WO2024051049A1 - 一种消除光纤环圈局部应力畸变的方法及其装置 - Google Patents

一种消除光纤环圈局部应力畸变的方法及其装置 Download PDF

Info

Publication number
WO2024051049A1
WO2024051049A1 PCT/CN2022/143142 CN2022143142W WO2024051049A1 WO 2024051049 A1 WO2024051049 A1 WO 2024051049A1 CN 2022143142 W CN2022143142 W CN 2022143142W WO 2024051049 A1 WO2024051049 A1 WO 2024051049A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
local stress
optical fiber
stress distortion
ultrasonic vibration
Prior art date
Application number
PCT/CN2022/143142
Other languages
English (en)
French (fr)
Other versions
WO2024051049A8 (zh
Inventor
李凡
罗巍
李朝卿
郑志胜
王学超
陈璐
郑莎莎
Original Assignee
中国船舶集团有限公司第七〇七研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国船舶集团有限公司第七〇七研究所 filed Critical 中国船舶集团有限公司第七〇七研究所
Publication of WO2024051049A1 publication Critical patent/WO2024051049A1/zh
Publication of WO2024051049A8 publication Critical patent/WO2024051049A8/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Definitions

  • the present application relates to the field of fiber optic gyroscope manufacturing, and in particular to a method and device for eliminating local stress distortion of an optical fiber loop.
  • the fiber optic ring is a ring-shaped optical sensitive component made of optical fiber wound and solidified by glue. It is the core component of fiber optic gyroscopes, fiber optic current transformers and other instruments. The quality of its performance directly determines the performance of the aforementioned instruments or meters.
  • the optical fiber itself is highly sensitive.
  • the two beams of light propagating in the opposite direction in the optical fiber will produce non-reciprocal phase differences, which will affect the sensitivity of the loop to angular velocity.
  • the fundamental reason is This is caused by the local asymmetry of stress distribution in the fiber ring.
  • the existing ring-forming process based on the multi-pole symmetrical winding method is to increase the symmetry of the ring structure to suppress the occurrence of non-reciprocal phase difference.
  • Due to the fluctuation of tension and edge fiber due to the fluctuation of tension and edge fiber Local stress distortion caused by improper handling and uneven control of the width of the crossing area is "frozen" in the optical fiber ring after the glue solidifies.
  • this distortion will destroy the entire ring.
  • the symmetry expression of the bulk structure leads to the degradation of the temperature performance of the fiber loop. From a longer time perspective, due to the physical properties of the glue itself, the "frozen” distortion will not always exist stably, but will slowly release and spread, thereby changing the equivalent diameter and optical path of the ring, thus affecting the optical fiber. Long-term stability of the loop's scaling factor.
  • This application proposes a method and device for eliminating local stress distortion of optical fiber loops based on ultrasonic vibration.
  • This method and device creatively address the problem that the local stress distortion of optical fiber loops cannot be fully released in the existing looping process.
  • Introducing ultrasonic vibration while further optimizing the process flow can effectively improve the temperature performance and long-term stability of the scaling factor of fiber optic ring products.
  • this method takes less time to eliminate local stress distortion in the optical fiber ring, has good effects, and consumes little energy.
  • this application provides a method for eliminating local stress distortion of an optical fiber loop, including the following steps performed in sequence:
  • step S2 a distributed optical fiber sensing system based on Brillouin optical time domain reflection is used to perform online real-time tracking and monitoring of the local stress state in the wound optical fiber loop.
  • This application also provides a device for performing the above-mentioned method of eliminating local stress distortion of an optical fiber ring, including a ring-wound mold and an ultrasonic vibration device.
  • the ring-wound mold is provided with a rotation hole in the middle
  • the ultrasonic vibration device includes a front Panel, rear panel, control panel, battery panel and ultrasonic generator.
  • the front panel and the rear panel are interlocked with each other.
  • the center corresponding positions of the front panel and the rear panel are provided with through holes corresponding to the rotation holes.
  • the ultrasonic generator and the ultrasonic generator are fixedly installed between the front panel and the rear panel.
  • the control panel controls the ultrasonic generator, and the battery board supplies power to the control panel and ultrasonic generator.
