WO2024050939A1 - 反应堆涡流抑制及流量分配装置 - Google Patents

反应堆涡流抑制及流量分配装置 Download PDF

Info

Publication number
WO2024050939A1
WO2024050939A1 PCT/CN2022/127786 CN2022127786W WO2024050939A1 WO 2024050939 A1 WO2024050939 A1 WO 2024050939A1 CN 2022127786 W CN2022127786 W CN 2022127786W WO 2024050939 A1 WO2024050939 A1 WO 2024050939A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
coolant
flow distribution
distribution device
support plate
Prior art date
Application number
PCT/CN2022/127786
Other languages
English (en)
French (fr)
Inventor
段远刚
方健
皮建红
莫少嘉
李跃忠
冉小兵
邓小云
刘言午
陈永超
魏行方
Original Assignee
深圳中广核工程设计有限公司
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳中广核工程设计有限公司, 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 深圳中广核工程设计有限公司
Publication of WO2024050939A1 publication Critical patent/WO2024050939A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/04Means for controlling flow of coolant over objects being handled; Means for controlling flow of coolant through channel being serviced, e.g. for preventing "blow-out"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of nuclear power plant reactors, and in particular to a reactor eddy current suppression and flow distribution device.
  • the pressurized water reactor of a nuclear power plant consists of a reactor pressure vessel (RPV), reactor internals (RVI), control rod driving mechanism, core components, core instruments and related components.
  • the reactor internals together with the pressure vessel and the fuel assembly structure itself, provide a reasonable flow path for the reactor core.
  • the coolant flows in from the reactor pressure vessel inlet nozzle, enters the annular descending section, then enters the lower chamber, flows through the flow distribution device and the core lower support plate (LSP), and flows upward into the core to achieve core cooling.
  • a flow distribution device or a structural device with similar functions is usually installed under the core. After the coolant flows through the flow distribution device and the porous lower core support plate, the flow distribution function is realized to ensure an acceptable Uniformly distributed flow at the core inlet.
  • the existing related devices have too many parts and complex structures to be widely used; the existing reactor flow distribution devices have room for improvement in suppressing eddy currents and reducing fluid pulsation in actual use.
  • the technical problem to be solved by the present invention is to provide an improved reactor vortex suppression and flow distribution device.
  • the technical solution adopted by the present invention to solve the technical problem is to provide a reactor eddy current suppression and flow distribution device, which is arranged in a reactor pressure vessel;
  • the reactor eddy current suppression and flow distribution device includes A lower core support plate provided at the bottom of the core in the pressure vessel, and a convex head connected below the lower core support plate;
  • the convex head is provided with a number of through holes for coolant to flow in;
  • a first coolant channel is defined between the convex head and the lower head of the reactor pressure vessel, and a number of mixing columns are arranged at intervals between the convex head and the lower support plate of the reactor core.
  • the mixing column defines a plurality of second coolant channels between the convex head and the core lower support plate.
  • the number of said stirring columns is 8 to 20.
  • the diameter of the stirring column is 5 ⁇ 100mm.
  • the thickness of the convex head is 20 ⁇ 150mm.
  • the width of each point of the first coolant channel is 0.5 to 5 times the width of the annular descending section of the reactor pressure vessel.
  • the convex head includes a circular bottom plate, an arc-shaped or stepped side plate connected to the circumferential edge of the circular bottom plate, and the top of the side plate is connected to the lower core support plate.
  • flange joints are provided between the top of the side plate and the lower core support plate, and the top of the side plate is removably and sealingly connected to the lower core support plate through the flange joints.
  • the steps are 2 to 5 layers.
  • the circular bottom plate is provided with square slot holes, and the side plates are provided with circular through holes.
  • the side length of the square grid slots is 20 to 300 mm.
  • the diameter of the circular through hole is 20 ⁇ 200mm.
  • the present invention at least has the following beneficial effects: the present invention has fewer parts and a simple structure.
  • the coolant sequentially flows through the first coolant channel, the through hole on the convex head, and the second coolant channel formed by the stirring columns arranged at intervals.
  • the through hole on the support plate under the core enters the core. This process can effectively suppress the generation of eddy currents when the coolant flows, thereby effectively reducing the pulsation of the coolant fluid entering the core inlet from the lower support plate of the core.
  • the coolant flow is redistributed, and an acceptable and evenly distributed flow rate can be obtained at the core inlet.
  • Figure 1 is a longitudinal sectional view of the reactor vortex suppression and flow distribution device according to Embodiment 1 of the present invention
  • Figure 2 is a longitudinal sectional view of the reactor vortex suppression and flow distribution device according to Embodiment 2 of the present invention.
  • Figure 3 is a transverse sectional view of the reactor vortex suppression and flow distribution device according to Embodiment 2 of the present invention.
  • the reactor vortex suppression and flow distribution device is installed in the reactor pressure vessel 15;
  • the reactor vortex suppression and flow distribution device includes the lower core support plate 3 and the convex head 14;
  • the lower core support plate 3 is arranged at the bottom of the core (not shown) inside the reactor pressure vessel 15 , and the convex head 14 is connected below the lower core support plate 3 .
  • the convex head 14 is provided with several through holes for the coolant to flow in.
  • the first coolant channel 4 is defined between the convex head 14 and the lower head 5 of the reactor pressure vessel 15.
  • a number of mixing columns 13 are arranged at intervals between the convex head 14 and the lower core support plate 3.
  • the mixing column 13 defines a number of second coolant channels 16 between the convex head 14 and the lower core support plate 3 .
  • a first coolant channel is defined between the outer peripheral surface of the convex head 14 and the inner wall surface of the lower head 5 of the reactor pressure vessel. 4.
  • the inlet of the first coolant channel 4 is located at the bottom of the annular descending section 6 in the reactor pressure vessel 15 .
  • the coolant fluid flows in from the through holes of the convex head 14, and new flow channels are formed in the multiple through holes, where the flow of the coolant is redistributed, and part of the vortex characteristics of the coolant fluid can be eliminate.
