WO2024051713A1 - 夹层玻璃组件及车辆 - Google Patents

夹层玻璃组件及车辆 Download PDF

Info

Publication number
WO2024051713A1
WO2024051713A1 PCT/CN2023/117126 CN2023117126W WO2024051713A1 WO 2024051713 A1 WO2024051713 A1 WO 2024051713A1 CN 2023117126 W CN2023117126 W CN 2023117126W WO 2024051713 A1 WO2024051713 A1 WO 2024051713A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
guide
optical signal
refractive index
adhesive layer
Prior art date
Application number
PCT/CN2023/117126
Other languages
English (en)
French (fr)
Inventor
陈雪萍
张灿忠
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Publication of WO2024051713A1 publication Critical patent/WO2024051713A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Definitions

  • This application relates to the field of vehicles, and specifically to a laminated glass assembly and a vehicle.
  • ADAS Advanced Driving Assistance System
  • an embodiment of the present application provides a laminated glass component, which includes:
  • the laminated glass has a signal transmission area, and the signal transmission area is used for the transmission of optical signals;
  • a guide member having a first surface that is in contact with the laminated glass, and a second surface that is opposite to the first surface, and the projection of the guide member on the laminated glass covers the signal Transmission area, the guide is used to change the transmission path of the optical signal, the refractive index of the guide continuously changes in a first direction, wherein the first direction is the thickness direction of the laminated glass;
  • the sensor is installed inside the vehicle, the optical signal emitted by the sensor passes through the guide part and the laminated glass in sequence, and/or the received light signal passes through the laminated glass and the guide part in sequence .
  • the material of the guide includes at least one of glass, quartz, silicon nitride, sulfur and selenium compounds, methyl methacrylate or trifluoroethyl methacrylate.
  • the guide member includes a plurality of guide parts connected in sequence in the first direction, and the refraction of the plurality of guide parts in the first direction first increases and then decreases.
  • the materials of the plurality of guide parts are the same or different, and the difference ⁇ n in the refractive index of two adjacent guide parts satisfies: ⁇ n ⁇ 0.5.
  • the guide when the materials of the plurality of guide parts are the same, the guide further includes a first additive dispersed in the plurality of guide parts, and the concentration of the first additive in the first direction first increases and then decreases. , wherein the refractive index of the first additive is higher than the refractive index of the guide part;
  • the guide further includes a second additive dispersed in the plurality of guide parts, the concentration of the second additive first decreases and then increases in the first direction, wherein the refractive index of the second additive is lower than the second additive.
  • the refractive index of the guide part is lower than the second additive.
  • the number by which the refractive index of two adjacent guide parts in the plurality of guide parts in the first direction increases is equal to the number by which the refractive index decreases.
  • the difference in the refractive index of the guide part that is attached to the laminated glass among the plurality of guide parts and the refractive index of the laminated glass is less than or equal to 0.03.
  • the guide further includes a plurality of adhesive layers, and the plurality of adhesive layers are used to bond the plurality of guide parts.
  • the transmittance of the optical signal of the adhesive layer is greater than 90%, and the refractive index na of the adhesive layer satisfies: 0.7nl ⁇ na ⁇ 1.3nr, where nl is the adhesive layer of the adhesive layer.
  • the laminated glass has an upper side and a lower side when installed on a vehicle, and the thickness of the guide member continuously increases in a second direction, wherein the second direction is when the upper side points toward the The direction of the lower side.
  • the guide includes a plurality of guide parts connected in sequence in the first direction
  • At least some of the guide portions among the plurality of guide portions have a thickness that continuously increases in the second direction; or,
  • the thickness of some of the guide portions in the plurality of guide portions continuously increases in the second direction, and the thickness of other portions of the guide portions in the plurality of guide portions does not change in the second direction. ;or,
  • Some of the guide portions among the plurality of guide portions have a thickness that continuously increases in the second direction, and other portions of the guide portions among the plurality of guide portions have a thickness that continuously changes in the second direction. small; or,
  • the thickness of some of the guide portions in the plurality of guide portions continuously increases in the second direction, and the thickness of some of the guide portions in the plurality of guide portions does not change in the second direction, And the thickness of other portions of the guide portions in the plurality of guide portions continuously decreases in the second direction.
  • the thickness of the guide member first decreases and then increases in a third direction, wherein the third direction is perpendicular to the second direction and perpendicular to the first direction.
  • the laminated glass has an upper side and a lower side when installed in a vehicle.
  • the viewing angle ⁇ of the optical signal in the second direction satisfies: 0° ⁇ ⁇ 25°
  • the viewing angle ⁇ in the third direction satisfies: 0° ⁇ 90°
  • the second direction is the direction in which the upper side points to the lower side
  • the third direction perpendicular to the second direction and perpendicular to the first direction.
  • the maximum angle ⁇ i between the light in the optical signal and the normal line of the second surface in the second direction satisfies: ⁇ i ⁇ 45°
  • the light in the optical signal and the second surface The maximum angle ⁇ i of the normal line in the third direction satisfies: ⁇ i ⁇ 45°.
  • the difference ⁇ T between the transmittance of the optical signal incident on the second surface at the maximum included angle ⁇ i or ⁇ i and the transmittance normal incident on the second surface satisfies: ⁇ T ⁇ 3%.
  • the viewing angle ⁇ ' of the optical signal located outside the vehicle in the second direction is larger than the viewing angle ⁇ ' of the optical signal on the side of the guide away from the laminated glass in the second direction. At least 5°.
  • the viewing angle ⁇ ' of the optical signal located outside the vehicle in the third direction is larger than the viewing angle ⁇ of the optical signal on the side of the guide away from the laminated glass in the third direction. At least 5°.
  • the laminated glass also has a non-signal transmission area, and the laminated glass includes:
  • An intermediate adhesive layer is provided between the first transparent substrate and the second transparent substrate, and is used to bond the first transparent substrate and the second transparent substrate.
  • the intermediate adhesive layer includes a first adhesive layer located at least in the signal transmission area and a second adhesive layer located in at least part of the non-signal transmission area.
  • the transmittance of the first adhesive layer to the optical signal is greater than or equal to the transmittance of the second adhesive layer to the optical signal.
  • the embodiment of the present application also provides a vehicle, which includes:
  • a vehicle body the vehicle body is used to carry the laminated glass assembly.
  • Embodiments of the present application provide a laminated glass assembly and a vehicle.
  • the laminated glass assembly includes laminated glass, a lead Guide member and sensor, the first surface of the guide member is attached to the laminated glass in the signal transmission area, the refractive index of the guide member changes continuously in the first direction, reducing the optical signal at the laminated glass angle of incidence, thereby improving the transmittance of the optical signal. Therefore, the laminated glass assembly according to the embodiment of the present application improves the transmittance of the optical signal through the guide member with a gradient refractive index, thereby improving the detection effect of the laminated glass assembly.
  • Figure 1 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a laminated glass assembly provided by an embodiment of the present application from a first perspective.
  • FIG. 3 is a schematic three-dimensional structural view of the laminated glass assembly provided in the embodiment of FIG. 2 .
  • FIG. 4 is a schematic diagram of the refractive index change of the guide in the laminated glass assembly provided by the embodiment of FIG. 2 .
  • FIG. 5 is a schematic structural diagram of the guide member in the laminated glass assembly provided in the embodiment of FIG. 3 in one embodiment.
  • FIG. 6 is a schematic diagram of the refractive index changes of the plurality of guide portions in the first direction in the laminated glass assembly provided by the embodiment of FIG. 5 .
  • FIG. 7 is a schematic structural diagram of the guide member including the first additive in the laminated glass assembly provided in the embodiment of FIG. 5 .
  • FIG. 8 is a schematic structural diagram of the guide member including the second additive in the laminated glass assembly provided in the embodiment of FIG. 5 .
  • FIG. 9 is a schematic structural diagram of the guide member in the laminated glass assembly provided in the embodiment of FIG. 3 in another embodiment.
  • FIG. 10 is a schematic structural diagram of the laminated glass assembly provided in the embodiment of FIG. 2 from a second perspective.
  • FIG. 11 is a schematic structural diagram of the guide member in the laminated glass assembly provided in the embodiment of FIG. 3 in yet another embodiment.
  • FIG. 12 is a schematic diagram of the change of the refractive index of the guide in the first direction in the laminated glass assembly provided in the embodiment of FIG. 11 .
  • FIG. 13 is a schematic diagram of the viewing angle of the optical signal in the first viewing angle of the laminated glass assembly provided in the embodiment of FIG. 2 .
  • FIG. 14 is a schematic diagram of the viewing angle of the optical signal in the second viewing angle in the laminated glass assembly provided in the embodiment of FIG. 2 .
  • FIG. 15 is a schematic structural diagram of the laminated glass in the laminated glass assembly provided in the embodiment of FIG. 2 .
  • Figure 16 is a schematic diagram of the laminated glass assembly provided by the present application in the first and second embodiments.
  • vehicle 1 laminated glass assembly 10; sensor 11; guide 12; second surface 123; first surface 124; guide 125; first additive 126; second additive 127; adhesive layer 128; laminated glass 13; signal transmission area 131; first transparent substrate 133; second transparent substrate 134; middle adhesive layer 135; first adhesive layer 1351; second adhesive layer 1352; upper side 136; lower side 137; vehicle Main body 20; optical signal L0; second direction D2; first direction D1; third direction D3.
  • the refractive index is the refractive index of transmitted light at a wavelength of 550 nm.
  • the transmittance of the optical signal is measured and calculated according to standard ISO9050.
  • the vehicle 1 includes a vehicle body 20 and a laminated glass assembly 10 .
  • the vehicle body 20 is used to carry the laminated glass assembly 10 .
  • the vehicle 1 may be, but is not limited to, a sedan, a multi-purpose vehicle (multi-Purpose Vehicles, MPV), a sport/Suburban Utility Vehicle (SUV), or an off-road vehicle (Off-Road). Vehicle, ORV), pickup truck, van, passenger car, truck, etc.
  • MPV multi-purpose vehicle
  • SUV sport/Suburban Utility Vehicle
  • Off-Road off-road vehicle
  • Vehicle ORV
  • pickup truck van, passenger car, truck, etc.
  • the laminated glass assembly 10 may be, but is not limited to, installed on the front side of the vehicle body 20 as a front detection of the two vehicles, or installed on the rear side of the vehicle body 20 as a rear detection of the vehicle 1, etc. .
  • the laminated glass assembly 10 is used to detect objects around the vehicle 1 and identify obstacles or preset targets for the vehicle 1 to assist the vehicle 1 in driving and improve the driving safety and safety of the vehicle 1 .
  • the laminated glass assembly 10 includes a sensor 11 , which is disposed inside the vehicle body 20 .
  • the optical signal emitted or/or received by the sensor 11 passes through the laminated glass 13 .
  • FIG. 1 illustrates that the laminated glass assembly 10 is disposed on the front side of the vehicle body 20 . It can be understood that the placement position of the laminated glass assembly 10 in the embodiment of the present application is not limited in FIG. 1 .
  • the laminated glass assembly 10 includes a laminated glass 13 , a guide 12 and a sensor 11 .
  • the laminated glass 13 has a signal transmission area 131 .
