silicon melt 72 in a state of solidification solidifies, the dopant distribution becomes non-uniform in the solidified silicon ingot 2.
  • the segregation coefficient is known as an index indicating the ease with which this segregation occurs.
  • the segregation coefficient is also referred to as the equilibrium distribution coefficient K0.
  • a p-type silicon block and a p-type silicon substrate are manufactured from a silicon ingot manufactured by a casting method using boron (B), a group 13 element, as a p-type dopant.
  • the segregation coefficient of boron (B) with respect to silicon is about 0.8.
  • Figure 10 an example of the relationship between the position in the height direction and the resistivity ( ⁇ b) in a silicon ingot manufactured by a casting method by adding boron (B) as a p-type dopant to silicon is shown in a black square. shown in the plot.
  • boron (B) was added to silicon in an amount such that the resistivity ( ⁇ b) at the bottom of the silicon ingot was 2 ohm centimeters ( ⁇ cm).
  • the position of the silicon ingot in the height direction is set to 0 at the bottom and 1 at the top.
  • the resistivity ( ⁇ b) varies from 1 ⁇ cm to 2 ⁇ in a region of about 97% from the bottom. - Included in the cm range. Therefore, using a silicon ingot produced by the casting method or monolike casting method, it is possible to produce a p-type silicon block and a p-type silicon substrate having a desired resistivity ( ⁇ b) over a wide area. be.
  • an n-type silicon block and an n-type silicon substrate are manufactured from a silicon ingot manufactured by a casting method using phosphorus (P), a group 15 element, as an n-type dopant.
  • P phosphorus
  • the segregation coefficient of phosphorus (P) with respect to silicon is approximately 0.35.
  • Figure 10 an example of the relationship between the position in the height direction and the resistivity ( ⁇ b) in a silicon ingot manufactured by a casting method by adding phosphorus (P) to silicon as an n-type dopant is shown by a plot of black circles. has been done.
  • phosphorus (P) was added to silicon in an amount such that the resistivity ( ⁇ b) at the bottom of the silicon ingot was 2 ohm centimeters ( ⁇ cm).
  • the resistivity ( ⁇ b) decreases from 1 ⁇ cm to 2 ⁇ in a region of about 65% from the bottom. - Included in the cm range.
  • n-type silicon blocks and n-type silicon substrates having the desired resistivity ( ⁇ b) can only be produced in a narrow region. . That is, it can be said that the productivity of n-type silicon blocks and n-type silicon substrates using silicon ingots manufactured by the casting method or monolike casting method is low.
  • step Sp23 a group 15 element as an n-type dopant is added to the plurality of raw silicon lumps 71, and a group 13 element as a p-type dopant is also added.
  • a group 13 element having a smaller segregation coefficient with respect to silicon than a segregation coefficient of a group 15 element with respect to silicon is used.
  • the silicon melt 72 solidifies in one direction, the concentration of the n-type dopant and the concentration of the p-type dopant in the silicon melt 72 increase. Then, the silicon melt 72 can be sequentially solidified while the excess charge of a portion of the n-type dopant is canceled out by the charge of the p-type dopant.
  • n-type silicon having a desired resistivity ( ⁇ b) can be realized over a wider area.
  • ⁇ b desired resistivity
  • the Group 15 element added to the plurality of raw material silicon lumps 71 one or more elements of phosphorus (P), arsenic (As), and antimony (Sb) are adopted.
  • the Group 13 element added to the plurality of raw material silicon lumps 71 one or more of aluminum (Al), gallium (Ga), and indium (In) is adopted.
  • the segregation coefficient of arsenic (As) with respect to silicon is about 0.3.
  • the segregation coefficient of antimony (Sb) with respect to silicon is about 0.023.
  • the segregation coefficient of aluminum (Al) with respect to silicon is 0.002.
  • the segregation coefficient of gallium (Ga) with respect to silicon is 0.008.
  • the segregation coefficient of indium (In) with respect to silicon is 0.0004.
  • phosphorus (P), aluminum (Al), and gallium (Ga) are easily available. Elements other than arsenic (As) and indium (In) are difficult to evaporate from the silicon melt 72 and are easy to manage. Indium (In) is expensive to obtain. Phosphorus (P) and arsenic (As) have larger segregation coefficients than antimony (Sb). Therefore, by employing phosphorus (P) and arsenic (As) as group 15 elements added to silicon, the amount of group 15 elements added to silicon can be reduced. If an element other than aluminum (Al) is used as the Group 13 element added to silicon, the quality of the n-type silicon block 3 and the n-type silicon substrate 4 can be improved. Therefore, by employing phosphorus (P) as the Group 15 element and gallium (Ga) as the Group 13 element, it is possible to easily manufacture high-quality n-type silicon blocks 3 and n-type silicon substrates 4. becomes.
  • group 15 elements and group 13 elements are added to silicon at a ratio that provides the target silicon resistivity ( ⁇ b).
  • the amount (number of moles) of the group 13 element added to the plurality of raw material silicon lumps 71 is 1/2 to 1/2 to the amount (number of moles) of the group 15 element added to the plurality of raw silicon lumps 71.
  • /3 is set.
  • the target resistivity ( ⁇ b) of silicon is set, for example, in the range of 1 ⁇ cm to 3 ⁇ cm.
  • a mode can be considered in which a silicon lump to which a group 15 element is added at a high concentration and a group 13 element are arranged on the top of the plurality of raw silicon lumps 71.
  • a silicon lump for occlusion (also referred to as a silicon lump for occlusion) 71o is filled so as to close the opening of the first lower opening 131h of the first crucible 131 from above. Thereby, for example, the path from the first internal space 131i to the first lower opening 131h is blocked.
  • step Sp3 In the third step of step Sp3, for example, as shown in FIG. 11, by raising the cooling plate 145b, the upper surface of the cooling plate 145b is pressed against the lower surface of the holding part 142, and the holding part 142 is pushed upward. . As a result, the mold 141 and the holding part 142 are lifted up by the cooling plate 145b. Then, the mold 141 and the holding part 142 begin to rotate around the rotating shaft 145s. The mold 141 and the holding part 142 are rotated, for example, by rotating the cooling plate 145b in accordance with the rotation of the rotating shaft 145s. In addition, in the third process of step Sp3, for example, as shown in FIG. 2. The supply of inert gas toward the internal space 141i is started.
  • FIG. 11 shows thin solid line arrows schematically showing the rise and rotation of the rotating shaft 145s and the cooling plate 145b, respectively, and the supply of inert gas from the first air supply section 134 and the supply of inert gas from the second air supply section 146.
  • a thin two-dot chain arrow is attached to each figure to schematically indicate the supply of inert gas.
  • 12 and 13 also show thin solid line arrows schematically showing the rotation of the rotating shaft 145s and the cooling plate 145b, and the supply of inert gas from the first air supply section 134 and the second air supply section 146.
  • a thin two-dot chain arrow is attached to each figure to schematically indicate the supply of inert gas.
  • step Sp4 for example, the seed crystal part group 6 placed on the bottom part 141b in the mold 141 in the second step is heated to around the melting point of silicon, and then the silicon melt 72 is poured into the mold 141. inject.
  • the melting point of silicon is about 1414 degrees Celsius (1414° C.).
  • the temperature of the seed crystal group 6 located on the bottom 141b in the mold 141 is raised to around the melting point of silicon.
  • the third heater 143 and the fourth heater 144 heat the seed crystal group 6 to around 1414° C., which is the melting point of silicon.
  • heating by the third heater 143 and the fourth heater 144 is schematically illustrated by diagonally hatched arrows.
  • the third heater 143 and the fourth heater 144 heat the upper surface side portion of the seed crystal group 6 to a temperature range exceeding the melting point of silicon. As a result, the upper surface side portion of the seed crystal group 6 is melted. At this time, the temperature of the upper surface side of the seed crystal group 6 can reach, for example, about 1530°C.
  • the cooling plate 145b is in contact with the lower surface of the holding part 142. Therefore, heat is transferred from the seed crystal part group 6 to the cooling plate 145b via the bottom part 141b and the holding part 142, thereby transferring heat from the seed crystal part group 6 to the cooling plate 145b via the bottom part 141b and the holding part 142. occurs.
  • the lower surface side portion of the seed crystal group 6 remains without being melted.
  • white arrows are attached that schematically show an image of heat transfer from the seed crystal group 6 to the cooling plate 145b via the bottom portion 141b and the holding portion 142.
  • this raw silicon lump 71 is placed on the third heater. 143 and a fourth heater 144.
  • the plurality of raw silicon lumps 71 located in the first crucible 131 are melted by heating, and a silicon melt 72 is formed in the first crucible 131. It will be in a stored state.
  • the first heater 132 and the second heater 133 heat the plurality of raw silicon lumps 71 to a temperature range exceeding the melting point of silicon, thereby forming the silicon melt 72.
  • heating by the first heater 132 and the second heater 133 is depicted by diagonally hatched arrows.
  • the first heater 132 and the second heater 133 heat the plurality of raw silicon lumps 71 to a temperature range exceeding the melting point of silicon. As a result, the plurality of raw silicon lumps 71 are melted. At this time, the temperature of the silicon melt 72 generated by melting the plurality of raw silicon lumps 71 can reach, for example, about 1550°C.
  • the closing silicon mass 71o that closes the opening of the first lower opening 131h of the first crucible 131 from above is heated, so that the closing silicon mass 71o is melted.
  • a heater may be present for melting this blockage silicon lump 71o.
  • the silicon melt 72 in the first crucible 131 is poured into the mold 141 through the first lower opening 131h.
  • the upper surface of the seed crystal group 6 located on the bottom 141b in the mold 141 is covered with the silicon melt 72.
  • the heating by the first heater 132 and the second heater 133 is stopped. Further, even if the supply of inert gas toward the first internal space 131i by the first air supply section 134 is stopped after all the silicon melt 72 in the first crucible 131 is poured into the mold 141, good.
  • the seed crystal part group 6 and the plurality of raw silicon lumps 71 are heated.
  • Carbon monoxide (CO) gas may be generated from the first heater 132, second heater 133, third heater 143, and fourth heater 144.
  • CO carbon monoxide
  • Carbon monoxide (CO) mixed into the silicon melt 72 is difficult to evaporate. Therefore, the number of carbon (C) atoms per unit volume in the silicon melt 72 can increase. For example, 1 cubic centimeter (cm 3 ) is used as the unit volume.
  • the amount of evaporation of oxygen (O) from the silicon melt 72 in the first internal space 131i is reduced by supplying the inert gas from the first air supply section 134 to the first internal space 131i.
  • the number of oxygen (O) atoms per unit volume (also referred to as oxygen concentration) in the silicon melt 72 in the first internal space 131i may decrease.
  • oxygen (O ) may further increase the amount of evaporation.
  • the number of oxygen (O) atoms per unit volume in the silicon melt 72 in the first internal space 131i can be further reduced.
  • the silicon melt 72 in the first internal space 131i can be reduced.
  • the number of oxygen (O) atoms per unit volume may be reduced.
  • the amount of evaporation of oxygen (O) from the silicon melt 72 in the second internal space 141i is reduced by supplying the inert gas from the second air supply section 146 to the second internal space 141i.
  • the number of oxygen (O) atoms per unit volume in the silicon melt 72 within the second internal space 141i may decrease.
  • oxygen (O ) may further increase the amount of evaporation.
  • the number of oxygen (O) atoms per unit volume in the silicon melt 72 in the second internal space 141i can be further reduced.
  • the silicon melt 72 in the second internal space 141i can be reduced.
  • the number of oxygen (O) atoms per unit volume may be reduced.
  • step Sp5 In the fifth step of step Sp5, for example, the silicon melt 72 injected into the mold 141 in the fourth step is solidified in one direction upward from the bottom 141b of the mold 141 (unidirectional solidification). Let it happen. Thereby, silicon ingot 2 can be manufactured.
  • the silicon melt 72 in the mold 141 is transferred to the bottom 141b and Heat is transferred to the cooling plate 145b via the holding portion 142.
  • the silicon melt 72 in the mold 141 is cooled from the bottom 141b side, and unidirectional solidification of the silicon melt 72 occurs upward from the bottom 141b side.
  • the temperature of the silicon melt 72 in the mold 141 is set to about 1405° C., which is lower than 1414° C., which is the melting point of silicon.
  • FIG. 13 as in FIG.
  • heating by the third heater 143 and the fourth heater 144 is schematically illustrated by diagonally hatched arrows.
  • white arrows are attached that schematically show an image of heat transfer from the seed crystal part group 6 to the cooling plate 145b via the bottom part 141b and the holding part 142.
  • thick broken line arrows are attached that indicate the movement of heat in the silicon melt 72.
  • the silicon ingot 2 is manufactured in the mold 141 by slowly advancing the unidirectional solidification of the silicon melt 72.
  • a pseudo single crystal grows from the seed crystal group 6 as a starting point.
  • a pseudo single crystal grows from each of the main seed crystal part 61 and the plurality of elongated seed crystal parts 62 included in the seed crystal part group 6 as starting points.
  • the first rotation angle relationship between the main seed crystal part 61 and the elongated seed crystal part 62 adjacent to this main seed crystal part 61 is inherited, and the main seed crystal part 61 is used as the starting point.
  • a grain boundary (functionality (also called grain boundaries) may be formed. In other words, a corresponding grain boundary can be formed above the boundary between the main seed crystal part 61 and the elongated seed crystal part 62 adjacent to the main seed crystal part 61.
  • a corresponding grain boundary may be formed above the boundary between the two elongated seed crystal portions 62.
  • a corresponding grain boundary may be formed above the boundary between the two elongated seed crystal portions 62.
  • a corresponding grain boundary may be formed above the boundary between the two elongated seed crystal portions 62.
  • a corresponding grain boundary may be formed above the boundary between the two elongated seed crystal portions 62.
  • dislocations when unidirectional solidification of the silicon melt 72 progresses, distortion is reduced when corresponding grain boundaries are formed from time to time, and defects in the silicon ingot 2 can be reduced.
  • dislocations even if dislocations occur starting from the inner circumferential surface of the side wall 141s of the mold 141 when unidirectional solidification of the silicon melt 72 progresses, dislocations may occur annularly along the inner circumferential surface of the side wall 141s.
  • the growth of dislocations (also referred to as dislocation propagation) can be blocked at functional grain boundaries that are
  • defects in the pseudo single crystal (pseudo single crystal) grown from the main seed crystal portion 61 as a starting point can be reduced.
  • defects in the manufactured silicon ingot 2 can be reduced.
  • the presence and type of corresponding grain boundaries in the silicon ingot 2 can be confirmed by measurement using an electron backscatter diffraction (EBSD) method or the like.
  • EBSD electron backscatter diffraction
  • the amount of heat generated per unit time in the third heater 143 may be slightly decreased, and the amount of heat generated per unit time in the fourth heater 144 may be slightly increased. good.
  • the shape of the interface between the silicon melt 72 and the silicon solid phase solidified by this silicon melt 72 is in the upward direction. It can be a convex shape that protrudes toward the surface. According to this form of unidirectional solidification, impurities in the silicon melt 72 can be discharged near the side wall portion 141s.
  • the occurrence of dislocations and defects due to the precipitation of impurity compounds can be reduced in a wide range centered on the central portion of the silicon ingot 2 produced by unidirectional solidification of the silicon melt 72. Therefore, the crystallinity of the silicon ingot 2 can be improved. Furthermore, by slightly increasing the amount of heat generated per unit time in the fourth heater 144, silicon crystal growth from the sides of the mold 141 becomes less likely to occur, and single crystal silicon crystal growth in the upward +Z direction is prevented. more likely to occur.
  • the silicon melt 72 solidifies in one direction, the number of n-type dopant atoms per unit volume in the silicon melt 72 (also referred to as n-type dopant concentration) increases, and The number of p-type dopant atoms per unit volume in the liquid 72 (also referred to as p-type dopant concentration) increases. Then, the silicon melt 72 can be sequentially solidified while the excess charge of a portion of the n-type dopant is canceled out by the charge of the p-type dopant. Thereby, in the silicon ingot 2 manufactured by unidirectional solidification of the silicon melt 72, n-type silicon having a desired resistivity ( ⁇ b) can be realized over a wider area.
  • ⁇ b desired resistivity
  • the material of the third heater 143 and the fourth heater 144 is graphite
  • carbon monoxide (CO) is removed from the third heater 143 and the fourth heater 144 heating the silicon melt 72. of gas may be generated.
  • carbon monoxide (CO) may be mixed into the silicon melt 72.
  • Carbon monoxide (CO) mixed into the silicon melt 72 is difficult to evaporate. Therefore, the number of carbon (C) atoms per unit volume (also referred to as carbon concentration) in the silicon melt 72 can increase.
  • the segregation coefficient of carbon (C) with respect to silicon is approximately 0.07, as the silicon melt 72 unidirectionally solidifies in the mold 141, the carbon (C) per unit volume of the silicon melt 72 increases. ) can increase in number of atoms.
  • the amount of evaporation of oxygen (O) from the silicon melt 72 in the second internal space 141i is reduced by supplying the inert gas from the second air supply part 146 to the second internal space 141i. It can increase. Therefore, the number of oxygen (O) atoms per unit volume in the silicon melt 72 in the second internal space 141i can be reduced. This can reduce the generation of oxygen precipitates or silicon oxide films when the silicon melt 72 solidifies upward in one direction within the mold 141. As a result, the occurrence of defects such as oxidation induced stacking fault (OSF) rings can be reduced in the silicon ingot 2 manufactured by unidirectional solidification.
  • OSF oxidation induced stacking fault
  • oxygen (O ) may further increase the amount of evaporation. Thereby, the number of oxygen (O) atoms per unit volume in the silicon melt 72 in the second internal space 141i can be further reduced.
  • the area of the silicon melt 72 that is in contact with the mold 141 via the release material layer 5 decreases. go. Therefore, the amount of oxygen (O) mixed into the silicon melt 72 from the mold 141 tends to decrease. As a result, as the unidirectional solidification of the silicon melt 72 progresses, the number of oxygen (O) atoms per unit volume of the silicon melt 72 in the second internal space 141i decreases.
  • the flow velocity of natural convection occurring in the area near the inner peripheral surface of the side wall portion 141s of the silicon melt 72 in the mold 141 is reduced. can be lowered. Thereby, the amount of oxygen (O) mixed into the silicon melt 72 from the mold 141 can be reduced. As a result, the number of oxygen (O) atoms per unit volume in the silicon melt 72 in the second internal space 141i can be reduced.
  • the flow velocity of natural convection occurring in a region of the silicon melt 72 in the mold 141 near the inner circumferential surface of the side wall portion 141s may be reduced by applying a magnetic field.
  • the Group 13 element which is a p-type dopant
  • ionization can be promoted.
  • part of the excess charge of the n-type dopant can be efficiently canceled out by the charge of the p-type dopant.
  • this makes it possible to reduce an excessive increase in the amount of Group 13 elements, which are p-type dopants, added to silicon. It is also believed that the occurrence of defects caused by non-ionized Group 13 elements causing various defects such as oxides can be reduced.
  • step Sp6 the silicon ingot 2 manufactured by the unidirectional solidification in the fifth step is cooled to room temperature over several hours. For example, a period of about 4 to 10 hours is applied to the several hours. By taking out the silicon ingot 2 cooled to room temperature from the mold 141, the silicon ingot 2 can be obtained.
  • Silicon ingot> The structure of silicon ingot 2 will be explained with reference to FIGS. 14 and 15.
  • the shape of the silicon ingot 2 is a rectangular parallelepiped.
  • This silicon ingot 2 can be manufactured, for example, by the method for manufacturing silicon ingot 2 using the manufacturing apparatus 1 described above.
  • the silicon ingot 2 has, for example, an upper surface 21, a lower surface 22, and a side surface 23.
  • the upper surface 21 is a rectangular or square surface facing the +Z direction as the first direction.
  • the lower surface 22 is a rectangular or square surface facing in the ⁇ Z direction, which is a fourth direction opposite to the first direction.
  • the side surface 23 connects the upper surface 21 and the lower surface 22 and is located along the +Z direction.
  • the side surface 23 includes four surfaces along the +Z direction. These four surfaces are located to form one rectangular cylinder.
  • the silicon ingot 2 has, for example, a central region 200, a lower region 201, an outer peripheral region 202, and an upper region 203.
  • a central region 200 for example, a central region 200, a lower region 201, an outer peripheral region 202, and an upper region 203.
  • an example of the outer edge of the central region 200 is drawn with a thin two-dot chain line.
  • examples of the boundary between the lower region 201 and the outer peripheral region 202 and the boundary between the upper region and the outer peripheral region 202 are drawn with thin two-dot chain lines.
  • the central region 200 is a pseudo-single crystal (pseudo-single crystal) formed by unidirectional solidification of the silicon melt 72 starting from the main seed crystal part 61, inheriting the crystal structure and crystal orientation of the main seed crystal part 61. This is the domain of crystals.
  • This central region 200 is a pseudo single crystal (pseudo single crystal) region of n-type silicon.
  • the central region 200 is a rectangular parallelepiped region located approximately at the center of the silicon ingot 2. In the example shown in FIGS.
  • the lower region 201 is a region including a region corresponding to the main seed crystal portion 61.
  • Lower region 201 is located along lower surface 22 of silicon ingot 2 .
  • the lower region 201 is located adjacent to the central region 200 on the -Z direction side as the fourth direction of the central region 200.
  • the lower region 201 is a rectangular parallelepiped-shaped region.
  • the outer peripheral region 202 includes a region corresponding to the plurality of elongated seed crystal portions 62 and crystals of each elongated seed crystal portion 62 by unidirectional solidification of the silicon melt 72 starting from the plurality of elongated seed crystal portions 62. This region includes a pseudo single crystal region (pseudo single crystal) formed by inheriting the structure and crystal orientation.
  • the outer peripheral region 202 is a cylindrical region located along the side surface 23 of the silicon ingot 2 . In the silicon ingot 2, the outer peripheral region 202 is located to laterally surround the lower region 201, the central region 200, and the upper region 203. In the examples of FIGS. 14 and 15, the outer peripheral region 202 is a rectangular tube-shaped region.
  • the upper region 203 is a region located along the upper surface 21 of the silicon ingot 2.
  • the upper region 203 is a region in which impurity elements are concentrated by unidirectional solidification of the silicon melt 72.
  • This upper region 203 is a p-type silicon region in which the number of p-type dopant atoms per unit volume is greater than the number of n-type dopant atoms per unit volume due to segregation during unidirectional solidification of the silicon melt 72. including.
  • the upper region 203 is located adjacent to the central region 200 on the +Z direction side of the central region 200.
  • the upper region 203 is a rectangular parallelepiped region.
  • the n-type silicon block 3 has a rectangular parallelepiped shape.
  • the n-type silicon block 3 can be manufactured by cutting out the lower region 201, the outer peripheral region 202, and the upper region 203 from the silicon ingot 2 described above using a wire saw device or the like.
  • the n-type silicon block 3 corresponds to the above-described central region 200 of the silicon ingot 2.
  • the n-type silicon block 3 has a first surface 31, a second surface 32, and a third surface 33.
  • the first surface 31 is a rectangular or square surface (also referred to as an upper surface) facing the +Z direction as the first direction.
  • the second surface 32 is located on the opposite side of the first surface 31.
  • the second surface 32 is a rectangular or square surface (also referred to as a lower surface) facing in the -Z direction, which is the fourth direction opposite to the first direction.
  • the third surface 33 connects the first surface 31 and the second surface 32 and is located along the +Z direction as the first direction. In the examples of FIGS.
  • the third surface 33 includes four surfaces (also referred to as side surfaces) along the +Z direction as the first direction. These four surfaces are located to form one rectangular tube.
  • Each of the first surface 31 and the second surface 32 may have a shape in which corners are cut or the like.
  • the n-type silicon block 3 includes a donor (also referred to as an n-type dopant) that is a group 15 element, an acceptor (also referred to as a p-type dopant) that is a group 13 element, carbon (C), and oxygen (O). It contains.
  • the number of atoms of the donor (n-type dopant), which is a group 15 element, per unit volume is greater than the number of atoms of the acceptor (p-type dopant), which is a group 13 element, per unit volume. big.
  • the number of atoms of the group 15 element donor (n-type dopant) per unit volume in the n-type silicon block 3 is, for example, from 7.1 ⁇ 10 14 atoms/cm 3 to 7 ⁇ 10 19 It is set in the range of atoms/ cm3 .
  • the lower limit of the numerical range, 7.1 ⁇ 10 14 atoms/cm 3 is, for example, the group 15 atoms per unit volume that can be detected using resistivity measurements by the four-probe method or the eddy current method. It is set according to the lower limit of the number of atoms of the donor element (n-type dopant).
  • the upper limit of the numerical range, 7 ⁇ 10 19 atoms/cm 3 is set, for example, according to the upper limit of the number of antimony (Sb) atoms that can be solid-dissolved in a unit volume of silicon.
  • Sb antimony
  • the number of atoms of the donor (n-type dopant) which is a group 15 element per unit volume in the n-type silicon block 3 is, for example, from 1.1 ⁇ 10 15 atoms/cm 3 to 1.6 ⁇ 10 16 atoms. /cm 3 may be in the range.
  • This numerical range is, for example, 0.4 ⁇ cm to 4.5 ⁇ cm, which is the numerical range of resistivity required for silicon substrates to maintain the quality of solar cell elements, and the resistivity of silicon and n-type dopants. is set based on the general relationship with the density of .
  • the number of atoms of the group 13 element acceptor (p-type dopant) per unit volume in the n-type silicon block 3 is, for example, from 1.2 ⁇ 10 15 atoms/cm 3 to 4 ⁇ 10 17 atoms/cm 3 .
  • the lower limit of the numerical range, 1.2 ⁇ 10 15 atoms/cm 3 is, for example, the group 13 atoms per unit volume that can be detected using resistivity measurements by the four-probe method or the eddy current method. It is set according to the lower limit of the number of atoms of the element acceptor (p-type dopant).
  • the upper limit of the numerical range, 4 ⁇ 10 17 atoms/cm 3 is set, for example, according to the upper limit of the number of indium (In) atoms that can be dissolved in a unit volume of silicon.
  • indium (In) has the smallest upper limit of the number of atoms that can be dissolved in a solid solution per unit volume of silicon.
  • the number of atoms of the acceptor (p-type dopant) which is a group 13 element per unit volume in the n-type silicon block 3 is, for example, from 3 ⁇ 10 15 atoms/cm 3 to 5.5 ⁇ 10 16 atoms/cm It may be in the range of 3 .
  • This numerical range is, for example, 0.4 ⁇ cm to 4.5 ⁇ cm, which is the numerical range of resistivity required for silicon substrates to maintain the quality of solar cell elements, and the resistivity of silicon and p-type dopants. is set based on the general relationship with the density of .
  • the segregation coefficient of the donor (n-type dopant), which is a group 15 element, with respect to silicon is larger than the segregation coefficient of the acceptor (p-type dopant), which is a group 13 element, with respect to silicon.
  • the donor (n-type dopant), which is a group 15 element contains one or more elements of phosphorus (P), arsenic (As), and antimony (Sb).
  • the acceptor (p-type dopant) which is a Group 13 element contains one or more elements of aluminum (Al), gallium (Ga), and indium (In). .
  • the number of oxygen (O) atoms per unit volume is set, for example, in the range of 5 ⁇ 10 15 atoms/cm 3 to 2.7 ⁇ 10 18 atoms/cm 3 .
  • the lower limit of the numerical range of 5 ⁇ 10 15 atoms/cm 3 is, for example, secondary ion mass spectrometry (SIMS) or Fourier transform infrared spectroscopy (FTIR). ) is set according to the lower limit of the number of oxygen (O) atoms per unit volume that can be detected.
  • the upper limit of the numerical range, 2.7 ⁇ 10 18 atoms/cm 3 is set, for example, according to the upper limit of the number of oxygen (O) atoms that can be solid-solubilized in a unit volume of silicon. Further, the number of oxygen (O) atoms per unit volume in the n-type silicon block 3 may be in the range of 1 ⁇ 10 16 atoms/cm 3 to 1 ⁇ 10 18 atoms/cm 3 , for example.
  • the lower limit of this numerical range, 1 ⁇ 10 16 atoms/cm 3 is set, for example, from the viewpoint of reducing the occurrence of cracks and warpage in the n-type silicon substrate 4.
  • the upper limit of this numerical range, 1 ⁇ 10 18 atoms/cm 3 is set, for example, from the viewpoint of reducing a decrease in the output of the solar cell element to which the n-type silicon substrate 4 is applied.
  • the number of carbon (C) atoms per unit volume is set, for example, in the range of 5 ⁇ 10 15 atoms/cm 3 to 9 ⁇ 10 17 atoms/cm 3 .
  • the lower limit of the numerical range, 5 ⁇ 10 15 atoms/cm 3 is the carbon per unit volume detectable by, for example, secondary ion mass spectrometry (SIMS) or Fourier transform infrared spectroscopy (FTIR). It is set according to the lower limit of the number of atoms in (C).
  • the upper limit of the numerical range, 9 ⁇ 10 18 atoms/cm 3 is set, for example, according to the upper limit of the number of carbon (C) atoms that can be dissolved in a unit volume of silicon.
  • the resistivity ( ⁇ b) of the n-type silicon block 3 is set, for example, in the range of 0.01 ⁇ cm to 10 kiloohm centimeters (k ⁇ cm).
  • the lower limit of the numerical range, 0.01 ⁇ cm is set according to the lower limit of resistivity that can be detected by, for example, the four-probe method or the eddy current method.
  • the upper limit value of the numerical range, 10 k ⁇ cm is set according to the upper limit value of resistivity that can be detected by, for example, the four-probe method or the eddy current method.
  • the resistivity ( ⁇ b) of the n-type silicon block 3 may be in the range of 0.4 ⁇ cm to 4.5 ⁇ cm, for example.
  • the numerical range of the resistivity ( ⁇ b) is set, for example, according to the numerical range of the resistivity required of the silicon substrate in order to maintain the quality of the solar cell element.
  • the n-type silicon block 3 includes a first region 301 and a second region 302.
  • the first region 301 is a region located on the first surface 31 side as the upper surface of the n-type silicon block 3.
  • the second region 302 is a region located on the second surface 32 side as the lower surface of the n-type silicon block 3.
  • the second region 302 and the first region 301 are lined up in the +Z direction as the first direction.
  • an example of the boundary line between the first region 301 and the second region 302 is shown by a thin two-dot chain line.
  • the number of carbon (C) atoms per unit volume is greater than the number of oxygen (O) atoms per unit volume.
  • the number of carbon (C) atoms per unit volume is equal to or less than the number of oxygen (O) atoms per unit volume.
  • the time (lifetime) required for carriers generated by excitation due to light irradiation or the like to recombine is longer than in the second region 302 . Therefore, the quality of the n-type silicon block 3 can be improved due to the presence of the first region 301. Further, here, if the first region 301 is a single crystal region, the quality of the n-type silicon block 3 including the first region 301 can be improved.
  • the n-type silicon block 3 may be a silicon block obtained by cutting out the second region 302 of the n-type silicon block 3 with a wire saw device or the like.
  • the n-type silicon block 3 may be a silicon block corresponding to the first region 301.
  • the n-type silicon block 3 has the first region 301 and does not need to have the second region 302.
  • n-type silicon block 3 according to a specific example manufactured from a silicon ingot 2 according to one specific example manufactured by the method for manufacturing a silicon ingot 2 using the manufacturing apparatus 1 described above will be described.
  • the shape of the surface of the bottom portion 141b on the second internal space 141i side is a square with a side length of 381 mm
  • the shape of the opening of the second upper opening 141o is a square with a side length of 390 mm.
  • a mold 141 was used in which the length (height) of the second internal space 141i in the +Z direction was 414 mm.
  • the mold release material layer 5 was formed by applying a slurry containing silicon nitride and silicon oxide to the inner wall surface of the mold 141.
  • the upper and lower surfaces of the main seed crystal part 61 placed on the bottom 141b of the mold 141 are shaped into rectangular shapes, each having a side length of 220 mm along the X direction and a side length of 300 mm along the Y direction. It was a face.
  • the thickness of the main seed crystal portion 61 disposed on the bottom portion 141b of the mold 141 in the +Z direction was 20 mm.
  • the length (width) of each elongated seed crystal portion 62 in the short direction was 10 mm.
  • Seven elongated seed crystal parts 62 are arranged in the gap between the main seed crystal part 61 and the side wall part 141s on the ⁇ X direction side of the main seed crystal part 61, and the main seed crystal parts 62 are arranged on the +X direction side of the main seed crystal part 61.
  • Seven long seed crystal parts 62 were arranged in the gap between the seed crystal part 61 and the side wall part 141s.
  • Three elongated seed crystal parts 62 are arranged in the gap between the main seed crystal part 61 and the side wall part 141s on the ⁇ Y direction side of the main seed crystal part 61, and the main seed crystal parts 62 are arranged on the +Y direction side of the main seed crystal part 61.
  • Three elongated seed crystal parts 62 were arranged in the gap between the seed crystal part 61 and the side wall part 141s.
  • Phosphorus (P) was added as an n-type dopant, and gallium (Ga) was added as a p-type dopant to the plurality of raw silicon chunks 71. More specifically, phosphorus (P) is added in an amount such that the number of atoms of phosphorus (P) as an n-type dopant is approximately 7.26 ⁇ 10 15 atoms/cm 3 per unit volume of the plurality of raw silicon lumps 71. ) was added to the plurality of raw silicon lumps 71.
  • the amount of phosphorus (P) as an n-type dopant (number of moles) per unit volume of the plurality of raw silicon lumps 71 is approximately 1.21 ⁇ 10 ⁇ 8 mol/cm 3 .
  • Phosphorus (P) was added to a plurality of raw silicon chunks 71.
  • a plurality of gallium (Ga) is added in an amount such that the number of atoms of gallium (Ga) as a p-type dopant is approximately 1.85 ⁇ 10 17 atoms/cm 3 per unit volume of the plurality of raw silicon lumps 71. It was added to the raw silicon mass 71.
  • the amount of gallium (Ga) as a p-type dopant (number of moles) per unit volume of the plurality of raw silicon lumps 71 is about 3.07 ⁇ 10 ⁇ 7 mol/cm 3 .
  • Gallium (Ga) was added to a plurality of raw silicon chunks 71.
  • a silicon ingot according to one specific example which has a rectangular parallelepiped shape in which the length of one side of the square lower surface 22 is 381 mm and the length (height) in the +Z direction is 365 mm, due to unidirectional solidification of the silicon melt 72. 2 was manufactured.
  • the central region 200 is made into an n-type silicon block 3 according to one example. I cut it out.
  • a first surface 31 as the top surface of a square with a side length of about 160 mm
  • a second surface 32 as a bottom surface of a square with a side length of about 160 mm
  • a length (height) in the +Z direction A specific example of an n-type silicon block 3 having a rectangular parallelepiped shape and having a third surface 33 as a side surface having four rectangular sides with a diameter of about 306 mm was obtained.
  • the silicon ingot 2 when the silicon ingot 2 according to one specific example is viewed from above in the -Z direction, the area located around the approximately 160 mm rectangular parallelepiped central area 200 located at the center is referred to as the outer peripheral area.
  • the area 202 is defined as the area 202.
  • a rectangular parallelepiped-shaped region having a length (height) in the +Z direction of 45.5 mm was defined as the lower region 201.
  • a rectangular parallelepiped-shaped region having a length (height) of 13.5 mm in the +Z direction was defined as an upper region 203.
  • FIG. 18 shows measurement results regarding the relationship between the position in the height direction of the silicon ingot 2 and the resistivity ( ⁇ b) according to one specific example.
  • FIG. 19 shows measurement results regarding the relationship between the position in the height direction of the silicon ingot 2 and the number of atoms of phosphorus (P) and gallium (Ga) per unit volume, according to one specific example. There is.
  • P phosphorus
  • Ga gallium
  • the position in the height direction of the silicon ingot 2 according to one specific example is determined by setting the height of the lower surface 22 of the silicon ingot 2 according to one specific example to 0, which is the first reference height, and This is the distance (height) from the bottom surface 22 in the +Z direction when the height of the top surface 21 of the silicon ingot 2 according to one specific example is set to 100, which is the second reference height.
  • the resistivity ( ⁇ b) shown in FIG. This was done by measuring the electrical resistance between the front and back surfaces of a thin plate obtained by slicing it thinly with a wire saw along the horizontal plane (horizontal plane).
  • the resistivities ( ⁇ b) at positions 10, 30, 50, and 70 in the height direction of the silicon ingot 2 according to one specific example are plotted with black circles.
  • the number of atoms of phosphorus (P) and gallium (Ga) per unit volume shown in FIG. 19 was measured by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • an n-type silicon block 3 according to one specific example corresponding to the lower region 201 or central region 200 of the silicon ingot 2 according to one specific example is placed on the XY plane (horizontal plane).
  • the test was carried out on a sample after polishing and cleaning a thin plate obtained by slicing it thinly along the same direction using a wire saw device.
  • FIG. 1 secondary ion mass spectrometry
  • the number of phosphorus (P) atoms per unit volume is plotted with black circles at positions 10, 30, 50, and 70 in the height direction of the silicon ingot 2 according to one specific example.
  • the number of gallium (Ga) atoms per unit volume is shown as a black triangle plot.
  • FIG. 20 shows measurement results regarding the relationship between the position in the height direction and the lifetime of the n-type silicon block 3 according to one specific example.
  • FIG. 21 shows measurement results regarding the relationship between the position in the height direction of the n-type silicon block 3 and the number of atoms of carbon (C) and oxygen (O) per unit volume, according to one specific example. It is shown.
