WO2024027097A1 - 光纤陀螺的环圈尾纤补偿方法和纤长补偿器 - Google Patents

光纤陀螺的环圈尾纤补偿方法和纤长补偿器 Download PDF

Info

Publication number
WO2024027097A1
WO2024027097A1 PCT/CN2022/143149 CN2022143149W WO2024027097A1 WO 2024027097 A1 WO2024027097 A1 WO 2024027097A1 CN 2022143149 W CN2022143149 W CN 2022143149W WO 2024027097 A1 WO2024027097 A1 WO 2024027097A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
compensator
length
pigtail
slender
Prior art date
Application number
PCT/CN2022/143149
Other languages
English (en)
French (fr)
Inventor
刘伯晗
左文龙
罗巍
颜苗
吴晓乐
Original Assignee
中国船舶集团有限公司第七〇七研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国船舶集团有限公司第七〇七研究所 filed Critical 中国船舶集团有限公司第七〇七研究所
Publication of WO2024027097A1 publication Critical patent/WO2024027097A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details
    • G01C19/722Details of the mechanical construction

Definitions

  • the present application relates to the field of fiber optic gyroscopes, and in particular to a ring pigtail compensation method and fiber length compensation for fiber optic gyroscopes.
  • fiber optic gyroscopes As all-solid-state inertial instruments, have no moving parts and wearing parts; from a performance point of view, fiber optic gyroscopes have low cost, long life, light weight, small size, dynamic range It has the advantages of large size, wide precision application coverage, resistance to electromagnetic interference, no drift caused by acceleration, flexible structural design and wide application range.
  • the fiber optic gyroscope includes an optical fiber ring, and the fiber optic ring includes an optical fiber pigtail.
  • the performance parameters of the fiber pigtail will directly affect the final drift performance of the fiber optic gyroscope.
  • the length of the fiber pigtail is an important parameter of the fiber pigtail. By adjusting the length of the fiber pigtail, the equivalent midpoint of the fiber loop of the fiber optic gyro can be changed. When the equivalent midpoint of the fiber loop of the fiber optic gyro is located at When symmetrical to the center, there is no Shupe error in the equivalent ring of the fiber optic gyroscope. However, the pigtail length of the fiber optic gyroscope is currently determined by experimentally cutting the pigtail.
  • this application provides a ring pigtail compensation method and a fiber length compensator for fiber optic gyroscopes, which solves the problem of low online adjustment accuracy of pigtails of existing fiber optic gyroscopes.
  • this application provides a fiber optic gyroscope loop pigtail compensation method, which method includes:
  • the slender compensator is fixed to the ring pigtail of the fiber optic gyro.
  • the slender compensator includes a peripheral fiber ring and an expansion shaft core that can achieve telescopic deformation; when it is detected that there is a drift in the output of the fiber optic gyro, by adjusting the slender length
  • the linear expansion coefficient of the expansion and contraction axis of the compensator changes the length of the peripheral fiber loop of the slender compensator, thereby achieving compensation for the loop pigtail of the fiber optic gyroscope.
  • the present application provides a slender compensator.
  • the slender compensator includes a peripheral fiber ring and an expansion and contraction shaft core.
  • the expansion and contraction shaft core is made of a material that can achieve telescopic deformation to pass through the expansion and contraction shaft.
  • the telescopic deformation of the core compensates for the length of the peripheral fiber loop of the fiber length compensator.
  • the technical solution provided by this application is to fix the slender compensator on the ring pigtail of the fiber optic gyro.
  • the slender compensator includes a peripheral fiber ring and an expansion shaft core that can achieve telescopic deformation; when it is detected that the output of the fiber optic gyro has drifted , by adjusting the linear expansion coefficient of the expansion axis core of the slender compensator to change the length of the peripheral fiber loop of the slender compensator, thereby realizing the compensation of the ring pigtail of the fiber optic gyro, thereby solving the problem of online adjustment accuracy of the fiber optic gyro's pigtail low question.
  • 1A-1B are schematic diagrams of the ring symmetry of the fiber optic gyroscope provided by the embodiment of the present application.
  • FIG. 2 is a flow chart of the loop pigtail compensation method of the fiber optic gyroscope provided by the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an interferometer provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a slender compensator provided by an embodiment of the present application.
  • Figure 5 is a diagram showing the relationship between the linear expansion coefficient and temperature corresponding to the colloidal solution of the slender compensator provided by the embodiment of the present application.
  • Figure 6 is a diagram showing the relationship between the linear expansion coefficient corresponding to the colloidal solution of the slender compensator provided by the embodiment of the present application and the ultraviolet light power.
  • the performance of the fiber optic gyroscope's fiber optic ring directly affects the accuracy of the fiber optic gyroscope.
  • the environmental factors of the fiber loop change, it will cause the two light waves propagating in opposite directions in the fiber loop to produce a non-reciprocal phase difference.
  • This non-reciprocal phase shift is related to the phase shift caused by the angular velocity.
  • the Sagnac phase shift is inseparable during the demodulation process, thus directly affecting the accuracy of the sensitive angular velocity of the fiber loop.
  • the reason for the above-mentioned non-reciprocal phase difference is the asymmetric stress distribution inside the fiber loop, which causes the phase shift change of the fiber loop.