  • the signal transmission area 131 is used for the transmission of optical signals.
  • the guide 12 has a first surface 124 that is in contact with the laminated glass 13 , and a second surface 123 that is opposite to the first surface 124 .
  • the projection of the guide 12 on the laminated glass 13 covers the signal transmission area 131 .
  • the guide 12 is used to change the transmission path of the optical signal.
  • the refractive index of the guide 12 changes continuously in the first direction D1.
  • the first direction D1 is the thickness direction of the laminated glass 13 .
  • the sensor 11 is installed inside the vehicle 1, and the sensor 11 is disposed toward the guide 12, which is located between the laminated glass 13 and the sensor 11; specifically, the sensor 11 can It is fixedly installed on the laminated glass 13 through a bracket or the like, or it can also be fixedly installed on the vehicle body 20 through a bracket or the like.
  • the optical signal emitted by the sensor 11 passes through the guide 12 and the laminated glass 13 in sequence, and/or the received light signal passes through the laminated glass 13 and the guide 12 in sequence.
  • the laminated glass assembly 10 provided in this application is applied to a vehicle 1 to detect surrounding environment information for the vehicle 1 to assist the vehicle 1 in driving.
  • the laminated glass 13 can be used as a front shield glass, a rear shield glass, or a side window glass; without limitation, the laminated glass 13 can also be used as A-pillar exterior panel glass, B-pillar exterior panel glass or C-pillar exterior panel glass, etc.
  • the senor 11 is used to emit and/or receive an optical signal L0.
  • the wavelength of the optical signal L0 is in the range of 380 nm to 1650 nm or 8 ⁇ m to 12 ⁇ m. Specific examples include a visible light camera (380 nm to 780 nm). , near-infrared camera (780nm ⁇ 1650nm), lidar (850nm, 905nm, 1550nm), thermal imager (8 ⁇ m ⁇ 12 ⁇ m), etc., used for imaging, ranging and positioning, etc.
  • the optical signal L0 may be emitted by the sensor 11, incident from the second surface 123, and passed through the lead in turn.
  • the signal transmission area 131 in the guide member 12 and the laminated glass 13 emerges from the surface of the laminated glass 13 away from the guide member 12 .
  • the optical signal L0 may also be incident from outside the vehicle to the surface of the laminated glass 13 facing away from the guide 12 , pass through the signal transmission area 131 in the laminated glass 13 and the guide 12 in sequence, and then pass from the laminated glass 13 to the guide 12 .
  • the second surface 123 emits light to be received by the sensor 11 .
  • the transmittance of the signal transmission area 131 in the laminated glass 13 to the optical signal L0 is greater than or equal to 80%, and more preferably greater than or equal to 85%. Even greater than or equal to 90%; and, the transmittance of the guide 12 to the optical signal L0 is greater than the transmittance of the signal transmission area 131 in the laminated glass 13 to the optical signal L0.
  • the laminated glass assembly 10 is schematically explained with the light signal L0 emitted from the sensor 11 .
  • the signal transmission area 131 is arranged corresponding to the guide 12 , that is, the first surface 124 of the guide 12 is close to the laminated glass 13 and the signal transmission area 131 is close to the guide. surface of piece 12.
  • the refractive index of the guide 12 continuously changes in the first direction D1, so that the guide 12 has good refractive power, so that the optical signal L0 is continuously refracted multiple times in the guide 12, so as to The incident angle of the optical signal L0 when incident on the laminated glass 13 is reduced, thereby increasing the transmittance of the optical signal L0 in the laminated glass 13 .
  • the embodiment of the present application provides a laminated glass assembly 10.
  • the laminated glass assembly 10 includes a laminated glass 13, a guide 12 and a sensor 11.
  • the first surface 124 of the guide 12 is in the signal transmission area.
  • 131 is attached to the laminated glass 13, and the refractive index of the guide 12 changes continuously in the first direction D1, reducing the incident angle of the optical signal L0 at the laminated glass 13, thereby improving the optical signal L0 transmittance. Therefore, the laminated glass assembly 10 provided by the embodiment of the present application improves the transmittance of the optical signal L0 through the guide 12 with a gradient refractive index, thereby improving the detection effect of the laminated glass assembly 10 .
  • the guide 12 includes a plurality of guide portions 125 that are sequentially connected in the first direction D1.
  • the refraction in the first direction D1 first increases and then decreases.
  • the number of the guide portions 125 is 5 for illustration, and the number of the guide portions 125 is not limited.
  • the refraction of the plurality of guide portions 125 in the first direction D1 first increases and then decreases.
  • the guide 12 has good refractive power to deflect the optical signal L0.
  • the second aspect is to prevent the optical signal L0 from being reflected on the second surface due to an excessive difference in refractive index between the air and the guide portion 125 of the guide 12 on the second surface 123 .
  • the refraction of the plurality of guide portions 125 in the first direction D1 first increases and then decreases, and the change in the refractive index of the plurality of guide portions 125 in the first direction D1 presents a symmetrical change
  • the optical path deflection can be optimized, so that the plurality of guide portions 125 refract the optical signal L0 more smoothly, thereby improving the signal quality of the optical signal L0.
  • the refractive index of the guide part 125 bonded to the laminated glass 13 among the plurality of guide parts 125 is the sum of the refractive index of the laminated glass 13 .
  • the difference is less than or equal to 0.03.
  • the optical signal L0 is Among the plurality of guide portions 125 , the refractive index of the guide portion 125 that is attached to the laminated glass 13 is set such that the difference from the refractive index of the laminated glass 13 is less than or equal to 0.03.
  • the materials of the plurality of guide parts 125 are the same or different, and the difference in refractive index of two adjacent guide parts 125 is ⁇ n. Satisfy: ⁇ n ⁇ 0.5.
  • the difference ⁇ n in the refractive index of the two adjacent guide parts 125 satisfies: ⁇ n ⁇ 0.5, which can avoid the optical signal L0 being disposed adjacently. Interface reflection occurs at the junction of the two guide portions 125, thereby increasing the transmittance of the optical signal L0, thereby optimizing the optical path deflection of the optical signal L0.
  • the difference ⁇ n in the refractive index of two adjacent guide portions 125 satisfies: ⁇ n ⁇ 0.3, or ⁇ n ⁇ 0.1.
  • the number by which the refractive index of two adjacent guide parts 125 in the first direction D1 among the plurality of guide parts 125 increases is equal to the number by which the refractive index decreases. That is, the number of the plurality of guide parts 125 in the first direction D1 In the first direction D1, the number of guide portions 125 arranged from the lowest refractive index to the highest refractive index is equal to the number of guide portions 125 arranged from the highest refractive index to the lowest refractive index, so that the refraction of the plurality of guide portions 125
  • the rate change presents an approximately symmetrical arrangement, thereby reducing the difference in refractive index and thereby optimizing the optical path deflection of the optical signal L0.
  • the number of the guide portions 125 arranged from the lowest to the highest refractive index is equal to the number of the guide portions 125 arranged from the highest to the lowest refractive index.
  • the number of guide parts 125 with the highest refractive index is centered, and the guide parts 125 with other refractive indexes are symmetrically distributed, which can further optimize the optical path deflection of the optical signal L0.
  • the plurality of guide portions 125 are made of different materials.
  • the guide 12 can be made of materials with refractive index from low to high and then from high to low in the first direction D1.
  • the guide portions 125 may be made of, but are not limited to, inorganic materials (such as glass, quartz, silicon nitride or sulfur selenium compounds) or organic materials (such as methyl methacrylate or trifluoroethyl methacrylate). etc.
  • the guide 12 further includes a first additive 126 dispersed in the plurality of guide parts 125 .
  • the concentration of the first additive 126 first increases and then decreases in the first direction D1.
  • the refractive index of the first additive 126 is higher than the refractive index of the guide portion 125 .
  • the guide 12 further includes second additives 127 dispersed in the plurality of guide parts 125 .
  • the concentration of the second additive 127 first decreases and then increases in the first direction D1.
  • the refractive index of the second additive 127 is lower than the refractive index of the guide portion 125 .
  • additives can be provided in different guide portions 125 in the guide 12 to change the refractive index of the multiple guide portions 125, so that the refractive index of the multiple guide portions 125 is within the range of the guide portion 125.
  • the first direction D1 increases first and then decreases.
  • the guide portions 125 may be made of, but are not limited to, inorganic materials (such as glass, quartz, silicon nitride or sulfur selenium compounds) or organic materials (such as methyl methacrylate or trifluoroethyl methacrylate). etc.
  • adding additives to the plurality of guide portions 125 can be achieved by using an ion exchange process, and the refractive index of the plurality of guide portions 125 is adjusted through the polarization ability and concentration of ions.
  • the first additive 126 in the first direction D1 , the first additive 126 whose concentration first increases and then decreases is added to the plurality of guide parts 125 in sequence, so that the guide 12 is in the first direction D1 The refraction first increases and then decreases.
  • the refractive index of the first additive 126 is higher than the refractive index of the guide portions 125 , and the first additive 126 includes at least one of Cs+ or Pb2+.
  • the second additive 127 in the first direction D1 , the second additive 127 whose concentration first decreases and then increases is added to the plurality of guide parts 125 in sequence, so that the guide 12 is in the first direction D1
  • the upper refraction first increases and then decreases.
  • the refractive index of the second additive 127 is lower than the refractive index of the guide portions 125 , and the second additive 127 includes at least one of alkali metals such as K+ and Na+.
  • a mixture of the first additive 126 and the second additive 127 may be added to the plurality of guide parts 125 as long as the guide 12 can be refracted in the first direction D1 Just increase first and then decrease.
  • the laminated glass 13 has an upper side 136 and a lower side 137 when installed on the vehicle 1 .
  • the thickness of the guide 12 continuously increases in the second direction D2.
  • the second direction D2 is the direction in which the upper side 136 points to the lower side 137 .
  • the thickness of the guide 12 continuously increases in the second direction D2, so that the angle between the first surface 124 and the horizontal plane is smaller than the angle between the laminated glass 13 and the horizontal plane, so that the incident angle of the optical signal L0 on the second surface 123 is smaller than directly incident on the laminated glass 13, thereby improving the The transmittance of the optical signal L0.
  • the refraction angle of the guide 12 to the optical signal L0 in the second direction D2 continues to increase, so that This makes the part of the guide 12 close to the upper side 136 refract the optical signal L0 at a larger angle than the part of the guide 12 close to the lower side 137 , thereby improving the optical signal L0
  • the field of view angle emitted from the signal transmission area 131 through the laminated glass 13 further expands the actual detection field of view range of the sensor 11 in the second direction D2.
  • the field of view of the optical signal L0 in the second direction D2 The angle corresponds to the vertical field of view (VFOV) of the sensor 11 .
  • the guide 12 includes a plurality of guide parts 125 that are sequentially connected in the first direction D1 . At least part of the guide parts 125 is The thickness of 125 continuously increases in the second direction D2. Alternatively, a portion of the guide portions 125 of the plurality of guide portions 125 has a thickness that continuously becomes larger in the second direction D2, and another portion of the guide portions 125 of the plurality of guide portions 125 has a thickness in the second direction D2. The thickness remains unchanged in the second direction D2.
