WO2024051319A1 - 振镜性能检测系统、方法和存储介质 - Google Patents

振镜性能检测系统、方法和存储介质 Download PDF

Info

Publication number
WO2024051319A1
WO2024051319A1 PCT/CN2023/104804 CN2023104804W WO2024051319A1 WO 2024051319 A1 WO2024051319 A1 WO 2024051319A1 CN 2023104804 W CN2023104804 W CN 2023104804W WO 2024051319 A1 WO2024051319 A1 WO 2024051319A1
Authority
WO
WIPO (PCT)
Prior art keywords
galvanometer
laser
control module
performance
mark
Prior art date
Application number
PCT/CN2023/104804
Other languages
English (en)
French (fr)
Inventor
许孝忠
魏劲松
彭新雨
唐泓炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024051319A1 publication Critical patent/WO2024051319A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present application relates to the field of information technology, and in particular to a galvanometer performance detection system, method and storage medium.
  • laser galvanometers play a major role and have an important impact on the performance of laser galvanometers.
  • the requirements are getting higher and higher. It is usually necessary to test the performance of the galvanometer to grasp the performance of the galvanometer.
  • the performance of the galvanometer is mostly tested from the perspective of the galvanometer scanning coordinate transformation to analyze the errors in the galvanometer. These methods only stay at the theoretical level for the performance analysis of the galvanometer, which is divorced from the actual use environment of the galvanometer and cannot be easily analyzed. A good understanding of the actual performance of galvanometers.
  • the circular grating angle measurement method uses Moiré fringes to measure the angle of the galvanometer. It has high measurement accuracy, fast speed, and strong anti-interference ability.
  • the laser interference angle measurement method uses the optical path difference between the measurement beam and the reference beam caused by the rotation angle of the galvanometer to measure the rotated angle of the galvanometer.
  • the measurement accuracy is high, but it requires a fisheye or angle prism to be installed on the galvanometer. and other auxiliary devices, which will affect the dynamic performance of the galvanometer.
  • the above methods all require the installation of auxiliary devices on the galvanometer, which cannot achieve non-contact measurement. It is easy to damage the surface of the galvanometer and affect the use of the galvanometer. Therefore, there is an urgent need for a new galvanometer performance detection system that can quickly and accurately detect the galvanometer performance without affecting the galvanometer surface.
  • a galvanometer performance detection system which includes:
  • Control module used to control the parameters of the laser and/or galvanometer
  • a laser configured to emit the first laser in response to the control of the control module
  • the galvanometer is used to use the first laser to emit a second laser in response to the control of the control module, and the second laser is used to form a mark on the sample;
  • the detection module is used to analyze the mark and obtain the analysis results.
  • the analysis results indicate the performance of the galvanometer.
  • the parameters of the laser and/or the galvanometer are controlled through the control module, so that the laser emitted by the laser can form a mark on the sample through the galvanometer.
  • the determination can be made based on the analysis results.
  • Galvanometer performance so as to realize the detection of galvanometer performance. In this process, non-contact detection of the performance of the galvanometer can be achieved, and it is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and precise.
  • the galvanometer performance detection system is used to detect the galvanometer performance, which is low cost and simple to operate. It can detect the galvanometer performance more quickly and has more detectable performance indicators.
  • control module is also used to:
  • the system also includes:
  • the focusing module is used to control the objective lens in response to the control of the control module;
  • the objective lens is used to focus the second laser onto the surface of the sample in response to the control of the focusing module to form marks on the sample.
  • the laser emitted by the objective lens can be better focused on the surface of the sample, so that the marks formed on the sample can reach the nanometer scale, thereby making the vibration
  • the detection of mirrors can achieve higher accuracy, making subsequent analysis results more accurate and improving the accuracy of galvanometer performance detection.
  • the system further includes:
  • the final mark can be made clearer, thereby facilitating subsequent marking.
  • Performing analysis can make subsequent analysis results more accurate and improve the accuracy of galvanometer performance testing.
  • the analysis results include markings of the galvanometer at different amplitudes. Scope, this control module is used for:
  • This detection module is used for:
  • control module controls the laser to emit continuous laser light, adjusts the amplitude of the galvanometer, and analyzes the linear marks formed on the sample through the detection module, so that the actual marking range of the galvanometer can be determined. Calibration can quickly realize non-contact detection of the performance of the galvanometer, and is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and precise.
  • the analysis result includes the acceleration corresponding to the galvanometer. and/or deceleration, this control module is used for:
  • This detection module is used for:
  • the acceleration and/or deceleration are determined.
  • control module controls the laser to emit discontinuous laser
  • detection module analyzes the lattice marks formed on the sample, so that the acceleration and/or deceleration of the galvanometer can be measured, so that further Determine the stability of the galvanometer's acceleration and deceleration, quickly realize non-contact detection of the galvanometer's performance, and be more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • the analysis results include the minimum step time corresponding to the galvanometer, and the control module is used to:
  • This detection module is used for:
  • the minimum step time is determined according to the frequency of the corresponding galvanometer in the limit state.
  • control module controls the laser to emit discontinuous laser
  • detection module analyzes the lattice marks formed on the sample, so that the minimum step time of the detection galvanometer can be achieved, thereby quickly realizing the performance of the galvanometer.
  • the non-contact detection is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • the The analysis results include the linearity information corresponding to the galvanometer.
  • This control module is used for:
  • the laser In response to the change in the amplitude of the galvanometer, the laser is controlled to emit the first laser when the amplitude of the galvanometer changes;
  • This detection module is used for:
  • linearity information is determined.
  • control module controls the laser to emit discontinuous laser light in response to the amplitude change of the galvanometer
  • detection module analyzes the lattice marks formed on the sample to determine the linearity information of the galvanometer, thereby enabling Quickly realize non-contact detection of the performance of the galvanometer, and it is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • a seventh possible implementation of the galvanometer performance detection system In the method, the sample moves at a predetermined speed and a predetermined angle.
  • the analysis results include the straightness information corresponding to the galvanometer.
  • the control module is used to:
  • This detection module is used for:
  • straightness information is determined.
  • control module controls the laser to emit continuous laser
  • detection module analyzes the line width of the linear mark formed on the sample to determine the straightness information of the galvanometer, thereby quickly realizing the performance of the galvanometer.
  • the non-contact detection is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • the sample moves at a predetermined speed and a predetermined angle
  • the analysis result includes the galvanometer corresponding The maximum stable working time
  • This detection module is used for:
  • the longest stable working time is determined based on at least one of linearity information, acceleration, and deceleration.
  • the longest stable working time of the detection galvanometer can be achieved, thereby enabling rapid detection of the galvanometer.
  • the non-contact detection of performance is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • embodiments of the present application provide a galvanometer performance detection method, which method includes:
  • the first laser is emitted
  • the first laser is used to emit the second laser, and the second laser is used to form a mark on the sample;
  • the analysis results indicate the performance of the galvanometer.
  • the method also includes:
  • the focusing module is controlled
  • the objective lens is controlled in response to the control of the control module
  • the second laser is focused onto the surface of the sample to form a mark on the sample.
  • the method further includes:
  • the first laser or the second laser is processed through one or more of a reflecting mirror, a scanning lens, a tube mirror, and a dichroic beam splitter to obtain a third laser.
  • the third laser is used to form marks on the sample.
  • the analysis results include markings of the galvanometer at different amplitudes.
  • Range through the control module, controls the parameters of the laser and/or galvanometer, including:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a continuous laser
  • the frequency of the galvanometer is fixed and the amplitude of the galvanometer is adjusted;
  • the markers are analyzed and the analysis results are obtained, including:
  • the marking range of the galvanometer under different amplitudes is determined based on the length of the lines under different amplitudes.
  • the analysis result includes the acceleration corresponding to the galvanometer. and/or deceleration, through the control module to control the parameters of the laser and/or galvanometer, including:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a discontinuous laser
  • the frequency of the galvanometer is fixed
  • the markers are analyzed and the analysis results are obtained, including:
  • the acceleration and/or deceleration is determined based on the frequency and separation distance of the galvanometer.
  • the analysis result includes the vibration mirror performance detection method.
  • the minimum step time corresponding to the mirror is used to control the parameters of the laser and/or galvanometer through the control module, including:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a discontinuous laser
  • the markers are analyzed and the analysis results are obtained, including:
  • the minimum step time is determined according to the frequency of the corresponding galvanometer in the limit state.
  • the The analysis results include linearity information corresponding to the galvanometer.
  • the parameters of the laser and/or galvanometer are controlled, including:
  • the laser in response to the change in the amplitude of the galvanometer, the laser is controlled to emit the first laser when the amplitude of the galvanometer changes;
  • the markers are analyzed and the analysis results are obtained, including:
  • the displacement change information of the midpoint of the lattice in the mark is determined
  • the linearity information is determined based on the displacement change information.
  • a seventh possible implementation of the galvanometer performance detection method In the method, the sample moves at a predetermined speed and a predetermined angle.
  • the analysis results include the straightness information corresponding to the galvanometer.
  • the control module the parameters of the laser and/or galvanometer are controlled, including:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a continuous laser
  • the frequency of the galvanometer is fixed
  • the markers are analyzed and the analysis results are obtained, including:
  • the straightness information is determined based on the line width.
  • the sample moves at a predetermined speed and a predetermined angle
  • the analysis result includes the galvanometer corresponding The maximum stable working time, through the control module, control the parameters of the laser and/or galvanometer, including:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a discontinuous laser
  • the markers are analyzed and the analysis results are obtained, including:
  • the mark is analyzed to determine at least one of linearity information, acceleration, and deceleration;
  • the longest stable working time is determined based on at least one of linearity information, acceleration, and deceleration.
  • a galvanometer performance testing device which device includes: a processor; a memory used to store instructions executable by the processor; wherein the processor is configured to implement the above-mentioned first step when executing instructions.
  • the galvanometer performance detection method is one or more of the second aspect or multiple possible implementations of the second aspect.
  • embodiments of the present application provide a non-volatile computer-readable storage medium on which computer program instructions are stored.
  • the computer program instructions are executed by a processor, the above-mentioned second aspect or multiple aspects of the second aspect are implemented.
  • One or several galvanometer performance detection methods among the possible implementation methods.
  • embodiments of the present application provide a terminal device that can perform the above second aspect or or one or more galvanometer performance detection methods among multiple possible implementation methods of the second aspect.
  • embodiments of the present application provide a computer program product, including a computer readable code, or a non-volatile computer readable storage medium carrying the computer readable code, when the computer readable code is stored electronically
  • the processor in the electronic device executes one or more of the galvanometer performance detection methods of the second aspect or multiple possible implementations of the second aspect.
  • Figure 1 shows a schematic diagram of an application scenario of a galvanometer according to an embodiment of the present application.
  • Figure 2 shows a schematic diagram of an optical storage system architecture according to an embodiment of the present application.
  • Figure 3 shows a structural diagram of a galvanometer performance detection system 300 according to an embodiment of the present application.
  • FIG. 4 shows a schematic diagram of an optical path in galvanometer performance testing according to an embodiment of the present application.
  • Figure 5 shows a schematic diagram of an actual dot matrix mark according to an embodiment of the present application.
  • Figure 6 shows a schematic diagram of detecting acceleration according to an embodiment of the present application.
  • Figure 7 shows a flow chart of a galvanometer performance detection method according to an embodiment of the present application.
  • exemplary means "serving as an example, example, or illustrative.” Any embodiment described herein as “exemplary” is not necessarily to be construed as superior or superior to other embodiments.
  • laser galvanometers play a major role and have an important impact on the performance of laser galvanometers.
  • the requirements are getting higher and higher.
  • the performance of the galvanometer is mostly tested from the perspective of the galvanometer scanning coordinate transformation to analyze the errors in the galvanometer.
  • the circular grating angle measurement method uses Moiré fringes to measure the angle of the galvanometer. It has high measurement accuracy, fast speed, and strong anti-interference ability. However, since it needs to install a circular grating structure on the galvanometer as an auxiliary, non-contact measurement cannot be achieved;
  • the laser interference angle measurement method uses the optical path difference between the measurement beam and the reference beam caused by the rotation angle of the galvanometer to measure the rotated angle of the galvanometer. The measurement accuracy is high, but it requires a fisheye or angle prism to be installed on the galvanometer. and other auxiliary devices, which will affect the dynamic performance of the galvanometer.
  • the embodiment of the present application proposes a galvanometer performance detection system.
  • the system includes a control module, a laser, a galvanometer, and a detection module.
  • the system can control the parameters of the laser and/or the galvanometer through the control module, so that The laser emitted by the laser can form marks on the sample through the galvanometer.
  • the performance of the galvanometer can be determined based on the analysis results, thereby realizing the detection of the galvanometer performance.
  • non-contact detection of the performance of the galvanometer can be achieved, and it is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and precise.
  • the galvanometer performance detection system is used to detect the galvanometer performance, which is low cost and simple to operate. It can detect the galvanometer performance more quickly and has more detectable performance indicators.
  • FIG 1 shows a schematic diagram of an application scenario of a galvanometer according to an embodiment of the present application.