  • FIG. 22 shows the relationship between the position in the height direction of the n-type silicon block 3 and the density of etch pits (EPD) generated by anisotropic etching by predetermined dash etching according to one specific example. The measurement results are shown.
  • FIG. 21 shows measurement results regarding the relationship between the position in the height direction of the n-type silicon block 3 and the number of atoms of carbon (C) and oxygen (O) per unit volume, according to one specific example. It is shown.
  • FIG. 22 shows the relationship between the position in the height direction of the n-type silicon block 3 and the density of etch pits (EPD) generated by ani
  • the position in the height direction of the n-type silicon block 3 is such that the height of the second surface 32 as the bottom surface is 0, which is the first reference height, and the first surface as the top surface. This is the distance (height) from the second surface 32 in the +Z direction when the height of 31 is set to 100, which is the second reference height.
  • the lifetime shown in FIG. 20 is the time until carriers generated by excitation by light irradiation etc. recombine. This lifetime was measured by the Quasi Steady State Photo Conductance (QSSPC) method. Lifetime measurement using the quasi-steady-state photoconductivity measurement device (QSSPC) method involves cutting thin plates obtained by slicing the n-type silicon block 3 according to one specific example into thin pieces along the XY plane (horizontal plane) using a wire saw device. The test was performed on a sample that had been subjected to a predetermined pretreatment. As the predetermined pretreatment, removal of the surface layer by etching using potassium hydroxide (KOH), gettering treatment, and passivation treatment were performed in the order described.
  • KOH potassium hydroxide
  • the lifetime was measured using a quasi-steady-state photoconductivity measuring device (QSSPC) method at 10 or more points over the entire surface of a single thin plate sample. Then, the average of the lifetime measurement values for these 10 or more points was taken as the lifetime measurement result for one position in the height direction of the n-type silicon block 3 according to one specific example.
  • QSSPC quasi-steady-state photoconductivity measuring device
  • the numbers of carbon (C) and oxygen (O) atoms per unit volume shown in FIG. 21 were measured by secondary ion mass spectrometry (SIMS). Measurement by secondary ion mass spectrometry (SIMS) is performed using a thin plate obtained by slicing an n-type silicon block 3 according to one specific example into thin slices along the XY plane (horizontal plane) using a wire saw device. The test was carried out on the sample after the treatment. In FIG. 21, the number of carbon (C) atoms per unit volume is plotted with black circles at positions 10, 30, 50, and 70 in the height direction of the n-type silicon block 3 according to one specific example. The number of oxygen (O) atoms per unit volume is shown by a black triangle plot.
  • the etch pit density (EPD) shown in FIG. 22 is for a thin plate sample obtained by thinly slicing the n-type silicon block 3 according to one specific example along the XY plane (horizontal plane) with a wire saw device. The measurement was performed by counting the number of etch pits generated by performing anisotropic etching using dash etching. In dash etching, a chemical solution obtained by mixing acetic acid, hydrofluoric acid, and nitric acid was used. It was thought that the etch pits were formed at locations where defects existed on the plate surface of the sample. Etch pit density (EPD) was measured by counting the number of etch pits in 13 equally spaced visual fields along one diagonal of the plate surface of one thin plate sample.
  • the height of the n-type silicon block 3 is calculated by dividing the total number of etch pits that existed in the field of view of these 13 places by the total area of the field of view of the 13 places. It was defined as the etch pit density (EPD) for one position in the horizontal direction.
  • the etch pit densities (EPD) at positions 10, 30, 50, 70, and 90 in the height direction of the n-type silicon block 3 according to one specific example are shown in the black rectangle. Shown in the plot.
  • the occupancy rate of dislocation clusters shown in FIG. 23 is calculated by dash etching for a thin plate sample obtained by thinly slicing an n-type silicon block 3 according to one specific example with a wire saw machine along the XY plane (horizontal plane). This is the ratio of the area (also called occupancy) occupied by the region of dislocation clusters, which appear cloudy and white, on the surface of one sample.
  • the occupancy rates of dislocation clusters at positions 10, 30, 50, 70, and 90 in the height direction of the n-type silicon block 3 according to one specific example are plotted as black rectangles. It is shown.
  • the portions located at positions 50 and 70 in the height direction are compared with the portions located at positions 10 and 30 in the height direction.
  • the measurement results showed that the lifetime of the battery was significantly longer.
  • the position in the height direction is 50 or more, the lifetime is significantly longer than the part where the position in the height direction is less than 50.
  • the measurement results showed that the length was longer.
  • the number of carbon (C) atoms per unit volume tended to increase, and the number of oxygen (O) atoms per unit volume decreased. More specifically, in the portions of the n-type silicon block 3 according to one specific example whose positions in the height direction are 10 and 30, the number of oxygen (O) atoms per unit volume is A measurement result that was larger than the number of carbon (C) atoms was obtained.
  • the number of carbon (C) atoms per unit volume is the same as the number of oxygen atoms per unit volume.
  • a measurement result was obtained in which the number of atoms was larger than that of (O).
  • the position in the height direction is 50 or more, the number of carbon (C) atoms per unit volume is equal to the number of oxygen (O ) was obtained.
  • the region in which the number of carbon (C) atoms per unit volume is larger than the number of oxygen (O) atoms per unit volume is the first region described above. This corresponds to area 301.
  • a region in which the number of carbon (C) atoms per unit volume is equal to or less than the number of oxygen (O) atoms per unit volume is the second region 302 described above. corresponds to
  • the lifetime will be significantly reduced. It was confirmed that it would be longer. In other words, in the n-type silicon block 3 according to one specific example, the lifetime is significantly longer in the region corresponding to the first region 301 described above than in the region corresponding to the second region 302 described above. This was confirmed.
  • the energy (also referred to as ionization energy) required for the group 13 element, which is a p-type dopant, to become an ion is greater than when the group 13 element exists alone.
  • ionization energy also referred to as ionization energy
  • the n-type silicon block 3 it was considered that the ionization of Group 13 elements, which are p-type dopants, was promoted as the number of carbon (C) atoms per unit volume increased. This makes it possible, for example, to cancel out the excess charge of a part of the n-type dopant with the charge of the p-type dopant without excessively increasing the number of atoms of the p-type dopant per unit volume in the silicon block 3. It was considered possible. It was also thought that the occurrence of defects caused by non-ionized Group 13 elements causing various defects such as oxides was reduced. As a result, it was considered that the lifetime of the n-type silicon block 3 according to one specific example became significantly longer as the number of carbon (C) atoms per unit volume increased.
  • n-type silicon block 3 it is thought that the occurrence of defects such as oxidation-induced stacking fault (OSF) rings was reduced due to a decrease in the number of oxygen (O) atoms per unit volume. . From this viewpoint as well, it was considered that the lifetime of the n-type silicon block 3 according to one specific example became longer as the number of oxygen (O) atoms per unit volume decreased.
  • OSF oxidation-induced stacking fault
  • N-type silicon substrate> The structure of the n-type silicon substrate 4 according to the first embodiment will be described with reference to FIGS. 24 and 25.
  • the n-type silicon substrate 4 has a plate-like shape with rectangular front and back surfaces.
  • the n-type silicon substrate 4 can be manufactured, for example, by thinly slicing the first region 301 of the n-type silicon block 3 along the XY plane.
  • the first region 301 of the n-type silicon block 3 is sliced into thin slices along the XY plane parallel to each of the first surface 31 and the second surface 32 at predetermined intervals in the +Z direction as the first direction.
  • the first region 301 of the n-type silicon block 3 is sliced using a wire saw device or the like, so that the thickness is about 100 micrometers ( ⁇ m) to 500 ⁇ m and the side is about 140 mm to 140 mm.
  • An n-type silicon substrate 4 having a square plate surface of about 160 mm can be manufactured.
  • a damaged layer of the surface layer of the n-type silicon substrate 4 that is generated when the n-type silicon block 3 is cut can be removed by etching using a sodium hydroxide solution, for example.
  • the n-type silicon substrate 4 has, for example, a fourth surface 41, a fifth surface 42, and a sixth surface 43.
  • the n-type silicon substrate 4 is a flat substrate.
  • the fourth surface 41 is a rectangular or square surface (also referred to as an upper surface) facing the +Z direction as the first direction.
  • the fifth surface 42 is located on the opposite side of the fourth surface 41 in the +Z direction as the first direction.
  • the fifth surface 42 is a rectangular or square surface (also referred to as a lower surface) facing in the -Z direction, which is the fourth direction opposite to the first direction.
  • the sixth surface 43 is located so as to connect the fourth surface 41 and the fifth surface 42 .
  • the sixth surface 43 is an outer peripheral surface along each of the four sides of the fourth surface 41 and the fifth surface 42.
  • Each of the fourth surface 41 and the fifth surface 42 may have a shape in which corners are cut.
  • the n-type silicon substrate 4 contains a donor (n-type dopant) that is a group 15 element, an acceptor (p-type dopant) that is a group 13 element, carbon (C), and oxygen (O). are doing.
  • the number of atoms of the donor (n-type dopant), which is a group 15 element, per unit volume is greater than the number of atoms of the acceptor (p-type dopant), which is a group 13 element, per unit volume. big.
  • the number of atoms of the donor (n-type dopant), which is a Group 15 element, per unit volume in the n-type silicon substrate 4 is, for example, 7.1 ⁇ 10 14 atoms/ as in the n-type silicon block 3. cm 3 to 7 ⁇ 10 19 atoms/cm 3 .
  • the number of atoms of the donor (n-type dopant), which is a group 15 element, per unit volume in the n-type silicon substrate 4 is, for example, 1.1 ⁇ 10 15 atoms/cm, as in the n-type silicon block 3. It may range from 3 to 1.6 ⁇ 10 16 atoms/cm 3 .
  • the number of atoms of the acceptor (p-type dopant) which is a Group 13 element per unit volume in the n-type silicon substrate 4 is, for example, 1.2 ⁇ 10 15 atoms/ as in the n-type silicon block 3. It is set in the range of cm 3 to 4 ⁇ 10 17 atoms/cm 3 . Further, the number of atoms of the acceptor (p-type dopant) which is a group 13 element per unit volume in the n-type silicon substrate 4 is, for example, from 3 ⁇ 10 15 atoms/cm 3 as in the n-type silicon block 3. It may be in the range of 5.5 ⁇ 10 16 atoms/cm 3 .
  • the segregation coefficient of the donor (n-type dopant), which is a group 15 element, with respect to silicon is larger than the segregation coefficient of the acceptor (p-type dopant), which is a group 13 element, with respect to silicon.
  • the donor (n-type dopant), which is a Group 15 element includes one or more elements of phosphorus (P), arsenic (As), and antimony (Sb), for example.
  • the acceptor (p-type dopant) which is a group 13 element contains one or more elements of aluminum (Al), gallium (Ga), and indium (In). .
  • the number of carbon (C) atoms per unit volume is larger than the number of oxygen (O) atoms per unit volume.
  • the time (lifetime) for carriers generated by excitation by light irradiation etc. to recombine is longer than that of the n-type silicon substrate cut out from the second region 302 of the n-type silicon block 3. It's also long. Therefore, it can be said that the quality of the n-type silicon substrate 4 is improved.
  • the first region 301 of the n-type silicon block 3 is a single-crystal region
  • the n-type silicon substrate 4 is constituted by a single-crystal region. If the n-type silicon substrate 4 is composed of a single crystal region, the quality of the n-type silicon substrate 4 can be improved.
  • the number of oxygen (O) atoms per unit volume in the n-type silicon substrate 4 is, for example, 5 ⁇ 10 15 atoms/cm 3 to 2.7 ⁇ 10 18 atoms, as in the n-type silicon block 3. / cm3 . Further, the number of oxygen (O) atoms per unit volume in the n-type silicon substrate 4 is, for example, 1 ⁇ 10 16 atoms/cm 3 to 1 ⁇ 10 18 atoms/cm 3 , similar to the n-type silicon block 3.
  • the number of carbon (C) atoms per unit volume in the n-type silicon substrate 4 is, for example, 5 ⁇ 10 15 atoms/cm 3 to 9 ⁇ 10 17 atoms/cm, as in the n-type silicon block 3. It is set in the range of 3 .
  • the resistivity ( ⁇ b) of the n-type silicon substrate 4 is set, for example, in the range of 0.01 ⁇ cm to 10 k ⁇ cm, similarly to the n-type silicon block 3. Further, the resistivity ( ⁇ b) of the n-type silicon substrate 4 may be in the range of 0.4 ⁇ cm to 4.5 ⁇ cm, for example, like the n-type silicon block 3.
  • the n-type silicon substrate 4 according to the first embodiment can be applied, for example, to a semiconductor substrate forming a solar cell element as a solar cell. Thereby, for example, quality such as output characteristics of the solar cell element can be improved.
  • the n-type silicon block 3 includes, for example, a donor (n-type dopant) that is a group 15 element, an acceptor (p-type dopant) that is a group 13 element, and carbon (C). It contains oxygen (O).
  • a donor (n-type dopant) that is a group 15 element
  • an acceptor (p-type dopant) that is a group 13 element
  • carbon (C) It contains oxygen (O).
  • O oxygen
  • the number of atoms of the donor (n-type dopant) per unit volume is larger than the number of atoms of the acceptor (p-type dopant) per unit volume
  • the segregation coefficient of the acceptor (p-type dopant) with respect to silicon is larger than that of the acceptor (p-type dopant).
  • the n-type silicon block 3 includes a first region 301 in which the number of carbon (C) atoms per unit volume is greater than the number of oxygen (O) atoms per unit volume.
  • the first region 301 is more excited by light irradiation than the second region 302 in which the number of carbon (C) atoms per unit volume of the silicon block 3 is equal to or less than the number of oxygen (O) atoms per unit volume. It takes a long time (lifetime) for the carriers generated to recombine. Therefore, the quality of the n-type silicon block 3 can be improved due to the presence of the first region 301.
  • the n-type silicon substrate 4 includes, for example, a donor (n-type dopant) which is a group 15 element, an acceptor (p-type dopant) which is a group 13 element, and carbon (C). and oxygen (O).
  • a donor (n-type dopant) which is a group 15 element
  • an acceptor (p-type dopant) which is a group 13 element
  • carbon (C). and oxygen (O) oxygen
  • the number of atoms of the donor (n-type dopant) per unit volume is larger than the number of atoms of the acceptor (p-type dopant) per unit volume
  • the segregation coefficient of the acceptor (p-type dopant) with respect to silicon is larger than that of the acceptor (p-type dopant).
  • the number of carbon (C) atoms per unit volume is larger than the number of oxygen (O) atoms per unit volume.
  • the time (lifetime) until carriers generated by excitation due to light irradiation or the like recombine may become longer. Therefore, the quality of the n-type silicon substrate 4 can be improved.
  • the main seed crystal portion 61 may occupy a wider area on the bottom portion 141b of the mold 141.
  • the upper and lower surfaces of the main seed crystal part 61 arranged on the bottom 141b of the mold 141 each have a length of one side along the X direction of 320 mm or more and a length of one side along the Y direction of 320 mm or more. It may be a rectangular surface.
  • each of the first predetermined number, the second predetermined number, the third predetermined number, and the fourth predetermined number is two.
  • n-type silicon block 3 according to the first embodiment shown in FIGS. 16 and 17 the n-type silicon block 3 according to the second embodiment is enlarged as a whole as shown in FIGS.
  • a mold silicon block 3A is obtained.
  • the n-type silicon block 3A is divided into m1 pieces (m1 is a natural number of 2 or more) in the +X direction as the second direction, and m2 pieces (m2 pieces) in the +Y direction as the third direction.
  • the number of n-type silicon blocks obtained by multiplying m1 and m2 may be obtained.
  • the number of n-type silicon blocks obtained by multiplying m1 and m2 may be obtained.
  • the number of n-type silicon blocks obtained by multiplying m1 and m2 may be obtained.
  • the n-type silicon block 3A may be divided into two equal parts in the +X direction and two equal parts in the +Y direction along the thin broken lines shown in FIGS. 29 and 30, four n-type silicon blocks can be obtained. You may get it.
  • each of a plurality of n-type silicon blocks obtained by dividing the n-type silicon block 3A may be used as the n-type silicon block 3 shown in FIGS. 16 and 17.
  • the silicon ingot 2B when manufacturing the silicon ingot 2B, distortions and defects are likely to occur starting from the side wall portion 141s in the mold 141, and many defects exist in the outer peripheral region 202 of the silicon ingot 2B. It's easy to get into a state where you are. Therefore, by cutting off the outer peripheral region 202 and the like of the silicon ingot 2B, it is possible to produce a high-quality n-type silicon block 3B according to the third embodiment with few defects. Furthermore, by slicing this n-type silicon block 3B, it is possible to obtain a high-quality n-type silicon substrate 4B with few defects according to the third embodiment.
  • the productivity of the n-type silicon block 3B and the n-type silicon substrate 4B can be improved.
  • the main seed crystal part group 61B includes a first main seed crystal part 61a, an intermediate seed crystal part 61m, and a second main seed crystal part 61b.
  • the first main seed crystal part 61a, the intermediate seed crystal part 61m, and the second main seed crystal part 61b are placed on the bottom part 141b of the mold 141 in the +X direction as the second direction. Arranged adjacently in the order listed.
  • the intermediate seed crystal part 61m is arranged between the first main seed crystal part 61a and the second main seed crystal part 61b.
  • the width of the intermediate seed crystal portion 61m is smaller than the width of the first main seed crystal portion 61a and the width of the second main seed crystal portion 61b.
  • the width of the first main seed crystal portion 61a and the width of the second main seed crystal portion 61b are each larger than the width of the intermediate seed crystal portion 61m.
  • each of the first main seed crystal part 61a, the intermediate seed crystal part 61m, and the second main seed crystal part 61b has a pair of sides along the X direction and a Y It has a rectangular shape with a pair of sides along each direction.
  • the shapes of the front and back surfaces of each of the first main seed crystal part 61a, the intermediate seed crystal part 61m, and the second main seed crystal part 61b are rectangular.
  • the shapes of the front and back surfaces of each of the first main seed crystal part 61a, the intermediate seed crystal part 61m, and the second main seed crystal part 61b are not limited to rectangular shapes.
  • plate-shaped or block-shaped single crystal silicon is applied to each of the first main seed crystal part 61a and the second main seed crystal part 61b.
  • one or more rod-shaped single crystal silicon is applied to the intermediate seed crystal portion 61m.
  • the intermediate seed crystal portion 61m may be composed of one single crystal silicon, two or more single crystal silicons arranged in the +Y direction, or two or more monocrystals arranged in the +X direction. It may be made of single crystal silicon.
  • the interval between two or more single crystal silicons may be, for example, about 0 mm to 3 mm, or about 0 mm to 1 mm.
  • the angular relationship between the first main seed crystal part 61a and the intermediate seed crystal part 61m in the rotational direction of single crystal silicon around the virtual axis along the +Z direction is defined as a sixth rotational angular relationship.
  • the angular relationship between the intermediate seed crystal portion 61m and the second main seed crystal portion 61b in the rotation direction of single crystal silicon around the virtual axis along the +Z direction is defined as a seventh rotation angle relationship.
  • each of the sixth rotation angle relationship and the seventh rotation angle relationship is an angular relationship in the rotation direction of single crystal silicon corresponding to the corresponding grain boundary.
  • a crystal part group 61B is arranged.
  • the sixth rotation angle relationship between the first main seed crystal part 61a and the intermediate seed crystal part 61m can be set to 45 degrees, which corresponds to the corresponding grain boundary with a ⁇ value of 29.
  • the crystal orientation of the first main seed crystal portion 61a along the +X direction is ⁇ 100> in the Miller index
  • the crystal orientation along the +X direction of the intermediate seed crystal portion 61m is ⁇ 100> in the Miller index. 110> may be adopted.
  • the seventh rotation angle relationship between the intermediate seed crystal portion 61m and the second main seed crystal portion 61b can be set to 45 degrees, which corresponds to the corresponding grain boundary with a ⁇ value of 29.
  • the crystal orientation along the +X direction of the intermediate seed crystal portion 61m is ⁇ 110> in the Miller index
  • the crystal orientation along the +X direction of the second main seed crystal portion 61b is ⁇ in the Miller index. 100> may be adopted.
  • a pseudo single crystal grows.
  • a pseudo single crystal (pseudo A grain boundary (functional grain boundary) including a corresponding grain boundary may be formed at the boundary between a pseudo single crystal (single crystal) and a pseudo single crystal (pseudo single crystal) grown from the intermediate seed crystal portion 61m as a starting point.
  • a corresponding grain boundary may be formed above the boundary between the first main seed crystal portion 61a and the intermediate seed crystal portion 61m.
  • a grain boundary (functional grain boundary) including a corresponding grain boundary may be formed at the boundary between the first crystal and the pseudo single crystal (pseudo single crystal) grown from the second main seed crystal portion 61b as a starting point.
  • a corresponding grain boundary may be formed above the boundary between the intermediate seed crystal portion 61m and the second main seed crystal portion 61b.
  • defects in each of the n-type silicon block 3B according to the third embodiment and the n-type silicon substrate 4B according to the third embodiment manufactured from the silicon ingot 2B can be reduced.
  • the quality of each of the n-type silicon block 3B and the n-type silicon substrate 4B can be improved.
  • a silicon ingot 2B according to the third embodiment has a configuration based on the silicon ingot 2A according to the second embodiment.
  • This silicon ingot 2B has, instead of the central region 200, a central region group 200B including a first central region 200a, a second central region 200b, and an intermediate region 200m.
  • an example of the outer edge of the central region group 200B is drawn with a thin two-dot chain line.
  • examples of the boundary between the lower region 201 and the outer peripheral region 202 and the boundary between the upper region and the outer peripheral region 202 are drawn with thin two-dot chain lines.
  • the first central region 200a is a pseudo region formed by unidirectional solidification of the silicon melt 72 starting from the first main seed crystal part 61a, inheriting the crystal structure and crystal orientation of the first main seed crystal part 61a. This is a region of single crystal (pseudo-single crystal).
  • the second central region 200b is a pseudo region formed by unidirectional solidification of the silicon melt 72 starting from the second main seed crystal portion 61b, inheriting the crystal structure and crystal orientation of the second main seed crystal portion 61b. This is a region of single crystal (pseudo-single crystal).
  • the intermediate region 200m is a pseudo single crystal (pseudo-single crystal) formed by unidirectional solidification of the silicon melt 72 starting from the intermediate seed crystal portion 61m, inheriting the crystal structure and crystal orientation of the intermediate seed crystal portion 61m. This is the domain of crystals.
  • the silicon ingot 2 also has a boundary (also referred to as a first boundary) B1 between the first central region 200a and the intermediate region 200m, and a boundary (also referred to as a second boundary) B2 between the intermediate region 200m and the second central region 200b.
  • a boundary also referred to as a first boundary
  • a boundary also referred to as a second boundary
  • B2 between the intermediate region 200m and the second central region 200b.
  • the corresponding grain boundaries are, for example, a corresponding grain boundary with a ⁇ value of 5, a corresponding grain boundary with a ⁇ value of 13, a corresponding grain boundary with a ⁇ value of 17, a corresponding grain boundary with a ⁇ value of 25, and a corresponding grain boundary with a ⁇ value of 13. contains any one of 29 corresponding grain boundaries.
  • n-type silicon block 3B corresponds to the above-described central region group 200B of the silicon ingot 2B.
  • the n-type silicon block 3B has a first surface 31 and a It has a second surface 32 and a third surface 33.
  • the n-type silicon block 3B includes a first region 301 and a second region 302, like the n-type silicon blocks 3 and 3A according to the first and second embodiments.
  • an example of the boundary line between the first region 301 and the second region 302 is shown by a thin two-dot chain line.
  • the first region 301 includes a first pseudo single crystal region 301a, a first intermediate region 301m, and a second pseudo single crystal region 301b.
  • the first pseudo-single-crystal region 301a, the first intermediate region 301m, and the second pseudo-single-crystal region 301b are adjacent to each other in the stated order in the +X direction as the second direction perpendicular to the first direction. It is located in In the examples of FIGS. 34 and 35, the first region 301 is configured by a first pseudo single crystal region 301a, a first intermediate region 301m, and a second pseudo single crystal region 301b.
  • the first pseudo single crystal region 301a and the second pseudo single crystal region 301b are regions each made of a pseudo single crystal (pseudo single crystal).
  • the first pseudo single crystal region 301a is a region corresponding to a part of the first central region 200a of the silicon ingot 2B.
  • the second pseudo single crystal region 301b is a region corresponding to a part of the second central region 200b of the silicon ingot 2B.
  • the first pseudo single crystal region 301a and the second pseudo single crystal region 301b each have a rectangular upper surface facing in the +Z direction as the first direction and -Z as the fourth direction. It is a rectangular parallelepiped-shaped region having a rectangular lower surface facing the direction.
  • the first intermediate region 301m is a region (also simply referred to as an intermediate region) that includes one or more pseudo single crystals (pseudo single crystals).
  • the first intermediate region 301m is a region corresponding to a part of the intermediate region 200m of the silicon ingot 2B.
  • the first intermediate region 301m has an elongated rectangular upper surface facing the +Z direction as the first direction, and an elongated rectangular lower surface facing the ⁇ Z direction as the fourth direction. It is a plate-shaped area having .
  • the boundary (also referred to as the third boundary) B3 between the first pseudo single crystal region 301a and the first intermediate region 301m and the boundary (fourth boundary) between the second pseudo single crystal region 301b and the first intermediate region 301m (also referred to as) B4 each has a rectangular shape.
  • each of the third boundary B3 and the fourth boundary B4 is drawn with a thin two-dot chain line.
  • the width W1 of the first pseudo single crystal region 301a (also referred to as the first width) and the width W1 of the second pseudo single crystal region 301b (also referred to as the second width) ) W2 is larger than the width (also referred to as third width) W3 of the first intermediate region 301m.
  • each of the first surface 31 and the second surface 32 of the n-type silicon block 3B has a rectangular or square shape with a side length of about 300 mm to 320 mm.
  • the first width W1 and the second width W2 are each about 50 mm to 250 mm.
  • the third width W3 is approximately 2 mm to 25 mm.
  • each of the third boundary B3 and the fourth boundary B4 has a corresponding grain boundary.
  • the plane orientation of the plane perpendicular to the +Z direction as the first direction in each of the first pseudo-single-crystal region 301a, the second pseudo-single-crystal region 301b, and the first intermediate region 301m is (100 ).
  • the corresponding grain boundaries are, for example, a corresponding grain boundary with a ⁇ value of 5, a corresponding grain boundary with a ⁇ value of 13, a corresponding grain boundary with a ⁇ value of 17, a corresponding grain boundary with a ⁇ value of 25, and a corresponding grain boundary with a ⁇ value of 13. contains any one of 29 corresponding grain boundaries.
  • the n-type silicon block 3B having this configuration is produced by, for example, growing a pseudo single crystal (pseudo single crystal) by unidirectional solidification of the silicon melt 72 starting from the seed crystal group 6, and This can be achieved by forming corresponding grain boundaries above each of the boundaries between the seed crystal portion 61a and the intermediate seed crystal portion 61m and the boundary between the second main seed crystal portion 61b and the intermediate seed crystal portion 61m.
  • this corresponding grain boundary is formed, defects in the silicon ingot 2B can be reduced due to the reduction in strain. Therefore, defects in the n-type silicon block 3B obtained by cutting the outer peripheral region 202 of the silicon ingot 2B can also be reduced.
  • the quality of the n-type silicon block 3B can be improved by reducing defects.
  • the existence of various types of corresponding grain boundaries and the existence ratios of various types of corresponding grain boundaries at each of the third boundary B3 and the fourth boundary B4 can be confirmed using, for example, the EBSD method.
  • the n-type silicon block 3B is divided into m1 pieces (m1 is a natural number of 2 or more) in the +X direction as the second direction, and m2 pieces (m2 is (a natural number of 2 or more), the number of n-type silicon blocks obtained by multiplying m1 and m2 may be obtained.
  • the n-type silicon block 3B is divided into two equal parts in the +X direction and two equal parts in the +Y direction along the thin broken line shown in FIGS. You may also obtain silicon blocks.
  • each of a plurality of n-type silicon blocks obtained by dividing the n-type silicon block 3B may be used as the n-type silicon block 3B.
  • the first region 301 includes two pseudo single crystal regions lined up in the +X direction as the second direction, and a region between these two pseudo single crystal regions. and an intermediate region located therein.
  • the first region 301 is, for example, three or more pseudo-single-crystal regions arranged in the +X direction as the second direction, and an intermediate region located between each of these three or more pseudo-single-crystal regions. It may include a region.
  • the main seed crystal part group 61B has three or more main seed crystal parts lined up in the +X direction as the second direction, and each of the main seed crystal parts between these three or more main seed crystal parts. and an intermediate seed crystal portion located at.
  • the first region 301 is, for example, two or more pseudo-single-crystal regions that are lined up in the +Y direction as the third direction, and intermediate regions located between these two or more pseudo-single-crystal regions. It may include a region.
  • the main seed crystal part group 61B is arranged between two or more main seed crystal parts arranged in the +Y direction as the third direction, and each of the main seed crystal parts between these two or more main seed crystal parts. and an intermediate seed crystal portion located at.
  • n-type silicon substrate 4B is divided into two equal parts in the +X direction and two equal parts in the +Y direction, and then thinly sliced along the XY plane, for example, targeting the first region 301 of the n-type silicon block 3B. It can be manufactured by
  • the n-type silicon substrate 4B has a fourth surface 41, a fifth surface 42, and a sixth surface 43, like the n-type silicon substrate 4 according to the first embodiment. and has.
  • the n-type silicon substrate 4B includes a third pseudo-single-crystal region 4a, a second intermediate region 4m, and a fourth pseudo-single-crystal region 4b.
  • the third pseudo-single-crystal region 4a, the second intermediate region 4m, and the fourth pseudo-single-crystal region 4b are adjacent to each other in this order in the +X direction as the second direction perpendicular to the first direction. It is located in In the example of FIG. 36, the n-type silicon substrate 4B includes a third pseudo-single-crystal region 4a, a second intermediate region 4m, and a fourth pseudo-single-crystal region 4b.
  • the third pseudo single crystal region 4a and the fourth pseudo single crystal region 4b are regions each made of a pseudo single crystal (pseudo single crystal).
  • the third pseudo single crystal region 4a is a region corresponding to a part of the first pseudo single crystal region 301a of the n-type silicon block 3B.
  • the fourth pseudo single crystal region 4b is a region corresponding to a part of the second pseudo single crystal region 301b of the n-type silicon block 3B.
  • the third pseudo-single-crystal region 4a and the fourth pseudo-single-crystal region 4b each have a rectangular upper surface facing in the +Z direction as the first direction and a rectangular top surface facing in the -Z direction as the fourth direction. It is a flat area having a rectangular lower surface.
  • the second intermediate region 4m is a region containing one or more pseudo single crystals (pseudo single crystals).
  • the second intermediate region 4m is a region corresponding to a part of the first intermediate region 301m of the n-type silicon block 3B.
  • the second intermediate region 4m has an elongated rectangular upper surface facing in the +Z direction as the first direction, and an elongated rectangular lower surface facing in the -Z direction as the fourth direction. It is a long and narrow plate-like area.
  • the boundary (also referred to as the fifth boundary) B5 between the third pseudo single crystal region 4a and the second intermediate region 4m and the boundary (sixth boundary) between the fourth pseudo single crystal region 4b and the second intermediate region 4m (also referred to as ) B6 each has an elongated rectangular shape.
  • each of the fifth boundary B5 and the sixth boundary B6 is drawn with a thin two-dot chain line.
  • the width W4 of the third pseudo single crystal region 4a (also referred to as the fourth width) and the width W4 of the fourth pseudo single crystal region 4b (the fifth width (also referred to as a sixth width) W5 is larger than the width (also referred to as a sixth width) W6 of the second intermediate region 4m.
  • each of the fourth surface 41 and the fifth surface 42 of the n-type silicon substrate 4B has a square shape with a side length of about 150 mm.
  • the fourth width W4 and the fifth width W5 are each about 50 mm to 100 mm.
  • the sixth width W6 is approximately 2 mm to 25 mm.
  • each of the fifth boundary B5 and the sixth boundary B6 has a corresponding grain boundary.
  • the plane orientation of the plane perpendicular to the +Z direction as the first direction in each of the third pseudo-single-crystal region 4a, the fourth pseudo-single-crystal region 4b, and the second intermediate region 4m is (100 ).
  • the crystal orientation along the +Z direction as the first direction in each of the third pseudo single crystal region 4a and the fourth pseudo single crystal region 4b, and the crystal orientation included in the second intermediate region 4m is (100 ).
  • the corresponding grain boundaries are, for example, a corresponding grain boundary with a ⁇ value of 5, a corresponding grain boundary with a ⁇ value of 13, a corresponding grain boundary with a ⁇ value of 17, a corresponding grain boundary with a ⁇ value of 25, and a corresponding grain boundary with a ⁇ value of 13. contains any one of 29 corresponding grain boundaries.
  • the n-type silicon substrate 4B having this configuration is produced by, for example, growing a pseudo single crystal (pseudo single crystal) by unidirectional solidification of the silicon melt 72 starting from the seed crystal group 6, and forming a first main crystal. This can be achieved by forming corresponding grain boundaries above each of the boundaries between the seed crystal portion 61a and the intermediate seed crystal portion 61m and the boundary between the second main seed crystal portion 61b and the intermediate seed crystal portion 61m. When this corresponding grain boundary is formed, defects in the silicon ingot 2B can be reduced due to the reduction in strain.
  • a pseudo single crystal pseudo single crystal
  • defects in the n-type silicon substrate 4B obtained by thinly slicing the n-type silicon block 3B obtained by cutting the outer peripheral region 202 of the silicon ingot 2B can also be reduced.
  • the quality of the n-type silicon substrate 4B is improved by reducing defects. obtain.
  • the existence of various types of corresponding grain boundaries and the existence ratios of various types of corresponding grain boundaries at each of the fifth boundary B5 and the sixth boundary B6 can be confirmed using, for example, the EBSD method.
  • the above-mentioned example of the n-type silicon substrate 4B includes two pseudo-single-crystal regions arranged in the +X direction as the second direction, and an intermediate region located between these two pseudo-single-crystal regions. It included. However, it is not limited to this.
  • the n-type silicon substrate 4B includes, for example, three or more pseudo-single-crystal regions and intermediate regions located between these three or more pseudo-single-crystal regions in the +X direction as the second direction. It may include.
  • the main seed crystal part group 61B has three or more main seed crystal parts lined up in the +X direction as the second direction, and each of the main seed crystal parts between these three or more main seed crystal parts.
  • the n-type silicon substrate 4B includes, for example, two or more pseudo-single-crystal regions and intermediate regions located between these two or more pseudo-single-crystal regions in the +Y direction as the third direction. It may include.
  • the main seed crystal part group 61B is arranged between two or more main seed crystal parts arranged in the +Y direction as the third direction, and each of the main seed crystal parts between these two or more main seed crystal parts. and an intermediate seed crystal portion located at.
  • the manufacturing apparatus 1 may not include the upper unit 13.
  • a plurality of raw silicon chunks 71 are placed on the silicon seed crystal group 6 placed on the bottom 141b of the mold 141.
  • a group 15 element as an n-type dopant and a group 13 element as a p-type dopant are also added to the plurality of raw silicon lumps 71.
  • step Sp4 by heating the plurality of raw silicon lumps 71 in the mold 141, the plurality of raw silicon lumps 71 are melted, and the seed crystal part group located on the bottom part 141b of the mold 141 is heated.
  • the upper surface of 6 may be covered with silicon melt 72.
  • n-type silicon blocks 3, 3A, 3B and the n-type silicon substrates 4, 4B have been explained in detail, but the above explanations are illustrative in all aspects, and this disclosure is intended to cover them. It is not limited. Furthermore, the various examples described above can be combined as long as they do not contradict each other. And it is understood that countless examples not illustrated can be envisioned without departing from the scope of this disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