  • a portion of the guide portions 125 of the plurality of guide portions 125 has a thickness that continuously becomes larger in the second direction D2, and another portion of the guide portions 125 of the plurality of guide portions 125 has a thickness in the second direction D2.
  • the thickness continuously decreases in the second direction D2.
  • the thickness of some of the guide portions 125 in the plurality of guide portions 125 becomes continuously larger in the second direction D2, and the thickness of some of the guide portions 125 in the plurality of guide portions 125 becomes larger in the second direction D2.
  • the thickness in the two directions D2 remains unchanged, and the thickness of other portions of the guide portions 125 in the plurality of guide portions 125 continuously decreases in the second direction D2.
  • the thickness of part of the guide parts 125 of the plurality of guide parts 125 continuously increases in the second direction D2, and the thickness of other parts of the guide parts 125 of the plurality of guide parts 125 is continuously increased. It is shown that the thickness of the portion 125 remains unchanged in the second direction D2. It can be understood that the plurality of guide portions 125 in FIG. 9 does not limit the plurality of guide portions 125 in the embodiment of the present application.
  • each guide portion 125 of the plurality of guide portions 125 in the second direction D2 can be changed arbitrarily, as long as the guide member 12 is in the second direction D2
  • the thickness can be continuously increased.
  • the thickness of the guide 12 in the third direction D3 first decreases and then increases.
  • the third direction D3 is perpendicular to the second direction D2 and perpendicular to the first direction D1.
  • the second viewing angle in FIG. 10 is a viewing angle perpendicular to the plane formed by the first direction and the third direction.
  • the thickness of the guide 12 first decreases and then increases, so that after the light signal L0 is incident on the guide 12, the light The deflection of the light in the signal L0 on both sides of the guide 12 is greater than the deflection in the middle of the guide 12 , so that the viewing angle of the light signal L0 on the side of the laminated glass 13 away from the guide 12 It is greater than the visual field angle of the optical signal L0 on the side of the guide 12 away from the laminated glass 13, thereby expanding the actual detection visual field range of the sensor 11 in the third direction D3.
  • the third direction D3 is perpendicular to the second direction D2 and perpendicular to the first direction D1.
  • the viewing angle of the optical signal L0 in the third direction D3 corresponds to the horizontal viewing angle (HFOV) of the sensor 11 .
  • the thickness of the guide 12 first decreases and then increases in the third direction D3, and presents a symmetrical structure, which further optimizes the optical path deflection of the optical signal L0 in the guide 12.
  • the guide 12 further includes a plurality of adhesive layers 128 , and the plurality of adhesive layers 128 are used to bond the plurality of guide parts 125 .
  • the refractive index of the plurality of guide portions 125 first increases and then decreases in the first direction D1, and the plurality of guide portions 125 are formed by being bonded together by the plurality of adhesive layers 128.
  • the guide 12 makes the design of the refractive index change of the guide 12 more flexible and diverse.
  • the transmittance of the adhesive layer 128 to the optical signal L0 is greater than 90%
  • the refraction of the adhesive layer 128 is The rate na satisfies: 0.7nl ⁇ na ⁇ 1.3nr.
  • nl is the refractive index of the guide portion 125 with a lower refractive index among the two adjacent guide portions 125 bonded by the adhesive layer 128, and nr is the two adjacent guide portions bonded by the adhesive layer 128.
  • the transmittance of the adhesive layer 128 to the optical signal L0 is greater than 90%, which can prevent the adhesive layer 128 from obstructing the transmission of the optical signal L0.
  • the refractive index na of the adhesive layer 128 satisfies: 0.7nl ⁇ na ⁇ 1.3nr, which can prevent the optical signal L0 from being damaged due to excessive changes in refractive index at the interface between the adhesive layer 128 and the guide part 125 Interface reflection occurs, which increases the transmittance of the optical signal L0 in the guide 12 .
  • the laminated glass 13 has an upper side 136 and a lower side 137 when installed on the vehicle 1 .
  • the viewing angle ⁇ of the optical signal L0 in the second direction D2 satisfies: 0° ⁇ 25°
  • the second direction D2 is the direction in which the upper side 136 points to the lower side 137 .
  • the third direction D3 is perpendicular to the second direction D2 and perpendicular to the first direction D1.
  • the viewing angle ⁇ of the optical signal L0 in the second direction D2 satisfies: 0° ⁇ 25°, optionally ,0° ⁇ 15°. Due to the deflection of the guide 12 , the viewing angle of the optical signal L0 located outside the vehicle in the second direction D2 is greater than that of the optical signal L0 on the side of the guide 12 away from the laminated glass 13 .
  • the visual field angle ⁇ in the second direction D2 thus expands the actual detection visual field range of the sensor 11 in the second direction D2.
  • the viewing angle of the optical signal L0 located outside the vehicle in the second direction D2 is greater than that of the optical signal L0 on the side of the guide 12 away from the laminated glass 13 in the second direction D2
  • the viewing angle ⁇ is at least 5° greater, more preferably at least 10° greater.
  • the viewing angle ⁇ of the optical signal L0 in the third direction D3 satisfies: 0° ⁇ 90°, optionally ,0° ⁇ 60°. Due to the deflection of the guide 12 , the viewing angle of the optical signal L0 located outside the vehicle in the third direction D3 is greater than that of the optical signal L0 on the side of the guide 12 away from the laminated glass 13 .
  • the field of view angle ⁇ in the third direction D3 expands the actual detection field of view range of the sensor 11 in the third direction D3.
  • the viewing angle of the optical signal L0 located outside the vehicle in the third direction D3 is greater than the viewing angle of the optical signal L0 located on the side of the guide 12 away from the laminated glass 13 in the third direction D3
  • the viewing angle ⁇ is at least 5° larger, more preferably at least 10° larger, still preferably at least 20° larger, or even at least 30° larger.
  • the maximum angle ⁇ i between the light in the optical signal L0 and the normal line of the second surface 123 in the second direction D2 satisfies: ⁇ i ⁇ 45°.
  • the maximum angle ⁇ i between the light in the optical signal L0 and the normal line of the second surface 123 in the third direction D3 satisfies: ⁇ i ⁇ 45°.
  • the maximum angle ⁇ i between the light in the optical signal L0 and the normal line of the second surface 123 in the second direction D2 satisfies: ⁇ i ⁇ 45° (see Figure 13)
  • ⁇ i ⁇ 45° To prevent the transmittance of the optical signal L0 on the second surface 123 from being too low, optionally, ⁇ i ⁇ 30°.
  • the maximum angle ⁇ i between the light in the optical signal L0 and the second surface 123 in the third direction D3 satisfies: ⁇ i ⁇ 45° (please refer to Figure 14), to prevent the optical signal L0 from being in the third direction D3.
  • the transmittance on the second surface 123 is too low, optionally, ⁇ i ⁇ 30°.
  • the difference ⁇ T between the transmittance of the optical signal L0 incident on the second surface 123 at the maximum angle ⁇ i or ⁇ i and the transmittance normal incident on the second surface 123 satisfies: ⁇ T ⁇ 3 % to ensure the transmittance of the optical signal L0 in the guide 12 .
  • the laminated glass 13 also has a non-signal transmission area 132.
  • the laminated glass 13 includes a first transparent substrate 133 , a second transparent substrate 134 and an intermediate adhesive layer 135 .
  • the second transparent substrate 134 is arranged away from the guide 12 relative to the first transparent substrate 133, that is, the first transparent substrate 133 serves as a base close to the vehicle.
  • the second transparent substrate 134 serves as an outer glass plate close to the outside of the vehicle.
  • the intermediate adhesive layer 135 is provided between the first transparent substrate 133 and the second transparent substrate 134 for bonding the first transparent substrate 133 and the second transparent substrate 134 .
  • the intermediate adhesive layer 135 includes a first adhesive layer 1351 located at least in the signal transmission area 131 and a second adhesive layer 1352 located in at least part of the non-signal transmission area 132 .
  • the first adhesive layer 1351 is located at least in the signal transmission area 131
  • the second adhesive layer 1352 is located in the non-signal transmission area 132 .
  • the material of the first adhesive layer 1351 may be the same as the material of the second adhesive layer 1352.
  • the transmittance of the first adhesive layer 1351 to the optical signal L0 is equal to that of the second adhesive layer.
  • 1352 is the transmittance of the optical signal L0.
  • the first adhesive layer 1351 and the second adhesive layer 1352 have an integrated structure.
  • the material of the intermediate adhesive layer 135 can be polyvinyl butyral (PVB) or ethylene-vinyl acetate copolymer (EVA). , thermoplastic polyurethane elastomer (TPU) or polyolefin elastomer (POE), etc.
  • the material of the first adhesive layer 1351 can be different from that of the second adhesive layer 1352.
  • the materials of the adhesive layer 1352 are different.
  • the transmittance of the first adhesive layer 1351 to the optical signal L0 is greater than the transmittance of the second adhesive layer 1352 to the optical signal L0.
  • the adhesive layer 1351 may be fused and spliced together with the second adhesive layer 1352 to form the intermediate adhesive layer 135.
  • the material of the first adhesive layer 1351 is ethylene-vinyl acetate copolymer (EVA), thermoplastic polyurethane elastomer (TPU) or polyolefin elastomer (POE), etc.
  • the material of the second adhesive layer 1352 is polyvinyl butyral (PVB).
  • the visual field angle ⁇ of the optical signal L0 emitted by the sensor 11 in the second direction D2 is 14°
  • the visual field angle ⁇ in the third direction D3 is 90°.
  • Lidar is selected, and the wavelength of the optical signal L0 emitted and received is 905nm;
  • Laminated glass 13 The first transparent substrate 133 and the second transparent substrate 134 are both 2.1 mm thick ultra-transparent glass (i.e. ultra-white glass), and the material of the first adhesive layer 1351 is different from the second transparent substrate 134.
  • the material of the adhesive layer 1352 is 0.76mm thick PVB.
  • the angle between the laminated glass 13 and the horizontal plane is 30°.
  • the transmittance of the optical signal L0 after passing through the lower area of the guide 12 and the signal transmission area 131 in the second direction D2 is 83%;
  • the transmittance of the optical signal L0 after passing through the central area of the guide 12 and the signal transmission area 131 in sequence is 88.7%;
  • the transmittance of the optical signal L0 after passing through the side area of the guide 12 and the signal transmission area 131 in the third direction D3 is 81.4%;
  • the laminated glass component 10 provided by the present application can increase the transmittance of the optical signal L0 to greater than 80%, which meets the detection requirements of 905nm lidar.
  • Lidar is selected, and the wavelength of the optical signal L0 emitted and received is 1550nm;
  • Laminated glass 13 The first transparent substrate 133 and the second transparent substrate 134 are both 2.1mm thick ultra-transparent glass (i.e. ultra-white glass), and the material of the first adhesive layer 1351 is 0.76mm thick. EVA, the material of the second adhesive layer 1352 is 0.76mm thick PVB. The angle between the laminated glass 13 and the horizontal plane is 30°.
  • the transmittance of the optical signal L0 after passing through the lower area of the guide 12 and the signal transmission area 131 in the second direction D2 is 82.7%;
  • the transmittance of the optical signal L0 after passing through the central area of the guide 12 and the signal transmission area 131 in sequence is 88.2%;
  • the transmittance of the optical signal L0 after passing through the side area of the guide 12 and the signal transmission area 131 in the third direction D3 is 80.7%;
  • the laminated glass component 10 provided by the present application can increase the transmittance of the optical signal L0 to more than 80%, which meets the detection requirements of 1550nm laser radar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本申请提供了一种夹层玻璃组件及车辆。夹层玻璃组件包括:夹层玻璃,具有信号传输区,信号传输区用于光信号的传输;引导件,具有贴合夹层玻璃的第一表面,以及与第一表面相背设置的第二表面,引导件在夹层玻璃上的投影覆盖信号传输区,用于改变光信号的传输路径,引导件在第一方向上折射率连续变化,其中,第一方向为夹层玻璃的厚度方向;以及传感器,安装于车辆内部,传感器发射的光信号依次穿过引导件和夹层玻璃,和/或,接收的光信号依次穿过夹层玻璃和引导件。本申请提供的夹层玻璃组件通过折射率渐变的引导件提高了光信号的透过率,从而提高了夹层玻璃组件的探测效果。

