WO2024051078A1 - 一种用于3d打印的超疏水自发光混凝土材料及制备方法 - Google Patents

一种用于3d打印的超疏水自发光混凝土材料及制备方法 Download PDF

Info

Publication number
WO2024051078A1
WO2024051078A1 PCT/CN2023/074719 CN2023074719W WO2024051078A1 WO 2024051078 A1 WO2024051078 A1 WO 2024051078A1 CN 2023074719 W CN2023074719 W CN 2023074719W WO 2024051078 A1 WO2024051078 A1 WO 2024051078A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
self
concrete material
luminous concrete
superhydrophobic
Prior art date
Application number
PCT/CN2023/074719
Other languages
English (en)
French (fr)
Inventor
杨则英
侯和涛
武科
段蓉蓉
曲建波
王恩东
张平
孟庆伟
单煜辉
王洪云
高新学
赵峰
赵丽
曲伟松
杨乾一
孙芮
毕传龙
曲植霖
王成赫
刘杰
赵振宇
周广通
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2024051078A1 publication Critical patent/WO2024051078A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/34Metals, e.g. ferro-silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • C04B24/383Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00181Mixtures specially adapted for three-dimensional printing (3DP), stereo-lithography or prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/807Luminescent or fluorescent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of building materials, and in particular relates to a super-hydrophobic self-luminous concrete material for 3D printing and a preparation method.
  • the collaborative design of superhydrophobic surface coating and self-luminous materials can give self-luminous cement pavement materials surface self-cleaning function and improve the water resistance of self-luminous cement pavement materials. Especially in highway road signs, highway dividing lines, sidewalks, etc., it can play a role in indicating and beautifying and lighting. It is a typical energy-saving and environmentally friendly building decoration material.
  • Superhydrophobic self-luminous materials have long service life and stable luminescence performance. When used for low-brightness lighting, they can effectively save power resources. They are in line with the social green economic development concept and have broad application prospects.
  • the purpose of the present invention is to provide a super-hydrophobic self-luminous concrete material for 3D printing and a preparation method.
  • the concrete material provided by the present invention can be used for 3D printing and can significantly improve the tensile strength of the material. and impact toughness, and enhance the material’s luminous ability and reflective effect.
  • a super-hydrophobic self-luminous concrete material for 3D printing including a surface layer and a base layer;
  • composition and content of the base layer in parts by weight are:
  • Quartz sand 1000-1300 parts
  • Reflective powder 30-45 parts
  • Metal filler 0.015-0.040 parts
  • the surface layer is a super hydrophobic coating.
  • Another method includes the following specific steps:
  • the superhydrophobic coating is obtained by adding fluorosilane material during the hydrolysis process of ethyl orthosilicate for fluorination treatment.
  • the present invention integrates 3D printing with super-hydrophobic self-luminous concrete materials, which can not only highlight the energy-saving, environmentally friendly, high-efficiency and low-consumption characteristics of 3D printing, but also can integrate fine and special-shaped materials that require the performance of super-hydrophobic self-luminous concrete materials in actual projects.
