WO2024051833A1 - 直拉单晶的制备方法以及单晶炉 - Google Patents

直拉单晶的制备方法以及单晶炉 Download PDF

Info

Publication number
WO2024051833A1
WO2024051833A1 PCT/CN2023/117794 CN2023117794W WO2024051833A1 WO 2024051833 A1 WO2024051833 A1 WO 2024051833A1 CN 2023117794 W CN2023117794 W CN 2023117794W WO 2024051833 A1 WO2024051833 A1 WO 2024051833A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
diameter
halo
melt
width
Prior art date
Application number
PCT/CN2023/117794
Other languages
English (en)
French (fr)
Inventor
黄末
陈俊宏
Original Assignee
中环领先半导体科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中环领先半导体科技股份有限公司 filed Critical 中环领先半导体科技股份有限公司
Publication of WO2024051833A1 publication Critical patent/WO2024051833A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present application relates to the field of semiconductors, specifically, to a preparation method of Czochralski single crystal and a single crystal furnace.
  • the silicon material is melted in the crucible, and the seed crystal is immersed in the melt and pulled from the melt. After the dislocations are eliminated, the pulled single crystal Grows at the lower end of the seed crystal. Due to capillary action, the melt is adsorbed at the edge phase boundary of the single crystal by surface tension to form a halo area (meniscus). During the crystal growth process, latent heat is released at the solid-liquid interface, making the halo area brighter than the free surface of the melt, presenting a bright halo.
  • the width of the halo is related to the temperature of the melt. In the existing process of growing single crystals by the Czochralski method, the temperature of the melt is determined by observing the halo width with the human eye. Since the halo width is constantly changing, there is a deviation in the reading process.
  • the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
  • a method for preparing a Czochralski single crystal including forming a halo at the interface between the melt and the growing single crystal, and a detection device for detecting the width of the halo, and detecting the width of the halo according to the
  • the width of the halo determines the temperature of the melt, wherein the melt is a solution formed by melting the raw materials filled in the crucible.
  • the growth process of the single crystal includes a seeding stage, a shoulder setting stage, an equal diameter stage, and a closing stage. stage.
  • the seed crystal is immersed in the melt, a halo is formed at the interface between the seed crystal and the melt, and the temperature of the melt is confirmed based on the width of the halo.
  • the temperature of the melt is increased; when the actual width is less than the preset width , lower the temperature of the melt.
  • the steps are adjusted according to the actual diameter of the single crystal at different positions.
  • the temperature of the melt is adjusted according to the actual diameter of the single crystal at different positions.
  • the inner diameter of the halo, d2 is the outer diameter of the halo obtained by the detection device.
  • the shoulder-releasing stage further includes: at a fixed time period, obtaining the halo width through the detection device and determining the actual diameter d, and maintaining the change rate of the actual diameter d. consistent.
  • the pulling speed of the single crystal when the actual change rate of the actual diameter is greater than the preset value, the pulling speed of the single crystal is increased; when the actual change rate of the diameter is less than the preset value, the pulling speed is decreased. The pulling speed of the single crystal.
  • the temperature of the melt is determined based on the actual width of the halo.
  • the preset width of the halo is a fixed value, and when the actual width of the halo is greater than the preset width, the temperature of the melt is increased; when When the actual width of the halo is smaller than the preset width, the temperature of the melt is reduced.
  • the inner diameter of the halo, D2 is the outer diameter of the halo obtained through the detection device.
  • the pulling speed of the single crystal in the equal-diameter stage, when the actual diameter of the single crystal is larger than the preset diameter, the pulling speed of the single crystal is increased; when the actual diameter of the single crystal is smaller than the preset diameter, the pulling speed of the single crystal is increased; When the diameter is preset, the pulling speed of the single crystal is reduced.
  • a single crystal furnace including a furnace chamber, the furnace chamber defines an accommodation space, a furnace cover is provided above the furnace chamber, and a detection device is provided on the furnace cover; Quartz crucible, the quartz crucible is arranged in the accommodation space to melt raw materials and hold the melt. There is a space for vertically movable seed crystals above the quartz crucible, and the seed crystal is arranged vertically movable on the quartz crucible.
  • the detection device is used to detect the width of the halo formed at the interface between the melt and the single crystal; a pulling device, the The pulling device is used to control the pulling speed of the single crystal; the heating device corresponds to the quartz crucible; the control unit can receive the signal fed back by the detection device to start or shut down The heating device and the lifting device. Therefore, during the preparation process of Czochralski single crystal in this single crystal furnace, the width of the halo at the lower end of the single crystal can be obtained through the detection device, and then the temperature of the melt in the seeding and equal diameter stages can be determined. At the same time, the halo width can be obtained through the detection device. Determine the diameter of the single crystal in the equal-diameter stage, reduce the diameter deviation of the final single crystal, and improve the preparation efficiency of the single crystal.
  • Figure 1 shows a schematic diagram of a method for preparing a Czochralski single crystal according to an embodiment of the present disclosure
  • Figure 2 shows a schematic flow diagram of a method for preparing a Czochralski single crystal according to an embodiment of the present disclosure
  • Figure 3 shows a schematic diagram of the relationship between pulling speed and seeding length during the seeding process according to an embodiment of the present disclosure
  • Figure 4 shows a schematic diagram of the halo width under a single crystal according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of the crystal crown part in the shoulder-releasing stage according to an embodiment of the present disclosure.
  • a method for preparing a Czochralski single crystal is proposed.
  • a halo is formed at the interface between the melt and the growing single crystal.
  • a detection device is used to detect the width of the halo and determine based on the halo width.
  • the temperature of the melt, where the melt is the solution formed by melting the raw materials filled in the crucible.
  • the growth process of the single crystal includes the seeding stage, the shoulder setting stage, the equal diameter stage, and the finishing stage.
  • the temperature of the melt can be confirmed by the halo width.
  • the halo width is about 2 mm. If the halo width is determined by naked eye observation, on the one hand, because the width of 2 mm is small, when the halo width range is too large or too small, the human eye cannot detect it, and mistakenly believes that the halo width has reached 2 mm, and then the melt temperature has reached the single crystal Preset temperature for growth. Therefore, the temperature of each single crystal growth may be different, resulting in poor process reproducibility and different process performance during the single crystal growth process.
  • the width of the halo is related to the pulling speed of the single crystal in the equal-diameter stage. For example, when the halo is 2mm, the pulling speed of the 100mm single crystal can slowly increase to 4mm/min. However, if the halo is 1.5mm, seeding will be carried out. The pulling speed of 100mm single crystal slowly increases and can only reach 3.7mm/min.
  • This application uses a detection device to read the halo width, which not only avoids reading errors, but also ensures that the halo width is the preset width at each production stage of single crystal growth before growing, improving the reproducibility of the single crystal growth process. To a certain extent, the probability of breakage in single crystals is reduced, thereby improving the crystallization rate and production efficiency of single crystals.
  • the polycrystalline material is placed in a quartz crucible. After the polycrystalline material melts, the temperature stabilization process begins. During the temperature stabilization process, the temperature inside the furnace is measured by a high-temperature detector above the single crystal furnace.