  • ultrasonic generators There are multiple ultrasonic generators, and they are evenly arranged around the through hole with the through hole as the center.
  • the ultrasonic generator is fixedly installed on the rear panel.
  • the opposite sides of the ring mold are ring flanges with rotating holes.
  • the rear panel is fitted and fixed to the surrounding flange on one side.
  • the core of the method proposed in this application is ultrasonic vibration, that is, when the optical fiber ring product is formed into a ring but has not yet solidified, ultrasonic vibration is applied to the optical fiber ring body, thereby causing the local stress distortion in the ring body to be adjusted and released during the ring forming process. After sufficient time, the ring body is solidified, thereby improving the temperature performance of the optical fiber ring product and the long-term stability of the scaling factor.
  • the causes of local stress distortion in the ring body during the ring forming process can be, for example, fluctuations in tension, improper handling of edge optical fibers, and uneven control of the width of the transition area.
  • Figure 1 is a schematic diagram of the optical fiber of the present application after being looped but not yet cured
  • Figure 2 is an exploded view of the structure of the ultrasonic vibration device of the present application.
  • FIG. 3 is a schematic diagram of the overall rotation of this application.
  • FIG. 1 the schematic diagram of the optical fiber loop after being wound but not yet solidified is shown.
  • the glue inside the ring is still in a liquid state.
  • the optical fiber ring is wound in the ring mold, and the two sides of the ring mold are ring flanges 8 with rotating holes 7 .
  • the ultrasonic vibration device includes: front panel 1, rear panel 2, control panel 3, battery panel 4, ultrasonic generator 5.
  • the front panel 1 and the rear panel 2 are interlocked with each other.
  • the front panel 1 and the rear panel 2 The corresponding center position is provided with a through hole 6 corresponding to the rotation hole 7.
  • the control panel 3, the battery panel 4 and the ultrasonic generator 5 are fixedly installed between the front panel 1 and the rear panel 2.
  • the control panel 3 controls the signal of the ultrasonic generator 5, and the battery panel 4 controls the control panel 3 and the ultrasonic generator 5. powered by.
  • the distributed optical fiber sensing system based on Brillouin Optical Time Domain Reflectometry can be used to track and monitor the local stress state within the wound fiber ring in real time online. After the local stress distortion in the fiber ring is fully released, The wound optical fiber ring is removed and subjected to subsequent curing and other processes. After the curing is completed, the product is demoulded (that is, the optical fiber ring with local stress distortion eliminated).
  • This application can meet the stress and distortion requirements of wound optical fiber rings of different sizes by adjusting the frequency and amplitude of ultrasonic vibration, thereby having universal applicability to different products with the same needs.
  • multiple ultrasonic generators are evenly arranged around the through hole with the through hole as the center. For example, four ultrasonic generators can be arranged.
  • this application proposes a method and device for eliminating local stress distortion of optical fiber loops based on ultrasonic vibration.
  • the device has a simple structure, is easy to maintain and has strong adaptability, and can effectively improve the temperature performance and scale of optical fiber loop products. long-term stability of the factors. Compared with existing methods, this method takes less time, consumes less energy and is more effective in eliminating local stress distortion in the optical fiber loop.
  • the core of the method proposed in this application is ultrasonic vibration, that is, when the optical fiber ring product is formed into a ring but has not yet solidified, ultrasonic vibration is applied to the optical fiber ring body to control fluctuations in tension and improper handling of edge fibers during the ring forming process.
  • the local stress distortion in the ring body caused by uneven control of the width of the transit area is adjusted and released. After the release is sufficient, the ring body is solidified, thereby achieving long-term improvement of the temperature performance and scaling factor of the optical fiber ring product.
  • the role of stability is, when the optical fiber ring product is formed into a ring but has not yet solidified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Gyroscopes (AREA)