  • the components are efficiently prepared and the mechanical properties such as tensile resistance of concrete are enhanced, which has strong practical application value.
  • the concrete provided by the present invention can be used for 3D printing, which can significantly improve the tensile strength and impact toughness of the material, and enhance the luminous ability and reflective effect of the material.
  • the concrete material provided by the invention has the characteristics of short setting time and high early strength.
  • the viscosity can be enhanced and the extrudability and constructability can be improved; the metal filler Eu(DBM) 3 phen
  • the addition of it can enhance the tensile strength and impact strength of concrete materials.
  • the tensile strength is increased by 2.45% and the impact strength is increased by 11.97%. It can effectively improve the mechanical properties of the material while having luminous properties.
  • the present invention proposes a method for 3D printing Superhydrophobic self-luminous concrete materials and preparation methods.
  • a typical implementation of the present invention provides a superhydrophobic self-luminous concrete material for 3D printing, which is characterized in that it includes a surface layer and a base layer;
  • composition and content of the base layer in parts by weight are:
  • Quartz sand 1000-1300 parts
  • Reflective powder 30-45 parts
  • Metal filler 0.015-0.040 parts
  • the surface layer is a super hydrophobic coating.
  • composition and content of the base layer in parts by weight are:
  • Quartz sand 1000-1100 parts
  • Fiber 4-6 servings
  • Glowing powder 75-80 parts
  • Reflective powder 30-40 parts
  • Metal filler 0.016-0.032 parts.
  • the cement includes 82-100% ordinary Portland cement and 0-18% sulfoaluminate cement by weight.
  • the grade of the ordinary Portland cement is 42.5, and the grade of the sulfoaluminate cement is 52.5.
  • the mixed use of two cements can ensure that the material has high early strength and age strength.
  • the water-reducing agent is a polycarboxylate water-reducing agent with a water-reducing rate of 32%, which is used to regulate the fluidity and extrudability of the material.
  • the cellulose ether is hydroxypropyl methylcellulose ether with a viscosity of 200 Pa.s. As a viscosity modifier, it can improve its extrudability and constructability.
  • the fibers include polypropylene fibers and polyvinyl alcohol fibers.
  • the aspect ratio of the polypropylene fiber is 110-130, preferably 120.
  • the aspect ratio of the polyvinyl alcohol fiber is 190-200, preferably 194.
  • the diameter of the polypropylene fiber is 40-60 ⁇ m, preferably 50 ⁇ m;
  • the diameter of the polyvinyl alcohol fiber is 30-40 ⁇ m, preferably 31 ⁇ m;
  • the mass ratio of polypropylene fiber and polyvinyl alcohol fiber is 1-5:1-2, preferably 4:1.
  • Adding fibers to concrete materials can improve the toughness of the material, making it suitable for 3D printing technology.
  • the metal filler is Eu(DBM) 3 phen.
  • Eu(DBM) 3 phen an organic metal complex with luminescent properties, is used as a filler to modify concrete materials, which can further improve the self-luminous ability of concrete and also improve the tensile strength and impact strength of the material.
  • the mass ratio of the metal filler added to the polypropylene fiber is 0.5-1:99.0-99.5, preferably 0.5:99.5.