  • the power of the main heater in the crystal growth furnace gradually decreases to the power required at the beginning of seeding, and the power of the bottom heater in the crystal growth furnace also gradually decreases.
  • the power of the bottom heater can be reduced from 25kw to 5kw, and at the same time, the position of the quartz crucible is gradually raised from zero to make the distance between the melt level and the guide tube reach the target value.
  • dislocation-free single crystals are obtained through narrow-neck growth technology (Dash technology). Specifically, the seed crystal is immersed in the melt, and a halo is formed at the interface between the seed crystal and the melt. The temperature of the melt is confirmed based on the actual width of the halo, and a section of single crystal with a relatively small diameter is extracted from the melt. For example, a ⁇ 111> seed crystal or a ⁇ 100> seed crystal may be used.
  • the seed crystal in order to reduce the temperature difference between the seed crystal and the melt, the seed crystal may be preheated before seeding is started.
  • the distance between the lower end of the seed crystal and the melt can be 15mm ⁇ 25mm, and the preheating time can be 10min ⁇ 20min. This prevents thermal shock from occurring when the seed crystal is immersed in the melt because the temperature of the seed crystal is much lower than the temperature of the melt, thus avoiding the generation of dislocations on the seed crystal, thereby reducing adverse effects on single crystal growth.
  • the seed crystal is immersed in the melt to generate a halo, and the halo area is captured by a detection device to determine the actual width of the halo.
  • the actual width of the halo is the preset width
  • the melt can be considered The temperature has reached the appropriate temperature for seeding.
  • the actual width of the halo is obtained through the detection device at certain intervals, and the average value of the actual width of several halo rings is continuously calculated.
  • the actual measured value of the halo ring width deviates slightly from the average value, that is, When the temperature of the melt has become relatively stable, seeding can begin.
  • halo width referred to here is the horizontal distance between the phase boundary and the height of the melt surface outside the halo area (refer to Figure 4).
  • a brightness threshold is set in the above-mentioned detection device.
  • the area above the threshold is the white area, which is the halo area, and the area below the threshold is the black area.
  • the type of detection device is not particularly limited and may be a camera, a video recorder, etc.
  • the preset width of the halo is a certain value.
  • the corresponding preset width of the halo can be 2mm, 2.1mm, or 2.2mm. Referring to Figure 1, when the actual width of the halo acquired by the detection device is greater than the preset width, the heating power needs to be adjusted to increase the temperature of the melt, so that the temperature of the seed remains basically the same; when the halo acquired by the detection device When the actual width is smaller than the preset width, the heating power needs to be adjusted to reduce the temperature of the melt so that the seeding temperature remains basically the same.
  • the actual width of the halo is monitored in real time by a detection device to accurately feedback the temperature value of the melt.
  • a detection device to accurately feedback the temperature value of the melt.
  • the melt temperature is too high and the temperature needs to be lowered; if the diameter of the single crystal grows rapidly, it means that the temperature is low and the temperature needs to be raised.
  • R&D personnel only Based on the observed conditions, it will be determined that the melt temperature needs to be raised or lowered, but it cannot be confirmed whether the appropriate temperature has been adjusted.
  • this application obtains the actual width of the halo through the detection device, so that the width of the halo is close to the preset value during each seeding process, thereby ensuring that the temperature of the melt during each seeding process is basically the same and remains stable, and the production process is realized Improve process repeatability and improve production efficiency.
  • the halo width is determined by a detection device during the seeding process, so that the pulling speed during the seeding process can be closer to the set value.
  • the embodiment is to determine the halo width through a camera
  • the comparative example is to determine the halo width through human eye observation.
  • the halo width is accurately determined in real time through the camera, and then the melt temperature is determined to be basically the same and stable, and then the crystal is seeded, thereby ensuring that the pulling speed can be closer to the set value during the seeding process, improving the production process. of repeatability.
  • the thin neck crystal when drawing a 12-inch single crystal, in order to prevent the thin neck crystal from breaking as the weight of the single crystal increases during the drawing process, causing the entire single crystal to fall, the thin neck crystal is pulled during the seeding process.
  • the neck diameter can be set to 4mm ⁇ 6mm, preferably, the thin neck diameter is 4.5mm; the thin neck length can be set to 180mm ⁇ 350mm, preferably, the thin neck length is 200mm; the growth rate when drawing the thin neck is 3.5mm/ min ⁇ 4.5mm/min.
  • the diameter of the single crystal needs to be expanded to a preset diameter (the preset diameter is the diameter of the equal diameter stage), that is, it enters the shouldering stage.
  • the preset diameter is the diameter of the equal diameter stage
  • the diameter of the single crystal is constantly changing.
  • the temperature of the melt is adjusted according to the actual diameter of the single crystal at different positions. If the actual diameter deviates from the preset diameter, the temperature of the melt can be adjusted to make the actual diameter close to the preset diameter. For example, when the actual diameter of the single crystal is too large, the temperature of the melt is increased; when the diameter of the single crystal is too small, the temperature of the melt is lowered. During the cooling process, the cooling parameters can be adjusted to reduce the disconnection problem. Therefore, during the reading process of the actual diameter of the single crystal, the reading accuracy is improved through the detection device. Furthermore, during the growth process of the single crystal, the melt temperature is adjusted to make the actual diameter of the single crystal closer to the preset diameter of the single crystal.
  • the actual diameter of the single crystal remains stable during multiple shoulder placement processes, improves the repeatability of the process during the production process, increases the crystallization rate of the crystal, and improves production efficiency.
  • it when drawing a 12-inch single crystal, it generally takes 3h to 5h for the actual diameter of the single crystal to increase to the preset diameter, and the melt temperature needs to be strictly controlled during the shouldering process.
  • d 1 is the inner diameter of the halo obtained through the detection device
  • d 2 is the halo obtained through the detection device. outside diameter.
  • the inner diameter of the halo is 119 and the outer diameter of the halo is 120mm
  • the actual diameter of the single crystal is 119.5mm.
  • the inner diameter and outer diameter of the halo can be accurately obtained through the detection device, which can reduce the reading error, make the actual diameter of the single crystal closer to the preset value, and ensure the actual diameter of the single crystal during multiple shoulder placement processes.
  • the diameter remains stable, which improves the repeatability of the process during the production process, increases the crystal formation rate, and improves production efficiency.
  • the shoulder-releasing stage further includes: at fixed time intervals, obtaining the halo width through a detection device and determining the actual diameter d, and keeping the rate of change of the actual diameter d consistent.
  • the shoulder-laying stage as the single crystal is pulled, the single crystal gradually grows to form the crystal crown part.
  • the ⁇ angle shown in the figure is related to the diameter of the single crystal (d/2) and the pulling speed (which affects the length of the other right-angled side of the ⁇ angle).
  • the halo width can be monitored, the relevant production parameters of the shoulder-laying stage can be adjusted, and the ⁇ angle can be controlled to remain unchanged, that is, the shape of the crystal crown remains consistent.
