WO2024051674A1 - 图像处理电路和电子设备 - Google Patents

图像处理电路和电子设备 Download PDF

Info

Publication number
WO2024051674A1
WO2024051674A1 PCT/CN2023/116930 CN2023116930W WO2024051674A1 WO 2024051674 A1 WO2024051674 A1 WO 2024051674A1 CN 2023116930 W CN2023116930 W CN 2023116930W WO 2024051674 A1 WO2024051674 A1 WO 2024051674A1
Authority
WO
WIPO (PCT)
Prior art keywords
image processing
image
data
synchronization signal
image data
Prior art date
Application number
PCT/CN2023/116930
Other languages
English (en)
French (fr)
Inventor
文亮
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024051674A1 publication Critical patent/WO2024051674A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/268Signal distribution or switching

Definitions

  • This application belongs to the field of image processing technology, and specifically relates to an image processing circuit and electronic equipment.
  • an application processor can be set up in a mobile phone, and the application processor can also be called the main control chip.
  • an image processing chip such as a display chip may be configured for an electronic device such as a mobile phone.
  • the image processing chip is a chip that is separate from the main control chip and can perform processing on images.
  • the main control chip and image processing chip can be located on the mobile phone motherboard.
  • the purpose of the embodiments of this application is to design a new architecture that enables bidirectional transmission between the main control chip and the image processing chip and solves the problem of low data transmission efficiency during image data processing.
  • an embodiment of the present application proposes an image processing circuit.
  • the circuit includes a main control chip and an image processing chip.
  • the main control chip and the image processing chip are connected through a first path; the main control chip passes through The first channel sends first image data to the image processing chip; the image processing chip is used to perform first image processing on the first image data to obtain second image data; the image processing chip passes the first A channel sends the second image data to the main control chip.
  • inventions of the present application propose an image processing circuit.
  • the circuit includes a main control chip and an image processing chip.
  • the main control chip includes a first sending unit and a first data processing unit; the image processing chip It includes a second data processing unit and a second sending unit; the main control chip and the image processing chip are connected through a first path; the first sending unit is used to send the first image data to the the second data processing unit; the second data processing unit is used to perform first image processing on the first image data to obtain second image data; and the second sending unit is used to send the data through the first path the second image data to the first data processing unit.
  • embodiments of the present application provide an electronic device, including the image processing circuit according to the embodiment.
  • the main control chip and the image processing chip are connected through the first path.
  • the main control chip sends first image data to the image processing chip through the first channel; the image processing chip is used to perform first image processing on the first image data. , to obtain the second image data; the image processing chip sends the second image data to the main control chip through the first channel. In this way, bidirectional transmission can be achieved between the main control chip and the image processing chip through the first path.
  • Figure 1 is a schematic diagram of an image processing architecture
  • Figure 2 is a schematic block diagram of an image processing circuit according to one embodiment
  • Figure 3 is a schematic diagram of an image processing circuit according to another embodiment
  • Figure 4 is a schematic diagram of an image processing circuit according to another embodiment
  • Figure 5 is a schematic diagram of an image processing circuit according to another embodiment
  • Figure 6 is a schematic diagram of a synchronization signal in the circuit shown in Figure 5;
  • Figure 7 is a schematic diagram of a synchronization signal in an image processing circuit according to another embodiment
  • Figure 8 is a schematic diagram of an image processing circuit according to another embodiment
  • Figure 9 is a schematic block diagram of an image processing circuit according to another embodiment.
  • Figure 10 is a schematic diagram of the hardware structure of an electronic device that implements an embodiment of the present application.
  • Figure 11 is a schematic diagram of an electronic device according to another embodiment.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • FIG. 1 schematically shows an image processing architecture.
  • the application processor AP as the main control chip and the image processing chip are connected through the Mobile Industry Processor Interface (MIPI) path.
  • the application processor (Application Protocol, AP) uses the display serial interface (Display Serial Interface, DSI) to send the image content to the image processing chip through the MIPI channel.
  • the image processing chip can have two working modes. In the first working mode, the switch K1 is turned on, and the image content is sent to the screen through a bypass path for display. In the second working mode, switch K2, K3 is turned on.
  • the image processing chip receives image content through the MIPI RX0 interface. For example, in the frame-filling module, frame-filling processing is performed on the received image content, and color processing is performed on the image content. The processed image content is sent to the screen through the MIPI TX0 interface for display.
  • the first channel to transfer data between the main control chip and the image processing chip during the image processing process, thereby increasing the degree of freedom of image processing.
  • FIG. 2 shows a schematic diagram of an image processing circuit in accordance with some embodiments.
  • the image processing circuit includes: a main control chip 1 and an image processing chip 2.
  • the main control chip 1 sends the first image data to the image processing chip 2 through the first channel.
  • the image processing chip 2 is used to perform first image processing on the first image data to obtain second image data.
  • the image processing chip 2 sends the second image data to the main control chip 1 through the first channel.
  • the image processing chip 2 may be an image signal processing (Image Signal Processing, ISP) chip.
  • ISP Image Signal Processing
  • the main control chip 1 After receiving the original image data from the camera, the main control chip 1 will perform preliminary image signal processing on the original image data. Then, the main control chip 1 sends the processed image data to the image processing chip 2 for further processing. Then, the image processing chip 2 returns the processed image data to the main control chip 1 . In this way, image data can be transmitted to each other multiple times between the main control chip 1 and the image processing chip 2 .
  • the image processing chip 2 may be a display chip.
  • the main control chip 1 receives image data obtained from the network or locally stored image data.
  • the main control chip 1 may perform preliminary image display processing on the received image data, or may not perform any processing on the image data.
  • the main control chip 1 sends the image data to the image processing chip 2 for further processing.
  • the image processing chip 2 returns the processed image data to the main control chip 1 .
  • image data may be transmitted to each other multiple times between the main control chip 1 and the image processing chip 2 .
  • the first path is a path capable of bidirectional transmission, that is, the interfaces connected at both ends of the first path can send and receive data from the main control chip 1 to the image processing chip 2 and can send and receive data from the image processing chip 2 to the host control chip data.
  • the first path may include a PCIe (peripheral component interconnect express, PCI-Express, high-speed serial computer expansion bus standard) interface path, a serial hard disk interface (Serial Advanced Technology Attachment, SATA) path and a Universal Serial Bus (Universal Serial Bus) , one of the USB) interface paths.
  • PCIe peripheral component interconnect express
  • PCI-Express high-speed serial computer expansion bus standard
  • SATA Serial Advanced Technology Attachment
  • USB Universal Serial Bus
  • the main control chip 1 and the image processing chip 2 are also connected through a second path.
  • the main control chip 1 is also used to perform second image processing on the second image data to obtain a third image number. according to.
  • the main control chip 1 sends the third image data to the image processing chip 2 through the second channel.
  • the third image data is used for display on the first display element.
  • the first display element is, for example, a display screen, a projection screen, or the like.
  • the second path is a path capable of sending image data from the main control chip 1 to the image processing chip 2 .
  • the second path is a path that uses the Display Serial Interface (DSI) under the MIPI protocol.
  • the image processing chip 2 may process the third image data and send the processed third image data to the display device.
  • the image processing chip 2 can also directly send the third image data to the display device in a bypass manner.
  • the image processing chip 2 and the display device may be connected through a third path.
  • the third path is, for example, a path using a DSI interface.
  • the display device displays third image data.
  • the image data is, for example, video data or video stream data.
  • Designers can design the first image processing and the second image processing as needed.
  • the first image processing may be frame interpolation processing, color processing, etc.
  • the second image processing may be color space conversion, encoding, etc. processing.
  • the first image data may be image data that has undergone preliminary processing by the main control chip 1 , or may be image data that has not been processed by the main control chip 1 .
  • the raw data from the camera is sent from the main control chip 1 to the image processing chip 2 as the first image data after being processed such as white balance and noise reduction.
  • the image processing chip 2 After performing frame interpolation processing, color processing and other processing on the first image data, the image processing chip 2 sends the obtained second image data to the main control chip 1 .
  • the main control chip 1 processes the second image data and sends the obtained third image data to the image processing chip 2 .
  • the image processing chip 2 can directly send the third image data to the display device for display through the bypass mode.
  • the image processing chip 2 may also further process the third image data, and then send the processed third image data to the display device for display.
  • the display device is, for example, a liquid crystal display screen, a light emitting diode display screen, an organic light emitting diode display screen, a quantum dot diode display screen, a laser projection display device, an optical waveguide display device such as a lens of smart glasses, and the like.
  • the path between the main control chip 1 and the image processing chip 2 uses the display serial interface DSI; when the image processing chip 2 sends data to the main control chip 1.
  • the path between the main control chip 1 and the image processing chip 2 is the path using the Camera Serial Interface (CSI).
  • CSI Camera Serial Interface
  • the inventor of this application found that such a channel design is not suitable for image data interaction between the main control chip and the image processing chip.
  • an additional channel needs to be used, that is, the channel using the camera serial interface CSI.
  • additional channels will affect the overall processing performance of the main control chip 1 and the image processing chip 2 in terms of transmission efficiency, transmission delay, transmission data volume, transmission power consumption and other transmission performance.
  • a path capable of bidirectional transmission is used to transmit image data between the main control chip 1 and the image processing chip 2 .
  • the performance loss caused by switching paths can be at least partially reduced. This can improve the speed of data processing and the smoothness of screen display.