n型のシリコンのブロックは、15族元素であるドナーと、13族元素であるアクセプタと、炭素と、酸素と、を含有しており、単位体積当たりの炭素の原子数が単位体積当たりの酸素の原子数よりも大きい第1領域を含む。n型のシリコンのブロックでは、単位体積当たりのドナーの原子数は、単位体積当たりのアクセプタの原子数よりも大きい。シリコンに対するドナーの偏析係数は、シリコンに対するアクセプタの偏析係数よりも大きい。また、n型のシリコンの基板は、15族元素であるドナーと、13族元素であるアクセプタと、炭素と、酸素と、を含有している。n型のシリコンの基板では、単位体積当たりのドナーの原子数は、単位体積当たりのアクセプタの原子数よりも大きく、単位体積当たりの炭素の原子数は、単位体積当たりの酸素の原子数よりも大きい。シリコンに対するドナーの偏析係数は、シリコンに対するアクセプタの偏析係数よりも大きい。

Description

n型のシリコンのブロック、およびn型のシリコンの基板
 本開示は、n型のシリコンのブロックおよびn型のシリコンの基板に関する。
 特許文献1には、モノライクキャスト法によってp型のシリコンのインゴットを製造し、このp型のシリコンのインゴットからの切り出しによってp型のシリコンのブロックおよびp型のシリコンの基板を製造する技術が記載されている。
国際公開第2020/017360号
 n型のシリコンのブロックおよびn型のシリコンの基板が開示される。
 n型のシリコンのブロックの一態様は、15族元素であるドナーと、13族元素であるアクセプタと、炭素と、酸素と、を含有しており、単位体積当たりの前記炭素の原子数が前記単位体積当たりの前記酸素の原子数よりも大きい第1領域を含む。前記n型のシリコンのブロックでは、前記単位体積当たりの前記ドナーの原子数は、前記単位体積当たりの前記アクセプタの原子数よりも大きい。シリコンに対する前記ドナーの偏析係数は、シリコンに対する前記アクセプタの偏析係数よりも大きい。
 n型のシリコンの基板の一態様は、15族元素であるドナーと、13族元素であるアクセプタと、炭素と、酸素と、を含有している。前記n型のシリコンの基板では、単位体積当たりの前記ドナーの原子数は、前記単位体積当たりの前記アクセプタの原子数よりも大きく、前記単位体積当たりの前記炭素の原子数は、前記単位体積当たりの前記酸素の原子数よりも大きい。シリコンに対する前記ドナーの偏析係数は、シリコンに対する前記アクセプタの偏析係数よりも大きい。
図1は、第1実施形態に係る製造装置の仮想的な断面の一例を模式的に示す図である。 図2は、第1実施形態に係る製造装置を用いたシリコンインゴットの製造方法の一例を示す流れ図である。 図3は、第2工程において鋳型の内壁に離型材が形成された状態における製造装置の仮想的な断面の一例を模式的に示す図である。 図4は、第2工程において鋳型の底部上に種結晶部群が配された状態における製造装置の仮想的な断面の一例を模式的に示す図である。 図5は、第2工程において鋳型の底部上に配された種結晶部群の配置の一例を模式的に示す図である。 図6は、Σ値を説明するための図である。 図7は、種結晶部の準備方法の一例を模式的に示す図である。 図8は、種結晶部の準備方法の一例を模式的に示す図である。 図9は、第2工程において第1坩堝内に複数の原料シリコン塊が充填された状態における製造装置の仮想的な一例を模式的に示す図である。 図10は、モノライクキャスト法によって製造されるp型のシリコンインゴットおよびn型のシリコンインゴットのそれぞれにおける高さ方向の位置と抵抗率との関係の一参考例を模式的に示すグラフである。 図11は、第3工程において鋳型の上昇および回転ならびにガスの吸排気が開始された状態における製造装置の仮想的な一例を模式的に示す図である。 図12は、第4工程において第1坩堝内で複数の原料シリコン塊が溶融されることで生成されたシリコンの融液が第1坩堝から鋳型内に注がれている状態における製造装置の仮想的な断面の一例を模式的に示す図である。 図13は、第5工程において鋳型内でシリコンの融液が一方向に凝固している状態における製造装置の仮想的な断面の一例を模式的に示す図である。 図14は、図15のXIV-XIV線に沿った第1実施形態に係るシリコンインゴットの断面の一例を模式的に示す断面図である。 図15は、図14のXV-XV線に沿った第1実施形態に係るシリコンインゴットの断面の一例を模式的に示す断面図である。 図16は、図17のXVI-XVI線に沿った第1実施形態に係るn型のシリコンブロックの断面の一例を模式的に示す断面図である。 図17は、図16のXVII-XVII線に沿った第1実施形態に係るn型のシリコンブロックの断面の一例を模式的に示す断面図である。 図18は、一具体例に係るシリコンインゴットにおける高さ方向の位置と抵抗率との関係の一例を示すグラフである。 図19は、一具体例に係るシリコンインゴットにおける高さ方向の位置と単位体積当たりのリンおよびガリウムのそれぞれの原子数との関係の一例を示すグラフである。 図20は、一具体例に係るn型のシリコンブロックにおける高さ方向の位置とライフタイムとの関係の一例を示すグラフである。 図21は、一具体例に係るn型のシリコンブロックにおける高さ方向の位置と単位体積当たりの炭素および酸素のそれぞれの原子数との関係の一例を示すグラフである。 図22は、一具体例に係るn型のシリコンブロックにおける高さ方向の位置とエッチピットの密度との関係の一例を示すグラフである。 図23は、一具体例に係るn型のシリコンブロックにおける高さ方向の位置と転位クラスターの占有比率との関係の一例を示すグラフである。 図24は、第1実施形態に係るn型のシリコン基板の一例を模式的に示す正面図である。 図25は、第1実施形態に係るn型のシリコン基板の一例を模式的に示す平面図である。 図26は、第2実施形態に係る第2工程において鋳型の底部上に配された種結晶部群の配置の一例を模式的に示す図である。 図27は、図28のXXVII-XXVII線に沿った第2実施形態に係るシリコンインゴットの断面の一例を模式的に示す断面図である。 図28は、図27のXXVIII-XXVIII線に沿った第2実施形態に係るシリコンインゴットの断面の一例を模式的に示す断面図である。 図29は、図30のXXIX-XXIX線に沿った第2実施形態に係るシリコンブロックの断面の一例を模式的に示す断面図である。 図30は、図29のXXX-XXX線に沿った第2実施形態に係るシリコンブロックの断面の一例を模式的に示す断面図である。 図31は、第3実施形態に係る第2工程において鋳型の底部上に配された種結晶部群の配置の一例を模式的に示す図である。 図32は、図33のXXXII-XXXII線に沿った第3実施形態に係るシリコンインゴットの断面の一例を模式的に示す断面図である。 図33は、図32のXXXIII-XXXIII線に沿った第3実施形態に係るシリコンインゴットの断面の一例を模式的に示す断面図である。 図34は、図35のXXXIV-XXXIV線に沿った第3実施形態に係るn型のシリコンブロックの断面の一例を模式的に示す断面図である。 図35は、図34のXXXV-XXXV線に沿った第3実施形態に係るn型のシリコンブロックの断面の一例を模式的に示す断面図である。 図36は、第3実施形態に係るn型のシリコン基板の一例を模式的に示す平面図である。
 多結晶のシリコンの基板を用いた太陽電池は、比較的高い変換効率を有し、大量生産にも適している。また、シリコンは、例えば、地球上に大量に存在している酸化シリコンから得られる。さらに、多結晶のシリコンの基板は、例えば、キャスト法で得られたp型のシリコンのインゴットから切り出されたp型のシリコンのブロックの薄切りによって比較的容易に得られる。このため、多結晶のシリコンの基板を用いた太陽電池は、長年にわたって太陽電池の全生産量において高いシェアを占め続けている。
 一方、太陽電池の変換効率を向上させるためには、多結晶のシリコンの基板よりも単結晶のシリコンの基板を用いる方が有利であると考えられる。
 そこで、p型のシリコンのブロックおよびp型のシリコンの基板の品質を向上させるために、キャスト成長法の一種として、p型のシリコンのインゴットを製造するモノライクキャスト法(シードキャスト法ともいう)が考えられる。このモノライクキャスト法では、溶融したシリコン(シリコン融液ともいう)を用いて、鋳型の底面部に配置した種結晶を起点として上方に向けて結晶粒を成長させる。これにより、擬似的な単結晶(擬似単結晶ともモノライク結晶ともいう)の領域を有するp型のシリコンのインゴットを製造することができる。ここで、擬似単結晶は、種結晶の結晶方位を受け継いで一方向に成長することで形成される。この擬似単結晶には、例えば、ある程度の数の転位が存在していてもよいし、粒界が存在していてもよい。
 そして、例えば、この擬似単結晶の領域を有するp型のシリコンのインゴットから切り出すことで製造されるp型のシリコンの基板を太陽電池に適用すれば、多結晶のシリコンの基板を用いた太陽電池よりも変換効率が向上することが期待される。
 ところで、n型のシリコンのブロックおよびn型のシリコンの基板については、品質の向上を図る点で改善の余地がある。
 そこで、本開示の発明者は、n型のシリコンのブロックおよびn型のシリコンの基板について、品質の向上を図ることができる技術を創出した。
 これについて、以下、各種の実施形態について図面を参照しつつ説明する。図面においては同一もしくは類似の構成または機能を有する部分には同じ符号が付されており、下記説明では重複する説明が省略される。図面は模式的に示されたものである。図1、図3から図5、図9、図11から図17および図24から図36には、右手系のXYZ座標系が付されている。このXYZ座標系では、製造装置1の高さ方向、シリコンインゴット2の高さ方向、n型のシリコンブロック3の高さ方向、およびn型のシリコン基板4の厚さ方向のそれぞれに沿った一方向が、第1方向としての+Z方向である。また、このXYZ座標系では、製造装置1、シリコンインゴット2、n型のシリコンブロック3およびn型のシリコン基板4のそれぞれの幅方向に沿った一方向が、第2方向としての+X方向である。また、+X方向と+Z方向との両方に直交している一方向が第3方向としての+Y方向である。また、第1方向とは逆の方向が第4方向としての-Z方向とされている。
 <1.第1実施形態>
 <1-1.シリコンのインゴットの製造装置>
 第1実施形態に係るシリコンのインゴット(シリコンインゴットともいう)2(図14および図15を参照)の製造装置として、例えば、第1方式の製造装置1が採用される。製造装置1は、シリコンの種結晶部を起点として結晶粒を成長させるモノライクキャスト法(シードキャスト法ともいう)によって、擬似的な単結晶(擬似単結晶ともモノライク結晶ともいう)の領域(擬似単結晶領域ともモノライク結晶領域ともいう)を有するシリコンインゴット2を製造するための装置である。擬似単結晶は、転位および粒界などが存在していないいわゆる単結晶であってもよいし、ある程度の数の欠陥および転位が存在している単結晶に近い構造を有していてもよいし、ある程度の数の粒界が存在している単結晶に近い構造を有していてもよい。なお、チョクラルスキー(Czochralski:CZ)法またはブリッジマン法などの従来の単結晶の作製法で作製される単結晶と区別するために、モノライクキャスト法で作製される単結晶は、擬似単結晶もしくはモノライク結晶と称される。
 製造装置1について、図1を参照しつつ説明する。製造装置1は、第1坩堝131から鋳型141内に注いだ溶融状態のシリコンの液(シリコン融液ともいう)を鋳型141内で凝固させる方式(注湯方式ともいう)で、シリコンインゴット2を製造することができる。シリコンインゴット2は、電荷を運ぶ主なキャリアとして自由電子を使う型(n型ともいう)のシリコンのブロック(n型のシリコンブロックともいう)3およびn型のシリコンの基板(n型のシリコン基板ともいう)4を作製するためのシリコンの塊である。
 図1で示されるように、製造装置1は、例えば、筐体11、断熱材12、上部ユニット13、下部ユニット14および制御部15を備えている。
 <<筐体11>>
 筐体11は、上部ユニット13および下部ユニット14を収容している。筐体11には、例えば、水冷ジャケットが適用される。水冷ジャケットは、例えば、ステンレス鋼などの熱伝導性の高い金属で構成された部材の内部に、水などの冷媒が流される流路が形成された構造を有する。この水冷ジャケットは、製造装置1を冷却する役割と、製造装置1内で生じた熱の製造装置1の外部への放射を低減する役割と、を有する。
 <<断熱材12>>
 断熱材12は、筐体11と上部ユニット13との間および筐体11と下部ユニット14との間の各エリアに位置している。断熱材12は、上部ユニット13および下部ユニット14からの熱の放散を低減する役割を有する。断熱材12は、上部ユニット13と下部ユニット14との間のエリアのうち、上部ユニット13から下部ユニット14に向けてシリコン融液が通過する経路を避けたエリアに位置していてもよい。断熱材12には、例えば、炭素繊維などのカーボン製の断熱材が適用される。
 <<上部ユニット13>>
 上部ユニット13は、例えば、第1坩堝131、第1ヒータ132、第2ヒータ133および第1給気部134を有する。
 第1坩堝131は、シリコンインゴット2の素となるシリコンの塊(原料シリコン塊ともいう)71(図9など参照)を溶かすための容器である。第1坩堝131は、例えば、有底の筒状の形状を有する。第1坩堝131は、この第1坩堝131によって囲まれた状態にある空間(第1内部空間ともいう)131iを形成している。また、第1坩堝131は、例えば、上部の開口部(第1上部開口部ともいう)131oと、下部の開口部(第1下部開口部ともいう)131hと、を有する。第1上部開口部131oは、第1内部空間131iを第1坩堝131の上方の空間に接続させている形で開口している。第1下部開口部131hは、第1坩堝131の底部を貫通している形で位置している。第1下部開口部131hは、第1内部空間131iで溶融したシリコン(シリコン融液)を下部ユニット14に向けて流出させることができる。第1坩堝131の素材には、例えば、石英ガラスが適用される。第1坩堝131の素材には、例えば、シリコンの融点以上の温度で、溶融、変形、分解およびシリコンとの反応が生じにくく且つ不純物の含有量が低い素材であれば、石英ガラス以外の素材が適用されてもよい。第1坩堝131は、例えば、グラファイト製の部材などの耐熱性を有する部材を介して筐体11に固定された状態にある。
 第1ヒータ132は、第1内部空間131iに位置している原料シリコン塊71などを上方から加熱することができる。第1ヒータ132は、第1内部空間131iの上方に位置している。例えば、-Z方向に向いて平面視した場合に、第1ヒータ132は環状に位置している。
 第2ヒータ133は、第1内部空間131iに位置している原料シリコン塊71などを側方から加熱することができる。第2ヒータ133は、第1坩堝131を側方から囲んでいる状態で位置している。第2ヒータ133は、-Z方向に向いて平面視した場合に、第1坩堝131を環状に囲んでいる状態で位置している。
 第1ヒータ132および第2ヒータ133には、例えば、抵抗加熱を行うためのグラファイト製のヒータがそれぞれ適用される。第1ヒータ132および第2ヒータ133のうちの1つ以上のヒータには、例えば、抵抗加熱を行うためのグラファイト以外の素材のヒータが適用されてもよい。第1ヒータ132および第2ヒータ133のそれぞれは、例えば、制御部15による制御に応じた電力の供給によって発熱することができる。第1ヒータ132および第2ヒータ133のそれぞれは、例えば、グラファイト製の部材などの耐熱性を有する部材を介して筐体11に固定された状態にある。
 第1給気部134は、第1上部開口部131oが形成している開口を介して第1内部空間131iに向けて不活性ガスを供給することができる。第1給気部134は、第1内部空間131iに対して上方から不活性ガスを吹き出すことができる管(第1供給管ともいう)を有する。不活性ガスには、例えば、アルゴン(Ar)のガスが適用される。不活性ガスには、アルゴン以外の希ガスまたは窒素ガスなどが適用されてもよい。図1では、第1給気部134から第1内部空間131iに向けて不活性ガスが吹き出す様子のイメージの一例が細い2点鎖線で描かれた仮想的な矢印で示されている。
 上部ユニット13は、第1坩堝131の外面に沿って位置している第2坩堝135を有していてもよい。第2坩堝135は、有底の筒状の形状を有する。第2坩堝135は、例えば、下部の開口部(第2下部開口部ともいう)135hを有する。第2下部開口部135hは、第2坩堝135の底部を貫通している状態で位置している。第2下部開口部135hは、第1下部開口部131hの真下において、第1下部開口部131hに接続している状態にある。換言すれば、第1下部開口部131hと第2下部開口部135hとが、下方向に向けて並んでいることで、1つの貫通孔を構成している状態にある。ここで、第2下部開口部135hの内径が、第1下部開口部131hの内径よりも大きければ、第1内部空間131iから第1下部開口部131hの開口を介して下方に流れ出るシリコン融液が、第2下部開口部135hの内壁に接触しにくい。第2坩堝135の素材には、例えば、グラファイトなどの耐熱性に優れた素材が適用される。第2坩堝135の素材には、例えば、耐熱性に優れた素材であればグラファイト以外の素材が適用されてもよい。第2坩堝135は、例えば、グラファイト製の部材などの耐熱性を有する部材を介して筐体11に固定された状態にある。この場合には、第1坩堝131は、耐熱性を有する第1の部材としての第2坩堝135と、耐熱性を有する第2の部材とを介して、筐体11に固定された状態にある。ここで、例えば、第2坩堝135の外周部に沿って1つ以上のリング(補強リングともいう)が存在していれば、第1坩堝131および第2坩堝135が補強され得る。補強リングの素材には、例えば、炭素繊維強化炭素複合材料(Carbon Fiber Reinforced Carbon Composite:C/Cコンポジット)が適用される。
 例えば、製造装置1を用いてシリコンインゴット2を製造する際には、上部ユニット13において、第1坩堝131の第1内部空間131iに複数の原料シリコン塊71が充填される。複数の原料シリコン塊71は、粉末状態のシリコン(シリコン粉末ともいう)を含んでいてもよい。第1内部空間131iに充填された複数の原料シリコン塊71は、第1ヒータ132および第2ヒータ133による加熱で溶融される。そして、例えば、第1下部開口部131h上に位置している原料シリコン塊71が加熱によって溶融することで、第1内部空間131i内のシリコン融液72(図12など参照)が第1下部開口部131hの開口を介して下部ユニット14の鋳型141に向けて注がれる。ここで、上部ユニット13では、例えば、第1坩堝131が第1下部開口部131hを有しておらず、第1坩堝131の傾斜によって、第1坩堝131内から下部ユニット14の鋳型141内に向けてシリコン融液72が注がれてもよい。
 <<下部ユニット14>>
 下部ユニット14は、例えば、鋳型141、保持部142、第3ヒータ143、第4ヒータ144、冷却機構145、第2給気部146および排気部147を有する。
 鋳型141は、シリコン融液72を用いて、シリコンの種結晶部を起点として上方に向けて結晶粒を成長させることで、シリコンインゴット2を作製するための型である。鋳型141は、例えば、全体が有底の角筒状の形状を有する。鋳型141は、例えば、底部141bおよび側壁部141sを有する。底部141bは、例えば、-Z方向に向いて平面視した場合に矩形状の外形を有する板状の部分である。側壁部141sは、例えば、底部141bの外周部から上方に向けて延びている形態を有する角筒状の部分である。鋳型141は、この鋳型141によって囲まれた状態にある空間(第2内部空間ともいう)141iを形成している。また、鋳型141は、例えば、上部の開口部(第2上部開口部ともいう)141oを有する。第2上部開口部141oは、第2内部空間141iを鋳型141の上方の空間に接続させている形で開口している。換言すれば、第2上部開口部141oは、第1方向としての+Z方向に開口している状態にある。第2上部開口部141oは、例えば、鋳型141の+Z方向の端部に位置している。底部141bおよび第2上部開口部141oの一辺は、例えば、300ミリメートル(mm)から800mm程度とされる。第2上部開口部141oの開口は、第1坩堝131から第2内部空間141iへのシリコン融液72の注入を受け付けることができる。鋳型141の素材には、例えば、シリカが適用される。鋳型141の素材には、例えば、シリコンの融点以上の温度において、溶融、変形、分解およびシリコンとの反応が生じにくく且つ不純物の含有量が低い素材であれば、シリカ以外の素材が適用されてもよい。
 保持部142は、鋳型141を保持している部分である。保持部142は、例えば、鋳型141の第2内部空間141iとは逆側の外面に沿って位置している部分(第1保持部ともいう)1421を有する。第1保持部1421は、例えば、鋳型141の底部141bの下面と密着している状態にある板状の部分(底板部ともいう)と、鋳型141の側壁部141sの外周面に沿って位置している筒状の部分(側方筒状部ともいう)と、を有する。側方筒状部によって鋳型141の側壁部141sが補強され得る。第1保持部1421の素材には、例えば、炭素繊維強化炭素複合材料が適用される。また、保持部142は、第1保持部1421を下方から保持している部分(第2保持部ともいう)1422を有していてもよい。第2保持部1422は、例えば、第1保持部1421の下面に密着している板状の部分(板状部分ともいう)と、この板状部分の下面側において下方に突起している状態にある環状の部分(環状突起部ともいう)と、を有する。第2保持部1422の素材には、例えば、グラファイトなどの伝熱性の高い素材が適用される。
 ここで、例えば、第1保持部1421の側方筒状部の周囲に、環状の断熱部(環状断熱部ともいう)148が位置していてもよいし、環状の補強部(環状補強部ともいう)149が位置していてもよい。環状断熱部148には、例えば、グラファイト製の断熱材などが適用される。環状補強部149の素材には、例えば、炭素繊維強化炭素複合材料が適用される。また、ここで、例えば、鋳型141の底部141bと保持部142との間には、所望のパターンで断熱部材が介在していてもよい。断熱部材の素材には、例えば、フェルトなどが適用される。
 第3ヒータ143は、第2内部空間141iに位置しているシリコンの種結晶部群6(図4および図5など参照)およびシリコン融液72などを上方から加熱することができる。第3ヒータ143は、例えば、鋳型141の第2内部空間141iの上方に位置している。第3ヒータ143は、例えば、-Z方向に向いて平面視した場合に環状に位置している。環状には、円環状、三角環状、四角環状または多角環状などが適用される。
 第4ヒータ144は、第2内部空間141iに位置しているシリコンの種結晶部群6およびシリコン融液72などを側方から加熱することができる。第4ヒータ144は、例えば、鋳型141を挟んでいる状態で位置している。より具体的には、例えば、第4ヒータ144は、鋳型141のX方向の両側に位置している。第4ヒータ144は、鋳型141を側方から囲んでいる形で位置していてもよい。換言すれば、第4ヒータ144は、-Z方向に向いて平面視した場合に、鋳型141を環状に囲んだ状態で位置していてもよい。
 第3ヒータ143および第4ヒータ144のそれぞれには、例えば、抵抗加熱を行うためのグラファイト製のヒータが適用される。第3ヒータ143および第4ヒータ144のうちの1つ以上のヒータには、例えば、抵抗加熱を行うためのグラファイト以外の素材のヒータが適用されてもよい。第3ヒータ143および第4ヒータ144のそれぞれは、例えば、制御部15による制御に応じた電力の供給によって発熱することができる。第4ヒータ144は、例えば、上下方向に複数の領域に分割されて、複数の領域のそれぞれが独立して発熱の状態が制御されてもよい。第3ヒータ143および第4ヒータ144のそれぞれは、例えば、グラファイト製の部材などの耐熱性を有する部材を介して筐体11に固定された状態にある。
 冷却機構145は、例えば、冷却板145b、回転軸145sおよび駆動装置145mを有する。冷却板145bは、回転軸145sの上端部に固定された状態にある。回転軸145sは、上下方向に沿って位置している。
 回転軸145sは、駆動装置145mによる駆動力によって昇降および回転を行うことができる。回転軸145sの昇降は、回転軸145sの長手方向に沿った上下方向で行われ得る。回転軸145sの回転は、回転軸145sのXY断面の中心を通り且つ上下方向に延びる仮想的な軸を中心として行われ得る。回転軸145sのXY断面は、XY平面である水平面に沿った回転軸145sの仮想的な断面である。駆動装置145mには、例えば、回転軸145sを昇降させるシリンダ、および回転軸145sを回転させるモータなどが適用され得る。
 冷却板145bは、例えば、回転軸145sの上昇に応じて上昇することができ、回転軸145sの下降に応じて下降することができる。例えば、冷却板145bは、回転軸145sの上昇に応じて上昇することで保持部142の下面に接触し得る。冷却板145bは、回転軸145sの下降に応じて下降することで保持部142の下面から離れ得る。
 冷却板145bおよび回転軸145sのそれぞれは、例えば、ステンレス鋼などの熱伝導性の高い金属で構成された部材の内部に、水などの冷媒が流される流路が形成された構造を有する。このため、製造装置1を用いてシリコンインゴット2を製造する際には、例えば、冷却板145bは、保持部142の下面に接触することで、鋳型141の第2内部空間141iにあるシリコン融液72を冷却し得る。この際には、シリコン融液72の熱は、例えば、鋳型141の底部141bと、保持部142と、を介して冷却板145bに伝わる。このため、例えば、シリコン融液72は、冷却板145bによって底部141b側から冷却される。これにより、鋳型141の第2内部空間141iにおいてシリコン融液72に下方から上方に向かう凝固(一方向凝固ともいう)を行わせることができる。
 また、冷却板145bは、回転軸145sの上昇に応じて載置部140に載置された保持部142を上方に押し上げることで、鋳型141および保持部142を持ち上げることができる。載置部140は、筐体11に固定された状態にあり、保持部142の下面の両端部が載置され得る部分である。
 また、冷却板145bは、鋳型141および保持部142を持ち上げた状態で、回転軸145sの回転に応じて、回転軸145sを中心として鋳型141および保持部142を回転させることができる。このため、製造装置1を用いてシリコンインゴット2を製造する際には、例えば、回転軸145sを中心として鋳型141を回転させることができる。これにより、第2内部空間141i内のシリコン融液72において発生する自然対流を低減させることができる。
 第2給気部146は、第2上部開口部141oの開口を介して第2内部空間141iに向けて不活性ガスを供給することができる。第2給気部146は、第2内部空間141iに対して上方から不活性ガスを吹き出すことができる管(第2供給管ともいう)を有する。不活性ガスには、例えば、アルゴン(Ar)のガスなどが適用される。不活性ガスには、アルゴン以外の希ガスまたは窒素ガスなどが適用されてもよい。図1では、第2給気部146から第2内部空間141iに向けて不活性ガスが吹き出す様子のイメージの一例が細い2点鎖線で描かれた仮想的な矢印で示されている。
 排気部147は、筐体11内からの排気を行うことができる。排気部147には、例えば、排気用の配管が適用される。排気用の配管は、筐体11の内部空間と外部空間とをつないでいる。例えば、第1給気部134および第2給気部146からの不活性ガスの供給に応じて、筐体11の内部空間が外部空間よりも圧力が高い状態となり、排気部147を介して内部空間から外部空間への排気が行われ得る。これにより、例えば、筐体11の内部空間における酸素分圧を低減することができる。
 制御部15は、例えば、製造装置1における全体の動作を制御することができる。制御部15は、例えば、プロセッサ、メモリおよび記憶部などを有する。この制御部15は、例えば、記憶部に格納されているプログラムを、プロセッサによって実行することで、各種制御を行うことができる。