Description

夹层玻璃组件及车辆
本申请要求于2022年9月6日提交中国专利局、申请号为202211095533.3、申请名称为“夹层玻璃组件及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆领域,具体涉及一种夹层玻璃组件及车辆。
背景技术
随着科技的发展,越来越多的车辆安装高级驾驶辅助系统(Advanced Driving Assistance System,ADAS)以进行辅助驾驶,用于在车辆行驶过程中感应周围的环境及收集数据,并进行静态、动态物体的辨识、侦测与追踪,从而预判车辆行驶过程中可能发生的危险,有效增加车辆行驶的舒适性及安全性。然而,由于车辆前挡风玻璃的阻挡,使得ADAS中探测光波在穿透倾斜的前挡风玻璃时会发生反射和吸收,导致探测光波的透过率大大降低,从而使得ADAS的探测效果差。
发明内容
第一方面,本申请实施方式提供了一种夹层玻璃组件,所述夹层玻璃组件包括:
夹层玻璃,所述夹层玻璃具有信号传输区,所述信号传输区用于光信号的传输;
引导件,所述引导件具有贴合所述夹层玻璃的第一表面,以及与所述第一表面相背设置的第二表面,所述引导件在所述夹层玻璃上的投影覆盖所述信号传输区,所述引导件用于改变光信号的传输路径,所述引导件在第一方向上折射率连续变化,其中,所述第一方向为所述夹层玻璃的厚度方向;以及
传感器,所述传感器安装于车辆内部,所述传感器发射的光信号依次穿过所述引导件和所述夹层玻璃,和/或,接收的光信号依次穿过所述夹层玻璃和所述引导件。
其中,所述引导件的材料包括玻璃、石英、氮化硅、硫硒化合物、甲基丙烯酸甲酯或者甲基丙烯酸三氟乙酯中至少一种。
其中,所述引导件包括在所述第一方向上依次相接的多个引导部,所述多个引导部在所述第一方向上折射率先递增后递减。
其中,所述多个引导部的材料相同或不同,且相邻设置的两个所述引导部的折射率之差△n满足:△n≤0.5。
其中,当所述多个引导部的材料相同时,所述引导件还包括分散于所述多个引导部的第一添加剂,所述第一添加剂在所述第一方向上浓度先递增后递减,其中,所述第一添加剂的折射率高于所述引导部的折射率;
或者,所述引导件还包括分散于所述多个引导部的第二添加剂,所述第二添加剂在所述第一方向上浓度先递减后递增,其中,第二添加剂的折射率低于所述引导部的折射率。
其中,所述多个引导部中在所述第一方向上相邻两个所述引导部的折射率递增的数量等于折射率递减的数量。
其中,所述多个引导部中贴合所述夹层玻璃的引导部的折射率与所述夹层玻璃的折射率之差小于或等于0.03。
其中,所述引导件还包括多个粘结层,所述多个粘结层用于粘结所述多个引导部。
其中,所述粘结层对所述光信号的透过率大于90%,且所述粘结层的折射率na满足:0.7nl≤na≤1.3nr,其中,nl为所述粘结层粘结的相邻两个引导部中折射率较低的引导部的折射率,nr为所述粘结层粘结的相邻两个引导部中折射率较高的引导部的折射率。
其中,所述夹层玻璃具有安装于车辆时的上侧边及下侧边,所述引导件在第二方向上厚度连续变大,其中,所述第二方向为所述上侧边指向所述下侧边的方向。
其中,所述引导件包括在所述第一方向上依次相接的多个引导部,
所述多个引导部中的至少部分所述引导部在所述第二方向上厚度连续变大;或者,
所述多个引导部中的部分所述引导部在所述第二方向上厚度连续变大,且所述多个引导部中的另外部分所述引导部在所述第二方向上厚度不变;或者,
所述多个引导部中的部分所述引导部在所述第二方向上厚度连续变大,且所述多个引导部中的另外部分所述引导部在所述第二方向上厚度连续变小;或者,
所述多个引导部中的部分所述引导部在所述第二方向上厚度连续变大,且所述多个引导部中的部分所述引导部在所述第二方向上厚度不变,且所述多个引导部中的另外部分所述引导部在所述第二方向上厚度连续变小。
其中,所述引导件在第三方向上厚度先递减后递增,其中,所述第三方向垂直于所述第二方向,且垂直于所述第一方向。
其中,所述夹层玻璃具有安装于车辆时的上侧边及下侧边,在所述引导件背离所述夹层玻璃一侧,所述光信号在第二方向的视野角度α满足:0°≤α≤25°,在第三方向的视野角度θ满足:0°≤θ≤90°,其中,所述第二方向为所述上侧边指向所述下侧边的方向,所述第三方向垂直于所述第二方向,且垂直于所述第一方向。
其中,所述光信号中的光线与所述第二表面的法线在所述第二方向上的最大夹角αi满足:αi≤45°,所述光信号中的光线与所述第二表面的法线在所述第三方向上的最大夹角θi满足:θi≤45°。
其中,所述光信号以最大夹角αi或θi入射至所述第二表面的透过率与垂直入射至所述第二表面的透过率之差△T满足:△T≤3%。
其中,位于车辆外部的所述光信号在所述第二方向的视野角度α’比在所述引导件背离所述夹层玻璃一侧的所述光信号在所述第二方向的视野角度α大至少5°。
其中,位于车辆外部的所述光信号在所述第三方向的视野角度θ’比在所述引导件背离所述夹层玻璃一侧的所述光信号在所述第三方向的视野角度θ大至少5°。
其中,所述夹层玻璃还具有非信号传输区,所述夹层玻璃包括:
第一透明基板;
第二透明基板,所述第二透明基板相对于所述第一透明基板背离所述引导件设置;以及
中间粘结层,所述中间粘结层设于所述第一透明基板与所述第二透明基板之间,用于粘结所述第一透明基板及所述第二透明基板,所述中间粘结层包括至少设于所述信号传输区的第一粘结层及设于至少部分所述非信号传输区的第二粘结层。
其中,所述第一粘结层对所述光信号的透过率大于或等于所述第二粘结层对所述光信号的透过率。
第二方面,本申请实施方式还提供了一种车辆,所述车辆包括:
如第一方面所述的夹层玻璃组件;以及
车辆主体,所述车辆主体用于承载所述夹层玻璃组件。
本申请实施方式提供了一种夹层玻璃组件及车辆,所述夹层玻璃组件包括夹层玻璃、引 导件及传感器,所述引导件的第一表面在信号传输区贴合所述夹层玻璃,所述引导件在第一方向上折射率连续变化,减小所述光信号在所述夹层玻璃处的入射角,从而提高所述光信号的透过率。因此,本申请实施方式的夹层玻璃组件通过折射率渐变的引导件提高了光信号的透过率,从而提高了所述夹层玻璃组件的探测效果。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的车辆的结构示意图。
图2为本申请一实施方式提供的夹层玻璃组件在第一视角下的结构示意图。
图3为图2实施方式提供的夹层玻璃组件的立体结构示意图。
图4为图2实施方式提供的夹层玻璃组件中引导件的折射率变化的示意图。
图5为图3实施方式提供的夹层玻璃组件中引导件在一实施方式中的结构示意图。
图6为图5实施方式提供的夹层玻璃组件中多个引导部在第一方向上的折射率变化的示意图。
图7为图5实施方式提供的夹层玻璃组件中引导件包括第一添加剂的结构示意图。
图8为图5实施方式提供的夹层玻璃组件中引导件包括第二添加剂的结构示意图。
图9为图3实施方式提供的夹层玻璃组件中引导件在另一实施方式中的结构示意图。
图10为图2实施方式提供的夹层玻璃组件在第二视角下的结构示意图。
图11为图3实施方式提供的夹层玻璃组件中引导件在又一实施方式中的结构示意图。
图12为图11实施方式提供的夹层玻璃组件中引导件在第一方向上折射率的变化示意图。
图13为图2实施方式提供的夹层玻璃组件中光信号第一视角下视野角的示意图。
图14为图2实施方式提供的夹层玻璃组件中光信号在第二视角下视野角的示意图。
图15为图2实施方式提供的夹层玻璃组件中夹层玻璃的结构示意图。
图16为本申请提供的夹层玻璃组件在第一实施例与第二实施例中的示意图。
附图标号:车辆1;夹层玻璃组件10;传感器11;引导件12;第二表面123;第一表面124;引导部125;第一添加剂126;第二添加剂127;粘结层128;夹层玻璃13;信号传输区131;第一透明基板133;第二透明基板134;中间粘结层135;第一粘结层1351;第二粘结层1352;上侧边136;下侧边137;车辆主体20;光信号L0;第二方向D2;第一方向D1;第三方向D3。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定 于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本发明中,所述折射率为透射光在550nm波长处的折射率。
本发明中,所述光信号的透过率根据标准ISO9050测量计算得到。
本申请实施方式提供了一种车辆。请参照图1,所述车辆1包括车辆主体20及夹层玻璃组件10。所述车辆主体20用于承载所述夹层玻璃组件10。
在本实施方式中,所述车辆1可以但不仅限于为轿车、多用途汽车(multi-Purpose Vehicles,MPV)、运动型多用途汽车(Sport/Suburban Utility Vehicle,SUV)、越野车(Off-Road Vehicle,ORV)、皮卡、面包车、客车、货车等。
所述夹层玻璃组件10可以但不限于安装于所述车辆主体20的前侧作为所述车俩的前方探测,或者,安装于所述车辆主体20的后侧作为所述车辆1的后方探测等。所述夹层玻璃组件10用于探测所述车辆1周围物体,为所述车辆1识别障碍物或预设目标等,以用于辅助所述车辆1行驶,提高所述车辆1行驶的安全性及便利性。其中,所述夹层玻璃组件10包括传感器11,所述传感器11设于所述车辆主体20的内部,所述传感器11发射或/或接收的光信号穿过夹层玻璃13。需要说明的是,图1以所述夹层玻璃组件10设于所述车辆主体20的前侧进行示意,可以理解地,图1中并未对本申请实施方式中夹层玻璃组件10的设置位置进行限定。