  • the diameter change rate of the single crystal can be obtained first: while keeping the pulling speed constant, the halo width can first be obtained through the detection device to determine an actual diameter da , and after a period of time, the halo width can be obtained through the detection device width to determine the actual diameter d b , and the diameter change rate of the single crystal is d b -d a ; again at the same time interval, the halo width is obtained through the detection device to determine the actual diameter d c of the single crystal, at this time, the diameter of the single crystal changes The rate is d c -d b .
  • the controller can be used to calculate the adjusted appropriate pulling speed, thereby obtaining a crystal crown of the same shape. As a result, the repeatability of the process is improved and the production efficiency is improved.
  • the width of the halo is smaller, and the inner diameter of the halo can be directly identified as the diameter of the single crystal.
  • the single crystal diameter When the single crystal diameter reaches the preset diameter, it enters the shoulder rotation process. During the shoulder rotation process, the single crystal pulling speed increases. In order to prevent the diameter of the single crystal from continuing to shrink after the shoulder rotation, cooling treatment can be performed at the beginning of the shoulder rotation. According to some embodiments of the present disclosure, if the diameter of the single crystal continues to decrease during shoulder rotation, it indicates that the amplitude of the cooling is too large; if the diameter of the single crystal continues to increase, it indicates that the extent of the cooling is too small. Furthermore, the continuous increase or decrease of the single crystal can be avoided by adjusting the pulling speed.
  • the diameter of the single crystal can be stabilized at the preset diameter, and it can enter the equal diameter stage.
  • the width of the halo increases, and the detection device takes pictures at regular intervals to obtain the actual width of the halo, thereby determining the temperature of the melt.
  • the melt temperature corresponds to the halo width, and the melt temperature can be known by obtaining the halo width through a detection device.
  • the detection device is used to obtain Taking the actual width of the halo can reduce the reading error, so that the width of the halo is close to the preset value during each equal diameter process, thereby ensuring that the temperature of the melt is more stable during each equal diameter process, and obtaining the actual diameter of the single crystal and The deviation of the preset diameter is smaller, the process repeatability is high during the production process, and the production efficiency is improved.
  • the preset width of the halo is a constant value.
  • the actual width of the halo is greater than the preset width, it means that the temperature of the melt is lower and the temperature of the melt can be increased.
  • the melt temperature at this time has basically reached the preset temperature for single crystal equal diameter growth; similarly, when the actual width of the halo is smaller than the preset width , indicating that a higher temperature of the melt can lower the temperature of the melt until the actual width of the halo is detected to be close to the preset width, indicating that the melt temperature at this time is very close to or has reached the preset for single crystal equal diameter growth temperature.
  • This makes the actual temperature of the melt closer to the preset temperature of the melt improves the repeatability of the process during the production process, obtains a single crystal with a smaller deviation between the actual diameter and the preset diameter, and improves production efficiency.
  • the understanding that the preset width of the halo is a fixed value is that during the equal-diameter stage of Czochralski single crystal, as production proceeds, the amount of melt in the crucible decreases, and some production process parameters change, such as the power of the heating device, quartz
  • the position of the crucible makes the preset width values of the halo at different lengths in the equal diameter stage slightly different. For example, when entering the grade stage, the preset width of the halo is 2mm. As the amount of melt gradually decreases during production, the preset width of the halo at different lengths changes slightly, which can be 1.9mm or 1.8mm.
  • the actual diameter of the crystal is closer to the preset value, and it can ensure that the actual diameter of the single crystal in the equal-diameter stage remains stable, improve the repeatability of the process during the production process, and improve the crystallization rate and production efficiency of the crystal.
  • the temperature of the melt can be adjusted to make the actual diameter closer to the preset diameter.
  • the actual diameter of the single crystal can be adjusted by adjusting the pulling speed of the single crystal while keeping the melt temperature constant.
  • the pulling speed of the single crystal is increased until the actual diameter of the single crystal obtained by the detection device is close to the preset diameter; when the actual diameter of the single crystal is less than the preset diameter When the diameter is smaller, the pulling speed of the single crystal is reduced until the actual diameter of the single crystal obtained by the detection device is close to the preset diameter.
  • the accuracy of the single crystal makes the actual diameter of the single crystal approach the preset diameter relatively quickly, further maintaining the stability of the actual diameter of the single crystal in the equal-diameter stage, improving the repeatability of the process during the production process, and improving the crystallization rate and production of the crystal. efficiency.
  • the end of crystal growth mainly prevents the back extension of dislocations.
  • the distance of crystal dislocation back extension is greater than or equal to the diameter of crystal growth. Therefore, when the length of the crystal growth reaches the predetermined requirement, the diameter of the crystal should be gradually reduced until it finally becomes a point and leaves the melt surface.
  • the preparation method proposed in this disclosure uses a detection device to monitor the halo width in each production stage, thereby ensuring that the melt temperature corresponding to each seeding stage and the equal diameter stage of multiple single crystal production is the same, and the crystal crown shape in the shouldering stage is The same, improving the repeatability and production efficiency of the production process.
  • the present disclosure also proposes a single crystal furnace, which can meet the needs of preparing single crystals by the aforementioned method.
  • the single crystal furnace includes: a furnace chamber, the furnace chamber defines an accommodation space, and a furnace chamber is provided above the furnace chamber.
  • the detection device is used to detect the width of the halo formed at the interface between the melt and the single crystal; the pulling device is used to control the growth of the single crystal Pulling speed; heating device, the heating device corresponds to the quartz crucible; control unit, the control unit can receive signals fed back by the detection device to start or shut down the heating device and the pulling device. Therefore, during the preparation process of Czochralski single crystal, this single crystal furnace can obtain the halo width on the crystal through the detection device, and then determine the temperature of the melt in the seeding and equal diameter stages to avoid deviations caused by the human eye when reading. To a certain extent, the probability of breakage in single crystals is reduced. At the same time, the halo width is obtained through the detection device to determine the diameter of the single crystal in the equal-diameter stage, which reduces the deviation in single crystal diameter reading and improves the preparation efficiency of single crystals.
  • Examples 1 and 2 are to obtain the inner diameter and outer diameter of the halo through a camera to calculate the actual diameter of the single crystal; Comparative Examples 1 and 2 are to obtain the diameter of the single crystal by observing the width of the halo with human eyes, specifically. See Table 1 for the results:
  • the diameter is set to 310mm, and the actual diameters of the examples and comparative examples in the equal diameter stage are:
  • the halo width is determined by the camera, and then the melt temperature is determined. After equal-diameter growth, the diameter deviation of the crystal is smaller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种直拉单晶的制备方法以及单晶炉,直拉单晶的制备方法包括:在熔体和生长中的单晶之间的界面处形成光环,检测装置用于检测光环宽度,并根据光环宽度确定熔体的温度,其中,熔体为填充在坩埚中的原料熔融形成的溶液,单晶的生长过程包括引晶阶段、放肩阶段、等径阶段、收尾阶段。