 例えば、制御部15は、第1ヒータ132、第2ヒータ133、第3ヒータ143および第4ヒータ144のそれぞれにおける発熱量を制御することができる。例えば、鋳型141の周辺に1つ以上の測温部が存在している場合には、制御部15は、1つ以上の測温部を用いて得られる温度および時間の経過の少なくとも一方に応じて、第1ヒータ132、第2ヒータ133、第3ヒータ143および第4ヒータ144のそれぞれにおける発熱量を制御することができる。測温部には、例えば、アルミナ製または炭素製の細い管で被覆された熱電対などによって温度に係る測定が可能である構成が適用される。そして、例えば、制御部15が有する温度検知部の機能などによって、1つ以上の測温部のそれぞれで生じる電圧に応じた温度が検出される。1つ以上の測温部として、例えば、第4ヒータ144の近傍に1つの測温部が位置していてもよいし、鋳型141の底部141bの中央部の下面付近に1つの測温部が位置していてもよい。
 また、例えば、制御部15は、駆動装置145mによる回転軸145sの昇降および回転を制御することができる。制御部15は、時間の経過などに応じて、駆動装置145mによる回転軸145sの昇降および回転を制御することができる。
 また、例えば、制御部15は、第1給気部134による不活性ガスの供給の開始および停止のタイミング、ならびに第1給気部134による不活性ガスの供給量を制御することができる。第1給気部134による不活性ガスの供給量の制御は、例えば、不活性ガスの供給源から第1供給管に至る経路上に位置しているバルブの開度を制御部15からの信号に応じて調整することで実現され得る。
 また、例えば、制御部15は、第2給気部146による不活性ガスの供給の開始および停止のタイミング、ならびに第2給気部146による不活性ガスの供給量を制御することができる。第2給気部146による不活性ガスの供給量の制御は、例えば、不活性ガスの供給源から第2供給管に至る経路上に位置しているバルブの開度を制御部15からの信号に応じて調整することで実現され得る。
 <1-2.シリコンインゴットの製造方法>
 製造装置1を用いたシリコンインゴット2の製造方法について、図2から図13を参照しつつ説明する。製造装置1を用いたシリコンインゴット2の製造方法では、例えば、図2で示されるように、ステップSp1の第1工程と、ステップSp2の第2工程と、ステップSp3の第3工程と、ステップSp4の第4工程と、ステップSp5の第5工程と、ステップSp6の第6工程と、がこの記載の順に行われる。図3、図4、図9および図11から図13には、各工程について、第1坩堝131、鋳型141、保持部142、冷却板145bおよび回転軸145sの状態、第1給気部134および第2給気部146による不活性ガスの供給の状態、ならびに第1ヒータ132、第2ヒータ133、第3ヒータ143および第4ヒータ144による加熱の状態が模式的に示されている。
 <1-2-1.第1工程>
 ステップSp1の第1工程では、上述した製造装置1を準備する。この製造装置1は、例えば、+Z方向に開口している第2上部開口部141oを有する鋳型141を含む。
 <1-2-2.第2工程>
 ステップSp2の第2工程では、例えば、ステップSp21、ステップSp22およびステップSp23の3工程がこの記載の順に行われる。
 <<ステップSp21>>
 ステップSp21では、例えば、図3で示されるように、鋳型141の内壁面上に、離型材の層(離型材層ともいう)5を形成する。離型材層5によって、例えば、鋳型141内でシリコン融液72が凝固する際に鋳型141の内壁面にシリコンインゴット2が融着しにくくなる。また、離型材層5によって、鋳型141内にシリコン融液72が存在する際には、鋳型141からシリコン融液72への酸素(O)の混入が低減される。離型材層5の材料には、例えば、窒化珪素(Si)、酸化珪素(SiO)およびバインダが適用される。例えば、窒化珪素および酸化珪素を含むスラリーを、鋳型141の内壁面に塗布またはスプレーなどでコーティングすることで、離型材層5を形成することができる。スラリーは、例えば、ポリビニルアルコール(PVA)などの有機バインダまたはコロイダルシリカなどの無機バインダと溶剤とを主に含む溶液中に、窒化珪素と酸化珪素との混合物の粉末を添加することで生成された溶液を攪拌することで生成される。ここで、離型材層5において、窒化珪素の重量が酸化珪素の重量の1.5倍から9倍程度であれば、離型材層5の強度とシリコンインゴット2の品質の低下が低減され得る。また、鋳型141に対する離型材層5の形成を、スパッタリングまたは化学気相成長(Chemical Vapor Deposition:CVD)法によって実施すれば、離型材層5の緻密化を図ることができる。これにより、鋳型141内にシリコン融液72が存在する際には、鋳型141からシリコン融液72への酸素(O)の混入がさらに低減される。離型材層5の材料としては、窒化珪素と酸化珪素とを混合した材料に限られず、例えば、窒化珪素、炭化珪素および酸化珪素などのうちの1種以上の材料などが採用されてもよい。
 <<ステップSp22>>
 ステップSp22では、図4および図5で示されるように、鋳型141内の底部141b上に、シリコンの種結晶部群6を配置する。より具体的には、底部141bの内壁面上に形成された離型材層5の上にシリコンの種結晶部群6を配置する。
 ここで、例えば、種結晶部群6の+Z方向に向いている状態で位置している上面の面方位が、ミラー指数における(100)であれば、種結晶部群6が容易に製造され得る。また、例えば、後述するシリコン融液72の一方向凝固が行われる際における結晶成長の速度が向上し得る。種結晶部群6の上面は、例えば、図5で示されるように、-Z方向に向いて平面視した場合に長方形状または正方形状の外形を有する。種結晶部群6の厚さは、例えば、第1坩堝131から鋳型141内にシリコン融液72が注入される際に、種結晶部群6が底部141bまで溶けない程度の厚さに設定される。具体的には、種結晶部群6の厚さは、例えば、5mmから70mm程度に設定される。また、種結晶部群6の厚さは、例えば、10mmから30mm程度であってもよい。
 ここでは、例えば、種結晶部群6は、主要な種結晶部(主種結晶部ともいう)61と、この主種結晶部61と側壁部141sとの間隙に配された複数の細長い棒状の種結晶部(長尺種結晶部ともいう)62と、を含む。これにより、シリコンインゴット2における欠陥が低減し得る。第1実施形態では、主種結晶部61および複数の長尺種結晶部62のそれぞれには、同じ材料の単結晶のシリコン(単結晶シリコンともいう)が適用される。
 より具体的には、主種結晶部61は、-Z方向に向いて平面視した場合に、X方向にそれぞれ沿った一対の辺とY方向にそれぞれ沿った一対の辺とを持つ矩形状の形状を有する。換言すれば、主種結晶部61の表裏面は、矩形状の形状を有する。主種結晶部61の表裏面の各辺は、例えば、200mmから320mm程度である。主種結晶部61の表裏面の形状は、矩形状に限られず、例えば、多角形状などのその他の形状であってもよい。複数の長尺種結晶部62のそれぞれは、-Z方向に向いて平面視した場合に、X方向にそれぞれ沿った一対の辺とY方向にそれぞれ沿った一対の辺とを持つ細長い矩形状の形状を有する。換言すれば、複数の長尺種結晶部62のそれぞれの表裏面は、細長い矩形状の形状を有する。
 主種結晶部61の第2方向としての-X方向の側において主種結晶部61と側壁部141sとの間隙に第1の所定の本数の長尺種結晶部62が位置し、主種結晶部61の+X方向の側において主種結晶部61と側壁部141sとの間隙に第2の所定の本数の長尺種結晶部62が位置している。換言すれば、+X方向において、第1の所定の本数の長尺種結晶部62と、主種結晶部61と、第2の所定の本数の長尺種結晶部62とが、この記載の順に並んでいる。第1の所定の本数の長尺種結晶部62および第2の所定の本数の長尺種結晶部62は、それぞれ第3方向としての+Y方向に沿った長手方向を有する。第1の所定の本数の長尺種結晶部62および第2の所定の本数の長尺種結晶部62のそれぞれにおいて、+Y方向に沿った長手方向の長さは、例えば、200mmから400mm程度に設定され、+X方向に沿った短手方向の長さ(幅ともいう)は、例えば、5mmから20mm程度に設定される。第1の所定の本数の長尺種結晶部62および第2の所定の本数の長尺種結晶部62は、それぞれ1つの単結晶シリコンで構成されていてもよいし、+Y方向に並んだ2つ以上の単結晶シリコンで構成されていてもよい。ここで、2つ以上の単結晶シリコンの間隔は、例えば、0mmから3mm程度であってもよいし、0mmから1mm程度であってもよい。
 主種結晶部61の-Y方向の側において主種結晶部61と側壁部141sとの間隙に第3の所定の本数の長尺種結晶部62が位置し、主種結晶部61の+Y方向の側において主種結晶部61と側壁部141sとの間隙に第4の所定の本数の長尺種結晶部62が位置している。換言すれば、+Y方向において、第3の所定の本数の長尺種結晶部62と、主種結晶部61と、第4の所定の本数の長尺種結晶部62とが、この記載の順に並んでいる。第3の所定の本数の長尺種結晶部62および第4の所定の本数の長尺種結晶部62は、それぞれ+X方向に沿った長手方向を有する。第3の所定の本数の長尺種結晶部62および第4の所定の本数の長尺種結晶部62のそれぞれにおいて、+X方向に沿った長手方向の長さは、例えば、200mmから400mm程度に設定され、+Y方向に沿った短手方向の長さ(幅ともいう)は、例えば、5mmから20mm程度に設定される。第3の所定の本数の長尺種結晶部62および第4の所定の本数の長尺種結晶部62は、それぞれ1つの単結晶シリコンで構成されていてもよいし、+X方向に並んだ2つ以上の単結晶シリコンで構成されていてもよい。ここで、2つ以上の単結晶シリコンの間隔は、例えば、0mmから3mm程度であってもよいし、0mmから1mm程度であってもよい。
 図5の例では、第1の所定の本数が7本であり、第2の所定の本数が7本であり、第3の所定の本数が3本であり、第4の所定の本数が3本である。第1の所定の本数および第2の所定の本数のそれぞれは、7本に限られず、1本であってもよいし、2本以上の任意の本数であってもよい。第3の所定の本数および第4の所定の本数のそれぞれは、3本に限られず、1本であってもよいし、2本以上の任意の本数であってもよい。
 ここで、主種結晶部61と、この主種結晶部61に隣接している長尺種結晶部62との間について、+Z方向に沿った仮想軸を中心とした単結晶シリコンの回転方向の角度関係を第1回転角度関係とする。第1の所定の本数の長尺種結晶部62のうちの互いに隣接している2つの長尺種結晶部62の間について、+Z方向に沿った仮想軸を中心とした単結晶シリコンの回転方向の角度関係を第2回転角度関係とする。第2の所定の本数の長尺種結晶部62のうちの互いに隣接している2つの長尺種結晶部62の間について、+Z方向に沿った仮想軸を中心とした単結晶シリコンの回転方向の角度関係を第3回転角度関係とする。第3の所定の本数の長尺種結晶部62のうちの互いに隣接している2つの長尺種結晶部62の間について、+Z方向に沿った仮想軸を中心とした単結晶シリコンの回転方向の角度関係を第4回転角度関係とする。第4の所定の本数の長尺種結晶部62のうちの互いに隣接している2つの長尺種結晶部62の間について、+Z方向に沿った仮想軸を中心とした単結晶シリコンの回転方向の角度関係を第5回転角度関係とする。
 この場合には、ステップSp22において、例えば、第1回転角度関係、第2回転角度関係、第3回転角度関係、第4回転角度関係および第5回転角度関係のそれぞれが、対応粒界に対応する単結晶シリコンの回転方向の角度関係となる形態で、種結晶部群6を配置する。ここで、「対応粒界」とは、粒界を挟んで隣接する、同一の結晶格子を有する2つの結晶粒が、共通する結晶方位を回転軸として相対的に回転した関係を有する場合に、この2つの結晶粒に共通した結晶格子の位置が規則的に並んだ格子点を形成している粒界のことをいう。この対応粒界を挟んで隣接する2つの結晶粒を第1結晶粒と第2結晶粒とした場合に、対応粒界において第1結晶粒の結晶格子がN個(Nは2以上の自然数)の格子点ごとに第2結晶粒の結晶格子の格子点と共通していれば、この格子点の出現周期を示す数値Nを、対応粒界の「Σ値」という。
 この「Σ値」について単純立方格子を例に挙げて説明する。図6では、単純立方格子のうちのミラー指数の(100)面における格子点Lp1の位置が、実線La1で描かれた互いに直交する複数の縦線と複数の横線との交点で示されている。図6の例では、単純立方格子の単位格子(第1単位格子ともいう)Uc1は、太い実線で囲まれた正方形の部分である。図6には、単純立方格子をミラー指数における[100]方位に沿った結晶軸を回転軸として時計回りに36.52度(36.52°)回転させた後の単純立方格子のうちのミラー指数の(100)面における格子点Lp2の位置が、破線La2で描かれた互いに直交する複数の直線の交点で示されている。ここでは、回転前の格子点Lp1と回転後の格子点Lp2とが重なり合う点(対応格子点ともいう)Lp12が周期的に生じる。図6では、周期的な複数の対応格子点Lp12の位置に黒丸が付されている。図6の例では、複数の対応格子点Lp12で構成される格子(対応格子ともいう)における単位格子(対応単位格子ともいう)Uc12は、太い破線で囲まれた正方形の部分である。ここで、実線La1の交点で格子点Lp1の位置が示された回転前の単純立方格子(第1格子ともいう)と、破線La2の交点で格子点Lp2の位置が示された回転後の単純立方格子(第2格子ともいう)と、の間における対応度(対応格子点の密度)を示す指標として、Σ値が用いられる。ここでは、Σ値は、例えば、図6で示される対応単位格子Uc12の面積S12を第1単位格子Uc1の面積S1で除することで算出され得る。具体的には、Σ値=(対応単位格子の面積)/(第1単位格子の面積)=(S12)/(S1)の計算式によってΣ値が算出され得る。図6の例では、算出されるΣ値は5となる。このΣ値は、粒界を挟んで隣接する、回転方向の所定の角度関係を有している第1格子と第2格子との間における対応度を示す指標として使用され得る。すなわち、Σ値は、粒界を挟んで隣接している2つの結晶粒であって、回転方向の所定の角度関係を有し且つ同一の結晶格子を有する2つの結晶粒の間において、対応度を示す指標として使用され得る。
 ここでは、対応粒界に対応する単結晶シリコンの回転方向の角度関係には、例えば、1度から3度程度の誤差が許容され得る。この誤差は、例えば、主種結晶部61および長尺種結晶部62を準備する際における切断で生じる誤差、主種結晶部61および複数の長尺種結晶部62を配置する際に際に生じる誤差などを含む。これらの誤差は、例えば、後述するシリコン融液72の一方向凝固が行われる際に低減され得る。
 ここで、例えば、主種結晶部61および複数の長尺種結晶部62のそれぞれにおける+Z方向を向いている上面の面方位が、ミラー指数における(100)である場合を想定する。換言すれば、例えば、主種結晶部61および複数の長尺種結晶部62のそれぞれにおける+Z方向に沿った結晶方位が、ミラー指数における<100>である場合を想定する。この場合には、対応粒界には、Σ値が5の対応粒界、Σ値が13の対応粒界、Σ値が17の対応粒界、Σ値が25の対応粒界およびΣ値が29の対応粒界のうちの何れか1つの対応粒界が適用される。Σ値が5の対応粒界に対応する単結晶シリコンの回転方向の角度関係は、例えば、36度から37度程度であり、35度から38度程度であってもよい。Σ値が13の対応粒界に対応する単結晶シリコンの回転方向の角度関係は、例えば、22度から23度程度であり、21度から24度程度であってもよい。Σ値が17の対応粒界に対応する単結晶シリコンの回転方向の角度関係は、例えば、26度から27度程度であり、25度から28度程度であってもよい。Σ値が25の対応粒界に対応する単結晶シリコンの回転方向の角度関係は、例えば、16度から17度程度であり、15度から18度程度であってもよい。Σ値が29の対応粒界(ランダム粒界ともいう)に対応する単結晶シリコンの回転方向の角度関係は、例えば、43度から44度程度であり、42度から45度程度であってもよい。主種結晶部61および複数の長尺種結晶部62のそれぞれにおける結晶方位は、X線回折法または電子後方散乱回折(Electron Back Scatter Diffraction Patterns:EBSD)法などを用いた測定で確認され得る。
 ここでは、例えば、シリコンの結晶のミラー指数における面方位が(100)である上面が+Z方向に向いている状態で位置する形態で、主種結晶部61および複数の長尺種結晶部62のそれぞれを配置する。これにより、例えば、後述するシリコン融液72の一方向凝固が行われる際における結晶成長の速度が向上し得る。その結果、主種結晶部61および複数の長尺種結晶部62のそれぞれを起点として上方に向けて結晶粒が成長することで形成される、擬似的な単結晶(擬似単結晶)が容易に得られる。したがって、シリコンインゴット2の品質を容易に向上させることができる。
 ここで、例えば、主種結晶部61と、この主種結晶部61に隣接している長尺種結晶部62と、の間における第1回転角度関係を、Σ値が29の対応粒界に対応する45度に設定することができる。この場合には、例えば、主種結晶部61の+X方向に沿った結晶方位がミラー指数における<100>であり、主種結晶部61に隣接している長尺種結晶部62の+X方向に沿った結晶方位がミラー指数における<110>である態様が採用され得る。
 また、例えば、主種結晶部61の-X方向の側に位置している第1の所定の本数の長尺種結晶部62では、-X方向において隣り合う全ての組み合わせの2つの長尺種結晶部62の間における第2回転角度関係を、Σ値が29の対応粒界に対応する45度に設定することができる。ここで、第1の所定の本数の長尺種結晶部62のうちの主種結晶部61側から-X方向において並んでいる順番が奇数番目である長尺種結晶部62を第1長尺種結晶部621とする。第1の所定の本数の長尺種結晶部62のうちの主種結晶部61側から-X方向において並んでいる順番が偶数番目である長尺種結晶部62を第2長尺種結晶部622とする。この場合には、第1長尺種結晶部621の-X方向に沿った結晶方位がミラー指数における<110>であり、第2長尺種結晶部622の-X方向に沿った結晶方位がミラー指数における<100>である態様が採用され得る。
 また、例えば、主種結晶部61の+X方向の側に位置している第2の所定の本数の長尺種結晶部62では、+X方向において隣り合う全ての組み合わせの2つの長尺種結晶部62の間における第3回転角度関係を、Σ値が29の対応粒界に対応する45度に設定することができる。ここで、第2の所定の本数の長尺種結晶部62のうちの主種結晶部61側から+X方向において並んでいる順番が奇数番目である長尺種結晶部62を第1長尺種結晶部621とする。第2の所定の本数の長尺種結晶部62のうちの主種結晶部61側から+X方向において並んでいる順番が偶数番目である長尺種結晶部62を第2長尺種結晶部622とする。この場合には、第1長尺種結晶部621の+X方向に沿った結晶方位がミラー指数における<110>であり、第2長尺種結晶部622の+X方向に沿った結晶方位がミラー指数における<100>である態様が採用され得る。
 また、例えば、主種結晶部61の-Y方向の側に位置している第3の所定の本数の長尺種結晶部62では、-Y方向において隣り合う全ての組み合わせの2つの長尺種結晶部62の間における第4回転角度関係を、Σ値が29の対応粒界に対応する45度に設定することができる。ここで、第3の所定の本数の長尺種結晶部62のうちの主種結晶部61側から-Y方向において並んでいる順番が奇数番目である長尺種結晶部62を第3長尺種結晶部623とする。第3の所定の本数の長尺種結晶部62のうちの主種結晶部61側から-Y方向において並んでいる順番が偶数番目である長尺種結晶部62を第4長尺種結晶部624とする。この場合には、第3長尺種結晶部623の-Y方向に沿った結晶方位がミラー指数における<110>であり、第4長尺種結晶部624の-Y方向に沿った結晶方位がミラー指数における<100>である態様が採用され得る。
 また、例えば、主種結晶部61の+Y方向の側に位置している第4の所定の本数の長尺種結晶部62では、+Y方向において隣り合う全ての組み合わせの2つの長尺種結晶部62の間における第5回転角度関係を、Σ値が29の対応粒界に対応する45度に設定することができる。ここで、第4の所定の本数の長尺種結晶部62のうちの主種結晶部61側から+Y方向において並んでいる順番が奇数番目である長尺種結晶部62を第3長尺種結晶部623とする。第4の所定の本数の長尺種結晶部62のうちの主種結晶部61側から+Y方向において並んでいる順番が偶数番目である長尺種結晶部62を第4長尺種結晶部624とする。この場合には、第3長尺種結晶部623の+Y方向に沿った結晶方位がミラー指数における<110>であり、第4長尺種結晶部624の+Y方向に沿った結晶方位がミラー指数における<100>である態様が採用され得る。
 主種結晶部61および複数の長尺種結晶部62のそれぞれは、例えば、次の流れの工程で準備され得る。まず、例えば、図7で示されるように、チョクラルスキー(CZ)法において単結晶シリコンを成長させる方向に沿ったミラー指数の結晶方位を<100>とすることで、円柱状の単結晶シリコンの塊(単結晶シリコン塊ともいう)Mc0を得る。ここで、単結晶シリコン塊Mc0が、ミラー指数における面方位が(100)である上面Pu0と、ミラー指数における面方位が(110)である特定の線状領域Ln0が存在している外周面Pp0と、を有する場合を想定する。この場合には、次に、図7で示されるように、単結晶シリコン塊Mc0の外周面Pp0に存在している線状領域Ln0を基準として、単結晶シリコン塊Mc0を切断する。図7には、単結晶シリコン塊Mc0が切断される位置(被切断位置ともいう)の一例が細い2点鎖線Ln1で仮想的に描かれている。ここでは、単結晶シリコン塊Mc0から、例えば、図8で示されるように、ミラー指数における面方位が(100)である矩形状の板面Pb0をそれぞれ有する複数の単結晶シリコンの板(単結晶シリコン板ともいう)Bd0を切り出すことができる。この複数の単結晶シリコン板Bd0は、例えば、主種結晶部61として使用され得る。また、図8で示されるように、例えば、細い2点鎖線Ln2で仮想的に描かれた被切断位置に沿って単結晶シリコン板Bd0を切断することで、単結晶シリコン板Bd0から棒状の単結晶シリコン(単結晶シリコン棒ともいう)St0を切り出すことができる。この際には、単結晶シリコン板Bd0の板面Pb0の4辺と、被切断位置を示す細い2点鎖線Ln2と、が成す角度が、対応粒界に対応する単結晶シリコンの回転角度とされる。ここで得られる単結晶シリコン棒St0は、例えば、長尺種結晶部62として使用され得る。
 ここで、例えば、鋳型141の第2内部空間141iの下部の領域において、鋳型141内の底部141b上に配置されたシリコンの種結晶部群6の上に、1つ以上の原料シリコン塊71を配置してもよい。この1つ以上の原料シリコン塊71には、例えば、比較的細かいブロック状のシリコンの塊が適用される。
 <<ステップSp23>>
 ステップSp23では、図9で示されるように、第1坩堝131の第1内部空間131iに複数の原料シリコン塊71を導入する。ここでは、例えば、第1坩堝131内の下部の領域から上部の領域に向けて複数の原料シリコン塊71を充填する。この際には、例えば、シリコンインゴット2においてドーパントとなる元素を複数の原料シリコン塊71に添加する。複数の原料シリコン塊71のそれぞれには、例えば、シリコンインゴット2の原料としてのポリシリコンの塊が適用される。ポリシリコンの塊には、例えば、比較的細かいブロック状のシリコンの塊が適用される。ここで、シリコンインゴット2からn型のシリコンブロック3およびn型のシリコン基板4を作製する場合には、複数の原料シリコン塊71に、n型のドーパントとしての15族元素を添加する。
 ところで、シリコン融液72を凝固させてシリコンインゴット2を製造する際には、不純物元素としてのドーパントの偏析が生じる。ここで、シリコンに対するドーパントの偏析とは、シリコン融液72における蒸発などによる不純物の出入りに一切変化がなく、シリコン融液72が非常によく攪拌されている理想状態であっても、溶融している状態にあるシリコン融液72が凝固する際に、凝固したシリコンインゴット2においてドーパントの分布が不均一になる現象である。この偏析により、溶融している状態にあるシリコン融液72において、凝固が始まった部分ではドーパントが取り込まれにくく、後から凝固した部分には多くドーパントが含まれ得る。この偏析の生じ易さを示す指標として偏析係数が知られている。偏析係数は、平衡分配係数K0とも称される。ある物質における固相と液相との界面において、固相における不純物の濃度をCsとし、液相における不純物の濃度をClとすると、平衡分配係数K0は、K0=Cs/Clの式で定義される。このため、シリコンに対するドーパントの偏析係数が1に近いほど、シリコン融液72の一方向凝固によって製造されるシリコンインゴット2において、より均一にドーパントが存在し得る。
 ここで、仮に、p型のドーパントとして13族元素であるホウ素(B)を用いたキャスト法で製造されたシリコンインゴットからp型のシリコンブロックおよびp型のシリコン基板を作製する場合を想定する。この場合には、シリコンに対するホウ素(B)の偏析係数は約0.8である。図10では、p型のドーパントとしてのホウ素(B)をシリコンに添加してキャスト法で製造されたシリコンインゴットにおける高さ方向の位置と抵抗率(ρb)との関係の一例が黒塗りの四角形のプロットで示されている。ここでは、シリコンインゴットの下部における抵抗率(ρb)が2オームセンチメートル(Ω・cm)となる量のホウ素(B)をシリコンに添加した。図10では、シリコンインゴットの高さ方向の位置について、最下部を0とし、最上部を1としている。図10で示されるように、シリコン融液の下方から上方に向けた一方向凝固で製造されたシリコンインゴットにおいては、下方から97%程度の領域において、抵抗率(ρb)が1Ω・cmから2Ω・cmの範囲に含まれている。このため、キャスト法またはモノライクキャスト法で製造されるシリコンインゴットによれば、広い領域で所望の抵抗率(ρb)を有するp型のシリコンブロックおよびp型のシリコン基板を作製することが可能である。
 一方、n型のドーパントとして15族元素であるリン(P)を用いたキャスト法で製造されたシリコンインゴットからn型のシリコンブロックおよびn型のシリコン基板を作製する場合を想定する。この場合には、シリコンに対するリン(P)の偏析係数は約0.35である。図10では、n型のドーパントとしてリン(P)をシリコンに添加してキャスト法で製造されたシリコンインゴットにおける高さ方向の位置と抵抗率(ρb)との関係の一例が黒丸のプロットで示されている。ここでは、シリコンインゴットの下部における抵抗率(ρb)が2オームセンチメートル(Ω・cm)となる量のリン(P)をシリコンに添加した。図10で示されるように、シリコン融液の下方から上方に向けた一方向凝固で製造されたシリコンインゴットにおいては、下方から65%程度の領域において、抵抗率(ρb)が1Ω・cmから2Ω・cmの範囲に含まれている。このため、キャスト法またはモノライクキャスト法で製造されるシリコンインゴットによれば、狭い領域でしか所望の抵抗率(ρb)を有するn型のシリコンブロックおよびn型のシリコン基板を作製することができない。すなわち、キャスト法またはモノライクキャスト法で製造されるシリコンインゴットによるn型のシリコンブロックおよびn型のシリコン基板の生産性が低いと言える。
 そこで、ステップSp23では、複数の原料シリコン塊71に、n型のドーパントとしての15族元素を添加するとともに、p型のドーパントとしての13族元素も添加する。ここで、シリコンに対する15族元素の偏析係数よりも、シリコンに対する偏析係数が小さい13族元素を用いる。これにより、シリコン融液72の一方向凝固に伴って、シリコン融液72において、n型のドーパントの濃度が大きくなるとともに、p型のドーパントの濃度が大きくなる。そして、p型のドーパントの電荷によってn型のドーパントの一部の過剰な電荷を打ち消させながら、シリコン融液72を順次に凝固させることができる。ここで、n型のドーパントの電荷とp型のドーパントの電荷とが打ち消しあうことを補償ともいう。これにより、シリコン融液72の一方向凝固によって製造されるシリコンインゴット2において、より広い領域で所望の抵抗率(ρb)を有するn型のシリコンを実現することができる。換言すれば、シリコン融液72の一方向凝固によって製造されるシリコンインゴット2のより広い領域から所望の抵抗率(ρb)を有するn型のシリコンブロックおよびn型のシリコン基板を作製することが可能となる。