本申请实施方式提供了一种夹层玻璃组件10。请参照图2、图3及图4,在本实施方式中,所述夹层玻璃组件10包括夹层玻璃13、引导件12及传感器11。所述夹层玻璃13具有信号传输区131。所述信号传输区131用于光信号的传输。所述引导件12具有贴合所述夹层玻璃13的第一表面124,以及与所述第一表面124相背设置的第二表面123。所述引导件12在所述夹层玻璃13上的投影覆盖所述信号传输区131。所述引导件12用于改变光信号的传输路径。所述引导件12在第一方向D1上折射率连续变化。其中,所述第一方向D1为所述夹层玻璃13的厚度方向。所述传感器11安装于车辆1内部,且所述传感器11朝向所述引导件12设置,所述引导件12位于所述夹层玻璃13和所述传感器11之间;具体地,所述传感器11可以通过支架等固定安装在所述夹层玻璃13上,也可以通过支架等固定安装在所述车辆主体20上。所述传感器11发射的光信号依次穿过所述引导件12和所述夹层玻璃13,和/或,接收的光信号依次穿过所述夹层玻璃13和所述引导件12。
本申请提供的夹层玻璃组件10应用于车辆1,用于为所述车辆1探测周围环境信息,以辅助所述车辆1行驶。其中,所述夹层玻璃13可以用作前挡玻璃,也可以用作后挡玻璃,还可以用作边窗玻璃;不限于此,所述夹层玻璃13还可以用作A柱外饰板玻璃、B柱外饰板玻璃或C柱外饰板玻璃等。
在本实施方式中,所述传感器11用于发射和/或接收光信号L0,所述光信号L0的波长在380nm~1650nm或8μm~12μm范围内,具体可以举例有可见光相机(380nm~780nm)、近红外相机(780nm~1650nm)、激光雷达(850nm、905nm、1550nm)、热像仪(8μm~12μm)等,用于取像、测距和定位等。
所述光信号L0可以是所述传感器11发出,从所述第二表面123入射,依次经由所述引 导件12及所述夹层玻璃13中的信号传输区131,并从所述夹层玻璃13背离所述引导件12的表面出射。所述光信号L0还可以是从车辆外部入射至所述夹层玻璃13背离所述引导件12的表面,依次经由所述夹层玻璃13中的信号传输区131及所述引导件12,并从所述第二表面123出射以被所述传感器11接收。为了保证所述传感器11能够正常工作以及提高探测精度,优选所述夹层玻璃13中的信号传输区131对所述光信号L0的透过率大于或等于80%,更优选大于或等于85%,甚至大于或等于90%;并且,所述引导件12对所述光信号L0的透过率大于所述夹层玻璃13中的信号传输区131对所述光信号L0的透过率。
接下来,以所述光信号L0从所述传感器11发出对所述夹层玻璃组件10进行示意性说明。
在本实施方式中,所述信号传输区131对应所述引导件12设置,即,所述引导件12的第一表面124贴合所述夹层玻璃13在所述信号传输区131靠近所述引导件12的表面。所述引导件12在第一方向D1上折射率连续变化,使得所述引导件12具有良好的屈光能力,从而使得所述光信号L0在所述引导件12中连续发生多次折射,以降低所述光信号L0入射至所述夹层玻璃13时的入射角,进而提高了所述光信号L0在所述夹层玻璃13的透过率。
综上所述,本申请实施方式提供了一种夹层玻璃组件10,所述夹层玻璃组件10包括夹层玻璃13、引导件12及传感器11,所述引导件12的第一表面124在信号传输区131贴合所述夹层玻璃13,所述引导件12在第一方向D1上折射率连续变化,减小所述光信号L0在所述夹层玻璃13处的入射角,从而提高所述光信号L0的透过率。因此,本申请实施方式提供的夹层玻璃组件10通过折射率渐变的引导件12提高了光信号L0的透过率,从而提高了所述夹层玻璃组件10的探测效果。
请参照图3、图5及图6,在本实施方式中,所述引导件12包括在所述第一方向D1上依次相接的多个引导部125,所述多个引导部125在所述第一方向D1上折射率先递增后递减。需要说明的是,图5中以所述引导部125的数量为5个进行示意,并未对所述引导部125的数量进行限定。
在本实施方式中,所述多个引导部125在所述第一方向D1上折射率先递增后递减。第一方面,使得所述引导件12具有良好的屈光能力,以对所述光信号L0进行偏转。第二方面,避免所述光信号L0由于空气与所述引导件12中在所述第二表面123的引导部125的折射率之差过大而导致所述光信号L0在所述第二表面123发生界面反射,还避免由于所述引导件12中在所述第一表面124的引导部125与所述夹层玻璃13之间的折射率之差过大而导致所述光信号L0在所述第一表面124与所述夹层玻璃13的交界处发生界面反射,从而提高了所述光信号L0在所述引导件12及所述夹层玻璃13的透过率。
可选地,所述多个引导部125在所述第一方向D1上折射率先递增后递减,且所述多个引导部125的折射率在所述第一方向D1上的变化呈现对称变化,能够优化光路偏转,使得所述多个引导部125对所述光信号L0的折射更加顺畅,提高了所述光信号L0的信号质量。
请再次参照图3、图5及图6,在本实施方式中,所述多个引导部125中贴合所述夹层玻璃13的引导部125的折射率与所述夹层玻璃13的折射率之差小于或等于0.03。
在本实施方式中,为避免所述光信号L0在经由所述引导件12入射至所述夹层玻璃13时由于交界处的折射率变化过大而导致所述光信号L0发生界面反射,将所述多个引导部125中贴合所述夹层玻璃13的引导部125的折射率设置为与所述夹层玻璃13的折射率之差小于或等于0.03。
请再次参照图3、图5及图6,在本实施方式中,所述多个引导部125的材料相同或不同,且相邻设置的两个所述引导部125的折射率之差△n满足:△n≤0.5。
在本实施方式中,在所述引导件12中,相邻设置的两个所述引导部125的折射率之差△n满足:△n≤0.5,能够避免所述光信号L0在相邻设置的两个所述引导部125的交界处发生界面反射,从而提高所述光信号L0的透过率,进而优化所述光信号L0的光路偏转。可选地,相邻设置的两个所述引导部125的折射率之差△n满足:△n≤0.3,或,△n≤0.1。
此外,所述多个引导部125中在所述第一方向D1上相邻两个所述引导部125的折射率递增的数量等于折射率递减的数量,即,所述多个引导部125在所述第一方向D1上,折射率最低到折射率最高所设置的引导部125的数量等于折射率最高到折射率最低所设置的引导部125的数量,使得所述多个引导部125的折射率变化呈现近似对称设置,从而减小折射率差异,进而优化所述光信号L0的光路偏转。可选地,所述多个引导部125在所述第一方向D1上,折射率最低到折射率最高所设置的引导部125的数量等于折射率最高到折射率最低所设置的引导部125的数量,且以折射率最高的引导部125为中心,其它折射率的引导部125呈对称分布,能够进一步优化所述光信号L0的光路偏转。
在一实施方式中,所述多个引导部125的材料不同,所述引导件12可通过在所述第一方向D1上依次设置折射率由低到高,再由高到低的材料制作的所述多个引导部125。所述多个引导部125的材料可以但不限于为无机物(例如,玻璃、石英、氮化硅或者硫硒化合物等)或有机物(例如,甲基丙烯酸甲酯或者甲基丙烯酸三氟乙酯等)等。
在另一实施方式中,请参照图7及图8,当所述多个引导部125的材料相同时,所述引导件12还包括分散于所述多个引导部125的第一添加剂126。所述第一添加剂126在所述第一方向D1上浓度先递增后递减。其中,所述第一添加剂126的折射率高于所述引导部125的折射率。或者,所述引导件12还包括分散于所述多个引导部125的第二添加剂127。所述第二添加剂127在所述第一方向D1上浓度先递减后递增。其中,第二添加剂127的折射率低于所述引导部125的折射率。
在本实施方式中,可通过在所述引导件12中不同的引导部125中设置添加剂以改变所述多个引导部125的折射率,使得所述多个引导部125的折射率在所述第一方向D1上呈现先递增后递减。所述多个引导部125的材料可以但不限于为无机物(例如,玻璃、石英、氮化硅或者硫硒化合物等)或有机物(例如,甲基丙烯酸甲酯或者甲基丙烯酸三氟乙酯等)等。
具体地,所述多个引导部125中设置添加剂可采用离子交换工艺实现,且通过离子的极化能力以及浓度调整所述多个引导部125的折射率。在一实施方式中,在所述第一方向D1上,依次对所述多个引导部125添加浓度先递增后递减的第一添加剂126,使得所述引导件12在所述第一方向D1上的折射率先递增后递减。其中,所述第一添加剂126的折射率高于所述多个引导部125的折射率,所述第一添加剂126包括Cs+或Pb2+等中至少一种。在另一实施方式中,在所述第一方向D1上,依次对所述多个引导部125添加浓度先递减后递增的第二添加剂127,使得所述引导件12在所述第一方向D1上折射率先递增后递减。其中,所述第二添加剂127的折射率低于所述多个引导部125的折射率,所述第二添加剂127包括K+,Na+等碱金属中至少一种。在其它实施方式中,可在所述多个引导部125中添加所述第一添加剂126与所述第二添加剂127的混合物,只要能够实现所述引导件12在所述第一方向D1上折射率先递增后递减即可。
请再次参照图2及图3,在本实施方式中,所述夹层玻璃13具有安装于所述车辆1时的上侧边136及下侧边137。所述引导件12在所述第二方向D2上厚度连续变大。其中,所述第二方向D2为所述上侧边136指向所述下侧边137的方向。