  • Metal fillers and polypropylene fibers synergistically enhance the mechanical properties of concrete materials, and with this addition amount, the tensile strength and impact strength of concrete materials are greatly improved.
  • the luminescent powder is a rare earth yellow-green luminescent powder, preferably SrAl 2 O 4 : Eu 2+ , Dy 3+ , and its mesh number is 500-700 mesh, preferably 600 mesh.
  • the addition of luminescent powder can improve and extend the self-illumination time of concrete materials.
  • the afterglow time can reach more than 8 hours compared with the lowest brightness visible to the human eye, 0.32mcd/ m2 .
  • the reflective powder is gray reflective powder, with glass as the main powder.
  • the main chemical component of the material is SiO 2 and the specification is 200 mesh. After adding it, the high refractive effect of microbeads can be used to make the concrete material have a retro-reflective effect.
  • the metakaolin is obtained from kaolin at a calcination temperature of 850°C.
  • the chemical components of metakaolin are mainly SiO 2 and Al 2 O 3 , which can significantly increase the static yield stress of the material and reduce it. Structural deformation.
  • the superhydrophobic coating is obtained by adding fluorosilane material during the hydrolysis process of ethyl orthosilicate for fluorination treatment, and is preferably a fluorosilane hydrophobic coating.
  • Another typical embodiment of the present invention provides the above-mentioned preparation method of superhydrophobic self-luminous concrete material for 3D printing, including the following specific steps:
  • the superhydrophobic coating is obtained by adding fluorosilane material during the hydrolysis process of ethyl orthosilicate for fluorination treatment.
  • the stirring time can be flexibly adjusted depending on the specific ratio of materials.
  • the stirring time in (3) is 180-240s.
  • the stirring time in (4) is 300-600s.
  • the polypropylene fiber specifications selected in the following examples are: the aspect ratio is 120, and the diameter is 50 ⁇ m; the polyvinyl alcohol fiber specifications are: the aspect ratio is 194, and the diameter is 31 ⁇ m.
  • the superhydrophobic coating selected in the following examples is a commercially available fluorosilane hydrophobic coating.
  • Superhydrophobic self-luminous concrete is obtained by coating the self-luminous concrete specimen with a super-hydrophobic coating.
  • Superhydrophobic self-luminous concrete is obtained by coating the self-luminous concrete specimen with a super-hydrophobic coating.
  • Example 1 The difference from Example 1 is that no metal filler Eu(DBM) 3 phen is added.
  • Example 1 The difference from Example 1 is that no polypropylene is added. This concrete is difficult to form.
  • the initial setting and final setting time tests were conducted on the superhydrophobic self-luminous concrete materials obtained by the methods described in Examples 1-2 and Comparative Examples 1 and 3-4 of the present invention. The results showed that the initial setting time of the superhydrophobic self-luminous concrete was 20 min- 120min, final setting time is 60min-180min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种用于3D打印的超疏水自发光混凝土材料及制备方法,属于建筑材料领域。超疏水自发光混凝土的原料组成为:水泥:1000-1500份;石英砂:1000-1300份;硅灰:50-100份;水:300-400份;减水剂:8-12份;纤维素醚:1-2份;消泡剂:2-3份;纤维:4-8份;发光粉:75-85份;反光粉:30-45份;偏高岭土:15-25份;金属填料:0.015-0.040份以及超疏水涂层。本发明将3D打印与超疏水自发光混凝土材料相融合,既突出了3D打印的节能环保、高效低耗的特点,同时还能利用超疏水自发光混凝土材料高效制备精细、异形构件,增强混凝土抗拉伸等力学性能,具有很强的现实应用价值。