Abstract

一种消除光纤环圈局部应力畸变的方法及其装置,涉及光纤陀螺制造领域。消除光纤环圈局部应力畸变的方法包括在绕环模具的外侧固定超声振动装置,并使超声振动装置的后面板(2)与绕环模具的绕环法兰(8)贴合,启动超声振动装置(S1);在绕环模具内进行涂胶后的光纤环圈的绕制,并在线实时跟踪监测光纤环圈内的局部应力畸变,在绕制的光纤环圈内局部应力畸变充分释放后停止超声振动装置(S2);对绕环模具内绕制的光纤环圈进行固化,脱模,得到光纤环圈(S3)。执行消除光纤环圈局部应力畸变的方法的装置结构简单、易于维护和适应性强,可有效地提高光纤环圈产品的温度性能及标度因数的长期稳定性,且与现有方法相较,在消除光纤环圈局部应力畸变时用时更短,能耗更小,效果更好。

Description

一种消除光纤环圈局部应力畸变的方法及其装置
相关申请
本申请要求2022年09月05日递交的申请号为202211075489.X,发明名称为“一种消除光纤环圈局部应力畸变的方法及其装置”的中国发明专利申请的优先权,其全部内容以引用方式并入本文。
技术领域
本申请涉及光纤陀螺制造领域,尤其涉及一种消除光纤环圈局部应力畸变的方法及其装置。
背景技术
光纤环圈是由光纤缠绕并经胶液固化而成的环状光学敏感元件,是光纤陀螺、光纤电流互感器等仪器的核心元件。其性能的优劣直接决定了前述仪器或仪表的表现。
光纤本身具有高敏感性,当光纤环圈所处的环境发生变化,在光纤中反向传播的两束光会产生非互易相差,进而影响环圈对角速率的敏感度,究其根本是由于光纤环圈内局部存在应力分布不对称导致的。现有的以多极对称绕法为基础的成环工艺是以增加环体结构的对称性来抑制非互易相差的产生,但在制作成环的过程中由于张紧力的波动、边缘光纤处理不当以及渡越区域宽度控制的不均匀等原因造成的局部应力畸变,在经胶液固化后便被“封冻”在光纤环圈内,在较短的时间维度内,该畸变会破坏整个环体结构的对称性表达,从而导致光纤环圈的温度性能劣化。从较长的时间维度考量,由于胶液本身的物理性质,“封冻”的畸变不会一直稳定存在,而是会慢慢释放和扩散,进而改变环体的等效直径和光程,从而影响光纤环圈的标度因数的长期稳定性。
目前,国内外在应对光纤环圈的局部应力畸变方面办法不多。基本上采用热处理或自然放置两种,此类方法均是在光纤环圈成环固化后进行。热处理是将光纤环圈成品放入专业高低温试验箱进行有条件的温度冲击,从而释放局部应力畸变,该方法能耗大且效果不佳。自然放置即是通过长时间的放置使得光纤环圈内的局部应力畸变得到释放,该方法用时过长不适合现代化的规模生产。
发明内容
本申请提出了一种基于超声振动的消除光纤环圈局部应力畸变的方法和装置,该方法和装置针对现有的成环工艺中光纤环圈的局部应力畸变无法充分释放的问题,在创造性地引入超声振动的同时进一步优化工艺流程,可有效地提高光纤环圈产品的温度性能及标度因数的长期稳定性。且与现有方法相较,该方法在消除光纤环圈局部应力畸变时用时短,效果好,能耗小。
为了实现本申请目的技术方案,本申请提供了一种消除光纤环圈局部应力畸变的方法,包括依次执行的如下步骤:
S1.在绕环模具的外侧固定超声振动装置,并使超声振动装置的后面板与绕环模具的绕环法兰贴合,启动超声振动装置;
S2.在绕环模具内进行涂胶后的光纤环圈的绕制,并在线的实时跟踪监测绕制的光纤环圈内局部应力畸变,当绕制的光纤环圈内局部应力畸变充分释放后停止超声振动装置;
S3.对绕环模具内绕制的光纤环圈进行固化,脱模。
步骤S2中,使用基于布里渊光时域反射的分布式光纤传感系统对绕制的光纤环圈内局部应力状态进行在线的实时跟踪监测。
本申请还提供了一种装置,用于执行上述消除光纤环圈局部应力畸变的方法,包括绕环模具及超声振动装置,所述绕环模具中部设有旋转孔,所述超声振动装置包括前面板、后面板、控制面板、电池板及超声发生器,所述前面板与后面板互相扣合,前面板、后面板的中心对应位置设有与旋转孔对应的通孔,控制面板、电池板及超声发生器固定安装在前面板与后面板之间,其中控制面板对超声发生器进行控制,电池板为控制面板及超声发生器供电。
