WO2024050843A1 - 一种晶体生长方法和装置 - Google Patents

一种晶体生长方法和装置 Download PDF

Info

Publication number
WO2024050843A1
WO2024050843A1 PCT/CN2022/118260 CN2022118260W WO2024050843A1 WO 2024050843 A1 WO2024050843 A1 WO 2024050843A1 CN 2022118260 W CN2022118260 W CN 2022118260W WO 2024050843 A1 WO2024050843 A1 WO 2024050843A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
crystal
seed crystal
raw material
component
Prior art date
Application number
PCT/CN2022/118260
Other languages
English (en)
French (fr)
Inventor
王宇
官伟明
Original Assignee
眉山博雅新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山博雅新材料股份有限公司 filed Critical 眉山博雅新材料股份有限公司
Priority to PCT/CN2022/118260 priority Critical patent/WO2024050843A1/zh
Priority to TW112133879A priority patent/TW202411479A/zh
Publication of WO2024050843A1 publication Critical patent/WO2024050843A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • C30B29/50Cadmium sulfide

Definitions

  • This specification relates to the field of crystal growth, and in particular to a crystal growth method and device.
  • PVT Physical Vapor Transport
  • the purity of the raw material components is not high or the surface of the seed crystal does not meet the requirements, which affects the quality of the crystal; bubbles are easily generated when the seed crystals are bonded, leading to crystal growth.
  • the process produces planar hexagonal defects; during the crystal growth process, it is difficult to control the temperature or the sublimation of raw materials, resulting in defects such as dislocations, microtubules, and polytypes in the crystal; the utilization rate of silicon carbide powder is low.
  • the crystal growth method includes: placing raw materials in the raw material area of the growth chamber; placing seed crystals in the growth area of the growth chamber, wherein the raw material area and the growth area are separated by partitions,
  • the separator includes at least one outlet; and based on the seed crystal and the raw material, the crystal is grown by a physical vapor transport method.
  • the device includes a growth chamber.
  • the growth chamber includes a raw material area and a growth area.
  • the raw material area is used to place raw materials, and the growth area is used for placing raw materials.
  • the seed crystal is placed, and the raw material area and the growth area are separated by a partition, the partition including at least one outlet; and a heating component for heating the growth chamber to achieve growth based on the seed.
  • Crystal growth by physical vapor transport method of crystals and raw materials.
  • the coating equipment includes: a coating cavity; a coating frame, a plurality of trays are provided on the coating frame, and the trays are used to place seed crystals; a driving component, and the The coating frame connection is used to drive the coating frame to rotate; the heating component is used to provide the heat required for coating processing; the air inlet is used to pass coating gas into the coating cavity; the air outlet is used to discharge the coating Gas in the cavity; a gas extraction component, connected to the gas outlet, used to evacuate the coating cavity.
  • the equipment includes: a bonding cavity; a vacuum component for vacuuming the bonding cavity; and an upper transmission component.
  • the upper transmission component is connected to the top end of the bonding cavity; the lower transmission component is connected to the bottom end of the bonding cavity; the heating component; and the pressing component, which is connected to the upper transmission component, The lower transmission component and the heating component work together to bond the seed crystal to the cover.
  • Figure 1 is a schematic diagram of an exemplary crystal growth system shown in accordance with some embodiments of the present specification
  • Figure 2 is a schematic diagram of an exemplary computing device shown in accordance with some embodiments of the present specification
  • Figure 3 is a flow chart of an exemplary crystal growth method according to some embodiments of the present specification.
  • Figure 4 is a flow chart of an exemplary raw material preparation method according to some embodiments of this specification.
  • Figure 5 is a flow chart of an exemplary raw material pretreatment method and a seed crystal pretreatment method according to some embodiments of this specification;
  • Figure 6 is a flow chart of an exemplary seed coating method according to some embodiments of this specification.
  • Figure 7 is a schematic diagram of an exemplary seed crystal back evaporation according to some embodiments of the present specification.
  • Figure 8 is a flow chart of an exemplary seed coating method according to further embodiments of this specification.
  • Figure 9 is a schematic structural diagram of an exemplary coating equipment according to some embodiments of this specification.
  • Figure 10 is a flow chart of an exemplary seed bonding method according to some embodiments of the present specification.
  • Figure 11A is a schematic structural diagram of an exemplary seed bonding device according to some embodiments of this specification.
  • Figure 11B is a schematic diagram of an exemplary seed crystal after bonding according to some embodiments of this specification.
  • Figure 12A is a schematic structural diagram of an exemplary seed bonding device according to some embodiments of this specification.
  • Figure 12B is a schematic diagram of an exemplary seed crystal after bonding according to some embodiments of this specification.
  • Figure 13 is a flow chart of an exemplary seed bonding method according to further embodiments of this specification.
  • 14A is a schematic diagram of an exemplary rolling operation according to some embodiments of the present specification.
  • Figure 14B is a schematic diagram of an exemplary rolling operation according to further embodiments of the present specification.
  • Figure 15 is a flow chart of an exemplary crystal growth method according to further embodiments of the present specification.
  • Figure 16A is a schematic structural diagram of an exemplary crystal growth device according to some embodiments of this specification.
  • Figure 16B is a schematic structural diagram of an exemplary crystal growth device according to further embodiments of this specification.
  • Figure 16C is a schematic structural diagram of an exemplary crystal growth device according to further embodiments of this specification.
  • Figure 17 is a schematic diagram of temperature distribution of an exemplary crystal growth apparatus shown in accordance with some embodiments of the present specification.
  • Figure 18 is a schematic layout diagram of an exemplary temperature measurement assembly according to some embodiments of this specification.
  • Figure 19A is a schematic structural diagram of an exemplary monitoring component according to some embodiments of this specification.
  • Figure 19B is a schematic structural diagram of an exemplary monitoring component according to some embodiments of this specification.
  • Figure 20 is a flow chart of an exemplary crystal growth method according to further embodiments of the present specification.
  • Figure 21 is a flow chart of an exemplary crystal growth method according to further embodiments of the present specification.
  • Figure 22 is a flow chart of an exemplary crystal growth method according to further embodiments of the present specification.
  • Figure 23 is a flow chart of an exemplary residual material recovery method according to some embodiments of this specification.
  • Figure 24 is a flow chart of an exemplary residual material recovery method according to further embodiments of this specification.
  • 100 is the crystal growth system
  • 101 is the processing equipment
  • 102 is the control equipment
  • 103 is the temperature measurement component
  • 103-1 is the temperature sensor
  • 103-2 is the insulation layer
  • 103-3 is the cooling component
  • 104 is the monitoring component
  • 104-1 is an ultrasonic thickness gauge
  • 104-11 is an ultrasonic probe
  • 104-2 is a cooling device
  • 104-3 is a graphite rod
  • 105 is a pressure measuring component
  • 106 is a coating equipment
  • 106-1 is a coating chamber
  • 106-11 is a tube
  • 106-12 is a baffle
  • 106-2 is a coating frame
  • 106-3 is a heating component
  • 106-4 is an air inlet
  • 106-5 is an air outlet
  • 106-6 is a fan blade
  • 106 -7 is insulation cotton
  • 106-8 is insulation layer
  • 107 is seed crystal bonding equipment
  • 107-1 is bonding cavity
  • 107-2 is vacuum component
  • 107-3 is upper
  • system means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • said words may be replaced by other expressions if they serve the same purpose.
  • Figure 1 is a schematic diagram of an exemplary crystal growth system shown in accordance with some embodiments of this specification.
  • the crystal growth system 100 can prepare a variety of crystals (such as silicon carbide (SiC) crystals, aluminum nitride (AIN) crystals, zinc selenide (ZnSe)) based on the physical vapor transport method (Physical Vapor Transport, PVT). ) crystal, cadmium sulfide (CdS) crystal, zinc telluride (ZnTe), etc.).
  • SiC silicon carbide
  • AIN aluminum nitride
  • ZnSe zinc selenide
  • PVT Physical Vapor Transport
  • CdS cadmium sulfide
  • ZnTe zinc telluride
  • the crystal growth system 100 may include a processing device 101 , a control device 102 , a temperature measurement component 103 , a monitoring component 104 , a pressure measurement component 105 , a coating device 106 , and a seed bonding device 107 , crystal growth device 108, storage device 109 and interactive component 110.
  • the processing device 101 may be used to process a variety of data and/or information involved in the crystal growth process.
  • the processing device 101 can obtain the temperature information in the growth chamber from the temperature measurement component 103, and adjust at least one outlet (for example, the outlet 108- as shown in Figures 16A-16C) based on the temperature information. 21, used to pass the position, shape, distribution, flow area, etc. of gas phase components) or any combination thereof.
  • the processing device 101 can monitor the crystal growth through the monitoring component 104 and adjust the heating parameters and/or the heating component (eg, the heating component 108-3 shown in FIGS. 16A-16C) based on the crystal growth. Or the position, shape, distribution, flow area, etc. of at least one outlet or any combination thereof.
  • the processing equipment 101 can monitor the crystal growth condition through the monitoring component 104, and adjust the heating component during the next crystal growth process based on the current crystal growth condition (for example, the heating component 108 shown in Figures 16A-16C -3) The heating parameters and/or the position, shape, distribution, flow area, etc. of at least one outlet or any combination thereof.
  • the processing device 101 may obtain the pressing component of the seed bonding device 107 (eg, FIG. 11A , FIG. The applied pressure of the pressing assembly 107-6) shown in 12A, and the applied pressure is adjusted accordingly.
  • the processing device 101 can send control instructions to the control device 102, and the control device 102 controls the crystal growth process based on the control instructions.
  • processing device 101 may include an industrial control computer. In some embodiments, the processing device 101 may serve as a higher-level control monitoring device or a higher-level processing device.
  • the control device 102 may be used to control various operations involved in the crystal growth process (eg, seed coating, seed bonding, crystal growth, etc.). In some embodiments, the control device 102 may receive control instructions from the processing device 101 and control the crystal growth process based on the control instructions.
  • control device 102 may include a programmable logic controller (PLC). In some embodiments, the control device 102 may serve as a subordinate real-time control device.
  • PLC programmable logic controller
  • the processing device 101 and/or the control device 102 may include a central processing unit (CPU), an application specific integrated circuit (ASIC), an application specific instruction set processor (ASIP), an image processing unit (GPU), a physical computing unit Unit (PPU), digital signal processor (DSP), field programmable gate array (FPGA), programmable logic device (PLD), controller, microcontroller unit, reduced instruction set computer (RISC), microprocessor, etc. or any combination of the above.
  • the processing device 101 and the control device 102 may be integrated into one device.
  • the control device 102 may be part of the processing device 101 .
  • the functions of the processing device 101 and the control device 102 may be shared with each other or performed jointly.
  • the temperature measurement component 103 can be used to detect the temperature of the side wall and/or the top of the growth chamber, and send the temperature measurement signal to the processing device 101 .
  • the temperature measurement component 103 may include a thermocouple sensor, a thermistor sensor, an infrared thermometer, an optical pyrometer or a colorimetric pyrometer.
  • the monitoring component 104 can be used to monitor crystal growth and send monitoring signals to the processing device 101 .
  • crystal growth conditions may include at least one of thickness, growth rate, or defects of the growing crystal.
  • monitoring component 104 may include a contact monitoring component (eg, ultrasonic thickness gauge 104-1 in FIG. 19A) or a non-contact monitoring component (eg, air-coupled ultrasonic nondestructive testing, electromagnetic ultrasonic testing (EMAT) Non-destructive testing, electrostatic coupling ultrasonic non-destructive testing and laser ultrasonic non-destructive testing).
  • a contact monitoring component eg, ultrasonic thickness gauge 104-1 in FIG. 19A
  • non-contact monitoring component eg, air-coupled ultrasonic nondestructive testing, electromagnetic ultrasonic testing (EMAT) Non-destructive testing, electrostatic coupling ultrasonic non-destructive testing and laser ultrasonic non-destructive testing.
  • the pressure measuring assembly 105 can be used to monitor the pressure of the seed bonding equipment 107 and send the monitoring signal to the processing equipment 101 .
  • pressure measurement assembly 105 may include a pressure sensor.
  • a pressure sensor For example, piezoelectric pressure sensors, piezoresistive pressure sensors, capacitive pressure sensors, electromagnetic pressure sensors, vibrating wire pressure sensors, etc.
  • Coating equipment 106 may be used to perform seed coating operations.
  • the coating equipment 106 may include a coating chamber, a coating rack, a driving component, an air extraction component, a heating component, an air inlet and an air outlet, etc. More description about the coating equipment 106 can be found in Figure 9 and its related descriptions, and will not be described again here.
  • the seed bonding apparatus 107 may be used to perform the operation of bonding seed crystals.
  • the seed bonding device 107 includes a bonding cavity, a vacuum component, an upper transmission component, a lower transmission component, a heating component, a pressing component, a support component, etc. More descriptions about the seed bonding equipment 107 can be found in FIG. 11A, FIG. 12A and their related descriptions, and will not be described again here.
  • Crystal growth device 108 may be used to perform crystal growth operations.
  • crystal growth device 108 may include a growth chamber, a heating component, or the like. More descriptions about the crystal growth device 108 can be found in FIGS. 16A-16C and related descriptions, and will not be described again here.
  • control device 102 can control the coating device 106 to coat the back side of the seed crystal.
  • the control device 102 can control the seed crystal bonding device 107 to bond the seed crystal (or the coated seed crystal) to the cavity cover or the seed crystal holder.
  • the pressure-sensitive component can detect the applied pressure of the pressing component of the seed bonding device 107 and provide feedback to the processing device 101 .
  • the processing device 101 can send control instructions to the control device 102, and the control device 102 can control the applied pressure of the seed bonding device 107 accordingly.
  • control device 102 may control crystal growth device 108 to grow crystals.
  • the temperature measuring component 103 can detect the temperature of the side wall of the growth chamber and/or the top of the growth chamber, and feedback the temperature to the processing device 101 .
  • the processing device 101 can send control instructions to the control device 102, and the control device 102 can control and adjust the position, shape, distribution, flow area, etc. of at least one outlet or any combination thereof.
  • the monitoring component 104 can monitor the crystal growth and feed back the crystal growth to the processing device 101 .
  • the processing device 101 can send control instructions to the control device 102, and the control device 102 can control and adjust the heating parameters of the heating component and/or the position, shape, distribution, flow area, etc. of at least one outlet, or any combination thereof.
  • Storage device 109 may store a variety of data and/or information involved in the crystal growth process.
  • the storage device 109 can store parameters (eg, temperature, crystal growth conditions), control instructions, etc. during the crystal growth process.
  • the storage device 109 may be connected to one or more components in the crystal growth system 100 (for example, the processing device 101, the control device 102, the temperature measurement component 103, the monitoring component 104, the pressure measurement component 105, the coating device 106, The seed bonding equipment 107, the crystal growth device 108, the storage device 109, the interactive component 110, etc.) are directly connected or communicated.
  • One or more components in crystal growth system 100 may access data and/or instructions stored in storage device 109 through a network or directly.
  • storage device 109 may be part of processing device 101 and/or control device 102 . Relevant data during the crystal growth control process (such as pressure control parameters, outlet control parameters, etc.) can be recorded in the storage device 109 in real time.
  • storage device 109 may store data and/or instructions for processing device 101 to perform or use to complete the example methods described in this specification.
  • storage device 109 may include mass memory, removable memory, volatile read-write memory, read-only memory (ROM), etc., or any combination thereof.
  • storage device 109 may be implemented on a cloud platform.
  • the cloud platform may include private cloud, public cloud, hybrid cloud, community cloud, distributed cloud, internal cloud, multi-tier cloud, etc. or any combination thereof.
  • Interaction component 110 may be used to interact with a user or other components in crystal growth system 100 .
  • interactive component 110 may include display device 110-1 and interactive device 110-2.
  • the display device 110-1 may include a digital tube display, a two-dimensional display, a three-dimensional display, etc.
  • the interactive device 110-2 may include a mouse, a keyboard, a voice input device, etc.
  • the processing device 101 can perform human-computer interaction with an operator (for example, a crystal preparation engineer) through the display device 110-1 and/or the interactive device 110-2, and the operator can query actual data through the display device 110-1.
  • Crystal growth conditions, pressure control parameters, outlet control parameters for example, the location, shape, distribution or flow area of the outlet, etc.
  • the above description of the crystal growth system 100 is only for convenience of description and does not limit this description to the scope of the embodiments. It will be understood that, for those skilled in the art, after understanding the principles of the system, it is possible to make various changes to the system and its components without departing from this principle.
  • the temperature measurement component 103, the monitoring component 104, the pressure measurement component 105, and the seed bonding equipment 107 may be components independent of the crystal growth device 108. That is, the components of the crystal growth device 108 may not include the temperature measurement component 103, the monitoring component 103, and the seed bonding device 107. Assembly 104, load cell assembly 105 and seed bonding equipment 107.
  • Figure 2 is a schematic diagram of an exemplary computing device in accordance with some embodiments of the present specification.
  • processing device 101, control device 102, and/or storage device 109 may be implemented on computing device 200 and configured to implement the functionality disclosed in this specification.
  • Computing device 200 may include any components for implementing the systems described in this specification.
  • a PLC may be implemented on computing device 200 through its hardware, software programs, firmware, or a combination thereof.
  • a PLC may be implemented on computing device 200 through its hardware, software programs, firmware, or a combination thereof.
  • only one computer is shown in the figure, but the computing functions related to dosing control described in this specification can be implemented in a distributed manner by a group of similar platforms to spread the processing load of the system.
  • Computing device 200 may include a communication port 205 coupled to a network for enabling data communications.