  • galvanometers can be used in optical storage scenarios.
  • a galvanometer can be used in a high-speed readout device to accurately track each line of data in an optical storage medium, and scan the data line by line for optical storage reading and writing.
  • the galvanometer is the core component of the high-speed readout device, and its performance has a direct impact on the actual reading of data. Therefore, it is necessary to accurately detect various performance parameters of the galvanometer to understand the actual performance of the galvanometer, so as to improve the scanning and reading effect of data.
  • the galvanometer performance detection system of the embodiment of the present application is introduced below through Figures 2 to 6 to illustrate the method of detecting the performance of the galvanometer.
  • the galvanometer performance testing system can not only be used to perform performance testing of galvanometers in the optical storage scenario as shown in Figure 1, but can also be used to perform performance testing of galvanometers in other scenarios, such as Performance testing of galvanometers in high-precision machinery manufacturing and processing, high-precision optical measurement, semiconductor manufacturing and other scenarios.
  • the optical storage scenario mainly includes read-write optical drives, storage media, and external interfaces.
  • the storage medium as a carrier for information recording, can be an optical storage medium, and the long-term stable state presented by the changed optical properties of the material can be used to store data.
  • Read-write optical drives can be used to read and write optical storage media, including control chips, electromechanical systems, and read-write optical paths.
  • the control chip can be used to control the electromechanical system and the read and write optical path for signal processing; the electromechanical system can represent the mechanical part of the read and write optical drive; the optical drive can be made to work through the read and write optical path, and the read and write optical path is processed by lasers, galvanometers, etc.
  • the laser signal can realize reading of optical storage media.
  • the external interface can be used to exchange information between the optical storage system and external modules.
  • an embodiment of the present application provides a galvanometer performance detection system to detect the performance of the galvanometer.
  • the galvanometer performance testing system is introduced in detail below.
  • FIG. 3 shows a structural diagram of a galvanometer performance detection system 300 according to an embodiment of the present application.
  • the galvanometer performance detection system 300 may include:
  • the control module 301 is used to control the parameters of the laser 302 and/or the galvanometer 303.
  • the control module 301 may be a processor, and the parameters of the laser 302 may include the power of the laser signal emitted by the laser 302 to obtain lasers of different frequencies and duty cycles.
  • the duty cycle may refer to the pulse duration of each laser pulse. Ratio to pulse period.
  • the parameters of the galvanometer 303 may include the frequency of the drive signal of the galvanometer, the amplitude of the drive voltage, the deflection angle of the galvanometer, etc.
  • the laser 302 is configured to emit the first laser in response to the control of the control module 301 .
  • the frequency and duty cycle of the first laser can be determined in response to the control of the control module 301.
  • the first laser can be blue light or light in other wavelength ranges, which is not limited in this application.
  • the galvanometer 303 is used to respond to the control of the control module 301 and use the first laser to emit the second laser.
  • the galvanometer 303 can deflect the first laser at different angles to form a corresponding second laser.
  • the second laser can be used to form marks on the sample.
  • the material of the sample can be exposed to form visible (including microscopically visible) notches.
  • the sample can be a silicon wafer with a surface coated with photoresist, or other optical storage media, which is not limited in this application.
  • the formed mark can be a dot matrix (including one or more points) or a linear array (including one or more lines), which can be determined according to the frequency and duty cycle of the laser.
  • the detection module 304 is used to analyze the mark and obtain the analysis result.
  • the mark can be analyzed by electron microscopy, manually, etc.
  • the mark can also be imaged and analyzed based on the imaging results.
  • the analysis results may indicate the performance of the galvanometer 303 .
  • This performance can include the actual marking range of the galvanometer during marking, acceleration and deceleration stability, minimum step time, linearity, straightness, stability, etc., which will be introduced in detail below.
  • the parameters of the laser and/or the galvanometer are controlled through the control module, so that the laser emitted by the laser can form a mark on the sample through the galvanometer.
  • the determination can be made based on the analysis results.
  • Galvanometer performance so as to realize the detection of galvanometer performance. In this process, non-contact detection of the performance of the galvanometer can be achieved, and it is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and precise.
  • the galvanometer performance detection system is used to detect the galvanometer performance, which is low cost and simple to operate. It can detect the galvanometer performance more quickly and has more detectable performance indicators.
  • control module 301 can also be used for:
  • control module 301 can control the focusing module 305 to move along a straight line through instructions according to the feedback light signal to focus, and the focusing method can be implemented based on existing technology.
  • the galvanometer performance testing system 300 may also include:
  • the focusing module 305 is used to control the objective lens 306 in response to the control of the control module 301 .
  • the objective lens 306 can be fixed on the focusing module 305, and through the movement of the focusing module 305, the objective lens 306 can be driven to move linearly, so as to control the objective lens 306.
  • the objective lens 306 is used to focus the second laser onto the surface of the sample in response to the control of the focusing module 305 to form a mark on the sample.
  • the first laser light can be incident on the entrance pupil of the objective lens 306 and focused on the surface of the sample through the objective lens 306 to form a mark.
  • the laser emitted by the objective lens can be better focused on the surface of the sample, so that the marks formed on the sample can reach the nanometer scale, thereby making the vibration
  • the detection of mirrors can achieve higher accuracy, making subsequent analysis results more accurate and improving the accuracy of galvanometer performance detection.
  • the galvanometer performance detection system 300 may also include:
  • One or more of the reflecting mirror 307, the scanning lens 308, the tube mirror 309, and the dichroic beam splitter 310 are used to process the first laser or the second laser to obtain the third laser.
  • the third laser can be used to form marks on the sample.
  • the reflector 307 can be used to reflect the laser;
  • the scanning lens 308 can be used to filter out the light of a predetermined wavelength in the laser;
  • the tube mirror 309 can be used to scale the area irradiated by the laser;
  • two-way Dichroic mirrors (DM) 310 can be used to reflect light within a predetermined wavelength range of the laser light.
  • the reflecting mirror 307, the scanning lens 308, the tube mirror 309, and the dichroic beam splitter 310 can be placed between the laser 302 and the galvanometer 303, or between the galvanometer 303 and the focusing module 305. This application does not do this. limit.
  • the laser 302 and the galvanometer 303 When placed between the laser 302 and the galvanometer 303, it can be used to process the first laser to obtain the third laser.
  • the third laser can obtain the second laser through the galvanometer 303. By focusing the second laser, Form a mark on the surface of the sample; when placed between the galvanometer 303 and the focusing module 305, it can be used to process the second laser to obtain a third laser. By focusing the third laser, a mark can be formed on the surface of the sample. .
  • the final mark can be made clearer, thereby facilitating subsequent marking.
  • Performing analysis can make subsequent analysis results more accurate and improve the accuracy of galvanometer performance testing.
  • FIG. 4 shows a schematic diagram of an optical path in galvanometer performance testing according to an embodiment of the present application.
  • the control module 301 can control the laser 302, the galvanometer 303 and the focusing module 305.
  • the laser emitted by the laser 302 can pass through the reflector 307, the galvanometer 303, the scanning lens 308, the tube lens 309, the dichroic beam splitter 310, the focusing module 305, and the objective lens 306 to form a mark on the sample, which can be placed on the workpiece.
  • the control module 301 can control the laser 302, the galvanometer 303 and the focusing module 305.
  • the laser emitted by the laser 302 can pass through the reflector 307, the galvanometer 303, the scanning lens 308, the tube lens 309, the dichroic beam splitter 310, the focusing module 305, and the objective lens 306 to form a mark on the sample, which can be placed on the workpiece.
  • the laser emitted by the laser 302 can
  • the galvanometer performance detection system can also include an imaging module as shown in Figure 4.
  • the imaging module can emit a beam of parallel white light, which can pass through the dichroic beam splitter 310 and then be incident on the objective lens. 306, and is focused on the sample. After reflection by the sample, the white light can return to the imaging module along the original incident light path.
  • the imaging module can be connected to a computer so that computer imaging can be performed.
  • analysis can be performed based on marks formed on the sample, or analysis can be performed based on imaging results obtained by a computer.
  • the actual marking range of the galvanometer can be calibrated through the galvanometer performance detection system 300.
  • the above analysis results can include the marking range of the galvanometer 303 at different amplitudes.
  • the control module 301 can be used to:
  • the duty cycle of the laser emitted by the laser 302 is fixed so that the first laser is a continuous laser.
  • the continuous laser can mean that the laser emitted by the laser 302 is continuous, which can be achieved, for example, by reducing the duty cycle of the laser. By emitting continuous laser light, linear marks can be formed on the sample.
  • the frequency of the galvanometer 303 is fixed, and the amplitude of the galvanometer 303 is adjusted.
  • the frequency of the galvanometer 303 can be kept at a predetermined value, and the amplitude of the galvanometer 303 can be changed, for example, changing the amplitude every predetermined threshold, so that sub-wavelength thin lines at different amplitudes can be formed on the sample.
  • Detection module 304 can be used for:
  • the length of lines at different amplitudes in a mark can be measured using an electron microscope.
  • the marking range of the galvanometer 303 under different amplitudes is determined.
  • the corresponding curve between the amplitude and the actual marking range can also be determined.
  • the amplitude corresponding to the best line among these lines can also be determined as the amplitude at the best performance.
  • the effect of lines can be judged by observing the uniformity and coherence of the lines, for example, by imaging results on a computer.
  • control module controls the laser to emit continuous laser light, adjusts the amplitude of the galvanometer, and analyzes the linear marks formed on the sample through the detection module, so that the actual marking range of the galvanometer can be determined. Calibration can quickly realize non-contact detection of the performance of the galvanometer, and is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and precise.
  • the galvanometer performance detection system 300 can be used to detect the acceleration and deceleration stability of the galvanometer during marking.
  • the above analysis results include the corresponding acceleration and/or deceleration of the galvanometer 303.
  • the control module 301 can be used to:
  • the duty cycle of the laser emitted by the laser 302 is fixed so that the first laser is a discontinuous laser.
  • the discontinuous laser can be a pulsed laser.
  • the duty cycle of the laser can be fixed to a predetermined ratio (such as 1:1) to form continuous lattice marks on the sample.
  • the frequency of galvanometer 303 is fixed.
  • the frequency of the galvanometer 303 can be fixed to a predetermined value, which can be called f1.
  • Detection module 304 can be used for:
  • Figure 5 shows a schematic diagram of an actual dot matrix mark according to an embodiment of the present application.
  • the actual lattice mark formed on the sample is shown when the duty cycle of the pulsed laser is set to 1:1.
  • the lattice mark can be measured in microns (um).
  • the width of the lattice mark in the figure is only 300um, so it can be measured by an electron microscope when analyzing the marks on the sample.
  • the distance between two points in the acceleration or deceleration section of the lattice can be measured through an electron microscope.
  • the distance between two consecutive points can be measured, and the distance between two discontinuous points can also be measured.
  • FIG. 6 a schematic diagram of detecting acceleration according to an embodiment of the present application is shown.
  • the points in Figure 6 can represent the lattice marks formed by the laser on the sample. Taking the measurement of acceleration as an example, through an electron microscope, the separation distance between two points in the acceleration section can be measured, and l1 and l2 are obtained as shown in the figure. l1 and l2 can respectively correspond to two consecutive points.
  • the acceleration and/or deceleration is determined.
  • the method of calculating deceleration is the same and will not be repeated here.
  • accelerations can also be calculated and the changes between multiple accelerations can be analyzed to determine acceleration stability. The same is true for deceleration stability.
  • control module controls the laser to emit discontinuous laser
  • detection module analyzes the lattice marks formed on the sample, so that the acceleration and/or deceleration of the galvanometer can be measured, so that further Determine the stability of the galvanometer's acceleration and deceleration, quickly realize non-contact detection of the galvanometer's performance, and be more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • the minimum step time of the galvanometer can be determined through the galvanometer performance detection system 300.
  • the above analysis results can include the minimum step time corresponding to the galvanometer 303.
  • the control module 301 can be used to:
  • the duty cycle of the laser emitted by the laser 302 is fixed so that the first laser is a discontinuous laser.
  • the discontinuous laser can be a pulsed laser.
  • the duty cycle of the laser can be fixed to a predetermined ratio (such as 1:1) to form continuous lattice marks on the sample.
  • the frequency of the galvanometer 303 can be changed, for example, the frequency is increased every predetermined threshold, so that corresponding lattice marks can be formed on the sample.
  • Detection module 301 can be used for:
  • the marking of the lattice marks on the sample can be determined through an electron microscope, and the point in the lattice mark that reaches the limit state can be determined, that is, the boundary between two points can be clearly distinguished.
  • the minimum step time is determined according to the corresponding frequency of the galvanometer 303 in the limit state.
  • the minimum step time can be 1/f2, which can represent the minimum time for a rapid and large change in the working state of the galvanometer.
  • control module controls the laser to emit discontinuous laser, and the detection module analyzes the lattice marks formed on the sample, so that the minimum step time of the detection galvanometer can be realized, thereby quickly realizing the performance of the galvanometer.
  • the non-contact detection is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • the linearity of the galvanometer can be determined through the galvanometer performance detection system 300.
  • the above analysis results can include linearity information corresponding to the galvanometer 303.
  • the control module 301 can be used to:
  • the amplitude of the galvanometer 303 can be started from the minimum value (such as 0), and the amplitude can be increased every predetermined threshold until the predetermined maximum value.
  • the amount of change in the amplitude can be constant.
  • the predetermined maximum value can be, for example, It is the amplitude of the amplitude obtained under the best performance when calibrating the actual marking range of the galvanometer.
  • the laser 302 is controlled to emit the first laser when the amplitude of the galvanometer 303 changes.
  • the control module 301 can emit a pulse laser once and mark the sample once, so that corresponding lattice marks can be formed on the sample.
  • Detection module 304 can be used for:
  • the displacement of each point in the lattice compared to the first point in the lattice can be determined through an electron microscope.