  • FIGS. 1A-1B are schematic diagrams of the ring symmetry of the fiber optic gyroscope provided by the embodiment of the present application.
  • the optical fiber loop is regarded as an equivalent black box model, which includes an input end, an output end, and an intermediate model.
  • the input end is the outermost fiber length
  • the output end is the innermost fiber length
  • the middle model includes the fiber length of each layer.
  • the inventor found that since the optical fiber loop can be divided according to position and weight factor, the criterion is the equivalent integral sum. If the equivalent integral sum is not zero, the equivalent Shupe error of the multipole winding is not zero, as shown in Figure 1A, which means that the equivalent symmetry center of the fiber loop is not located at the symmetry midpoint. At this time, the fiber optic gyroscope The output is + ⁇ . Regardless of whether the output of the fiber optic gyroscope is positive or negative, its equivalent midpoint position can be obtained.
  • the inner layer Since the ring winding process is usually from the inner layer to the outer layer, especially when using the glue coating process, the inner layer is usually glued and solidified before the outer layer is wound.
  • the above process makes adjusting the inner fiber complex or even impossible. This makes it relatively simple to change the outer winding of the loop, especially the length of the last layer of pigtails. If you simply use the method of experimental pigtail cutting, it is often blind and tentative. Even if you get good results, it will be time-consuming, the accuracy is not high, and it is difficult to popularize the process.
  • high-precision fiber optic gyroscopes usually work under a certain temperature control point condition.
  • Pigtail online compensation is a key technology to achieve precision winding.
  • the goal of this technology is to calculate the equivalent pigtail length error based on the equivalent drift error model before the outermost optical fiber is cured, and then cut the pigtail according to the length error or Increase the winding and finally complete the outer layer solidification.
  • This process is similar to a process of solving a system of equations with multivariate parameters. Through multiple sets of input and output relationships, the coefficients of the equation are determined, that is, the linear mapping relationship of the input and output is obtained.
  • the equivalent fiber length calculation is actually the reverse process of the above model modeling, which is how to determine the new pigtail length after knowing the model parameter mapping relationship to achieve the Shupe error to meet the predetermined requirements.
  • the length optimization solution process it is necessary to set the pigtail cutting length range and the cutting step size of each step, and perform traversal calculations to obtain the Shupe calculation error of each step. If there is a certain step in which the Shupe error meets the index accuracy requirements, then Output the crop length. If the requirements are not met, further increase the pigtail cutting length and refine the cutting step until the target requirement is reached.
  • a more concise summary is to fine-tune the length of the pigtail and monitor the Shupe error of the gyro ring online. If the Shupe error converges within the set satisfactory interval, the above-mentioned fine-tuning length is the required pigtail compensation amount.
  • Figure 2 is a flow chart of a fiber optic gyroscope loop pigtail compensation method provided in Embodiment 1 of the present application.
  • the method includes: S110, fixing the slender compensator on the ring pigtail of the fiber optic gyroscope.
  • the slender compensator includes a peripheral fiber ring and an expansion and contraction axis core that can achieve telescopic deformation.
  • the length of the peripheral fiber loop of the slender compensator is changed by adjusting the linear expansion coefficient of the expansion and contraction axis of the slender compensator, thereby realizing compensation for the ring pigtail of the fiber optic gyro.
  • the ring pigtail compensation method of the fiber optic gyroscope in the embodiment of the present application abandons the current open-loop fiber pigtail cutting method and chooses an online closed-loop fiber pigtail adjustment method, so that the pigtail length can be accurately and continuously changed, and the change During the process, the interferometer can still be kept in working condition, which means that the pigtail can be continuously and accurately adjusted online.
  • FIG 3 is a schematic structural diagram of an interferometer provided by an embodiment of the present application.
  • the interferometer includes a fiber optic gyroscope 1, a slender compensator 2 and a phase modulator 3.
  • the loop pigtail includes two parts: one is the reference end pigtail 101, and the other is the compensation end pigtail 102.
  • a compensation adjuster 2 is added to the compensation end pigtail 102.
  • the fiber length compensator 2 can dynamically adjust the length of the compensation end pigtail 102 to make the reference end fiber 101 and the compensation end pigtail 102 symmetrical about the length center point of the loop to ensure that the length from the loop to the phase modulator 3
  • the optical paths of the positive and negative light paths of the interferometer are equal, thereby achieving the purpose of reducing the Shupe error of the optical fiber interferometer.
  • FIG 4 is a schematic structural diagram of a slender compensator provided by an embodiment of the present application.
  • the production of the fiber length compensator is shown in Figure 4.
  • the fiber length compensator 2 includes a compensation fiber 20 and an expansion shaft core 21.
  • the compensation fiber 20 includes a left pigtail 201 and a right pigtail 202.
  • the initial length of the compensation fiber 20 is as shown in Figure 4