 ここで、複数の原料シリコン塊71に添加する15族元素としては、リン(P)、ヒ素(As)およびアンチモン(Sb)のうちの1つ以上の元素が採用される。複数の原料シリコン塊71に添加する13族元素としては、アルミニウム(Al)、ガリウム(Ga)およびインジウム(In)のうちの1つ以上の元素が採用される。シリコンに対するヒ素(As)の偏析係数は約0.3である。シリコンに対するアンチモン(Sb)の偏析係数は約0.023である。シリコンに対するアルミニウム(Al)の偏析係数は0.002である。シリコンに対するガリウム(Ga)の偏析係数は0.008である。シリコンに対するインジウム(In)の偏析係数は0.0004である。
 ここで、リン(P)、アルミニウム(Al)およびガリウム(Ga)は入手が容易である。ヒ素(As)およびインジウム(In)以外の元素は、シリコン融液72から蒸発しにくく、管理が容易である。インジウム(In)は入手に要するコストが高い。リン(P)およびヒ素(As)は、アンチモン(Sb)よりも偏析係数が大きい。このため、シリコンに添加する15族元素としてリン(P)およびヒ素(As)を採用すれば、シリコンに対する15族元素の添加量を低減することができる。シリコンに添加する13族元素としてアルミニウム(Al)以外の元素を採用すると、n型のシリコンブロック3およびn型のシリコン基板4の品質が向上し得る。したがって、15族元素としてリン(P)を採用し、13族元素としてガリウム(Ga)を採用すると、高品質のn型のシリコンブロック3およびn型のシリコン基板4を容易に製造することが可能となる。
 ここでは、目標とするシリコンの抵抗率(ρb)が得られる比率で15族元素と13族元素とをシリコンに添加する。例えば、複数の原料シリコン塊71に添加する15族元素の物質量(モル数)に対して、複数の原料シリコン塊71に添加する13族元素の物質量(モル数)が1/2から1/3程度に設定される。目標とするシリコンの抵抗率(ρb)は、例えば、1Ω・cmから3Ω・cmの範囲に設定される。また、ここでは、例えば、15族元素を高濃度に添加したシリコン塊と、13族元素と、を複数の原料シリコン塊71の最上部に配置する態様が考えられる。
 また、ステップSp23では、例えば、第1坩堝131の第1下部開口部131hの開口を上方から塞ぐように閉塞用のシリコン塊(閉塞用シリコン塊ともいう)71oが充填される。これにより、例えば、第1内部空間131iから第1下部開口部131hに至る経路が塞がれる。
 <1-2-3.第3工程>
 ステップSp3の第3工程では、例えば、図11で示されるように、冷却板145bを上昇させることで、冷却板145bの上面を保持部142の下面に押し当てるとともに、保持部142を上方に押し上げる。これにより、冷却板145bによって鋳型141および保持部142を持ち上げる。そして、回転軸145sを中心として鋳型141および保持部142を回転させ始める。この鋳型141および保持部142の回転は、例えば、回転軸145sの回転に応じた冷却板145bの回転によって実行される。また、ステップSp3の第3工程では、例えば、図11で示されるように、第1給気部134による第1内部空間131iに向けた不活性ガスの供給と、第2給気部146による第2内部空間141iに向けた不活性ガスの供給と、を開始する。
 図11には、回転軸145sおよび冷却板145bの上昇および回転をそれぞれ模式的に示す細い実線の矢印と、第1給気部134からの不活性ガスの供給および第2給気部146からの不活性ガスの供給をそれぞれ模式的に示す細い2点鎖線の矢印と、が付されている。図12および図13にも、回転軸145sおよび冷却板145bの回転を模式的に示す細い実線の矢印と、第1給気部134からの不活性ガスの供給および第2給気部146からの不活性ガスの供給をそれぞれ模式的に示す細い2点鎖線の矢印と、が付されている。
 <1-2-4.第4工程>
 ステップSp4の第4工程では、例えば、上記第2工程において鋳型141内の底部141b上に配置した種結晶部群6をシリコンの融点付近まで昇温した状態で、鋳型141内へシリコン融液72を注入する。シリコンの融点は、摂氏1414度(1414℃)程度である。
 第4工程では、例えば、図12で示されるように、鋳型141内の底部141b上に位置している種結晶部群6をシリコンの融点付近まで昇温する。例えば、第3ヒータ143および第4ヒータ144によって、種結晶部群6をシリコンの融点である1414℃付近まで加熱する。図12では、第3ヒータ143および第4ヒータ144による加熱が斜線のハッチングを付した矢印で模式的に描かれている。
 より具体的には、例えば、第3ヒータ143および第4ヒータ144によって、種結晶部群6の上面側の部分がシリコンの融点を超える温度域まで加熱する。これにより、種結晶部群6の上面側の部分が溶融する。この際には、種結晶部群6の上面側の部分の温度は、例えば、約1530℃に達し得る。ここでは、保持部142の下面に冷却板145bが接触している。このため、種結晶部群6から底部141bおよび保持部142を介した冷却板145bへの熱伝達によって、種結晶部群6から底部141bおよび保持部142を介した冷却板145bへの熱の移動が生じる。これにより、種結晶部群6の下面側の部分は溶解することなく残存する。図12には、種結晶部群6から底部141bおよび保持部142を介した冷却板145bへの熱の移動のイメージを模式的に示す白抜きの矢印が付されている。ここで、例えば、上記第2工程において鋳型141内の底部141b上に配置された種結晶部群6の上に原料シリコン塊71が配されていれば、この原料シリコン塊71が、第3ヒータ143および第4ヒータ144によって溶融されてもよい。
 また、第4工程では、例えば、図12で示されるように、第1坩堝131内に位置している複数の原料シリコン塊71が加熱によって溶融され、第1坩堝131内にシリコン融液72が貯留された状態となる。例えば、第1ヒータ132および第2ヒータ133によって、複数の原料シリコン塊71をシリコンの融点を超える温度域まで加熱することで、シリコン融液72とする。図12では、第1ヒータ132および第2ヒータ133による加熱が斜線のハッチングを付した矢印で描かれている。
 より具体的には、例えば、第1ヒータ132および第2ヒータ133によって、複数の原料シリコン塊71をシリコンの融点を超える温度域まで加熱する。これにより、複数の原料シリコン塊71が溶融する。この際には、複数の原料シリコン塊71の溶融によって生成されたシリコン融液72の温度は、例えば、約1550℃に達し得る。ここでは、第1坩堝131の第1下部開口部131hの開口を上方から塞いでいる閉塞用シリコン塊71oが加熱されることで、閉塞用シリコン塊71oが溶融する。この閉塞用シリコン塊71oを溶融させるためのヒータが存在していてもよい。閉塞用シリコン塊71oの溶融により、第1坩堝131の第1内部空間131iから第1下部開口部131hの開口に至る経路が開通する。その結果、第1坩堝131内のシリコン融液72が、第1下部開口部131hの開口を介して鋳型141内に注がれる。これにより、例えば、図12で示されるように、鋳型141内の底部141b上に位置している種結晶部群6の上面がシリコン融液72で覆われた状態となる。
 ここでは、第1坩堝131内の全てのシリコン融液72が鋳型141内に注がれた後に、第1ヒータ132および第2ヒータ133による加熱を停止する。また、第1坩堝131内の全てのシリコン融液72が鋳型141内に注がれた後に、第1給気部134による第1内部空間131iに向けた不活性ガスの供給が停止されてもよい。
 ここで、第1ヒータ132、第2ヒータ133、第3ヒータ143および第4ヒータ144の素材がグラファイトであれば、第4工程では、種結晶部群6および複数の原料シリコン塊71を加熱している第1ヒータ132、第2ヒータ133、第3ヒータ143および第4ヒータ144から一酸化炭素(CO)のガスが発生し得る。これにより、シリコン融液72内に一酸化炭素(CO)が混入し得る。シリコン融液72内に混入した一酸化炭素(CO)は蒸発しにくい。このため、シリコン融液72における単位体積当たりの炭素(C)の原子の個数(原子数)が増加し得る。単位体積としては、例えば、1立方センチメートル(cm)が採用される。
 また、第4工程では、第1給気部134から第1内部空間131iに向けた不活性ガスの供給によって、第1内部空間131i内のシリコン融液72からの酸素(O)の蒸発量が増加し、第1内部空間131i内のシリコン融液72における単位体積当たりの酸素(O)の原子数(酸素の濃度ともいう)が減少し得る。ここで、第1給気部134から第1内部空間131iに向けた不活性ガスの単位時間当たりの供給量を増加させることで、第1内部空間131i内のシリコン融液72からの酸素(O)の蒸発量をさらに増加させてもよい。これにより、第1内部空間131i内のシリコン融液72における単位体積当たりの酸素(O)の原子数がさらに減少し得る。ここで、例えば、筐体11内の減圧によって、第1内部空間131i内のシリコン融液72からの酸素(O)の蒸発量を増加させることで、第1内部空間131i内のシリコン融液72における単位体積当たりの酸素(O)の原子数を低下させてもよい。
 また、第4工程では、第2給気部146から第2内部空間141iに向けた不活性ガスの供給によって、第2内部空間141i内のシリコン融液72からの酸素(O)の蒸発量が増加し、第2内部空間141i内のシリコン融液72における単位体積当たりの酸素(O)の原子数が減少し得る。ここで、第2給気部146から第2内部空間141iに向けた不活性ガスの単位時間当たりの供給量を増加させることで、第2内部空間141i内のシリコン融液72からの酸素(O)の蒸発量をさらに増加させてもよい。これにより、第2内部空間141i内のシリコン融液72における単位体積当たりの酸素(O)の原子数がさらに減少し得る。ここで、例えば、筐体11内の減圧によって、第2内部空間141i内のシリコン融液72からの酸素(O)の蒸発量を増加させることで、第2内部空間141i内のシリコン融液72における単位体積当たりの酸素(O)の原子数を低下させてもよい。
 <1-2-5.第5工程>
 ステップSp5の第5工程では、例えば、上記第4工程において鋳型141内へ注入されたシリコン融液72に対して、鋳型141の底部141b側から上方に向かう一方向の凝固(一方向凝固)を行わせる。これにより、シリコンインゴット2が製造され得る。
 第5工程では、例えば、図13で示されるように、鋳型141内のシリコン融液72の温度をシリコンの融点の近傍の温度に維持しつつ、鋳型141内のシリコン融液72から底部141bおよび保持部142を介した冷却板145bへの熱の移動を生じさせる。これにより、鋳型141内のシリコン融液72が底部141b側から冷却されて、シリコン融液72の底部141b側から上方に向かう一方向凝固が生じる。ここでは、例えば、鋳型141内のシリコン融液72の温度をシリコンの融点である1414℃未満の1405℃程度にする。図13には、図12と同じく、第3ヒータ143および第4ヒータ144による加熱が斜線のハッチングを付した矢印で模式的に描かれている。また、図13には、図12と同じく、種結晶部群6から底部141bおよび保持部142を介した冷却板145bへの熱の移動のイメージを模式的に示す白抜きの矢印が付されている。さらに、図13には、シリコン融液72における熱の移動を示す太い破線の矢印が付されている。
 この第5工程では、例えば、シリコン融液72の一方向凝固をゆっくりと進行させることで、鋳型141内においてシリコンインゴット2が製造される。この際に、例えば、種結晶部群6を起点として擬似的な単結晶(擬似単結晶)が成長する。具体的には、例えば、種結晶部群6に含まれる主種結晶部61および複数の長尺種結晶部62のそれぞれを起点として擬似的な単結晶(擬似単結晶)が成長する。
 ここでは、例えば、主種結晶部61と、この主種結晶部61に隣接している長尺種結晶部62との間の第1回転角度関係を引き継いで、主種結晶部61を起点として成長した擬似的な単結晶(擬似単結晶)と、長尺種結晶部62を起点として成長した擬似的な単結晶(擬似単結晶)と、の境界に対応粒界を含む粒界(機能性粒界ともいう)が形成され得る。換言すれば、主種結晶部61と、この主種結晶部61に隣接している長尺種結晶部62との境界の上方に対応粒界が形成され得る。
 また、例えば、主種結晶部61の-X方向の側に位置している第1の所定の本数の長尺種結晶部62のうちの-X方向において隣り合う全ての組み合わせの2つの長尺種結晶部62については、2つの長尺種結晶部62の間の第2回転角度関係を引き継いで、2つの長尺種結晶部62を起点として成長した2つの擬似的な単結晶(擬似単結晶)の境界に対応粒界を含む粒界(機能性粒界)が形成され得る。換言すれば、主種結晶部61の-X方向の側に位置している第1の所定の本数の長尺種結晶部62のうちの-X方向において隣り合う全ての組み合わせの2つの長尺種結晶部62については、2つの長尺種結晶部62の境界の上方に対応粒界が形成され得る。
 また、例えば、主種結晶部61の+X方向の側に位置している第2の所定の本数の長尺種結晶部62のうちの+X方向において隣り合う全ての組み合わせの2つの長尺種結晶部62については、2つの長尺種結晶部62の間の第3回転角度関係を引き継いで、2つの長尺種結晶部62を起点として成長した2つの擬似的な単結晶(擬似単結晶)の境界に対応粒界を含む粒界(機能性粒界)が形成され得る。換言すれば、主種結晶部61の+X方向の側に位置している第2の所定の本数の長尺種結晶部62のうちの+X方向において隣り合う全ての組み合わせの2つの長尺種結晶部62については、2つの長尺種結晶部62の境界の上方に対応粒界が形成され得る。
 また、例えば、主種結晶部61の-Y方向の側に位置している第3の所定の本数の長尺種結晶部62のうちの-Y方向において隣り合う全ての組み合わせの2つの長尺種結晶部62については、2つの長尺種結晶部62の間の第4回転角度関係を引き継いで、2つの長尺種結晶部62を起点として成長した2つの擬似的な単結晶(擬似単結晶)の境界に対応粒界を含む粒界(機能性粒界)が形成され得る。換言すれば、主種結晶部61の-Y方向の側に位置している第3の所定の本数の長尺種結晶部62のうちの-Y方向において隣り合う全ての組み合わせの2つの長尺種結晶部62については、2つの長尺種結晶部62の境界の上方に対応粒界が形成され得る。
 また、例えば、主種結晶部61の+Y方向の側に位置している第4の所定の本数の長尺種結晶部62のうちの+Y方向において隣り合う全ての組み合わせの2つの長尺種結晶部62については、2つの長尺種結晶部62の間の第5回転角度関係を引き継いで、2つの長尺種結晶部62を起点として成長した2つの擬似的な単結晶(擬似単結晶)の境界に対応粒界を含む粒界(機能性粒界)が形成され得る。換言すれば、主種結晶部61の+Y方向の側に位置している第4の所定の本数の長尺種結晶部62のうちの+Y方向において隣り合う全ての組み合わせの2つの長尺種結晶部62については、2つの長尺種結晶部62の境界の上方に対応粒界が形成され得る。
 これにより、例えば、シリコン融液72の一方向凝固が進行する際に、対応粒界が随時形成される際に歪みが低減され、シリコンインゴット2における欠陥が減少し得る。また、例えば、シリコン融液72の一方向凝固が進行する際に、鋳型141の側壁部141sの内周面を起点として転位が生じても、側壁部141sの内周面に沿って環状に位置している機能性粒界において転位の進展(転位の伝播ともいう)がブロックされ得る。その結果、主種結晶部61を起点として成長した擬似的な単結晶(擬似単結晶)における欠陥が減少し得る。換言すれば、製造されるシリコンインゴット2における欠陥が減少し得る。シリコンインゴット2における対応粒界の存在および種類については、電子後方散乱回折(EBSD)法などを用いた測定で確認され得る。
 また、第5工程では、例えば、第4工程と比較して、第3ヒータ143における単位時間当たりの発熱量を若干低下させ、第4ヒータ144における単位時間当たりの発熱量を若干増加させてもよい。これにより、鋳型141内でシリコン融液72が上方に向かう一方向凝固を生じる際に、シリコン融液72と、このシリコン融液72が凝固したシリコンの固相との界面の形状が、上方向に向かって張り出している凸状となり得る。この形態の一方向凝固によれば、シリコン融液72中における不純物が、側壁部141sの近傍に排出され得る。その結果、シリコン融液72の一方向凝固で製造されるシリコンインゴット2の中央部分を中心とした広い範囲で、不純物の化合物の析出による転位および欠陥の発生が低減され得る。よって、シリコンインゴット2の結晶性が向上し得る。また、第4ヒータ144における単位時間当たりの発熱量を若干増加させることで、鋳型141の側方からのシリコンの結晶成長が生じにくくなり、上方としての+Z方向への単結晶シリコンの結晶成長が生じやすくなる。
 また、第5工程では、シリコン融液72の一方向凝固に伴って、シリコン融液72における単位体積当たりのn型ドーパントの原子数(n型ドーパントの濃度ともいう)が大きくなるとともに、シリコン融液72における単位体積当たりのp型のドーパントの原子数(p型ドーパントの濃度ともいう)が大きくなる。そして、p型のドーパントの電荷によってn型ドーパントの一部の過剰な電荷を打ち消させながら、シリコン融液72が順次に凝固し得る。これにより、シリコン融液72の一方向凝固によって製造されるシリコンインゴット2において、より広い領域で所望の抵抗率(ρb)を有するn型のシリコンを実現することができる。
 ここで、第3ヒータ143および第4ヒータ144の素材がグラファイトであれば、第5工程では、シリコン融液72を加熱している第3ヒータ143および第4ヒータ144から一酸化炭素(CO)のガスが発生し得る。これにより、シリコン融液72内に一酸化炭素(CO)が混入し得る。シリコン融液72内に混入した一酸化炭素(CO)は蒸発しにくい。このため、シリコン融液72における単位体積当たりの炭素(C)の原子数(炭素の濃度ともいう)が増加し得る。また、シリコンに対する炭素(C)の偏析係数が約0.07であるため、鋳型141内におけるシリコン融液72の一方向凝固の進行に伴って、シリコン融液72における単位体積当たりの炭素(C)の原子数が増加し得る。
 また、第5工程では、第2給気部146から第2内部空間141iに向けた不活性ガスの供給によって、第2内部空間141i内のシリコン融液72からの酸素(O)の蒸発量が増加し得る。このため、第2内部空間141i内のシリコン融液72における単位体積当たりの酸素(O)の原子数が減少し得る。これにより、鋳型141内でシリコン融液72が上方に向かう一方向凝固を生じる際に、酸素析出物あるいはシリコンの酸化膜の発生が減少し得る。その結果、一方向凝固で製造されるシリコンインゴット2において、酸化誘起積層欠陥(Oxidation Induced Stacking Fault:OSF)リングなどの欠陥の発生が減少し得る。
 ここで、第2給気部146から第2内部空間141iに向けた不活性ガスの単位時間当たりの供給量を増加させることで、第2内部空間141i内のシリコン融液72からの酸素(O)の蒸発量をさらに増加させてもよい。これにより、第2内部空間141i内のシリコン融液72における単位体積当たりの酸素(O)の原子数がさらに減少し得る。
 また、第5工程では、鋳型141内におけるシリコン融液72の一方向凝固の進行に伴って、シリコン融液72のうちの離型材層5を介して鋳型141に接している領域が減少していく。このため、鋳型141からシリコン融液72への酸素(O)の混入量が減少していく傾向を示し得る。これにより、シリコン融液72の一方向凝固の進行に伴って、第2内部空間141i内のシリコン融液72における単位体積当たりの酸素(O)の原子数が減少していく。
 また、第5工程では、回転軸145sを中心として鋳型141を回転させることで、鋳型141内のシリコン融液72のうちの側壁部141sの内周面の付近の領域において生じる自然対流の流速を低下させることができる。これにより、鋳型141からシリコン融液72への酸素(O)の混入量が減少し得る。その結果、第2内部空間141i内のシリコン融液72における単位体積当たりの酸素(O)の原子数が減少し得る。ここで、例えば、磁場の印加によって、鋳型141内のシリコン融液72のうちの側壁部141sの内周面の付近の領域において生じる自然対流の流速を低下させてもよい。
 また、第5工程では、シリコン融液72における単位体積当たりの炭素(C)の原子数の増加によって、シリコン融液72の一方向凝固が生じる際に、p型のドーパントである13族元素のイオン化が促進され得るものと考えられる。これにより、例えば、n型のドーパントの一部の過剰な電荷を、p型のドーパントの電荷によって効率良く打ち消すことができるものと考えられる。これにより、シリコンに対するp型のドーパントである13族元素の添加量の過剰な増大を低減することができるものと考えられる。そして、イオン化していない13族元素が酸化物などの各種の欠陥を引き起こす不具合の発生が低減され得るものと考えられる。
 <1-2-6.第6工程>
 ステップSp6の第6工程では、例えば、第5工程における一方向凝固によって製造されたシリコンインゴット2を、数時間程度かけて室温まで冷却する。数時間には、例えば、4時間から10時間程度の時間が適用される。室温まで冷却されたシリコンインゴット2を、鋳型141から取り出すことで、シリコンインゴット2を取得することができる。
 <1-3.シリコンインゴット>
 シリコンインゴット2の構成について、図14および図15を参照しつつ説明する。図14および図15の例では、シリコンインゴット2の形状は、直方体状である。このシリコンインゴット2は、例えば、上述した製造装置1を用いたシリコンインゴット2の製造方法によって製造され得る。
 図14および図15で示されるように、シリコンインゴット2は、例えば、上面21と、下面22と、側面23と、を有する。図14および図15の例では、上面21は、第1方向としての+Z方向を向いた長方形状または正方形状の面である。下面22は、第1方向とは逆の第4方向としての-Z方向を向いた長方形状または正方形状の面である。側面23は、上面21と下面22とを接続している状態で+Z方向に沿って位置している。図14および図15の例では、側面23は、+Z方向に沿った4つの面を含む。この4つの面は、1つの角筒を成す形で位置している。
 シリコンインゴット2は、例えば、中央領域200と、下部領域201と、外周部領域202と、上部領域203と、を有する。図14および図15では、中央領域200の外縁の一例が細い2点鎖線で描かれている。さらに、図14では、下部領域201と外周部領域202との境界、および上部領域と外周部領域202との境界のそれぞれの一例が、細い2点鎖線で描かれている。
 中央領域200は、主種結晶部61を起点としたシリコン融液72の一方向凝固によって、主種結晶部61の結晶構造および結晶方位を引き継ぐ形で形成された擬似的な単結晶(擬似単結晶)の領域である。この中央領域200は、n型のシリコンの擬似的な単結晶(擬似単結晶)の領域である。図14および図15の例では、中央領域200は、シリコンインゴット2の略中央に位置している直方体状の領域である。
 下部領域201は、主種結晶部61に対応する領域を含む領域である。下部領域201は、シリコンインゴット2のうちの下面22に沿って位置している。シリコンインゴット2では、下部領域201は、中央領域200の第4方向としての-Z方向の側において、中央領域200と隣接している状態で位置している。図14および図15の例では、下部領域201は、直方体状の領域である。
 外周部領域202は、複数の長尺種結晶部62に対応する領域と、複数の長尺種結晶部62を起点としたシリコン融液72の一方向凝固によって各長尺種結晶部62の結晶構造および結晶方位を引き継ぐ形で形成された擬似的な単結晶(擬似単結晶)の領域と、を含む領域である。外周部領域202は、シリコンインゴット2のうちの側面23に沿って位置している筒状の領域である。シリコンインゴット2では、外周部領域202は、下部領域201、中央領域200および上部領域203を側方から囲む形で位置している。図14および図15の例では、外周部領域202は、角筒状の領域である。
 上部領域203は、シリコンインゴット2のうちの上面21に沿って位置している領域である。上部領域203は、シリコン融液72の一方向凝固によって不純物元素が濃縮した領域である。この上部領域203は、シリコン融液72の一方向凝固における偏析によって、単位体積当たりのn型ドーパントの原子数よりも単位体積当たりのp型ドーパントの原子数が大きくなったp型のシリコンの領域を含む。シリコンインゴット2では、上部領域203は、中央領域200の+Z方向の側において、中央領域200と隣接している状態で位置している。図14および図15の例では、上部領域203は、直方体状の領域である。
 <1-4.n型のシリコンブロック>
 <1-4-1.n型のシリコンブロックの構成>
 第1実施形態に係るn型のシリコンブロック3の構成について、図16および図17を参照しつつ説明する。図16および図17の例では、n型のシリコンブロック3の形状は、直方体状である。n型のシリコンブロック3は、上述したシリコンインゴット2から、下部領域201、外周部領域202および上部領域203をワイヤーソー装置などで切除することで製造され得る。換言すれば、n型のシリコンブロック3は、シリコンインゴット2のうちの上述した中央領域200に対応する。
 図16および図17で示されるように、例えば、n型のシリコンブロック3は、第1面31と、第2面32と、第3面33と、を有する。図16および図17の例では、第1面31は、第1方向としての+Z方向を向いた長方形状または正方形状の面(上面ともいう)である。第2面32は、第1面31の逆側に位置している。図16および図17の例では、第2面32は、第1方向とは逆の第4方向としての-Z方向を向いた長方形状または正方形状の面(下面ともいう)である。第3面33は、第1面31と第2面32とを接続している状態で第1方向としての+Z方向に沿って位置している。図16および図17の例では、第3面33は、第1方向としての+Z方向に沿った4つの面(側面ともいう)を含む。この4つの面は、1つの角筒を成す形で位置している。第1面31および第2面32のそれぞれは、角部において隅切りなどが行われた形状を有していてもよい。
 n型のシリコンブロック3は、15族元素であるドナー(n型のドーパントともいう)と、13族元素であるアクセプタ(p型のドーパントともいう)と、炭素(C)と、酸素(O)と、を含有している。
 n型のシリコンブロック3では、単位体積当たりの15族元素であるドナー(n型のドーパント)の原子数は、単位体積当たりの13族元素であるアクセプタ(p型のドーパント)の原子数よりも大きい。
 n型のシリコンブロック3における単位体積当たりの15族元素であるドナー(n型のドーパント)の原子数は、例えば、7.1×1014個/立方センチメートル(atoms/cm)から7×1019atoms/cmの範囲に設定される。ここでは、数値範囲の下限値である7.1×1014atoms/cmは、例えば、4探針法または渦電流法による抵抗率の測定を利用して検出可能な単位体積当たりの15族元素であるドナー(n型のドーパント)の原子数の下限値に応じて設定される。数値範囲の上限値である7×1019atoms/cmは、例えば、単位体積のシリコンに対して固溶可能なアンチモン(Sb)の原子数の上限値に応じて設定される。単位体積のシリコンに対して固溶可能な原子数の上限値は、リン(P)、ヒ素(As)およびアンチモン(Sb)のうちのアンチモン(Sb)が最も小さい。また、n型のシリコンブロック3における単位体積当たりの15族元素であるドナー(n型のドーパント)の原子数は、例えば、1.1×1015atoms/cmから1.6×1016atoms/cmの範囲であってもよい。この数値範囲は、例えば、太陽電池素子の品質保持のためにシリコン基板に求められる抵抗率の数値範囲である0.4Ω・cmから4.5Ω・cmと、シリコンにおける抵抗率とn型のドーパントの密度との一般的な関係と、に基づいて設定される。