  • the displacement change of each point in the lattice compared to the previous point is determined based on the corresponding displacement of each point.
  • linearity information is determined.
  • the linear degree of the corresponding relationship between the displacement change and the amplitude can be determined, and the linearity information can be determined.
  • control module controls the laser to emit discontinuous laser light in response to the amplitude change of the galvanometer
  • detection module analyzes the lattice marks formed on the sample to determine the linearity information of the galvanometer, thereby enabling Quickly realize non-contact detection of the performance of the galvanometer, and it is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • the straightness of the galvanometer can be determined through the galvanometer performance detection system 300.
  • the above analysis results can include the straightness information corresponding to the galvanometer 303, wherein the sample can be moved at a predetermined speed and a predetermined angle.
  • the sample can be moved at a predetermined speed and a predetermined angle.
  • the workbench on which the sample is placed moves at a predetermined speed and angle.
  • the workbench is controlled to move at a constant speed perpendicular to the direction perpendicular to the galvanometer scanning.
  • the speed can be d ⁇ f3, where d can represent the distance between adjacent lines in the linear array. Line width, f3 can represent the frequency of the galvanometer.
  • Control module 301 can be used for:
  • the duty cycle of the laser emitted by the laser 302 is fixed so that the first laser is a continuous laser.
  • the continuous laser can mean that the laser emitted by the laser 302 is continuous. For example, it can be achieved by reducing the duty cycle of the laser. now. By emitting continuous laser light, linear marks can be formed on the sample.
  • the frequency of galvanometer 303 is fixed.
  • the frequency of the galvanometer 303 can be kept at a predetermined value, such as f3 mentioned above.
  • Detection module 304 used for:
  • line width can be measured using an electron microscope.
  • Line width can represent the line width between adjacent lines.
  • straightness information is determined.
  • the line width can be measured multiple times at different positions on the line.
  • Straightness information can be determined from multiple line widths. For example, the smaller the difference between multiple line widths, the better the straightness of the galvanometer marking can be considered.
  • control module controls the laser to emit continuous laser
  • detection module analyzes the line width of the linear mark formed on the sample to determine the straightness information of the galvanometer, thereby quickly realizing the performance of the galvanometer.
  • the non-contact detection is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • the stability of the galvanometer can be determined through the galvanometer performance detection system 300.
  • the above analysis results include the longest stable working time corresponding to the galvanometer 303, wherein the sample can be moved at a predetermined speed and a predetermined angle, for example, The workbench on which the sample is placed is moved at a predetermined speed and angle, for example, the workbench is controlled to move at a constant speed perpendicular to the scanning direction of the galvanometer.
  • Control module 301 can be used for:
  • the duty cycle of the laser emitted by the laser 302 is fixed so that the first laser is a discontinuous laser.
  • the discontinuous laser can be a pulsed laser.
  • the duty cycle of the laser can be fixed to a predetermined ratio (such as 1:1) to form continuous lattice marks on the sample.
  • the frequency and amplitude of the galvanometer 303 are fixed.
  • the frequency and amplitude of the galvanometer 303 can be kept at a predetermined value, and the predetermined value can be determined according to the best working performance of the galvanometer 303.
  • the predetermined value corresponding to the amplitude can be the above-mentioned calibration of the actual marking range of the galvanometer. The amplitude of the amplitude obtained by timing the best performance.
  • Detection module 304 can be used for:
  • the mark is analyzed to determine at least one of linearity information, acceleration, and deceleration.
  • At least one of linearity information, acceleration, and deceleration can be determined in the above manner.
  • the longest stable working time is determined based on at least one of linearity information, acceleration, and deceleration.
  • the time corresponding to when the mark is abnormal can be determined based on at least one of linearity information, acceleration, and deceleration, so that the working time corresponding to this time is used as the longest stable working time.
  • Abnormalities in markers may include that the maximum deviation between the marker and the fitted straight line is greater than a predetermined threshold, the change between accelerations is greater than a predetermined threshold, the change between accelerations is greater than a predetermined threshold, etc. Whether there is an abnormality in the mark can also be determined through other methods, which is not limited by this application.
  • control module controls the laser to emit discontinuous laser
  • detection module analyzes the lattice marks formed on the sample, so that the longest stable working time of the detection galvanometer can be achieved, thereby quickly realizing the detection of the galvanometer.
  • the non-contact detection of performance is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and precise.
  • Figure 7 shows a flow chart of a galvanometer performance detection method according to an embodiment of the present application. As shown in Figure 7, the method includes:
  • Step S701 Control the parameters of the laser and/or galvanometer through the control module.
  • Step S702 Use the laser to emit the first laser in response to the control of the control module.
  • Step S703 Use the first laser to emit the second laser through the galvanometer in response to the control of the control module.
  • the second laser can be used to form marks on the sample.
  • Step S704 Analyze the mark through the detection module to obtain the analysis result.
  • the analysis results can indicate the performance of the galvanometer.
  • the parameters of the laser and/or the galvanometer are controlled through the control module, so that the laser emitted by the laser can form a mark on the sample through the galvanometer.
  • the determination can be made based on the analysis results.
  • Galvanometer performance so as to realize the detection of galvanometer performance. In this process, non-contact detection of the performance of the galvanometer can be achieved, and it is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and precise.
  • the galvanometer performance detection system is used to detect the galvanometer performance, which is low cost and simple to operate. It can detect the galvanometer performance more quickly and has more detectable performance indicators.
  • the method may also include:
  • the focusing module is controlled
  • the objective lens is controlled in response to the control of the control module
  • the second laser is focused onto the surface of the sample to form a mark on the sample.
  • the laser emitted by the objective lens can be better focused on the surface of the sample, so that the marks formed on the sample can reach the nanometer scale, thereby making the vibration
  • the detection of mirrors can achieve higher accuracy, making subsequent analysis results more accurate and improving the accuracy of galvanometer performance detection.
  • the method may also include:
  • the first laser or the second laser is processed through one or more of a reflecting mirror, a scanning lens, a tube mirror, and a dichroic beam splitter to obtain a third laser.
  • the third laser is used to form marks on the sample.
  • the final mark can be made clearer, thereby facilitating subsequent marking.
  • Performing analysis can make subsequent analysis results more accurate and improve the accuracy of galvanometer performance testing.
  • Step S701 may include:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a continuous laser
  • the frequency of the galvanometer is fixed and the amplitude of the galvanometer is adjusted;
  • This step S704 may include:
  • the marking range of the galvanometer under different amplitudes is determined based on the length of the lines under different amplitudes.
  • control module controls the laser to emit continuous laser light, adjusts the amplitude of the galvanometer, and analyzes the linear marks formed on the sample through the detection module, so that the actual marking range of the galvanometer can be determined. Calibration can quickly realize non-contact detection of the performance of the galvanometer, and is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and precise.
  • Step S701 may include:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a discontinuous laser
  • the frequency of the galvanometer is fixed
  • This step S704 may include:
  • the acceleration and/or deceleration is determined based on the frequency and separation distance of the galvanometer.
  • control module controls the laser to emit discontinuous laser
  • detection module analyzes the lattice marks formed on the sample, so that the acceleration and/or deceleration of the galvanometer can be measured, so that further Determine the stability of the galvanometer's acceleration and deceleration, quickly realize non-contact detection of the galvanometer's performance, and be more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • Step S701 may include:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a discontinuous laser
  • This step S704 may include:
  • the minimum step time is determined according to the frequency of the corresponding galvanometer in the limit state.
  • control module controls the laser to emit discontinuous laser, and the detection module analyzes the lattice marks formed on the sample, so that the minimum step time of the detection galvanometer can be realized, thereby quickly realizing the performance of the galvanometer.
  • the non-contact detection is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • Step S701 may include:
  • the laser in response to the change in the amplitude of the galvanometer, the laser is controlled to emit the first laser when the amplitude of the galvanometer changes;
  • This step S704 may include:
  • the displacement change information of the midpoint of the lattice in the mark is determined
  • the linearity information is determined based on the displacement change information.
  • control module controls the laser to emit discontinuous laser light in response to the amplitude change of the galvanometer
  • detection module analyzes the lattice marks formed on the sample to determine the linearity information of the galvanometer, thereby enabling Quickly realize non-contact detection of the performance of the galvanometer, and it is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • This step S701 may include:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a continuous laser
  • the frequency of the galvanometer is fixed
  • step S704 it may include:
  • the straightness information is determined based on the line width.
  • control module controls the laser to emit continuous laser
  • detection module analyzes the line width of the linear mark formed on the sample to determine the straightness information of the galvanometer, thereby quickly realizing the performance of the galvanometer.
  • the non-contact detection is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • This step S701 may include:
  • the duty cycle of the laser emitted by the laser is fixed so that the first laser is a discontinuous laser
  • This step S704 may include:
  • the mark is analyzed to determine at least one of linearity information, acceleration, and deceleration;
  • the longest stable working time is determined based on at least one of linearity information, acceleration, and deceleration.
  • the longest stable working time of the detection galvanometer can be achieved, thereby enabling rapid detection of the galvanometer.
  • the non-contact detection of performance is more in line with the actual use environment of the galvanometer, making the detection and analysis results more accurate and more precise.
  • Embodiments of the present application provide a galvanometer performance testing device, including: a processor and a memory for storing instructions executable by the processor; wherein the processor is configured to implement the above method when executing the instructions.
  • Embodiments of the present application provide a non-volatile computer-readable storage medium on which computer program instructions are stored. When the computer program instructions are executed by a processor, the above method is implemented.
  • Embodiments of the present application provide a computer program product, including computer readable code, or a non-volatile computer readable storage medium carrying the computer readable code, when the computer readable code is stored in a processor of an electronic device When running, the processor in the electronic device executes the above method.
  • Computer-readable storage media may be tangible devices that can retain and store instructions for use by an instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the above.
  • Non-exhaustive list of computer-readable storage media include: portable computer disks, hard drives, random access memory (RAM), read only memory (ROM), erasable memory Electrically Programmable Read-Only-Memory (EPROM or Flash Memory), Static Random-Access Memory (SRAM), Portable Compact Disc Read-Only Memory (CD) -ROM), Digital Video Disc (DVD), memory stick, floppy disk, mechanical encoding device, such as a punched card or a raised structure in a groove with instructions stored thereon, and any suitable combination of the above .
  • RAM random access memory
  • ROM read only memory
  • EPROM or Flash Memory erasable memory Electrically Programmable Read-Only-Memory
  • SRAM Static Random-Access Memory
  • CD Portable Compact Disc Read-Only Memory
  • DVD Digital Video Disc
  • memory stick floppy disk
  • mechanical encoding device such as a punched card or a raised structure in a groove with instructions stored thereon, and any suitable combination of the above .
  • Computer-readable program instructions or code described herein may be downloaded from a computer-readable storage medium to various computing/processing devices, or to an external computer or external storage device over a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage on a computer-readable storage medium in the respective computing/processing device .
  • the computer program instructions used to perform the operations of this application may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or one or more Source code or object code written in any combination of programming languages, including object-oriented programming languages—such as Smalltalk, C++, etc., and conventional procedural programming languages—such as the “C” language or similar programming languages.
  • the computer-readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server implement.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer (e.g. Use an Internet service provider to Internet connection).
  • electronic circuits are customized by utilizing state information of computer-readable program instructions, such as programmable logic circuits, field-programmable gate arrays (Field-Programmable Gate Arrays, FPGAs), or programmable logic arrays (Programmable logic circuits).
  • Logic Array PLA
  • this electronic circuit can execute computer-readable program instructions to implement various aspects of the present application.
  • These computer-readable program instructions may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing apparatus, thereby producing a machine that, when executed by the processor of the computer or other programmable data processing apparatus, , resulting in an apparatus that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • These computer-readable program instructions can also be stored in a computer-readable storage medium. These instructions cause the computer, programmable data processing device and/or other equipment to work in a specific manner. Therefore, the computer-readable medium storing the instructions includes An article of manufacture that includes instructions that implement aspects of the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • Computer-readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other equipment, causing a series of operating steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executed on a computer, other programmable data processing apparatus, or other equipment to implement the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions that contains one or more components for implementing the specified logical function(s).
  • Executable instructions may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by hardware (such as circuits or ASICs) that perform the corresponding function or action. Specific Integrated Circuit), or can be implemented with a combination of hardware and software, such as firmware.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种振镜(303)性能检测系统、方法和存储介质。振镜(303)性能检测系统包括:控制模块(301),用于对激光器(302)和/或振镜(303)的参数进行控制;激光器(302),用于响应于控制模块(301)的控制,发射第一激光;振镜(303),用于响应于控制模块(301)的控制,利用第一激光,发射第二激光,第二激光用于在样品上形成标记;检测模块(304),用于对标记进行分析,得到分析结果,分析结果指示振镜(303)的性能。振镜(303)性能检测系统可以实现对于振镜(303)性能的非接触检测,且更加符合振镜(303)实际使用环境,使得检测分析结果更加准确,精度更高。同时,可以更加快速的对振镜(303)性能进行检测,成本低、操作简单,且可检测的性能指标更多。