所述引导件12在第二方向D2上厚度连续变大,使得所述第一表面124与水平面的夹角 小于所述夹层玻璃13与所述水平面的夹角,从而使得所述光信号L0在所述第二表面123上的入射角相较于直接入射至所述夹层玻璃13更小,进而提高了所述光信号L0的透过率。
此外,由于所述引导件12在所述第二方向D2上的厚度连续变大,使得所述引导件12在所述第二方向D2上对所述光信号L0的折射角度连续变大,以使得所述引导件12靠近所述上侧边136的部分相对于所述引导件12靠近所述下侧边137的部分对所述光信号L0的折射角度大,从而提高了所述光信号L0从信号传输区131经由所述夹层玻璃13出射的视野角度,进而扩大了所述传感器11在所述第二方向D2的实际探测视野范围,所述光信号L0在所述第二方向D2的视野角度对应于传感器11的垂直视场角(VFOV)。
请参照图9,在本实施方式中,所述引导件12包括在所述第一方向D1上依次相接的多个引导部125,所述多个引导部125中的至少部分所述引导部125在所述第二方向D2上厚度连续变大。或者,所述多个引导部125中的部分所述引导部125在所述第二方向D2上厚度连续变大,且所述多个引导部125中的另外部分所述引导部125在所述第二方向D2上厚度不变。或者,所述多个引导部125中的部分所述引导部125在所述第二方向D2上厚度连续变大,且所述多个引导部125中的另外部分所述引导部125在所述第二方向D2上厚度连续变小。或者,所述多个引导部125中的部分所述引导部125在所述第二方向D2上厚度连续变大,且所述多个引导部125中的部分所述引导部125在所述第二方向D2上厚度不变,且所述多个引导部125中的另外部分所述引导部125在所述第二方向D2上厚度连续变小。需要说明的是,图9以所述多个引导部125的部分所述引导部125在所述第二方向D2上厚度连续变大,且所述多个引导部125中的另外部分所述引导部125在所述第二方向D2上厚度不变进行示意,可以理解地,图9中的所述多个引导部125并未对本申请实施方式中的所述多个引导部125进行限定。
在本实施方式中,所述多个引导部125中每个所述引导部125在所述第二方向D2上的厚度可以任意变化,只要使得所述引导件12在所述第二方向D2上厚度连续变大即可。
请参照图10,在本实施方式中,所述引导件12在第三方向D3上厚度先递减后递增。其中,所述第三方向D3垂直于所述第二方向D2,且垂直于所述第一方向D1。需要说明的是,图10中第二视角为垂直于所述第一方向与所述第三方向所形成的面的视角。
在本实施方式中,在第三方向D3上,所述引导件12在所述第三方向D3上厚度先递减后递增,使得所述光信号L0入射至所述引导件12后,所述光信号L0中的光线在所述引导件12的两侧的偏转大于在所述引导件12的中间的偏转,从而使得所述光信号L0在所述夹层玻璃13背离引导件12一侧的视野角度大于所述光信号L0在所述引导件12背离所述夹层玻璃13一侧的视野角度,进而扩大了所述传感器11在所述第三方向D3的实际探测视野范围。其中,所述第三方向D3垂直于所述第二方向D2,且垂直于所述第一方向D1。所述光信号L0在所述第三方向D3的视野角度对应于传感器11的水平视场角(HFOV)。
可选地,所述引导件12在第三方向D3上厚度先递减后递增,且呈现对称结构,进一步优化了所述光信号L0在所述引导件12中的光路偏转。
请参照图3、图11及图12,在本实施方式中,所述引导件12还包括多个粘结层128,所述多个粘结层128用于粘结所述多个引导部125。
在本实施方式中,所述多个引导部125的折射率在所述第一方向D1上先递增后递减,所述多个引导部125通过所述多个粘结层128粘结在一起形成所述引导件12,使得所述引导件12的折射率变化设计更加灵活多样。
此外,所述粘结层128对所述光信号L0的透过率大于90%,且所述粘结层128的折射 率na满足:0.7nl≤na≤1.3nr。其中,nl为所述粘结层128粘结的相邻两个引导部125中折射率较低的引导部125的折射率,nr为所述粘结层128粘结的相邻两个引导部125中折射率较高的引导部125的折射率。
所述粘结层128对所述光信号L0的透过率大于90%,能够避免所述粘结层128对所述光信号L0的传输造成阻碍。所述粘结层128的折射率na满足:0.7nl≤na≤1.3nr,能够避免所述光信号L0在所述粘结层128与所述引导部125的交界处由于折射率变化过大而发生界面反射,提高所述光信号L0在所述引导件12中的透过率。
请参照图13及图14,在本实施方式中,所述夹层玻璃13具有安装于车辆1时的上侧边136及下侧边137。在所述引导件12背离所述夹层玻璃13一侧,所述光信号L0在所述第二方向D2的视野角度α满足:0°≤α≤25°,在第三方向D3的视野角度θ满足:0°≤θ≤90°。其中,所述第二方向D2为所述上侧边136指向所述下侧边137的方向。所述第三方向D3垂直于所述第二方向D2,且垂直于所述第一方向D1。
在本实施方式中,在所述引导件12背离所述夹层玻璃13一侧,所述光信号L0在所述第二方向D2的视野角度α满足:0°≤α≤25°,可选地,0°≤α≤15°。由于所述引导件12的偏转,位于车辆外部的所述光信号L0在所述第二方向D2的视野角度大于在所述引导件12背离所述夹层玻璃13一侧的所述光信号L0在所述第二方向D2的视野角度α,从而扩大了所述传感器11在所述第二方向D2的实际探测视野范围。优选地,位于车辆外部的所述光信号L0在所述第二方向D2的视野角度比在所述引导件12背离所述夹层玻璃13一侧的所述光信号L0在所述第二方向D2的视野角度α大至少5°,更优选大至少10°。
在本实施方式中,在所述引导件12背离所述夹层玻璃13一侧,所述光信号L0在所述第三方向D3的视野角度θ满足:0°≤θ≤90°,可选地,0°≤θ≤60°。由于所述引导件12的偏转,位于车辆外部的所述光信号L0在所述第三方向D3的视野角度大于在所述引导件12背离所述夹层玻璃13一侧的所述光信号L0在所述第三方向D3的视野角度θ,从而扩大了所述传感器11在所述第三方向D3的实际探测视野范围。优选地,位于车辆外部的所述光信号L0在所述第三方向D3的视野角度比在所述引导件12背离所述夹层玻璃13一侧的所述光信号L0在所述第三方向D3的视野角度θ大至少5°,更优选大至少10°,还优选大至少20°,甚至大至少30°。
请再次参照图13及图14,在本实施方式中,所述光信号L0中的光线与所述第二表面123的法线在所述第二方向D2上的最大夹角αi满足:αi≤45°。所述光信号L0中的光线与所述第二表面123的法线在所述第三方向D3上的最大夹角θi满足:θi≤45°。
在本实施方式中,所述光信号L0中的光线与所述第二表面123的法线在所述第二方向D2上的最大夹角αi满足:αi≤45°(请参见图13),避免所述光信号L0在所述第二表面123上的透过率过低,可选地,αi≤30°。所述光信号L0中光线与所述第二表面123在所述第三方向D3上的最大夹角θi满足:θi≤45°(请参照图14),避免所述光信号L0在所述第二表面123上的透过率过低,可选地,θi≤30°。
此外,所述光信号L0以最大夹角αi或θi入射至所述第二表面123的透过率与垂直入射至所述第二表面123的透过率之差△T满足:△T≤3%,以保证所述光信号L0在所述引导件12中的透过率。
请参照图15,在本实施方式中,所述夹层玻璃13还具有非信号传输区132。所述夹层玻璃13包括第一透明基板133、第二透明基板134及中间粘结层135。所述第二透明基板134相对于所述第一透明基板133背离所述引导件12设置,即所述第一透明基板133作为靠近车 内设置的内玻璃板,所述第二透明基板134作为靠近车外的外玻璃板。所述中间粘结层135设于所述第一透明基板133与所述第二透明基板134之间,用于粘结所述第一透明基板133及所述第二透明基板134。
在本实施方式中,所述中间粘结层135包括至少设于所述信号传输区131的第一粘结层1351及设于至少部分所述非信号传输区132的第二粘结层1352。所述第一粘结层1351至少设于所述信号传输区131,所述第二粘结层1352位于所述非信号传输区132。
所述第一粘结层1351的材料可以与所述第二粘结层1352的材料相同,所述第一粘结层1351对所述光信号L0的透过率等于所述第二粘结层1352对所述光信号L0的透过率。第一粘结层1351与所述第二粘结层1352为一体结构,所述中间粘结层135的材料可以为聚乙烯醇缩丁醛(PVB)、乙烯-醋酸乙烯酯共聚物(EVA)、热塑性聚氨酯弹性体(TPU)或者聚烯烃弹性体(POE)等。
由于所述第二粘结层1352不会对所述光信号L0在所述信号传输区131的传输造成干扰,从节约成本考虑,所述第一粘结层1351的材料可以与所述第二粘结层1352的材料不同,所述第一粘结层1351对所述光信号L0的透过率大于所述第二粘结层1352对所述光信号L0的透过率,所述第一粘结层1351可以通过熔合拼接与所述第二粘结层1352一起形成所述中间粘结层135。例如针对波长为1550nm的激光雷达,所述第一粘结层1351的材料选用乙烯-醋酸乙烯酯共聚物(EVA)、热塑性聚氨酯弹性体(TPU)或者聚烯烃弹性体(POE)等,所述第二粘结层1352的材料选用聚乙烯醇缩丁醛(PVB)。