  • Computing device 200 may include a processor 202 (eg, CPU), in the form of one or more processors that may execute program instructions.
  • An exemplary computer platform may include an internal bus 201, various forms of program memory and data storage, such as a hard disk 207, read only memory (ROM) 203, or random access memory (RAM) 204, for storing data processed and processed by the computer. /or various data files transferred.
  • the computing device may also include program instructions stored in read-only memory 203, random access memory 204, and/or other types of non-transitory storage media for execution by processor 202.
  • the methods and/or processes in this specification can be implemented in the form of program instructions.
  • Computing device 200 also includes input/output components 206 for supporting input/output between the computer and other components.
  • the computing device 200 can also receive the programs and data in the present disclosure through network communication.
  • FIG. 2 For ease of understanding, only one processor is illustrated in FIG. 2 .
  • the computing device 200 in this specification may include multiple processors, and the operations and/or methods described in this specification implemented by one processor may also be implemented by multiple processors jointly or independently.
  • the processor of the computing device 200 described in this specification performs operation A and operation B
  • operation A and operation B may also be performed jointly by two or more different processors in the computing device 200 or Executed separately (for example, the first processor performs operation A and the second processor performs operation B, or the first processor and the second processor jointly perform operations A and B).
  • FIG. 3 is a flow diagram of an exemplary crystal growth method according to some embodiments of the present specification.
  • process 300 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 300 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 300 may be implemented.
  • process 300 may be performed manually by an operator or semi-automatically.
  • process 300 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 3 is not limiting.
  • Step 310 Place the raw materials in the raw material area of the growth chamber.
  • the raw materials may be those required for growing crystals.
  • the raw material may be powder, block, granule, etc.
  • the purity of the feedstock may be greater than or equal to 90.00%. In some embodiments, the purity of the feedstock may be greater than or equal to 92.00%. In some embodiments, the purity of the feedstock may be greater than or equal to 95.00%. In some embodiments, the purity of the feedstock may be greater than or equal to 99.00%. In some embodiments, the purity of the feedstock may be greater than or equal to 99.9%. In some embodiments, the purity of the feedstock may be greater than or equal to 99.99%. In some embodiments, the purity of the feedstock may be greater than or equal to 99.999%.
  • the raw material may include silicon carbide powder.
  • silicon carbide powder for more information about the preparation of silicon carbide powder, please refer to other parts of this specification (for example, Figure 4 and its related descriptions), and will not be described again here.
  • the growth chamber may be a location where silicon carbide crystals are grown.
  • the growth chamber please refer to other parts of this specification (for example, Figures 16A-16C, Figure 18 and their related descriptions), and will not be described again here.
  • the raw material area may be a place where silicon carbide powder is placed. In some embodiments, the feedstock area may be located below the growth chamber.
  • the feedstock can be manually placed in the feedstock area of the growth chamber.
  • the robotic arm can be controlled by the processing device and/or the control device to place the raw material into the raw material area of the growth chamber.
  • the robotic arm can automatically pick up raw materials according to a set program and place them in the raw material area of the growth chamber. Loading raw materials through the robotic arm can reduce labor costs and make the picking of materials precise and easy to control.
  • Step 320 Place the seed crystal in the growth area of the growth chamber.
  • the seed crystal can be a small silicon carbide crystal with high crystal quality and few crystal defects, which can be understood as a seed for growing silicon carbide crystal.
  • the growth zone may be a location where silicon carbide crystals are grown based on seed crystals. In some embodiments, the growth zone may be located above the growth chamber.
  • the feedstock zone and the growth zone may be separated by partitions.
  • the heat insulation board may be a high temperature resistant heat insulation material.
  • the partition may include at least one outlet.
  • the raw materials in the raw material area are heated at high temperatures and sublimated into gas phase components. The gas phase components can enter the growth area through the outlet on the partition plate, and silicon carbide crystals grow on the surface of the seed crystal.
  • the raw material area and the growth area are separated by partitions, which can realize independent control of the temperature of the raw material area, the vicinity of the partition and the growth area, effectively regulating the crystal growth process, and the heat insulation board is made of high-temperature resistant insulation materials, allowing the temperature of the raw material area to be adjusted It has little impact on the temperature of the growth zone, thereby ensuring the stability of the crystal growth environment.
  • the carbon-silicon molar ratio, transmission path, transmission speed, etc. of the raw material gas phase components can be adjusted, and the crystal growth interface can be effectively controlled, obviously Reduce the probability of dislocation formation, reduce crystal defects, and improve the quality of grown crystals.
  • the seed crystal can be manually bonded to the growth area of the growth chamber.
  • the mechanical arm can be controlled by the processing device and/or the control device to bond the seed crystal to the growth area of the growth chamber.
  • the robot arm can automatically pick up the seed crystal according to the set program and bond it to the growth area of the growth chamber. Using a robotic arm to bond the seed crystals can reduce labor costs and make the picking accurate and easy to control.
  • the seed crystal can be bonded to the chamber cover or seed crystal holder of the growth chamber through the seed crystal bonding device 107 .
  • seed bonding please refer to other parts of this specification (for example, Figures 10 to 14B and related descriptions), and will not be described again here.
  • the bonding condition of the seed crystal can be detected by ultrasonic detection equipment for pore detection.
  • the ultrasonic detection equipment may include an ultrasonic flaw detector.
  • the pore detection may be to detect the state of the pores in the seed crystal during the bonding process of the seed crystal and/or after the seed crystal is bonded.
  • the results of pore detection include at least one of pore location, pore size, pore shape, or pore density.
  • an ultrasonic detection device for example, an ultrasonic flaw detector
  • the ultrasonic detection equipment receives the reflected ultrasonic waves according to the reception time and amplitude of the ultrasonic waves. The situation determines the location, size, shape or density of bubbles on the seed crystal during the bonding process of the seed crystal or after the seed crystal is bonded.
  • the pressure of the seed bonding process can be adjusted based on the detection results. In some embodiments, if it is detected that the pore density is greater than the pore density threshold (for example, 8/cm 2 ) during the seed bonding process, the applied pressure of the compression component can be increased and/or the air extraction power of the air extraction component can be increased. To reduce the pressure in the bonding equipment to expel air bubbles. In some embodiments, if it is detected that the pore density is less than the pore density threshold during the seed bonding process, the pressure of the pressing assembly and/or the pressure within the bonding equipment can be maintained to continue the pressing operation.
  • the pore density threshold for example, 8/cm 2
  • the local pressure of the compression component can be adjusted to expel local air bubbles.
  • the quality of seed crystal bonding can be improved by adjusting the pressure of the pressing components during the bonding process, the local pressure and/or the pressure within the bonding equipment.
  • the seed crystal can be removed and re-bonded to improve the quality of the seed crystal bonding.
  • Step 330 based on the seed crystal and raw materials, grow the crystal through physical vapor transport method.
  • the silicon carbide raw material in the raw material zone is heated at high temperature and sublimates into gas phase components (for example, Si, Si 2 C, SiC 2, etc.), and the gas phase components pass through driven by temperature gradients and/or concentration gradients.
  • gas phase components for example, Si, Si 2 C, SiC 2, etc.
  • At least one outlet on the partition enters the relatively low-temperature growth zone, and is then transported to the seed crystal driven by the temperature gradient, where it nucleates, grows, and crystallizes to form SiC crystals.
  • the growth chamber can be heated by a heating component to achieve sublimation of raw materials, transport of gas phase components, etc.
  • a heating component for example, FIG. 15 and its related descriptions
  • the position of at least one outlet can be adjusted axially or radially.
  • the distribution of gas phase components on the crystal growth surface can be made more uniform, relatively flat crystals can be grown, crystal growth defects can be reduced, and crystal quality can be improved. More information about adjusting the position of at least one discharge port in the axial or radial direction can be found in other parts of this specification (for example, FIG. 20 and its related descriptions), and will not be described again here.
  • the temperature information in the growth chamber can be obtained; and based on the temperature information, at least one of the position, shape, distribution or flow area of at least one outlet is adjusted.
  • a sort of In some embodiments, during the process of growing crystals through physical vapor transmission method, the temperature information in the growth chamber can be obtained; and based on the temperature information, the position, shape, and distribution of at least one outlet in the next crystal growth process can be adjusted. or at least one of flow area. More information about adjusting at least one of the position, shape, distribution or flow area of at least one outlet based on temperature information can be found in other parts of this specification (for example, Figure 20 and its related descriptions), and will not be described again here. .
  • the distribution of gas phase components in the growth chamber can be obtained; and based on the distribution, the position, shape, distribution or flow of at least one outlet can be adjusted. At least one of the areas.
  • the distribution of gas phase components in the growth chamber can be obtained; and based on the distribution, the position of at least one outlet in the next crystal growth process can be adjusted. At least one of , shape, distribution or circulation area. More information about adjusting at least one of the position, shape, distribution or flow area of at least one outlet based on the distribution can be found in other parts of this specification (for example, Figure 21 and its related descriptions), and will not be described again here. .
  • the crystal growth condition can be monitored; and based on the crystal growth condition, at least one of the heating parameters of the heating component and/or the position, shape, distribution or flow area of the at least one outlet is adjusted.
  • the crystal growth condition can be monitored; and based on the crystal growth condition, the heating parameters of the heating component and/or the position, shape, and distribution of at least one outlet can be adjusted during the next crystal growth process. or at least one of flow area. More information on adjusting the heating parameters of the heating assembly and/or at least one of the position, shape, distribution or flow area of the at least one outlet based on crystal growth conditions can be found in other parts of this specification (for example, FIG. 22 and its Relevant description), which will not be described again here.
  • the process 300 may include a storage step.
  • the processing device and/or the control device may store the information and/or data involved in the process 300 (for example, the position, shape, distribution, flow area, etc. of at least one outlet). ) is stored in a storage device (eg, storage device 109).
  • silicon carbide raw materials In the growth process of silicon carbide crystals, the quality and purity of silicon carbide raw materials are crucial. However, the silicon carbide raw materials currently purchased on the market generally have low purity and an impurity content of more than 5ppm. Excessive impurity content will affect subsequent growth.
  • the main manifestations of silicon carbide crystal are: (1) affecting the resistivity control of silicon carbide crystal; (2) affecting the color and color uniformity of silicon carbide crystal; (3) affecting the nucleation energy and crystal stability of silicon carbide crystal growth; (4) significantly corrode the crucible and change the component ratio during crystal growth. Therefore, the embodiments of this specification provide a method for preparing silicon carbide raw materials with lower impurity concentration.
  • Figure 4 is a flow diagram of an exemplary feedstock preparation method according to some embodiments of this specification.
  • process 400 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 4 is not limiting.
  • Step 410 mix the source materials and additives evenly.
  • the source material may be the starting material from which the crystal is prepared.
  • the source material may include carbon powder, silicon powder, and silicon carbide particles in a predetermined proportion.
  • the carbon powder may be high-purity carbon powder with an ash content of less than 5 ppm. In some embodiments, the carbon powder may be high-purity carbon powder with an ash content of less than 4 ppm. In some embodiments, the carbon powder may be high-purity carbon powder with an ash content of less than 3 ppm. In some embodiments, the carbon powder may be high-purity carbon powder with an ash content of less than 2 ppm. In some embodiments, the carbon powder may be high-purity carbon powder with an ash content of less than 1 ppm. In some embodiments, the silicon powder may be 3N grade high-purity silicon powder. In some embodiments, the silicon powder may be 4N grade high-purity silicon powder. In some embodiments, the silicon powder may be 5N grade high-purity silicon powder. In some embodiments, the silicon powder may be 6N grade high-purity silicon powder. In some embodiments, the silicon powder may be 7N grade high-purity silicon powder.
  • the particle sizes of carbon powder, silicon powder and/or silicon carbide particles need to meet certain requirements.
  • the particle size of the carbon powder may range from 0.01 ⁇ m to 2 mm. In some embodiments, the particle size of the carbon powder may range from 0.03 ⁇ m to 1.8 mm. In some embodiments, the particle size of the carbon powder may range from 0.05 ⁇ m to 1.5 mm. In some embodiments, the particle size of the carbon powder may range from 0.08 ⁇ m to 1.0 mm. In some embodiments, the particle size of the carbon powder may range from 0.1 ⁇ m to 800 ⁇ m. In some embodiments, the particle size of the carbon powder may range from 0.3 ⁇ m to 500 ⁇ m. In some embodiments, the particle size of the carbon powder may range from 0.5 ⁇ m to 300 ⁇ m.
  • the particle size of the carbon powder may range from 1 ⁇ m to 200 ⁇ m. In some embodiments, the particle size of the carbon powder may range from 5 ⁇ m to 150 ⁇ m. In some embodiments, the particle size of the carbon powder may range from 10 ⁇ m to 128 ⁇ m. In some embodiments, the particle size of the carbon powder may range from 30 ⁇ m to 100 ⁇ m. In some embodiments, the particle size of the carbon powder may range from 50 ⁇ m to 80 mm. In some embodiments, the particle size of the carbon powder may range from 60 ⁇ m to 70 ⁇ m.
  • the particle size of the silicon powder may be in the range of 0.01 mm to 5 mm. In some embodiments, the particle size of the silicon powder may range from 0.1 mm to 4.5 mm. In some embodiments, the particle size of the silicon powder may be in the range of 0.3 mm to 4.0 mm. In some embodiments, the particle size of the silicon powder may be in the range of 0.5 mm to 3.5 mm. In some embodiments, the particle size of the silicon powder may be in the range of 0.7 mm to 3.0 mm. In some embodiments, the particle size of the silicon powder may be in the range of 1 mm to 2.5 mm. In some embodiments, the particle size of the silicon powder may be in the range of 1.3 mm to 2.0 mm. In some embodiments, the particle size of the silicon powder may be in the range of 1.5 mm to 1.8 mm. In some embodiments, the particle size of the silicon powder may be in the range of 1.6 mm to 1.7 mm.
  • the particle size of the silicon carbide particles may range from 10 mesh to 120 mesh. In some embodiments, the particle size of the silicon carbide particles may range from 16 mesh to 100 mesh. In some embodiments, the particle size of the silicon carbide particles may range from 20 mesh to 80 mesh. In some embodiments, the particle size of the silicon carbide particles may range from 25 mesh to 60 mesh. In some embodiments, the particle size of the silicon carbide particles may range from 30 mesh to 50 mesh. In some embodiments, the particle size of the silicon carbide particles may range from 35 mesh to 45 mesh. In some embodiments, the particle size of the silicon carbide particles may range from 35 mesh to 40 mesh.
  • the preset proportion may be the ratio of the silicon carbide particles to the total weight of carbon powder and silicon powder. In some embodiments, the preset proportion may be in the range of 1% to 30% of the total weight of carbon powder and silicon powder. In some embodiments, the preset proportion may be in the range of 3% to 28% of the total weight of carbon powder and silicon powder. In some embodiments, the preset proportion may be in the range of 5% to 26% of the total weight of carbon powder and silicon powder. In some embodiments, the preset proportion may be in the range of 7% to 24% of the total weight of carbon powder and silicon powder. In some embodiments, the preset proportion may be in the range of 10% to 22% of the total weight of carbon powder and silicon powder.
  • the preset proportion may be in the range of 13% to 20% of the total weight of carbon powder and silicon powder. In some embodiments, the preset proportion may be in the range of 15% to 18% of the total weight of carbon powder and silicon powder. In some embodiments, the preset proportion may be in the range of 16% to 17% of the total weight of carbon powder and silicon powder.
  • additives may include polytetrafluoroethylene.
  • additives may be added in proportion to the source material.
  • the mass ratio of carbon powder:silica powder:polytetrafluoroethylene can be 1:2: (0.01 ⁇ 0.5). In some embodiments, the mass ratio of carbon powder:silica powder:polytetrafluoroethylene can be 1:2: (0.03 ⁇ 0.4). In some embodiments, the mass ratio of carbon powder:silica powder:polytetrafluoroethylene can be 1:2: (0.05 ⁇ 0.3). In some embodiments, the mass ratio of carbon powder:silica powder:polytetrafluoroethylene can be 1:2: (0.08 ⁇ 0.2). In some embodiments, the mass ratio of carbon powder:silica powder:polytetrafluoroethylene can be 1:2: (0.1 ⁇ 0.15). In some embodiments, the mass ratio of carbon powder:silica powder:polytetrafluoroethylene can be 1:2: (0.12 ⁇ 0.14).
  • powder mixing equipment may be used to mix the source materials and additives evenly.
  • the powder mixing equipment may include a double-spiral conical mixer, a horizontal gravity-free mixer, a horizontal plow mixer, a horizontal ribbon mixer, etc. or any combination thereof.
  • a mortar eg, an agate mortar
  • Step 420 Place the uniformly mixed source materials and additives in a pre-synthesis device to perform raw material synthesis operations to obtain initial raw materials.
  • the pre-synthesis device may be a place that can provide a certain temperature, pressure and/or atmosphere for raw material synthesis.
  • the uniformly mixed source materials and additives can be placed in a crucible, and then the crucible containing the source materials and additives can be placed in a pre-synthesis device to perform the raw material synthesis operation.
  • the crucible may include a tantalum carbide crucible, a high-purity graphite crucible internally coated with a tantalum carbide coating, a high-purity graphite crucible, or the like.
  • tantalum carbide crucibles or crucibles with internal tantalum carbide coating can avoid contamination of raw materials by impurities such as B and Al in the carbon crucible during raw material synthesis and improve the purity of raw materials.
  • the feedstock synthesis operation may include a first stage and a second stage.
  • the first stage is a reaction stage
  • the second stage is a sublimation recrystallization stage.