  • the compensation fiber 20 is wound around a metal skeleton mandrel with a radius r, and then the wound compensation fiber is brushed and solidified, and after solidification, the metal skeleton mandrel is deboned to obtain a hollow core winding compensation fiber ring.
  • the colloid expansion and contraction shaft core 21 with the same size as the mandrel is made by pouring the colloid solution into the compensation coil and sealing it through the upper and lower transparent flanges.
  • the colloidal solution is formed into a predetermined shape through light curing or thermal curing (by illumination or heating as shown in Figure 4), and then the upper and lower transparent flanges are removed to complete the preparation of the colloidal expansion and contraction shaft core 21.
  • insert the expansion and contraction shaft core 21 into the compensation fiber ring to complete the shaft core assembly.
  • interference assembly is usually required, and the interference gap is required to not exceed 20um.
  • the slender compensator 2 After completing the production of the slender compensator 2, connect the slender compensator 2 to the Sagnac interferometer. First, fix the slender compensator 2 at the outer edge of the ring of the fiber optic gyroscope. Next, fix the left side of the compensation fiber 20 of the slender compensator 2.
  • the pigtail 201 is welded to the reference end pigtail 101 of the ring of fiber optic gyro 1
  • the left pigtail 202 of the compensation fiber 20 is welded to the compensation end pigtail 102 of the ring of fiber optic gyro 1
  • the left side of the compensation fiber except the left The pigtails other than the pigtail and the right pigtail are wound into the outermost outline of the ring according to the full circle, that is, the middle pigtail of the long compensator is wound to the outermost outline of the ring of the fiber optic gyroscope.
  • the main purpose of this step is to collect the zero bias of the fiber optic gyroscope. Heat the fiber optic gyro to a constant temperature control point, record the zero deviation value of the fiber optic gyro, and calculate the zero deviation value twice at the temperature control point and the normal temperature point. This value is the zero deviation value to be compensated.
  • the zero deviation value to be compensated is related to the compensation fiber length. relation.
  • Figure 5 is a diagram showing the relationship between the linear expansion coefficient and temperature corresponding to the colloidal solution of the slender compensator provided by the embodiment of the present application.
  • the linear expansion coefficient corresponding to the colloidal solution is tested in advance by DMA (Dynamic Mechanical Analyzer), as shown in Figure 5.
  • the abscissa represents the Celsius temperature t when the colloidal solution is adjusted, and the ordinate represents the linear expansion coefficient of the colloidal solution. .
  • the corresponding linear expansion coefficient change rate is obtained by derivation from the above curve, and then the change in fiber length is obtained by incorporating the relationship into the relationship.
  • the initial peripheral fiber loop length l 0 before adjustment of the slender compensator is kept equal to the reference end pigtail 101 of the fiber optic gyroscope. Due to changes in external temperature and other conditions, when the equivalent optical path lengths at both ends of the ring are not equal to the center point, the gyro output will drift to a certain extent. The size of the above-mentioned drift is related to the length difference of the outermost pigtail.
  • the linear expansion coefficient of the above-mentioned glue can be adjusted very sensitively, thereby adjusting the overall fiber length change of the fiber length compensator.
  • the fiber length change is calculated according to the above formula. Warming up causes expansion, and cooling down causes shrinkage. .
  • the above changes can be adjusted through the closed-loop negative feedback of the fiber optic gyro, that is, by continuously adjusting the linear expansion coefficient curve until the zero bias error of the fiber optic gyro disappears.
  • the compensation range of the peripheral fiber loop length of the fiber length compensator is ⁇ 2.5cm. This is for a 5000m fiber length 0.0001°/h high
  • the zero-bias drift adjustment range is roughly -0.0005 ⁇ 0.0005°/h, and the subdivision accuracy is 0.000025°/h. It can be seen that the above adjustment is accurate enough.
  • the temperature of the colloid is maintained at the solution temperature point for constant temperature continuous curing, thereby ensuring that the curing is sufficient and no reversible reaction will occur, and the entire adjustment process is completed.
  • variable temperature linear expansion method is prone to uneven heating in the thermostat, which leads to a reduction in the Shupe compensation effect.
  • a better way is to use light curing methods, such as ultraviolet light curing, which can better suppress the cross-effects caused by thermal stress.
  • Figure 6 is a diagram showing the relationship between the linear expansion coefficient corresponding to the colloidal solution of the slender compensator provided by the embodiment of the present application and the ultraviolet light power.
  • the shaft core is irradiated with UV light using evenly distributed light in the circumferential direction (the light can be, for example, UV light).
  • the core can be sensitively changed by adjusting the power and irradiation time of the UV lamp.
  • the relationship between the linear expansion coefficient of the axis, the corresponding linear expansion coefficient of the colloidal solution and the UV light power is shown in Figure 6. It should be noted that the influence of temperature changes during the curing process on the linear expansion coefficient can be ignored. Another benefit of this method is that the phase compensator can be individually irradiated using a handheld UV lamp.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