Description

一种用于3D打印的超疏水自发光混凝土材料及制备方法
本发明要求于2022年9月5日提交中国专利局、申请号为202211077772.6、发明名称为“一种用于3D打印的超疏水自发光混凝土材料及制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明属于建筑材料领域,特别是涉及一种用于3D打印的超疏水自发光混凝土材料及制备方法。
背景技术
3D打印技术在建筑工程领域的应用逐渐受到国内外的广泛关注,建筑3D打印采用的混凝土与普通混凝土不同,这种混凝土需具有良好的触变性也就是挤出时靠机械振动使其具有良好的流动性,便于打印工作,从打印头挤出后,机械振动消失,则立即失去流动性,保持打印形状。目前建筑用的普通混凝土或高性能混凝土不能满足需求。
超疏水表面涂层及自发光材料进行协同设计能够赋予自发光水泥路面材料表面自清洁功能,并提高自发光水泥路面材料耐水性。特别是在公路路标、公路分界线、人行道等处可起到指示及美化亮化的作用,是一种典型的节能环保建筑装饰材料。超疏水自发光材料使用寿命长,发光性能稳定,用于低亮度照明时,可有效节约电力资源,符合社会绿色经济发展理念,应用前景广泛。
目前现有的超疏水自发光混凝土的制备方法大都是以一定比例将水泥、发光粉、反光粉进行充分预拌合,通过改变发光粉、反光粉两者掺量,从而制得 不同配比下的自发光混凝土。在养护完成后采用涂层处治技术,将疏水材料涂覆于自发光混凝土表面。传统的超疏水自发光混凝土制备时间较长且操作复杂,对于施工中的精细、异形构件的制备并不能很好地完成。
发明内容
为了解决现有技术的不足,本发明的目的是提供一种用于3D打印的超疏水自发光混凝土材料及制备方法,本发明提供的混凝土材料可用于3D打印,能够显著提高材料的拉伸强度和冲击韧性,并增强材料的发光能力和反光效果。
为了实现上述目的,本发明的技术方案为:
一方面,一种用于3D打印的超疏水自发光混凝土材料,包括面层、基层;
所述基层按重量份数计,其组成及含量分别为:
水泥:1000-1500份;
石英砂:1000-1300份;
硅灰:50-100份;
水:300-400份;
减水剂:8-12份;
纤维素醚:1-2份;
消泡剂:2-3份;
纤维:4-8份;
发光粉:75-85份;
反光粉:30-45份;
偏高岭土:15-25份;
金属填料:0.015-0.040份;
所述面层为超疏水涂层。
另一方法,上述的用于3D打印的超疏水自发光混凝土材料的制备方法,包括以下具体步骤:
(1)将水泥、石英砂、硅灰、发光粉、反光粉、偏高岭土、金属填料按比例称量后均匀混合得到固体粉料;
(2)将减水剂、水、纤维、纤维素醚、消泡剂按比例称量后待用;
(3)在混合均匀的固体粉料中加入减水剂、水并搅拌180-240s;
(4)将纤维、纤维素醚、消泡剂加入所述(3)中的拌合物中,搅拌300-600s,放入3D打印机中得到自发光混凝土;
(5)将(4)中所得的自发光混凝土试件涂覆超疏水涂层即得到超疏水自发光混凝土;
所述超疏水涂层为正硅酸乙酯水解过程中加入氟硅烷材料进行氟化处理后得到的。
本发明的有益效果为:
本发明将3D打印与超疏水自发光混凝土材料相融合,既能够突出3D打印的节能环保、高效低耗的特点,同时还能将实际工程中需要应用超疏水自发光混凝土材料性能的精细、异形构件进行高效制备,增强混凝土抗拉伸等力学性能,具有很强的现实应用价值。
本发明所提供的混凝土可用于3D打印,能够显著提高材料的拉伸强度和冲击韧性,并增强材料的发光能力和反光效果。同时本发明所提供的混凝土材料具有凝结时间短、早强度高的特点,通过加入羟丙基甲基纤维素醚能够增强粘度,改善可挤出性和建造性;金属填料Eu(DBM)3phen的加入,能够增强混凝土材料的拉伸强度与冲击强度,拉伸强度提高2.45%,冲击强度提高11.97%,能够在具备发光性能的同时,有效提高材料的力学性能。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
鉴于目前3D打印混凝土技术对混凝土性能要求高,超疏水自发光混凝土制备时间长且操作复杂,对施工中的精细、异形构件的制备不能很好的完成,本发明提出了一种用于3D打印的超疏水自发光混凝土材料及制备方法。
本发明的一种典型实施方式,提供了一种用于3D打印的超疏水自发光混凝土材料,其特征在于,包括面层、基层;
所述基层按重量份数计,其组成及含量分别为:
水泥:1000-1500份;
石英砂:1000-1300份;
硅灰:50-100份;