  • the reaction temperature in the reaction stage may range from 1200°C to 1600°C. In some embodiments, the reaction temperature in the reaction stage may be in the range of 1250°C to 1550°C. In some embodiments, the reaction temperature in the reaction stage may be in the range of 1300°C to 1500°C. In some embodiments, the reaction temperature in the reaction stage may be in the range of 1350°C to 1450°C. In some embodiments, the reaction temperature in the reaction stage may be in the range of 1370°C to 1430°C. In some embodiments, the reaction temperature in the reaction stage may be in the range of 1390°C to 1410°C.
  • the reaction pressure in the reaction stage may range from 10 -5 Pa to 101 kPa. In some embodiments, the reaction pressure of the reaction stage may range from 10 -4 Pa to 90 kPa. In some embodiments, the reaction pressure in the reaction stage may range from 10 -3 Pa to 80 kPa. In some embodiments, the reaction pressure in the reaction stage may range from 10 -2 Pa to 70 kPa.
  • the reaction pressure in the reaction stage may range from 0.1 Pa to 60 kPa. In some embodiments, the reaction pressure in the reaction stage may range from 1 Pa to 50 kPa. In some embodiments, the reaction pressure in the reaction stage may range from 10 Pa to 40 kPa. In some embodiments, the reaction pressure in the reaction stage may range from 15 Pa to 35 kPa. In some embodiments, the reaction pressure in the reaction stage may be in the range of 20 Pa to 30 Pa. In some embodiments, the reaction pressure in the reaction stage may range from 22 Pa to 28 Pa. In some embodiments, the reaction pressure in the reaction stage may be in the range of 23 Pa to 25 Pa.
  • the reaction time of the reaction stage may range from 0.5h to 10h. In some embodiments, the reaction time of the reaction stage may range from 1 h to 9 h. In some embodiments, the reaction time of the reaction stage may range from 2h to 8h. In some embodiments, the reaction time of the reaction stage may range from 3h to 7h. In some embodiments, the reaction time of the reaction stage may be in the range of 4h to 6h. In some embodiments, the reaction time of the reaction stage may range from 5h to 5.5h.
  • the silicon carbide particles usually generated are smaller (for example, 40 mesh-80 mesh). If small-particle silicon carbide raw materials are used for crystal growth, on the one hand, the porosity of the small-particle silicon carbide raw materials is very small, which is not conducive to the gas phase transmission of the raw materials after heating.
  • the small carbon particles after the thermal carbonization of the small silicon carbide particles at the bottom of the crucible may be transported to the crystal growth surface with the gas phase, forming carbon inclusion defects, reducing the Crystal quality. Therefore, a second stage (i.e., sublimation recrystallization stage) is required, in which the small silicon carbide particles will sublime, and then the surface of the silicon carbide particles added with the source material in step 410 will be recrystallized to produce larger particles (for example, 8 mesh-40 mesh), thereby improving the quality of subsequent crystal growth.
  • a second stage i.e., sublimation recrystallization stage
  • reaction temperature in the sublimation recrystallization stage may be in the range of 1600°C to 2500°C. In some embodiments,
  • the reaction temperature in the sublimation recrystallization stage can be in the range of 1650°C to 2450°C. In some embodiments, the reaction temperature in the sublimation recrystallization stage may be in the range of 1700°C to 2400°C. In some embodiments, the reaction temperature in the sublimation recrystallization stage may be in the range of 1750°C to 2350°C. In some embodiments, the reaction temperature in the sublimation recrystallization stage may be in the range of 1800°C to 2300°C. In some embodiments, the reaction temperature in the sublimation recrystallization stage may be in the range of 1850°C to 2250°C.
  • the reaction temperature in the sublimation recrystallization stage may be in the range of 1900°C to 2200°C. In some embodiments, the reaction temperature in the sublimation recrystallization stage may be in the range of 1950°C to 2150°C. In some embodiments, the reaction temperature in the sublimation recrystallization stage may be in the range of 2000°C to 2100°C. In some embodiments, the reaction temperature in the sublimation recrystallization stage may be in the range of 2030°C to 2170°C.
  • the reaction pressure in the sublimation recrystallization stage may be in the range of 10 -3 Pa to 0.1 MPa. In some embodiments, the reaction pressure in the sublimation recrystallization stage may be in the range of 10 -2 Pa to 0.01 MPa. In some embodiments, the reaction pressure in the sublimation recrystallization stage may be in the range of 0.1 Pa to 1 kPa. In some embodiments, the reaction pressure in the sublimation recrystallization stage may be in the range of 1 Pa to 100 Pa. In some embodiments, the reaction pressure in the sublimation recrystallization stage may be in the range of 3 Pa to 90 Pa. In some embodiments, the reaction pressure in the sublimation recrystallization stage may be in the range of 5 Pa to 80 Pa.
  • the reaction pressure in the sublimation recrystallization stage may be in the range of 7 Pa to 70 Pa. In some embodiments, the reaction pressure in the sublimation recrystallization stage may be in the range of 10 Pa to 60 Pa. In some embodiments, the reaction pressure in the sublimation recrystallization stage may be in the range of 20 Pa to 50 Pa. In some embodiments, the reaction pressure in the sublimation recrystallization stage may be in the range of 30 Pa to 40 Pa.
  • the reaction time of the sublimation recrystallization stage may be in the range of 5h to 60h. In some embodiments, the reaction time of the sublimation recrystallization stage may be in the range of 10h to 55h. In some embodiments, the reaction time of the sublimation recrystallization stage may be in the range of 15h to 50h. In some embodiments, the reaction time of the sublimation recrystallization stage may be in the range of 20h to 45h. In some embodiments, the reaction time of the sublimation recrystallization stage can be in the range of 25h to 40h. In some embodiments, the reaction time of the sublimation recrystallization stage may be in the range of 30h to 35h.
  • Step 430 perform post-processing on the initial raw materials to obtain silicon carbide powder.
  • post-processing the initial raw materials may include one or more of crushing, screening, carbon removal, cleaning, drying, and packaging of the initial raw materials.
  • silicon carbide raw materials with uniform particle size and high purity can be obtained.
  • adding silicon carbide particles to the source material can play a seeding role in the subsequent raw material synthesis operation, causing the small silicon carbide particles generated by the reaction to sublime and then recrystallize on their surface to grow into large particles of silicon carbide. raw materials, thereby reducing defects in the initial raw materials and improving the quality of the initial raw materials.
  • polytetrafluoroethylene additives when added to the source material, polytetrafluoroethylene can be decomposed into gas when heated. Since its decomposition temperature is lower than the synthesis temperature of the initial raw material, the synthesis reaction of the initial raw material has not yet started after the decomposition of polytetrafluoroethylene. It will not affect the synthesis of initial raw materials.
  • Figure 5 is a flow chart of an exemplary raw material pretreatment method and a seed crystal pretreatment method according to some embodiments of this specification.
  • process 500 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 5 is not limiting.
  • Step 510 perform acid treatment and/or cleaning on the raw materials.
  • the acid solution used in the acid treatment may include hydrochloric acid, sulfuric acid, aqua regia, or hydrofluoric acid.
  • the solution used for cleaning may include ultrapure water, pure water, deionized water, or distilled water.
  • ultrapure water in order to avoid secondary pollution caused by impurities in the water during the cleaning process, can be used for cleaning.
  • the density of microtubes in the subsequently prepared crystals can be reduced and the crystal quality can be improved.
  • Step 520 Perform at least one of polishing treatment, coating treatment, surface inspection or diameter expansion treatment on the seed crystal.
  • the polishing process may include placing the seed crystal on a polishing equipment, controlling the polishing equipment to polish under polishing conditions for a certain polishing time, and obtaining a polished seed crystal.
  • the polishing conditions may include polishing pressure and polishing rotation speed.
  • the polishing pressure may range from 0.05MPa to 1MPa. In some embodiments, the polishing pressure may range from 0.5MPa to 0.95MPa. In some embodiments, the polishing pressure may range from 0.1MPa to 0.9MPa. In some embodiments, the polishing pressure may range from 0.15MPa to 0.85MPa. In some embodiments, the polishing pressure may range from 0.2MPa to 0.8MPa.
  • the polishing pressure may range from 0.25MPa to 0.75MPa. In some embodiments, the polishing pressure may range from 0.3MPa to 0.7MPa. In some embodiments, the polishing pressure may range from 0.35MPa to 0.65MPa. In some embodiments, the polishing pressure may range from 0.4MPa to 0.6MPa. In some embodiments, the polishing pressure may range from 0.45MPa to 0.55MPa. In some embodiments, the polishing pressure may range from 0.49MPa to 0.51MPa.
  • the rotation speed may be in the range of 10 r/min-80 r/min. In some embodiments, the rotation speed may be in the range of 15 r/min-75 r/min. In some embodiments, the rotation speed may be in the range of 20 r/min-70 r/min. In some embodiments, the rotation speed may be in the range of 25r/min-65r/min.
  • the rotation speed may be in the range of 30r/min-60r/min. In some embodiments, the rotation speed may be in the range of 35r/min-55r/min. In some embodiments, the rotation speed may be in the range of 40r/min-50r/min. In some embodiments, the rotation speed may be in the range of 43 r/min-47 r/min.
  • the polishing time may range from 5 min to 480 min. In some embodiments, the polishing time may be in the range of 30 minutes to 450 minutes. In some embodiments, the polishing time may range from 60 min to 420 min. In some embodiments, the polishing time may be in the range of 90 minutes to 390 minutes. In some embodiments, the polishing time may range from 120 min to 360 min. In some embodiments, the polishing time may range from 150 min to 330 min. In some embodiments, the polishing time may be in the range of 180 minutes to 300 minutes. In some embodiments, the polishing time may be in the range of 210 minutes to 270 minutes. In some embodiments, the polishing time may be in the range of 230 minutes to 250 minutes. In some embodiments, the polishing time may be in the range of 235 minutes to 245 minutes.
  • polishing powder may be used during the polishing process.
  • the polishing powder may include rare earth polishing powder, diamond polishing powder (for example, polycrystalline diamond powder, single crystal diamond powder, nanodiamond powder), aluminum oxide series powder, cerium oxide series powder, and coated diamond powder.
  • the particle size of the polishing powder may range from 0.01 ⁇ m to 2 ⁇ m. In some embodiments, the particle size of the polishing powder may range from 0.1 ⁇ m to 1.9 ⁇ m. In some embodiments, the particle size of the polishing powder may range from 0.2 ⁇ m to 1.8 ⁇ m. In some embodiments, the particle size of the polishing powder may range from 0.4 ⁇ m to 1.6 ⁇ m.
  • the particle size of the polishing powder may range from 0.6 ⁇ m to 1.4 ⁇ m. In some embodiments, the particle size of the polishing powder may range from 0.8 ⁇ m to 1.2 ⁇ m. In some embodiments, the particle size of the polishing powder may range from 1.0 ⁇ m to 1.1 ⁇ m.
  • different types, different thicknesses, and/or different conditions (eg, surface roughness) of seed crystals may correspond to different polishing conditions, different polishing times, and/or different polishing powder particle sizes.
  • the back side of the seed crystal growth surface may be coated.
  • the coating method may include thermal evaporation method, magnetron sputtering method, physical vapor deposition method, chemical vapor deposition method, electron beam evaporation method, reactive sintering method, plasma coating method, molecular beam epitaxy method, Liquid phase epitaxy, laser deposition, etc.
  • the density of hexagonal cavities in the crystal can be reduced, thereby effectively avoiding an increase in the number of microtubules during the crystal growth process.
  • surface inspection may include checking whether there are microtubules on the surface of the seed crystal, whether there is mechanical damage on the surface of the seed crystal, whether the surface of the seed crystal is clean, etc.
  • surface inspection of the seed crystal may be accomplished in a variety of ways. For example, X-ray diffraction, laser scattering, and micro-Raman spectroscopy.
  • the surface state of the seed crystal can be strictly monitored before crystal growth, effectively avoiding the increase in the number of microtubules during the crystal growth process.
  • the seed crystal can be placed in a circular ring with a diameter larger than the diameter of the seed crystal so that the seed crystal grows radially first.
  • the diameter of the ring can be set according to the crystal diameter required in the actual crystal growth process. For example, if the diameter of the crystal to be grown is 8 inches, the diameter of the ring is also set to 8 inches.
  • the process parameters are controlled to perform axial growth on the surface of the seed crystal.
  • smaller seed crystals with low defect density can also be used to obtain large-sized ingots through diameter expansion and growth, and then are sliced and processed into large-sized seed crystals with required crystal diameters.
  • the area of low defect density area can be increased and the number of microtubules in the prepared crystal can be reduced.
  • the quality of the seed crystal can be improved and the number of microtubules in the prepared crystal can be reduced by polishing, coating, surface inspection, or diameter expansion.
  • FIG. 6 is a flow chart of an exemplary seed coating method according to some embodiments of this specification.
  • process 600 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 600 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 600 may be implemented.
  • process 600 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 6 is not limiting.
  • Step 610 Sandblast the back of the seed crystal.
  • the back side of the seed crystal in order to make the adhesion effect of the seed crystal better after coating, can be sandblasted before coating the seed crystal to obtain a seed crystal with a certain roughness.
  • the back side of the seed crystal may be the side of the seed crystal opposite to the growth side of the seed crystal.
  • a 100-200 mesh blasting material (for example, emery, quartz sand, iron sand, copper ore sand) can be used to sandblast the back of the seed crystal.
  • 110-190 mesh spray material can be used to sandblast the back of the seed crystal.
  • 120-180 mesh spray material can be used to sandblast the back of the seed crystal.
  • a 130-mesh to 170-mesh spray material can be used to sandblast the back of the seed crystal.
  • a 140-mesh to 160-mesh spray material may be used to sandblast the back of the seed crystal.
  • 150-155 mesh spray material can be used to sandblast the back of the seed crystal.
  • the roughness of the sandblasted seed crystal ranges from 1 ⁇ m to 80 ⁇ m. In some embodiments, the roughness of the sandblasted seed crystal ranges from 5 ⁇ m to 75 ⁇ m.
  • the roughness of the sandblasted seed crystal ranges from 10 ⁇ m to 70 ⁇ m. In some embodiments, the roughness of the sandblasted seed crystal ranges from 15 ⁇ m to 65 ⁇ m. In some embodiments, the roughness of the sandblasted seed crystal ranges from 20 ⁇ m to 60 ⁇ m. In some embodiments, the roughness of the sandblasted seed crystal ranges from 25 ⁇ m to 55 ⁇ m. In some embodiments, the roughness of the sandblasted seed crystal ranges from 30 ⁇ m to 50 ⁇ m. In some embodiments, the roughness of the sandblasted seed crystal ranges from 35 ⁇ m to 45 ⁇ m. In some embodiments, the roughness of the sandblasted seed crystal ranges from 38 ⁇ m to 42 ⁇ m.
  • the back of the seed crystal meets a certain roughness, which facilitates the subsequent coating of the back of the seed crystal and ensures that the coating effect is good and is not easy to fall off.
  • Step 620 perform heating pretreatment on the sandblasted seed crystal.
  • the seed crystal can be preheated in advance to avoid the excessive temperature difference between the film material and the seed crystal, which may cause the seed crystal to break due to excessive thermal stress, or due to the different thermal expansion of the film material and the seed crystal. Problems such as the coating being not firm may occur.
  • the temperature of the heating pretreatment may be in the range of 300°C to 900°C. In some embodiments, the temperature of the heating pretreatment may be in the range of 400°C to 800°C. In some embodiments, the temperature of the heating pretreatment may be in the range of 500°C to 700°C. In some embodiments, the temperature of the heating pretreatment may be in the range of 600°C to 650°C.
  • Step 630 Use a film material to coat the heat-pretreated seed crystal.
  • the membrane material may be a substance with high temperature stability and chemical stability.
  • the film material may include one or more of W, Mo, N 2 W, and TaC.
  • the thickness of the coating may range from 1 ⁇ m to 200 ⁇ m. In some embodiments, the coating thickness may range from 5 ⁇ m to 175 ⁇ m. In some embodiments, the coating thickness may range from 10 ⁇ m to 150 ⁇ m. In some embodiments, the coating thickness may range from 25 ⁇ m to 125 ⁇ m. In some embodiments, the thickness of the coating may range from 50 ⁇ m to 100 ⁇ m. In some embodiments, the coating thickness may range from 60 ⁇ m to 90 ⁇ m. In some embodiments, the coating thickness may range from 75 ⁇ m to 85 ⁇ m. In some embodiments, the coating thickness may range from 80 ⁇ m to 85 ⁇ m.
  • the coating method may include thermal evaporation method, physical vapor deposition method, chemical vapor deposition method, electron beam evaporation method, reactive sintering method, plasma coating method, molecular beam epitaxy method, liquid phase epitaxy method, laser Deposition method, etc.
  • Z represents the seed crystal
  • 108-111 represents the cavity cover
  • the seed crystal Z is bonded to the cavity cover 108-111 through adhesive A. Due to the low machining accuracy of the surface of the cavity covers 108-111, uneven bonding of the adhesive A, and/or the physical and chemical properties of the adhesive A itself, the back surface of the seed crystal Z is bonded to the cavity covers 108-111. There may be some pores Q at the interface.
  • the pores Q cause heat transfer to be blocked, and the heat condenses at the pores, which in turn causes the back side of the seed crystal to evaporate and affects subsequent crystal growth.
  • the temperature at the cavity cover 108-111 is T 2
  • the temperature at the seed crystal Z is T 1
  • the temperature difference between the two is ⁇ T. This normal temperature difference will not cause the sublimation of the seed crystal Z.