 n型のシリコンブロック3における単位体積当たりの13族元素であるアクセプタ(p型のドーパント)の原子数は、例えば、1.2×1015atoms/cmから4×1017atoms/cmの範囲に設定される。ここでは、数値範囲の下限値である1.2×1015atoms/cmは、例えば、4探針法または渦電流法による抵抗率の測定を利用して検出可能な単位体積当たりの13族元素であるアクセプタ(p型のドーパント)の原子数の下限値に応じて設定される。数値範囲の上限値である4×1017atoms/cmは、例えば、単位体積のシリコンに対して固溶可能なインジウム(In)の原子数の上限値に応じて設定される。単位体積のシリコンに対して固溶可能な原子数の上限値は、アルミニウム(Al)、ガリウム(Ga)およびインジウム(In)のうちのインジウム(In)が最も小さい。また、n型のシリコンブロック3における単位体積当たりの13族元素であるアクセプタ(p型のドーパント)の原子数は、例えば、3×1015atoms/cmから5.5×1016atoms/cmの範囲であってもよい。この数値範囲は、例えば、太陽電池素子の品質保持のためにシリコン基板に求められる抵抗率の数値範囲である0.4Ω・cmから4.5Ω・cmと、シリコンにおける抵抗率とp型のドーパントの密度との一般的な関係と、に基づいて設定される。
 また、n型のシリコンブロック3では、シリコンに対する15族元素であるドナー(n型のドーパント)の偏析係数は、シリコンに対する13族元素であるアクセプタ(p型のドーパント)の偏析係数よりも大きい。n型のシリコンブロック3では、例えば、15族元素であるドナー(n型のドーパント)は、リン(P)、ヒ素(As)およびアンチモン(Sb)のうちの1つ以上の元素を含む。また、n型のシリコンブロック3では、例えば、13族元素であるアクセプタ(p型のドーパント)は、アルミニウム(Al)、ガリウム(Ga)およびインジウム(In)のうちの1つ以上の元素を含む。
 また、n型のシリコンブロック3では、単位体積当たりの酸素(O)の原子数は、例えば、5×1015atoms/cmから2.7×1018atoms/cmの範囲に設定される。ここでは、数値範囲の下限値である5×1015atoms/cmは、例えば、二次イオン質量分析法(Secondary Ion Mass Spectrometry:SIMS)またはフーリエ変換赤外分光法(Fourier Transform Infrared Spectroscopy:FTIR)によって検出可能な単位体積当たりの酸素(O)の原子数の下限値に応じて設定される。数値範囲の上限値である2.7×1018atoms/cmは、例えば、単位体積のシリコンに対して固溶可能な酸素(O)の原子数の上限値に応じて設定される。また、n型のシリコンブロック3における単位体積当たりの酸素(O)の原子数は、例えば、1×1016atoms/cmから1×1018atoms/cmの範囲であってもよい。この数値範囲の下限値である1×1016atoms/cmは、例えば、n型のシリコン基板4における割れおよび反りの発生を低減する観点から設定される。この数値範囲の上限値である1×1018atoms/cmは、例えば、n型のシリコン基板4が適用された太陽電池素子の出力の低下を低減する観点から設定される。
 また、n型のシリコンブロック3では、単位体積当たりの炭素(C)の原子数は、例えば、5×1015atoms/cmから9×1017atoms/cmの範囲に設定される。ここでは、数値範囲の下限値である5×1015atoms/cmは、例えば、二次イオン質量分析法(SIMS)またはフーリエ変換赤外分光法(FTIR)によって検出可能な単位体積当たりの炭素(C)の原子数の下限値に応じて設定される。数値範囲の上限値である9×1018atoms/cmは、例えば、単位体積のシリコンに対して固溶可能な炭素(C)の原子数の上限値に応じて設定される。
 ここで、n型のシリコンブロック3における抵抗率(ρb)は、例えば、0.01Ω・cmから10キロオームセンチメートル(kΩ・cm)の範囲に設定される。ここでは、数値範囲の下限値である0.01Ω・cmは、例えば、4探針法または渦電流法によって検出可能な抵抗率の下限値に応じて設定される。数値範囲の上限値である10kΩ・cmは、例えば、4探針法または渦電流法によって検出可能な抵抗率の上限値に応じて設定される。また、n型のシリコンブロック3における抵抗率(ρb)は、例えば、0.4Ω・cmから4.5Ω・cmの範囲であってもよい。この抵抗率(ρb)の数値範囲は、例えば、太陽電池素子の品質保持のためにシリコン基板に求められる抵抗率の数値範囲に応じて設定される。
 また、n型のシリコンブロック3は、第1領域301と、第2領域302と、を含む。第1領域301は、n型のシリコンブロック3のうちの上面としての第1面31側に位置している領域である。第2領域302は、n型のシリコンブロック3のうちの下面としての第2面32側に位置している領域である。換言すれば、第1方向としての+Z方向において、第2領域302と第1領域301とが並んでいる。図16では、第1領域301と第2領域302との境界線の一例が、細い2点鎖線で示されている。
 第1領域301では、単位体積当たりの炭素(C)の原子数は、単位体積当たりの酸素(O)の原子数よりも大きい。第2領域302では、単位体積当たりの炭素(C)の原子数は、単位体積当たりの酸素(O)の原子数以下である。第1領域301では、光照射などによる励起によって生じたキャリアが再結合するまでの時間(ライフタイム)が第2領域302よりも長い。このため、第1領域301の存在によって、n型のシリコンブロック3における品質が向上し得る。また、ここでは、第1領域301が単結晶の領域であれば、第1領域301を含むn型のシリコンブロック3における品質が向上し得る。
 ここで、例えば、n型のシリコンブロック3は、n型のシリコンブロック3のうちの第2領域302をワイヤーソー装置などで切除することで得られるシリコンブロックであってもよい。この場合には、n型のシリコンブロック3は、第1領域301に対応するシリコンブロックであってもよい。換言すれば、n型のシリコンブロック3は、第1領域301を有しており、第2領域302を有していなくてもよい。
 <1-4-2.一具体例>
 上述した製造装置1を用いたシリコンインゴット2の製造方法によって製造した一具体例に係るシリコンインゴット2から作製した一具体例に係るn型のシリコンブロック3について説明する。
 ここでは、底部141bの第2内部空間141i側の面の形状が、一辺の長さが381mmの正方形であり、第2上部開口部141oの開口の形状が、一辺の長さが390mmの正方形であり、第2内部空間141iの+Z方向における長さ(高さ)が414mmである鋳型141を用いた。離型材層5は、窒化珪素および酸化珪素を含むスラリーを鋳型141の内壁面に塗布することで形成した。
 鋳型141の底部141b上に配された主種結晶部61の上下面を、それぞれX方向に沿った一辺の長さが220mmであり且つY方向に沿った一辺の長さが300mmである長方形の面とした。鋳型141の底部141b上に配された主種結晶部61の+Z方向における厚さを20mmとした。各長尺種結晶部62の短手方向の長さ(幅)を10mmとした。主種結晶部61の-X方向の側において主種結晶部61と側壁部141sとの間隙に7本の長尺種結晶部62を配置し、主種結晶部61の+X方向の側において主種結晶部61と側壁部141sとの間隙に7本の長尺種結晶部62を配置した。主種結晶部61の-Y方向の側において主種結晶部61と側壁部141sとの間隙に3本の長尺種結晶部62を配置し、主種結晶部61の+Y方向の側において主種結晶部61と側壁部141sとの間隙に3本の長尺種結晶部62を配置した。
 複数の原料シリコン塊71に対して、n型のドーパントとしてリン(P)を添加するとともに、p型のドーパントとしてのガリウム(Ga)を添加した。より具体的には、複数の原料シリコン塊71の単位体積に対してn型のドーパントとしてのリン(P)の原子数が約7.26×1015atoms/cmとなる量のリン(P)を複数の原料シリコン塊71に添加した。換言すれば、複数の原料シリコン塊71の単位体積に対してn型のドーパントとしてのリン(P)の物質量(モル数)が約1.21×10-8mol/cmとなる量のリン(P)を複数の原料シリコン塊71に添加した。また、複数の原料シリコン塊71の単位体積に対してp型のドーパントとしてのガリウム(Ga)の原子数が約1.85×1017atoms/cmとなる量のガリウム(Ga)を複数の原料シリコン塊71に添加した。換言すれば、複数の原料シリコン塊71の単位体積に対してp型のドーパントとしてのガリウム(Ga)の物質量(モル数)が約3.07×10-7mol/cmとなる量のガリウム(Ga)を複数の原料シリコン塊71に添加した。
 シリコン融液72の一方向凝固によって、正方形の下面22の一辺の長さが381mmであり、+Z方向における長さ(高さ)が365mmである直方体状の形状を有する一具体例に係るシリコンインゴット2を製造した。
 一具体例に係るシリコンインゴット2から、ワイヤーソー装置を用いて下部領域201、外周部領域202および上部領域203を切除することで、中央領域200を一具体例に係るn型のシリコンブロック3として切り出した。これにより、一辺の長さが約160mmである正方形の上面としての第1面31と、一辺の長さが約160mmである正方形の下面としての第2面32と、+Z方向における長さ(高さ)が約306mmである長方形の4面を有する側面としての第3面33と、を有する直方体状の一具体例に係るn型のシリコンブロック3を得た。ここでは、一具体例に係るシリコンインゴット2を-Z方向に向けて平面視した場合に、中央に位置している約160mmの直方体状の中央領域200の周囲に位置している領域を外周部領域202とした。+Z方向における長さ(高さ)が45.5mmである直方体状の領域を下部領域201とした。+Z方向における長さ(高さ)が13.5mmである直方体状の領域を上部領域203とした。
 図18には、一具体例に係るシリコンインゴット2の高さ方向における位置と抵抗率(ρb)との関係についての測定結果が示されている。図19には、一具体例に係るシリコンインゴット2の高さ方向における位置と、単位体積当たりのリン(P)およびガリウム(Ga)のそれぞれの原子数との関係についての測定結果が示されている。図18および図19では、一具体例に係るシリコンインゴット2の高さ方向における位置は、一具体例に係るシリコンインゴット2の下面22の高さを第1の基準の高さである0とし、一具体例に係るシリコンインゴット2の上面21の高さを第2の基準の高さである100とした場合における、+Z方向における下面22からの距離(高さ)である。
 図18で示されている抵抗率(ρb)の測定は、一具体例に係るシリコンインゴット2の下部領域201または中央領域200に対応する一具体例に係るn型のシリコンブロック3をXY平面(水平面)に沿ってワイヤーソー装置で薄切りにして得た薄板を対象として表面と裏面との間における電気抵抗を測定することで行った。図18では、一具体例に係るシリコンインゴット2の高さ方向における位置が10、30、50および70のそれぞれの位置についての抵抗率(ρb)が黒丸のプロットで示されている。
 図19で示されている単位体積当たりのリン(P)およびガリウム(Ga)のそれぞれの原子数は、二次イオン質量分析法(SIMS)によって測定した。二次イオン質量分析法(SIMS)による測定は、一具体例に係るシリコンインゴット2の下部領域201または中央領域200に対応する一具体例に係るn型のシリコンブロック3をXY平面(水平面)に沿ってワイヤーソー装置で薄切りにして得た薄板を対象として研磨および洗浄を施した後の試料について行った。図19では、一具体例に係るシリコンインゴット2の高さ方向における位置が10、30、50および70のそれぞれの位置について、単位体積当たりのリン(P)の原子数が黒丸のプロットで示されており、単位体積当たりのガリウム(Ga)の原子数が黒塗りの三角形のプロットで示されている。
 図18で示されるように、一具体例に係るシリコンインゴット2では、+Z方向に沿った高さ方向における広い範囲において、抵抗率(ρb)の変化が小さいことが確認された。また、図19で示されるように、一具体例に係るシリコンインゴット2では、+Z方向に沿った高さ方向における広い範囲において、単位体積当たりのn型のドーパントであるリン(P)の原子数が、単位体積当たりのp型のドーパントであるガリウム(Ga)の原子数よりも大きい、n型のシリコンが実現されていることが確認された。
 図20には、一具体例に係るn型のシリコンブロック3の高さ方向における位置とライフタイムとの関係についての測定結果が示されている。図21には、一具体例に係るn型のシリコンブロック3の高さ方向における位置と、単位体積当たりの炭素(C)および酸素(O)のそれぞれの原子数との関係についての測定結果が示されている。図22には、一具体例に係るn型のシリコンブロック3の高さ方向における位置と、所定のダッシュエッチングによる異方性エッチングで生じたエッチピットの密度(Etch Pit Density:EPD)との関係についての測定結果が示されている。図23には、一具体例に係るn型のシリコンブロック3の高さ方向における位置と、転位クラスターの占有比率との関係についての測定結果が示されている。図20から図23では、n型のシリコンブロック3の高さ方向における位置は、下面としての第2面32の高さを第1の基準の高さである0とし、上面としての第1面31の高さを第2の基準の高さである100とした場合における、+Z方向における第2面32からの距離(高さ)である。
 図20で示されているライフタイムは、光照射などによる励起によって生じたキャリアが再結合するまでの時間である。このライフタイムは、擬定常状態光伝導度測定装置(Quasi Steady State Photo Conductance:QSSPC)法によって測定した。擬定常状態光伝導度測定装置(QSSPC)法によるライフタイムの測定は、一具体例に係るn型のシリコンブロック3をXY平面(水平面)に沿ってワイヤーソー装置で薄切りにして得た薄板を対象として所定の前処理を施した後の試料について行った。所定の前処理としては、水酸化カリウム(KOH)を用いたエッチングによる表面層の除去、ゲッタリング処理およびパッシベーション処理をこの記載の順に行う処理を行った。擬定常状態光伝導度測定装置(QSSPC)法によるライフタイムの測定は、1枚の薄板状の試料の板面の全面にわたる10点以上について行った。そして、この10点以上についてのライフタイムの測定値の平均を、一具体例に係るn型のシリコンブロック3の高さ方向における1つの位置についてのライフタイムの測定結果とした。図20では、一具体例に係るn型のシリコンブロック3の高さ方向における位置が10、30、50および70のそれぞれの位置についてのライフタイムの測定結果が黒丸のプロットで示されている。
 図21で示されている単位体積当たりの炭素(C)および酸素(O)のそれぞれの原子数は、二次イオン質量分析法(SIMS)によって測定した。二次イオン質量分析法(SIMS)による測定は、一具体例に係るn型のシリコンブロック3をXY平面(水平面)に沿ってワイヤーソー装置で薄切りにして得た薄板を対象として研磨および洗浄を施した後の試料について行った。図21では、一具体例に係るn型のシリコンブロック3の高さ方向における位置が10、30、50および70のそれぞれの位置について、単位体積当たりの炭素(C)の原子数が黒丸のプロットで示されており、単位体積当たりの酸素(O)の原子数が黒塗りの三角形のプロットで示されている。
 図22で示されているエッチピットの密度(EPD)は、一具体例に係るn型のシリコンブロック3をXY平面(水平面)に沿ってワイヤーソー装置で薄切りにして得た薄板の試料について、ダッシュエッチングによる異方性エッチングを行うことで生じたエッチピットの数を計測することで測定した。ダッシュエッチングでは、酢酸とフッ酸と硝酸との混合で得た薬液を用いた。エッチピットは、試料の板面において欠陥が存在している箇所に生じたものと考えられた。エッチピットの密度(EPD)の測定は、1枚の薄板状の試料の板面の1つの対角線に沿った等間隔の13箇所の視野についてエッチピットの数を計測することで行った。そして、この13箇所の視野に存在していたエッチピットの総数を、13箇所の視野の面積の合計値で除することで得た数値を、一具体例に係るn型のシリコンブロック3の高さ方向における1つの位置についてのエッチピットの密度(EPD)とした。図22では、一具体例に係るn型のシリコンブロック3の高さ方向における位置が10、30、50、70および90のそれぞれの位置についてのエッチピットの密度(EPD)が黒塗りの四角形のプロットで示されている。
 図23で示されている転位クラスターの占有率は、一具体例に係るn型のシリコンブロック3をXY平面(水平面)に沿ってワイヤーソー装置で薄切りにして得た薄板の試料について、ダッシュエッチングによって白く濁った形で顕在化した転位クラスターの領域が1枚の試料の板面を占めている面積の比率(占有率ともいう)である。図23では、一具体例に係るn型のシリコンブロック3の高さ方向における位置が10、30、50、70および90のそれぞれの位置についての転位クラスターの占有率が黒塗りの四角形のプロットで示されている。
 図20で示されるように、一具体例に係るn型のシリコンブロック3について、高さ方向における位置が10および30である部分と比較して、高さ方向における位置が50および70である部分におけるライフタイムが大幅に長くなっている測定結果が得られた。換言すれば、一具体例に係るn型のシリコンブロック3について、高さ方向における位置が50以上の部分であれば、高さ方向における位置が50未満の部分と比較して、ライフタイムが大幅に長くなっている測定結果が得られた。
 図21で示されるように、一具体例に係るn型のシリコンブロック3では、高さ方向において、下面である第2面32から上面である第1面31に向けて進むにつれて、単位体積当たりの炭素(C)の原子数が増加しており、単位体積当たりの酸素(O)の原子数が減少している傾向を示した。より具体的には、一具体例に係るn型のシリコンブロック3のうちの高さ方向における位置が10および30である部分について、単位体積当たりの酸素(O)の原子数が単位体積当たりの炭素(C)の原子数よりも大きい測定結果が得られた。これに対して、一具体例に係るn型のシリコンブロック3のうちの高さ方向における位置が50および70である部分について、単位体積当たりの炭素(C)の原子数が単位体積当たりの酸素(O)の原子数よりも大きくなっている測定結果が得られた。換言すれば、一具体例に係るn型のシリコンブロック3では、高さ方向における位置が50以上の部分であれば、単位体積当たりの炭素(C)の原子数が単位体積当たりの酸素(O)の原子数よりも大きくなっている測定結果が得られた。ここで、一具体例に係るn型のシリコンブロック3のうち、単位体積当たりの炭素(C)の原子数が単位体積当たりの酸素(O)の原子数よりも大きい領域が、上述した第1領域301に相当する。また、一具体例に係るn型のシリコンブロック3のうち、単位体積当たりの炭素(C)の原子数が単位体積当たりの酸素(O)の原子数以下の領域が、上述した第2領域302に相当する。
 図22および図23で示されるように、一具体例に係るn型のシリコンブロック3のうちの高さ方向における位置が第2面32から離れるにつれて、エッチピットの密度(EPD)および転位クラスターの占有率がそれぞれ緩やかに上昇している程度の測定結果が得られた。
 このため、一具体例に係るn型のシリコンブロック3については、単位体積当たりの炭素(C)の原子数が単位体積当たりの酸素(O)の原子数よりも大きければ、ライフタイムが大幅に長くなることが確認された。換言すれば、一具体例に係るn型のシリコンブロック3については、上述した第1領域301に相当する領域において、上述した第2領域302に相当する領域よりも、ライフタイムが大幅に長くなることが確認された。
 ここで、シリコンにおいて、p型のドーパントである13族元素がイオンとなるために必要なエネルギー(イオン化エネルギーともいう)は、13族元素が単体で存在している場合よりも、炭素(C)とともに存在している場合の方が低下する旨の報告が記載されている論文が存在する(例えば、K. Inoue, T. Taishi, Y. Tokumoto, K. Kutsukake, Y. Ohno, T. Ohsawa, R. Gotoh, I. Yonenaga著、「Czochralski growth of heavily indium-doped Si crystals and co-doping effects of group-IV elements」、Journal of Crystal Growth 393(2014) 45-48の記載を参照)。このため、n型のシリコンブロック3については、単位体積当たりの炭素(C)の原子数の増大に伴って、p型のドーパントである13族元素のイオン化が促進されたものと考えられた。これにより、例えば、シリコンブロック3における単位体積当たりのp型ドーパントの原子数を過剰に増加させることなく、n型のドーパントの一部の過剰な電荷を、p型のドーパントの電荷によって打ち消すことができたものと考えられた。また、イオン化していない13族元素が酸化物などの各種の欠陥を引き起こす不具合の発生も低減されたものと考えられた。その結果、一具体例に係るn型のシリコンブロック3におけるライフタイムが、単位体積当たりの炭素(C)の原子数の増大に伴って著しく長くなったものと考えられた。
 また、n型のシリコンブロック3については、単位体積当たりの酸素(O)の原子数の減少に伴って、酸化誘起積層欠陥(OSF)リングなどの欠陥の発生が低減されたものと考えられた。この観点からも、一具体例に係るn型のシリコンブロック3におけるライフタイムが、単位体積当たりの酸素(O)の原子数の減少に伴って長くなったものと考えられた。
 <1-5.n型のシリコン基板>
 第1実施形態に係るn型のシリコン基板4の構成について、図24および図25を参照しつつ説明する。図24および図25の例では、n型のシリコン基板4は、矩形状の表裏面を持つ板状の形状を有する。n型のシリコン基板4は、例えば、n型のシリコンブロック3の第1領域301をXY平面に沿って薄切りにすることで製造され得る。例えば、n型のシリコンブロック3の第1領域301を、第1方向としての+Z方向において所定の間隔で、第1面31および第2面32のそれぞれに平行なXY平面に沿って薄切りにすることで製造され得る。ここでは、例えば、ワイヤーソー装置などを用いて、n型のシリコンブロック3の第1領域301を薄切りにすることで、厚さが100マイクロメートル(μm)から500μm程度であり且つ一辺が140mmから160mm程度の正方形状の板面を有するn型のシリコン基板4が作製され得る。n型のシリコン基板4の表層のうちのn型のシリコンブロック3の切断時に生じたダメージ層は、例えば、水酸化ナトリウム溶液などを用いたエッチングによって除去され得る。
 図24および図25で示されるように、n型のシリコン基板4は、例えば、第4面41と、第5面42と、第6面43と、を有する。n型のシリコン基板4は、平板状の基板である。図24および図25の例では、第4面41は、第1方向としての+Z方向を向いた長方形状または正方形状の面(上面ともいう)である。第5面42は、第1方向としての+Z方向において第4面41の逆側に位置している。図24および図25の例では、第5面42は、第1方向とは逆の第4方向としての-Z方向を向いた長方形状または正方形状の面(下面ともいう)である。第6面43は、第4面41と第5面42とを接続している状態で位置している。図24および図25の例では、第6面43は、第4面41および第5面42のそれぞれの4辺に沿った外周面である。第4面41および第5面42のそれぞれは、角部において隅切りが行われた形状を有していてもよい。
 n型のシリコン基板4は、15族元素であるドナー(n型のドーパント)と、13族元素であるアクセプタ(p型のドーパント)と、炭素(C)と、酸素(O)と、を含有している。
 n型のシリコン基板4では、単位体積当たりの15族元素であるドナー(n型のドーパント)の原子数は、単位体積当たりの13族元素であるアクセプタ(p型のドーパント)の原子数よりも大きい。
 ここで、n型のシリコン基板4における単位体積当たりの15族元素であるドナー(n型のドーパント)の原子数は、例えば、n型のシリコンブロック3と同じく、7.1×1014atoms/cmから7×1019atoms/cmの範囲に設定される。また、n型のシリコン基板4における単位体積当たりの15族元素であるドナー(n型のドーパント)の原子数は、例えば、n型のシリコンブロック3と同じく、1.1×1015atoms/cmから1.6×1016atoms/cmの範囲であってもよい。ここで、n型のシリコン基板4における単位体積当たりの13族元素であるアクセプタ(p型のドーパント)の原子数は、例えば、n型のシリコンブロック3と同じく、1.2×1015atoms/cmから4×1017atoms/cmの範囲に設定される。また、n型のシリコン基板4における単位体積当たりの13族元素であるアクセプタ(p型のドーパント)の原子数は、例えば、n型のシリコンブロック3と同じく、3×1015atoms/cmから5.5×1016atoms/cmの範囲であってもよい。
 また、n型のシリコン基板4では、シリコンに対する15族元素であるドナー(n型のドーパント)の偏析係数は、シリコンに対する13族元素であるアクセプタ(p型のドーパント)の偏析係数よりも大きい。n型のシリコン基板4では、例えば、15族元素であるドナー(n型のドーパント)は、リン(P)、ヒ素(As)およびアンチモン(Sb)のうちの1つ以上の元素を含む。また、n型のシリコン基板4では、例えば、13族元素であるアクセプタ(p型のドーパント)は、アルミニウム(Al)、ガリウム(Ga)およびインジウム(In)のうちの1つ以上の元素を含む。
 また、n型のシリコン基板4では、単位体積当たりの炭素(C)の原子数は、単位体積あたりの酸素(O)の原子数よりも大きい。n型のシリコン基板4では、光照射などによる励起によって生じたキャリアが再結合するまでの時間(ライフタイム)が、n型のシリコンブロック3の第2領域302から切り出されるn型のシリコン基板よりも長い。このため、n型のシリコン基板4における品質が向上していると言える。また、ここで、n型のシリコンブロック3の第1領域301が単結晶の領域であれば、n型のシリコン基板4が単結晶の領域で構成される。そして、n型のシリコン基板4が単結晶の領域で構成されていれば、n型のシリコン基板4における品質が向上し得る。
 ここで、n型のシリコン基板4における単位体積当たりの酸素(O)の原子数は、例えば、n型のシリコンブロック3と同じく、5×1015atoms/cmから2.7×1018atoms/cmの範囲に設定される。また、n型のシリコン基板4における単位体積当たりの酸素(O)の原子数は、例えば、n型のシリコンブロック3と同じく、1×1016atoms/cmから1×1018atoms/cmの範囲であってもよい。ここで、n型のシリコン基板4における単位体積当たりの炭素(C)の原子数は、例えば、n型のシリコンブロック3と同じく、5×1015atoms/cmから9×1017atoms/cmの範囲に設定される。
 ここで、n型のシリコン基板4における抵抗率(ρb)は、例えば、n型のシリコンブロック3と同じく、0.01Ω・cmから10kΩ・cmの範囲に設定される。また、n型のシリコン基板4における抵抗率(ρb)は、例えば、n型のシリコンブロック3と同じく、0.4Ω・cmから4.5Ω・cmの範囲であってもよい。
 第1実施形態に係るn型のシリコン基板4は、例えば、太陽電池としての太陽電池素子を構成している半導体基板に適用され得る。これにより、例えば、太陽電池素子の出力特性などの品質が向上し得る。
 <1-6.第1実施形態のまとめ>