  • the main control chip can send the third image data to the image processing chip through the second channel.
  • the second path may be a unidirectional path, such as a path utilizing a DSI interface.
  • the first path capable of bidirectional transmission can be utilized to improve the overall performance of image processing.
  • the main control chip 1 and the image processing chip 2 are connected through a first synchronization signal line.
  • the first synchronization signal line is used to transmit the first synchronization signal.
  • the first synchronization signal is used for synchronization of image frame data.
  • synchronization signals can be used to transmit image data in an orderly manner, thereby avoiding problems such as screen tearing.
  • the number of periodic transmissions of the first synchronization signal is N times the number of first image data frames, and N is a positive integer.
  • the "frame” here refers to the "frame” of the display picture, wherein one picture displayed by the display device corresponds to one frame of image data.
  • the number of periodic transmissions of the first synchronization signal refers to the number of times the synchronization signal is transmitted per unit time (for example, per second).
  • the number of first image data frames refers to the number of first image data frames processed per unit time (for example, per second).
  • the number of periodic transmissions of the first synchronization signal is greater than the number of frames of the first image data.
  • the picture displayed by the display device is smoother.
  • the processing and transmission of the image data can be restarted faster in response to the synchronization signal.
  • the period of the synchronization signal is less than 1/2 of the period of a single frame. In this way, the transmission delay due to the synchronization signal can be reduced. This can compress the time interval for sending image data to a certain extent, thereby improving system fluency, or increasing the speed of data processing, or improving picture fluency.
  • the first The number of periodic transmissions of the synchronization signal is smaller than the number of frames of the first image data.
  • the number of frames of the second image data can be an integer multiple of the number of periodic transmissions of the first synchronization signal.
  • image display freezes caused by a mismatch between the number of frames of the original image data and the number of frames of the target image data can be avoided.
  • the number of frames of the first image data is 60 frames per second, and the display screen can display images at 90 frames per second.
  • the synchronization signal may be set to 45 cycles per second.
  • frames in the first image data that do not correspond to the synchronization signal will be discarded. Since the synchronization signal is periodic, the discarded frames will also be periodic and will be evenly distributed in each frame of the first image data.
  • the image data obtained in this way is image data of 45 frames per second.
  • second image data of 90 frames per second can be obtained.
  • the 90 frames per second image data can be displayed on the display screen.
  • the target image data includes a data packet header, and the data packet header includes third synchronization signal data, and the third synchronization signal is used for synchronization of image frame data.
  • the target image data includes first image data or second image data.
  • the main control chip 1 and the image processing chip 2 are connected through a second synchronization signal line.
  • the second synchronization signal line is used to transmit the second synchronization signal.
  • the second synchronization signal is used to synchronize each row of pixel data in the image frame.
  • image data can be processed row by row, thereby increasing the granularity of image processing. This can improve the speed of data processing and the smoothness of screen display.
  • the second synchronization signal line and the first synchronization signal line may be the same line or different lines.
  • the first synchronization signal and the second synchronization signal may be transmitted at different times.
  • additional wiring costs can be avoided.
  • the image processing circuit may further include a second display element.
  • the main control chip 1 may also include a synchronization signal selection unit.
  • the synchronization signal selection unit is used to select the target synchronization signal of the target component.
  • the target synchronization signal is used to control the communication between the main control chip 1 and the target component.
  • the target synchronization signal is a signal transmitted through a synchronization signal line.
  • the target element may include one of the following: the image processing chip 2; the first display element; and the second display element.
  • FIG. 3-8 the main control chip is shown as the application processor AP, and the image processing chip is shown as the image processing chip.
  • Figure 3 is a schematic diagram of an image processing circuit according to another embodiment.
  • the application processor AP and the image processing chip are connected through paths using the PCIe, DSI_0, and RX0 interfaces.
  • the image processing chip is connected to the screen via TX0.
  • the DSI_0 interface, RX0 interface and TX0 interface are all one-way transmission interfaces of the MIPI protocol.
  • Camera Compact Module (CCM) 0 and CCM1 are image acquisition units such as camera modules.
  • the image data collected by the camera module CCM0 enters the image signal processing module (Image Signal Process, ISP) 0 through the camera serial interface CSI0.
  • the image data collected by the camera module CCM1 enters the image signal processing module ISP_1 through the camera serial interface CSI1.
  • the image data is processed in the image signal processing module ISP_0 and/or the image signal processing module ISP_1.
  • the processed image data is sent to the image processing chip through the PCIe interface and processed in the image processing module of the image processing chip.
  • the processed data is returned to the application processor AP through a path utilizing the PCIe interface.
  • the returned data is processed in the mobile display processor MDP of the application processor AP.
  • the image data processed by the mobile display processor (mobile display processor, MDP) is transmitted to the image processing chip through the channel using the DSI_0 interface and RX0 interface.
  • the image processing chip sends the image data to the screen through a channel using the TX0 interface.
  • the image data is displayed on the screen.
  • the PCIe interface in Figure 3 includes transmission lines in both directions: TX (transmit) and RX (receive).
  • the camera module CCM0 when the user records a video using an electronic device such as a mobile phone, the camera module CCM0 is turned on.
  • the camera module CCM0 transmits the captured content data to the application processor AP through the camera serial interface CSI0.
  • the image signal processing module ISP_0 of the application processor AP stores the content data in the memory after processing it.
  • the application processor AP controls the PCIe interface to send the content data to the image processing chip through the TX signal line.
  • the image processing chip processes the content data. After the image processing module of the image processing chip processes the content data, the processed content data is sent back to the application processor AP through the RX signal line.
  • the returned content data is processed in the mobile display processor MDP and transmitted to the RX0 port of the image processing chip through the channel using the DSI_0 interface. Afterwards, the content data is transmitted to the screen through the TX0 port. Display the content data on the screen.
  • the application processor AP can also save content data processed by the mobile display processor MDP.
  • the application processor AP can directly call the content data in the memory.
  • the called content data is processed by the mobile display processor MDP and transmitted to the RX0 port of the image processing chip through the DSI_0 interface.
  • the content data is transmitted to the screen through a channel using the TX0 interface. Display the content data on the screen.
  • the content data can also be sent to the image processing chip through the PCIe interface through the application processor AP.
  • the content data can be processed such as resolution improvement, color enhancement, frame rate improvement, etc.
  • the image processing chip returns the processed content data to the application processor AP through the PCIe interface.
  • the application processor AP processes the content data and transmits it to the image processing chip.
  • the image processing chip transmits content data to the screen through the passage of the TX0 interface. Display the content data on the screen.
  • the image processing chip can send content data to the screen through bypass mode.
  • the content data sent from the application processor AP to the image processing chip is the first image data.
  • the content data returned from the image processing chip to the application processor AP is the second image data.
  • the content data returned from the application processor AP to the image processing chip for display is third image data.
  • the image data is directly transmitted bidirectionally through the PCIe interface. This can reduce latency compared to solutions using the CSI interface or CSI interface of the MIPI protocol.
  • function switching is smoother and the software and hardware systems are simple.
  • Figure 5 is a schematic diagram of a system for image display processing according to another embodiment. For the parts in Figure 5 that are the same as those in Figures 3 and 4, their description will not be repeated here.
  • a synchronization signal line is set between the application processor AP and the image processing chip.
  • the synchronization signal is transmitted in the synchronization signal line, that is, the synchronization signal (Synchronous signal, Sync).
  • the synchronization signal Synchronous signal, Sync
  • video is made up of frames.
  • the Sync signal can play a synchronizing role.
  • the application processor AP starts the PCIe interface path to extract and transmit one frame of data from the memory; when the next synchronization signal arrives, the application processor AP transmits the next frame of data.
  • FIG. 6 is a schematic diagram of a synchronization signal (Sync signal) in the system shown in FIG. 5 .
  • the application processor AP transmits the content data A0 of the first frame to the image processing chip through the TX line using the PCIe interface.
  • the image processing chip spends a period of time processing the content data A0 of the first frame and then obtains the content data A1.
  • Content data A1 by utilizing the PCIe interface
  • the RX line is sent back to the application processor AP.
  • the delay between content data A0 and A1 is the delay taken for processing in the image processing chip.
  • the content data B0 of the second frame begins to be transmitted, and the content data B1 of the second frame is acquired and transmitted back.
  • content data can be transmitted in an orderly manner, thereby avoiding problems such as screen tearing.
  • FIG. 7 is a schematic diagram of a synchronization signal in a system for image display processing according to another embodiment.
  • the synchronization signal is periodic. In one cycle, one frame of data can be transmitted quickly. The system then waits for the next pulse of the synchronization signal to arrive. This waiting time is wasted and can cause delays.
  • a higher frequency synchronization signal is used.
  • the period of a higher frequency synchronization signal is smaller than the period of a single frame.
  • the application processor AP can immediately accept the synchronization signal pulse and immediately send the content data B0 of the second frame through the TX line. During this process, the application processor AP can continue to receive the content data A1 of the first frame, the content data B1 of the second frame, and so on.
  • the time interval for sending content data can be compressed, thereby improving system fluency and improving picture fluency.
  • the synchronization signal data of a new frame is set in the header of the data packet.
  • the synchronization signal data is decoded to identify a new frame.