一种光纤陀螺的环圈尾纤补偿方法和纤长补偿器。通过将纤长补偿器固定在光纤陀螺的环圈尾纤,其中纤长补偿器包括外围纤圈和可实现伸缩变形的扩缩轴芯;并在检测到光纤陀螺的输出存在漂移时,通过调整所述纤长补偿器的扩缩轴芯的线胀系数改变纤长补偿器的外围纤圈长度;从而实现了对光纤陀螺的环圈尾纤的补偿,并解决了光纤陀螺的尾纤在线调整精确度低的问题。

Description

光纤陀螺的环圈尾纤补偿方法和纤长补偿器
相关申请
本申请要求2022年08月01日递交的申请号为202210915632.5,发明名称为“光纤陀螺的环圈尾纤补偿方法和纤长补偿器”的中国发明专利申请的优先权,其全部内容以引用方式并入本文。
技术领域
本申请涉及光纤陀螺领域,尤其涉及一种光纤陀螺的环圈尾纤补偿方法和纤长补偿。
背景技术
与传统的机电陀螺相比,从结构上看,作为全固态惯性仪表的光纤陀螺无运动部件和磨损部件;从性能上看,光纤陀螺具有成本低、寿命长、重量轻、体积小、动态范围大、精度应用覆盖面广、抗电磁干扰、无加速度引起的漂移、结构设计灵活和应用范围广等优点。
光纤陀螺包括光纤环圈,光纤环圈包括光纤尾纤。光纤尾纤的性能参数会直接影响光纤陀螺最后的漂移性能。光纤尾纤的长度是光纤尾纤的重要参数,通过调整光纤尾纤的长度可改变光纤陀螺的光纤环圈的等效中点,当光纤陀螺的光纤环圈的等效中点位于光纤陀螺的对称中心时,光纤陀螺的等效环圈不存在Shupe误差,但是目前光纤陀螺的尾纤长度是通过试验剪尾纤的方式确定,该方式具有一定的盲目性和试探性,即便取得较好的结果也会费时、精度不高,难于工艺推广。因此需要找到一种在线对光纤陀螺的环圈尾纤长度进行补偿的方法。
发明内容
有鉴于此,本申请提供了一种光纤陀螺的环圈尾纤补偿方法及纤长补偿器,解决了现有光纤陀螺的尾纤在线调整精确度低的问题。
第一方面,本申请提供了一种光纤陀螺的环圈尾纤补偿方法,所述方法包括:
将纤长补偿器固定在光纤陀螺的环圈尾纤,所述纤长补偿器包括外围纤圈和可实现伸缩变形的扩缩轴芯;在检测到光纤陀螺的输出存在漂移时,通过调整所述纤长补偿器 的扩缩轴芯的线胀系数改变所述纤长补偿器的外围纤圈长度,从而实现对所述光纤陀螺的环圈尾纤的补偿。
第二方面,本申请提供了一种纤长补偿器,该纤长补偿器包括外围纤圈和扩缩轴芯,所述扩缩轴芯由可实现伸缩变形的材料构成,以通过所述扩缩轴芯的伸缩变形对所述纤长补偿器的外围纤圈长度进行补偿。
本申请提供的技术方案,通过将纤长补偿器固定在光纤陀螺的环圈尾纤,纤长补偿器包括外围纤圈和可实现伸缩变形的扩缩轴芯;在检测到光纤陀螺的输出存在漂移时,通过调整纤长补偿器的扩缩轴芯的线胀系数改变纤长补偿器的外围纤圈长度,从而实现对光纤陀螺的环圈尾纤的补偿,从而解决了光纤陀螺的尾纤在线调整精确度低的问题。
附图说明
图1A-1B为本申请实施例提供的光纤陀螺的环圈对称度示意图。
图2为本申请实施例提供的光纤陀螺的环圈尾纤补偿方法的流程图。
图3为本申请实施例提供的干涉仪的结构示意图。
图4为本申请实施例提供的纤长补偿器的结构示意图。
图5为本申请实施例提供的纤长补偿器的胶体溶液对应的线胀系数与温度之间关系图。
图6为本申请实施例提供的纤长补偿器的胶体溶液对应的线胀系数与紫外光功率之间关系图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部内容。在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于方法、函数、规程、子例程、子程序等等。
光纤陀螺的光纤环圈的性能直接影响光纤陀螺的精度。当光纤环圈所处的环境因素发生变化时,会引起在光纤环圈中互为反向传播的两束光波产生非互易性相位差,这种非互易性相移与角速度引起的萨格奈克(Sagnac)相移在解调过程中不可分离,从而直接影响光纤环圈的敏感角速度的准确性。造成上述非互易性相位差的原因是光纤环圈内部存在应力分布不对称,从而引起的光纤环圈相移变化。
随着光纤陀螺的光纤环圈绕制工艺的不断成熟,其内部的应力分布的对称性以及应力分布的均匀性日渐提高,但光纤环圈的尾纤处理仍然需要正确和细致的工艺加以保证,以便获得更为优异的应用性能。然而,光纤陀螺的尾纤和波导熔接完毕通常需要用胶加以固定,以便满足后续振动和温变性能要求。Shupe误差公式表明,尾纤处于光纤环圈的末端,影响因子最大,对光纤陀螺最后的漂移性能影响至关重要。