Description

振镜性能检测系统、方法和存储介质
本申请要求于2022年09月05日提交中国专利局、申请号为202211080053.X、发明名称为“振镜性能检测系统、方法和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息技术领域,尤其涉及一种振镜性能检测系统、方法和存储介质。
背景技术
随着信息技术的快速发展,其中,激光振镜的应用越来越广泛,比如在激光内雕、激光打标、激光雷达等领域,激光振镜发挥了重大作用,且对激光振镜的性能要求也越来越高。通常需要对振镜的性能进行检测以掌握振镜性能。
当前对于振镜性能的检测多从振镜扫描坐标变换的角度,去分析振镜存在的误差,这些方式对振镜的性能分析仅仅停留在理论层面,脱离了振镜实际的使用环境,无法很好的了解振镜的实际性能。此外,还有圆光栅测角法、激光干涉测角法等。圆光栅测角法通过摩尔条纹测量振镜转过的角度,其测量精度高、速度快、抗干扰能力强,但由于需要在振镜上安装圆光栅结构作为辅助,因此无法实现非接触测量;激光干涉测角法利用振镜转角引起的测量光束与参考光束所产生的光程差来测量振镜的转过的角度,其测量精度较高,但是需要在振镜上安装鱼眼镜或角棱镜等辅助装置,因此会对振镜的动态性能产生影响。上述方式均需要在振镜上安装辅助装置,无法做到非接触测量,容易对振镜表面进行破环,影响振镜的使用。因此,亟需一种新型的振镜性能检测系统使得能够在不对振镜表面造成影响的基础上,快速高精度的完成对振镜性能的检测。
发明内容
有鉴于此,提出了一种振镜性能检测系统、方法和存储介质。
第一方面,本申请的实施例提供了一种振镜性能检测系统,该系统包括:
控制模块,用于对激光器和/或振镜的参数进行控制;
激光器,用于响应于控制模块的控制,发射第一激光;
振镜,用于响应于控制模块的控制,利用第一激光,发射第二激光,第二激光用于在样品上形成标记;
检测模块,用于对标记进行分析,得到分析结果,分析结果指示振镜的性能。
根据本申请实施例,通过控制模块对激光器和/或振镜的参数进行控制,使得激光器发射的激光可以通过振镜在样品上形成标记,通过对样品上的标记进行分析,可以根据分析结果确定振镜性能,从而实现对振镜性能的检测。在此过程中,可以做到对于振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。同时,通过该振镜性能检测系统对振镜的性能进行检测,成本低、操作简单,可以更加快速的对振镜性能进行检测,且可检测的性能指标更多。
根据第一方面,在振镜性能检测系统的第一种可能的实现方式中,该控制模块,还用于:
对调焦模块进行控制;
该系统,还包括:
调焦模块,用于响应于控制模块的控制,对物镜进行控制;
物镜,用于响应于调焦模块的控制,将第二激光聚焦至样品的表面,在样品上形成标记。
根据本申请实施例,通过利用调焦模块和物镜对激光进行紧聚焦,可以使得物镜出射的激光能够更好的汇聚在样品的表面,使得样品上形成的标记可以达到纳米尺度,从而使对振镜的检测可以实现更高的精度,使得后续得到的分析结果更加精准,提高了振镜性能检测的准确性。
根据第一方面或第一方面的第一种可能的实现方式,在振镜性能检测系统的第二种可能的实现方式中,该系统还包括:
反射镜、扫描透镜、管镜、二向色分光镜中的一种或多种,用于对第一激光或第二激光进行处理,得到第三激光,第三激光用于在样品上形成标记。
根据本申请实施例,通过利用反射镜、扫描透镜、管镜、二向色分光镜中的一种或多种,对激光进行处理,可以使得最终形成的标记更加清晰,从而能够方便后续对标记进行分析,能够使得后续得到的分析结果更加精准,提高了振镜性能检测的准确性。
根据第一方面或第一方面的第一种或第二种可能的实现方式,在振镜性能检测系统的第三种可能的实现方式中,该分析结果包括振镜在不同振幅下的标刻范围,该控制模块,用于:
固定激光器发射的激光的占空比,以使第一激光为连续激光;
固定振镜的频率,对振镜的振幅进行调整;
该检测模块,用于:
测量标记中不同振幅下的线条的长度;
根据不同振幅下的线条的长度,确定振镜在不同振幅下的标刻范围。
根据本申请实施例,通过控制模块控制激光器发出连续激光,并对振镜的振幅进行调整,且通过检测模块对样品上形成的线状标记进行分析,可以实现对振镜的实际标刻范围的标定,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
根据第一方面或第一方面的第一种或第二种或第三种可能的实现方式,在振镜性能检测系统的第四种可能的实现方式中,该分析结果包括振镜对应的加速度和/或减速度,该控制模块,用于:
固定激光器发射的激光的占空比,以使第一激光为非连续激光;
固定振镜的频率;
该检测模块,用于:
测量标记中点阵之间的间隔距离;
根据振镜的频率、以及间隔距离,确定加速度和/或减速度。
根据本申请实施例,通过控制模块控制激光器发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以实现对振镜的加速度和/或减速度的测量,从而可以进一步的确定振镜加减速的稳定性,快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
根据第一方面或第一方面的第一种或第二种或第三种或第四种可能的实现方式,在振镜 性能检测系统的第五种可能的实现方式中,该分析结果包括振镜对应的最小阶跃时间,该控制模块,用于:
固定激光器发射的激光的占空比,以使第一激光为非连续激光;
对振镜的频率进行调整;
该检测模块,用于:
确定标记中点阵在极限状态下对应的振镜的频率;
根据在极限状态下对应的振镜的频率,确定最小阶跃时间。
根据本申请实施例,通过控制模块控制激光器发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以实现检测振镜的最小阶跃时间,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
根据第一方面或第一方面的第一种或第二种或第三种或第四种或第五种可能的实现方式,在振镜性能检测系统的第六种可能的实现方式中,该分析结果包括振镜对应的线性度信息,该控制模块,用于:
对振镜的幅值进行调整;
响应于振镜的幅值变化,控制激光器在振镜的幅值发生变化时,发射第一激光;
该检测模块,用于:
确定标记中点阵中点的位移变化信息;
根据位移变化信息,确定线性度信息。
根据本申请实施例,通过控制模块控制激光器响应于振镜的幅值变化发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以确定振镜的线性度信息,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
根据第一方面或第一方面的第一种或第二种或第三种或第四种或第五种或第六种可能的实现方式,在振镜性能检测系统的第七种可能的实现方式中,该样品以预定速度和预定角度移动,该分析结果包括振镜对应的直线度信息,该控制模块,用于:
固定激光器发射的激光的占空比,以使第一激光为连续激光;
固定振镜的频率;
该检测模块,用于:
测量标记中不同线条之间的线宽;
根据线宽,确定直线度信息。
根据本申请实施例,通过控制模块控制激光器发出连续激光,且通过检测模块对样品上形成的线状标记的线宽进行分析,可以确定振镜的直线度信息,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
根据第一方面的第六种或第七种可能的实现方式,在振镜性能检测系统的第八种可能的实现方式中,该样品以预定速度和预定角度移动,该分析结果包括振镜对应的最长稳定工作时间,该控制模块,用于:
固定激光器发射的激光的占空比,以使第一激光为非连续激光;
固定振镜的频率和振幅;
该检测模块,用于:
对标记进行分析,确定线性度信息、加速度、减速度中的至少一种;
根据线性度信息、加速度、减速度中的至少一种,确定最长稳定工作时间。
根据本申请实施例,通过控制模块控制激光器发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以实现检测振镜的最长稳定工作时间,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
第二方面,本申请的实施例提供了一种振镜性能检测方法,该方法包括:
通过控制模块,对激光器和/或振镜的参数进行控制;
通过激光器,响应于控制模块的控制,发射第一激光;
通过振镜,响应于控制模块的控制,利用第一激光,发射第二激光,第二激光用于在样品上形成标记;
通过检测模块,对标记进行分析,得到分析结果,分析结果指示振镜的性能。
根据第二方面,在振镜性能检测方法的第一种可能的实现方式中,该方法还包括:
通过控制模块,对调焦模块进行控制;
通过调焦模块,响应于控制模块的控制,对物镜进行控制;
通过物镜,响应于调焦模块的控制,将第二激光聚焦至样品的表面,在样品上形成标记。
根据第二方面或第二方面的第一种可能的实现方式,在振镜性能检测方法的第二种可能的实现方式中,该方法还包括:
通过反射镜、扫描透镜、管镜、二向色分光镜中的一种或多种,对第一激光或第二激光进行处理,得到第三激光,第三激光用于在样品上形成标记。
根据第二方面或第二方面的第一种或第二种可能的实现方式,在振镜性能检测方法的第三种可能的实现方式中,该分析结果包括振镜在不同振幅下的标刻范围,通过控制模块,对激光器和/或振镜的参数进行控制,包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为连续激光;
通过控制模块,固定振镜的频率,对振镜的振幅进行调整;
通过检测模块,对标记进行分析,得到分析结果,包括:
通过检测模块,测量标记中不同振幅下的线条的长度;
通过检测模块,根据不同振幅下的线条的长度,确定振镜在不同振幅下的标刻范围。
根据第二方面或第二方面的第一种或第二种或第三种可能的实现方式,在振镜性能检测方法的第四种可能的实现方式中,该分析结果包括振镜对应的加速度和/或减速度,通过控制模块,对激光器和/或振镜的参数进行控制,包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为非连续激光;
通过控制模块,固定振镜的频率;
通过检测模块,对标记进行分析,得到分析结果,包括:
通过检测模块,测量标记中点阵之间的间隔距离;
通过检测模块,根据振镜的频率、以及间隔距离,确定加速度和/或减速度。
根据第二方面或第二方面的第一种或第二种或第三种或第四种可能的实现方式,在振镜性能检测方法的第五种可能的实现方式中,该分析结果包括振镜对应的最小阶跃时间,通过控制模块,对激光器和/或振镜的参数进行控制,包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为非连续激光;
通过控制模块,对振镜的频率进行调整;
通过检测模块,对标记进行分析,得到分析结果,包括:
通过检测模块,确定标记中点阵在极限状态下对应的振镜的频率;
通过检测模块,根据在极限状态下对应的振镜的频率,确定最小阶跃时间。
根据第二方面或第二方面的第一种或第二种或第三种或第四种或第五种可能的实现方式,在振镜性能检测方法的第六种可能的实现方式中,该分析结果包括振镜对应的线性度信息,通过控制模块,对激光器和/或振镜的参数进行控制,包括:
通过控制模块,对振镜的幅值进行调整;
通过控制模块,响应于振镜的幅值变化,控制激光器在振镜的幅值发生变化时,发射第一激光;
通过检测模块,对标记进行分析,得到分析结果,包括:
通过检测模块,确定标记中点阵中点的位移变化信息;
通过检测模块,根据位移变化信息,确定线性度信息。
根据第二方面或第二方面的第一种或第二种或第三种或第四种或第五种或第六种可能的实现方式,在振镜性能检测方法的第七种可能的实现方式中,该样品以预定速度和预定角度移动,该分析结果包括振镜对应的直线度信息,通过控制模块,对激光器和/或振镜的参数进行控制,包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为连续激光;
通过控制模块,固定振镜的频率;
通过检测模块,对标记进行分析,得到分析结果,包括:
通过检测模块,测量标记中不同线条之间的线宽;
通过检测模块,根据线宽,确定直线度信息。
根据第二方面的第六种或第七种可能的实现方式,在振镜性能检测方法的第八种可能的实现方式中,该样品以预定速度和预定角度移动,该分析结果包括振镜对应的最长稳定工作时间,通过控制模块,对激光器和/或振镜的参数进行控制,包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为非连续激光;
通过控制模块,固定振镜的频率和振幅;
通过检测模块,对标记进行分析,得到分析结果,包括:
通过检测模块,对标记进行分析,确定线性度信息、加速度、减速度中的至少一种;
通过检测模块,根据线性度信息、加速度、减速度中的至少一种,确定最长稳定工作时间。
第三方面,本申请的实施例提供了一种振镜性能检测装置,该装置包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为执行指令时实现上述第二方面或者第二方面的多种可能的实现方式中的一种或几种的振镜性能检测方法。
第四方面,本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,计算机程序指令被处理器执行时实现上述第二方面或者第二方面的多种可能的实现方式中的一种或几种的振镜性能检测方法。
第五方面,本申请的实施例提供了一种终端设备,该终端设备可以执行上述第二方面或 者第二方面的多种可能的实现方式中的一种或几种的振镜性能检测方法。
第六方面,本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述第二方面或者第二方面的多种可能的实现方式中的一种或几种的振镜性能检测方法。
本申请的这些和其他方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例、特征和方面,并且用于解释本申请的原理。