  • A0, A1, B0, and B1 in Figures 6 and 7 can also represent the image data of each row. By synchronizing each line of image data, the smoothness of screen display can be further improved.
  • Figure 8 is a schematic diagram of a system for image display processing according to another embodiment.
  • the mobile phone will have multiple screens, for example, 2 screens.
  • An image processing chip can be installed in the mobile phone.
  • a synchronization signal selector is set in the application processor AP to synchronize with each display device.
  • a comparison algorithm can be set in the application processor AP to select a synchronization signal with appropriate priority for synchronization.
  • the synchronization signal enters the interrupt module of the PCIe interface, such as the Message Signaled Interrupt (MSI), for interrupt processing, thereby notifying the PCIe interface to complete the next action.
  • MSI Message Signaled Interrupt
  • the synchronization signal can also be shielded when synchronization is not required.
  • the image data input by the camera enters the application processor AP.
  • the application processor AP performs image signal processing ISP on the image data.
  • the application processor AP stores the processed image data into a memory such as a double rate synchronous dynamic random access memory DDR.
  • the image processing chip receives image data from the application processor AP through the channel using the MIPI interface (DSI0:TX0-DSI-RX0).
  • the image processing chip sends the image data to the folding screen through the channel using the MIPI display serial interface (TX0-DSI).
  • the image data is displayed on the folding screen.
  • the folding screen can generate synchronization signal TE3.
  • the image processing chip can generate synchronization signals TE0 and TE1.
  • the image processing chip also communicates with the application processor AP through the PCIe interface.
  • the image processing chip contains a cache FIFO for the PCIe interface.
  • the secondary screen receives image data from the application processor AP through the MIPI display serial interface (DSI1:TX1-DSI) channel.
  • the image data is displayed on the secondary screen.
  • the secondary screen can generate synchronization signal TE2.
  • the selector receives the synchronization signals TE0, TE1, and TE2, and puts the synchronization signals into the interrupt module of the PCIe interface (such as the message signal interrupt MSI) for interrupt processing, thereby notifying the PCIe interface to complete the next action.
  • the interrupt module of the PCIe interface such as the message signal interrupt MSI
  • the tearing effect means that during the display process of the display screen, the picture content is not completely synchronized, so that the content of the previous picture starts to be displayed on the screen before the display is completed. Next image. This results in a misaligned image.
  • the tearing effect can be avoided, at least to some extent.
  • TE0 is a synchronization signal sent to the application processor AP through a path of the image processing chip.
  • the application processor AP starts sending content data to the image processing chip according to TE0.
  • TE1 is a synchronization signal sent to the application processor AP through another path of the image processing chip.
  • the application processor AP starts sending content data to the image processing chip based on TE1.
  • the image processing chip can also generate other TE signals, but is not limited to this.
  • TE3 is the synchronization signal given by the folding screen to the image processing chip.
  • a screen has one TE sync signal.
  • TE3 of the folding screen can be directly connected to the application processor AP through the pins of TE0 and/or TE1.
  • the application processor AP can directly send the content data to the folding screen in a bypass manner after receiving TE3.
  • TE2 is a synchronization signal sent from the secondary screen to the application processor AP. After receiving TE2, the application processor AP will send the content data that needs to be displayed on the secondary screen to the secondary screen.
  • the camera takes a picture and transmits the content data of the picture to the image signal processing ISP module of the application processor AP.
  • the image signal processing ISP module stores the content data in a memory such as DDR after performing image signal processing on the content data.
  • the synchronization signal TE1 reaches the application processor AP.
  • TE1 is a periodic pulse signal.
  • the application processor AP passes TE1 to the selector after receiving TE1.
  • TE1 enters the interrupt module MSI of the PCIe module through the selector.
  • the PCIe module stops other tasks and enters the data transfer state under the action of the interrupt module.
  • the application processor AP issues instructions to the PCIe module, allowing the PCIe module to transfer the content data of the image in the memory DDR to the memory of the image processing chip, for example, the first-in-first-out cache (First Input First Output) in Figure 8 , FIFO).
  • the first-in-first-out cache First Input First Output
  • TE1 is passed to the application processor AP.
  • the application processor AP sends TE1 to the selector.
  • TE1 enters the interrupt module MSI of the PCIe module through the selector.
  • the PCIe module stops other tasks and enters the data transfer state under the action of the interrupt module.
  • the application processor AP instructs the PCIe module to connect the content data of the image processed by the image processing chip and stored in the storage space of the image processing chip to the application processor AP, and store the content data in the double-rate synchronous dynamic random access memory. (Double Data Rate, DDR).
  • DDR Double Data Rate
  • the content processed by the image processing chip and stored in the memory DDR is sent to the corresponding screen through the MIPI display serial interface DSI0 for display.
  • the processed picture can be viewed on the screen, and the picture can have better image quality.
  • Folding screens can also be synchronously displayed and controlled based on TE0.
  • the secondary screen can also be synchronously displayed and controlled according to TE3.
  • Figure 9 is a schematic block diagram of an image processing circuit according to another embodiment.
  • the image processing circuit includes a main control chip 10 and an image processing chip 20 .
  • the main control chip 10 includes a first sending unit 11 and a first data processing unit 12 .
  • the image processing chip 20 includes a second sending unit 21 and a second data processing unit 22 .
  • the main control chip 10 and the image processing chip 20 are connected through a first path.
  • the first sending unit 11 is used to send the first image data to the second data processing unit 22 through the first path.
  • the second data processing unit 22 is used to perform first image processing on the first image data to obtain second image data.
  • the second sending unit 21 is used to send the second image data to the first data processing unit 12 through the first channel.
  • the main control chip 10 and the image processing chip 20 are connected through a first synchronization signal line.
  • the first synchronization signal line is used to transmit the first synchronization signal.
  • the first synchronization signal is used for synchronization of image frame data.
  • FIG. 10 is a schematic diagram of the hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 1000 includes but is not limited to: radio frequency unit 1001, network module 1002, audio output unit 1003, input unit 1004, sensor 1005, display unit 1006, user input unit 1007, interface unit Element 1008, memory 1009, processor 1010 and other components.
  • the electronic device 1000 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1010 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the structure of the electronic device shown in Figure .
  • the display unit 1006 also includes an image processing chip, for example.
  • the processor 1010 is, for example, a main control chip.
  • the processor 1010 and the image processing chip are connected through a first path.
  • the first path includes one of the following: PCIe interface path; SATA interface path; USB interface path.
  • the processor 1010 is configured to send the first image data to the image processing chip through the first channel.
  • the image processing chip is used to perform first image processing on the first image data to obtain second image data.
  • the image processing chip sends the second image data to the main control chip through the first channel.
  • the processor 1010 and the image processing chip may also be connected through a second path.
  • the processor 1010 may also be configured to perform second image processing on the second image data to obtain third image data.
  • the processor 1010 sends the third image data to the image processing chip through the second path.
  • the third image data is used for display on the first display element.
  • the processor 1010 and the image processing chip may be connected through a first synchronization signal line.
  • the first synchronization signal line is used to transmit the first synchronization signal
  • the first synchronization signal is used for synchronization of image frame data.
  • the number of periodic transmissions of the first synchronization signal is N times the number of first image data frames, and N is a positive integer.
  • the number of periodic transmissions of the first synchronization signal is greater than the number of frames of the first image data.
  • the first synchronization signal when the number of frames of the second image data is greater than the number of frames of the first image data, and the number of frames of the second image data is a non-integer multiple of the number of frames of the first image data, the first synchronization signal The number of periodic transmissions is less than the number of frames of the first image data.
  • the target image data includes a data packet header, and the data packet header includes third synchronization signal data, and the third synchronization signal is used for synchronization of image frame data, wherein the target image data includes the first image data or said second image data.
  • the processor 1010 and the image processing chip are connected through a second synchronization signal line.
  • the second synchronization signal line is used to transmit the second synchronization signal, and the second synchronization signal is used for synchronization of each row of pixel data in the image frame.
  • the electronic device further includes a second display element.
  • the processor 1010 also includes a synchronization signal selection unit.
  • the synchronization signal selection unit is used to select a target synchronization signal of a target component.
  • the target synchronization signal is used to control communication between the main control chip and the target component.
  • the target synchronization signal is a signal transmitted through a synchronization signal line.
  • the target element includes one of the following: an image processing chip; a first display Component; second display component.
  • a path capable of bidirectional transmission is used to transfer image data between the main control chip and the image processing chip.
  • the performance loss caused by switching paths when transferring image data between the main control chip and the image processing chip can be at least partially reduced.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 10041 and a microphone 10042.
  • the graphics processor 10041 processes image data of still pictures or videos obtained by an image capturing device (such as a camera) in a video capture mode or an image capture mode.
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes at least one of a touch panel 10071 and other input devices 10072 .
  • Touch panel 10071 also known as touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • Memory 1009 may be used to store software programs as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or memory 1009 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • enhanced SDRAM synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1010.
  • Figure 11 is a schematic diagram of a system for image display processing according to another embodiment.
  • the electronic device 30 includes the image processing circuit 31 described in the above embodiment.
  • the electronic device 30 may be, for example, a mobile phone, a tablet computer, or the like.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.