所述超声发生器设置有多个,并以通孔为中心环周均匀设置。
所述超声发生器固定安装在后面板上。
所述绕环模具的相对两侧为带有旋转孔的绕环法兰。
所述后面板与一侧所述绕环法兰贴合固定。
本申请的有益效果是:
本申请提出了该方法和装置可有效地解决现有光纤环圈产品因局部应力畸变无法充分释放导致的温度性能及标度因数的长期稳定性劣化的问题。本申请提出的方法的核心为超声振动,即在光纤环圈产品成环但尚未固化时,对光纤环体施加超声振动,从而使得在成环过程中环体内的局部应力畸变进行调整释放,待释放充分后再对环体进行固 化,从而实现提高光纤环圈产品的温度性能及标度因数的长期稳定性的作用。需要说明的时,在成环过程中环体内的局部应力畸变的原因例如可以为张紧力的波动、边缘光纤处理不当以及渡越区域宽度控制的不均匀等。
附图说明
图1是本申请的光纤环圈绕制后但尚未固化示意图;
图2是本申请的超声振动装置的结构爆炸图;
图3是本申请的整体旋转示意图;
图中:1、前面板;2、后面板;3、控制面板;4、电池板;5、超声发生器;6、通孔;7、旋转孔,8、绕环法兰。
具体实施方式
为了使本技术领域的技术人员更好地理解本申请的技术方案,下面结合附图和最佳实施例对本申请作进一步的详细说明。
如图1所示的光纤环圈绕制后但尚未固化示意图,在光纤环圈绕制后但尚未固化的阶段,光纤环圈虽然已经绕制成环但因胶液还是液态,其环体内的局部应力畸变存在调整释放的可能。这也是本申请的理论基础。光纤环圈在绕环模具中进行绕制,绕环模具两侧为带有旋转孔7的绕环法兰8。
如图2所示,超声振动装置包括:前面板1、后面板2、控制面板3、电池板4、超声发生器5,前面板1与后面板2互相扣合,前面板1、后面板2的对应的中心位置设有与旋转孔7对应通孔6。控制面板3、电池板4及超声发生器5固定安装在前面板1与后面板2之间,其中控制面板3对超声发生器5进行信号控制,电池板4为控制面板3及超声发生器5供电。
如图3所示,将与未固化的光纤环圈的绕环模具与超声振动装置固接在一起并保证同轴(绕环法兰的旋转孔与超声振动装置前面板及后面板的通孔相对),并使得超声振动装置的后面板与绕环模具的一侧绕环法兰贴合固定。在控制面板3上定时和开启。电池板4提供能源。控制面板3控制超声发生器5的功率。超声发生器5产生超声振动,超声发生器5与金属材质的后面板2固定安装,超声振动可轻易透过后面板2传导至未固化的光纤环圈。最后,使两者绕固定轴匀速旋转(用于均匀胶液,使胶液不因重力作用而积于一处)。
使用基于布里渊光时域反射(BOTDR)的分布式光纤传感系统可对绕制光纤环圈的内局部应力状态进行在线实时跟踪监测,待光纤环圈内局部应力畸变得到充分释放,再将绕制光纤环圈取下进行后续的固化等工序,固化完成后脱模形成产品(即消除了局部应力畸变的光纤环圈)。本申请可通过调整超声振动的频率和幅值来满足不同尺寸的绕制的光纤环圈的去应力畸变的需求,从而对于同需求的不同产品具有普适性。为了保证工作的效率和均质性,超声发生器沿以通孔为中心环周均匀设置有多个,例如可以设置4个。
综上,本申请提出一种基于超声振动的消除光纤环圈局部应力畸变的方法和装置,该装置结构简单、易于维护和适应性强,可有效地提高光纤环圈产品的温度性能及标度因数的长期稳定性。且与现有方法相较,该方法在消除光纤环圈局部应力畸变时用时更短、能耗更小和效果更好。
本申请提出了该方法和装置可有效地解决现有光纤环圈产品因局部应力畸变无法充分释放导致的温度性能及标度因数的长期稳定性劣化的问题。本申请提出的方法的核心为超声振动,即在光纤环圈产品成环但尚未固化时,对光纤环体施加超声振动并以此对成环过程中由于张紧力的波动、边缘光纤处理不当以及渡越区域宽度控制的不均匀等原因造成的环体内的局部应力畸变进行调整释放,待释放充分后再对环体进行固化,从而实现提高光纤环圈产品的温度性能及标度因数的长期稳定性的作用。
以上仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (7)