图1A-1B为本申请实施例提供的光纤陀螺的环圈对称度示意图。如图1A和1B所示,将光纤环圈视作为一个等效的黑箱模型,该黑箱模型包含输入端、输出端以及中间模型。如图1A-1B所示,输入端为最外层纤长,输出端为最内层纤长,中间模型包括每一层纤长。从图1A-1B中可见,在光纤环圈中互为反向传播的两束光波将产生非互易性相位差,这种非互易性相移与角速度引起的Sagnac相移在解调过程中不可分离,直接影响环圈的敏感角速度的准确性。造成上述非互易性误差的根本原因是光纤敏感环圈存在应力分布不对称,从而引起环圈相移发生变化。
随着光纤陀螺环圈绕制工艺的不断成熟,其环圈内部的不对称性以及应力分布均匀性日渐提高,但环圈的尾纤处理仍然需要正确和细致的工艺加以保证,以便获得更为优异的应用性能。然而,光纤陀螺尾纤和波导熔接完毕通常需要用胶加以固定,以便满足后续振动和温变性能要求。Shupe误差公式表明,环圈尾纤处于环圈的末端,影响因子最大,对陀螺最后的漂移性能影响至关重要。可将环圈视作为一个等效的黑箱模型(见图1A和1B),模型包含输入、输出以及中间模型关系。
发明人深入分析Shupe积分模型后发现,由于光纤环圈可以根据位置和权重因子加以划分,判据是等效积分和。如果等效积分和不为零,则多极绕制等效Shupe误差不为零,如图1A所示,则表示光纤环圈的等效对称中心并未位于对称中点,此时该光纤陀螺的输出为+δ。无论光纤陀螺的输出是正或者负,都可以得到其等效中点位置。如图1A和1B所示,可以人为控制通过改善最外层的纤长以及最外层绕制不对称性,以改善最外层等效积分和,从而达到改变总的等效积分和,这样可以将最终环圈的等效中点进行位置上的偏移,如果将新的等效中点移至对称中点(0 0位置),那么最后的等效环圈 就没有Shupe误差。以上为通过改变光纤纤长分布以调整对称中心,从而降低Shupe误差的基本原理。
由于绕环过程通常是由里层向外层缠绕,特别是采用涂胶工艺通常对里层先刷胶固化后再进行外层的缠绕。上述工艺使得调整里层光纤变得复杂甚至是不可能。由此改变环圈外层缠绕,尤其是最后一层尾纤长度变得相对简单。如果单纯采用实验剪尾纤的方法,往往具有一定的盲目性和试探性,即便取得较好的结果也会费时、精度不高,难于工艺推广。特别地,对于高精度光纤陀螺,通常工作在某一个温控点条件下,这时当最外层尾纤由于熔接误差或者在装配过程中为了配合盘绕直径的整圈条件,双纤并绕的过程中由于内外层直径差等原因很难将两根尾纤保持严格一致。在两端尾纤相差不1到2厘米的情况下,往往剥线钳或者切割刀的切割量误差都会超过1cm。熔接一旦失败,往往需要两端尾纤都整圈剪除再重新熔接。上述情况使得熔接装配工艺复杂,浪费严重。急需找到一种在线精确尾纤调整方法。
尾纤在线补偿是实现精密绕环的关键技术,该技术的目标是在最外层光纤固化之前依据等效漂移误差模型计算出等效尾纤长度误差,将尾纤按长度误差进行剪除或者是增绕,最后完成外层固化。该过程类似一个求解多元参数的方程组过程,通过多组输入输出关系,确定方程的系数,亦即获得输入输出的线性映射关系。等效纤长计算实际上是上述模型建模的反过程,就是在知道模型参数映射关系后,如何确定新的尾纤长度,以实现Shupe误差达到预定要求。在长度优化求解过程中,需要设定尾纤裁剪长度范围和每步裁剪步长,进行遍历计算,从而得到每个步长的Shupe计算误差,如果存在某一步得到Shupe误差符合指标精度要求,那么输出该裁剪长度。如果达不到要求,进一步加大尾纤裁剪长度和精细化裁剪步长,直到达到指标要求位置。更为简洁的概括就是通过微调尾纤的长度,在线监测陀螺环圈的Shupe误差,如果Shupe误差收敛在设定的满意区间内,则上述微调长度即为所求的尾纤补偿量。
图2为本申请实施例一提供的一种光纤陀螺的环圈尾纤补偿方法的流程图。为了解决上述问题,本申请实施例提供了一种光纤陀螺的环圈尾纤补偿方法。参照图2,该方法包括:S110、将纤长补偿器固定在光纤陀螺的环圈尾纤,纤长补偿器包括外围纤圈和可实现伸缩变形的扩缩轴芯。
S120、在检测到光纤陀螺的输出存在漂移时,通过调整纤长补偿器的扩缩轴芯的线胀系数改变纤长补偿器的外围纤圈长度,从而实现对光纤陀螺的环圈尾纤的补偿。
本申请实施例的光纤陀螺的环圈尾纤补偿方法摒弃了目前的开环式光纤尾纤裁剪方式,选择一种在线闭环式光纤尾纤调整方法,这样尾纤长度能够精准连续变化,而且变化过程中,干涉仪还能够保持在工作状态,即实现了尾纤在线连续精准调整。