Abstract

本申请公开了一种图像处理电路和电子设备,属于图像处理技术领域。该电路包括主控芯片和图像处理芯片,所述主控芯片与所述图像处理芯片通过第一通路连接;所述主控芯片通过所述第一通路发送第一图像数据至所述图像处理芯片;所述图像处理芯片用于对第一图像数据执行第一图像处理,得到第二图像数据;所述图像处理芯片通过所述第一通路发送所述第二图像数据至所述主控芯片。

Description

图像处理电路和电子设备
相关申请的交叉引用
本申请要求于2022年09月09日提交的申请号为202211108426.X,发明名称为“图像处理电路和电子设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于图像处理技术领域,具体涉及一种图像处理电路和电子设备。
背景技术
通常来说,可以在手机中设置应用处理器,应用处理器又可以称为主控芯片。
在相关技术中,例如,可以为诸如手机的电子设备配置诸如显示芯片的图像处理芯片。图像处理芯片是与主控芯片分开的芯片,并可以对图像执行处理。通过使用图像处理芯片,可以提升电子设备中进行显示的流畅度、增强显示色彩等。主控芯片和图像处理芯片可以位于手机主板上。
发明内容
本申请实施例的目的是设计一种新的架构,使得可以在主控芯片和图像处理芯片之间实现双向传输,能够解决图像数据处理过程中的数据传输效率较低的问题。
第一方面,本申请实施例提出了一种图像处理电路,该电路包括主控芯片和图像处理芯片,所述主控芯片与所述图像处理芯片通过第一通路连接;所述主控芯片通过所述第一通路发送第一图像数据至所述图像处理芯片;所述图像处理芯片用于对第一图像数据执行第一图像处理,得到第二图像数据;所述图像处理芯片通过所述第一通路发送所述第二图像数据至所述主控芯片。
第二方面,本申请实施例提出了一种图像处理电路,该电路包括包括主控芯片和图像处理芯片,所述主控芯片包括第一发送单元,第一数据处理单元;所述图像处理芯片包括第二数据处理单元,第二发送单元;所述主控芯片与所述图像处理芯片通过第一通路连接;所述第一发送单元用于通过所述第一通路发送第一图像数据至所述第二数据处理单元;所述第二数据处理单元用于对第一图像数据执行第一图像处理,得到第二图像数据;以及所述第二发送单元用于通过所述第一通路发送所述第二图像数据至所述第一数据处理单元。
第三方面,本申请实施例提出了一种电子设备,包括根据实施例所述的图像处理电路。
在本申请的实施例中,通过第一通路连接主控芯片与图像处理芯片。在诸如图 像显示处理的图像处理的过程中,所述主控芯片通过所述第一通路发送第一图像数据至所述图像处理芯片;所述图像处理芯片用于对第一图像数据执行第一图像处理,得到第二图像数据;所述图像处理芯片通过所述第一通路发送所述第二图像数据至所述主控芯片。这样,可以在主控芯片和图像处理芯片之间通过第一通路实现双向传输。
附图说明
图1是一种图像处理架构的示意图;
图2是根据一个实施例的图像处理电路的示意性框图;
图3是根据另一个实施例的图像处理电路的示意图;
图4是根据另一个实施例的图像处理电路的示意图;
图5是根据另一个实施例的图像处理电路的示意图;
图6是图5所示的电路中的同步信号的示意图;
图7是根据另一个实施例的图像处理电路中的同步信号的示意图;
图8是根据另一个实施例的图像处理电路的示意图;
图9是根据另一个实施例的图像处理电路的示意性框图;
图10是实现本申请实施例的一种电子设备的硬件结构示意图;
图11是根据另一个实施例的电子设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
图1示意性地示出了一种图像处理架构。如图1所示,作为主控芯片的应用处理器AP与图像处理芯片通过移动行业处理器接口(Mobile Industry Processor Interface,MIPI)通路连接。应用处理器(Application Protocol,AP)通过MIPI通路利用显示串行接口(Display Serial Interface,DSI)将图像内容发送给图像处理芯片。图像处理芯片可以有两种工作模式。在第一种工作模式中,开关K1导通,并且图像内容通过旁路(Bypass)通路的方式被发送给屏幕,以进行显示。在第二种工作模式中,开关K2、 K3导通。图像处理芯片通过MIPI RX0接口接收图像内容。例如,在补帧模块中对所接收的图像内容执行补帧处理,并对图像内容执行色彩处理。所处理的图像内容通过MIPI TX0接口被发送到屏幕,以进行显示。
在图1所示的图像处理架构中,图像处理芯片较难将所处理的图像内容通过MIPI通路返回给应用处理器AP。因此,应用处理器AP也较难对经图像处理芯片处理的图像内容进行进一步的处理。
有鉴于此,本公开的实施例中,提出了在图像处理过程中使用第一通路在主控芯片和图像处理芯片之间传递数据,从而增加图像处理的自由度。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的图像处理电路及电子设备进行详细地说明。
图2示出了根据一些实施例的图像处理电路的示意图。如图2所示,图像处理电路包括:主控芯片1和图像处理芯片2。
主控芯片1通过第一通路发送第一图像数据至图像处理芯片2。图像处理芯片2用于对第一图像数据执行第一图像处理,得到第二图像数据。图像处理芯片2通过第一通路发送所述第二图像数据至主控芯片1。
在使用摄像头进行拍摄的情况下,图像处理芯片2可以是图像信号处理(Image Signal Processing,ISP)芯片。在这种情况下,主控芯片1在接收到来自摄像头的原始图像数据之后会对原始图像数据进行初步的图像信号处理。接着,主控芯片1将经处理的图像数据发送给图像处理芯片2进行进一步处理。然后,图像处理芯片2将处理后的图像数据返回给主控芯片1。如此这样,在主控芯片1和图像处理芯片2之间可以多次相互传输图像数据。
类似地,在显示图像数据的情况下,图像处理芯片2可以是显示芯片。在这种情况下,主控芯片1接收从网络获取的图像数据或本地存储的图像数据。主控芯片1可以对所接收的图像数据进行初步的图像显示处理,也可以不对该图像数据进行任何处理。接着,主控芯片1将图像数据发送给图像处理芯片2进行进一步处理。然后,图像处理芯片2将处理后的图像数据返回给主控芯片1。如此,在主控芯片1和图像处理芯片2之间可能会多次相互传输图像数据。
第一通路是能够进行双向传输的通路,即,第一通路两端所连接的接口能够发送和接收从主控芯片1到图像处理芯片2的数据以及能够发送和接收从图像处理芯片2到主控芯片的数据。例如,第一通路可以包括PCIe(peripheral component interconnect express,PCI-Express,高速串行计算机扩展总线标准)接口通路、串口硬盘接口(Serial Advanced Technology Attachment,SATA)通路和通用串行总线(Universal Serial Bus,USB)接口通路中的一个。
在一个实施例中,在显示图像的情况下,主控芯片1与图像处理芯片2还通过第二通路连接。主控芯片1还用于对第二图像数据执行第二图像处理,得到第三图像数 据。主控芯片1通过第二通路发送第三图像数据至图像处理芯片2。第三图像数据用于在第一显示元件上进行显示。第一显示元件例如是显示屏幕、投影屏幕等。
第二通路是能够将图像数据从主控芯片1发送到图像处理芯片2的通路。例如,第二通路是利用MIPI协议下的显示串行接口(Display Serial Interface,DSI)的通路。在接收到第三图像数据图像之后,图像处理芯片2可以对第三图像数据进行处理,并将处理后的第三图像数据发送给显示器件。图像处理芯片2还可以利用旁路的方式直接将第三图像数据发送给显示器件。图像处理芯片2和显示器件之间可以通过第三通路连接。第三通路例如是利用DSI接口的通路。显示器件显示第三图像数据。
在这里,图像数据例如是视频数据或视频流数据。设计人员可以根据需要设计第一图像处理和第二图像处理。例如,第一图像处理可以插帧处理、色彩处理等,第二图像处理可以是色彩空间转换、编码等处理。第一图像数据可以是经过主控芯片1的初步处理的图像数据,也可以是未经主控芯片1的处理的图像数据。例如,来自摄像头的原始数据在经过白平衡、降噪等处理之后作为第一图像数据从主控芯片1被发送给图像处理芯片2。图像处理芯片2在对第一图像数据执行插帧处理、色彩处理等处理之后,将得到的第二图像数据发送给主控芯片1。主控芯片1对第二图像数据进行处理,将得到的第三图像数据发送给图像处理芯片2。图像处理芯片2可以通过旁路模式将第三图像数据直接发送显示器件进行显示。图像处理芯片2也可以对第三图像数据进行进一步的处理,然后将处理后的第三图像数据发送给显示器件进行显示。