请参照图15及图16,接下来对所述夹层玻璃组件10的具体实施例进行说明。所述传感器11发出的光信号L0在所述第二方向D2的视野角度α为14°,在第三方向D3的视野角度θ为90°。
实施例1:
传感器11:选用激光雷达,其发射和接收的光信号L0的波长为905nm;
引导件12:在所述第一方向D1上的折射率变化为1.5-1.8-2.1-1.8-1.5;
夹层玻璃13:所述第一透明基板133及所述第二透明基板134均为2.1mm厚的超透明玻璃(即超白玻璃),所述第一粘结层1351的材料与所述第二粘结层1352的材料均为0.76mm厚的PVB。所述夹层玻璃13与水平面的夹角为30°。
经过试验,经由所述信号传输区131出射的光信号L0在所述第二方向D2的视野角度α’为28°,α’-α=14°;在第三方向D3的视野角度θ’为130°,θ’-θ=40°。可以得出本申请提供的夹层玻璃组件10能够提高所述光信号L0的实际探测视野角,从而扩大探测范围。
根据ISO9050测量和计算;
所述光信号L0在所述第二方向D2上依次穿过所述引导件12的下部区域、所述信号传输区131后出射的透过率为83%;
所述光信号L0依次穿过所述引导件12的中心区域、所述信号传输区131后出射的透过率为88.7%;
所述光信号L0在所述第三方向D3上依次穿过所述引导件12的侧边区域、所述信号传输区131后出射的透过率为81.4%;
由此可见,本申请提供的夹层玻璃组件10能够提高所述光信号L0的透过率,且大于80%,符合905nm激光雷达的探测要求。
实施例2:
传感器11:选用激光雷达,其发射和接收的光信号L0的波长为1550nm;
引导件12:在所述第一方向D1上的折射率变化为1.5-1.8-2.1-1.8-1.5;
夹层玻璃13:所述第一透明基板133及所述第二透明基板134均为2.1mm厚的超透明玻璃(即超白玻璃),所述第一粘结层1351的材料为0.76mm厚的EVA,所述第二粘结层1352的材料为0.76mm厚的PVB。所述夹层玻璃13与水平面的夹角为30°。
经过试验,经由所述信号传输区131出射的光信号L0在所述第二方向D2的视野角度α’为28°,α’-α=14°;在第三方向D3的视野角度θ’为130°,θ’-θ=40°。可以得出本申请提供的夹层玻璃组件10能够提高所述光信号L0的实际探测视野角,从而扩大探测范围。
根据ISO9050测量和计算;
所述光信号L0在所述第二方向D2上依次穿过所述引导件12的下部区域、所述信号传输区131后出射的透过率为82.7%;
所述光信号L0依次穿过所述引导件12的中心区域、所述信号传输区131后出射的透过率为88.2%;
所述光信号L0在所述第三方向D3上依次穿过所述引导件12的侧边区域、所述信号传输区131后出射的透过率为80.7%;
由此可见,本申请提供的夹层玻璃组件10能够提高所述光信号L0的透过率,且大于80%,符合1550nm激光雷达的探测要求。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种夹层玻璃组件,其特征在于,所述夹层玻璃组件包括:
    夹层玻璃,所述夹层玻璃具有信号传输区,所述信号传输区用于光信号的传输;
    引导件,所述引导件具有贴合所述夹层玻璃的第一表面,以及与所述第一表面相背设置的第二表面,所述引导件在所述夹层玻璃上的投影覆盖所述信号传输区,所述引导件用于改变光信号的传输路径,所述引导件在第一方向上折射率连续变化,其中,所述第一方向为所述夹层玻璃的厚度方向;以及
    传感器,所述传感器安装于车辆内部,所述传感器发射的光信号依次穿过所述引导件和所述夹层玻璃,和/或,接收的光信号依次穿过所述夹层玻璃和所述引导件。
  2. 如权利要求1所述的夹层玻璃组件,其特征在于,所述引导件的材料包括玻璃、石英、氮化硅、硫硒化合物、甲基丙烯酸甲酯或者甲基丙烯酸三氟乙酯中至少一种。
  3. 如权利要求1所述的夹层玻璃组件,其特征在于,所述引导件包括在所述第一方向上依次相接的多个引导部,所述多个引导部在所述第一方向上折射率先递增后递减。
  4. 如权利要求3所述的夹层玻璃组件,其特征在于,所述多个引导部的材料相同或不同,且相邻设置的两个所述引导部的折射率之差△n满足:△n≤0.5。
  5. 如权利要求4所述的夹层玻璃组件,其特征在于,当所述多个引导部的材料相同时,所述引导件还包括分散于所述多个引导部的第一添加剂,所述第一添加剂在所述第一方向上浓度先递增后递减,其中,所述第一添加剂的折射率高于所述引导部的折射率;
    或者,所述引导件还包括分散于所述多个引导部的第二添加剂,所述第二添加剂在所述第一方向上浓度先递减后递增,其中,第二添加剂的折射率低于所述引导部的折射率。
  6. 如权利要求4所述的夹层玻璃组件,其特征在于,所述多个引导部中在所述第一方向上相邻两个所述引导部的折射率递增的数量等于折射率递减的数量。
  7. 如权利要求3所述的夹层玻璃组件,其特征在于,所述多个引导部中贴合所述夹层玻璃的引导部的折射率与所述夹层玻璃的折射率之差小于或等于0.03。
  8. 如权利要求3所述的夹层玻璃组件,其特征在于,所述引导件还包括多个粘结层,所述多个粘结层用于粘结所述多个引导部。
  9. 如权利要求8所述的夹层玻璃组件,其特征在于,所述粘结层对所述光信号的透过率大于90%,且所述粘结层的折射率na满足:0.7nl≤na≤1.3nr,其中,nl为所述粘结层粘结的相邻两个引导部中折射率较低的引导部的折射率,nr为所述粘结层粘结的相邻两个引导部中折射率较高的引导部的折射率。
  10. 如权利要求1所述的夹层玻璃组件,其特征在于,所述夹层玻璃具有安装于车辆时的上侧边及下侧边,所述引导件在第二方向上厚度连续变大,其中,所述第二方向为所述上侧 边指向所述下侧边的方向。
  11. 如权利要求10所述的夹层玻璃组件,其特征在于,所述引导件包括在所述第一方向上依次相接的多个引导部,
    所述多个引导部中的至少部分所述引导部在所述第二方向上厚度连续变大;或者,
    所述多个引导部中的部分所述引导部在所述第二方向上厚度连续变大,且所述多个引导部中的另外部分所述引导部在所述第二方向上厚度不变;或者,
    所述多个引导部中的部分所述引导部在所述第二方向上厚度连续变大,且所述多个引导部中的另外部分所述引导部在所述第二方向上厚度连续变小;或者,
    所述多个引导部中的部分所述引导部在所述第二方向上厚度连续变大,且所述多个引导部中的部分所述引导部在所述第二方向上厚度不变,且所述多个引导部中的另外部分所述引导部在所述第二方向上厚度连续变小。
  12. 如权利要求11所述的夹层玻璃组件,其特征在于,所述引导件在第三方向上厚度先递减后递增,其中,所述第三方向垂直于所述第二方向,且垂直于所述第一方向。
  13. 如权利要求1所述的夹层玻璃组件,其特征在于,所述夹层玻璃具有安装于车辆时的上侧边及下侧边,在所述引导件背离所述夹层玻璃一侧,所述光信号在第二方向的视野角度α满足:0°≤α≤25°,在第三方向的视野角度θ满足:0°≤θ≤90°,其中,所述第二方向为所述上侧边指向所述下侧边的方向,所述第三方向垂直于所述第二方向,且垂直于所述第一方向。
  14. 如权利要求13所述的夹层玻璃组件,其特征在于,所述光信号中的光线与所述第二表面的法线在所述第二方向上的最大夹角αi满足:αi≤45°,所述光信号中的光线与所述第二表面的法线在所述第三方向上的最大夹角θi满足:θi≤45°。
  15. 如权利要求14所述的夹层玻璃组件,其特征在于,所述光信号以最大夹角αi或θi入射至所述第二表面的透过率与垂直入射至所述第二表面的透过率之差△T满足:△T≤3%。
  16. 如权利要求13所述的夹层玻璃组件,其特征在于,位于车辆外部的所述光信号在所述第二方向的视野角度α’比在所述引导件背离所述夹层玻璃一侧的所述光信号在所述第二方向的视野角度α大至少5°。
  17. 如权利要求13所述的夹层玻璃组件,其特征在于,位于车辆外部的所述光信号在所述第三方向的视野角度θ’比在所述引导件背离所述夹层玻璃一侧的所述光信号在所述第三方向的视野角度θ大至少5°。
  18. 如权利要求1所述的夹层玻璃组件,其特征在于,所述夹层玻璃还具有非信号传输区,所述夹层玻璃包括:
    第一透明基板;
    第二透明基板,所述第二透明基板相对于所述第一透明基板背离所述引导件设置;以及
    中间粘结层,所述中间粘结层设于所述第一透明基板与所述第二透明基板之间,用于粘 结所述第一透明基板及所述第二透明基板,所述中间粘结层包括至少设于所述信号传输区的第一粘结层及设于至少部分所述非信号传输区的第二粘结层。
  19. 如权利要求18所述的夹层玻璃组件,其特征在于,所述第一粘结层对所述光信号的透过率大于或等于所述第二粘结层对所述光信号的透过率。
  20. 一种车辆,其特征在于,所述车辆包括:
    如权利要求1-19任意一项所述的夹层玻璃组件;以及
    车辆主体,所述车辆主体用于承载所述夹层玻璃组件。
PCT/CN2023/117126 2022-09-06 2023-09-06 夹层玻璃组件及车辆 WO2024051713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211095533.3 2022-09-06
CN202211095533.3A CN115675029A (zh) 2022-09-06 2022-09-06 夹层玻璃组件及车辆