  • the mixing columns 13 are spaced apart in the cavity between the inner peripheral surface of the convex head 14 and the lower core support plate 3 to define a second coolant for the coolant to flow vertically upward and to the through hole 8 Channel 16, the second coolant channel 16 may further direct the coolant fluid therein to flow in a vertically upward direction.
  • the rotational characteristics of the coolant fluid micelle vortices are affected microscopically, and the chaos of the coolant fluid flow is reduced macroscopically, and most of the coolant vortices are effectively broken up here.
  • the coolant sequentially flows through the first coolant channel 4, the through hole on the convex head 14, the second coolant channel 16, and the through hole 8 on the lower core support plate 3.
  • the number of mixing columns 13 and the diameter of the mixing columns 13 affect the normal circulation flow of the coolant to varying degrees.
  • the flow resistance of the coolant in the lower chamber of the reactor will be increased. While eliminating the vortex, it will also slow down or hinder the flow of the coolant fluid, that is, affect the flow of the coolant fluid.
  • the flow rate of the reactor coolant fluid circulation results in poor circulation smoothness and cannot meet the design requirements; if the number of mixing columns 13 is too small and the diameter of the mixing columns 13 is too small, the eddy current suppression effect will be poor.
  • the number of mixing columns 13 is 8 to 20, and the diameter of the mixing columns 13 is 5 to 100 mm, which can achieve a good eddy current suppression effect without affecting the flow of the coolant fluid. Normal circulation flow.
  • the thickness of the convex head 14 is too large, the pressure drop loss of the coolant fluid flowing through the through hole will be too large, thereby slowing down or hindering the flow of the coolant fluid. From a macro perspective, it will have a negative impact on the reactor coolant fluid. Normal circulatory patency is adversely affected.
  • the thickness of the convex head 14 is preferably 20 to 150 mm.
  • the width of the first coolant channel 4 has varying degrees of impact on the eddy current suppression and flow distribution effects.
  • the width of the first coolant channel 4 is too small, it will be detrimental to the smooth circulation of the coolant fluid.
  • the width e of each point of the first coolant channel 4 is 0.5 to 5 times the width d of the annular descending section 6 .
  • the width e refers to the vertical distance between the outer peripheral surface of the convex head 14 and the inner wall surface of the bottom lower head 5.
  • the convex head 14 includes a circular bottom plate 12 and an arc-shaped side plate 1 connected with the circumferential edge of the circular bottom plate 12.
  • the top of the side plate 1 is connected to the lower core support plate 3.
  • the overall shape of the arc surface of the arc-shaped side plate 1 can be hemispherical, semi-elliptical, dish-shaped, etc. depending on the size of the curvature radius and the outline shape.
  • the circular bottom plate 12 and the arc-shaped side plate 1 can be connected by bolting, welding or splicing.
  • a number of flange joints are provided between the top of the side plate and the lower core support plate, and the top of the side plate is detachably and sealingly connected to the lower core support plate through the flange joints.
  • the flange joint includes bolts 9 and flange plate 2.
  • the bolts 9 and the flange 2 cooperate to lock the arc-shaped side plate 1 and the lower core support plate 3, so that the arc-shaped side plate 1 and the lower core support plate 3 are sealed and fitted, and at the same time, they can be installed, disassembled and inspected.
  • Relevant detection operations can be carried out on the installation gaps of the radial support keys during the installation stage of internal components of the reactor.
  • the flange 2 and the arc-shaped side plate 1 can be integrally forged or plate pressed, and the two can also be connected by welding.
  • the core lower support plate 3 and the arc-shaped side plate 1 can also be fixed by welding.
  • the circular bottom plate 12 is provided with square slot holes (not shown), and the arc-shaped side plate 1 is provided with circular through holes 7 .
  • part of the coolant flows from the circular through hole 7 on the side plate 1 into the second coolant channel 16 .
  • the other part enters the second coolant channel 16 from the square lattice holes on the circular bottom plate 12 .
  • the flow direction of the coolant passing through the bottom plate 12 is vertically upward.
  • the vertically upward coolant then directly enters the through hole 8 on the lower core support plate 3, and the through hole 8 on the lower core support plate 3
  • the shape of the through hole 8 is square.
  • the grid holes on the bottom plate 12 are also arranged corresponding to the shape of the square through hole 8 .
  • the circular through holes 7 include oblique through holes and horizontal through holes.
  • the side length of the square grid slot affects the flow rate of the coolant fluid from the first coolant channel 4 to the second coolant channel 16 and the pressure drop loss during the flow process.
  • the eddy current suppression effect and the normal circulation flow of the coolant fluid in the reactor are affected to varying degrees.
  • the grid slots will be denser and the eddy current suppression effect and flow redistribution effect will be better.
  • the side length of the square grid holes is too small and the grid holes are too densely distributed, even if the coolant flow rate is fast, it will slow down or hinder the coolant from passing through the grid holes, thus affecting the overall circulation smoothness of the reactor coolant. .
  • the side length of the square grid slot holes is 20 ⁇ 300mm.
  • the diameter of the circular through hole 7 also has varying degrees of impact on the eddy current suppression effect and the circulation smoothness of the coolant.
  • the principle is similar to the consideration in setting the thickness of the convex head 14.
  • the diameter of the circular through hole 7 is too small, it will slow down or hinder the flow of the coolant fluid. From a macro perspective, it will have an adverse effect on the normal circulation smoothness of the reactor coolant fluid.
  • the diameter of the circular through hole 7 is 20 to 200 mm.
  • the reactor vortex suppression and flow distribution device is installed in the reactor pressure vessel 32; the reactor vortex suppression and flow distribution device includes the core lower support plate 42 and the convex head 27;
  • the lower core support plate 42 is disposed at the bottom of the core (not shown) inside the reactor pressure vessel 32 , and the convex head 27 is connected below the lower core support plate 42 .
  • the convex head 27 is provided with several through holes for the coolant to flow in.
  • the first coolant channel 31 is defined between the convex head 27 and the lower head 40 of the reactor pressure vessel 32.