图1示出根据本申请一实施例的振镜的应用场景的示意图。
图2示出根据本申请一实施例的光存储系统架构的示意图。
图3示出根据本申请一实施例的振镜性能检测系统300的结构图。
图4示出根据本申请一实施例的振镜性能检测中的一种光路的示意图。
图5示出根据本申请一实施例的实际点阵标记的示意图。
图6示出根据本申请一实施例的对加速度进行检测的示意图。
图7示出根据本申请一实施例的振镜性能检测方法的流程图。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
随着信息技术的快速发展,其中,激光振镜的应用越来越广泛,比如在激光内雕、激光打标、激光雷达等领域,激光振镜发挥了重大作用,且对激光振镜的性能要求也越来越高。通常需要对振镜的性能进行检测以掌握振镜性能。当前对于振镜性能的检测多从振镜扫描坐标变换的角度,去分析振镜存在的误差,这些方式对振镜的性能分析仅仅停留在理论层面,脱离了振镜实际的使用环境,无法很好的了解振镜的实际性能。此外,还有圆光栅测角法、激光干涉测角法等。圆光栅测角法通过摩尔条纹测量振镜转过的角度,其测量精度高、速度快、抗干扰能力强,但由于需要在振镜上安装圆光栅结构作为辅助,因此无法实现非接触测量;激光干涉测角法利用振镜转角引起的测量光束与参考光束所产生的光程差来测量振镜的转过的角度,其测量精度较高,但是需要在振镜上安装鱼眼镜或角棱镜等辅助装置,因此会对振镜的动态性能产生影响。上述方式均需要在振镜上安装辅助装置,无法做到非接触测量,容易对振镜表面进行破环,影响振镜的使用。因此,亟需一种新型的振镜性能检测系统使得 能够在不对振镜表面造成影响的基础上,快速高精度的完成对振镜性能的检测。
鉴于此,本申请实施例提出了一种振镜性能检测系统,该系统包括控制模块、激光器、振镜和检测模块,该系统能够通过控制模块对激光器和/或振镜的参数进行控制,使得激光器发射的激光可以通过振镜在样品上形成标记,通过对样品上的标记进行分析,可以根据分析结果确定振镜性能,从而实现对振镜性能的检测。在此过程中,可以做到对于振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。同时,通过该振镜性能检测系统对振镜的性能进行检测,成本低、操作简单,可以更加快速的对振镜性能进行检测,且可检测的性能指标更多。
图1示出根据本申请一实施例的振镜的应用场景的示意图。在一种应用场景中,振镜可用于光存储场景中。如图1所示,例如,振镜可以用于在高速读出装置中对光存储介质中的每行数据进行精确的道跟踪,对数据进行逐行扫描以进行光存储读写。在此过程中,振镜作为高速读出装置中的核心部件,其性能对于数据实际读取的效果有着直接的影响。因此,需要对振镜的各种性能参数进行准确的检测,以了解振镜的实际性能,从而能够提升数据的扫描读取效果。以下通过图2-图6,介绍本申请实施例的振镜性能检测系统,以说明对振镜的性能进行检测的方式。
需要说明的是,该振镜性能检测系统不仅可以用于对如图1所示的光存储场景中的振镜进行性能检测,也可以用于对其他场景下的振镜进行性能检测,例如对高精密机械制造和加工、高精度光学测量、半导体制造等场景中的振镜进行性能检测。
以下以光存储场景为示例,对本申请实施例的系统进行介绍。首先参见图2,示出根据本申请一实施例的光存储系统架构的示意图。如图2所示,在光存储场景下,其整体系统架构主要包括读写光驱、存储介质和外部接口。其中,存储介质作为信息记录的载体,可以是光存储介质,可以利用材料改变的光学特性呈现的长期稳定状态以存储数据。读写光驱可用于对光存储介质进行读写操作,包括控制芯片、机电系统和读写光路。控制芯片可用于控制机电系统和读写光路,进行信号处理;机电系统可以表示读写光驱的机械部分;通过读写光路可使得光驱工作,在读写光路中通过激光器、振镜等进行处理后的激光信号,可以实现对光存储介质的读取。外部接口可用于光存储系统与外部模块进行信息交换。
针对于图2中光存储系统的读写光驱部分,为了适应于振镜实际的使用场景,本申请一实施例提供了一种振镜性能检测系统以对振镜的性能进行检测。以下对振镜性能检测系统进行详细介绍。
图3示出根据本申请一实施例的振镜性能检测系统300的结构图。如图3所示,该振镜性能检测系统300可包括:
控制模块301,用于对激光器302和/或振镜303的参数进行控制。
其中,控制模块301可以是处理器,激光器302的参数可以包括激光器302发射的激光信号的功率,以得到不同频率、占空比的激光,占空比可以是指每一激光脉冲中脉冲持续时间与脉冲周期的比。振镜303的参数可以包括振镜的驱动信号的频率、驱动电压的振幅、振镜的偏转角度等。
激光器302,用于响应于控制模块301的控制,发射第一激光。
其中,第一激光的频率、占空比可以响应于控制模块301的控制确定,第一激光可以是蓝光或者其他波长范围的内的光,本申请对此不作限制。
振镜303,用于响应于控制模块301的控制,利用第一激光,发射第二激光。
其中,振镜303的示例可参见图1中所示,振镜303可以对第一激光进行不同角度的偏转,形成相应的第二激光,该第二激光可用于在样品上形成标记。
该样品的材料可以实现曝光形成可见(包括显微镜可见)的刻痕,例如,该样品可以是表面镀有光刻胶的硅片,也可以是其他光存储介质,本申请对此不作限制。形成的标记可以是点阵(包括一个或多个点)或线阵(包括一条或多条线),可以根据激光的频率和占空比确定。
检测模块304,用于对标记进行分析,得到分析结果。
例如,可以通过电子显微镜、人工等方式对标记进行分析,还可以对该标记进行成像,基于成像结果进行分析。其中,分析结果可以指示振镜303的性能。该性能可以包括振镜在打标时的实际标刻范围、加减速稳定性、最小阶跃时间、线性度、直线度、稳定性等,下述将对此进行详细介绍。
根据本申请实施例,通过控制模块对激光器和/或振镜的参数进行控制,使得激光器发射的激光可以通过振镜在样品上形成标记,通过对样品上的标记进行分析,可以根据分析结果确定振镜性能,从而实现对振镜性能的检测。在此过程中,可以做到对于振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。同时,通过该振镜性能检测系统对振镜的性能进行检测,成本低、操作简单,可以更加快速的对振镜性能进行检测,且可检测的性能指标更多。
可选地,该控制模块301,还可用于:
对调焦模块305进行控制。
例如,控制模块301可以根据反馈的光信号,通过指令控制调焦模块305沿直线运动,以进行对焦,对焦的方式可基于现有技术实现。
该振镜性能检测系统300,还可包括:
调焦模块305,用于响应于控制模块301的控制,对物镜306进行控制。
其中,物镜306可固定于调焦模块305之上,通过调焦模块305的运动,可以带动物镜306进行直线运动,以实现对物镜306的控制。
物镜306,用于响应于调焦模块305的控制,将第二激光聚焦至样品的表面,在样品上形成标记。
其中,第一激光可入射至物镜306的入瞳处,经过物镜306聚焦至样品的表面,以形成标记。
根据本申请实施例,通过利用调焦模块和物镜对激光进行紧聚焦,可以使得物镜出射的激光能够更好的汇聚在样品的表面,使得样品上形成的标记可以达到纳米尺度,从而使对振镜的检测可以实现更高的精度,使得后续得到的分析结果更加精准,提高了振镜性能检测的准确性。
可选地,该振镜性能检测系统300,还可包括:
反射镜307、扫描透镜308、管镜309、二向色分光镜310中的一种或多种,用于对第一激光或第二激光进行处理,得到第三激光。
其中,第三激光可用于在样品上形成标记。反射镜307可用于对激光进行反射;扫描透镜308可用于滤除激光中预定波长的光;管镜309可用于对激光照射的区域进行缩放;二向 色分光镜(dichroic mirrors,DM)310可用于反射激光中预定波长范围内的光。反射镜307、扫描透镜308、管镜309、二向色分光镜310可以放置于激光器302与振镜303之间,也可以放置于振镜303与调焦模块305之间,本申请对此不作限制。放置于激光器302与振镜303之间的情况下,可以用于对第一激光进行处理,得到第三激光,第三激光经过振镜303可得到第二激光,通过对第二激光进行聚焦可以在样品表面形成标记;放置于振镜303与调焦模块305之间的情况下,可以用于对第二激光进行处理,得到第三激光,通过对第三激光进行聚焦可以在样品表面形成标记。
根据本申请实施例,通过利用反射镜、扫描透镜、管镜、二向色分光镜中的一种或多种,对激光进行处理,可以使得最终形成的标记更加清晰,从而能够方便后续对标记进行分析,能够使得后续得到的分析结果更加精准,提高了振镜性能检测的准确性。
振镜性能检测系统300中各模块之间可以有多种连接方式以形成多种光路。图4示出根据本申请一实施例的振镜性能检测中的一种光路的示意图。如图4所示,控制模块301可以对激光器302、振镜303和调焦模块305进行控制。激光器302发射的激光可经过反射镜307、振镜303、扫描透镜308、管镜309、二向色分光镜310、调焦模块305、物镜306,在样品上形成标记,该样品可放置于工作台上。
在一种可能的实现方式中,振镜性能检测系统还可以包括如图4所示的成像模块,成像模块可以发射一束平行白光,该平行白光可经过二向色分光镜310后入射至物镜306,并聚焦在样品上,经过该样品的反射,该白光可以沿原入射光路返回至成像模块。该成像模块可以与计算机相连,从而可以通过计算机成像。
在一种可能的实现方式中,通过图3中的检测模块304,可以基于样品上形成的标记进行分析,也可以基于计算机得到的成像结果进行分析。
在上述对振镜性能检测系统300进行介绍的基础上,以下,对通过振镜性能检测系统300对振镜性能进行检测的方式进行详细的介绍。
可选地,通过振镜性能检测系统300可以对振镜的实际标刻范围进行标定,上述分析结果可包括振镜303在不同振幅下的标刻范围,控制模块301,可用于:
固定激光器302发射的激光的占空比,以使第一激光为连续激光。
该连续激光可以指激光器302发射的激光是持续的,例如可以通过降低激光的占空比实现。通过发射连续激光,样品上可以形成线状的标记。
固定振镜303的频率,对振镜303的振幅进行调整。
例如,可以保持振镜303的频率为预定值,改变振镜303的振幅,例如每隔预定阈值改变一次幅值,从而在样品上可以形成不同振幅下的亚波长细线。
检测模块304,可用于:
测量标记中不同振幅下的线条的长度。
例如,可以通过电子显微镜,对标记中不同振幅下的线条的长度进行测量。
根据不同振幅下的线条的长度,确定振镜303在不同振幅下的标刻范围。
在一种可能的实现方式中,还可以确定振幅与实际标刻范围的对应曲线。通过样品上形成的不同振幅下的亚波长细线,还可以确定这些线条中效果最好的线条对应的幅值作为最佳性能下的振幅。线条的效果可以通过观察线条的均匀性、连贯性等进行判断,例如可以通过计算机上的成像结果判断。
根据本申请实施例,通过控制模块控制激光器发出连续激光,并对振镜的振幅进行调整,且通过检测模块对样品上形成的线状标记进行分析,可以实现对振镜的实际标刻范围的标定,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,通过振镜性能检测系统300可以对振镜的打标时的加减速稳定性进行检测,上述分析结果包括振镜303对应的加速度和/或减速度,控制模块301,可用于:
固定激光器302发射的激光的占空比,以使第一激光为非连续激光。
该非连续激光可以是脉冲激光,例如,可以将激光的占空比固定为预定比值(如1:1),以在样品上形成连续的点阵标记。
固定振镜303的频率。
例如,可以将振镜303的频率固定为预定值,可称为f1。
检测模块304,可用于:
测量标记中点阵之间的间隔距离。
图5示出根据本申请一实施例的实际点阵标记的示意图。如图5所示,示出了将脉冲激光的占空比设置为1:1时,在样品上形成的实际点阵标记。该点阵标记可以以微米(um)计,如图中点阵标记的宽度仅为300um,因此在分析样品上的标记时,可以通过电子显微镜进行测量。
例如,可以通过电子显微镜,测量点阵中加速段或减速段中两点之间的间隔距离。其中可以测量连续的两点之间的距离,也可以测量不连续的两点之间的距离。
参见图6,示出根据本申请一实施例的对加速度进行检测的示意图。图6中的点可以表示激光在样品上形成的点阵标记,以测量加速度为例,通过电子显微镜,可以测量加速段中两点之间的间隔距离,得到如图所示的l1和l2,l1和l2可以分别对应于连续的两个点。
根据振镜303的频率以及间隔距离,确定加速度和/或减速度。
在图6的示例中,若占空比为1:1,则加速度可以根据振镜的频率和该间隔距离得到:a=f12×(l2-l1),其中a可以表示加速度。计算减速度的方式同理,在此不在赘述。
还可以计算多个加速度,通过分析多个加速度之间的变化以确定加速稳定性,对于减速稳定性同理。
根据本申请实施例,通过控制模块控制激光器发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以实现对振镜的加速度和/或减速度的测量,从而可以进一步的确定振镜加减速的稳定性,快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,通过振镜性能检测系统300可以确定振镜的最小阶跃时间,上述分析结果可包括振镜303对应的最小阶跃时间,控制模块301,可用于:
固定激光器302发射的激光的占空比,以使第一激光为非连续激光。
该非连续激光可以是脉冲激光,例如,可以将激光的占空比固定为预定比值(如1:1),以在样品上形成连续的点阵标记。
对振镜303的频率进行调整。
例如,可以改变振镜303的频率,例如每隔预定阈值增大一次频率,从而在样品上可以形成相应的点阵标记。
检测模块301,可用于:
确定标记中点阵在极限状态下对应的振镜303的频率。
例如,可以通过电子显微镜确定样品上的点阵标记的标刻情况,判断点阵标记中到达极限状态的点,即刚好能够清晰分辨两点的界限。
根据在极限状态下对应的振镜303的频率,确定最小阶跃时间。
其中,若将极限状态下对应的振镜303的频率称为f2,最小阶跃时间可以是1/f2,可以表示振镜的工作状态发生快速而大幅度的变化的最小时间。