 第1実施形態に係るn型のシリコンブロック3は、例えば、15族元素であるドナー(n型のドーパント)と、13族元素であるアクセプタ(p型のドーパント)と、炭素(C)と、酸素(O)と、を含有している。このn型のシリコンブロック3では、単位体積当たりのドナー(n型のドーパント)の原子数は、単位体積当たりのアクセプタ(p型のドーパント)の原子数よりも大きく、シリコンに対するドナー(n型のドーパント)の偏析係数は、シリコンに対するアクセプタ(p型のドーパント)の偏析係数よりも大きい。そして、n型のシリコンブロック3は、単位体積当たりの炭素(C)の原子数が、単位体積当たりの酸素(O)の原子数よりも大きい第1領域301を含む。これにより、第1領域301では、シリコンブロック3における単位体積当たりの炭素(C)の原子数が単位体積当たりの酸素(O)の原子数以下の第2領域302よりも、光照射などによる励起によって生じたキャリアが再結合するまでの時間(ライフタイム)が長い。したがって、第1領域301の存在によって、n型のシリコンブロック3における品質が向上し得る。
 また、第1実施形態に係るn型のシリコン基板4は、例えば、15族元素であるドナー(n型のドーパント)と、13族元素であるアクセプタ(p型のドーパント)と、炭素(C)と、酸素(O)と、を含有している。このn型のシリコン基板4では、単位体積当たりのドナー(n型のドーパント)の原子数は、単位体積当たりのアクセプタ(p型のドーパント)の原子数よりも大きく、シリコンに対するドナー(n型のドーパント)の偏析係数は、シリコンに対するアクセプタ(p型のドーパント)の偏析係数よりも大きい。そして、n型のシリコン基板4では、単位体積当たりの炭素(C)の原子数が、単位体積当たりの酸素(O)の原子数よりも大きい。これにより、n型のシリコン基板4では、光照射などによる励起によって生じたキャリアが再結合するまでの時間(ライフタイム)が長くなり得る。したがって、n型のシリコン基板4における品質が向上し得る。
 <2.他の実施形態>
 本開示は上述の第1実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更および改良などが可能である。
 <2-1.第2実施形態>
 上記第1実施形態において、例えば、図26で示されるように、主種結晶部61が、鋳型141の底部141b上のより広い範囲を占めていてもよい。例えば、鋳型141の底部141b上に配された主種結晶部61の上下面が、それぞれX方向に沿った一辺の長さが320mm以上であり且つY方向に沿った一辺の長さが320mm以上である矩形状の面であってもよい。図26の例では、第1の所定の本数、第2の所定の本数、第3の所定の本数および第4の所定の本数のそれぞれが2本である。
 ここでは、図14および図15で示された第1実施形態に係るシリコンインゴット2を基礎として、図27および図28で示されるように中央領域200が拡大された第2実施形態に係るシリコンインゴット2Aが得られる。これにより、図16および図17で示された第1実施形態に係るn型のシリコンブロック3を基礎として、図29および図30で示されるように全体が拡大された第2実施形態に係るn型のシリコンブロック3Aが得られる。ここで、n型のシリコンブロック3Aを、ワイヤーソー装置などで第2方向としての+X方向においてm1個(m1は2以上の自然数)に分割し、第3方向としての+Y方向においてm2個(m2は2以上の自然数)に分割することで、m1とm2とを乗じた個数のn型のシリコンブロックを得てもよい。例えば、図29および図30で示される細い破線に沿ってn型のシリコンブロック3Aを、+X方向において2等分し且つ+Y方向において2等分することで、4個のn型のシリコンブロックを得てもよい。この場合には、n型のシリコンブロック3Aを分割することで得た複数のn型のシリコンブロックのそれぞれを、図16および図17で示したn型のシリコンブロック3としてもよい。
 <2-2.第3実施形態>
 上記第2実施形態において、例えば、図31で示されるように、鋳型141の底部141b上に配置された主種結晶部61を、複数の種結晶部で構成された主種結晶部群61Bに変更してもよい。これにより、図27および図28で示された第2実施形態に係るシリコンインゴット2Aの代わりに、図32および図33で示されるような第3実施形態に係るシリコンインゴット2Bが得られる。この場合には、鋳型141の底部141bの上面、ならびにシリコンインゴット2Bの底面および上面の大型化を図ることが可能となる。
 ここで、モノライクキャスト法では、シリコンインゴット2Bを製造する際に、鋳型141内の側壁部141sを起点とした歪みおよび欠陥が生じやすく、シリコンインゴット2Bの外周部領域202に欠陥が多く存在している状態になりやすい。このため、シリコンインゴット2Bのうちの外周部領域202などを切り落とすことで、欠陥の少ない高品質の第3実施形態に係るn型のシリコンブロック3Bを作製することができる。また、このn型のシリコンブロック3Bを薄切りにすることで、欠陥の少ない高品質の第3実施形態に係るn型のシリコン基板4Bを得ることできる。ここでは、シリコンインゴット2Bにおける底面および上面の面積の大型化を図ることで、シリコンインゴット2Bにおいて切り落とされる外周部領域202が占める割合を減じることができる。その結果、例えば、n型のシリコンブロック3Bおよびn型のシリコン基板4Bの生産性が向上し得る。
 図31の例では、主種結晶部群61Bは、第1主種結晶部61aと、中間種結晶部61m、第2主種結晶部61bと、を含む。この場合には、例えば、鋳型141の底部141b上に、第1主種結晶部61aと、中間種結晶部61mと、第2主種結晶部61bと、が第2方向としての+X方向においてこの記載の順に隣接する形で配置される。換言すれば、例えば、第1主種結晶部61aと第2主種結晶部61bとの間に、中間種結晶部61mが配置される。そして、第2方向としての+X方向において、第1主種結晶部61aの幅および第2主種結晶部61bの幅よりも、中間種結晶部61mの幅の方が小さい。換言すれば、第2方向としての+X方向において、第1主種結晶部61aの幅および第2主種結晶部61bの幅のそれぞれは、中間種結晶部61mの幅よりも大きい。
 第1主種結晶部61a、中間種結晶部61mおよび第2主種結晶部61bのそれぞれには、単結晶シリコンが適用される。第1主種結晶部61a、中間種結晶部61mおよび第2主種結晶部61bのそれぞれは、例えば、-Z方向に向いて平面視した場合に、X方向にそれぞれ沿った一対の辺とY方向にそれぞれ沿った一対の辺とを持つ矩形状の形状を有する。換言すれば、第1主種結晶部61a、中間種結晶部61mおよび第2主種結晶部61bのそれぞれの表裏面の形状は、矩形状である。第1主種結晶部61a、中間種結晶部61mおよび第2主種結晶部61bのそれぞれの表裏面の形状は、矩形状に限られない。
 第1主種結晶部61aおよび第2主種結晶部61bのそれぞれには、例えば、板状またはブロック状の単結晶シリコンが適用される。中間種結晶部61mには、例えば、1つ以上の棒状の単結晶シリコンが適用される。換言すれば、例えば、第1主種結晶部61a、中間種結晶部61mおよび第2主種結晶部61bのそれぞれには、同じ材料の単結晶シリコンが適用される。中間種結晶部61mは、1つの単結晶シリコンで構成されていてもよいし、+Y方向に並んだ2つ以上の単結晶シリコンで構成されていてもよいし、+X方向に並んだ2つ以上の単結晶シリコンで構成されていてもよい。ここで、2つ以上の単結晶シリコンの間隔は、例えば、0mmから3mm程度であってもよいし、0mmから1mm程度であってもよい。
 ここで、第1主種結晶部61aと中間種結晶部61mとの間について、+Z方向に沿った仮想軸を中心とした単結晶シリコンの回転方向の角度関係を第6回転角度関係とする。中間種結晶部61mと第2主種結晶部61bとの間について、+Z方向に沿った仮想軸を中心とした単結晶シリコンの回転方向の角度関係を第7回転角度関係とする。
 この場合には、上記のステップSp22において、例えば、第6回転角度関係および第7回転角度関係のそれぞれが、対応粒界に対応する単結晶シリコンの回転方向の角度関係となる形態で、主種結晶部群61Bを配置する。ここでは、例えば、第1主種結晶部61aと中間種結晶部61mとの間における第6回転角度関係を、Σ値が29の対応粒界に対応する45度に設定することができる。この場合には、例えば、第1主種結晶部61aの+X方向に沿った結晶方位がミラー指数における<100>であり、中間種結晶部61mの+X方向に沿った結晶方位がミラー指数における<110>である態様が採用され得る。また、例えば、中間種結晶部61mと第2主種結晶部61bとの間における第7回転角度関係を、Σ値が29の対応粒界に対応する45度に設定することができる。この場合には、例えば、中間種結晶部61mの+X方向に沿った結晶方位がミラー指数における<110>であり、第2主種結晶部61bの+X方向に沿った結晶方位がミラー指数における<100>である態様が採用され得る。
 また、この場合には、上記のステップSp5の第5工程では、第1主種結晶部61a、中間種結晶部61mおよび第2主種結晶部61bのそれぞれを起点として擬似的な単結晶(擬似単結晶)が成長する。これにより、例えば、第1主種結晶部61aと中間種結晶部61mとの間の第6回転角度関係を引き継いで、第1主種結晶部61aを起点として成長した擬似的な単結晶(擬似単結晶)と、中間種結晶部61mを起点として成長した擬似的な単結晶(擬似単結晶)と、の境界に対応粒界を含む粒界(機能性粒界)が形成され得る。換言すれば、第1主種結晶部61aと中間種結晶部61mとの境界の上方に対応粒界が形成され得る。また、例えば、中間種結晶部61mと第2主種結晶部61bとの間の第7回転角度関係を引き継いで、中間種結晶部61mを起点として成長した擬似的な単結晶(擬似単結晶)と、第2主種結晶部61bを起点として成長した擬似的な単結晶(擬似単結晶)と、の境界に対応粒界を含む粒界(機能性粒界)が形成され得る。換言すれば、中間種結晶部61mと第2主種結晶部61bとの境界の上方に対応粒界が形成され得る。
 これにより、例えば、シリコン融液72の一方向凝固が進行する際に、対応粒界が随時形成される際に歪みが低減され得る。そして、例えば、シリコン融液72の一方向凝固が進行する際に、第1主種結晶部61aと第2主種結晶部61bとの間で転位が生じたとしても、2つの機能性粒界で転位が消滅し得るとともに、2つの機能性粒界に挟まれた擬似的な単結晶(擬似単結晶)の領域に転位が閉じ込められ得る。そして、+X方向において第1主種結晶部61aの幅および第2主種結晶部61bの幅のそれぞれよりも中間種結晶部61mの幅の方が小さいため、シリコンインゴット2Bにおける欠陥が減少し得る。これにより、シリコンインゴット2Bから作製される第3実施形態に係るn型のシリコンブロック3Bおよび第3実施形態に係るn型のシリコン基板4Bのそれぞれにおける欠陥が減少し得る。換言すれば、n型のシリコンブロック3Bおよびn型のシリコン基板4Bのそれぞれの品質が向上し得る。
 <<シリコンインゴット>>
 例えば、図32および図33で示されるように、第3実施形態に係るシリコンインゴット2Bは、上記第2実施形態に係るシリコンインゴット2Aを基礎とした構成を有する。このシリコンインゴット2Bは、中央領域200の代わりに、第1中央領域200aと、第2中央領域200bと、中間領域200mと、を含む中央領域群200Bを有する。図32および図33では、中央領域群200Bの外縁の一例が細い2点鎖線で描かれている。さらに、図32では、下部領域201と外周部領域202との境界、および上部領域と外周部領域202との境界のそれぞれの一例が、細い2点鎖線で描かれている。第1中央領域200aは、第1主種結晶部61aを起点としたシリコン融液72の一方向凝固によって、第1主種結晶部61aの結晶構造および結晶方位を引き継ぐ形で形成された擬似的な単結晶(擬似単結晶)の領域である。第2中央領域200bは、第2主種結晶部61bを起点としたシリコン融液72の一方向凝固によって、第2主種結晶部61bの結晶構造および結晶方位を引き継ぐ形で形成された擬似的な単結晶(擬似単結晶)の領域である。中間領域200mは、中間種結晶部61mを起点としたシリコン融液72の一方向凝固によって、中間種結晶部61mの結晶構造および結晶方位を引き継ぐ形で形成された擬似的な単結晶(擬似単結晶)の領域である。
 また、シリコンインゴット2は、第1中央領域200aと中間領域200mとの境界(第1境界ともいう)B1、および中間領域200mと第2中央領域200bとの境界(第2境界ともいう)B2を有する。図32および図33では、第1境界B1および第2境界B2のそれぞれが、細い2点鎖線で描かれている。第1境界B1および第2境界B2のそれぞれは、対応粒界を有する。ここで、第1中央領域200a、第2中央領域200bおよび中間領域200mのそれぞれにおける第1方向としての+Z方向に垂直な面の面方位が、ミラー指数における(100)である場合を想定する。別の観点から言えば、第1中央領域200a、第2中央領域200bおよび中間領域200mのそれぞれに含まれる1つ以上の擬似的な単結晶(擬似単結晶)における第1方向としての+Z方向に沿った結晶方位が、ミラー指数における<100>である場合を想定する。この場合には、対応粒界は、例えば、Σ値が5の対応粒界、Σ値が13の対応粒界、Σ値が17の対応粒界、Σ値が25の対応粒界およびΣ値が29の対応粒界の何れか1つを含む。
 <<n型のシリコンブロック>>
 第3実施形態に係るn型のシリコンブロック3Bの構成の一例について、図34および図35を参照しつつ説明する。第3実施形態に係るn型のシリコンブロック3Bは、シリコンインゴット2Bのうちの上述した中央領域群200Bに対応する。例えば、図34および図35で示されるように、n型のシリコンブロック3Bは、上記第1実施形態および第2実施形態に係るn型のシリコンブロック3,3Aと同じく、第1面31と、第2面32と、第3面33と、を有する。また、n型のシリコンブロック3Bは、上記第1実施形態および第2実施形態に係るn型のシリコンブロック3,3Aと同じく、第1領域301と、第2領域302と、を含む。図34でも、第1領域301と第2領域302との境界線の一例が、細い2点鎖線で示されている。
 第1領域301は、第1擬似単結晶領域301aと、第1中間領域301mと、第2擬似単結晶領域301bと、を含む。第1擬似単結晶領域301aと、第1中間領域301mと、第2擬似単結晶領域301bと、は第1方向に垂直な第2方向としての+X方向において、この記載の順に隣接している状態で位置している。図34および図35の例では、第1領域301は、第1擬似単結晶領域301aと、第1中間領域301mと、第2擬似単結晶領域301bと、によって構成されている。
 第1擬似単結晶領域301aおよび第2擬似単結晶領域301bは、それぞれ擬似的な単結晶(擬似単結晶)で構成されている領域である。第1擬似単結晶領域301aは、シリコンインゴット2Bの第1中央領域200aの一部に対応する領域である。第2擬似単結晶領域301bは、シリコンインゴット2Bの第2中央領域200bの一部に対応する領域である。図34および図35の例では、第1擬似単結晶領域301aおよび第2擬似単結晶領域301bは、それぞれ第1方向としての+Z方向に向いた矩形状の上面と、第4方向としての-Z方向に向いた矩形状の下面と、を有する、直方体状の領域である。
 第1中間領域301mは、1つ以上の擬似的な単結晶(擬似単結晶)を含む領域(単に中間領域ともいう)である。第1中間領域301mは、シリコンインゴット2Bの中間領域200mの一部に対応する領域である。図34および図35の例では、第1中間領域301mは、第1方向としての+Z方向に向いた細長い矩形状の上面と、第4方向としての-Z方向に向いた細長い矩形状の下面と、を有する板状の領域である。このため、例えば、第1擬似単結晶領域301aと第1中間領域301mとの境界(第3境界ともいう)B3および第2擬似単結晶領域301bと第1中間領域301mとの境界(第4境界ともいう)B4のそれぞれの形状は、矩形状である。図34および図35では、第3境界B3および第4境界B4のそれぞれが、細い2点鎖線で描かれている。
 第1領域301では、第2方向としての+X方向において、第1擬似単結晶領域301aの幅(第1の幅ともいう)W1および第2擬似単結晶領域301bの幅(第2の幅ともいう)W2のそれぞれは、第1中間領域301mの幅(第3の幅ともいう)W3よりも大きい。ここで、例えば、n型のシリコンブロック3Bにおける第1面31および第2面32のそれぞれが、一辺の長さが300mmから320mm程度である矩形状または正方形状である場合を想定する。この場合には、例えば、第1の幅W1および第2の幅W2は、それぞれ50mmから250mm程度である。例えば、第3の幅W3は、2mmから25mm程度である。
 また、第1領域301では、第3境界B3および第4境界B4のそれぞれが対応粒界を有する。ここで、例えば、第1擬似単結晶領域301a、第2擬似単結晶領域301bおよび第1中間領域301mのそれぞれにおける第1方向としての+Z方向に垂直な面の面方位が、ミラー指数における(100)である場合を想定する。別の観点から言えば、例えば、第1擬似単結晶領域301aおよび第2擬似単結晶領域301bのそれぞれにおける第1方向としての+Z方向に沿った結晶方位、ならびに第1中間領域301mに含まれる1つ以上の擬似的な単結晶(擬似単結晶)における第1方向としての+Z方向に沿った結晶方位が、それぞれミラー指数における<100>である場合を想定する。この場合には、対応粒界は、例えば、Σ値が5の対応粒界、Σ値が13の対応粒界、Σ値が17の対応粒界、Σ値が25の対応粒界およびΣ値が29の対応粒界の何れか1つを含む。この構成を有するn型のシリコンブロック3Bは、例えば、種結晶部群6を起点としたシリコン融液72の一方向凝固によって擬似的な単結晶(擬似単結晶)を成長させて、第1主種結晶部61aと中間種結晶部61mとの境界、および第2主種結晶部61bと中間種結晶部61mとの境界のそれぞれの上方に対応粒界を形成させることで実現され得る。そして、この対応粒界が形成される際には、歪みの低減によってシリコンインゴット2Bにおける欠陥が低減され得る。このため、このシリコンインゴット2Bの外周部領域202などの切除によって得られるn型のシリコンブロック3Bにおける欠陥も低減され得る。ここでは、例えば、欠陥が低減され得るシリコンインゴット2Bの製造に適したn型のシリコンブロック3Bの上記構成を採用すれば、欠陥の低減によってn型のシリコンブロック3Bの品質が向上し得る。ここで、第3境界B3および第4境界B4のそれぞれにおける各種の対応粒界の存在および各種の対応粒界の存在比率は、例えば、EBSD法などを用いて確認され得る。
 また、n型のシリコンブロック3Bを、ワイヤーソー装置などで第2方向としての+X方向においてm1個(m1は2以上の自然数)に分割し、第3方向としての+Y方向においてm2個(m2は2以上の自然数)に分割することで、m1とm2とを乗じた個数のn型のシリコンブロックを得てもよい。ここで、例えば、図34および図35で示される細い破線に沿ってn型のシリコンブロック3Bを、+X方向において2等分し且つ+Y方向において2等分することで、4個のn型のシリコンブロックを得てもよい。この場合には、n型のシリコンブロック3Bを分割することで得た複数のn型のシリコンブロックのそれぞれを、n型のシリコンブロック3Bとしてもよい。
 ところで、上述したn型のシリコンブロック3Bの一例では、第1領域301は、第2方向としての+X方向に並んでいる2つの擬似単結晶領域と、これらの2つの擬似単結晶領域の間に位置している中間領域と、を含んでいた。しかしながら、これに限られない。第1領域301は、例えば、第2方向としての+X方向において並んでいる、3つ以上の擬似単結晶領域と、これらの3つ以上の擬似単結晶領域の間のそれぞれに位置している中間領域と、を含んでいてもよい。この構成は、例えば、主種結晶部群61Bが、第2方向としての+X方向において並んでいる、3つ以上の主種結晶部と、これらの3つ以上の主種結晶部の間のそれぞれに位置している中間種結晶部と、を含むことで実現され得る。第1領域301は、例えば、第3方向としての+Y方向において並んでいる、2つ以上の擬似単結晶領域と、これらの2つ以上の擬似単結晶領域の間のそれぞれに位置している中間領域と、を含んでいてもよい。この構成は、例えば、主種結晶部群61Bが、第3方向としての+Y方向において並んでいる、2つ以上の主種結晶部と、これらの2つ以上の主種結晶部の間のそれぞれに位置している中間種結晶部と、を含むことで実現され得る。
 <<n型のシリコン基板>>
 第3実施形態に係るn型のシリコン基板4Bの構成の一例について、図36を参照しつつ説明する。n型のシリコン基板4Bは、例えば、n型のシリコンブロック3Bの第1領域301を対象として、+X方向において2等分し且つ+Y方向において2等分した上で、さらにXY平面に沿って薄切りにすることで製造され得る。
 例えば、図36で示されるように、n型のシリコン基板4Bは、上記第1実施形態に係るn型のシリコン基板4と同じく、第4面41と、第5面42と、第6面43と、を有する。
 n型のシリコン基板4Bは、第3擬似単結晶領域4aと、第2中間領域4mと、第4擬似単結晶領域4bと、を含む。第3擬似単結晶領域4aと、第2中間領域4mと、第4擬似単結晶領域4bと、は第1方向に垂直な第2方向としての+X方向において、この記載の順に隣接している状態で位置している。図36の例では、n型のシリコン基板4Bは、第3擬似単結晶領域4aと、第2中間領域4mと、第4擬似単結晶領域4bと、によって構成されている。
 第3擬似単結晶領域4aおよび第4擬似単結晶領域4bは、それぞれ擬似的な単結晶(擬似単結晶)で構成されている領域である。第3擬似単結晶領域4aは、n型のシリコンブロック3Bの第1擬似単結晶領域301aの一部に対応する領域である。第4擬似単結晶領域4bは、n型のシリコンブロック3Bの第2擬似単結晶領域301bの一部に対応する領域である。図36の例では、第3擬似単結晶領域4aおよび第4擬似単結晶領域4bは、それぞれ第1方向としての+Z方向に向いた矩形状の上面と、第4方向としての-Z方向に向いた矩形状の下面と、を有する、平板状の領域である。
 第2中間領域4mは、1つ以上の擬似的な単結晶(擬似単結晶)を含む領域である。第2中間領域4mは、n型のシリコンブロック3Bの第1中間領域301mの一部に対応する領域である。図36の例では、第2中間領域4mは、第1方向としての+Z方向に向いた細長い矩形状の上面と、第4方向としての-Z方向に向いた細長い矩形状の下面と、を有する細長い板状の領域である。このため、例えば、第3擬似単結晶領域4aと第2中間領域4mとの境界(第5境界ともいう)B5および第4擬似単結晶領域4bと第2中間領域4mとの境界(第6境界ともいう)B6のそれぞれの形状は、細長い矩形状である。図36では、第5境界B5および第6境界B6のそれぞれが、細い2点鎖線で描かれている。
 n型のシリコン基板4Bでは、第2方向としての+X方向において、第3擬似単結晶領域4aの幅(第4の幅ともいう)W4および第4擬似単結晶領域4bの幅(第5の幅ともいう)W5のそれぞれは、第2中間領域4mの幅(第6の幅ともいう)W6よりも大きい。ここで、例えば、n型のシリコン基板4Bにおける第4面41および第5面42のそれぞれが、一辺の長さが150mm程度の正方形状である場合を想定する。この場合には、例えば、第4の幅W4および第5の幅W5は、それぞれ50mmから100mm程度である。例えば、第6の幅W6は、2mmから25mm程度である。
 また、n型のシリコン基板4Bでは、第5境界B5および第6境界B6のそれぞれが対応粒界を有する。ここで、例えば、第3擬似単結晶領域4a、第4擬似単結晶領域4bおよび第2中間領域4mのそれぞれにおける第1方向としての+Z方向に垂直な面の面方位が、ミラー指数における(100)である場合を想定する。別の観点から言えば、例えば、第3擬似単結晶領域4aおよび第4擬似単結晶領域4bのそれぞれにおける第1方向としての+Z方向に沿った結晶方位、ならびに第2中間領域4mに含まれる1つ以上の擬似的な単結晶(擬似単結晶)における第1方向としての+Z方向に沿った結晶方位が、それぞれミラー指数における<100>である場合を想定する。この場合には、対応粒界は、例えば、Σ値が5の対応粒界、Σ値が13の対応粒界、Σ値が17の対応粒界、Σ値が25の対応粒界およびΣ値が29の対応粒界の何れか1つを含む。この構成を有するn型のシリコン基板4Bは、例えば、種結晶部群6を起点としたシリコン融液72の一方向凝固によって擬似的な単結晶(擬似単結晶)を成長させて、第1主種結晶部61aと中間種結晶部61mとの境界、および第2主種結晶部61bと中間種結晶部61mとの境界のそれぞれの上方に対応粒界を形成させることで実現され得る。そして、この対応粒界が形成される際には、歪みの低減によってシリコンインゴット2Bにおける欠陥が低減され得る。このため、このシリコンインゴット2Bの外周部領域202などの切除によって得られたn型のシリコンブロック3Bの薄切りで得たn型のシリコン基板4Bにおける欠陥も低減され得る。ここでは、例えば、欠陥が低減され得るn型のシリコンインゴット2Bの製造に適したn型のシリコン基板4Bの上記構成を採用すれば、欠陥の低減によってn型のシリコン基板4Bの品質が向上し得る。ここで、第5境界B5および第6境界B6のそれぞれにおける各種の対応粒界の存在および各種の対応粒界の存在比率は、例えば、EBSD法などを用いて確認され得る。
 ところで、上述したn型のシリコン基板4Bの一例は、第2方向としての+X方向に並んでいる2つの擬似単結晶領域と、これらの2つの擬似単結晶領域の間に位置している中間領域と、を含んでいた。しかしながら、これに限られない。n型のシリコン基板4Bは、例えば、第2方向としての+X方向において、3つ以上の擬似単結晶領域と、これらの3つ以上の擬似単結晶領域の間のそれぞれに位置している中間領域と、を含んでいてもよい。この構成は、例えば、主種結晶部群61Bが、第2方向としての+X方向において並んでいる、3つ以上の主種結晶部と、これらの3つ以上の主種結晶部の間のそれぞれに位置している中間種結晶部と、を含むことで実現され得る。n型のシリコン基板4Bは、例えば、第3方向としての+Y方向において、2つ以上の擬似単結晶領域と、これらの2つ以上の擬似単結晶領域の間のそれぞれに位置している中間領域と、を含んでいてもよい。この構成は、例えば、主種結晶部群61Bが、第3方向としての+Y方向において並んでいる、2つ以上の主種結晶部と、これらの2つ以上の主種結晶部の間のそれぞれに位置している中間種結晶部と、を含むことで実現され得る。
 <3.その他の実施形態>
 上記各実施形態において、例えば、製造装置1は、上部ユニット13を有していなくてもよい。この場合には、例えば、ステップSp23において、鋳型141の底部141b上に配置されたシリコンの種結晶部群6の上に、複数の原料シリコン塊71を配置する。この際には、複数の原料シリコン塊71に、n型のドーパントとしての15族元素を添加するとともに、p型のドーパントとしての13族元素も添加する。また、例えば、ステップSp4において、鋳型141内の複数の原料シリコン塊71を加熱することで、複数の原料シリコン塊71を溶融させて、鋳型141の底部141b上に位置している種結晶部群6の上面がシリコン融液72で覆われた状態としてもよい。
 以上のように、n型のシリコンブロック3,3A,3Bおよびn型のシリコン基板4,4Bは詳細に説明されたが、上記した説明は、全ての局面において例示であって、この開示がそれに限定されるものではない。また、上述した各種の例は、相互に矛盾しない限り組み合わせることが可能である。そして、例示されていない無数の例が、この開示の範囲から外れることなく想定され得るものと解される。
 3,3A,3B n型のシリコンブロック
 301 第1領域
 301a 第1擬似単結晶領域
 301b 第2擬似単結晶領域
 301m 第1中間領域
 31 第1面
 32 第2面
 33 第3面
 4,4B n型のシリコン基板
 41 第4面
 42 第5面
 43 第6面
 4a 第3擬似単結晶領域
 4b 第4擬似単結晶領域
 4m 第2中間領域
 B3 第3境界
 B4 第4境界
 B5 第5境界
 B6 第6境界
 W1 第1の幅
 W2 第2の幅
 W3 第3の幅
 W4 第4の幅
 W5 第5の幅
 W6 第6の幅