  • the accumulation of heat leads to the interface temperature T 1 ⁇ T 1 ', that is, the temperature at the growth interface where the pore Q is located is high, the temperature gradient of crystal growth is small, and the crystal growth rate is small. Therefore, the temperature at the growth interface where the pore Q is located is small.
  • the growth rate at the growth interface is lower than the growth rate at the growth interface without pores Q around it. Since the growth rate is different everywhere on the same growth interface, it leads to the generation of crystal growth defects (such as dislocations, microtubules or holes). Large-area vacancy groups (or pore groups) may even lead to macroscopically visible interface depressions X at the crystal growth interface, which will seriously affect the quality and yield of crystal J.
  • the cavity covers 108-111 can also be replaced by seed crystal holders.
  • the seed crystal holder may be a component that supports the seed crystal.
  • FIG. 8 is a flow chart of an exemplary seed coating method according to further embodiments of this specification.
  • process 800 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 800 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 800 may be implemented.
  • process 800 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 8 is not limiting.
  • Step 810 Place multiple seed crystals on multiple coating racks of the coating equipment.
  • multiple trays may be provided on the coating rack for placing seed crystals.
  • multiple seed crystals can be placed in multiple trays manually. By loading seed crystals manually, the process is flexible, the equipment is simple, and the cost is low.
  • the robotic arm can be controlled by the processing device and/or the control device to place the seed crystals on the tray.
  • the robotic arm can automatically pick up the seed crystal and place it on the tray according to the set program. Loading seed crystals through a robotic arm can reduce labor costs and make the picking accurate and easy to control.
  • multiple coating racks may be disposed inside the coating equipment.
  • the coating equipment please refer to other parts of this specification (for example, Figure 9 and its related descriptions), and will not be described again here.
  • Step 820 Pour coating gas into the coating equipment, and simultaneously grow carbon films on the backs of multiple seed crystals through vapor deposition.
  • a layer of polyimide film (Polyimide Film, PI) can be pre-attached to the non-coated surface, and the polyimide film is removed after the coating is completed, thereby preventing the non-coated surface from being coated.
  • the non-coated surface can be tightly attached to the tray through electrostatic adsorption or other means to prevent the non-coated surface from being coated.
  • the coating gas may include methane or acetylene.
  • the silicon carbide seed crystal can be fixed on the tray, and the chamber of the coating equipment can be evacuated and maintained.
  • the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 0.001 Pa to 100 Pa. In some embodiments, the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 0.01 Pa to 95 Pa. In some embodiments, the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 0.1 Pa to 90 Pa. In some embodiments, the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 1 Pa to 85 Pa. In some embodiments, the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 10 Pa to 80 Pa.
  • the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 20 Pa to 75 Pa. In some embodiments, the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 30 Pa to 70 Pa. In some embodiments, the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 40 Pa to 60 Pa. In some embodiments, the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 45 Pa to 55 Pa. In some embodiments, the pressure of the chamber of the coating equipment after the exhaust treatment can be in the range of 48 Pa to 52 Pa.
  • the chamber of the coating equipment may be heated.
  • the temperature of the heat treatment may range from 200°C to 1000°C. In some embodiments, the temperature of the heat treatment may range from 300°C to 900°C. In some embodiments, the temperature of the heat treatment may range from 400°C to 800°C. In some embodiments, the temperature of the heat treatment may range from 500°C to 700°C. In some embodiments, the temperature of the heat treatment may range from 550°C to 650°C. In some embodiments, the temperature of the heat treatment may range from 580°C to 620°C.
  • an inert gas can be used as the carrier gas, and the reaction gas (or coating gas) can be introduced into the chamber of the coating equipment at the same time. After a certain period of time, the reaction gas is stopped and the carrier gas flow rate is maintained unchanged. .
  • the inert gas may be Ar or He, etc.
  • the gas flow rate of the inert gas may range from 1 mL/min to 1000 mL/min. In some embodiments, the gas flow rate of the inert gas may range from 50 mL/min to 950 mL/min. In some embodiments, the gas flow rate of the inert gas may range from 100 mL/min to 900 mL/min. In some embodiments, the gas flow rate of the inert gas may range from 200 mL/min to 800 mL/min. In some embodiments, the gas flow rate of the inert gas may range from 300 mL/min to 700 mL/min.
  • the gas flow rate of the inert gas may range from 400 mL/min to 600 mL/min. In some embodiments, the gas flow rate of the inert gas may range from 450 mL/min to 550 mL/min. In some embodiments, the gas flow rate of the inert gas may range from 480 mL/min to 520 mL/min.
  • the gas flow rate of the reaction gas may range from 1 mL/min to 1000 mL/min. In some embodiments, the gas flow rate of the reaction gas may range from 50 mL/min to 950 mL/min. In some embodiments, the gas flow rate of the reaction gas may range from 100 mL/min to 900 mL/min. In some embodiments, the gas flow rate of the reaction gas may range from 200 mL/min to 800 mL/min. In some embodiments, the gas flow rate of the reaction gas may range from 300 mL/min to 700 mL/min. In some embodiments, the gas flow rate of the reaction gas may range from 400 mL/min to 600 mL/min.
  • the gas flow rate of the reaction gas may range from 450 mL/min to 550 mL/min. In some embodiments, the gas flow rate of the reaction gas may range from 480 mL/min to 520 mL/min.
  • the time for introducing the reaction gas may be in the range of 1 min to 30 min. In some embodiments, the time for introducing the reaction gas may be in the range of 4 min to 27 min. In some embodiments, the time for introducing the reaction gas may be in the range of 7 min to 24 min. In some embodiments, the time for introducing the reaction gas may be in the range of 10 min to 21 min. In some embodiments, the time for introducing the reaction gas may be in the range of 13 min to 18 min. In some embodiments, the time for introducing the reaction gas may be in the range of 15 min to 16 min.
  • the inert gas carrier gas can also be introduced before the reaction gas is introduced, and the reaction gas is introduced until the chamber pressure of the coating equipment reaches the pressure threshold, and the reaction gas is stopped after a certain period of time, and Keep the carrier gas flow constant.
  • the pressure threshold may be in the range of 0.01MPa to 0.1MPa. In some embodiments, the threshold value of pressure may be in the range of 0.02MPa ⁇ 0.09MPa. In some embodiments, the threshold value of the pressure may be in the range of 0.03MPa ⁇ 0.08MPa. In some embodiments, the threshold of pressure may be in the range of 0.04MPa ⁇ 0.07MPa. In some embodiments, the threshold of pressure may be in the range of 0.05MPa ⁇ 0.06MPa.
  • the chamber of the coating equipment can be cooled to room temperature.
  • the cooling rate of the chamber to room temperature can be controlled within a certain rate range.
  • the cooling rate to room temperature may range from 1°C/min to 50°C/min.
  • the cooling rate to room temperature may range from 5°C/min to 45°C/min.
  • the cooling rate to room temperature may range from 10°C/min to 40°C/min.
  • the cooling rate to room temperature may range from 15°C/min to 35°C/min.
  • the cooling rate to room temperature may be in the range of 20°C/min to 30°C/min.
  • the cooling rate to room temperature may range from 23°C/min to 27°C/min.
  • the thickness of the carbon film is affected by reaction time, reaction temperature and reaction gas ratio.
  • the thickness of the carbon film can be in the range of 0.1 to 100 ⁇ m by controlling the reaction time, reaction temperature, reaction gas ratio, etc.
  • the thickness of the carbon film may range from 10 to 90 ⁇ m.
  • the thickness of the carbon film may range from 20 to 80 ⁇ m.
  • the thickness of the carbon film may range from 30 to 70 ⁇ m.
  • the thickness of the carbon film may range from 40 to 60 ⁇ m.
  • the thickness of the carbon film may range from 45 to 55 ⁇ m.
  • carbon films can be grown on the backs of multiple seed crystals at the same time.
  • the coating efficiency is high and the uniformity of the coating is good, which results in better consistency of the grown crystals.
  • Figure 9 is a schematic structural diagram of an exemplary coating equipment according to some embodiments of this specification.
  • the coating equipment 106 may include a coating chamber 106-1, a coating frame 106-2, a driving component (not shown in Figure 9), and an air extraction component (not shown in Figure 9 out), heating component 106-3, air inlet 106-4 and air outlet 106-5.
  • the coating chamber 106-1 may be a place where seed crystals are coated.
  • coating chamber 106-1 may include tube 106-11 and baffle 106-12.
  • the two baffles 106-12 may be sealingly connected to the left and right ends of the tube 106-11 respectively.
  • tubes 106-11 may be quartz tubes.
  • the coating frame 106-2 can be a frame made of high temperature resistant material.
  • the lower end of the coating frame 106-2 can be rotatably connected to the base, and the base is fixedly connected to the bottom of the coating chamber 106-1.
  • the number of coating racks 106-2 may be one or more. In some embodiments, when the number of coating racks 106-2 is multiple, the multiple coating racks 106-2 can be staggered on both sides of the air inlet 106-4 in the air inlet direction, so that the coating gas can be evenly diffused. to each coating rack 106-2.
  • multiple trays may be provided on the coating rack 106-2.
  • a tray may be used to place seed crystals.
  • multiple trays may be arranged in upper and lower layers on the coating rack 106-2.
  • multiple trays may be arranged around the central axis of the coating rack 106-2.
  • the driving assembly can be used to drive the coating frame 106-2 to rotate around the central axis.
  • the drive assembly may include blades 106-6.
  • the fan blades 106-6 can be arranged on the side of the coating frame 106-2. When the coating gas is introduced, the fan blades 106-6 can rotate under the driving of the coating gas, thereby driving the coating frame 106-2. Rotate around the central axis.
  • the air extraction assembly can be connected to the air outlet 106-5 for air extraction of the coating chamber 106-1.
  • the extraction component may be a vacuum device (eg, a vacuum pump).
  • the heating component 106-3 may be disposed outside the tube 106-11 to provide the heat required for seed coating.
  • insulation cotton 106-7 can be disposed between the heating component 106-3 and the tube 106-11, so that the heat radiated by the heating component 106-3 can uniformly heat the seed crystals in the tray on the coating rack 106-2.
  • the thermal insulation cotton 106-7 may include thermal insulation materials such as aluminum oxide and zirconia.
  • an insulation layer 106-8 may be provided on the outside of the heating component 106-3 to insulate the coating equipment 106.
  • the air inlet 106-4 may be provided on the baffle 106-12 for introducing coating gas into the coating chamber 106-1.
  • the air outlet 106-5 may be provided on another baffle 106-12 for discharging air or coating gas in the coating cavity 106-1.
  • the coating gas please refer to the relevant description in Figure 8 and will not be described again here.
  • the coating equipment 160 is not limited to the structure shown in FIG. 9 , and may be structurally modified based on the coating equipment 106 shown in FIG. 9 .
  • the coating cavity 106-1 can also be a closed cavity made of metal material (for example, stainless steel), for example, a cylindrical cavity or a rectangular parallelepiped cavity.
  • metal material for example, stainless steel
  • the drive assembly may include a drive motor.
  • the lower end of the coating frame 106-2 can be drivingly connected to the driving motor to rotate around its central axis driven by the driving motor.
  • the heating component 106-3 may be disposed inside the coating chamber 106-1 to provide the heat required for seed coating.
  • an insulation layer 106-8 may be provided on the outside of the coating chamber 106-1 to insulate the coating equipment 106.
  • the air inlet 106-4 may be provided on the coating cavity 106-1 for introducing coating gas into the coating cavity 106-1.
  • the air outlet 106-5 may be provided on the coating cavity 106-1 for discharging air or coating gas in the coating cavity 106-1.
  • the coating gas can be evenly diffused to each seed crystal, thereby increasing the thickness of the coating on each seed crystal. of uniformity.
  • FIG. 10 is a flow chart of an exemplary seed bonding method according to some embodiments of the present specification.
  • process 1000 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 1000 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 1000 may be implemented.
  • flow 1000 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 10 is not limiting.
  • Step 1010 apply an adhesive (for example, adhesive A as shown in Figure 11A or 12A) on the cavity cover of the growth chamber (for example, the cavity covers 108-111 as shown in Figure 11A or 12A) )lower surface.
  • an adhesive for example, adhesive A as shown in Figure 11A or 12A
  • the cavity cover of the growth chamber for example, the cavity covers 108-111 as shown in Figure 11A or 12A
  • an adhesive eg, adhesive A as shown in Figure 11A or 12A
  • the adhesive may include liquid glue, AB glue, synthetic resin, synthetic rubber, etc.
  • the adhesive can be manually applied to the lower surface of the chamber cover or the surface of the seed holder of the growth chamber.
  • the adhesive is applied manually, which is a flexible process with simple equipment and low cost.
  • a robotic arm can be controlled by a processing device and/or a control device to apply the adhesive on the lower surface of the chamber cover or the surface of the seed holder of the growth chamber.
  • a robotic arm can automatically apply adhesive according to a set program. Applying adhesive through a robotic arm can reduce labor costs, achieve high repeatability, and make picking up materials precise and easy to control.
  • a glue leveler, a glue sprayer, a glue dispenser or a glue scraper can be controlled by a processing device and/or a control device to apply the adhesive on the lower surface of the chamber cover or seeds of the growth chamber. Crystal support surface. Applying adhesive through a glue leveling machine, spraying machine, dispensing machine or squeegee machine can reduce the complexity of the coating operation, achieve high repeatability, and make the material taking accurate and easy to control.
  • Step 1020 place the cavity cover coated with adhesive into a bonding device (eg, seed bonding device 107 as shown in Figure 11A or 12A).
  • a bonding device eg, seed bonding device 107 as shown in Figure 11A or 12A.
  • the seed crystal holder coated with adhesive may also be placed in a bonding device (eg, seed crystal bonding device 107 as shown in Figure 11A or 12A).
  • the cavity cover or seed holder coated with adhesive may be manually placed into the bonding device.
  • the robotic arm can be controlled by the processing device and/or the control device to place the cavity cover or seed crystal holder coated with adhesive into the bonding device.
  • a robotic arm can automatically place a cavity cover or seed crystal holder coated with adhesive according to a set program. Using a robotic arm to place the cavity cover or seed crystal holder coated with adhesive can reduce labor costs, achieve a high degree of automation, and be easy to control.
  • Step 1030 Exhaust air from the bonding equipment.
  • the pressure of the bonding equipment after the air extraction process is in the range of 0.1 Pa to 10 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 0.5 Pa to 10 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 1 Pa to 9 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 2 Pa to 8 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 3 Pa to 7 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 4 Pa to 6 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 4.5 Pa to 5.5 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 5.0 Pa to 5.2 Pa.
  • the bonding equipment may be evacuated by a vacuum device (eg, a vacuum pump).
  • a vacuum device eg, a vacuum pump
  • Step 1040 Apply pressure through a pressing assembly (for example, the pressing assembly 107-6 shown in Figure 11A or 12A) to bond the seed crystal to the cavity cover.
  • a pressing assembly for example, the pressing assembly 107-6 shown in Figure 11A or 12A
  • the seed crystal can also be bonded to the seed crystal holder through a pressing assembly (for example, the pressing assembly 107-6 shown in Figure 11A or 12A).
  • the seed crystal can be fixed on the suction cup of the compression assembly by adsorption (for example, the suction cup 107-61 shown in Figure 11A or 12A).
  • the adsorption method may include high-temperature traceless adhesive bonding, electrostatic adsorption, etc., or any combination thereof.
  • the movement of the pressing assembly can be controlled by the processing device and/or the control device to bring the seed crystal into contact with the chamber cover or the seed crystal holder, and Apply further pressure to bond the two.
  • the ultrasonic detection equipment for example, an ultrasonic flaw detector
  • the processing device and/or the control device can be controlled by the processing device and/or the control device to detect the seed crystal before applying pressure for bonding. and the bonding quality of the cavity cover or seed crystal holder (for example, pore detection, that is, whether there are bubbles and the area ratio of the bubbles).
  • the bonding quality is qualified if there are no bubbles or the bubble area ratio is less than a proportion threshold (for example, less than 2%); otherwise, the bonding quality is unqualified.
  • the processing equipment and/or control equipment can be used to control the movement of the pressing assembly to apply pressure to bond the seed crystal to the cavity cover or seed crystal holder.
  • the processing equipment and/or control equipment can be used to control the reverse movement of the pressing assembly to re-attach the seed crystal to the cavity cover or seed crystal holder, and check the fit again. Quality until the fit quality is up to standard. For more information about pore detection, please refer to the description of step 320 and will not be described again here.
  • a buffer layer may also be provided between the seed crystal and the cavity cover or seed crystal holder.
  • an adhesive can be applied to the upper surface of the buffer layer and/or the lower surface of the seed crystal, and the buffer layer is snapped and placed under the seed crystal, and the The cavity cover or seed crystal holder coated with adhesive is placed in the bonding equipment.
  • the movement of the pressing assembly e.g., up and down movement
  • the processing device and/or the control device can be controlled by the processing device and/or the control device to couple the seed crystal and the buffer layer (e.g., the buffer layer H shown in Figures 12A and 12B) with the cavity.
  • the covers come into contact and further pressure is applied to bond the three.
  • the ultrasonic detection equipment for example, an ultrasonic flaw detector
  • the processing equipment and/or the control equipment can be controlled by the processing equipment and/or the control equipment to detect the difference between the seed crystal and the buffer layer.
  • the buffer layer and the bonding quality between the buffer layer and the cavity cover for example, whether there are bubbles and the area ratio of the bubbles.
  • the processing equipment and/or control equipment can be used to control the movement of the pressing assembly to apply pressure to bond the seed crystal, the buffer layer and the cavity cover.