图3为本申请实施例提供的一种干涉仪的结构示意图。如图3所示,该干涉仪包括光纤陀螺1、纤长补偿器2和相位调制器3。在光纤陀螺1的环圈中,环圈尾纤包括两部分:一部分是参考端尾纤101,一部分是补偿端尾纤102,在补偿端尾纤102中增加一个补偿调整器2。基本思路是纤长补偿器2可以动态调整补偿端尾纤102的长度,达到让参考端光纤101与补偿端尾纤102关于环圈的长度中心点成对称,以确保从环圈到相位调制器3构成的干涉仪正反两路光的光程相等,从而达到减小光纤干涉仪的Shupe误差之目的。
图4为本申请实施例提供的一种纤长补偿器的结构示意图。该纤长补偿器的制作如图4所示,纤长补偿器2包括补偿纤20和扩缩轴芯21,该补偿纤20包括左尾纤201和右尾纤202,补偿纤20的初始长度为图3所示的参考端尾纤101与补偿端尾纤102长度的差。将补偿纤20绕制在半径为r的金属骨架芯轴上,然后对绕制好的补偿纤进行刷胶固化,并固化后将金属骨架芯轴脱骨,得到空芯缠绕补偿纤圈。制作尺寸和芯轴同等尺寸的胶体扩缩轴芯21,方法是将胶体溶液灌注到补偿线圈中,通过上下透明法兰加以封闭。通过光固化或者热固化(如图4中的光照或加热的方式)实现胶体溶液的形成预定型,之后脱下上下透明法兰,以完成胶体扩缩轴芯21的制备。接下来将扩缩轴芯21插入补偿纤圈中,完成轴芯装配,为了体现配合效果通常要求过盈装配,要求过盈间隙不超过20um。
完成纤长补偿器2的制作后,将纤长补偿器2接入Sagnac干涉仪,首先将纤长补偿器固定在光纤陀螺的环圈的外缘处,接下来将纤长补偿器2的补偿纤20的左尾纤201熔接到光纤陀螺1的环圈的参考端尾纤101上,将补偿纤20的左尾纤202熔接到光纤陀螺1的环圈的补偿端尾纤102上,将补偿纤的除左尾纤和右尾纤之外的尾纤按照整圈盘绕到环圈最外轮廓中,也就是将纤长补偿器的中间尾纤盘绕到光纤陀螺的环圈最外轮廓上。当然还需完成光纤陀螺1的环圈参考端尾纤101与补偿端尾纤102的熔接,保证整个参考端尾纤101按照整圈盘绕在光纤外轮廓。到此完成所有干涉仪的装配。
接下来,进行光纤陀螺的装配及调测。该部分具体内容比较常规,这里不再赘述。本步骤的主要目的是采集光纤陀螺的零偏。将光纤陀螺加热到恒定的温控点,记录光纤 陀螺的零偏值,计算温控点和常温点两次零偏差值,该值为待补偿零偏差值,待补偿零偏差值与补偿纤长有关系。
最后,进行纤长补偿器2的尾纤固定和纤长调整。
等效光纤长度计算方法为微分方程Δl=l 0Δ(α tt),其中,Δ为求变化量的微分算符,l为纤长补偿器调整后的外围纤圈长度,l 0为纤长补偿器调整前的初始外围纤圈长度,t为对胶体溶液进行调节时的摄氏温度,α t为t摄氏度时胶体溶液对应的线胀系数。
图5为本申请实施例提供的纤长补偿器的胶体溶液对应的线胀系数与温度之间关系图。胶体溶液对应的线胀系数是预先由DMA(动态机械分析仪)测试出来的,如图5所示,横坐标表示对胶体溶液进行调节时的摄氏温度t,纵坐标表示胶体溶液的线胀系数。
由上述曲线求导得到相应线胀系数变化率,进而带入关系式求出光纤长度的变化。一开始保持纤长补偿器调整前的初始外围纤圈长度l 0与光纤陀螺的参考端尾纤101相等。因外界温度等条件变化,环圈两端等效光程关于中心点不相等时,会导致陀螺输出一定的漂移,上述漂移的大小与最外层尾纤长短差值有关。通过改变芯轴的固化胶水的固化温度,可以非常灵敏地调整上述胶水的线胀系数,从而调整纤长补偿器整体光纤长度改变,光纤长度变化按照上文公式进行计算,升温导致膨胀,降温导致收缩。上述变化可以通过光纤陀螺闭环负反馈得到调整,即通过连续调整线胀系数曲线,直至光纤陀螺零偏误差消失后即停止。
通常为了提高整体放大比,要求l 0=100米,以胶体溶液为树脂为例,纤长补偿器的外围纤圈长度的补偿范围为±2.5cm,这对于一个5000m纤长的0.0001°/h的高精度光纤陀螺仪来说零偏漂移调整幅度为大致在-0.0005~0.0005°/h,细分精度0.000025°/h,由此可见,上述调整已经足够精确。而且在误差得到补偿后,将胶体的温度保持在求解温度点,以进行恒温连续固化,从而确保固化充分不再发生可逆反应,至此完成全部调整过程。
此外,上述变温线胀法实现起来容易受到温箱加热的不均匀导致Shupe补偿效果打折扣。更好的方法是采用光固化方法,比如用紫外光固化,这样能够更好的抑制热应力带来的交叉影响。
图6为本申请实施例提供的纤长补偿器的胶体溶液对应的线胀系数与紫外光功率之间关系图。