根据本申请实施例,通过控制模块控制激光器发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以实现检测振镜的最小阶跃时间,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,通过振镜性能检测系统300可以确定振镜的线性度,上述分析结果可包括振镜303对应的线性度信息,控制模块301,可用于:
对振镜303的幅值进行调整。
例如,可以使得振镜303的幅值从最小值(如0)开始,每隔预定阈值增大一次幅值,直至预定最大值,幅值的变化量可以是不变的,预定最大值例如可以是上述对振镜的实际标刻范围进行标定时得到的最佳性能下的振幅的幅值。
响应于振镜303的幅值变化,控制激光器302在振镜303的幅值发生变化时,发射第一激光。
也就是说,可以在每次增大振镜的幅值时,由控制模块301发射一次脉冲激光,在样品上标刻一次,从而在样品上可以形成相应的点阵标记。
检测模块304,可用于:
确定标记中点阵中点的位移变化信息。
其中,可以通过电子显微镜确定点阵中每个点相较于点阵中的第一个点产生的位移大小。根据每个点对应的位移确定点阵中每个点相较于前一个点的位移变化。
根据位移变化信息,确定线性度信息。
其中,可以确定位移变化与幅值的对应关系的线性程度,确定线性度信息。其中对应关系的线性程度越好,可以确定振镜的打标时的线性度越好。
根据本申请实施例,通过控制模块控制激光器响应于振镜的幅值变化发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以确定振镜的线性度信息,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,通过振镜性能检测系统300可以确定振镜的直线度,上述分析结果可包括振镜303对应的直线度信息,其中,可以使样品以预定速度和预定角度移动,例如,可以使得放置样品的工作台以预定的速度和角度移动,如控制工作台以垂直于振镜扫描的方向做匀速运动,该速度可以是d×f3,其中d可以表示线阵中相邻线之间的线宽,f3可以表示振镜的频率。
控制模块301,可用于:
固定激光器302发射的激光的占空比,以使第一激光为连续激光。
该连续激光可以指激光器302发射的激光是持续的,例如可以通过降低激光的占空比实 现。通过发射连续激光,样品上可以形成线状的标记。
固定振镜303的频率。
例如,可以保持振镜303的频率为预定值,如为上述f3。
检测模块304,用于:
测量标记中不同线条之间的线宽。
例如,可以通过电子显微镜,对线宽进行测量。线宽可以表示相邻线之间的线宽。
根据线宽,确定直线度信息。
其中,对于两条相邻的线,可以在线的不同位置测量多次线宽。可以通过多个线宽来确定直线度信息。例如,多次线宽之间的差别越小,可以认为该振镜打标的直线度越好。
根据本申请实施例,通过控制模块控制激光器发出连续激光,且通过检测模块对样品上形成的线状标记的线宽进行分析,可以确定振镜的直线度信息,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,通过振镜性能检测系统300可以确定振镜的稳定性,上述分析结果包括振镜303对应的最长稳定工作时间,其中,可以使样品以预定速度和预定角度移动,例如,可以使得放置样品的工作台以预定的速度和角度移动,如控制工作台以垂直于振镜扫描的方向做匀速运动。
控制模块301,可用于:
固定激光器302发射的激光的占空比,以使第一激光为非连续激光。
该非连续激光可以是脉冲激光,例如,可以将激光的占空比固定为预定比值(如1:1),以在样品上形成连续的点阵标记。
固定振镜303的频率和振幅。
例如,可以保持振镜303的频率和振幅为预定值,该预定值可以根据振镜303的最佳工作性能确定,例如该振幅对应的预定值可以是上述对振镜的实际标刻范围进行标定时得到的最佳性能下的振幅的幅值。
检测模块304,可用于:
对标记进行分析,确定线性度信息、加速度、减速度中的至少一种。
其中,可以通过上述方式确定线性度信息、加速度、减速度中的至少一种。
根据线性度信息、加速度、减速度中的至少一种,确定最长稳定工作时间。
例如,可以根据线性度信息、加速度、减速度中的至少一种,确定标记出现异常时对应的时刻,从而以该时刻对应的工作时长作为最长稳定工作时间。标记出现异常可以包括标记的与拟合直线间的最大偏差大于预定阈值,加速度之间的变化大于预定阈值,加速度之间的变化大于预定阈值等。还可通过其他方式判断标记是否出现异常,本申请对此不作限制。
根据本申请实施例,通过控制模块控制激光器发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以实现检测振镜的最长稳定工作时间,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
图7示出根据本申请一实施例的振镜性能检测方法的流程图。如图7所示,该方法包括:
步骤S701,通过控制模块,对激光器和/或振镜的参数进行控制。
步骤S702,通过激光器,响应于控制模块的控制,发射第一激光。
步骤S703,通过振镜,响应于控制模块的控制,利用第一激光,发射第二激光。
其中,第二激光可用于在样品上形成标记。
步骤S704,通过检测模块,对标记进行分析,得到分析结果。
其中,分析结果可指示振镜的性能。
根据本申请实施例,通过控制模块对激光器和/或振镜的参数进行控制,使得激光器发射的激光可以通过振镜在样品上形成标记,通过对样品上的标记进行分析,可以根据分析结果确定振镜性能,从而实现对振镜性能的检测。在此过程中,可以做到对于振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。同时,通过该振镜性能检测系统对振镜的性能进行检测,成本低、操作简单,可以更加快速的对振镜性能进行检测,且可检测的性能指标更多。
可选地,该方法还可包括:
通过控制模块,对调焦模块进行控制;
通过调焦模块,响应于控制模块的控制,对物镜进行控制;
通过物镜,响应于调焦模块的控制,将第二激光聚焦至样品的表面,在样品上形成标记。
根据本申请实施例,通过利用调焦模块和物镜对激光进行紧聚焦,可以使得物镜出射的激光能够更好的汇聚在样品的表面,使得样品上形成的标记可以达到纳米尺度,从而使对振镜的检测可以实现更高的精度,使得后续得到的分析结果更加精准,提高了振镜性能检测的准确性。
可选地,该方法还可包括:
通过反射镜、扫描透镜、管镜、二向色分光镜中的一种或多种,对第一激光或第二激光进行处理,得到第三激光,第三激光用于在样品上形成标记。
根据本申请实施例,通过利用反射镜、扫描透镜、管镜、二向色分光镜中的一种或多种,对激光进行处理,可以使得最终形成的标记更加清晰,从而能够方便后续对标记进行分析,能够使得后续得到的分析结果更加精准,提高了振镜性能检测的准确性。
可选地,该分析结果包括振镜在不同振幅下的标刻范围,该步骤S701,可包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为连续激光;
通过控制模块,固定振镜的频率,对振镜的振幅进行调整;
该步骤S704,可包括:
通过检测模块,测量标记中不同振幅下的线条的长度;
通过检测模块,根据不同振幅下的线条的长度,确定振镜在不同振幅下的标刻范围。
根据本申请实施例,通过控制模块控制激光器发出连续激光,并对振镜的振幅进行调整,且通过检测模块对样品上形成的线状标记进行分析,可以实现对振镜的实际标刻范围的标定,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,该分析结果包括振镜对应的加速度和/或减速度,该步骤S701,可包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为非连续激光;
通过控制模块,固定振镜的频率;
该步骤S704,可包括:
通过检测模块,测量标记中点阵之间的间隔距离;
通过检测模块,根据振镜的频率、以及间隔距离,确定加速度和/或减速度。
根据本申请实施例,通过控制模块控制激光器发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以实现对振镜的加速度和/或减速度的测量,从而可以进一步的确定振镜加减速的稳定性,快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,该分析结果包括振镜对应的最小阶跃时间,该步骤S701,可包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为非连续激光;
通过控制模块,对振镜的频率进行调整;
该步骤S704,可包括:
通过检测模块,确定标记中点阵在极限状态下对应的振镜的频率;
通过检测模块,根据在极限状态下对应的振镜的频率,确定最小阶跃时间。
根据本申请实施例,通过控制模块控制激光器发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以实现检测振镜的最小阶跃时间,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,该分析结果包括振镜对应的线性度信息,该步骤S701,可包括:
通过控制模块,对振镜的幅值进行调整;
通过控制模块,响应于振镜的幅值变化,控制激光器在振镜的幅值发生变化时,发射第一激光;
该步骤S704,可包括:
通过检测模块,确定标记中点阵中点的位移变化信息;
通过检测模块,根据位移变化信息,确定线性度信息。
根据本申请实施例,通过控制模块控制激光器响应于振镜的幅值变化发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以确定振镜的线性度信息,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,该样品以预定速度和预定角度移动,该分析结果包括振镜对应的直线度信息,该步骤S701,可包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为连续激光;
通过控制模块,固定振镜的频率;
通该步骤S704,可包括:
通过检测模块,测量标记中不同线条之间的线宽;
通过检测模块,根据线宽,确定直线度信息。
根据本申请实施例,通过控制模块控制激光器发出连续激光,且通过检测模块对样品上形成的线状标记的线宽进行分析,可以确定振镜的直线度信息,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
可选地,该样品以预定速度和预定角度移动,该分析结果包括振镜对应的最长稳定工作时间,该步骤S701,可包括:
通过控制模块,固定激光器发射的激光的占空比,以使第一激光为非连续激光;
通过控制模块,固定振镜的频率和振幅;
该步骤S704,可包括:
通过检测模块,对标记进行分析,确定线性度信息、加速度、减速度中的至少一种;
通过检测模块,根据线性度信息、加速度、减速度中的至少一种,确定最长稳定工作时间。
根据本申请实施例,通过控制模块控制激光器发出非连续激光,且通过检测模块对样品上形成的点阵标记进行分析,可以实现检测振镜的最长稳定工作时间,从而能够快速实现对振镜性能的非接触检测,且更加符合振镜实际使用环境,使得检测分析结果更加准确,精度更高。
本申请的实施例提供了一种振镜性能检测装置,包括:处理器以及用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行所述指令时实现上述方法。
本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。
本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备的处理器中运行时,所述电子设备中的处理器执行上述方法。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Electrically Programmable Read-Only-Memory,EPROM或闪存)、静态随机存取存储器(Static Random-Access Memory,SRAM)、便携式压缩盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。
这里所描述的计算机可读程序指令或代码可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本申请操作的计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因 特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或可编程逻辑阵列(Programmable Logic Array,PLA),该电子电路可以执行计算机可读程序指令,从而实现本申请的各个方面。
这里参照根据本申请实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本申请的多个实施例的装置、系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。
也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行相应的功能或动作的硬件(例如电路或ASIC(Application Specific Integrated Circuit,专用集成电路))来实现,或者可以用硬件和软件的组合,如固件等来实现。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其它变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其它单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (13)