Description

直拉单晶的制备方法以及单晶炉
优先权信息
本申请请求于2022年09月09日向中国国家知识产权局提交的、专利申请号为202211103909.0、申请名称为“直拉单晶的制备方法以及单晶炉”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本申请涉及半导体领域,具体地,涉及一种直拉单晶的制备方法以及单晶炉。
背景技术
在CZ法(直拉法)单晶炉晶体生长过程中,将硅料在坩埚中熔化,并且将籽晶浸入熔体中并从熔体中拉制,消除位错后,拉制的单晶在籽晶下端生长。由于毛细作用,熔体靠表面张力吸附在单晶边缘相界处形成光环区(meniscus)。在长晶过程中固液界面处会释放出潜热,使光环区比熔体的自由液面明亮,呈现一圈明亮的光环,光环宽度与熔体的温度有关。现有的直拉法生长单晶的过程中,通过人眼观察光环宽度确定熔体的温度,由于光环宽度不断变化,所以读取过程中存在偏差。
因此,现有的直拉单晶的制备方法仍需进一步改进。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
在本公开的一个方面,提出了一种直拉单晶的制备方法,包括在熔体和生长中的单晶之间的界面处形成光环,检测装置用于检测所述光环宽度,并根据所述光环宽度确定所述熔体的温度,其中,所述熔体为填充在坩埚中的原料熔融形成的溶液,所述单晶的生长过程包括引晶阶段、放肩阶段、等径阶段、收尾阶段。由此,可更加准确的确定光环宽度,以准确控制熔体温度使其达到单晶生长的预设温度,提高单晶的制备效率,提高工艺的可重复性。
根据本公开的一些实施例,所述引晶阶段籽晶浸入所述熔体,所述籽晶和所述熔体的界面处形成光环,根据所述光环宽度来确认所述熔体的温度。
根据本公开的一些实施例,所述引晶过程中,当所述光环的实际宽度大于所述预设宽度时,升高所述熔体的温度;当所述实际宽度小于所述预设宽度时,降低所述熔体的温度。
根据本公开的一些实施例,所述放肩阶段,根据不同位置处所述单晶的实际直径调整所 述熔体的温度。
根据本公开的一些实施例,所述放肩阶段,所述单晶的实际直径为d,且满足d=(d1+d2)/2,其中,d1为通过所述检测装置获得的所述光环的内侧直径,d2为通过所述检测装置获得的所述光环的外侧直径。
根据本公开的一些实施例,所述放肩阶段进一步包括:间隔固定时间段,通过所述检测装置获取所述光环宽度并确定所述实际直径d,并令所述实际直径d的变化率保持一致。
根据本公开的一些实施例,当所述实际直径的实际变化率大于预设值时,提高所述单晶的提拉速度;当所述实际直径的变化率小于所述预设值时,降低所述单晶的提拉速度。
根据本公开的一些实施例,所述等径阶段,根据所述光环的实际宽度来确定所述熔体的温度。
根据本公开的一些实施例,所述等径阶段,所述光环的预设宽度为定值,当所述光环的实际宽度大于所述预设宽度时,升高所述熔体的温度;当所述光环的所述实际宽度小于所述预设宽度时,降低所述熔体的温度。
根据本公开的一些实施例,所述等径阶段,所述单晶的实际直径为D,且满足D=(D1+D2)/2,其中,D1为通过所述检测装置获得所述光环的内侧直径,D2为通过所述检测装置获得所述光环的外侧直径。
根据本公开的一些实施例,所述等径阶段,当所述单晶的实际直径大于预设直径时,升高所述单晶的提拉速度;当所述单晶的实际直径小于所述预设直径时,降低所述单晶的提拉速度。
在本公开的另一个方面,提出了一种单晶炉,包括炉室,所述炉室内限定出容纳空间,所述炉室的上方设置有炉盖,所述炉盖上设置有检测装置;石英坩埚,所述石英坩埚设在所述容纳空间内以熔化原料且盛放熔体,所述石英坩埚上方具有可垂直移动籽晶的空间,所述籽晶可垂直移动地设在所述石英坩埚上方且可伸入所述熔体中以便生长获得单晶,所述检测装置用于检测在所述熔体和所述单晶之间的界面处形成的光环宽度;提拉装置,所述提拉装置用于控制所述单晶的提拉速度;加热装置,所述加热装置与所述石英坩埚相对应;控制单元,所述控制单元可接收所述检测装置反馈的信号以启动或关闭所述加热装置和所述提拉装置。由此,该单晶炉在直拉单晶的制备过程中,可通过检测装置获得单晶下端光环宽度,进而确定引晶和等径阶段熔体的温度,同时,通过检测装置获得光环宽度以确定等径阶段单晶的直径,减小最终形成单晶的直径偏差,提高单晶的制备效率。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和 容易理解,其中:
图1显示了本公开一个实施例的直拉单晶的制备方法示意图;
图2显示了本公开一个实施例的直拉单晶的制备方法流程示意图;
图3显示了本公开一个实施例的引晶过程中拉速与引晶长度的关系的示意图;
图4显示了本公开一个实施例的单晶下方的光环宽度的示意图;
图5显示了本公开一个实施例的放肩阶段晶冠部分的示意图。
具体实施方式
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本公开的一个方面,提出了一种直拉单晶的制备方法,在熔体和生长中的单晶之间的界面处形成光环,检测装置用于检测光环宽度,并根据光环宽度来确定熔体的温度,其中,熔体为填充在坩埚中的原料熔融形成的溶液,单晶的生长过程包括引晶阶段、放肩阶段、等径阶段、收尾阶段。由此,可更加准确的确定光环宽度,以准确控制熔体温度使其达到单晶生长的预设温度,提高单晶的制备效率,提高工艺的可重复性。
下面本申请能够实现上述有益效果的原理进行详细说明:
单晶生长过程中,熔体的温度可以通过光环宽度进行确认。例如,当熔体的温度接近单晶的熔点时(约1420℃),光环宽度约2mm。如果通过裸眼观察确定光环宽度,一方面由于2mm的宽度本身较小,当光环宽度范围偏大或偏小时,人眼无法察觉,误认为光环宽度已达到2mm,便认为熔体温度已达到单晶生长时的预设温度。因此,可能造成每次单晶生长的温度不一样,导致工艺的重现性差,造成单晶生长过程中工艺表现不同。另一方面,也需要单晶生长过程中人员实时监测光环的情况,不容易在光环达到预定宽度的时候及时察觉,造成漏判或是延误调整熔体温度的时机。此外,光环宽度和等径阶段单晶的提拉速度相关,例如,2mm的光环时,100mm的单晶拉速可缓慢上升到4mm/min,但是,如果光环为1.5mm时便进行引晶,100mm的单晶拉速缓慢上升仅能达到3.7mm/min。由于长晶为一个累积的过程,前期引晶工艺的不同对后续放肩以及等径阶段会造成较大的影响,比如产生断线和缺陷分布等。本申请通过检测装置读取光环宽度,不仅避免读取时的误差,且保证单晶生长各个生产阶段时光环宽度均为预设宽度时再进行生长,提高单晶生长工艺的重现性,在一定程度上减少单晶出现断线的概率,进而也提高单晶的成晶率及生产效率。