  • a number of mixing columns 24 are arranged at intervals between the convex head 27 and the lower core support plate 42.
  • the mixing column 24 defines a plurality of second coolant channels 33 between the convex head 27 and the lower core support plate 42 .
  • a first coolant channel is defined between the outer peripheral surface of the convex head 27 and the inner wall surface of the lower head 40 of the reactor pressure vessel. 31.
  • the inlet of the first coolant channel 31 is located at the bottom of the annular descending section 30 in the reactor pressure vessel 32.
  • the coolant fluid flows in from the through holes of the convex head 27, and new flow channels are formed in multiple through holes, where the flow of the coolant is redistributed, and part of the vortex characteristics of the coolant fluid can be eliminate.
  • the mixing columns 24 are spaced apart in the cavity between the inner peripheral surface of the convex head 27 and the lower core support plate 42 to define a second coolant for the coolant to flow vertically upward and to the through hole 41 Channel 33, the second coolant channel 33 may further guide the coolant fluid therein to flow in a vertically upward direction.
  • the rotational characteristics of the coolant fluid micelle vortices are affected microscopically, and the chaos of the coolant fluid flow is reduced macroscopically, and most of the coolant vortices are effectively broken up here.
  • the coolant sequentially flows through the first coolant channel 31, the through hole on the convex head 27, the second coolant channel 33, and the through hole 41 on the lower core support plate 42.
  • the generation of vortices when the coolant flows is effectively suppressed, thereby effectively reducing the pulsation of the coolant fluid entering the core inlet from the lower core support plate 42 and preventing vortex shedding in the lower chamber structure of the reactor pressure vessel 32 .
  • the flow distribution uniformity at the reactor core inlet is good.
  • the uneven coefficient of coolant flow distribution here is not greater than 12%, which can meet the requirements of relevant design specifications of nuclear power plants.
  • the number of mixing columns 24 and the diameter of the mixing columns 24 affect the normal circulation flow of the coolant to varying degrees.
  • the flow resistance of the coolant in the lower chamber of the reactor will be increased. While eliminating the vortex, it will also slow down or hinder the flow of the coolant fluid, that is, The flow rate of the reactor coolant fluid circulation is affected, resulting in poor circulation smoothness; if the number of mixing columns 24 is too small and the diameter of the mixing columns 24 is too small, the eddy current suppression effect will be poor.
  • the number of mixing columns 24 is 8 to 20, and the diameter of the mixing columns 24 is 5 to 100 mm, which can achieve a good eddy current suppression effect without affecting the flow of the coolant fluid. Normal circulation flow.
  • the thickness of the convex head 27 is too large, the pressure drop loss of the coolant fluid flowing through the through hole will be too large, thereby slowing down or hindering the flow of the coolant fluid. From a macro perspective, it will have a negative impact on the reactor coolant fluid. Normal circulatory patency is adversely affected.
  • the thickness of the convex head 27 is 20 ⁇ 150mm.
  • the width of the first coolant channel 31 has varying degrees of impact on the eddy current suppression and flow distribution effects. For example, if the width of the first coolant channel 31 is too small, it will be detrimental to the smooth circulation of the coolant fluid.
  • the width of the first coolant channel 31 is too large or too small, and the flow path of the coolant from the annular descending section 30 to the first coolant channel 31 changes drastically, the eddy current suppression effect will not be as expected.
  • the width e of each point of the first coolant channel 31 is 0.5 ⁇ 5 of the width d of the annular descending section 30 times.
  • the width e refers to the vertical distance between the outer peripheral surface of the convex head 27 and the inner wall surface of the bottom lower head 40.
  • the convex head 27 includes a circular bottom plate 21 and a stepped side plate 22 connected to the circumferential edge of the circular bottom plate 21.
  • the top of the side plate 22 is connected to the lower core support plate 42.
  • the step wall surface of the step-shaped side plate 22 may be cylindrical, hemispherical, semi-elliptical or dish-shaped depending on the radius of curvature and outline shape.
  • the circular bottom plate 21 and the stepped side plates 22 can be connected by bolting, welding or piecing together.
  • a number of flange joints are provided between the top of the side plate and the lower core support plate 42, and the top of the side plate is detachably and sealingly connected to the lower core support plate 42 through the flange joints.
  • the flange joint includes bolts 25 and flange plate 20 .
  • the bolts 25 and the flange 20 cooperate to lock the stepped side plate 22 and the lower core support plate 42, so that the stepped side plate 22 and the lower core support plate 42 are sealed and fitted, and at the same time, they can be installed, disassembled and inspected.
  • Relevant detection operations can be carried out on the installation gaps of the radial support keys during the installation stage of internal components of the reactor.
  • the flange 20 and the stepped side plate 22 can be integrally forged or plate pressed, and they can also be connected by welding.
  • the lower core support plate 42 and the stepped side plate 22 can also be fixed by welding.
  • the number of steps of the stepped side plates 22 has varying degrees of impact on both the eddy current suppression effect and the circulation smoothness of the coolant.
  • the number of steps In order to form a stepped shape, the number of steps must be at least two. Too many stages will have an adverse effect on the circulation smoothness of the coolant. At the same time, if the number of stages is too large, the flow path of the coolant passing through the first coolant channel 31 will change drastically, and the eddy current suppression effect will be poor.
  • the stepped side plates 22 have 2 to 5 levels of steps.
  • the circular bottom plate 21 is provided with square slot holes 26
  • the stepped side plates 22 are provided with circular through holes 23 .
  • part of the coolant flows into the second coolant channel 33 from the circular through hole 23 on the stepped side plate 22 .
  • the other part enters the second coolant channel 33 from the square slot hole 26 on the circular bottom plate 21 .
  • the flow direction of the coolant passing through the bottom plate 21 is vertically upward.
  • the vertically upward coolant then directly enters the through hole on the lower core support plate 42, and the through hole on the lower core support plate 42 is
  • the shape is square.
  • the grid holes on the bottom plate 21 are also arranged corresponding to the shape of the square through holes.
  • the circular through holes 23 include horizontal through holes and vertical through holes.