  • the processing equipment and/or control device can be used to control the reverse movement of the pressing assembly to re-attach the seed crystal, the buffer layer and the cavity cover, and check the bonding quality again. , until the fit quality is qualified.
  • the cavity cover shown in Figures 12A and 12B can also be a seed crystal holder. For more information about pore detection, please refer to the description of step 320 and will not be described again here.
  • the degassing process and the heating process can be performed simultaneously during the bonding or pressing process.
  • the applied pressure of the compression assembly may be between 0.01MPa and 1.5MPa. In some embodiments, the pressure exerted by the pressing assembly may be in the range of 0.1MPa to 1.5MPa. In some embodiments, the pressure exerted by the pressing assembly may range from 0.2MPa to 1.4MPa. In some embodiments, the pressure exerted by the pressing assembly may be in the range of 0.3MPa to 1.3MPa. In some embodiments, the pressure exerted by the pressing assembly may be in the range of 0.4MPa to 1.2MPa. In some embodiments, the pressure exerted by the pressing assembly may be in the range of 0.5MPa to 1.1MPa.
  • the pressure exerted by the pressing assembly may be between 0.6MPa and 1.0MPa. In some embodiments, the pressure exerted by the pressing assembly may be between 0.7MPa and 0.9MPa. In some embodiments, the pressure exerted by the pressing assembly may range from 0.75MPa to 0.85MPa.
  • the pressure of the bonding equipment after the air extraction process is in the range of 0.1 Pa to 10 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 0.5 Pa to 9.5 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 1 Pa to 9 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 1.5 Pa to 8.5 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 2 Pa to 8 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 2.5 Pa to 7.5 Pa.
  • the pressure of the bonding equipment after the air extraction process is in the range of 3 Pa to 7 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 3.5 Pa to 6.5 Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 4Pa to 6Pa. In some embodiments, the pressure of the bonding equipment after the air extraction process is in the range of 4.5 Pa to 5.5 Pa.
  • the temperature of the heat treatment may range from 200°C to 1200°C. In some embodiments, the temperature of the heat treatment may range from 300°C to 1100°C. In some embodiments, the temperature of the heat treatment may range from 400°C to 1000°C. In some embodiments, the temperature of the heat treatment may range from 500°C to 900°C. In some embodiments, the temperature of the heat treatment may range from 600°C to 800°C. In some embodiments, the temperature of the heat treatment may range from 650°C to 750°C. In some embodiments, the temperature of the heat treatment may range from 680°C to 720°C.
  • the time of the heat treatment may range from 1 min to 600 min. In some embodiments, the time of the heat treatment may range from 50 min to 600 min. In some embodiments, the time of the heat treatment may range from 100 min to 550 min. In some embodiments, the time of the heat treatment may be in the range of 150 min to 500 min. In some embodiments, the time of the heat treatment may range from 200 min to 450 min. In some embodiments, the time of the heat treatment may be in the range of 250 min to 400 min. In some embodiments, the time of the heat treatment may be in the range of 300 min to 350 min.
  • Exhausting the air bubbles inside the adhesive can ensure that the air bubbles in the adhesive have been basically exhausted before bonding. Applying further pressure to compress the seed crystal while performing further air extraction and heating can further prevent adhesion. New bubbles are generated during the bonding process, and the heat treatment ensures the adhesion of the adhesive, thereby improving the bonding effect, avoiding defects such as microtubules and hexagonal cavities during subsequent crystal growth, and improving crystal quality.
  • FIG. 11A is a schematic structural diagram of an exemplary seed crystal bonding device according to some embodiments of this specification
  • FIG. 11B is a schematic diagram of an exemplary seed crystal after bonding according to some embodiments of this specification.
  • A is the adhesive and Z is the seed crystal.
  • the seed bonding device 107 may include a bonding cavity 107-1, a vacuum assembly 107-2, an upper transmission assembly 107-3, a lower transmission assembly 107-4, Heating component 107-5 and pressing component 107-6.
  • the bonding cavity 107-1 may be a place where the seed crystal is bonded.
  • the vacuum assembly 107-2 can be used to perform vacuum processing on the bonding cavity 107-1.
  • the upper transmission assembly 107-3 can be connected to the top of the bonding cavity 107-1.
  • the lower transmission assembly 107-4 can be connected to the bottom end of the bonding cavity 107-1.
  • the heating component 107-5 can be used to provide the heat required for seed bonding.
  • the pressing component 107-6 can apply pressure to bond the seed crystal Z to the cavity cover 108-111.
  • the compression assembly 107-6 may include a suction cup 107-61 and a support table 107-62.
  • the upper end of the suction cup 107-61 can be connected to the top end of the bonding cavity 107-1 through the upper transmission assembly 107-3.
  • the lower end of the support platform 107-62 can be connected to the bottom end of the bonding cavity 107-1 through the lower transmission assembly 107-4.
  • the lower end of the suction cup 107-61 can be used to absorb the seed crystal Z.
  • the upper end of the support platform 107-62 may be used to place the cavity cover 108-111.
  • the upper surface of the cavity cover 108-111 and/or the lower surface of the seed Z can be coated with adhesive A.
  • the pressing component 107-6 can bond the seed crystal Z to the cavity cover 108-111 by cooperating with the upper transmission component 107-3, the lower transmission component 107-4 and the heating component 107-5. superior.
  • the pressure required for seed bonding can be provided by movement of the upper transmission assembly 107-3 and/or the lower transmission assembly 107-4.
  • the suction cup 107-61 can drive the seed crystal Z to move downward through the movement of the upper transmission assembly 107-3, and the support table 107-62 can drive the cavity cover 108-111 through the movement of the lower transmission assembly 107-4.
  • the upper transmission assembly 107-3 and/or the lower transmission assembly 107-4 continues to move to provide the pressure required for seed crystal bonding. , thereby bonding the seed crystal Z to the cavity cover 108-111.
  • the seed bonding apparatus 107 may also include a pressure-sensitive component 107-7.
  • pressure sensing assembly 107-7 may be located in upper transmission assembly 107-3 and/or lower transmission assembly 107-4.
  • the pressure sensing component 107-7 can be used to monitor the applied pressure of the compression component 107-6 and adjust the applied pressure accordingly.
  • the upper transmission assembly 107-3 can be lowered and/or the lower transmission assembly 107-4 can be raised to increase the pressure.
  • the upper transmission assembly 107-3 and/or the lower transmission assembly 107-4 can be raised to reduce the applied pressure; the pressure-sensitive component 107-7 is located at the upper transmission assembly 107-3 and/or the lower transmission assembly 107- 4 and move along with it.
  • the seed crystal Z can be adsorbed on the lower surface of the suction cup 107-61, and the cavity cover 108-111 is placed on the support platform 107-62.
  • the seed crystal Z and the cavity cover 108-111 are concentric in the vertical direction. without contact, and apply adhesive A on the lower surface of the seed crystal Z and/or the lower surface of the growth chamber cover (above the chamber cover 108-111 in Figure 11A), through the movement of the upper transmission assembly 107-3
  • the seed crystal Z on the suction cup 107-61 is driven to move downward, and the cavity cover 108-111 on the support table 107-62 is driven to move upward through the movement of the lower transmission assembly 107-4.
  • the upper transmission assembly 107-3 and/or the lower transmission assembly 107-4 continue to move to provide the pressure required for seed crystal bonding.
  • the pressure-sensitive component is used. 107-7 monitors the applied pressure of the pressing assembly 107-6 and keeps the bonding cavity sealed and in a vacuum state.
  • Figure 12A is a schematic structural diagram of an exemplary seed crystal bonding device according to some further embodiments of this specification
  • Figure 12B is a schematic diagram of an exemplary seed crystal bonding apparatus according to some further embodiments of this specification, where A is Adhesive, Z is the seed crystal, H is the buffer layer.
  • the structure of the seed bonding equipment in Figure 12A is similar to that in Figure 11A, regarding the bonding cavity 107-1, vacuum assembly 107-2, upper transmission assembly 107-3, lower transmission assembly 107-4, and heating assembly 107-5
  • the pressing component 107-6 and the pressure-sensing component 107-7 please refer to other parts of this specification (for example, FIG. 11A and its related descriptions), and will not be described again here.
  • the seed bonding apparatus 107 may further include a support assembly 107-8.
  • the support component 107-8 can be two L-shaped brackets, and the two L-shaped brackets are symmetrically arranged on both sides of the suction cup 107-61 to clamp and place the buffer layer H on the seed crystal Z. below.
  • the buffer layer H may be a material that buffers the bonding between the seed crystal Z and the cavity covers 108-111.
  • the buffer layer H may include a flexible carbon-based material.
  • the buffer layer H may include flexible carbon-based materials with uniform and flat thickness, such as graphite paper, carbon fiber, or graphene.
  • the buffer layer is a flexible material with a certain amount of deformation
  • the processing error of the cavity cover plane and the back side of the seed crystal can be matched.
  • the buffer layer is denser than the graphite cavity cover, adhesive penetration can be avoided, so the bonding quality between the buffer layer and the seed crystal is better than the bonding quality between the seed crystal and the graphite cavity cover directly.
  • the buffer layer H can be placed above the support component 107-8, the seed crystal Z is adsorbed on the lower surface of the suction cup 107-61, and the cavity cover 108-111 is placed on the upper surface of the support platform 107-62, so that the seeds
  • the crystal Z, the buffer layer H, and the cavity covers 108-111 are arranged concentrically in the vertical direction and do not contact; on the lower surface of the seed crystal Z and/or the upper surface of the buffer layer H and on the lower surface of the buffer layer H and/or the growth cavity
  • the upper part of the body cover is coated with adhesive A, and the movement of the upper transmission assembly 107-3 drives the seed crystal Z on the suction cup 107-61 to move downward, and the movement of the lower transmission assembly 107-4 drives the seed crystal Z on the support platform 107-62.
  • the cavity covers 108-111 move upward.
  • the adhesive A above the cavity cover performs bonding, and the pressure required for seed crystal bonding is provided by the continued movement of the upper transmission assembly 107-3 and/or the lower transmission assembly 107-4.
  • the pressure applied by the compression component 107-6 is monitored through the pressure-sensitive component 107-7, and the bonding cavity is kept in a closed and vacuum state, so that the seed crystal Z, the buffer layer H, and the cavity cover 108-111 are bonded in the vertical direction in turn.
  • the buffer layer H for example, graphite paper
  • the adhesive A can also be processed into one piece to form a solid glue.
  • the integrated buffer layer H and adhesive A can be placed above the support component 107-8, and the seed crystal Z is adsorbed on the lower surface of the suction cup 107-61, and the cavity The cover 108-111 is placed on the upper surface of the support platform 107-62. As described above, through the movement of the upper transmission assembly 107-3 and the lower transmission assembly 107-4, the integrated buffer layer H and adhesive A are used to remove the seeds. The crystal Z is bonded to the cavity cover 108-111.
  • the pressure applied by the compression component 107-6 is monitored through the pressure-sensitive component 107-7, and the bonding cavity is kept sealed and in a vacuum state, so that the seed crystal Z, the buffer layer H, and the cavity cover 108-111 are bonded in the vertical direction in sequence.
  • the buffer layer H and the adhesive A By processing the buffer layer H and the adhesive A into one piece, the problem of uneven flattening of the liquid adhesive or the generation of bubbles during the flattening process can be avoided, the quality of the seed crystal bonding can be improved, and the problem of bubbles caused by bubbles during the crystal growth process can be avoided. Defects such as microtubes and hexagonal cavities in silicon carbide crystals are caused.
  • FIG. 13 is a flow chart of an exemplary seed bonding method according to some embodiments of this specification
  • FIG. 14A is a schematic diagram of an exemplary rolling operation according to some embodiments of this specification
  • FIG. 14B is a schematic diagram of an exemplary seed bonding method according to some embodiments of this specification
  • process 1300 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 1300 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 1300 may be implemented.
  • a storage device eg, a storage unit of a storage device, a processing device, and/or a control device
  • flow 1300 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 13 is not limiting.
  • Step 1310 Stack the seed crystal and buffer layer on the bonding table.
  • the contact surface between the buffer layer and the seed crystal is coated with an adhesive.
  • the lower surface of the buffer layer is in contact with the upper surface of the seed crystal, and accordingly, the lower surface of the buffer layer and/or the upper surface of the seed crystal may be coated with an adhesive.
  • the upper surface of the buffer layer is in contact with the lower surface of the seed crystal, and accordingly, the upper surface of the buffer layer and/or the lower surface of the seed crystal may be coated with an adhesive.
  • the size of the buffer layer can be set according to actual needs. In some embodiments, the size of the buffer layer may be greater than or equal to the size of the seed crystal. For more information about the buffer layer, please refer to other parts of this specification (for example, FIGS. 12A, 12B and related descriptions), and will not be described again here.
  • the bonding table can be any platform used to place seed crystals and whose levelness meets requirements.
  • the buffer layer and the seed crystal can be stacked on the bonding table manually.
  • a robotic arm can be controlled by a processing device and/or a control device to place the buffer layer and the seed crystal on the bonding table.
  • the robot arm can automatically place the buffer layer and seed crystal according to the set procedure. Using a robotic arm to place a buffer layer or seed crystal coated with adhesive can reduce labor costs, achieve a high degree of automation, and be easy to control.
  • the adhesive can be manually applied to the contact surface of the buffer layer and/or the seed crystal.
  • the adhesive is applied manually, which is a flexible process with simple equipment and low cost.
  • the robot arm can be controlled by the processing device and/or the control device to apply the adhesive on the contact surface of the buffer layer and/or the seed crystal.
  • a robotic arm can automatically apply adhesive according to a set program. Applying adhesive through a robotic arm can reduce labor costs, achieve high repeatability, and be precise and easy to control.
  • Step 1320 Perform a rolling operation by pressing the component to bond the seed crystal to the buffer layer.
  • the compression assembly may include a compression roller.
  • a rolling operation can be performed through a pressure roller to bond the seed crystal to the buffer layer.
  • the buffer layer H and the seed crystal Z can be stacked on the bonding table 107-9.
  • the seed crystal Z and the buffer layer H are concentrically arranged in the vertical direction.
  • the buffer layer H and The contact surface of the seed crystal Z is coated with adhesive.
  • the buffer layer H can be rolled by the pressure roller 107-10, so that the seed crystal Z and the buffer layer H can be bonded.
  • the first angle between the non-contact portion of the buffer layer and the seed crystal (for example, the angle ⁇ in FIG. 14A ), the first pressure exerted by the pressure roller and/or the first speed at which the pressure roller moves must meet certain requirements.
  • the first angle may be in the range of 0.1° to 15°. In some embodiments, the first angle may be in the range of 1° to 14°. In some embodiments, the first angle may be in the range of 2° to 13°. In some embodiments, the first angle may be in the range of 3° to 12°. In some embodiments, the first angle may be in the range of 4° to 11°. In some embodiments, the first angle may be in the range of 5° to 10°. In some embodiments, the first angle may be in the range of 6° to 9°. In some embodiments, the first angle may be in the range of 7° to 8°.
  • the first pressure may be in the range of 0.1 kPa ⁇ 25 kPa. In some embodiments, the first pressure may be in the range of 2 kPa ⁇ 23 kPa. In some embodiments, the first pressure may be in the range of 4 kPa ⁇ 21 kPa. In some embodiments, the first pressure may be in the range of 6 kPa to 19 kPa. In some embodiments, the first pressure may be in the range of 8 kPa to 17 kPa. In some embodiments, the first pressure may be in the range of 10 kPa to 15 kPa. In some embodiments, the first pressure may be in the range of 12 kPa to 13 kPa.
  • the first speed may be in the range of 0.1 mm/s to 60 mm/s. In some embodiments, the first speed may be in the range of 5 mm/s to 55 mm/s. In some embodiments, the first speed may be in the range of 10 mm/s to 50 mm/s. In some embodiments, the first speed may be in the range of 15 mm/s to 45 mm/s. In some embodiments, the first speed may be in the range of 20 mm/s to 40 mm/s. In some embodiments, the first speed may be in the range of 25 mm/s to 35 mm/s. In some embodiments, the first speed may be in the range of 27 mm/s to 33 mm/s. In some embodiments, the first speed may be in the range of 29 mm/s to 31 mm/s.
  • Step 1330 stack the cavity cover of the growth chamber, the bonded buffer layer and the seed crystal on the bonding table, where the buffer layer is located between the cavity cover and the seed crystal.
  • the contact surface between the buffer layer and the cavity cover is coated with adhesive.
  • the lower surface of the buffer layer is in contact with the upper surface of the cavity cover.
  • the upper surface of the buffer layer is in contact with the lower surface of the cavity cover.
  • the chamber cover of the growth chamber, the bonded buffer layer and the seed crystal can be stacked on the bonding table manually.
  • a robotic arm can be controlled by a processing device and/or a control device to place the chamber cover of the growth chamber, the bonded buffer layer and the seed crystal on the bonding table.
  • the robot arm can automatically place the chamber cover of the growth chamber, the bonded buffer layer and the seed crystal according to the set program. Using a robotic arm to place the cavity cover coated with adhesive can reduce labor costs, have a high degree of automation and is easy to control.
  • the adhesive can be manually applied to the contact surface between the buffer layer and the cavity cover.
  • the adhesive is applied manually, which is a flexible process with simple equipment and low cost.
  • the robot arm can be controlled by the processing device and/or the control device to apply the adhesive on the contact surface between the buffer layer and the cavity cover.
  • a robotic arm can automatically apply adhesive according to a set program. Applying adhesive through a robotic arm can reduce labor costs, achieve high repeatability, and be precise and easy to control.
  • Step 1340 Perform a rolling operation by pressing the assembly to bond the seed crystal to the cavity cover.