  1. 一种振镜性能检测系统,其特征在于,所述系统包括:
    控制模块,用于对激光器和/或振镜的参数进行控制;
    激光器,用于响应于所述控制模块的控制,发射第一激光;
    振镜,用于响应于所述控制模块的控制,利用所述第一激光,发射第二激光,所述第二激光用于在样品上形成标记;
    检测模块,用于对所述标记进行分析,得到分析结果,所述分析结果指示所述振镜的性能。
  2. 根据权利要求1所述的系统,其特征在于,所述控制模块,还用于:
    对调焦模块进行控制;
    所述系统,还包括:
    所述调焦模块,用于响应于控制模块的控制,对物镜进行控制;
    物镜,用于响应于所述调焦模块的控制,将所述第二激光聚焦至所述样品的表面,在所述样品上形成标记。
  3. 根据权利要求1或2所述的系统,其特征在于,所述系统还包括:
    反射镜、扫描透镜、管镜、二向色分光镜中的一种或多种,用于对所述第一激光或第二激光进行处理,得到第三激光,所述第三激光用于在样品上形成标记。
  4. 根据权利要求1-3任一项所述的系统,其特征在于,所述分析结果包括所述振镜在不同振幅下的标刻范围,所述控制模块,用于:
    固定所述激光器发射的激光的占空比,以使所述第一激光为连续激光;
    固定所述振镜的频率,对所述振镜的振幅进行调整;
    所述检测模块,用于:
    测量所述标记中不同振幅下的线条的长度;
    根据所述不同振幅下的线条的长度,确定所述振镜在不同振幅下的标刻范围。
  5. 根据权利要求1-4任一项所述的系统,其特征在于,所述分析结果包括所述振镜对应的加速度和/或减速度,所述控制模块,用于:
    固定所述激光器发射的激光的占空比,以使所述第一激光为非连续激光;
    固定所述振镜的频率;
    所述检测模块,用于:
    测量所述标记中点阵之间的间隔距离;
    根据所述振镜的频率、以及所述间隔距离,确定所述加速度和/或所述减速度。
  6. 根据权利要求1-5任一项所述的系统,其特征在于,所述分析结果包括所述振镜对应的最小阶跃时间,所述控制模块,用于:
    固定所述激光器发射的激光的占空比,以使所述第一激光为非连续激光;
    对所述振镜的频率进行调整;
    所述检测模块,用于:
    确定所述标记中点阵在极限状态下对应的振镜的频率;
    根据所述在极限状态下对应的振镜的频率,确定所述最小阶跃时间。
  7. 根据权利要求1-6任一项所述的系统,其特征在于,所述分析结果包括所述振镜对应的线性度信息,所述控制模块,用于:
    对所述振镜的幅值进行调整;
    响应于所述振镜的幅值变化,控制所述激光器在振镜的幅值发生变化时,发射所述第一激光;
    所述检测模块,用于:
    确定所述标记中点阵中点的位移变化信息;
    根据所述位移变化信息,确定所述线性度信息。
  8. 根据权利要求1-7任一项所述的系统,其特征在于,所述样品以预定速度和预定角度移动,所述分析结果包括所述振镜对应的直线度信息,所述控制模块,用于:
    固定所述激光器发射的激光的占空比,以使所述第一激光为连续激光;
    固定所述振镜的频率;
    所述检测模块,用于:
    测量所述标记中不同线条之间的线宽;
    根据所述线宽,确定所述直线度信息。
  9. 根据权利要求7或8所述的系统,其特征在于,所述样品以预定速度和预定角度移动,所述分析结果包括所述振镜对应的最长稳定工作时间,所述控制模块,用于:
    固定所述激光器发射的激光的占空比,以使所述第一激光为非连续激光;
    固定所述振镜的频率和振幅;
    所述检测模块,用于:
    对所述标记进行分析,确定线性度信息、加速度、减速度中的至少一种;
    根据线性度信息、加速度、减速度中的至少一种,确定所述最长稳定工作时间。
  10. 一种振镜性能检测方法,其特征在于,所述方法包括:
    通过控制模块,对激光器和/或振镜的参数进行控制;
    通过所述激光器,响应于所述控制模块的控制,发射第一激光;
    通过所述振镜,响应于所述控制模块的控制,利用所述第一激光,发射第二激光,所述第二激光用于在样品上形成标记;
    通过所述检测模块,对所述标记进行分析,得到分析结果,所述分析结果指示所述振镜的性能。
  11. 一种振镜性能检测装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述指令时实现权利要求10所述的方法。
  12. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求10所述的方法。
  13. 一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行权利要求10所述的方法。
PCT/CN2023/104804 2022-09-05 2023-06-30 振镜性能检测系统、方法和存储介质 WO2024051319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211080053.X 2022-09-05
CN202211080053.XA CN117686186A (zh) 2022-09-05 2022-09-05 振镜性能检测系统、方法和存储介质