  • the side length of the square grid slot hole 26 affects the flow rate of the coolant fluid from the first coolant channel 31 to the second coolant channel 33 and the pressure drop loss during the flow process.
  • the eddy current suppression effect and the normal circulation flow of the coolant fluid in the reactor are affected to varying degrees.
  • the side length of the square grid holes 26 is smaller and the area of the circular bottom plate 21 remains unchanged, if the grid holes 26 are denser, the eddy current suppression effect and flow redistribution effect will be better. However, if the side length of the square grid holes 26 is too small and the grid holes 26 are too densely distributed, it will slow down or hinder the coolant from passing through the grid holes when the coolant flow rate is fast, thus affecting the overall circulation of the reactor coolant. patency.
  • the side length of the square grid slot hole 26 is 20 to 300 mm.
  • the diameter of the circular through hole 23 also has varying degrees of impact on the eddy current suppression effect and the circulation smoothness of the coolant.
  • the principle is similar to the consideration in setting the thickness of the convex head 27 .
  • the smaller the diameter of the circular through holes 23 the smaller the water cross-sectional area where the coolant flows through, the better the redistribution effect of the coolant flow, and the better the flow distribution. Evenly.
  • the diameter of the circular through hole 23 is 20 ⁇ 200mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种反应堆涡流抑制及流量分配装置,设置在反应堆压力容器(15)内,其包括设置在压力容器(15)内的堆芯底部的堆芯下支承板(3)、连接在堆芯下支承板(3)下方的凸形封头(14);凸形封头(14)上开设有供冷却剂流入的若干通孔;凸形封头(14)与反应堆压力容器(15)的下封头(5)之间界定出第一冷却剂通道(4),凸形封头(14)与堆芯下支承板(3)之间有间隔分布的若干搅混柱(13),搅混柱(13)在凸形封头(14)与堆芯下支承板(3)之间界定出若干第二冷却剂通道(16)。反应堆涡流抑制及流量分配装置零部件少、结构简单,冷却剂依次流经第一冷却剂通道(4)、凸形封头(14)上的通孔、第二冷却剂通道(16)和堆芯下支承板(3)上的通孔进入堆芯,有效抑制冷却剂流动时涡流的产生。同时冷却剂流量被重新分配,在堆芯入口处可得到均匀分布的流量。

Description

反应堆涡流抑制及流量分配装置 技术领域
本发明涉及核电站反应堆技术领域,尤其涉及一种反应堆涡流抑制及流量分配装置。
背景技术
核电站压水型反应堆由反应堆压力容器(RPV)、堆内构件(RVI)、控制棒驱动机构、堆芯部件、堆芯仪表及相关部件组成。堆内构件与压力容器及燃料组件结构本身一起为堆芯提供合理的流道。冷却剂从反应堆压力容器入口管嘴流入,进入环形下降段,再进入下腔室,流经流量分配装置和堆芯下支承板(LSP),上流进入堆芯,实现堆芯冷却。
从环形下降段进入下腔室的冷却剂,由于流道发生急剧变化,在下腔室产生大量涡流,使进入堆芯不同位置燃料组件的流量分布不均匀,并在堆芯入口出现流体脉动现象,导致堆芯燃料组件出现低频振荡现象,并引起反应堆功率波动。
现有技术通常在堆芯下方设置流量分配装置,或者类似功能的结构装置,冷却剂流经流量分配装置和多孔的堆芯下支承板后,实现了流量分配功能,以保证得到一个可接受的堆芯入口均匀分布的流量。但大部分现有的相关装置零件众多、结构复杂无法推广使用;现有的反应堆流量分配装置实际使用中抑制涡流、减少流体脉动效果还有待提升的空间。
技术问题
本发明要解决的技术问题在于,提供一种改进的反应堆涡流抑制及流量分配装置。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种反应堆涡流抑制及流量分配装置,所述反应堆涡流抑制及流量分配装置设置在反应堆压力容器内;所述反应堆涡流抑制及流量分配装置包括设置在压力容器内的堆芯底部的堆芯下支承板、连接在所述堆芯下支承板下方的凸形封头;
所述凸形封头上开设有供冷却剂流入的若干通孔;