下面对直拉单晶的制备方法的各个过程进行详细说明,参考图2,该方法包括:
S100:装料及熔化阶段
在此过程中,将多晶料置于石英坩埚内,待多晶料融化后,即进入稳温过程。稳温过程中,通过单晶炉上方的高温探测计测量炉内温度。
根据本公开的一些实施例,当进入稳温过程后,长晶炉内主加热器的功率逐步下降到引晶开始时需要的功率,长晶炉内的底加热器功率也逐步下降。具体地,底加热器的功率可由25kw降低到5kw,同时石英坩埚的位置从零位开始逐渐升高,使熔体液面到导流筒的距离达到目标值。
S200:引晶阶段及缩颈阶段
在此过程中,通过引细颈生长技术(即Dash技术)获得无位错单晶。具体地,将籽晶浸入熔体,籽晶和熔体的界面处形成光环,根据光环的实际宽度确认熔体的温度,进而在熔体中引出一段直径比较小的单晶。例如,可使用<111>的籽晶或<100>的籽晶。
根据本公开的一些实施例,为了减少籽晶与熔体的温度差,引晶开始前,可对籽晶进行预热。具体地,可使籽晶下端与熔体的距离为15mm~25mm,预热时间10min~20min。由此,防止籽晶浸入熔体时,因籽晶温度远低于熔体的温度而产生热冲击,进而避免在籽晶上产生位错,以减少对单晶生长的不良影响。
根据本公开的一些实施例,引晶阶段,籽晶浸入熔体后产生光环,通过检测装置捕捉光环区以确定光环的实际宽度,当光环的实际宽度为预设宽度时,即可认为熔体的温度已达到引晶的合适温度。进一步地,为了避免熔体温度不稳定,连续间隔一定时间通过检测装置获取光环的实际宽度,连续计算几个光环实际宽度的平均值,当光环实际宽度的实测值与平均值偏差较小时,即熔体的温度已比较稳定,即可开始进行引晶。
需要说明的是,此处所指的光环宽度为相边界与光环区外部熔体表面高度之间的水平距离(参考图4)。一般而言,上述检测装置中会设置亮度的阈值,高于该阈值的为白色区域即为光环区,低于该阈值的区域为黑色区域。
需要说明的是,检测装置的种类不受特别限制,可以为相机、录像机等。
根据本公开的一些实施例,引晶过程中,由于熔体的温度接近单晶的熔点,此时,光环的预设宽度为某一定值。根据各个单晶炉结构不同,其对应地光环的预设宽度可以为2mm、2.1mm、2.2mm。参考图1,当检测装置获取的光环的实际宽度大于预设宽度时,此时需要调整加热功率来升高熔体的温度,进而使得引晶的温度基本保持相同;当检测装置获取的光环的实际宽度小于预设宽度时,此时需要调整加热功率来降低熔体的温度,使得引晶的温度基本保持相同。通过检测装置实时监测光环的实际宽度以准确地反馈熔体的温度值。而现有的生产中,当籽晶接触到熔体时,如果瞬间熔断,说明熔体温度过高,需降低温度;如果单晶直径快速长大,说明温度较低,需提高温度。如上所述,实际生产中研发人员仅 会根据观察到的情况,判定需要提高或降低熔体温度,但是不能确认是否已调整到合适的温度。由此,本申请通过检测装置获取光环的实际宽度,使每次引晶过程中光环宽度均接近预设值,从而保证每次引晶过程中熔体的温度基本相同并保持稳定,实现生产过程中工艺的可重复性,提高生产效率。
根据本公开的一些实施例,引晶过程中通过检测装置确定光环宽度,可使引晶过程中的拉速更接近设定值。参考附图3,实施例为通过相机确定光环宽度,对比例为通过人眼观察确定光环宽度。从图中可以看出,通过相机实时准确地确定光环宽度,进而判定熔体温度基本相同并保持稳定,然后进行引晶,进而保证引晶过程中拉速可更接近设定值,提高生产工艺的可重复性。
根据本公开的一些实施例,当拉制12英寸的单晶时,为防止拉制过程中随着单晶重量的增加导致细颈晶体断裂,进而使得整根单晶坠落,引晶过程中细颈直径可以设置为4mm~6mm,优选地,细颈直径为4.5mm;细颈长度可以设置为180mm~350mm,优选地,细颈长度为200mm;拉制细颈时的生长速度为3.5mm/min~4.5mm/min。
S300:放肩阶段
引晶阶段结束后,需将单晶直径扩大到预设直径(该预设直径为等径阶段的直径),即进入放肩阶段,放肩阶段单晶的直径是不断变化的。
具体地,放肩阶段,根据不同位置处单晶的实际直径来调整熔体的温度,若实际直径与预设直径有偏差,可通过调节熔体的温度使得实际直径靠近预设直径。例如,当单晶的实际直径偏大时,升高熔体的温度;当单晶的直径偏小时,降低熔体的温度,降温过程中可通过调整降温参数,减少断线问题。由此,单晶实际直径读取过程中通过检测装置提高读取精度,进一步地,在单晶的生长过程中通过调整熔体温度使单晶的实际直径更加接近单晶的预设直径,进一步地保证多次放肩过程中单晶的实际直径保持稳定,提高生产过程中工艺的可重复性,提高晶体的成晶率,提高生产效率。根据本公开的一些实施例,当拉制12英寸的单晶时,单晶的实际直径增加到预设直径一般需3h~5h,放肩过程中需严格控制熔体温度。
再进一步地,单晶的实际直径为d,且满足d=(d1+d2)/2,其中,d1为通过检测装置获得的光环的内侧直径,d2为通过检测装置获得的光环的外侧直径。例如,当光环的内侧直径为119,光环的外侧直径为120mm时,单晶的实际直径即为119.5mm。由此,即可避免光环宽度的变化对单晶直径读取的影响。由此,通过检测装置准确的获取光环的内侧直径和外侧直径,可减小读取误差,使单晶的实际直径更加接近预设值,且可使保证多次放肩过程中单晶的实际直径保持稳定,提高生产过程中工艺的可重复性,提高晶体的成晶率,提高生产效率。
根据本公开的一些实施例,放肩阶段进一步包括:间隔固定时间段,通过检测装置获取光环宽度并确定实际直径d,并令实际直径d的变化率保持一致。具体地,参考图5,在放肩阶段,随着单晶的提拉,单晶逐渐生长形成晶冠部分。本领域技术人员能够理解的是,图中所示出的θ角和单晶的直径(d/2)以及提拉速度(影响θ角另一个直角边的长度)相关。此处为了保持生产工艺的可重复性以及晶冠形状的一致性,可通过对光环宽度进行监测,调整放肩阶段的相关生产参数,控制θ角保持不变,即晶冠的形状保持一致。具体地,可以首先获取单晶的直径变化率:在保持提拉速度不变的情况下,可以首先通过检测装置获取光环宽度以确定一个实际直径da,间隔一段时间后,通过检测装置获取光环宽度以确定实际直径db,单晶的直径变化率为db-da;再次间隔相同时间,通过检测装置获取光环宽度以确定单晶的实际直径dc,此时,单晶的直径变化率为dc-db。此时如确定的db-da和dc-db相同,即相当于图5中θ角不变,此时即可获得相同形状的晶冠。当确定的db-da和dc-db不相同时,可以通过工艺参数的调整,重新重复前述的获取单晶的直径变化率的步骤,使得确定的db-da和dc-db保持一致。通过使单晶的直径变化率保持稳定,从而提高工艺的可重复性,保证每次生长单晶时晶冠形状相同。