Publications (1)

Publication Number Publication Date
WO2024051319A1 true WO2024051319A1 (zh) 2024-03-14

Family

ID=90128838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104804 WO2024051319A1 (zh) 2022-09-05 2023-06-30 振镜性能检测系统、方法和存储介质

Country Status (2)

Country Link
CN (1) CN117686186A (zh)
WO (1) WO2024051319A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495534A (zh) * 2011-12-12 2012-06-13 中国科学院上海光学精密机械研究所 振镜式激光直写光刻机
CN103645660A (zh) * 2013-11-27 2014-03-19 桂林电子科技大学 激光打标卡数据采集及标刻图像验证装置及方法
JP2014199361A (ja) * 2013-03-29 2014-10-23 オムロン株式会社 検査装置及びレーザ加工装置
CN104459534A (zh) * 2013-09-16 2015-03-25 大族激光科技产业集团股份有限公司 一种振镜电机线性度的检测方法及装置
CN107064096A (zh) * 2017-06-02 2017-08-18 常熟市浙大紫金光电技术研究中心 基于高光谱成像的混合物粉末无损定量检测装置及方法
CN107703614A (zh) * 2016-08-08 2018-02-16 大连光耀辉科技有限公司 激光输出设备和荧光显微镜
CN111610254A (zh) * 2020-05-18 2020-09-01 武汉大学 一种基于高速振镜协同的激光超声全聚焦成像检测装置及方法
CN112432766A (zh) * 2020-09-23 2021-03-02 菲兹克光电(长春)有限公司 一种激光扫描振镜性能检测方法
CN113310669A (zh) * 2021-05-24 2021-08-27 深圳市大族数控科技股份有限公司 振镜激光焦距与振镜均匀性测试方法
CN114018901A (zh) * 2021-11-18 2022-02-08 山东东仪光电仪器有限公司 一种基于振镜扫描分析的激光诱导击穿光谱仪及其光谱检测方法
CN114113020A (zh) * 2021-11-30 2022-03-01 哈尔滨工业大学 一种基于多重信号分类算法的激光扫描超分辨显微成像装置、方法、设备及存储介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495534A (zh) * 2011-12-12 2012-06-13 中国科学院上海光学精密机械研究所 振镜式激光直写光刻机
JP2014199361A (ja) * 2013-03-29 2014-10-23 オムロン株式会社 検査装置及びレーザ加工装置
CN104459534A (zh) * 2013-09-16 2015-03-25 大族激光科技产业集团股份有限公司 一种振镜电机线性度的检测方法及装置
CN103645660A (zh) * 2013-11-27 2014-03-19 桂林电子科技大学 激光打标卡数据采集及标刻图像验证装置及方法
CN107703614A (zh) * 2016-08-08 2018-02-16 大连光耀辉科技有限公司 激光输出设备和荧光显微镜
CN107064096A (zh) * 2017-06-02 2017-08-18 常熟市浙大紫金光电技术研究中心 基于高光谱成像的混合物粉末无损定量检测装置及方法
CN111610254A (zh) * 2020-05-18 2020-09-01 武汉大学 一种基于高速振镜协同的激光超声全聚焦成像检测装置及方法
CN112432766A (zh) * 2020-09-23 2021-03-02 菲兹克光电(长春)有限公司 一种激光扫描振镜性能检测方法
CN113310669A (zh) * 2021-05-24 2021-08-27 深圳市大族数控科技股份有限公司 振镜激光焦距与振镜均匀性测试方法
CN114018901A (zh) * 2021-11-18 2022-02-08 山东东仪光电仪器有限公司 一种基于振镜扫描分析的激光诱导击穿光谱仪及其光谱检测方法
CN114113020A (zh) * 2021-11-30 2022-03-01 哈尔滨工业大学 一种基于多重信号分类算法的激光扫描超分辨显微成像装置、方法、设备及存储介质

Also Published As

Publication number Publication date
CN117686186A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
US7221177B2 (en) Probe apparatus with optical length-measuring unit and probe testing method
US20220091028A1 (en) Terahertz measuring device and method of operating a terahertz measuring device
CN102043352B (zh) 调焦调平检测装置
WO2024051319A1 (zh) 振镜性能检测系统、方法和存储介质
KR20200007721A (ko) 노광 장치 및 물품 제조 방법
TWI502170B (zh) 光學量測系統及以此系統量測線性位移、轉動角度、滾動角度之方法
CN110091070B (zh) 电机垂直度的检测装置及检测方法
JP6203502B2 (ja) 加工品に対して加工工具を位置決めするための構造および方法
WO2023185950A1 (zh) 基于拉曼分析的无损原位高复杂度结构的测量装置及方法
CN101138028A (zh) 光学驱动器中的聚焦校准
JP2022030750A (ja) 校正方法
JPH08155894A (ja) プリント基板穴位置穴径検査機
CN109297585A (zh) 一种基于光斑偏移法测量激光光斑聚焦直径的光学实验系统及实验方法
US7054095B2 (en) Displacement detection apparatus, and magnetic recording apparatus and encoder using the displacement detection apparatus
Fan et al. Development of a Non-Contact Focusing Probe for the Measurement of Micro Cavities.
Zhang et al. A visual non-contact focusing probe for the measurement of micro cavities
CN112540044A (zh) 一种椭圆偏振测量设备及其聚焦方法和测量方法
CN117970637B (zh) 对焦过程中的成像模组光轴位置偏差补偿方法
JP3998931B2 (ja) 走査型プローブ顕微鏡
CN100427878C (zh) 使用垂直入射束偏移法用于超光滑表面的光学轮廓测定仪
JP3070276B2 (ja) 光学式変位測定装置及びその製造方法
Li et al. Error analysis and improvements for using parallel-shift method to test a galvanometer-based laser scanning system
CN114283206A (zh) 一种激光自动标定方法及系统
TW202305317A (zh) 測量系統和方法
CN117091520A (zh) 用于晶圆厚度的检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862020

Country of ref document: EP

Kind code of ref document: A1