所述凸形封头与反应堆压力容器的下封头之间界定出第一冷却剂通道,所述凸形封头与所述堆芯下支承板之间设置有间隔分布的若干搅混柱,所述搅混柱在所述凸形封头与所述堆芯下支承板之间界定出若干第二冷却剂通道。
优选地,所述搅混柱的数量为8~20个。
优选地,所述搅混柱的直径为5~100mm。
优选地,所述凸形封头的厚度为20~150mm。
优选地,所述第一冷却剂通道各点的宽度为反应堆压力容器环形下降段的宽度的0.5~5倍。
优选地,所述凸形封头包括圆形底板、与所述圆形底板圆周面边缘相接的弧形或台阶形侧板,所述侧板的顶部与所述堆芯下支承板连接。
优选地,所述侧板的顶部与所述堆芯下支承板之间设有若干法兰接头,所述侧板的顶部通过所述法兰接头与所述堆芯下支承板可拆卸密封连接。
优选地,所述侧板为台阶形侧板时,其台阶为2~5层。
优选地,所述圆形底板上开设有方形格槽孔,所述侧板上开设有圆形通孔。
优选地,所述方形格槽孔的边长为20~300mm。
优选地,所述圆形通孔的直径为20~200mm。
有益效果
本发明至少具有以下有益效果:本发明零部件少、结构简单,冷却剂依次流经第一冷却剂通道,凸形封头上的通孔,间隔设置的搅混柱形成的第二冷却剂通道,堆芯下支承板上的通孔进入堆芯。经此过程可有效抑制冷却剂流动时涡流的产生,从而有效减小从堆芯下支承板进入堆芯入口的冷却剂流体脉动现象。同时冷却剂流量被重新分配,在堆芯入口处可以得到一个可接受的均匀分布的流量。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例1的反应堆涡流抑制及流量分配装置的纵向剖面图;
图2是本发明实施例2的反应堆涡流抑制及流量分配装置的纵向剖面图;
图3是本发明实施例2的反应堆涡流抑制及流量分配装置的横向剖面图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
术语“第一”、“第二”等仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。
实施例1:
如图1所示,反应堆涡流抑制及流量分配装置设置在反应堆压力容器15内;反应堆涡流抑制及流量分配装置包括堆芯下支承板3、凸形封头14;
堆芯下支承板3设置在反应堆压力容器15内部的堆芯(未图示)底部,凸形封头14连接在堆芯下支承板3的下方。凸形封头14上开设有供冷却剂流入的若干通孔。
凸形封头14与反应堆压力容器15的下封头5之间界定出第一冷却剂通道4,凸形封头14与堆芯下支承板3之间设置有间隔分布的若干搅混柱13,搅混柱13在凸形封头14与堆芯下支承板3之间界定出若干第二冷却剂通道16。
具体地,如图1所示,首先,在反应堆压力容器15的下腔室内,凸形封头14的外周面与反应堆压力容器的下封头5的内壁面之间界定出第一冷却剂通道4,第一冷却剂通道4的入口位于反应堆压力容器15内的环形下降段6的底部。
在没有凸形封头14的情况下,冷却剂经环形下降段6进入反应堆压力容器15的下腔室时,因冷却剂流体的流道急剧变化,同时因下封头5的弧面导向作用,会在此处产生大量旋涡。设有凸形封头14之后,冷却剂流经第一冷却剂通道4,冷却剂流体的流道变化较平缓,其流场特性被改善,能在一定程度上抑制靠近下封头5的反应堆底部空腔处漩涡流的产生。
其次,冷却剂流体从凸形封头14的通孔处流入,在多个通孔内分别形成新的流道,在此处冷却剂的流量被重新分配,冷却剂流体的部分涡流特性可被消除。
最后,搅混柱13在凸形封头14内周面与堆芯下支承板3之间的空腔内间隔分布,以界定出供冷却剂竖直向上、并流向通孔8的第二冷却剂通道16,第二冷却剂通道16可进一步引导此处的冷却剂流体沿竖直向上的方向流动。进一步来说,微观上冷却剂流体微团涡流的旋转特性受到影响,宏观上表现为冷却剂流体流动的混乱程度减小,绝大部分冷却剂涡流在此处被有效打散。
综上所述,冷却剂依次流经第一冷却剂通道4、凸形封头14上的通孔,第二冷却剂通道16、堆芯下支承板3上的通孔8,经此过程可有效抑制冷却剂流动时涡流的产生,从而有效减小从堆芯下支承板3进入堆芯入口的冷却剂流体脉动现象,且避免反应堆压力容器15下腔室出现漩涡脱落现象。同时堆芯入口处的流量分配均匀性较好,经测试,此处的冷却剂流量分配不均匀系数不大于12%,可满足核电站相关设计规范的要求。
经测试,在抑制涡流的同时,搅混柱13的数量、搅混柱13的直径大小均不同程度地影响冷却剂的正常循环流动。
例如,搅混柱13数量过多、搅混柱13的直径过大则增大冷却剂在反应堆下腔室的流动阻力,在消除了涡流的同时,也会减缓或阻碍冷却剂流体的流动,即影响反应堆冷却剂流体循环的流速,导致循环通畅性较差,不能达到设计使用要求;若搅混柱13数量过少、搅混柱13的直径过小,则会导致涡流抑制效果不佳。
经水力学数值仿真分析,优选地,搅混柱13的数量为8~20个,搅混柱13的直径为5~100mm,可达到在具有较好的涡流抑制效果的同时,不影响冷却剂流体的正常循环流动。
经测试,凸形封头14厚度越大,凸形封头14上的通孔的长度(流段长度)就越大,流经的冷却剂流体的沿程压降损失越大,则抑制涡流、流量再分配的效果越好。
但凸形封头14厚度过大,将导致流经通孔的冷却剂流体的沿程压降损失过大,从而减缓或阻碍冷却剂流体的流动,从宏观上看,对反应堆冷却剂流体的正常循环通畅性有不利影响。
经多次仿真试验分析,综合考虑冷却剂循环的通畅性和涡流抑制及流量分配效果,优选地,凸形封头14的厚度为20~150mm。
经测试,第一冷却剂通道4的宽度大小对涡流抑制及流量分配效果具有不同程度的影响。
例如,第一冷却剂通道4宽度过小,将不利于冷却剂流体的循环通畅性。
再例如,第一冷却剂通道4的宽度过大或过小,冷却剂从环形下降段6到第一冷却剂通道4的流道发生急剧变化,将导致涡流抑制效果也不能达到预期。
经多次仿真试验分析,综合考虑冷却剂循环的通畅性和涡流抑制及流量分配效果,优选地,第一冷却剂通道4各点的宽度e为环形下降段6的宽度d的0.5~5倍。具体地,参阅图1,宽度e指凸形封头14外周面与底部下封头5内壁面之间的垂直距离。
进一步地,凸形封头14包括圆形底板12、与圆形底板12圆周面边缘相接的弧形侧板1,侧板1的顶部与堆芯下支承板3连接。弧形侧板1的弧面依据曲率半径的大小、轮廓形状的不同,整体上外形可以是半球形、半椭球、碟形等形状。
具体地,圆形底板12和弧形侧板1可以通过螺栓连接、焊接或者拼搭的方式进行连接。