根据本公开的一些实施例,当实际直径的变化率大于预设值时,也就是实际直径的增大较块,为保持θ角相同,需要通过提高单晶的提拉速度来平衡实际直径变化过快;当实际直径的变化率小于预设值时,也就是实际直径的增大较慢,为保持θ角相同,需通过降低单晶的提拉速度来平衡实际直径变化过慢。则当单晶的实际直径的变化率偏离预设值时,可通过控制器计算出调节后的合适提拉速度,进而获得相同形状的晶冠。由此,提高工艺的可重复性,提高生产效率。
根据本公开的一些具体实施例,当单晶的直径增大较快时,光环宽度较小,可直接将光环的内侧直径认定为单晶的直径。
S400:转肩阶段
当单晶直径达到预设直径后,即进入转肩过程,转肩过程中单晶拉速增大,为了防止单晶的直径在转肩后持续缩小,转肩开始时可进行降温处理。根据本公开的一些实施例,如果转肩过程中单晶的直径持续减小,说明降温的幅度过大;如果单晶的直径持续增大,说明降温的幅度过小。进一步地,可通过调整拉速,避免单晶的持续增大或持续减小。
S500:等径阶段
转肩结束后,单晶的直径便可稳定在预设直径,即可进入等径阶段。
根据本公开的一些实施例,等径过程中,光环宽度增大,通过检测装置定时拍照,获取光环的实际宽度,进而确定熔体的温度。具体地,单晶在等径生长过程中,熔体温度对应于光环宽度,通过检测装置获得光环宽度,即可获知熔体的温度。由此,通过检测装置获 取光环的实际宽度,可减小读取误差,使每次等径过程中光环宽度均接近预设值,从而保证每次等径过程中熔体的温度更加稳定,获得单晶的实际直径与预设直径的偏差更小,生产过程中工艺的可重复性高,提高生产效率。
根据本公开的一些实施例,参考图1,等径过程中,光环的预设宽度为定值,当光环的实际宽度大于预设宽度时,说明熔体的温度较低可升高熔体的温度,直到检测装置检测到该光环的实际宽度比较接近于预设宽度时,说明此时的熔体温度基本达到单晶等径生长的预设温度;同理当光环的实际宽度小于预设宽度时,说明熔体的温度较高可降低熔体的温度,直到检测到该光环的实际宽度接近于预设宽度时,说明此时的熔体温度很接近或已达到单晶等径生长的预设温度。由此,使熔体的实际温度更加接近熔体的预设温度,提高生产过程中工艺的可重复性,以获得实际直径与预设直径偏差更小的单晶,提高生产效率。其中,光环的预设宽度为定值的理解是在直拉单晶的等径阶段,随着生产进行,坩埚内的熔体量在减少,一些生产工艺参数都发生变化如加热装置功率、石英坩埚位置,使得等径阶段不同长度处光环的预设宽度值稍有不同。例如,当开始进入等级阶段,此时光环的预设宽度为2mm,随着生产进行熔体量的逐渐减少,则不同长度处光环的预设宽度稍有变化,可为1.9mm、1.8mm。
根据本公开的一些实施例,等径过程中单晶的实际直径为D,且满足D=(D1+D2)/2,其中,D1为通过检测装置获得光环的内侧直径,D2为通过检测装置获得光环的外侧直径。由此,通过检测装置获取光环的内侧直径和外侧直径,从而得到等径阶段中单晶的实际直径,避免光环宽度的变化对单晶直径读取的影响,可减小读取误差,使单晶的实际直径更加接近预设值,且可使保证等径阶段单晶的实际直径保持稳定,提高生产过程中工艺的可重复性,提高晶体的成晶率及生产效率。
可以理解是通过检测装置获得光环的内侧直径和外侧直径,从而得到等径阶段单晶的实际直径D,且光环宽度为外侧直径与内侧直径的差值,而光环宽度与熔体的温度相对应的,即光环宽度确定熔体的温度,也就说等径阶段单晶的实际直径D可间接地确定熔体的温度,即对应的关系式为D=D1+(D2-D1)/2=D1+光环宽度/2。
根据本公开的一些实施例,若等径阶段单晶的实际直径D与预设直径有偏差,可通过调节熔体的温度使得实际直径比较靠近预设直径。但是,在实际生产过程中,通过采用加热装置来调节熔体温度,但总是存在一定的滞后性。则为避免该滞后性,在保持熔体温度不变的情况下则可通过调整单晶的提拉速度来调整单晶的实际直径。具体地,当单晶的实际直径大于预设直径时,升高单晶的提拉速度,直到通过该检测装置得到单晶的实际直径接近预设直径为止;当单晶的实际直径小于预设直径时,降低单晶的提拉速度,直到通过该检测装置得到单晶的实际直径接近预设直径为止。由此,不仅提高单晶的实际直径读取 的精度,且使得单晶的实际直径比较迅速地接近预设直径,进一步地保持等径阶段单晶的实际直径的稳定,提高生产过程中工艺的可重复性,提高晶体的成晶率及生产效率。
S600:收尾阶段
晶体生长的收尾主要防止位错的反延,一般讲晶体位错反延的距离大于或等于晶体生长的直径。因此当晶体生长的长度达到预定要求时,应该逐渐缩小晶体的直径至最后成为一个点而离开熔体液面。
总之,本公开提出的制备方法,采用检测装置监测各个生产阶段的光环宽度,从而保证多次单晶生产每次引晶阶段和等径阶段对应的熔体温度相同,放肩阶段的晶冠形状相同,提高了生产工艺的可重复性及生产效率。
本公开还提出了一种单晶炉,该单晶炉可以满足前述方法制备单晶的需求,具体地,该单晶炉包括:炉室,炉室内限定出容纳空间,炉室的上方设置有炉盖,炉盖上设置有检测装置;石英坩埚,石英坩埚设在容纳空间内以熔化原料且盛放熔体,石英坩埚上方具有可垂直移动籽晶的空间,籽晶可垂直移动地设在石英坩埚上方且可伸入熔体中以便生长获得单晶,检测装置用于检测在熔体和单晶之间的界面处形成的光环宽度;提拉装置,提拉装置用于控制单晶的提拉速度;加热装置,加热装置与石英坩埚相对应;控制单元,控制单元可接收检测装置反馈的信号以启动或关闭加热装置和提拉装置。由此,该单晶炉在直拉单晶的制备过程中,可通过检测装置获得晶体上光环宽度,进而确定引晶和等径阶段熔体的温度,避免人眼读取时造成的偏差,在一定程度上减少单晶出现断线概率,同时通过检测装置获得光环宽度以确定等径阶段单晶的直径,减小单晶直径读取的偏差,提高单晶的制备效率。
实施例1和实施例2为通过相机获取光环的内侧直径和外侧直径,以计算得到单晶的实际直径;对比例1和对比例2为通过人眼观察光环宽度得到的单晶的直径,具体结果参见表1:
设定直径310mm,等径阶段中实施例和对比例的实际直径:
表1