Publications (1)

Publication Number Publication Date
WO2024051713A1 true WO2024051713A1 (zh) 2024-03-14

Family

ID=85062244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117126 WO2024051713A1 (zh) 2022-09-06 2023-09-06 夹层玻璃组件及车辆

Country Status (2)

Country Link
CN (1) CN115675029A (zh)
WO (1) WO2024051713A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115675029A (zh) * 2022-09-06 2023-02-03 福耀玻璃工业集团股份有限公司 夹层玻璃组件及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927733A (zh) * 2010-08-31 2010-12-29 杨学斌 一种车用视野扩展透镜
CN105280655A (zh) * 2014-06-02 2016-01-27 佳能株式会社 光电转换装置与成像系统
JP2016168996A (ja) * 2015-03-12 2016-09-23 日本板硝子株式会社 ウインドシールド
CN107181041A (zh) * 2016-03-11 2017-09-19 日本电产艾莱希斯株式会社 车辆
CN114040845A (zh) * 2020-05-28 2022-02-11 法国圣戈班玻璃厂 玻璃元件、具有玻璃元件的装置和相关热像仪
CN114312248A (zh) * 2021-11-29 2022-04-12 福耀玻璃工业集团股份有限公司 车窗玻璃及其制备方法、车辆
CN115675029A (zh) * 2022-09-06 2023-02-03 福耀玻璃工业集团股份有限公司 夹层玻璃组件及车辆

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255501B2 (ja) * 2018-02-07 2023-04-11 Agc株式会社 合わせガラス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927733A (zh) * 2010-08-31 2010-12-29 杨学斌 一种车用视野扩展透镜
CN105280655A (zh) * 2014-06-02 2016-01-27 佳能株式会社 光电转换装置与成像系统
JP2016168996A (ja) * 2015-03-12 2016-09-23 日本板硝子株式会社 ウインドシールド
CN107181041A (zh) * 2016-03-11 2017-09-19 日本电产艾莱希斯株式会社 车辆
CN114040845A (zh) * 2020-05-28 2022-02-11 法国圣戈班玻璃厂 玻璃元件、具有玻璃元件的装置和相关热像仪
CN114312248A (zh) * 2021-11-29 2022-04-12 福耀玻璃工业集团股份有限公司 车窗玻璃及其制备方法、车辆
CN115675029A (zh) * 2022-09-06 2023-02-03 福耀玻璃工业集团股份有限公司 夹层玻璃组件及车辆

Also Published As

Publication number Publication date
CN115675029A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024051713A1 (zh) 夹层玻璃组件及车辆
JP5944977B2 (ja) 車両用グレージング、その製造方法、および使用
US20170341491A1 (en) Windshield
US6668104B1 (en) Optical sensor
US10850477B2 (en) Vehicle composite pane with optimised beam path for a sensor mounted thereon
US10710434B2 (en) Laminated glass
CN109070703A (zh) 具有支架的夹层板
US20220196843A1 (en) Lidar assembly for automotive applications comprising an anti reflection unit
JP2019196299A (ja) 合わせガラス
US20230373195A1 (en) Laminated glazing
JP2019527158A (ja) 前面カメラに関連する可変厚さプロファイルを有する車両用の窓組立体
US20230202145A1 (en) Glazed element, device with glazed element and associated thermal imaging camera
EP4363924A1 (en) Optical wedge element for glazing equipped with optical sensor
US20220152991A1 (en) Laminated glass and vehicle system
US11962933B2 (en) Device with glazing and associated thermal camera, and optimization methods
US20010035904A1 (en) Vehicle surrounding viewing system
TWM579603U (zh) 行動載具輔助系統
JP3226200B2 (ja) 合わせガラス
CN216526357U (zh) 玻璃组件、窗体总成及显示装置
TWM585732U (zh) 行動載具輔助系統
KR20150000095A (ko) 헤드업 디스플레이 장치 및 라이다 센서를 위한 윈드 실드
CN220766872U (zh) 一种保护膜结构
KR20240027796A (ko) 전면 바람막이 유리와 차량
US20240168132A1 (en) Electromagnetic wave transmissive cover and sensor module
CN114986998A (zh) 夹层玻璃、挡风玻璃组件和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862407

Country of ref document: EP

Kind code of ref document: A1