显示器件例如是液晶显示屏幕、发光二极管显示屏幕、有机发光二极管显示屏幕、量子点二极管显示屏幕、激光投影显示器件、诸如智能眼镜的镜片的光波导显示器件等。
通常来说,当主控芯片1向图像处理芯片2发送数据时,主控芯片1和图像处理芯片2之间的通路是利用显示串行接口DSI的通路;当图像处理芯片2向主控芯片1发送数据时,主控芯片1和图像处理芯片2之间的通路是利用摄像头串行接口(Camera Serial Interface,CSI)的通路。本申请的发明人发现,这样的通路设计不适合主控芯片和图像处理芯片之间的图像数据交互。尤其是在流媒体视频图像数据的应用场景下,当需要将图像数据从图像处理芯片返回给主控芯片时,需要使用额外的通路,即,利用摄像头串行接口CSI的通路。在这种通路设计中,在传输效率、传输延迟、传输数据量、传输功耗等传输性能方面,额外的通路会给主控芯片1和图像处理芯片2的整体处理性能造成影响。
为此,在本实施例中,在图像处理过程中,使用能够进行双向传输的通路,在主控芯片1和图像处理芯片2之间传递图像数据。这样,可以至少部分降低由于切换通路所造成的性能损失。这可以提升数据处理的速度与画面显示的流畅度。
当主控芯片完成图像处理之后,主控芯片可以通过第二通路将第三图像数据发送给图像处理芯片。第二通路可以是单向通路,例如,利用DSI接口的通路。
通过这里公开的实施例,在图像数据处理的过程中,可以利用能够进行双向传输的第一通路,提高图像处理的整体性能。
在另一个实施例中,主控芯片1和图像处理芯片2通过第一同步信号线路连接。第一同步信号线路用于传输第一同步信号。第一同步信号用于图像帧数据的同步。
在这个实施例中,可以利用同步信号,有序地传送图像数据,从而避免画面撕裂等问题。
在另一个实施例中,第一同步信号的周期传输次数是所述第一图像数据帧数的N倍,N为正整数。这里的“帧”指的是显示画面的“帧”,其中,显示器件所显示的一幅画面对应于图像数据的一帧。第一同步信号的周期传输次数指的是每单位时间(例如,每秒)传输同步信号的次数。同理,第一图像数据帧数指的是每单位时间(例如,每秒)所处理的第一图像数据帧的数量。
在另一个实施例中,第一同步信号的周期传输次数大于第一图像数据的帧数。
在本申请实施例中,显示器件所显示的画面更加流畅。
此外,由于第一同步信号的周期传输次数大于第一图像数据的帧数,因此,可以更快地响应于同步信号,重新启动对图像数据的处理和传输。此外,例如,同步信号的周期小于单个帧的周期的1/2。这样,可以减小由于同步信号引起的传输延迟。这可以在一定程度上压缩图像数据发送的时间间隔,从而提高系统流畅度,或提升数据处理的速度,或提升画面流畅性。
在另一个实施例中,在第二图像数据的帧数大于第一图像数据的帧数,且第二图像数据的帧数与第一图像数据的帧数为非整数倍的情况下,第一同步信号的周期传输次数小于第一图像数据的帧数。这样,可以使得第二图像数据的帧数是第一同步信号的周期传输次数的整数倍。通过这种方式,可以避免由于原始图像数据的帧数和目标图像数据的帧数之间的不匹配所造成的图像显示卡顿。例如,第一图像数据的帧数是每秒60帧,而显示屏幕可以显示每秒90帧的图像。如果直接使用每秒90个周期的同步信号,那么由于60个画面帧在90个周期内的分布是不均匀的,因此,图像的画面显示会出现不连续或不流畅的情况。根据这里的实施例,可以将同步信号设置为每秒45个周期。在处理过程中,第一图像数据中没有对应同步信号的帧将会被丢弃。由于同步信号周期性,因此,所丢弃的帧也会呈现周期性,并会在第一图像数据的各个帧中均匀地分布。这样所得到的图像数据是每秒45帧的图像数据。通过对每秒45帧的图像数据执行插帧处理,可以得到每秒90帧的第二图像数据。可以在显示屏幕上显示所述每秒90帧的图像数据。
在另一实施例中,目标图像数据包括数据包包头,数据包包头内包括第三同步信号数据,所述第三同步信号用于图像帧数据的同步。目标图像数据包括第一图像数据或第二图像数据。通过这个实施例,可以在实现同步的情况下,减少对于同步信号的硬件布线的需要,从而减少走线数量。
在另一个实施例中,主控芯片1和图像处理芯片2通过第二同步信号线路连接。第二同步信号线路用于传输第二同步信号。第二同步信号用于图像帧中每行像素数据的同步。在这个实施例中,可以按行处理图像数据,从而提高图像处理的颗粒度。这可以提升数据处理的速度与画面显示的流畅度。
本领域技术人员应当理解,第二同步信号线路和第一同步信号线路可以是相同的线路,也可以是不同的线路。在相同的线路的情况下,可以在不同的时刻分别传输第一同步信号和第二同步信号。在这里,由于采用相同的线路,因此,可以避免增加布线成本。
在另一个实施例中,图像处理电路还可以包括第二显示元件。主控芯片1还可以包括同步信号选择单元。同步信号选择单元用于选择目标元件的目标同步信号。目标同步信号用于控制主控芯片1与目标元件之间的通信。目标同步信号为通过同步信号线路传输的信号。目标元件可以包括以下其中之一:图像处理芯片2;第一显示元件;和第二显示元件。
下面参照附图3-8描述本公开中的一些实施例。在图3-8中,主控芯片作为应用处理器AP被示出,以及图像处理芯片作为图像处理芯片被示出。
图3是根据另一个实施例的图像处理电路的示意图。
如图3所示,应用处理器AP与图像处理芯片通过利用PCIe、DSI_0、RX0接口的通路连接。图像处理芯片经由TX0连接到屏幕。这里,DSI_0接口、RX0接口和TX0接口都是MIPI协议的单向传输接口。
摄像头模组(Camera Compact Module,CCM)0和CCM1是诸如摄像头模组的图像采集单元。例如,摄像头模组CCM0所采集的图像数据经由相机串行接口CSI0进入图像信号处理模块(Image Signal Process,ISP)0。摄像头模组CCM1所采集的图像数据经由相机串行接口CSI1进入图像信号处理模块ISP_1。图像数据在图像信号处理模块ISP_0和/或图像信号处理模块ISP_1中被处理。所处理的图像数据通过PCIe接口被发送给图像处理芯片并在图像处理芯片的图像处理模块中被处理。经处理的数据通过利用PCIe接口的通路被返回给应用处理器AP。在应用处理器AP的移动显示处理器MDP中对返回的数据进行处理。经移动显示处理器(mobile display processor,MDP)处理的图像数据通过使用DSI_0接口、RX0接口的通路被传输给图像处理芯片。图像处理芯片将所述图像数据通过使用TX0接口的通路发送给屏幕。在屏幕上显示所述图像数据。
如图4所示,图3中的PCIe接口包括TX(transport,发送)和RX(receive,接收)两个方向的传输线路。
例如,当用户使用诸如手机的电子设备录制视频时,摄像头模组CCM0打开。摄像头模组CCM0将拍摄到的内容数据通过摄像头串行接口CSI0传送到应用处理器AP。应用处理器AP的图像信号处理模块ISP_0在对内容数据进行处理后将它存入内存中。 接着,应用处理器AP控制PCIe接口通过TX信号线将内容数据发送至图像处理芯片。图像处理芯片对内容数据进行处理。在图像处理芯片的图像处理模块对内容数据进行处理之后,处理后的内容数据通过RX信号线被回传给应用处理器AP。回传的内容数据在移动显示处理器MDP中被处理,并通过利用DSI_0接口的通路被传送给图像处理芯片的RX0端口。之后,所述内容数据通过TX0端口被传送到屏幕。在屏幕上显示所述内容数据。应用处理器AP还可以保存由移动显示处理器MDP处理的内容数据。
当用户播放手机内部保存的视频时,应用处理器AP可以直接调用存储器中的内容数据。所调用的内容数据由移动显示处理器MDP处理并通过DSI_0接口被传送到图像处理芯片的RX0端口。接着,所述内容数据通过利用TX0接口的通路被传送到屏幕上。在屏幕上显示所述内容数据。