进一步地,侧板的顶部与堆芯下支承板之间设有若干法兰接头,侧板的顶部通过法兰接头与堆芯下支承板可拆卸密封连接。
具体地,参阅图1-2,堆芯下支承板3与反应堆内构件的吊篮10之间焊接连接。法兰接头包括螺栓9、法兰盘2。螺栓9及法兰盘2配合将弧形侧板1与堆芯下支承板3锁紧,使弧形侧板1与堆芯下支承板3之间密封贴合,同时具有安装、拆卸及检修方便的优点。可实现在堆内构件安装阶段的径向支承键的安装间隙进行相关检测操作。
法兰盘2与弧形侧板1可为整体锻造或板材压制,两者也可通过焊接连接。
可以理解地,在另一些实施例中,堆芯下支承板3与弧形侧板1之间也可以通过焊接固定。
进一步地,圆形底板12上开设有方形格槽孔(未图示),弧形侧板1上开设有圆形通孔7。
具体地,冷却剂流经第一冷却剂通道4后,部分从侧板1上的圆形通孔7流入第二冷却剂通道16。另一部分从圆形底板12上的方形格槽孔进入第二冷却剂通道16。
从底板12上通过的冷却剂,其流动方向为竖直向上,竖直向上的冷却剂紧接着直接进入堆芯下支承板3上的通孔8,而堆芯下支承板3上的通孔8的形状为方形,为减少冷却剂流体的两过水截面的形状变化引起的冷却剂流动特性变化,底板12上的格槽孔也对应方形的通孔8的形状设置。
根据圆形通孔7分布在弧形侧板1上不同的位置,圆形通孔7包括了斜向通孔和水平通孔。
经测试,方形格槽孔的边长大小影响冷却剂流体从第一冷却剂通道4流向第二冷却剂通道16的流量大小及流动过程中的压降损失大小。相应地,均不同程度地影响此过程中的涡流抑制效果和冷却剂流体在反应堆内的正常循环流动。
例如,方形格槽孔的边长较小,在圆形底板12面积不变的情况下,格槽孔较密集,则涡流抑制效果和流量再分配的效果较好。但方形格槽孔边长若过小,格槽孔分布过于密集,在冷却剂流速较快的情况下也会减缓或阻碍冷却剂通过格槽孔,从而影响反应堆冷却剂的整体的循环通畅性。
经多次数值仿真试验分析,优选地,方形格槽孔的边长为20~300mm。
经测试,圆形通孔7的直径大小对涡流抑制效果和冷却剂的循环通畅性也有不同程度的影响,其原理与凸形封头14的厚度设置上的考虑类似。在圆形通孔7数量不变的情况下,圆形通孔7的直径越小,冷却剂流经此处的过水截面面积越小,冷却剂流量再分配的效果越好,流量分配越均匀。
但圆形通孔7的直径过小,将减缓或阻碍冷却剂流体的流动,从宏观上看,对反应堆冷却剂流体的正常循环通畅性有不利影响。
经多次数值仿真试验分析,优选地,圆形通孔7的直径为20~200mm。
实施例2:
如图2-3所示,反应堆涡流抑制及流量分配装置设置在反应堆压力容器32内;反应堆涡流抑制及流量分配装置包括堆芯下支承板42、凸形封头27;
堆芯下支承板42设置在反应堆压力容器32内部的堆芯(未图示)底部,凸形封头27连接在堆芯下支承板42的下方。凸形封头27上开设有供冷却剂流入的若干通孔。
凸形封头27与反应堆压力容器32的下封头40之间界定出第一冷却剂通道31,凸形封头27与堆芯下支承板42之间设置有间隔分布的若干搅混柱24,搅混柱24在凸形封头27与堆芯下支承板42之间界定出若干第二冷却剂通道33。
具体地,如图1所示,首先,在反应堆压力容器32的下腔室内,凸形封头27的外周面与反应堆压力容器的下封头40的内壁面之间界定出第一冷却剂通道31,第一冷却剂通道31的入口位于反应堆压力容器32内的环形下降段30的底部。
在没有凸形封头27的情况下,冷却剂经环形下降段30进入反应堆压力容器32的下腔室时,因冷却剂流体的流道急剧变化,同时因下封头40的弧面导向作用,会在此处产生大量旋涡。设有凸形封头27之后,冷却剂流经第一冷却剂通道31,冷却剂流体的流道变化较平缓,其流场特性被改善,能在一定程度上抑制靠近下封头40的反应堆底部空腔处漩涡流的产生。
其次,冷却剂流体从凸形封头27的通孔处流入,在多个通孔内分别形成新的流道,在此处冷却剂的流量被重新分配,冷却剂流体的部分涡流特性可被消除。
最后,搅混柱24在凸形封头27内周面与堆芯下支承板42之间的空腔内间隔分布,以界定出供冷却剂竖直向上、并流向通孔41的第二冷却剂通道33,第二冷却剂通道33可进一步引导此处的冷却剂流体沿竖直向上的方向流动。进一步来说,微观上冷却剂流体微团涡流的旋转特性受到影响,宏观上表现为冷却剂流体流动的混乱程度减小,绝大部分冷却剂涡流在此处被有效打散。
综上所述,冷却剂依次流经第一冷却剂通道31、凸形封头27上的通孔,第二冷却剂通道33、堆芯下支承板42上的通孔41,经此过程可有效抑制冷却剂流动时涡流的产生,从而有效减小从堆芯下支承板42进入堆芯入口的冷却剂流体脉动现象,且避免反应堆压力容器32下腔室结构出现漩涡脱落现象。同时堆芯入口处的流量分配均匀性较好,经测试,此处的冷却剂流量分配不均匀系数不大于12%,可满足核电站相关设计规范的要求。
经测试,在抑制涡流的同时,搅混柱24的数量、搅混柱24的直径大小均不同程度地影响冷却剂的正常循环流动。
例如,搅混柱24数量过多、搅混柱24的直径过大则会增大冷却剂在反应堆下腔室的流动阻力,在消除了涡流的同时,也会减缓或阻碍冷却剂流体的流动,即影响反应堆冷却剂流体循环的流速,导致循环通畅性较差;若搅混柱24数量过少、搅混柱24的直径过小,则会导致涡流抑制效果不佳。
经水力学数值仿真分析,优选地,搅混柱24的数量为8~20个,搅混柱24的直径为5~100mm,可达到在具有较好的涡流抑制效果的同时,不影响冷却剂流体的正常循环流动。
经测试,凸形封头27厚度越大,凸形封头27上的通孔的长度(流段长度)就越大,流经的冷却剂流体的沿程压降损失越大,则抑制涡流、流量再分配的效果越好。
但凸形封头27厚度过大,将导致流经通孔的冷却剂流体的沿程压降损失过大,从而减缓或阻碍冷却剂流体的流动,从宏观上看,对反应堆冷却剂流体的正常循环通畅性有不利影响。
经多次数值仿真试验分析,综合考虑冷却剂循环的通畅性和涡流抑制及流量分配效果,优选地,凸形封头27的厚度为20~150mm。
经测试,第一冷却剂通道31宽度大小对涡流抑制及流量分配效果具有不同程度的影响。例如,第一冷却剂通道31宽度过小,将不利于冷却剂流体的循环通畅性。
再例如,第一冷却剂通道31的宽度过大或过小,冷却剂从环形下降段30到第一冷却剂通道31的流道发生急剧变化,将导致涡流抑制效果也不能达到预期。