Claims (8)

  1.  15族元素であるドナーと、13族元素であるアクセプタと、炭素と、酸素と、を含有しており、
     単位体積当たりの前記ドナーの原子数は、前記単位体積当たりの前記アクセプタの原子数よりも大きく、
     シリコンに対する前記ドナーの偏析係数は、シリコンに対する前記アクセプタの偏析係数よりも大きく、
     前記単位体積当たりの前記炭素の原子数が前記単位体積当たりの前記酸素の原子数よりも大きい第1領域を含む、n型のシリコンのブロック。
  2.  請求項1に記載のn型のシリコンのブロックであって、
     前記ドナーは、リン、ヒ素およびアンチモンのうちの1つ以上の元素を含み、
     前記アクセプタは、アルミニウム、ガリウムおよびインジウムのうちの1つ以上の元素を含む、n型のシリコンのブロック。
  3.  請求項1または請求項2に記載のn型のシリコンのブロックであって、
     前記第1領域は、単結晶の領域を含む、n型のシリコンのブロック。
  4.  請求項1または請求項2に記載のn型のシリコンのブロックであって、
     第1面と、該第1面の逆側に位置している第2面と、前記第1面と前記第2面とを接続している状態で第1方向に沿って位置している第3面と、を有し、
     前記第1領域は、前記第1方向に垂直な第2方向において順に隣接している状態で位置している、第1擬似単結晶領域と、1つ以上の擬似単結晶を含む第1中間領域と、第2擬似単結晶領域と、を含み、
     前記第2方向において、前記第1擬似単結晶領域の第1の幅および前記第2擬似単結晶領域の第2の幅のそれぞれは、前記第1中間領域の第3の幅よりも大きく、
     前記第1擬似単結晶領域と前記第1中間領域との境界および前記第2擬似単結晶領域と前記第1中間領域との境界のそれぞれが対応粒界を有する、n型のシリコンのブロック。
  5.  15族元素であるドナーと、13族元素であるアクセプタと、炭素と、酸素と、を含有しており、
     単位体積当たりの前記ドナーの原子数は、前記単位体積当たりの前記アクセプタの原子数よりも大きく、
     シリコンに対する前記ドナーの偏析係数は、シリコンに対する前記アクセプタの偏析係数よりも大きく、
     前記単位体積当たりの前記炭素の原子数は、前記単位体積当たりの前記酸素の原子数よりも大きい、n型のシリコンの基板。
  6.  請求項5に記載のn型のシリコンの基板であって、
     前記ドナーは、リン、ヒ素およびアンチモンのうちの1つ以上の元素を含み、
     前記アクセプタは、アルミニウム、ガリウムおよびインジウムのうちの1つ以上の元素を含む、n型のシリコンの基板。
  7.  請求項5または請求項6に記載のn型のシリコンの基板であって、
     単結晶の領域を含む、n型のシリコンの基板。
  8.  請求項5または請求項6に記載のn型のシリコンの基板であって、
     第4面と、第1方向において前記第4面の逆側に位置している第5面と、前記第4面と前記第5面とを接続している状態で位置している第6面と、を有し、
     前記第1方向に垂直な第2方向において順に隣接している状態で位置している、第3擬似単結晶領域と、1つ以上の擬似単結晶を含む第2中間領域と、第4擬似単結晶領域と、を含み、
     前記第2方向において、前記第3擬似単結晶領域の第4の幅および前記第4擬似単結晶領域の第5の幅のそれぞれは、前記第2中間領域の第6の幅よりも大きく、
     前記第3擬似単結晶領域と前記第2中間領域との境界および前記第4擬似単結晶領域と前記第2中間領域との境界のそれぞれが対応粒界を有する、n型のシリコンの基板。
PCT/JP2022/033900 2022-09-09 2022-09-09 n型のシリコンのブロック、およびn型のシリコンの基板 WO2024053092A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033900 WO2024053092A1 (ja) 2022-09-09 2022-09-09 n型のシリコンのブロック、およびn型のシリコンの基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033900 WO2024053092A1 (ja) 2022-09-09 2022-09-09 n型のシリコンのブロック、およびn型のシリコンの基板

Publications (1)

Publication Number Publication Date
WO2024053092A1 true WO2024053092A1 (ja) 2024-03-14

Family

ID=90192174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033900 WO2024053092A1 (ja) 2022-09-09 2022-09-09 n型のシリコンのブロック、およびn型のシリコンの基板

Country Status (1)

Country Link
WO (1) WO2024053092A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093099A1 (ja) * 2005-02-28 2006-09-08 Kyocera Corporation 多結晶シリコン基板、多結晶シリコンインゴット及びそれらの製造方法、光電変換素子、並びに光電変換モジュール
JP2011517106A (ja) * 2008-04-11 2011-05-26 アポロン、ソーラー ドーピング不純物を添加することにより光起電力グレード結晶シリコンを製造する方法及び光起電力電池
WO2020017360A1 (ja) * 2018-07-20 2020-01-23 京セラ株式会社 シリコンのインゴット、シリコンのブロック、シリコンの基板、シリコンのインゴットの製造方法、および太陽電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093099A1 (ja) * 2005-02-28 2006-09-08 Kyocera Corporation 多結晶シリコン基板、多結晶シリコンインゴット及びそれらの製造方法、光電変換素子、並びに光電変換モジュール
JP2011517106A (ja) * 2008-04-11 2011-05-26 アポロン、ソーラー ドーピング不純物を添加することにより光起電力グレード結晶シリコンを製造する方法及び光起電力電池
WO2020017360A1 (ja) * 2018-07-20 2020-01-23 京セラ株式会社 シリコンのインゴット、シリコンのブロック、シリコンの基板、シリコンのインゴットの製造方法、および太陽電池

Similar Documents

Publication Publication Date Title
AU2007205949B2 (en) Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
AU2008279411B2 (en) Methods for manufacturing cast silicon from seed crystals
US8591649B2 (en) Methods for manufacturing geometric multi-crystalline cast materials
US20100192838A1 (en) Methods for Manufacturing Monocrystalline or Near-Monocrystalline Cast Materials
TWI620838B (zh) 包含成核促進顆粒之矽晶鑄錠及其製造方法
US20240026568A1 (en) Silicon ingot, silicon block, silicon substrate, method for manufacturing silicon ingot, and solar cell
TW201606147A (zh) β-GaO系單晶基板
WO2024053092A1 (ja) n型のシリコンのブロック、およびn型のシリコンの基板
JP2013129580A (ja) 多結晶シリコンインゴットの製造方法
US20220259757A1 (en) Silicon ingot, silicon block, silicon substrate, manufacturing method for silicon ingot, and solar cell
TWI452184B (zh) 製造矽晶鑄錠之方法
JP4723082B2 (ja) Gaドープシリコン単結晶の製造方法
JP4599067B2 (ja) Ga化合物ドープ多結晶シリコンとその製造方法
TWI600808B (zh) Method of manufacturing polycrystalline silicon ingot, method of making polycrystalline silicon ingot, and polycrystalline silicon ingot
CN110777425A (zh) 带晶种升降单元的铸造硅单晶炉及硅单晶生长方法
JP6014336B2 (ja) シリコン鋳造用鋳型、シリコン鋳造方法、シリコン材料の製造方法および太陽電池の製造方法
CN113373503A (zh) 一种籽晶铺设方法、单晶硅锭的制备方法和单晶硅锭
JP2000264618A (ja) 板状シリコン多結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958170

Country of ref document: EP

Kind code of ref document: A1