另外,当用户播放下载或者在线播放的内容数据时,也可以通过应用处理器AP将内容数据通过PCIe接口发送到图像处理芯片。例如在图像处理芯片的图像处理模块中,可以对所述内容数据进行例如分辨率提升、色彩增强、帧率提升等的处理。接着,图像处理芯片通过PCIe接口将所处理的内容数据回传给应用处理器AP。应用处理器AP在对所述内容数据进行处理之后将它传送给图像处理芯片。图像处理芯片通过利用TX0接口的通路将内容数据传输给屏幕。在屏幕上显示所述内容数据。这里,图像处理芯片可以通过旁路模式将内容数据发送给屏幕。
例如,从应用处理器AP发送到图像处理芯片的内容数据是第一图像数据。从图像处理芯片返回给应用处理器AP的内容数据是第二图像数据。从应用处理器AP返回给图像处理芯片以进行显示的内容数据是第三图像数据。
在这个实施例中,在对图像数据进行处理的过程中,图像数据通过PCIe接口直接进行双向传输。相对于采用MIPI协议的CSI接口或CSI接口的方案,这可以降低延迟。此外,在这样的系统中,功能切换更加顺滑并且软件硬件系统简单。
图5是根据另一个实施例的用于图像显示处理的系统的示意图。对于图5中与图3和4中相同的部分,在这里不再重复对它们的描述。
如图5所示,在应用处理器AP与图像处理芯片之间设置同步信号线。在同步信号线中传递同步信号,即同步信号(Synchronous signal,Sync)。例如,视频是由一帧一帧组成的。在通过PCIe接口的图像数据传输过程中,Sync信号可以起到同步的作用。在同步信号作用下,应用处理器AP启动PCIe接口通路,以从内存中开始提取并传送一帧的数据;当下一个同步信号到来时,应用处理器AP再传送下一帧的数据。
图6是图5所示的系统中的同步信号(Sync信号)的示意图。
如图6所示,在第一个同步信号的脉冲后,应用处理器AP通过利用PCIe接口的TX线路传送第一帧的内容数据A0到图像处理芯片。图像处理芯片花费一段时间对第一帧的内容数据A0进行处理后获得内容数据A1。内容数据A1通过利用PCIe接口的 RX线路被发送回应用处理器AP。在内容数据A0与A1之间的延时是在图像处理芯片中进行处理所花费的延时。
同样地,在下一个同步信号的脉冲后,开始传送第二帧的内容数据B0,以及获取并回传第二帧的内容数据B1。
在这个实施例中,在同步信号作用下,可以有序传送内容数据,从而避免画面撕裂等问题。
图7是根据另一个实施例的用于图像显示处理的系统中的同步信号的示意图。
如图6所示,同步信号是周期的。在一个周期内,一个帧的数据可以被快速地传输。然后,系统等待下一个同步信号的脉冲到来。这一段等待的时间是浪费的,并会导致延迟。
相对于图5和图6所示的实施例,在图7所示的实施例中,采用较高频率的同步信号。例如,较高频率的同步信号的周期小于单个帧的周期。在第一个同步信号的脉冲到来后,应用处理器AP通过TX线路发送第一帧的内容数据A0。在发送过程中,应用处理器AP会继续收到同步信号的脉冲。因为,在这时候,应用处理器AP还没发送完数据,因此,应用处理器AP在进行判断后忽略这些脉冲,直到发送完成内容数据A0。因为同步信号的频率较高,因此,可以很快等到下一个同步信号脉冲的到来,应用处理器AP可以马上接受该同步信号脉冲,并通过TX线路立即发送第二帧的内容数据B0。在这个过程中,应用处理器AP可以持续接收第一帧的内容数据A1、第二帧的内容数据B1等。
在这个实施例中,可以压缩内容数据发送的时间间隔,从而提高系统流畅度,并提升画面流畅性。
在另一个实施例中,在通过PCIe接口每次传输一帧的数据时,在该数据的数据包的包头中设置新一帧的同步信号数据。在接收端,对同步信号数据进行解码,以识别新一帧。
在这个实施例中,在实现有序传送内容数据的情况下,可以减少同步信号的硬件连线,从而减少走线数量。
图6和图7中的A0、A1、B0、B1也可以表示每一行的图像数据。通过对每行图像数据进行同步,可以进一步提升画面显示的流畅度。
图8是根据另一个实施例的用于图像显示处理的系统的示意图。
例如,在折叠手机的应用中,手机会有多个屏幕,例如,2个屏幕。可以在手机中设置一个图像处理芯片。在这个实施例中,在应用处理器AP中设置同步信号选择器,以与各个显示器件同步。可以在应用处理器AP中设置比较算法,以选择合适优先级的同步信号进行同步。同步信号进入PCIe接口的中断模块,例如消息信号中断(Message Signaled Interrupt,MSI),以进行中断处理,从而通知PCIe接口完成接下来的动作。
此外,也可以在不需要同步的情况下,屏蔽同步信号。
在图8中,摄像头输入的图像数据进入应用处理器AP。应用处理器AP对图像数据进行图像信号处理ISP。应用处理器AP将经处理的图像数据存储到诸如双倍速率同步动态随机存储器DDR的存储器中。图像处理芯片通过利用MIPI接口(DSI0:TX0-DSI-RX0)的通路接收来自于应用处理器AP的图像数据。图像处理芯片通过利用MIPI显示串行接口(TX0-DSI)的通路将图像数据发送给折叠屏。折叠屏显示该图像数据。折叠屏可以产生同步信号TE3。图像处理芯片可以产生同步信号TE0和TE1。
图像处理芯片还通过PCIe接口与应用处理器AP通信。图像处理芯片包含用于PCIe接口的缓存FIFO。
副屏通过利用MIPI显示串行接口(DSI1:TX1-DSI)的通路接收来自于应用处理器AP的图像数据。副屏显示该图像数据。副屏可以产生同步信号TE2。
选择器接收同步信号TE0、TE1、TE2,并将同步信号放入PCIe接口的中断模块(例如消息信号中断MSI),以进行中断处理,从而通知PCIe接口完成接下来的动作。
这里,撕裂效应(tear effect,TE)是指在显示屏的显示过程中,图片内容没有完全同步,从而使得在上一张图片的内容还没有显示完成的情况下,就开始在屏幕上显示下一张图像。这导致画面错位的现象。通过利用同步信号,可以至少在一定程度上避免撕裂效应。
在图8中,TE0是通过图像处理芯片的一条通路发送给到应用处理器AP的同步信号。当TE0被送到应用处理器AP后,应用处理器AP根据TE0,开始发送内容数据给图像处理芯片。
TE1是通过图像处理芯片的另一条通路发送给到应用处理器AP的同步信号。当TE1被送到应用处理器AP后,应用处理器AP根据TE1,开始发送内容数据给图像处理芯片。
另外,图像处理芯片还可以产生其他TE信号,不限于此。
TE3是由折叠屏给到图像处理芯片的同步信号。一般,一个屏幕有一个TE同步信号。在图像处理芯片以旁路(bypass)模式直接连通应用处理器AP和折叠屏的情况下,折叠屏的TE3可以通过TE0和/或TE1的管脚直接连接到应用处理器AP。在数据不需要图像处理芯片的处理和/或关闭图像处理芯片的情况下,应用处理器AP在收到TE3后可以直接将内容数据以旁路的方式发送给折叠屏。
TE2是由副屏发给应用处理器AP的同步信号。应用处理器AP在收到TE2后,会将需要在副屏进行显示的内容数据发给副屏。
下面,以图8所示的系统为例,说明图像数据处理的过程。
①发送数据
摄像头拍摄一张图片,并将图片的内容数据传送到应用处理器AP的图像信号处理ISP模块。图像信号处理ISP模块在对内容数据进行图像信号处理之后,将内容数据存储在诸如DDR的存储器中。
接着,例如,同步信号TE1到达应用处理器AP。TE1是周期脉冲信号。应用处理器AP在接收TE1后将TE1传递到选择器。TE1通过选择器进入PCIe模块的中断模块MSI。PCIe模块停止其他任务,并在中断模块的作用下,进入数据传送状态。同时,应用处理器AP下发指令给PCIe模块,让PCIe模块将存储器DDR中的这张图片的内容数据传送图像处理芯片的内存中,例如,图8中的先入先出缓存(First Input First Output,FIFO)中。
②接收数据
图像处理芯片在对图片的内容数据进行处理之后,例如,TE1的下一个脉冲到来。TE1被传送给应用处理器AP。应用处理器AP将TE1送给选择器。TE1通过选择器进入PCIe模块的中断模块MSI。PCIe模块停止其他任务,并在中断模块的作用下,进入数据传送状态。应用处理器AP下指令让PCIe模块将图像处理芯片处理后并存储在图像处理芯片的存储空间的图片的内容数据接回应用处理器AP,并将该内容数据存储在双倍速率同步动态随机存储器(Double Data Rate,DDR)中。
③进行显示
在TE1下一个脉冲到来后,通过MIPI显示串行接口DSI0将由图像处理芯片处理后且存在存储器DDR中的内容发送到相应屏幕,以进行显示。这样,可以在屏幕上观看处理后的图片,该图片可以具有较好的画质。
在这里,以TE1为例,说明了通过TE1的控制进行显示的同步。折叠屏也可以根据TE0来同步显示控制。此外,副屏也可以根据TE3来同步显示控制。