  • the seed crystal can be rolled by a pressure roller, so that the buffer layer after the seed crystal is bonded is bonded to the cavity cover, so that the seed crystal is bonded to the cavity cover.
  • the cavity covers 108-111 of the growth chamber, the bonded buffer layer H and the seed crystal Z are sequentially stacked on the bonding table 107-9. 108-111.
  • the bonded buffer layer H and the seed crystal Z are arranged concentrically in the vertical direction.
  • the contact surface of the buffer layer H and/or the cavity cover 108-111 is coated with adhesive, which can be passed through the pressure roller 107-10
  • the seed crystal Z is rolled, so that the seed crystal Z is bonded to the cavity cover 108-111.
  • the angle between the non-contact portion of the buffer layer and the cavity cover and the cavity cover is a second angle.
  • the pressure exerted by the roller is the second pressure, and the moving speed of the pressure roller is the second speed until the rolling operation is completed.
  • the second angle may be in the range of 0.01° to 0.2°. In some embodiments, the second angle may be in the range of 0.03° to 0.18°. In some embodiments, the second angle may be in the range of 0.05° to 0.16°. In some embodiments, the second angle may be in the range of 0.07° to 0.14°. In some embodiments, the second angle may be in the range of 0.09° to 0.12°. In some embodiments, the second angle may be in the range of 0.11° ⁇ 0.10°. In some embodiments, the second angle may be in the range of 0.7° to 0.9°.
  • the second pressure may be the same as or close to the first pressure. In some embodiments, the second speed may be the same as or close to the first speed.
  • the second pressure may be different than the first pressure. In some embodiments, the second speed may be different than the first speed.
  • the adhesive can be fully extruded and eliminated. bubbles, and avoid the generation of new bubbles during the bonding process, thereby avoiding defects such as microtubes and hexagonal cavities in the growing silicon carbide crystal, and improving the quality of the silicon carbide crystal.
  • the seed crystal can also be directly bonded to the cavity cover without a buffer layer between the seed crystal and the cavity cover, that is, steps 1310 and 1320 can be omitted.
  • the cavity cover and the seed crystal of the growth chamber can be stacked on the bonding table, and the adhesive is coated between the cavity cover and the seed crystal.
  • a rolling operation can also be performed through a pressing assembly to bond the seed crystal to the cavity cover. For more information about the rolling operation, please refer to the above description and will not be described again here.
  • FIG. 15 is a flow chart of an exemplary crystal growth method shown in accordance with further embodiments of the present specification.
  • process 1500 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 1500 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 1500 may be implemented.
  • process 1500 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 15 is not limiting.
  • Step 1510 through the first heating component (for example, the first heating component 108-31 shown in Figure 16A, the first heating component 108-31 shown in Figure 16B, the first heating component 108-31 shown in Figure 16C ) Heating the raw material zone to sublimate the raw materials into gas phase components required for crystal growth.
  • first heating component for example, the first heating component 108-31 shown in Figure 16A, the first heating component 108-31 shown in Figure 16B, the first heating component 108-31 shown in Figure 16C .
  • the first heating component may provide the heat required for the feed zone. In some embodiments, the first heating component may be disposed below the raw material area or on the periphery of the cavity where the raw material area is located.
  • the first heating component may include an inductive heating component.
  • the induction heating component may include an electromagnetic induction coil, an intermediate frequency power supply, or the like.
  • the first heating component may include a resistive heating component.
  • the resistance heating component may include high-resistance graphite, silicon-molybdenum rod (MoSi 2 ), nickel-chromium wire (Ni-Cr), iron-chromium-aluminum wire (Fe-Cr-Al), nickel-iron wire (Ni-Fe ), nickel copper wire (Ni-Cu), silicon carbide rod (SiC), etc.
  • the gas phase components may include Si, Si 2 C, SiC 2 and other gas phase components.
  • Step 1520 through a second heating component (for example, the second heating component 108-32 shown in Figure 16A, the second heating component 108-32 shown in Figure 16B, the second heating component 108-32 shown in Figure 16C ) Heating the vicinity of the partition to maintain the discharge rate of the gas phase component through at least one discharge port.
  • a second heating component for example, the second heating component 108-32 shown in Figure 16A, the second heating component 108-32 shown in Figure 16B, the second heating component 108-32 shown in Figure 16C .
  • the second heating component may be disposed on the side of the partition for heating the area near the partition to maintain the discharge rate of the gas phase component through at least one discharge port.
  • the vicinity of the partition may refer to an area within a preset range (eg, 1 mm, 5 mm, 10 mm, etc.) upward or downward along the location of the partition.
  • the second heating component may include an inductive heating component.
  • the induction heating component may include an electromagnetic induction coil, an intermediate frequency power supply, or the like.
  • the second heating component may include a resistive heating component.
  • the resistance heating component may include high-resistance graphite, silicon-molybdenum rod (MoSi 2 ), nickel-chromium wire (Ni-Cr), iron-chromium-aluminum wire (Fe-Cr-Al), nickel-iron wire (Ni-Fe ), nickel copper wire (Ni-Cu), silicon carbide rod (SiC), etc.
  • the first heating component and the second heating component may be of the same or different types.
  • the discharge rate may be the total amount of gas phase components passing through the discharge port per unit time. In some embodiments, the discharge rate may reflect how quickly the gas phase component passes through the discharge port.
  • the discharge rate of the gas phase components through the discharge port can be maintained, thereby maintaining the stable growth of the crystal growth surface, significantly reducing the probability of dislocation formation, reducing crystal defects, and improving the quality of the grown crystal.
  • Step 1530 through a third heating component (for example, the third heating component 108-33 shown in Figure 16A, the third heating component 108-33 shown in Figure 16B, the third heating component 108-33 shown in Figure 16C ) heated growing area.
  • a third heating component for example, the third heating component 108-33 shown in Figure 16A, the third heating component 108-33 shown in Figure 16B, the third heating component 108-33 shown in Figure 16C .
  • a third heating component can provide the heat required for growth.
  • the third heating component may be a segmented or individually controlled heating component.
  • the third heating assembly may include multiple sub-heating components.
  • multiple sub-heating elements may be disposed circumferentially at different radial diameters at the top of the growth zone.
  • the heating parameters of multiple sub-heating components can be independently controlled to achieve independent control of temperatures at different radial diameters. For example, if the local radial temperature gradient increases, the heating parameters of multiple sub-heating components can be individually controlled to reduce the local radial temperature gradient.
  • the plurality of sub-heating components may be a plurality of annular heating resistor components gradually decreasing in the radial direction, and the annular heating resistor components are connected in parallel to form a third heating component.
  • multiple annular heating resistor components can be independently controlled according to the radial temperature gradient, so that the radial temperature gradient is less than a preset gradient threshold, reducing crystal thermal stress and avoiding crystal cracking, thereby growing high-quality crystals.
  • the third heating component may be disposed above the cavity cover or on the periphery of the cavity where the cavity cover is located.
  • multiple sub-heating components may be disposed around the periphery of the growth zone at different axial heights.
  • the heating parameters of multiple sub-heating components can be independently controlled to achieve independent control of temperatures at different axial heights. For example, if the local axial temperature gradient increases, the heating parameters of multiple sub-heating components can be individually controlled to reduce the local axial temperature gradient.
  • the plurality of sub-heating components may be a plurality of annular induction coils arranged at different heights along the axial direction, and the annular induction coils are connected in parallel to form a third heating component.
  • multiple annular induction coils can be independently controlled according to the axial temperature gradient, so that the axial temperature gradient is less than a preset gradient threshold, thereby reducing crystal thermal stress and avoiding crystal cracking, thereby growing high-quality crystals.
  • the third heating component may include an inductive heating component.
  • the induction heating component may include an electromagnetic induction coil, a magnetically permeable object, etc.
  • the third heating component may include a resistive heating component.
  • the resistance heating component may include high-resistance graphite, silicon-molybdenum rod (MoSi2), nickel-chromium wire (Ni-Cr), iron-chromium-aluminum wire (Fe-Cr-Al), nickel-iron wire (Ni-Fe) , nickel copper wire (Ni-Cu), silicon carbide rod (SiC), etc.
  • the heating types of the first heating component, the second heating component, and/or the third heating component may be the same or different.
  • the temperature near the separator is higher than the temperature of the raw material zone (or the "temperature at the raw material") and/or the temperature of the growth zone (or the “temperature at the seed"), that is, The temperature near the partition > the temperature of the raw material zone and/or the temperature of the growth zone.
  • a bidirectional temperature gradient can be formed in the growth chamber, with the partition being a high-temperature zone and the raw material zone and the growth zone being low-temperature.
  • the temperature distribution in the growth chamber can be that the temperature at the outlet is the highest, followed by the raw material area (for example, the upper surface of the raw material), and the growth area (for example, the growth surface) is the lowest.
  • the temperature near the partition can be adjusted by adjusting the heating parameters of the second heating component, thereby adjusting the temperature gradient from the outlet to the growth surface, thereby maintaining the discharge of gas phase components through at least one outlet. rate.
  • the concentration gradient can be used to drive the transmission of gas phase components under the conditions that satisfy the sublimation of raw materials, reducing the power of the first heating component to a certain extent and saving electric energy; in addition, the temperature near the partition is the highest, which can suppress the gas phase The components nucleate and grow near the partition; further, by forming a two-way temperature gradient, the discharge rate of the gas phase components through the discharge port can be adjusted, and the impact of temperature changes on the discharge rate can be reduced when the temperature of the raw material area changes. It is beneficial to control the stability of the crystal growth rate and maintain the stable growth of the crystal growth surface.
  • the temperature of the raw material zone is higher than the temperature near the partition, and the temperature near the partition is higher than the temperature of the growth zone, that is, the temperature of the raw material zone > the temperature near the partition > the temperature of the growth zone.
  • a temperature gradient can be formed in the growth chamber in which the raw material area, the partition plate and the growth area gradually decrease.
  • the heating parameters of the first heating component and the second heating component can be adjusted to adjust the temperature near the raw material area and the partition, thereby adjusting the temperature gradient from the raw material area to the discharge port and to the growth surface, and due to The concentration of gas phase components in the raw material area is greater than the concentration near the partition and/or the concentration gradient in the growth zone.
  • the temperature gradient and concentration gradient from the raw material area to the outlet and to the growth surface can drive the gas phase components to move towards the growth zone.
  • the temperature gradient and concentration gradient can drive the transmission of gas phase components under the conditions that satisfy the sublimation of raw materials, and the discharge of gas phase components can be adjusted at the outlet of the partition. rate, which is conducive to controlling the stability of the crystal growth rate and maintaining the stable growth of the crystal growth surface.
  • the first heating component heats the raw material area, the second heating component heats the vicinity of the partition, and the third heating component heats the growth zone.
  • the first heating component can control the temperature of the raw material to regulate the sublimation rate of the raw material, and after carbonization occurs at the bottom of the raw material zone, By adjusting the power of the first heating component, the changes in heat distribution and carbon-to-silicon ratio caused by carbonization are compensated; the second heating component can inhibit gas phase nucleation and crystallization near the partition, and reduce the impact of temperature control in the raw material area on the discharge rate.
  • the third heating component can regulate the temperature gradient between the discharging port and the growth area, regulate the radial temperature gradient of the seed crystal, and reduce the risk of crystal growth.
  • Thermal stress simultaneously reduces the influence of the first heating component and/or the second heating component on the temperature of the growth area, controls the stability of the temperature of the crystal growth surface, reduces the probability of dislocation formation, reduces crystal defects, and improves the quality of the grown crystal.
  • the temperature gradient between the outlet and the growth area as well as the radial temperature gradient of the seed crystal can be controlled. Significantly reduce the thermal stress of crystal growth, improve crystal quality, and effectively control the growth rate.
  • FIG. 16A is a schematic structural diagram of an exemplary crystal growth device according to some embodiments of this specification
  • FIG. 16B is a schematic structural diagram of an exemplary crystal growth device according to still other embodiments of this specification
  • FIG. 16C is a schematic structural diagram of an exemplary crystal growth device according to some embodiments of this specification
  • crystal growth device 108 may include growth chamber 108-1 and heating assembly 108-3.
  • the growth chamber 108-1 may include a growth area 108-11 and a raw material area 108-12.
  • the growth area 108-11 is used to place seed crystals
  • the raw material area 108-12 is used to place raw materials.
  • growth zone 108-11 and feedstock zone 108-12 are separated by partition 108-2.
  • the partition 108-2 may include at least one outlet 108-21 through which the gas phase components are delivered to the growth zone 108-11.
  • the heating component 108-3 can be used to heat the growth chamber 108-1 to achieve crystal growth based on the physical vapor transport method of the seed crystal Z and the raw material Y.
  • the heating component 108-3 may include a first heating component 108-31, a second heating component 108-32, and a third heating component 108-33, respectively used to heat the raw material area, the vicinity of the partition, and the growth area. .
  • the outlet 108-21 can be prepared by mechanical drilling.
  • the partition 108-2 itself can be made of porous material, and the gaps therein can serve as the discharge openings 108-21.
  • the discharge port 108-21 can be obtained by mechanically drilling holes in the partition plate 108-2.
  • the partition 108-2 can be porous graphite, and the porous graphite has pores as the outlet 108-21. Using the pores on the porous graphite as the discharge port 108-21 can replenish the carbon component while ensuring the passage of the gas phase components of the raw material without causing pollution.
  • the partition 108-2 can also be a multi-layer grid structure (not shown in the figure). By adjusting the positional relationship between different layers on the partition, the size of the through holes on the partition can be adjusted. and/or shape.
  • At least one of the location, shape, distribution, or flow area of the outlets 108-21 may be adjustable.
  • the position of the outlet 108-21 may include an axial position of the outlet 108-21 and a radial position of the outlet 108-21.
  • the shape of the outlet 108-21 may be a cross-sectional shape.
  • the distribution of the discharge openings 108-21 is the distribution position and/or distribution density of the discharge openings 108-21 on the partition 108-2.
  • the flow area of the outlet 108-21 is the cross-sectional area of a single outlet 108-21 or the sum of the cross-sectional areas of multiple outlets 108-21.
  • the cavity cover can be installed on the slide rail, and the relative position between the cavity cover and the discharge port 108-21 can be adjusted through the slide rail.
  • a cover plate can be installed on the discharge port 108-21, and the shape, distribution or flow area of the discharge port 108-21 can be adjusted by opening or closing the cover plate.
  • the raw material is gradually consumed, the upper surface of the raw material gradually decreases, and the crystal thickness gradually increases.
  • the The axial position of the discharge port 108-21 causes the discharge port 108-21 to gradually move downward.
  • the radial position of the discharge port 108-21 can be adjusted to keep the growth speeds in the radial direction of the growth surface basically consistent or similar.
  • the shape, distribution and/or flow area of the discharge openings 108-21 can be adjusted by opening and closing the cover plate, thereby maintaining the stability of the discharge amount and the growth rate of the growth surface.
  • the relative position between the chamber cover and the outlet 108-21 during the next crystal growth process can also be adjusted based on the crystal growth data collected during the last crystal growth process, or the outlet 108-21 can be adjusted. 21 shape, distribution or circulation area.
  • the radial position of the outlet 108-21 can be adjusted during the next crystal growth process to keep the growth speeds in the radial direction of the growth surface basically consistent or similar.
  • the gas phase components were concentrated in some locations during the last crystal growth process, resulting in higher concentrations in some locations in the growth chamber and too low concentrations in other locations, in order to make the gas phase components everywhere below the seed crystal growth surface
  • concentration of the particles is the same or similar, and relatively flat or appropriately convex crystals are grown.
  • the radial position of the discharge port 108-21 can be adjusted during the next crystal growth process to keep the growth speed in the radial direction of the growth surface basically consistent or similar. .
  • the crystal thickness during the last crystal growth process is less than the thickness threshold (eg, 3mm, 5mm, or 8mm) or the growth rate is less than the rate threshold (eg, 0.1mm/h, 0.3mm/h, or 0.5mm/h )
  • the rate threshold eg, 0.1mm/h, 0.3mm/h, or 0.5mm/h
  • the first heating component 108-31 may be used to heat the raw material region 108-12 to sublime the raw material Y into a gas phase component required for crystal growth.
  • the first heating components 108-31 may be resistive heating components.
  • the first heating component 108-31 may be an induction heating component.
  • the power of the first heating component 108-31 can be compensated and adjusted according to the degree of carbonization of the raw material to maintain the transmission rate of the gas phase component at the outlet 108-21.
  • the second heating component 108-32 can be disposed outside the partition 108-2 and used to heat the vicinity of the partition 108-2 to maintain the discharge of the gas phase components through at least one discharge port 108-21. rate.
  • the second heating components 108-32 may be resistive heating components.
  • the second heating component 108-32 may be an induction heating component.
  • the power of the second heating component 108-32 remains constant or decreases slightly to control the transmission speed of the gas phase components to be substantially constant.
  • third heating component 108-33 may be used to heat growth zone 108-11.
  • third heating components 108-33 may be resistive heating components.
  • the power of the third heating component 108-33 is controlled to make the radial temperature gradient of the crystal as small as possible, and to maintain the temperature gradient constant throughout the growth process.
  • the third heating component 108-33 may include a plurality of sub-heating components disposed around the periphery of the growth zone 108-11 at different axial heights.
  • the heating parameters of multiple sub-heating components can be independently controlled to achieve independent control of temperatures at different axial heights. For example, if the local axial temperature gradient increases, the heating parameters of multiple sub-heating components can be individually controlled to reduce the local axial temperature gradient.
  • the plurality of sub-heating components may be a plurality of annular induction coils arranged at different heights along the axial direction, and the annular induction coils are connected in parallel to form a third heating component.