由上表可以看出,等径阶段通过相机确定光环宽度,进而判断熔体温度,再进行等径生长后获得晶体的直径偏差更小。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (12)

  1. 一种直拉单晶的制备方法,其中,在熔体和生长中的单晶之间的界面处形成光环,检测装置用于检测所述光环宽度,并根据所述光环宽度来确定所述熔体的温度;
    其中,所述熔体为填充在坩埚中原料熔融形成的溶液,
    所述单晶的生长过程包括引晶阶段、放肩阶段、等径阶段、收尾阶段。
  2. 根据权利要求1所述的方法,其中,所述引晶阶段籽晶浸入所述熔体,所述籽晶和所述熔体的界面处形成光环,根据所述光环的实际宽度来确认所述熔体的温度。
  3. 根据权利要求2所述的方法,其中,当所述光环的实际宽度大于所述光环的预设宽度时,升高所述熔体的温度;当所述实际宽度小于所述预设宽度时,降低所述熔体的温度。
  4. 据权利要求1-3中任一项所述的方法,其中,所述放肩阶段,根据不同位置处所述单晶的实际直径调整所述熔体的温度。
  5. 据权利要求1-4中任一项所述的方法,其中,所述放肩阶段,所述单晶的实际直径为d,且满足d=(d1+d2)/2,其中,d1为通过所述检测装置获得所述光环的内侧直径,d2为通过所述检测装置获得所述光环的外侧直径。
  6. 根据权利要求4或5所述的方法,其中,所述放肩阶段进一步包括:间隔固定时间段,通过所述检测装置获取所述光环宽度并确定所述实际直径d,并令所述实际直径d的变化率保持一致。
  7. 根据权利要求4-6中任一项所述的方法,其中,当所述实际直径的变化率大于预设值时,提高所述单晶的提拉速度;当所述实际直径的变化率小于所述预设值时,降低所述单晶的提拉速度。
  8. 根据权利要求1-7中任一项所述的方法,其中,所述等径阶段,根据所述光环的实际宽度来确定所述熔体的温度。
  9. 根据权利要求8所述的方法,其中,所述等径阶段,所述光环的预设宽度为定值,当所述光环的实际宽度大于所述预设宽度时,升高所述熔体的温度;当所述光环的实际宽度小于所述预设宽度时,降低所述熔体的温度。
  10. 根据权利要求8或9所述的方法,其中,所述等径阶段,所述单晶的实际直径为D,且满足D=(D1+D2)/2,其中,D1为通过所述检测装置获得所述光环的内侧直径,D2为通过所述检测装置获得所述光环的外侧直径。
  11. 根据权利要求10所述的方法,其中,所述等径阶段,当所述单晶的实际直径大于预设直径时,升高所述单晶的提拉速度;当所述单晶的实际直径小于所述预设直径时,降低所述单晶的提拉速度。
  12. 一种单晶炉,其中,包括:
    炉室,所述炉室内限定出容纳空间,所述炉室的上方设置有炉盖,所述炉盖上设置有检测装置;
    石英坩埚,所述石英坩埚设在所述容纳空间内以熔化原料且盛放熔体,所述石英坩埚上方具有可垂直移动籽晶的空间,所述籽晶可垂直移动地设在所述石英坩埚上方且可伸入所述熔体中以便生长获得单晶,所述检测装置用于检测在所述熔体和所述单晶之间的界面处形成的光环宽度;
    提拉装置,所述提拉装置用于控制所述单晶的提拉速度;
    加热装置,所述加热装置与所述石英坩埚相对应;
    控制单元,所述控制单元可接收所述检测装置反馈的信号以启动或关闭所述加热装置和所述提拉装置。
PCT/CN2023/117794 2022-09-09 2023-09-08 直拉单晶的制备方法以及单晶炉 WO2024051833A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211103909.0A CN116536751A (zh) 2022-09-09 2022-09-09 直拉单晶的制备方法以及单晶炉
CN202211103909.0 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024051833A1 true WO2024051833A1 (zh) 2024-03-14