水:300-400份;
减水剂:8-12份;
纤维素醚:1-2份;
消泡剂:2-3份;
纤维:4-8份;
发光粉:75-85份;
反光粉:30-45份;
偏高岭土:15-25份;
金属填料:0.015-0.040份;
所述面层为超疏水涂层。
该实施方式的一些实施例中,所述基层按重量份数计,其组成及含量分别为:
水泥:1000-1200份;
石英砂:1000-1100份;
硅灰:50-55份;
水:340-380份;
减水剂:10-12份;
纤维素醚:1-1.2份;
消泡剂:2-2.5份;
纤维:4-6份;
发光粉:75-80份;
反光粉:30-40份;
偏高岭土:15-20份;
金属填料:0.016-0.032份。
该实施方式的一些实施例中,所述水泥包括82-100%的普通硅酸盐水泥、0-18%的硫铝酸盐水泥,重量百分比。优选的,所述普通硅酸盐水泥的等级为42.5,所述硫铝酸盐水泥等级为52.5。两种水泥混合使用能够保证材料具有较高的早期强度和龄期强度。
该实施方式的一些实施例中,所述减水剂为聚羧酸减水剂,其减水率为32%,用于调控材料的流动性和可挤出性。
该实施方式的一些实施例中,所述纤维素醚为羟丙基甲基纤维素醚,粘度为200Pa.s,作为粘度改性剂,可改善其可挤出性和建造性。
该实施方式的一些实施例中,所述纤维包括聚丙烯纤维、聚乙烯醇纤维。
优选的,所述聚丙烯纤维的长径比为110-130,优选为120。
优选的,所述聚乙烯醇纤维的长径比为190-200,优选为194。
优选的,所述聚丙烯纤维直径为40-60μm,优选为50μm;
优选的,所述聚乙烯醇纤维直径为30-40μm,优选为31μm;
优选的,聚丙烯纤维与聚乙烯醇纤维的质量比为1-5:1-2,优选为4:1。
在混凝土材料欧中加入纤维可改善材料的韧性,使其适用于3D打印技术。
该实施方式的一些实施例中,金属填料为Eu(DBM)3phen。具有发光性能的有机金属配合物Eu(DBM)3phen作为填料对混凝土材料进行改性,能够进一步提高混凝土自发光能力的同时,还能够使材料的拉伸强度和冲击强度得到提高。
优选的,金属填料添加量与聚丙烯纤维的质量比为0.5-1:99.0-99.5,优选为0.5:99.5。金属填料与聚丙烯纤维协同增强混凝土材料的力学性能,且在此添加量的情况下,混凝土材料的拉伸强度和冲击强度得到极大的提高。
该实施方式的一些实施例中,所述发光粉为稀土类黄绿色发光粉,优选为SrAl2O4:Eu2+,Dy3+,其目数为500-700目,优选为600目。发光粉的加入能够提高和延长混凝土材料的自发光时间,余辉时间较人眼可视最低亮度0.32mcd/m2可达8h以上。
该实施方式的一些实施例中,所述反光粉为灰色反光粉,以玻璃为主粉体 材料,主要化学成分为SiO2,规格为200目,将其加入后利用微珠的高折射作用,可使混凝土材料具有回归反光效果。
该实施方式的一些实施例中,所述偏高岭土是高岭土在850℃煅烧温度下获得的,偏高岭土的化学成分主要为SiO2和Al2O3,能够显著提高材料的静态屈服应力,并降低结构变形。
该实施方式的一些实施例中,所述超疏水涂层为正硅酸乙酯水解过程中加入氟硅烷材料进行氟化处理后得到的,优选为氟硅烷类疏水涂层。
本发明的另一种典型实施方式,提供上述的用于3D打印的超疏水自发光混凝土材料的制备方法,包括以下具体步骤:
(1)将水泥、石英砂、硅灰、发光粉、反光粉、偏高岭土、金属填料按比例称量后均匀混合得到固体粉料;
(2)将减水剂、水、纤维、纤维素醚、消泡剂按比例称量后待用;
(3)在混合均匀的固体粉料中加入减水剂、水并搅拌混匀;
(4)将纤维、纤维素醚、消泡剂加入所述(3)中的拌合物中,搅拌混匀,放入3D打印机中得到自发光混凝土;
(5)将(4)中所得的自发光混凝土试件涂覆超疏水涂层即得到超疏水自发光混凝土;
所述超疏水涂层为正硅酸乙酯水解过程中加入氟硅烷材料进行氟化处理后得到的。
该实施方式的一些实施例中,搅拌时间视材料具体配比情况可灵活调整。
优选的,(3)中搅拌时间为180-240s。
优选的,(4)中搅拌时间为300-600s。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将 结合具体的实施例详细说明本发明的技术方案。
如下实施例中选用的聚丙烯纤维规格为:长径比为120,直径为50μm;聚乙烯醇纤维规格为:长径比为194,直径为31μm。如下实施例中选用的超疏水涂层为市售氟硅烷类疏水涂层。
实施例1
一种用于3D打印的超疏水自发光混凝土材料的制备方法