  • multiple annular induction coils can be independently controlled according to the axial temperature gradient, so that the axial temperature gradient is less than a preset gradient threshold, thereby reducing crystal thermal stress and avoiding crystal cracking, thereby growing high-quality crystals.
  • the third heating assembly 108-33 may include a plurality of sub-heating elements disposed around the top of the growth zone 108-11 at different radial diameters.
  • the heating parameters of multiple sub-heating components can be independently controlled to achieve independent control of temperatures at different radial diameters. For example, if the local radial temperature gradient increases, the heating parameters of multiple sub-heating components can be individually controlled to reduce the local radial temperature gradient.
  • the plurality of sub-heating components may be a plurality of annular heating resistor components gradually decreasing in the radial direction, and the annular heating resistor components are connected in parallel to form a third heating component.
  • multiple annular heating resistor components can be independently controlled according to the radial temperature gradient, so that the radial temperature gradient is less than a preset gradient threshold, reducing crystal thermal stress and avoiding crystal cracking, thereby growing high-quality crystals.
  • the third heating component may be disposed above the cavity cover or on the periphery of the cavity where the cavity cover is located.
  • the crystal growth device 108 may also include a heat preservation component 108-4.
  • the insulation component 108-4 can be disposed between the raw material area 108-11 and the growth area 108-12 to isolate the heat exchange between the growth area 108-11 and the raw material area 108-12, thereby reaching the growth area. The purpose of separate temperature control between 108-11 and raw material area 108-12.
  • a plurality of holes may be provided on the insulation component 108-4, so that the gas phase components are transmitted to the growth zone 108-11 through the plurality of holes.
  • the crystal growth device 108 may also include a temperature measurement component 103 for acquiring multiple temperatures related to the growth chamber 108-1. More information can be found in Figure 18 and its related description.
  • the crystal growth device 108 may also include a monitoring component 104 for monitoring crystal growth conditions. More information about the monitoring component 104 can be found in Figures 19A and 19B and their associated descriptions.
  • crystal growth device 108 may also include control components (not shown in Figures 16A-16C).
  • the control component may be implemented by the processing device 101 and/or the control device 102 .
  • the control component can obtain temperature information within the growth chamber 108-1; and adjust at least one of the position, shape, distribution, or flow area of the at least one outlet based on the temperature information.
  • temperature information may be determined through modeling based on multiple temperatures.
  • the temperature information may include temperature information of the crystal growth surface.
  • the control component can obtain the temperature information in the growth chamber 108-1 during the last crystal growth process; and adjust at least one outlet in the next crystal growth process based on the temperature information in the last crystal growth process. At least one of location, shape, distribution or circulation area.
  • the control component can obtain the distribution of gas phase components required for crystal growth in the growth chamber 108-1; and based on the distribution, adjust the position, shape, distribution or flow area of at least one outlet. at least one of them.
  • the control component can obtain the distribution of gas phase components required for crystal growth in the growth chamber 108-1 during the last crystal growth process; and based on the distribution during the last crystal growth process, adjust the At least one of the position, shape, distribution or flow area of at least one outlet during a crystal growth process.
  • FIG. 21 and its related descriptions please refer to other parts of this specification (for example, FIG. 21 and its related descriptions), and will not be described again here.
  • control component can also adjust the heating parameters of the heating component 108-3 and/or at least one of the position, shape, distribution or flow area of the at least one outlet 108-21 based on the crystal growth conditions. In some embodiments, the control component can also adjust the heating parameters of the heating component 108-3 and/or the position of at least one outlet 108-21 in the next crystal growth process based on the crystal growth conditions in the last crystal growth process. At least one of shape, distribution or flow area. In some embodiments, crystal growth conditions may include at least one of thickness, growth rate, or defects of the growing crystal.
  • Figure 18 is a schematic layout diagram of an exemplary temperature measurement assembly according to some embodiments of this specification.
  • the temperature measurement component 103 may include multiple temperature sensors 103-1.
  • the side walls and/or the top of the growth chamber 108-1 may include an insulation layer 103-2, and the temperature sensor 103-1 may be disposed in the growth chamber through the insulation layer 103-2. body 108-1 side walls and/or top.
  • temperature sensor 103-1 may include a thermocouple, an infrared pyrometer, a thermistor, the like, or any combination thereof.
  • the position and number of temperature sensors 103-1 can be adjusted according to monitoring needs.
  • multiple temperature sensors 103-1 can be arranged axially on the side wall of the growth chamber 108-1, or multiple temperature sensors 103-1 can be arranged radially on the top of the growth chamber 108-1. 1.
  • temperature sensors 103-1 may be distributed symmetrically.
  • four temperature sensors 103-1 are arranged axially on the left side wall of the growth chamber 108-1, and four temperature sensors 103-1 are arranged axially on the right side wall of the growth chamber 108-1.
  • the temperature distribution of the growth chamber 108-1 can be detected as a whole, and the openings are uniform, ensuring the symmetry of the temperature field and avoiding any impact on crystal growth.
  • temperature sensors 103-1 may be asymmetrically distributed on growth chamber 108-1.
  • four temperature sensors 103-1 are arranged axially on the left side wall of the growth chamber 108-1, and three temperature sensors 103-1 are arranged axially on the right side wall of the growth chamber 108-1.
  • the local temperature conditions in the growth chamber 108-1 can be focused on detecting, and the flexibility is higher.
  • the axial temperature gradient or radial temperature gradient within the growth chamber 108-1 may be obtained through the temperature sensor 103-1.
  • cooling devices are provided between the multiple temperature sensors 103-1 and the top and/or side walls of the growth chamber 108-1.
  • Component 103-3 if the temperature sensor 103-1 is an infrared pyrometer, a cold trap can be provided between the temperature sensor 103-1 and the top and/or side wall of the growth chamber 108-1.
  • the cold trap may be a hollow cylindrical structure (for example, a hollow cylinder, a hollow rectangle, etc.). One end of the hollow cylindrical structure is connected to the chamber and is not sealed, and the other end is sealed by optical glass.
  • the temperature sensor 103-1 The temperature measurement point is located on the axis of the cold trap and outside the optical glass.
  • the side wall of the cold trap can be a hollow structure, and the inner wall temperature can be reduced by passing cooling water.
  • cooling assembly 103-3 may include one or more.
  • the cooling component 103-3 may be provided corresponding to multiple temperature sensors 103-1.
  • a cooling component 103-3 may be provided.
  • a cooling component is provided between the temperature sensor and the top of the growth chamber.
  • the temperature measuring component is located above the cooling component. Since the temperature at the cooling component is relatively low, the volatiles will adhere to the side walls of the cooling component during the volatilization process and will not reach the upper measuring component. temperature component, thereby preventing volatile matter from adhering to the temperature measurement component and ensuring accurate measurement of the temperature measurement component.
  • FIG. 19A is a schematic structural diagram of an exemplary monitoring component according to some embodiments of this specification
  • FIG. 19B is a schematic structural diagram of an exemplary monitoring component according to still other embodiments of this specification.
  • Z is the seed crystal.
  • monitoring component 104 may include a contact monitoring component or a contactless monitoring component.
  • Figure 19A shows a contact monitoring component
  • Figure 19B shows a non-contact monitoring component.
  • monitoring component 104 may be a contact monitoring component.
  • the monitoring component 104 may include an ultrasonic thickness gauge 104-1, a cooling device 104-2, and a graphite rod 104-3.
  • ultrasonic thickness gauge 104-1 may include ultrasonic probe 104-11.
  • graphite rods 104-3 may be integrally formed with cavity covers 108-111.
  • the ultrasonic probe 104-11 can emit ultrasonic waves and reflect them through the growing crystal Z, and then can measure the thickness of the growing crystal Z based on the propagation time of the ultrasonic waves. Furthermore, the crystal growth rate can also be calculated based on the thickness information at multiple time points.
  • the ultrasonic probe 104-11 Since the ultrasonic probe 104-11 has certain requirements on the contact temperature, and excessive temperature may cause damage, it is necessary to reduce the temperature of the contact point of the ultrasonic probe 104-11 to below 500°C. In some embodiments, the temperature of the contact point of the ultrasonic probe 104-11 can be reduced by increasing the length of the graphite rod 104-3. In some embodiments, the temperature of the contact point of the ultrasonic probe 104-11 can be reduced by providing a cooling device 104-2 on the upper part of the graphite rod 104-3. In some embodiments, cooling device 104-2 may be an air cooling device. Specifically, the cooling device 104-2 can be a sealed graphite cylinder.
  • the ultrasonic probe 104-11 is inserted into the interior of the cooling device 104-2 from the upper part of the cooling device 104-2 and placed on the graphite rod 104-3. It can be directed toward the cooling device 104-2. Inert gas is passed into the device 104-2 to cool the ultrasonic probe 104-11. It should be noted that both the cooling device 104-2 and the growth chamber 108-1 are sealed devices, and the gases in the two do not circulate with each other.
  • the thickness of the graphite rod 104-3 is too thick, the conduction of ultrasonic pulses will be affected, thereby affecting the measurement results of the ultrasonic thickness gauge 104-1; if the thickness of the graphite rod 104-3 is too thin, good cooling will not be achieved. As a result, the temperature of the contact point of the ultrasonic probe 104-11 is too high, which may cause damage to the ultrasonic probe 104-11. Therefore, the thickness of the graphite rod 104-3 needs to be set within an appropriate range.
  • the thickness of the graphite rod 104-3 may range from 5 cm to 30 cm. In some embodiments, the thickness of the graphite rod 104-3 may range from 8 cm to 27 cm. In some embodiments, the thickness of the graphite rod 104-3 may range from 11 cm to 24 cm. In some embodiments, the thickness of the graphite rod 104-3 may range from 14 cm to 21 cm. In some embodiments, the thickness of the graphite rod 104-3 may range from 17 cm to 18 cm. In some embodiments, the thickness of the graphite rod 104-3 may range from 17.3 cm to 18.7 cm.
  • the contact point between the ultrasonic probe 104-11 of the contact monitoring assembly 104 and the graphite rod 104-3 may use a coupling agent (for example, polymer hydrogel) to fill the contact point of the graphite rod 104-3.
  • a coupling agent for example, polymer hydrogel
  • the tiny gap between the ultrasonic probe 104-11 and the ultrasonic probe 104-11 prevents the trace amount of air between the gaps from affecting the measurement effect.
  • the ultrasonic probe 104-11 can perform measurements at a fixed position at certain intervals, or move along a specific trajectory for rapid measurement, thereby obtaining the growth rate of the crystal at the fixed position or the thickness distribution data in a certain area.
  • monitoring component 104 may be a contactless monitoring component.
  • the non-contact monitoring component 104 may include air-coupled ultrasonic non-destructive testing, electromagnetic ultrasonic (EMAT) non-destructive testing, electrostatically coupled ultrasonic non-destructive testing, laser ultrasonic non-destructive testing, etc.
  • EMAT electromagnetic ultrasonic
  • FIG. 20 is a flowchart of an exemplary crystal growth method according to further embodiments of the present specification.
  • process 2000 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 2000 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 2000 may be implemented.
  • process 2000 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 20 is not limiting.
  • Step 2010 Obtain temperature information in the growth chamber.
  • the temperature information may be temperature values, temperature gradients or temperature distributions throughout the growth chamber. In some embodiments, the temperature information may include temperature information of the crystal growth surface.
  • the processing device and/or the control device may obtain multiple temperatures related to the growth chamber through a temperature measurement component.
  • the temperature measurement component may include multiple temperature sensors.
  • the temperature measurement component please refer to other parts of this specification (for example, Figure 18 and its related description), and will not be described again here.
  • the processing device and/or the control device may determine the temperature information within the growth chamber through modeling based on multiple temperatures. In some embodiments, the processing device and/or the control device can obtain position information between multiple temperature measurement components (for example, the temperature sensor 103-1 shown in FIG. 18) and position information between the temperature measurement component and the crystal growth surface. . In some embodiments, the processing device and/or the control device may determine the distance between the multiple temperature measurement components according to the structural parameters of the crystal growth device (for example, the size of the crystal growth device) and the position of the temperature measurement component on the crystal growth device. location information (e.g., distance, angle).
  • location information e.g., distance, angle
  • the processing equipment and/or control equipment can obtain the crystal thickness through the monitoring component 104 (eg, the monitoring component 104 in FIGS. 19A and 19B ), and based on the crystal thickness, structural parameters of the crystal growth device (eg, The size of the crystal growth device) and the position of the temperature measurement component on the crystal growth device, determine the position information (for example, distance, angle) of the multiple temperature measurement components and the crystal growth surface.
  • the processing device and/or the control device can input multiple temperatures, position information between multiple temperature measurement components, and position information between multiple temperature measurement components and the crystal growth surface into the temperature model, and use the temperature The model outputs temperature information within the growth chamber.
  • the temperature model is trained in advance based on multiple historical temperatures, historical position information between multiple temperature measurement components, and historical location information and historical temperature information between multiple temperature measurement components and the crystal growth surface.
  • multiple historical temperatures, historical position information between multiple temperature measurement components, and historical position information between multiple temperature measurement components and the crystal growth surface are training data, and historical temperature information is a training label.
  • the processing device and/or the control device may obtain pressure information within the growth chamber through a pressure sensor.
  • the pressure information may include at least one pressure value.
  • the processing device and/or control device can input multiple temperature, pressure information and structural parameters of the crystal growth device into simulation software, and the simulation software outputs temperature information within the growth chamber.
  • simulation software may include virtual reactor software.
  • Step 2020 Adjust at least one of the position, shape, distribution or flow area of at least one outlet based on the temperature information.
  • the processing device and/or the control device may adjust at least one of the position, shape, distribution or flow area of at least one outlet in the current crystal growth process or the next crystal growth process based on the temperature information.
  • the temperature information can be a temperature gradient. If the temperature gradient distribution near the crystal growth surface is uneven, resulting in a large temperature gradient in some locations near the crystal growth surface and a small temperature gradient in other locations, in order to make the seed crystal growth surface
  • the temperature gradients below are the same or similar, and relatively flat or appropriately convex crystals are grown.
  • the radial position of the outlet 108-21 during the current crystal growth process or the next crystal growth process can be adjusted so that the outlet 108 -21 translation; you can also adjust the shape of the discharge port 108-21 by opening and closing the cover plate to change the shape of the discharge port 108-21; you can also adjust the distribution of the discharge port 108-21 by opening and closing the cover plate , so that some of the discharge ports 108-21 are opened or closed; or the circulation area of the discharge ports 108-21 can be adjusted by opening and closing the cover plate, so that some of the discharge ports 108-21 are opened or closed.
  • the temperature gradient near the crystal growth surface may be a radial temperature gradient on the crystal growth surface, or may be an axial temperature gradient in the vertical direction near the crystal growth surface.
  • the current or next crystal growth process can be made more stable, crystal growth defects can be reduced, and crystal quality can be improved.
  • Figure 21 is a flow chart of an exemplary crystal growth method according to further embodiments of the present specification.
  • process 2100 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 2100 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 2100 may be implemented.
  • process 2100 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 21 is not limiting.
  • Step 2110 Obtain the distribution of gas phase components required for crystal growth in the growth cavity.
  • the distribution of gas phase components in the growth cavity may be the concentration distribution of the gas phase components in the growth cavity or at various locations in the growth cavity.
  • the processing device and/or control device can obtain temperature information in the growth chamber through a temperature measurement component. In some embodiments, the processing device and/or the control device may obtain the current status of the outlet and determine relevant information of at least one outlet based on the current status of the outlet. In some embodiments, the information related to the discharge port may include at least one of the position, shape, distribution or flow area of the discharge port.
  • the processing device and/or the control device can simulate and determine the distribution of the gas phase components in the growth chamber based on the temperature information in the growth chamber and the relevant information of at least one outlet.
  • the temperature information in the growth chamber and the relevant information of at least one outlet can be input into the simulation software, and the simulation software outputs the distribution of the gas phase components in the growth chamber.
  • simulation software may include virtual reactor software.
  • Step 2120 Based on the distribution situation, adjust at least one of the position, shape, distribution or flow area of at least one outlet.
  • the processing equipment and/or control equipment can adjust the position, shape, distribution, or distribution of at least one outlet in the current crystal growth process or the next crystal growth process based on the distribution of gas phase components in the growth chamber. At least one of the flow areas.
  • the radial position of the outlet 108-21 during the current crystal growth process or the next crystal growth process can be adjusted to make the outlet 108-21 translate; the outlet can also be adjusted by opening and closing the cover.
  • the shape of the outlet 108-21 changes the shape of the outlet 108-21; the distribution of the outlet 108-21 can also be adjusted by opening and closing the cover, so that some of the outlets 108-21 can be opened or closed; Alternatively, the flow area of the discharge openings 108-21 can be adjusted by opening and closing the cover, so that some of the discharge openings 108-21 can be opened or closed.
  • the gas phase component distribution on the crystal growth surface in the current crystal growth process or the next crystal growth process can be achieved It is more uniform, grows flatter crystals, reduces crystal growth defects, and improves crystal quality.
  • FIG. 22 is a flow chart of an exemplary crystal growth method shown in accordance with further embodiments of the present specification.
  • process 2200 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 2200 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 2200 may be implemented.
  • process 2200 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 22 is not limiting.
  • Step 2210 During the crystal growth process, monitor the crystal growth.
  • crystal growth conditions may include at least one of growing crystal thickness, growth rate, or defects.
  • the processing equipment and/or control equipment may monitor crystal growth through a monitoring component (eg, ultrasonic thickness gauge 104-1).