当胶体溶液为紫外光固树脂时,采用圆周方向平均分布的光照等(该光照例如可以为紫外光照),对轴芯进行紫外光照射,通过调整紫外灯的功率以及照射时间可以灵敏 地改变芯轴的线胀系数,胶体溶液对应的线胀系数与紫外光功率的关系如图6所示。需要说明的是,固化过程的温度变化对线胀系数影响可以忽略。该方法的另一个好处是可以采用手持式紫外灯对相位补偿器单独完成照射成型。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种光纤陀螺的环圈尾纤长度补偿方法,其特征在于,包括:将纤长补偿器固定在光纤陀螺的环圈尾纤,所述纤长补偿器包括外围纤圈和可实现伸缩变形的扩缩轴芯;在检测到所述光纤陀螺的输出存在漂移时,调整所述纤长补偿器的扩缩轴芯的线胀系数以改变所述纤长补偿器的外围纤圈长度,从而实现对所述光纤陀螺的环圈尾纤长度的补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述扩缩轴芯由高弹性胶体构成;所述调整所述纤长补偿器的扩缩轴芯的线胀系数改变所述纤长补偿器的外围纤圈长度包括:通过变温线胀法调整所述扩缩轴芯的固化温度;在所述固化温度升高时,随着所述高弹性胶体的线胀系数增大,所述纤长补偿器的外围纤圈长度增长;在固化温度降低时,随着所述高弹性胶体的线胀系数减小,所述纤长补偿器的外围纤圈长度缩短。
  3. 根据权利要求1所述的方法,其特征在于,所述扩缩轴芯由紫外光固树脂构成;所述调整所述纤长补偿器的扩缩轴芯以改变所述纤长补偿器的外围纤圈长度包括:通过光固化法调整所述紫外光固树脂的线胀系数,以改变所述纤长补偿器的外围纤圈长度。
  4. 根据权利要求3所述的方法,其特征在于,所述通过光固化法调整所述紫外光固树脂的线胀系数以改变所述纤长补偿器的外围纤圈长度包括:利用在圆周方向上平均分布的紫外光照射所述紫外光固树脂;调整所述紫外光的功率和/或所述紫外光的照射时间,使所述紫外光固树脂的线胀系数改变,以改变所述纤长补偿器的外围纤圈长度。
  5. 根据权利要求1所述的方法,其特征在于,所述扩缩轴芯的线胀系数与所述纤长补偿器的外围纤圈长度之间的关系为Δl+l 0Δ(α tt)其中,Δ为求变化量的微分算符,l为所述纤长补偿器调整后的外围纤圈长度,l 0为所述纤长补偿器调整前的初始外围纤圈长度,t为对扩缩轴芯进行调节时的摄氏温度,α t为t摄氏度时所述扩缩轴芯对应的线胀系数。
  6. 根据权利要求5所述的方法,其特征在于,l 0=100m,所述纤长补偿器的外围纤圈长度的补偿范围为±2.5cm,所述纤长补偿器的细分精度为0.000025°/h。
  7. 根据权利要求5或6所述的方法,其特征在于,所述光纤陀螺的环圈尾纤包括参考端尾纤和补偿端尾纤,所述纤长补偿器固定在所述补偿端尾纤的外缘处;所述初始外围纤圈长度等于所述参考端尾纤与所述补偿端尾纤的长度之差。
  8. 根据权利要求1所述的方法,其特征在于,在将纤长补偿器固定在光纤陀螺的环圈尾纤的预设位置之前,还包括:将补偿纤绕制在半径为r的金属骨架芯轴上,并对绕制好的所述补偿纤进行刷胶固化,所述补偿纤包括左尾纤、右尾纤和中间尾纤;将所述金属骨架芯轴脱骨,得到空芯绕制的补偿纤圈;将高弹性胶体溶液浇注到所述补偿纤圈内进行光固化或者热固化,使得所述高弹性胶体溶液定型,得到所述扩缩轴芯,完成所述补偿纤圈和所述扩缩轴芯的装配得到所述纤长补偿器,所述扩缩轴芯与所述补偿纤圈之间是过盈装配,且过盈间隙小于或等于20um。
  9. 根据权利要求8所述的方法,其特征在于,所述将纤长补偿器固定在光纤陀螺的环圈尾纤的步骤包括:将所述纤长补偿器固定在所述光纤陀螺的环圈尾纤的外缘处;将所述左尾纤熔接在所述光纤陀螺的参考端尾纤,将所述右尾纤熔接在所述光纤陀螺的补偿端尾纤;将所述纤长补偿器的中间尾纤盘绕到所述光纤陀螺的环圈最外轮廓上;将所述光纤陀螺的参考端尾纤和补偿端尾纤进行熔接。
  10. 一种纤长补偿器,其特征在于,包括:外围纤圈和扩缩轴芯,所述扩缩轴芯由可实现伸缩变形的材料构成,以通过所述扩缩轴芯的伸缩变形对所述纤长补偿器的外围纤圈长度进行补偿。
PCT/CN2022/143149 2022-08-01 2022-12-29 光纤陀螺的环圈尾纤补偿方法和纤长补偿器 WO2024027097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210915632.5 2022-08-01
CN202210915632.5A CN114993282B (zh) 2022-08-01 2022-08-01 光纤陀螺的环圈尾纤补偿方法和纤长补偿器