Family

ID=87451181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117794 WO2024051833A1 (zh) 2022-09-09 2023-09-08 直拉单晶的制备方法以及单晶炉

Country Status (2)

Country Link
CN (1) CN116536751A (zh)
WO (1) WO2024051833A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116536751A (zh) * 2022-09-09 2023-08-04 中环领先(徐州)半导体材料有限公司 直拉单晶的制备方法以及单晶炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632693A (ja) * 1992-07-14 1994-02-08 Furukawa Electric Co Ltd:The 単結晶の種付制御方法
JPH07309694A (ja) * 1994-05-17 1995-11-28 Sumitomo Metal Ind Ltd 結晶成長装置及び結晶成長方法
KR20030034357A (ko) * 2001-10-22 2003-05-09 주식회사 실트론 단결정 잉곳 성장장치에서의 잉곳 직경 조절장치 및 잉곳직경 조절 방법
CN112381807A (zh) * 2020-11-18 2021-02-19 北京图知天下科技有限责任公司 一种直拉单晶生产中晶体直径检测方法、系统及计算机
CN116536751A (zh) * 2022-09-09 2023-08-04 中环领先(徐州)半导体材料有限公司 直拉单晶的制备方法以及单晶炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632693A (ja) * 1992-07-14 1994-02-08 Furukawa Electric Co Ltd:The 単結晶の種付制御方法
JPH07309694A (ja) * 1994-05-17 1995-11-28 Sumitomo Metal Ind Ltd 結晶成長装置及び結晶成長方法
KR20030034357A (ko) * 2001-10-22 2003-05-09 주식회사 실트론 단결정 잉곳 성장장치에서의 잉곳 직경 조절장치 및 잉곳직경 조절 방법
CN112381807A (zh) * 2020-11-18 2021-02-19 北京图知天下科技有限责任公司 一种直拉单晶生产中晶体直径检测方法、系统及计算机
CN116536751A (zh) * 2022-09-09 2023-08-04 中环领先(徐州)半导体材料有限公司 直拉单晶的制备方法以及单晶炉

Also Published As

Publication number Publication date
CN116536751A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
US10858753B2 (en) Method and apparatus for manufacturing silicon single crystal
US8187378B2 (en) Silicon single crystal pulling method
WO2024051833A1 (zh) 直拉单晶的制备方法以及单晶炉
JP2001518442A (ja) 結晶引き上げ装置用熱シールド
KR101579780B1 (ko) 단결정 직경의 검출방법, 이를 이용한 단결정의 제조방법 및 단결정 제조장치
US5690733A (en) Method for recharging of silicon granules in a Czochralski single crystal growing operation
TWI632257B (zh) 單晶矽的製造方法
KR20120030028A (ko) 단결정 인상 장치 및 단결정 인상 방법
CN114990688B (zh) 单晶体直径控制方法及装置、单晶硅拉晶炉
TW202225645A (zh) 一種用於晶體生長的液面檢測裝置及晶體生長裝置
JP6939714B2 (ja) 融液面と種結晶の間隔測定方法、種結晶の予熱方法、及び単結晶の製造方法
CN114250508A (zh) 一种快速控制直拉单晶硅直径的方法
JP2008063165A (ja) シリコン単結晶の製造方法
US9476142B2 (en) Method for manufacturing silicon single crystal
JP3867476B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶の製造装置
JP2009227509A (ja) 単結晶の引上げ方法
JP2001019588A (ja) 単結晶直径の制御方法及び結晶成長装置
KR101540863B1 (ko) 잉곳 직경 제어장치 및 이를 포함하는 잉곳성장장치 및 그 방법
CN216304033U (zh) 监控单晶炉中硅熔液的液面的状态及坩埚的状态的系统
JP6036709B2 (ja) シリコン単結晶の直径検出用カメラのカメラ位置の調整方法及びカメラ位置調整治具
JP4496723B2 (ja) 単結晶の製造方法及び単結晶製造装置
US20240019397A1 (en) Method of estimating oxygen concentration in silicon single crystal, method of manufacturing silicon single crystal, and silicon single crystal manufacturing apparataus
US6153009A (en) Method for producing a silicon single crystal and the silicon single crystal produced thereby
CN112857297B (zh) 单晶棒直径测量装置、单晶棒生长系统及方法
KR20230051263A (ko) 단결정의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862527

Country of ref document: EP

Kind code of ref document: A1