按重量份数计,称取42.5普通硅酸盐水泥1000份,52.5硫铝酸盐水泥180份,石英砂1000份,硅灰50份,水340份,聚羧酸减水剂10份,羟丙基甲基纤维素醚1份,消泡剂2份,聚丙烯纤维3.2份,聚乙烯醇纤维0.8份,发光粉75份,反光粉30份,偏高岭土15份,金属填料Eu(DBM)3phen 0.016份。
制备方法:
(1)将水泥、石英砂、硅灰、发光粉、反光粉、偏高岭土、金属填料按比例称量后均匀混合得到固体粉料;
(2)将减水剂、水、纤维、纤维素醚、消泡剂按比例称量后待用;
(3)向混合均匀的固体粉料中加入减水剂、水搅拌180-240s;
(4)将纤维、纤维素醚、消泡剂加入拌合物中,搅拌300-600s,放入3D打印机中得到自发光混凝土;
(5)将自发光混凝土试件涂覆超疏水涂层即得到超疏水自发光混凝土。
实施例2
一种用于3D打印的超疏水自发光混凝土材料的制备方法
按重量份数计,称取42.5普通硅酸盐水泥1000份,52.5硫铝酸盐水泥180份,石英砂1000份,硅灰50份,水340份,聚羧酸减水剂10份,羟丙基甲基纤维素醚1份,消泡剂2份,聚丙烯纤维3.2份,聚乙烯醇纤维0.8份,发 光粉75份,反光粉30份,偏高岭土15份,金属填料Eu(DBM)3phen 0.032份。
制备方法:
(1)将水泥、石英砂、硅灰、发光粉、反光粉、偏高岭土、金属填料按比例称量后均匀混合得到固体粉料;
(2)将减水剂、水、纤维、纤维素醚、消泡剂按比例称量后待用;
(3)向混合均匀的固体粉料中加入减水剂、水搅拌180-240s;
(4)将纤维、纤维素醚、消泡剂加入拌合物中,搅拌300-600s,放入3D打印机中得到自发光混凝土;
(5)将自发光混凝土试件涂覆超疏水涂层即得到超疏水自发光混凝土。
对比例1
与实施例1的区别在于,不添加金属填料Eu(DBM)3phen。
对比例2
与实施例1的区别在于,不添加聚丙烯。该混凝土较难成型。
力学性能测试:
对本发明实施例1-2以及对比例1、3-4所述方法得到的的超疏水自发光混凝土材料进行了金属填料对聚丙烯的力学性能影响进行了测试,结果如下表1所示。
表1
由表1可知,当聚丙烯与金属填料添加量的质量百分比为聚丙烯:金属填料=99.5%:0.5%时,超疏水自发光混凝土材料的力学性能最好,相对于不添加金属填料得到的超疏水自发光混凝土材料的力学性能相比,拉伸强度提高2.45%,冲击强度提高11.97%。可见,金属填料Eu(DBM)3phen的加入,能够增强混凝土材料的拉伸强度与冲击强度,能够在具备发光性能的同时,有效提高材料的力学性能。
初凝、终凝时间测试:
对本发明实施例1-2以及对比例1、3-4所述方法得到的超疏水自发光混凝土材料进行了初凝、终凝时间测试,结果测试超疏水自发光混凝土的初凝时间为20min-120min,终凝时间为60min-180min。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种用于3D打印的超疏水自发光混凝土材料,其特征在于,包括面层、基层;
    所述基层按重量份数计,其组成及含量分别为:
    水泥:1000-1500份;
    石英砂:1000-1300份;
    硅灰:50-100份;
    水:300-400份;
    减水剂:8-12份;
    纤维素醚:1-2份;
    消泡剂:2-3份;
    纤维:4-8份;
    发光粉:75-85份;
    反光粉:30-45份;
    偏高岭土:15-25份;
    金属填料:0.015-0.040份;
    所述面层为超疏水涂层;
    所述纤维包括聚丙烯纤维、聚乙烯醇纤维;金属填料添加量与聚丙烯纤维的质量比为0.5-1:99.0-99.5;
    所述金属填料为Eu(DBM)3phen;
    所述发光粉为稀土类黄绿色发光粉,为SrAl2O4:Eu2+,Dy3+
  2. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述基层按重量份数计,其组成及含量分别为:
    水泥:1000-1200份;
    石英砂:1000-1100份;
    硅灰:50-55份;
    水:340-380份;
    减水剂:10-12份;
    纤维素醚:1-1.2份;
    消泡剂:2-2.5份;
    纤维:4-6份;
    发光粉:75-80份;
    反光粉:30-40份;
    偏高岭土:15-20份;