Publications (1)

Publication Number Publication Date
WO2024027097A1 true WO2024027097A1 (zh) 2024-02-08

Family

ID=83021392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143149 WO2024027097A1 (zh) 2022-08-01 2022-12-29 光纤陀螺的环圈尾纤补偿方法和纤长补偿器

Country Status (2)

Country Link
CN (1) CN114993282B (zh)
WO (1) WO2024027097A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114993282B (zh) * 2022-08-01 2022-10-28 中国船舶重工集团公司第七0七研究所 光纤陀螺的环圈尾纤补偿方法和纤长补偿器
CN115795232B (zh) * 2023-01-31 2023-04-11 中国船舶集团有限公司第七〇七研究所 光纤环圈尾纤裁剪长度计算方法、电子设备及存储介质
CN116046024B (zh) * 2023-03-31 2023-06-23 中国船舶集团有限公司第七〇七研究所 基于弹性模量差分的光纤陀螺漂移控制方法及光纤陀螺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126072A1 (en) * 2004-12-10 2006-06-15 Honeywell International Inc. Magnetic compensators for fiber optic gyroscopes
CN101201430A (zh) * 2007-12-03 2008-06-18 北京航空航天大学 一种光纤光栅温度补偿装置
CN108088433A (zh) * 2017-12-15 2018-05-29 中国船舶重工集团公司第七0七研究所 一种光纤陀螺环圈尾纤应力匝数补偿方法
CN109099937A (zh) * 2018-10-10 2018-12-28 湖南航天机电设备与特种材料研究所 一种光纤陀螺零偏温度误差补偿方法
CN111811493A (zh) * 2020-06-24 2020-10-23 北京思卓博瑞科技有限公司 具有应力补偿的光纤陀螺
CN111829499A (zh) * 2020-06-15 2020-10-27 北京航空航天大学 一种基于光纤测温的高精度光纤陀螺系统及光纤环圈结构
CN114993282A (zh) * 2022-08-01 2022-09-02 中国船舶重工集团公司第七0七研究所 光纤陀螺的环圈尾纤补偿方法和纤长补偿器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481358A (en) * 1993-12-27 1996-01-02 Andrew Corporation Coil mounting arrangement for fiber optic gyroscope using a gel loaded with particles
GB9828584D0 (en) * 1998-12-23 1999-02-17 Qps Technology Inc Method for nonlinear, post tunable, temperature compensation package of fiber bragg gratings
US6823738B1 (en) * 2003-10-15 2004-11-30 Marek T. Wlodarczyk Temperature compensated fiber-optic pressure sensor
CN101236271A (zh) * 2008-02-22 2008-08-06 暨南大学 一种无源温度补偿光纤光栅
CN102175432B (zh) * 2011-02-18 2013-07-10 苏州光环科技有限公司 一种利用补偿技术改善光纤环质量的方法
CN102636838B (zh) * 2012-05-16 2013-09-11 杭州联光电子有限公司 一种光纤光栅中心波长和温度系数可调的封装方法及装置
CN103645206B (zh) * 2013-12-03 2017-02-15 中国电子科技集团公司第四十一研究所 一种光纤环及其骨架材料膨胀系数简易测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126072A1 (en) * 2004-12-10 2006-06-15 Honeywell International Inc. Magnetic compensators for fiber optic gyroscopes
CN101201430A (zh) * 2007-12-03 2008-06-18 北京航空航天大学 一种光纤光栅温度补偿装置
CN108088433A (zh) * 2017-12-15 2018-05-29 中国船舶重工集团公司第七0七研究所 一种光纤陀螺环圈尾纤应力匝数补偿方法
CN109099937A (zh) * 2018-10-10 2018-12-28 湖南航天机电设备与特种材料研究所 一种光纤陀螺零偏温度误差补偿方法
CN111829499A (zh) * 2020-06-15 2020-10-27 北京航空航天大学 一种基于光纤测温的高精度光纤陀螺系统及光纤环圈结构
CN111811493A (zh) * 2020-06-24 2020-10-23 北京思卓博瑞科技有限公司 具有应力补偿的光纤陀螺
CN114993282A (zh) * 2022-08-01 2022-09-02 中国船舶重工集团公司第七0七研究所 光纤陀螺的环圈尾纤补偿方法和纤长补偿器

Also Published As

Publication number Publication date
CN114993282B (zh) 2022-10-28
CN114993282A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2024027097A1 (zh) 光纤陀螺的环圈尾纤补偿方法和纤长补偿器
CN101915576B (zh) 一种用于光纤陀螺的光纤环圈
CN104536085B (zh) 一种细径保偏光纤
CN111829499B (zh) 一种基于光纤测温的高精度光纤陀螺系统及光纤环圈结构
CN108088466B (zh) 一种光纤环精密化绕制方法
CN102103228B (zh) 一种双波导并列式保偏光纤及其制造方法
CN111811493A (zh) 具有应力补偿的光纤陀螺
CN108775898A (zh) 一种抑制光纤陀螺磁场敏感度的光纤环及其制备方法
CN108168576A (zh) 一种用于光纤陀螺环圈尾纤对称盘绕方法
CN115824265A (zh) 降低光纤陀螺标度因数温度灵敏度的方法及光纤陀螺
CN102564412B (zh) 光纤陀螺无骨架光学感应环的光纤固化方法
CN111025487B (zh) 一种具有环境宽适的空芯光子带隙光纤环与集成光学芯片直接耦合方法及装置
CN109211432B (zh) 一种测试光纤陀螺中光纤环温度分布的方法
JPH07139956A (ja) ファイバ式光センサコイルの調整方法
CN111844832B (zh) 一种光纤环制作方法
CN106950643A (zh) 一种新型大包层传感光纤及其光纤传感环
CN116026308B (zh) 一种高阶模空芯光纤陀螺及制作方法
JP2016175800A (ja) 光ファイバの製造方法
CN111076715B (zh) 一种基于60um光纤的光纤陀螺系统及光纤熔接方法
CN114993283B (zh) 一种可精确控制光纤环变匝区的光纤绕环方法
CN108088433B (zh) 一种光纤陀螺环圈尾纤应力匝数补偿方法
CN201837395U (zh) 一种用于光纤陀螺的光纤环圈
CN212458395U (zh) 具有应力补偿的光纤陀螺
CN208780218U (zh) 一种非平衡光纤m-z干涉仪与其调节平台
CN110346865B (zh) 一种多波段使用的保偏光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953885

Country of ref document: EP

Kind code of ref document: A1