经多次数值仿真试验分析,综合考虑冷却剂循环的通畅性和涡流抑制及流量分配效果,优选地,第一冷却剂通道31各点的宽度e为环形下降段30的宽度d的0.5~5倍。具体地,参阅图2,宽度e指凸形封头27外周面与底部下封头40内壁面之间的垂直距离。
进一步地,凸形封头27包括圆形底板21、与圆形底板21圆周面边缘相接的台阶形侧板22,侧板22的顶部与堆芯下支承板42连接。台阶形侧板22的台阶壁面依据曲率半径的大小、轮廓形状的不同,可以是圆筒形、半球形、半椭球形或碟形等形状。
圆形底板21和台阶形侧板22可以通过螺栓连接、焊接或者拼搭的方式进行连接。
进一步地,侧板的顶部与堆芯下支承板42之间设有若干法兰接头,侧板的顶部通过法兰接头与堆芯下支承板42可拆卸密封连接。
具体地,参阅图1-2,堆芯下支承板42与反应堆内构件的吊篮43之间焊接连接。法兰接头包括螺栓25、法兰盘20。螺栓25及法兰盘20配合将台阶形侧板22与堆芯下支承板42锁紧,使台阶形侧板22与堆芯下支承板42之间密封贴合,同时具有安装、拆卸及检修方便的优点。可实现在堆内构件安装阶段的径向支承键的安装间隙进行相关检测操作。
法兰盘20与台阶形侧板22可为整体锻造或板材压制,两者也可通过焊接连接。
可以理解地,在另一些实施例中,堆芯下支承板42与台阶形侧板22之间也可以通过焊接固定。
经测试,台阶形侧板22的台阶层数同时对涡流抑制效果和冷却剂的循环通畅性具有不同程度的影响。为形成台阶状,台阶层数至少为2层以上。台阶层数过多,将对冷却剂的循环通畅性产生不利影响。同时,台阶层数过多,将导致冷却剂经第一冷却剂通道31时的流道变化剧烈,涡流抑制效果不佳。
经多次数值仿真试验分析,优选地,台阶形侧板22的台阶为2~5层。
进一步地,圆形底板21上开设有方形格槽孔26,台阶形侧板22上开设有圆形通孔23。
具体地,冷却剂流经第一冷却剂通道31后,部分从台阶形侧板22上的圆形通孔23流入第二冷却剂通道33。另一部分从圆形底板21上的方形格槽孔26进入第二冷却剂通道33。
从底板21上通过的冷却剂,其流动方向为竖直向上,竖直向上的冷却剂紧接着直接进入堆芯下支承板42上的通孔,而堆芯下支承板42上的通孔的形状为方形,为减少冷却剂流体的两过水截面的形状变化引起的冷却剂流动特性变化,底板21上的格槽孔也对应方形的通孔的形状设置。
根据圆形通孔23分布在台阶形侧板22上不同的位置,圆形通孔23包括了水平方向通孔和竖直方向通孔。
经测试,方形格槽孔26的边长大小影响冷却剂流体从第一冷却剂通道31流向第二冷却剂通道33的流量大小及流动过程中的压降损失大小。相应地,均不同程度地影响此过程中的涡流抑制效果和冷却剂流体在反应堆内的正常循环流动。
例如,方形格槽孔26的边长较小,在圆形底板21面积不变的情况下,格槽孔26较密集,则涡流抑制效果和流量再分配的效果较好。但方形格槽孔26边长若过小,格槽孔26分布过于密集,在冷却剂流速较快的情况下也会减缓或阻碍冷却剂通过格槽孔,从而影响反应堆冷却剂的整体的循环通畅性。
经多次数值仿真试验分析,优选地,方形格槽孔26的边长为20~300mm。
经测试,圆形通孔23的直径大小对涡流抑制效果和冷却剂的循环通畅性也有不同程度的影响,其原理与凸形封头27的厚度设置上的考虑类似。在圆形通孔23数量不变的情况下,圆形通孔23的直径越小,冷却剂流经此处的过水截面面积越小,冷却剂流量再分配的效果越好,流量分配越均匀。
但圆形通孔23的直径过小,将减缓或阻碍冷却剂流体的流动,从宏观上看,对反应堆冷却剂流体的正常循环通畅性有不利影响。
经多次数值仿真试验分析,优选地,圆形通孔23的直径为20~200mm。
以上仅为本发明的一些具体实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种反应堆涡流抑制及流量分配装置,其特征在于,设置在反应堆压力容器内;所述反应堆涡流抑制及流量分配装置包括设置在压力容器内的堆芯底部的堆芯下支承板、连接在所述堆芯下支承板下方的凸形封头;
    所述凸形封头上开设有供冷却剂流入的若干通孔;
    所述凸形封头与反应堆压力容器的下封头之间界定出第一冷却剂通道,所述凸形封头与所述堆芯下支承板之间设置有间隔分布的若干搅混柱,所述搅混柱在所述凸形封头与所述堆芯下支承板之间界定出若干第二冷却剂通道。
  2. 根据权利要求1所述的反应堆涡流抑制及流量分配装置,其特征在于,所述搅混柱的数量为8~20个。
  3. 根据权利要求1所述的反应堆涡流抑制及流量分配装置,其特征在于,所述搅混柱的直径为5~100mm。
  4. 根据权利要求1-3任一项所述的反应堆涡流抑制及流量分配装置,其特征在于,所述凸形封头的厚度为20~150mm。
  5. 根据权利要求1-3任一项所述的反应堆涡流抑制及流量分配装置,其特征在于,所述第一冷却剂通道各点的宽度为反应堆压力容器环形下降段的宽度的0.5~5倍。
  6. 根据权利要求1-3任一项所述的反应堆涡流抑制及流量分配装置,其特征在于,所述凸形封头包括圆形底板、与所述圆形底板圆周面边缘相接的弧形或台阶形侧板,所述侧板的顶部与所述堆芯下支承板连接。
  7. 根据权利要求6所述的反应堆涡流抑制及流量分配装置,其特征在于,所述侧板的顶部与所述堆芯下支承板之间设有若干法兰接头,所述侧板的顶部通过所述法兰接头与所述堆芯下支承板可拆卸密封连接。
  8. 根据权利要求6所述的反应堆涡流抑制及流量分配装置,其特征在于,所述侧板为台阶形侧板时,其台阶为2~5层。
  9. 根据权利要求6所述的反应堆涡流抑制及流量分配装置,其特征在于,所述圆形底板上设置有方形格槽孔,所述侧板上开设有圆形通孔。
  10. 根据权利要求9所述的反应堆涡流抑制及流量分配装置,其特征在于,所述方形格槽孔的边长为20~300mm。
  11. 根据权利要求9所述的反应堆涡流抑制及流量分配装置,其特征在于,所述圆形通孔的直径为20~200mm。
PCT/CN2022/127786 2022-09-09 2022-10-26 反应堆涡流抑制及流量分配装置 WO2024050939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211101821.5A CN116313188A (zh) 2022-09-09 2022-09-09 反应堆涡流抑制及流量分配装置