图9是根据另一个实施例的图像处理电路的示意性框图。
如图9所示,图像处理电路包括主控芯片10和图像处理芯片20。主控芯片10包括第一发送单元11和第一数据处理单元12。图像处理芯片20包括第二发送单元21和第二数据处理单元22。主控芯片10与图像处理芯片20通过第一通路连接。
第一发送单元11用于通过所述第一通路发送第一图像数据至第二数据处理单元22。第二数据处理单元22用于对第一图像数据执行第一图像处理,得到第二图像数据。第二发送单元21用于通过第一通路发送第二图像数据至第一数据处理单元12。
在一个实施例中,主控芯片10和图像处理芯片20通过第一同步信号线路连接。第一同步信号线路用于传输第一同步信号。第一同步信号用于图像帧数据的同步。
上面已经针对图2描述了实施例的有益效果,因此,这里不在重复这些描述。
图10为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单 元1008、存储器1009、以及处理器1010等部件。
本领域技术人员可以理解,电子设备1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图x中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
显示单元1006例如还包括图像处理芯片。处理器1010例如是主控芯片。处理器1010和图像处理芯片通过第一通路连接。例如,第一通路包括以下其中之一:PCIe接口通路;SATA接口通路;USB接口通路。
处理器1010,用于通过第一通路发送第一图像数据至图像处理芯片。图像处理芯片用于对第一图像数据执行第一图像处理,得到第二图像数据。图像处理芯片通过第一通路发送所述第二图像数据至所述主控芯片。
在一个实施例中,处理器1010和图像处理芯片还可以通过第二通路连接。处理器1010还可以用于对第二图像数据执行第二图像处理,得到第三图像数据。处理器1010通过第二通路发送第三图像数据至图像处理芯片。第三图像数据用于在第一显示元件上进行显示。
在另一个实施例中,处理器1010和图像处理芯片可以通过第一同步信号线路连接。第一同步信号线路用于传输第一同步信号,以及第一同步信号用于图像帧数据的同步。
在一个例子中,第一同步信号的周期传输次数是所述第一图像数据帧数的N倍,N为正整数。
在另一个例子中,第一同步信号的周期传输次数大于所述第一图像数据的帧数。
在另一个例子中,在第二图像数据的帧数大于第一图像数据的帧数,第二图像数据的帧数与第一图像数据的帧数为非整数倍的情况下,第一同步信号的周期传输次数小于第一图像数据的帧数。
在另一个实施例中,目标图像数据包括数据包包头,数据包包头内包括第三同步信号数据,所述第三同步信号用于图像帧数据的同步,其中,所述目标图像数据包括所述第一图像数据或所述第二图像数据。
在另一个实施例中,处理器1010和图像处理芯片通过第二同步信号线路连接。第二同步信号线路用于传输第二同步信号,并且第二同步信号用于图像帧中每行像素数据的同步。
在另一个实施例中,该电子设备还包括第二显示元件。处理器1010还包括同步信号选择单元。同步信号选择单元用于选择目标元件的目标同步信号,所述目标同步信号用于控制所述主控芯片与所述目标元件之间的通信,所述目标同步信号为通过同步信号线路传输的信号。所述目标元件包括以下其中之一:图像处理芯片;第一显示 元件;第二显示元件。
根据这里公开的实施例,在图像处理过程中,使用能够进行双向传输的通路,在主控芯片和图像处理芯片之间传递图像数据。这样,可以至少部分降低在主控芯片和图像处理芯片之间传递图像数据时由于切换通路所造成的性能损失。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042。图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
存储器1009可用于存储软件程序以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
图11是根据另一个实施例的用于图像显示处理的系统的示意图。
如图11所示,电子设备30包括上面实施例中所述的图像处理电路31。电子设备30例如可以是手机、平板电脑等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种图像处理电路,包括主控芯片和图像处理芯片,所述主控芯片与所述图像处理芯片通过第一通路连接;
    所述主控芯片通过所述第一通路发送第一图像数据至所述图像处理芯片;
    所述图像处理芯片用于对第一图像数据执行第一图像处理,得到第二图像数据;
    所述图像处理芯片通过所述第一通路发送所述第二图像数据至所述主控芯片。
  2. 根据权利要求1所述的电路,其中,所述主控芯片与所述图像处理芯片还通过第二通路连接;
    所述主控芯片还用于对第二图像数据执行第二图像处理,得到第三图像数据;
    所述主控芯片通过所述第二通路发送所述第三图像数据至所述图像处理芯片,所述第三图像数据用于在第一显示元件上进行显示。
  3. 根据权利要求1所述的系统,其中,所述第一通路包括以下其中之一:
    PCIe接口通路;SATA接口通路;USB接口通路。
  4. 根据权利要求1所述的电路,其中,所述主控芯片和图像处理芯片通过第一同步信号线路连接,所述第一同步信号线路用于传输第一同步信号,所述第一同步信号用于图像帧数据的同步。
  5. 根据权利要求4所述的电路,其中,所述第一同步信号的周期传输次数是所述第一图像数据帧数的N倍,N为正整数。
  6. 根据权利要求4所述的电路,其中,所述第一同步信号的周期传输次数大于所述第一图像数据的帧数。
  7. 根据权利要求4所述的电路,其中,在所述第二图像数据的帧数大于所述第一图像数据的帧数,所述第二图像数据的帧数与所述第一图像数据的帧数为非整数倍的情况下,所述第一同步信号的周期传输次数小于所述第一图像数据的帧数。
  8. 根据权利要求1中所述的电路,其中,目标图像数据包括数据包包头,所述数据包包头内包括第三同步信号数据,所述第三同步信号用于图像帧数据的同步;
    其中,所述目标图像数据包括所述第一图像数据或所述第二图像数据。
  9. 根据权利要求1所述的电路,其中,所述主控芯片和图像处理芯片通过第二同步信号线路连接,所述第二同步信号线路用于传输第二同步信号,所述第二同步信号用于图像帧中每行像素数据的同步。
  10. 根据权利要求2所述的电路,其中,还包括第二显示元件;
    所述主控芯片还包括同步信号选择单元,所述同步信号选择单元用于选择目标元件的目标同步信号,所述目标同步信号用于控制所述主控芯片与所述目标元件之间的通信,所述目标同步信号为通过同步信号线路传输的信号;
    其中,所述目标元件包括以下其中之一:
    所述图像处理芯片;
    所述第一显示元件;
    所述第二显示元件。
  11. 一种图像处理电路,包括主控芯片和图像处理芯片,所述主控芯片包括第一发送单元,第一数据处理单元;所述图像处理芯片包括第二数据处理单元,第二发送单元;所述主控芯片与所述图像处理芯片通过第一通路连接;
    所述第一发送单元用于通过所述第一通路发送第一图像数据至所述第二数据处理单元;
    所述第二数据处理单元用于对第一图像数据执行第一图像处理,得到第二图像数据;以及
    所述第二发送单元用于通过所述第一通路发送所述第二图像数据至所述第一数据处理单元。
  12. 根据权利要求11所述的电路,其中,所述主控芯片和图像处理芯片通过第一同步信号线路连接,所述第一同步信号线路用于传输第一同步信号,所述第一同步信号用于图像帧数据的同步。
  13. 一种电子设备,包括:根据权利要求1-10中任一项所述图像处理电路。
PCT/CN2023/116930 2022-09-09 2023-09-05 图像处理电路和电子设备 WO2024051674A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211108426.X 2022-09-09
CN202211108426.XA CN115514902A (zh) 2022-09-09 2022-09-09 图像处理电路和电子设备