  1. 一种消除光纤环圈局部应力畸变的方法,其特征在于,包括依次执行的如下步骤:
    S1.在绕环模具的外侧固定超声振动装置,并使所述超声振动装置的后面板与所述绕环模具的绕环法兰贴合,启动超声振动装置;
    S2.在所述绕环模具内进行涂胶后的光纤环圈的绕制,并在线实时跟踪监测绕制的光纤环圈内的局部应力畸变,在所述绕制的光纤环圈内的局部应力畸变充分释放后停止所述超声振动装置;
    S3.对所述绕环模具内所述绕制的光纤环圈进行固化,脱模。
  2. 根据权利要求1所述的消除光纤环圈局部应力畸变的方法,其特征在于,步骤S2中,使用基于布里渊光时域反射的分布式光纤传感系统对所述绕制的光纤环圈内局部应力状态进行在线实时跟踪监测。
  3. 一种装置,用于执行权利要求1或2所述的消除光纤环圈局部应力畸变的方法,其特征在于,包括绕环模具及超声振动装置,所述绕环模具的中部设有旋转孔,所述超声振动装置包括前面板、后面板、控制面板、电池板及超声发生器,所述前面板与所述后面板互相扣合,所述前面板、所述后面板的对应的中心位置设有与所述旋转孔对应的通孔,所述控制面板、所述电池板及所述超声发生器固定安装在所述前面板与所述后面板之间,其中所述控制面板对所述超声发生器进行信号控制,所述电池板为所述控制面板及所述超声发生器供电。
  4. 根据权利要求3所述的装置,其特征在于,所述超声发生器设置有多个,并以所述通孔为中心环周均匀设置。
  5. 根据权利要求3所述的装置,其特征在于:所述超声发生器固定安装在所述后面板上。
  6. 根据权利要求3所述的装置,其特征在于:所述绕环模具的相对两侧为带有旋转孔的绕环法兰。
  7. 根据权利要求6所述的装置,其特征在于:所述后面板与一侧的所述绕环法兰贴合固定。
PCT/CN2022/143142 2022-09-05 2022-12-29 一种消除光纤环圈局部应力畸变的方法及其装置 WO2024051049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211075489.X 2022-09-05
CN202211075489.XA CN115143995B (zh) 2022-09-05 2022-09-05 一种消除光纤环圈局部应力畸变的方法及其装置

Publications (2)

Publication Number Publication Date
WO2024051049A1 true WO2024051049A1 (zh) 2024-03-14
WO2024051049A8 WO2024051049A8 (zh) 2024-04-11

Family

ID=83415720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143142 WO2024051049A1 (zh) 2022-09-05 2022-12-29 一种消除光纤环圈局部应力畸变的方法及其装置

Country Status (2)