CN202211101821.5 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024050939A1 true WO2024050939A1 (zh) 2024-03-14

Family

ID=86832903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127786 WO2024050939A1 (zh) 2022-09-09 2022-10-26 反应堆涡流抑制及流量分配装置

Country Status (2)

Country Link
CN (1) CN116313188A (zh)
WO (1) WO2024050939A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319692A (en) * 1992-06-24 1994-06-07 Westinghouse Electric Corp. Nuclear reactor reflector
CN102800371A (zh) * 2012-05-04 2012-11-28 中广核工程有限公司 核电站反应堆流量分配结构
CN103377735A (zh) * 2012-04-27 2013-10-30 上海核工程研究设计院 一种反应堆下部堆内构件
CN103871500A (zh) * 2012-12-14 2014-06-18 中国核动力研究设计院 一种核反应堆下腔室筒状流量分配装置
CN103971763A (zh) * 2014-05-06 2014-08-06 中广核工程有限公司 核电站反应堆的堆内流量分配装置
CN107221368A (zh) * 2017-07-26 2017-09-29 四川大学 反应堆冷却剂抑涡及流量分配装置及反应堆堆内构件
CN112185598A (zh) * 2020-09-30 2021-01-05 中国核动力研究设计院 一种堆叠型流量分配装置及分配结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319692A (en) * 1992-06-24 1994-06-07 Westinghouse Electric Corp. Nuclear reactor reflector
CN103377735A (zh) * 2012-04-27 2013-10-30 上海核工程研究设计院 一种反应堆下部堆内构件
CN102800371A (zh) * 2012-05-04 2012-11-28 中广核工程有限公司 核电站反应堆流量分配结构
CN103871500A (zh) * 2012-12-14 2014-06-18 中国核动力研究设计院 一种核反应堆下腔室筒状流量分配装置
CN103971763A (zh) * 2014-05-06 2014-08-06 中广核工程有限公司 核电站反应堆的堆内流量分配装置
CN107221368A (zh) * 2017-07-26 2017-09-29 四川大学 反应堆冷却剂抑涡及流量分配装置及反应堆堆内构件
CN112185598A (zh) * 2020-09-30 2021-01-05 中国核动力研究设计院 一种堆叠型流量分配装置及分配结构

Also Published As

Publication number Publication date
CN116313188A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US9305668B2 (en) Pressurized water reactor flow skirt apparatus
JP5542062B2 (ja) 原子炉圧力容器のための中性子遮蔽パネル
KR101129735B1 (ko) 원자로
US4716013A (en) Nuclear reactor
WO2016119292A1 (zh) 流量分配装置及具有该装置的核反应堆组件
KR20040040432A (ko) 원자로의 연료집합체용 감소된 압력강하 파편 필터 하부노즐
WO2024050939A1 (zh) 反应堆涡流抑制及流量分配装置
US5473650A (en) Lower tie plate debris catcher for a nuclear reactor
JP2008157972A (ja) 冷却材炉心入口構造
JP4300011B2 (ja) 冷却材炉心入口構造
JP2009075001A (ja) 原子炉
US3666624A (en) Hydraulic hold-down for nuclear reactor fuel assembly
US4793966A (en) Nuclear reactor
JPH0815476A (ja) 加圧水型原子炉の炉内下部構造物
JPH0210194A (ja) 水冷却減速炉用の上方内部装備
JP2003294878A (ja) 燃料集合体
JPS62137584A (ja) 加圧水型原子炉の棒クラスタを支持するためのスパイダ集合体
CN1155006C (zh) 用于增进核反应堆中经加热的冷却剂各液流混合的装置
JPH02168195A (ja) 炉心支持構造
JP3035276B1 (ja) 原子炉容器の炉心支持構造物
JPH10111379A (ja) 加圧水型原子炉の内部構造
JP3035274B2 (ja) 原子炉容器内の被加熱流体混合促進構造
JP4166910B2 (ja) 加圧水型原子炉
Yu et al. Evolution of the Evening Method of Coolant Flow in the Large Core Based on Patent History
US5920603A (en) Forged core plate for a boiling water reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957904

Country of ref document: EP

Kind code of ref document: A1