Publications (1)

Publication Number Publication Date
WO2024051674A1 true WO2024051674A1 (zh) 2024-03-14

Family

ID=84504873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116930 WO2024051674A1 (zh) 2022-09-09 2023-09-05 图像处理电路和电子设备

Country Status (2)

Country Link
CN (1) CN115514902A (zh)
WO (1) WO2024051674A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115514902A (zh) * 2022-09-09 2022-12-23 维沃移动通信有限公司 图像处理电路和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112004086A (zh) * 2020-08-21 2020-11-27 Oppo广东移动通信有限公司 视频数据处理方法及装置
CN114285978A (zh) * 2021-12-28 2022-04-05 维沃移动通信有限公司 视频处理方法、视频处理装置和电子设备
CN114285956A (zh) * 2021-12-28 2022-04-05 维沃移动通信有限公司 视频分享电路、方法、装置及电子设备
CN114298889A (zh) * 2021-12-28 2022-04-08 维沃移动通信有限公司 图像处理电路和图像处理方法
CN115514902A (zh) * 2022-09-09 2022-12-23 维沃移动通信有限公司 图像处理电路和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112004086A (zh) * 2020-08-21 2020-11-27 Oppo广东移动通信有限公司 视频数据处理方法及装置
CN114285978A (zh) * 2021-12-28 2022-04-05 维沃移动通信有限公司 视频处理方法、视频处理装置和电子设备
CN114285956A (zh) * 2021-12-28 2022-04-05 维沃移动通信有限公司 视频分享电路、方法、装置及电子设备
CN114298889A (zh) * 2021-12-28 2022-04-08 维沃移动通信有限公司 图像处理电路和图像处理方法
CN115514902A (zh) * 2022-09-09 2022-12-23 维沃移动通信有限公司 图像处理电路和电子设备

Also Published As

Publication number Publication date
CN115514902A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US8736695B2 (en) Parallel image processing using multiple processors
WO2024051674A1 (zh) 图像处理电路和电子设备
CN104902193B (zh) 一种基于fpga对图像数据进行分割处理和显示的方法
CN100531311C (zh) 一种实现图像数据采集的装置、方法及芯片和手机
US20080259221A1 (en) Portable device with video output
CN102193865B (zh) 存储系统、存储方法和使用其的终端
WO2023125677A1 (zh) 独显插帧电路、方法、装置、芯片、电子设备及介质
CN206865611U (zh) 视频拼接处理器
JP2002511171A (ja) 処理エレメント間でデータ転送を制御する装置および方法
WO2014079303A1 (zh) 一种视频多画面合成方法、装置和系统
US5673204A (en) Loopback video preview for a computer display
WO2023125657A1 (zh) 图像处理方法、装置和电子设备
CN104038719A (zh) 一种基于视频帧的超高清视频显示系统及方法
TWI381737B (zh) 數位影音擷取裝置與其方法
EP1414015B1 (en) Video bus for a video decoding system
CN104469241B (zh) 一种实现视频帧率变换的装置
WO2024051824A1 (zh) 图像处理方法、图像处理电路、电子设备和可读存储介质
EP2012535B1 (en) Direct interface of camera module to general purpose i/o port of digital baseband processor
CN109361894A (zh) 一种基于fpga实现的视频接口扩展装置及方法
WO2023179654A1 (zh) 校准控制方法、装置及电子设备
CN108134912A (zh) 一种视频流转换方法
CN204481952U (zh) 一种基于高清视频切换和摄像跟踪的会议系统
CN102497514B (zh) 一种三通道视频转发设备和转发方法
CN101521744A (zh) 视频捕捉控制器
WO2022056729A1 (zh) 电子装置和电子装置的图像处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862368

Country of ref document: EP

Kind code of ref document: A1