    金属填料:0.016-0.032份。
  3. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述水泥包括82-100%的硅酸盐水泥、0-18%的硫铝酸盐水泥,重量百分比。
  4. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述聚丙烯纤维的长径比为110-130。
  5. 如权利要求4所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述聚丙烯纤维的长径比为120。
  6. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述聚乙烯醇纤维的长径比为190-200。
  7. 如权利要求6所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述聚乙烯醇纤维的长径比为194。
  8. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在 于,所述聚丙烯纤维直径为40-60μm。
  9. 如权利要求8所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述聚丙烯纤维直径为50μm。
  10. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述聚乙烯醇纤维直径为30-40μm。
  11. 如权利要求10所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述聚乙烯醇纤维直径为31μm。
  12. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,聚丙烯纤维与聚乙烯醇纤维的质量比为4:1。
  13. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,金属填料添加量与聚丙烯纤维的质量比为0.5:99.5。
  14. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述发光粉目数为500-700目。
  15. 如权利要求14所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述目数为600目。
  16. 如权利要求1所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述超疏水涂层为正硅酸乙酯水解过程中加入氟硅烷材料进行氟化处理后得到的。
  17. 如权利要求16所述的用于3D打印的超疏水自发光混凝土材料,其特征在于,所述超疏水涂层为氟硅烷类疏水涂层。
  18. 权利要求1-17任一项所述的用于3D打印的超疏水自发光混凝土材料的制备方法,其特征在于,包括以下具体步骤:
    (1)将水泥、石英砂、硅灰、发光粉、反光粉、偏高岭土、金属填料按 比例称量后均匀混合得到固体粉料;
    (2)将减水剂、水、纤维、纤维素醚、消泡剂按比例称量后待用;
    (3)在混合均匀的固体粉料中加入减水剂、水并搅拌混匀;
    (4)将纤维、纤维素醚、消泡剂加入所述(3)中的拌合物中,搅拌混匀,放入3D打印机中得到自发光混凝土;
    (5)将(4)中所得的自发光混凝土试件涂覆超疏水涂层即得到超疏水自发光混凝土;
    所述超疏水涂层为正硅酸乙酯水解过程中加入氟硅烷材料进行氟化处理后得到的。
  19. 如权利要求18所述的用于3D打印的超疏水自发光混凝土材料的制备方法,其特征在于,(3)中搅拌时间为180-240s。
  20. 如权利要求18所述的用于3D打印的超疏水自发光混凝土材料的制备方法,其特征在于,(4)中搅拌时间为300-600s。
PCT/CN2023/074719 2022-09-05 2023-02-07 一种用于3d打印的超疏水自发光混凝土材料及制备方法 WO2024051078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211077772.6 2022-09-05
CN202211077772.6A CN115353357B (zh) 2022-09-05 2022-09-05 一种用于3d打印的超疏水自发光混凝土材料及制备方法