Country Link
CN (1) CN115143995B (zh)
WO (1) WO2024051049A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143995B (zh) * 2022-09-05 2022-11-18 中国船舶重工集团公司第七0七研究所 一种消除光纤环圈局部应力畸变的方法及其装置
CN117383820A (zh) * 2023-10-25 2024-01-12 重庆微敏科技有限公司 一种无骨架光纤环绕制的方法、装置及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130241013A1 (en) * 2010-10-15 2013-09-19 Hitachi Automotive Systems, Ltd. Physical Quantity Detector
CN109186580A (zh) * 2018-07-25 2019-01-11 中国航空工业集团公司西安飞行自动控制研究所 一种光纤环内各层光纤应力分布的控制方法
CN109297479A (zh) * 2018-09-25 2019-02-01 重庆华渝电气集团有限公司 一种可测得其在工作状态下的温度分布的光纤环及其绕制方法
CN110987005A (zh) * 2019-12-02 2020-04-10 北京自动化控制设备研究所 应用超声波灌封光纤环圈的方法及使用其的装置
CN113884083A (zh) * 2021-08-30 2022-01-04 中国船舶重工集团公司第七0七研究所 基于磁流体的空芯微结构光纤环圈绕制应力释放方法
CN115143995A (zh) * 2022-09-05 2022-10-04 中国船舶重工集团公司第七0七研究所 一种消除光纤环圈局部应力畸变的方法及其装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206362354U (zh) * 2016-12-30 2017-07-28 中国船舶重工集团公司第七0七研究所 一种用于光纤环圈绕制固化后有效脱模的绕环工装
CN111044024B (zh) * 2019-12-03 2021-11-30 江苏法尔胜光电科技有限公司 一种减小光纤环残余固化胶水的光纤环绕环机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130241013A1 (en) * 2010-10-15 2013-09-19 Hitachi Automotive Systems, Ltd. Physical Quantity Detector
CN109186580A (zh) * 2018-07-25 2019-01-11 中国航空工业集团公司西安飞行自动控制研究所 一种光纤环内各层光纤应力分布的控制方法
CN109297479A (zh) * 2018-09-25 2019-02-01 重庆华渝电气集团有限公司 一种可测得其在工作状态下的温度分布的光纤环及其绕制方法
CN110987005A (zh) * 2019-12-02 2020-04-10 北京自动化控制设备研究所 应用超声波灌封光纤环圈的方法及使用其的装置
CN113884083A (zh) * 2021-08-30 2022-01-04 中国船舶重工集团公司第七0七研究所 基于磁流体的空芯微结构光纤环圈绕制应力释放方法
CN115143995A (zh) * 2022-09-05 2022-10-04 中国船舶重工集团公司第七0七研究所 一种消除光纤环圈局部应力畸变的方法及其装置

Also Published As

Publication number Publication date
WO2024051049A8 (zh) 2024-04-11
CN115143995A (zh) 2022-10-04
CN115143995B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2024051049A1 (zh) 一种消除光纤环圈局部应力畸变的方法及其装置
US5701376A (en) Polarized-wave-dispersion- preventive optical fiber and its manufacturing method
KR100328205B1 (ko) 광섬유제조방법
CN104316040B (zh) 一种基于光子晶体光纤的新型光纤陀螺干涉光路
US20010020374A1 (en) Method and apparatus for manufacturing an optical fiber from a preform
US9541400B2 (en) Fiber optic gyroscope sensing coil and method of fabricating the same
CN111829499A (zh) 一种基于光纤测温的高精度光纤陀螺系统及光纤环圈结构
WO2024027097A1 (zh) 光纤陀螺的环圈尾纤补偿方法和纤长补偿器
CN106153999B (zh) 一种高可靠性的光纤电流互感器传感环圈制作方法
CN204115735U (zh) 一种光纤陀螺用光路组件
CN206886424U (zh) 一种光纤二次套塑张力控制装置
KR20060132664A (ko) 저편광모드분산 광섬유 링크 및 그 제조방법
CN111175968B (zh) 一种用于温度补偿的四分之一波片的制作方法
CN109186580A (zh) 一种光纤环内各层光纤应力分布的控制方法
Brígida et al. Fabrication of a spun elliptically birefringent photonic crystal fiber and its characterization as an electrical current sensor
CN110160739A (zh) 高频振动非定常气动力产生装置
CN220872738U (zh) 一种电子设备用偏振装置
CN101216507A (zh) 一种光纤电流传感器敏感线圈的绕制设备
US7891216B2 (en) Method for producing an optical fiber having low polarization mode dispersion
CN109974685A (zh) 一种环境敏感环圈的制备方法
CN115371708B (zh) 一种可精确控制光纤环中点的绕环方法
JP2002039916A (ja) 光部品の偏波クロストーク測定方法および測定装置
JP3301136B2 (ja) 光ファイバの製造方法及び光ファイバの製造装置
JPH0977527A (ja) 光ファイバの線引き方法及び装置
CN115824264B (zh) 一种空芯微结构光纤陀螺工艺可靠性评估及提升方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958005

Country of ref document: EP

Kind code of ref document: A1