Publications (1)

Publication Number Publication Date
WO2024051078A1 true WO2024051078A1 (zh) 2024-03-14

Family

ID=84005967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074719 WO2024051078A1 (zh) 2022-09-05 2023-02-07 一种用于3d打印的超疏水自发光混凝土材料及制备方法

Country Status (2)

Country Link
CN (1) CN115353357B (zh)
WO (1) WO2024051078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105002A1 (en) * 2022-11-17 2024-05-23 Sika Technology Ag Cementitious materials including a luminescent compound for printing 3-dimensional structures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353357B (zh) * 2022-09-05 2023-02-28 山东大学 一种用于3d打印的超疏水自发光混凝土材料及制备方法
CN116621544A (zh) * 2023-04-28 2023-08-22 灵砼科技(杭州)有限公司 一种发光透水3d打印混凝土材料及其建造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108529968A (zh) * 2018-04-25 2018-09-14 浙江大学 一种用于3d打印的纤维混凝土材料及其制备方法
CN111499314A (zh) * 2020-05-12 2020-08-07 河北工业大学 一种可3d打印的超高性能混凝土及其制备方法和使用方法
RU2767641C1 (ru) * 2021-08-20 2022-03-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Декоративный бетон повышенной физико-климатической стойкости для строительной 3D-печати
CN114477917A (zh) * 2022-03-04 2022-05-13 南京亨瑞斯新材料科技有限公司 一种超疏水混凝土及其使用方法
CN115353357A (zh) * 2022-09-05 2022-11-18 山东大学 一种用于3d打印的超疏水自发光混凝土材料及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059319B1 (fr) * 2016-11-25 2019-06-28 Vicat Compositions, intermediaires et procedes pour la fabrication de mortiers et de betons, produits obtenus et leurs utilisations
CN110386791A (zh) * 2019-08-23 2019-10-29 长安大学 一种疏水自发光荧光路面材料及其制备方法
CN111004486B (zh) * 2019-11-21 2021-06-29 山东大学 一种超疏水自发光隔音屏及施工方法
CN111253102B (zh) * 2020-02-08 2021-09-03 青岛大学 一种户外用多重杂化自清洁节能发光砂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108529968A (zh) * 2018-04-25 2018-09-14 浙江大学 一种用于3d打印的纤维混凝土材料及其制备方法
CN111499314A (zh) * 2020-05-12 2020-08-07 河北工业大学 一种可3d打印的超高性能混凝土及其制备方法和使用方法
RU2767641C1 (ru) * 2021-08-20 2022-03-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Декоративный бетон повышенной физико-климатической стойкости для строительной 3D-печати
CN114477917A (zh) * 2022-03-04 2022-05-13 南京亨瑞斯新材料科技有限公司 一种超疏水混凝土及其使用方法
CN115353357A (zh) * 2022-09-05 2022-11-18 山东大学 一种用于3d打印的超疏水自发光混凝土材料及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105002A1 (en) * 2022-11-17 2024-05-23 Sika Technology Ag Cementitious materials including a luminescent compound for printing 3-dimensional structures

Also Published As

Publication number Publication date
CN115353357B (zh) 2023-02-28
CN115353357A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2024051078A1 (zh) 一种用于3d打印的超疏水自发光混凝土材料及制备方法
CN102093006B (zh) 粉煤灰干混砂浆
CN110105029B (zh) 一种用于3d打印建筑的防水保温砂浆及其制备方法和应用
CN103224358B (zh) 一种绿色环保磨细河砂粉末混凝土
CN108455930B (zh) 一种采用风积沙的绿色超高性能水泥基材料及其制备方法
CN109776061B (zh) 一种轻质高强度型外墙内保温石膏及其制备方法
CN112551968B (zh) 一种沙漠砂-铬铁渣3d打印混凝土材料及其施工方法
CN101328028A (zh) 一种复合水硬性胶凝材料
WO2021012310A1 (zh) 一种高韧性无机复合人造石材面板及其制备方法
CN109485342B (zh) 红麻秸秆轻质抗裂保温砂浆及其制备方法
CN113511856B (zh) 一种高性能吸音隔热气凝胶纤维混凝土复合材料的制备方法
CN111233415A (zh) 一种抗裂型石膏基抹面胶浆及其制备方法
CN107651893A (zh) 一种防辐射装饰水泥
CN111153621A (zh) 一种混凝土复合掺合料及其制备方法
CN108585927A (zh) 一种纳米纤维素气凝胶保温板及其制备方法
CN109809753A (zh) 抗裂耐腐蚀无机人造石及其制备方法和应用
CN114213094A (zh) 一种再生陶瓷粉地聚合物修补砂浆及其制备方法
CN109608074B (zh) 一种基于煤气化粗渣的轻骨料及其制备方法
CN111233416A (zh) 一种抗裂型石膏基轻质材料
Xiao et al. Use of luminescent-glass aggregates for the production of decorative architectural mortar
CN108083725B (zh) 一种聚合物改性水泥基复合板材及其制备方法
CN107628790A (zh) 一种装饰水泥
CN107500674A (zh) 一种环保型装饰水泥
CN112592111B (zh) 建筑外墙用发光地聚物砂浆
CN112592110B (zh) 长余辉发光地聚物混凝土

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861790

Country of ref document: EP

Kind code of ref document: A1