  • a monitoring component eg, ultrasonic thickness gauge 104-1
  • FIG. 19A-FIG. 19B and their related descriptions please refer to other parts of this specification (for example, FIG. 19A-FIG. 19B and their related descriptions), and will not be described again here.
  • the processing equipment and/or control equipment can also input the obtained temperature information, pressure information, crystal thickness, etc. into the simulation software, and the simulation software outputs the crystal growth situation and/or raw material usage situation in the growth chamber, This enables online monitoring of the crystal growth process.
  • the raw material usage may include at least one of the weight of the crystal, the sublimation amount of the raw material, the remaining amount of the raw material, and the like.
  • Step 2220 Based on the crystal growth situation, adjust the heating parameters of the heating component and/or at least one of the position, shape, distribution or flow area of the at least one outlet.
  • the processing device and/or the control device may adjust the heating parameters of the heating component in the current crystal growth process or the next crystal growth process based on the crystal growth situation.
  • a thickness threshold eg, 3 mm, 5 mm, or 8 mm
  • a rate threshold eg, 0.1 mm/h, 0.3 mm/h, or 0.5 mm/h
  • the heating power of the third heating component during the current crystal growth process or the next crystal growth process can be adjusted to reduce the radial temperature gradient of the seed crystal.
  • the crystal defect density may be pore density.
  • the density threshold may be 8/cm 2 , 10/cm 2 or 15/cm 2 .
  • the processing device and/or the control device can adjust at least one of the position, shape, distribution or flow area of at least one outlet in the current crystal growth process or the next crystal growth process based on the crystal growth situation. .
  • the current crystal can be adjusted
  • a thickness threshold eg, 3mm, 5mm, or 8mm
  • a rate threshold eg, 0.1mm/h, 0.3mm/h, or 0.5mm/h
  • the current density can be adjusted.
  • the radial position of the outlet 108-21 during the crystal growth process or the next crystal growth process, or the shape, distribution or flow area of the outlet 108-21 can be adjusted by opening or closing the cover.
  • the crystal growth rate and crystal growth quality can be increased.
  • the silicon carbide powder In the process of growing silicon carbide crystals by physical vapor transport method, the silicon carbide powder is not fully utilized after the growth is completed, and the remaining unused parts often exist as porous silicon carbide polycrystalline blocks agglomerated. Due to the high purity Silicon carbide powder is expensive. In order to save resources and reduce costs, it is necessary to recycle the remaining materials after the crystal growth is completed.
  • Figure 23 is a flow chart of an exemplary residual material recovery method according to some embodiments of this specification.
  • process 2300 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 2300 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 2300 may be implemented.
  • process 2300 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 23 is not limiting.
  • Step 2310 After the crystal growth is completed, the remaining raw material is inverted.
  • the feedstock residue may be the feedstock remaining after crystal growth is completed.
  • the raw materials are not all decomposed into gas phase components at the same time. Instead, they decompose first at the higher temperature near the side wall of the growth chamber, and at the lower temperature in the middle part of the growth chamber. After decomposition.
  • the products after thermal decomposition and sublimation of SiC raw materials mainly include gaseous Si, Si 2 C, SiC 2 and solid carbon particles.
  • Si evaporates before C (the sublimation temperature of silicon is about 1400°C, and the sublimation of carbon The temperature is about 2877°C), part of Si moves upward from near the side wall, and the other part of Si moves to the middle of the raw material.
  • the carbon produced at the bottom of the raw material and the surrounding side walls forms a carbon shell (carbon-rich area), which wraps the undecomposed intermediate raw material.
  • the top of the raw material is generally in a silicon-rich state; the carbon shell is fluffy and thermally conductive.
  • the rate is lower than that of original silicon carbide, which is not conducive to heat conduction.
  • the carbon shell will form resistance to the transmission of gas phase components generated by the decomposition of intermediate raw materials.
  • the bottom and side walls of the remaining raw material will be rich in carbon, and the middle and upper parts will be rich in silicon.
  • the carbon-rich portion (carbon residue) on the edge portion of the raw material remainder can be removed first, and then the raw material remainder is inverted.
  • the remaining raw materials can be manually inverted.
  • Manual inversion processing is a process with flexible operation, simple equipment and low cost.
  • the mechanical arm can be controlled by the processing device and/or the control device to process the remaining raw materials upside down.
  • the robotic arm can automatically pick up the remaining materials according to the set program and invert the remaining raw materials. The mechanical arm inverts the remaining raw materials, which can reduce labor costs and is easy to control.
  • Step 2320 Lay new raw materials on the remaining raw materials after the inversion process as raw materials for the next crystal growth.
  • the new raw materials may be unreacted raw materials required for growing crystals.
  • the new raw material may include silicon carbide powder.
  • the raw material for the next crystal growth may be the raw material for the next silicon carbide crystal growth, that is, the raw material in step 310.
  • new raw materials and remaining raw materials can be laid according to a certain ratio. In some embodiments, a certain ratio may be a mass ratio.
  • the mass ratio of the new raw materials to the remaining raw materials can be in the range of 0.01-1. In some embodiments, the mass ratio of the new raw materials to the remaining raw materials can be in the range of 0.1 to 0.9. In some embodiments, the mass ratio of the new raw materials to the remaining raw materials can be in the range of 0.2 to 0.8. In some embodiments, the mass ratio of the new raw materials to the remaining raw materials can be in the range of 0.3 to 0.7. In some embodiments, the mass ratio of the new raw materials to the remaining raw materials can be in the range of 0.4 to 0.6. In some embodiments, the mass ratio of the new raw materials to the remaining raw materials can be in the range of 0.45 to 0.55. In some embodiments, the mass ratio of the new raw materials to the remaining raw materials can be in the range of 0.45 to 0.50.
  • the remaining material By inverting the remaining raw material and laying new raw material on it as the raw material for the next crystal growth, the remaining material can be fully utilized and the utilization rate of the raw material is improved.
  • the proportion of laying new raw materials since the proportion of laying new raw materials is large, it can balance the remaining raw materials, and the rich silicon in the remaining raw materials is conducive to the control of crystal forms, so it will not affect the quality of the next crystal growth.
  • Figure 24 is an exemplary flow chart of a crystal growth method according to further embodiments of the present specification.
  • process 2400 may be performed by a processing device (eg, processing device 101) and/or a control device (eg, control device 102).
  • the process 2400 may be stored in a storage device (eg, a storage unit of a storage device, a processing device, and/or a control device) in the form of a program or instructions, and when the processor 202 executes the program or instructions, the process 2400 may be implemented.
  • flow 2400 may utilize one or more additional operations not described below, and/or be completed without one or more operations discussed below.
  • the order of operations shown in FIG. 24 is not limiting.
  • Step 2410 After the crystal growth is completed, the carbon-rich part of the remaining raw material is removed to obtain the silicon-rich part.
  • the carbon-rich portion may be the carbon residue portion at the edge of the raw material remainder.
  • the silicon-rich part may be a part composed of the upper part of SiC and the Si solid solution structure of SiC in the remaining material.
  • the carbon-rich part is amorphous carbon residue with low hardness and easily falls off from the remaining raw materials, only the middle silicon-rich part can be selected during the recycling process.
  • Step 2420 Preprocess the silicon-rich part.
  • the silicon-rich part in order to mix the recycled silicon-rich part with the newly added carbon powder evenly, the silicon-rich part may be pretreated.
  • the silicon-rich portion may be pretreated by ball milling.
  • the silicon-rich part can be contained in a ball mill container (for example, a Teflon barrel), and a ball milling medium (for example, a 10 mm ⁇ 10 mm ⁇ 10 mm silicon carbide single crystal block) is added to the container, and the ball mill is used to grind the silicon carbide part into the container.
  • the silicon-rich part is ball-milled under certain ball-milling conditions to obtain the silicon-rich part after ball milling pretreatment.
  • the ball milling conditions may include ball milling rotation speed and ball milling time.
  • the ball milling speed may be 100 r/min to 300 r/min. In some embodiments, the ball milling speed may be 150r/min ⁇ 250r/min. In some embodiments, the ball milling speed may be 200r/min ⁇ 230r/min.
  • the ball milling time may be 60 min to 200 min. In some embodiments, the ball milling time may be 80 min to 180 min. In some embodiments, the ball milling time may be 100 min to 150 min. In some embodiments, the ball milling time may be 120 min to 140 min.
  • the silicon-rich part after ball milling pretreatment can be screened to select silicon carbide powder with a certain particle size.
  • the particle size of silicon carbide powder may be 8 mesh to 200 mesh.
  • the particle size of silicon carbide powder may be 10 mesh to 180 mesh.
  • the particle size of silicon carbide powder may be 20 mesh to 150 mesh.
  • the particle size of silicon carbide powder may be 30 mesh to 120 mesh.
  • the particle size of silicon carbide powder may be 40 mesh to 100 mesh.
  • the particle size of silicon carbide powder may be 50 mesh to 90 mesh.
  • the particle size of silicon carbide powder may be 60 mesh to 80 mesh.
  • the particle size of silicon carbide powder may be 70 mesh to 75 mesh.
  • Step 2430 Mix the pretreated silicon-rich part and carbon powder evenly according to a preset mass ratio.
  • the preset mass ratio may be 3:1 ⁇ 6:1. In some embodiments, the preset mass ratio may be 3.5:1 ⁇ 5.5:1. In some embodiments, the preset mass ratio may be 4:1 ⁇ 5:1. In some embodiments, the preset mass ratio may be 4.2:1 ⁇ 4.8:1. In some embodiments, the preset mass ratio may be 3:1 ⁇ 6:1. In some embodiments, the preset mass ratio may be 4.4:1 ⁇ 4.6:1.
  • powder mixing equipment e.g., double-spiral conical mixer, horizontal gravity-free mixer, horizontal plow mixer, horizontal ribbon mixer
  • a mortar e.g, an agate mortar
  • Step 2440 Place the uniformly mixed silicon-rich part and carbon powder in a recovery device for recovery processing to obtain initial silicon carbide raw materials.
  • the recycling device may be a place for recycling raw material residues.
  • the uniformly mixed silicon-rich part and carbon powder can be placed in a crucible, and then the crucible is placed in a recovery device, and the silicon-rich part and carbon powder are reacted under certain reaction conditions.
  • reaction conditions may include reaction temperature, reaction atmosphere, reaction pressure, and/or reaction time.
  • the crucible may comprise a tantalum carbide crucible or a crucible with a tantalum carbide coating on the interior of the crucible.
  • the reaction temperature may range from 1700°C to 2500°C. In some embodiments, the reaction temperature may range from 1800°C to 2400°C. In some embodiments, the reaction temperature may range from 1900°C to 2300°C. In some embodiments, the reaction temperature may range from 2000°C to 2200°C. In some embodiments, the reaction temperature may range from 2050°C to 2150°C.
  • the reaction atmosphere may include an inert gas (eg, helium, neon, argon, etc.).
  • an inert gas eg, helium, neon, argon, etc.
  • the reaction pressure may range from 8 kPa to 14 kPa. In some embodiments, the reaction pressure may range from 8.5 kPa to 13.5 kPa. In some embodiments, the reaction pressure may range from 9 kPa to 13 kPa. In some embodiments, the reaction pressure may range from 9.5 kPa to 12.5 kPa. In some embodiments, the reaction pressure may range from 10 kPa to 12 kPa. In some embodiments, the reaction pressure may range from 10.5 kPa to 11.5 kPa.
  • the reaction time may range from 0.5h to 4h. In some embodiments, the reaction time may range from 0.5h to 4h. In some embodiments, the reaction time may range from 1 h to 3.5 h. In some embodiments, the reaction time may be in the range of 1.5h to 3h. In some embodiments, the reaction time may range from 1.7h to 2.8h. In some embodiments, the reaction time may range from 1.9h to 2.6h. In some embodiments, the reaction time may be in the range of 2.1h to 2.4h.
  • reaction after the reaction is completed, it is cooled to a certain temperature (for example, 1500°C to 1600°C), maintained for a certain time (for example, 30 min), and then the above reaction cooling process is repeated at least once (for example, 2 times, 3 times). , 4 times).
  • a certain temperature for example, 1500°C to 1600°C
  • a certain time for example, 30 min
  • the recovery device can be cooled to room temperature through natural cooling to obtain the initial silicon carbide raw material.
  • Step 2450 Post-process the initial silicon carbide raw material to obtain silicon carbide raw material as the raw material for the next crystal growth.
  • the raw material for the next crystal growth may be the raw material for the next silicon carbide crystal growth, that is, the raw material in step 310.
  • post-processing may include screening, water washing, carbon removal and other treatments.
  • the initial silicon carbide raw materials can be screened to select silicon carbide powder with a certain particle size.
  • the silicon carbide powder can also be washed with water to remove floating carbon.
  • the washed silicon carbide powder can also be placed in a carbon removal device, and oxygen is introduced at a certain temperature to remove carbon to obtain silicon carbide raw material.
  • the particle size of silicon carbide powder may range from 8 mesh to 40 mesh. In some embodiments, the particle size of silicon carbide powder may range from 10 mesh to 35 mesh. In some embodiments, the particle size of the silicon carbide powder may be in the range of 12 mesh to 33 mesh. In some embodiments, the particle size of the silicon carbide powder may be in the range of 15 mesh to 30 mesh. In some embodiments, the particle size of silicon carbide powder may be in the range of 18 mesh to 28 mesh. In some embodiments, the particle size of silicon carbide powder may be in the range of 20 mesh to 25 mesh.
  • the carbon removal device may be a carbon removal device.
  • the carbon removal device may include a muffle furnace.
  • the temperature for carbon removal may range from 600°C to 1000°C. In some embodiments, the temperature for carbon removal may range from 650°C to 950°C. In some embodiments, the temperature for carbon removal may range from 700°C to 900°C. In some embodiments, the temperature for carbon removal may range from 750°C to 850°C. In some embodiments, the temperature for carbon removal may range from 770°C to 830°C. In some embodiments, the temperature for carbon removal may range from 790°C to 810°C.
  • the purity of the silicon carbide raw material obtained can be higher, and the quality of the crystal grown as a raw material for the next crystal growth will be better.
  • the total weight of the source materials required is 10,000g based on the volume of the tantalum crucible, in which the source materials are carbon powder with a particle size of 0.1 ⁇ m, silicon powder with a particle size of 0.1 mm, and Silicon carbide particles with a diameter of 100 mesh.
  • Post-processing Post-process the obtained initial raw materials.
  • Post-processing includes crushing, screening, carbon removal, cleaning, drying, packaging, etc. of the initial raw materials to obtain silicon carbide powder.
  • Raw material pretreatment First, use 5L of aqua regia to acid-treat the raw material; then use 10L of ultrapure water to clean the raw material 4 times each time.
  • Seed crystal treatment Perform the following treatments on the seed crystal:
  • Diameter expansion processing Use a smaller low-defect density seed crystal with a diameter of 150mm to obtain a large-size ingot through diameter expansion growth, and then slice and process it into a large-size seed crystal with a diameter of 153mm.
  • Polishing treatment Use diamond polishing powder with a particle size of 0.5 ⁇ m, the polishing pressure is 0.08MPa, the polishing speed is 30r/min, and the seed crystal is polished for 120 minutes.
  • the seed crystal is coated using the coating equipment shown in Figure 9.
  • Non-coated surface treatment Select multiple seed crystals to be coated, and pre-paste a layer of polyimide film on the non-coated surface of the seed crystals.
  • Vacuuming and heating evacuate the coating equipment to 0.01Pa, and heat the chamber of the coating equipment until the heating temperature is 500°C.
  • reaction gas Inert gas as carrier gas into the coating equipment.
  • the flow rate of the inert gas is 500mL/min.
  • the reaction gas is methane.
  • the methane flow rate is 50 mL/min. Continue to flow methane for 10 minutes and then stop, and continue to maintain the carrier gas flow rate unchanged.
  • Cooling Continue to flow the carrier gas, and cool to room temperature at a cooling rate of 30°C/min. Stop feeding the carrier gas and take out the seed crystal.
  • Seed crystal quality inspection The coated seed crystal was inspected and the average coating thickness was found to be 9 ⁇ m.
  • the seed crystals are bonded by the seed crystal bonding equipment shown in Figures 11A and 11B.
  • Adhesive coating Coat the adhesive on the lower surface of the chamber cover of the growth chamber.
  • Seed crystal bonding The seed crystal is bonded and fixed to the suction cup of the compression component through high-temperature traceless glue. Control the up and down movement of the pressing component to bring the seed crystal into contact with the cavity cover, and further apply a pressure of 0.2MPa to bond the two. During the compaction process, the vacuum is evacuated to 0.1Pa, and the chamber of the seed crystal bonding equipment is heated. The heating temperature is 1000°C and the heating time is 120 minutes.
  • Seed crystal bonding quality inspection After the bonding is completed, the bonded seed crystal is detected by ultrasonic detection equipment. The pores are mostly concentrated at a distance of 30mm from the edge of the seed crystal, and the pore size is between 0.01mm 2 and 30mm 2 Within the range, the pore shapes are different, and the pore density is 3/cm 2 . After the seed crystal is bonded, the pores are mostly concentrated at the edge of the seed crystal. The pore size is small, the pore density is low, and the bonding effect is good.
  • the seed crystals are bonded by the seed crystal bonding equipment shown in Figures 12A and 12B.
  • Adhesive coating Coat the adhesive on the lower surface of the chamber cover of the growth chamber.
  • Seed crystal bonding The seed crystal is bonded and fixed to the suction cup of the compression component through high-temperature traceless glue.
  • the processing equipment controls the up and down movement of the pressing component to bring the seed crystal, buffer layer H into contact with the cavity cover, and further applies a pressure of 0.5 MPa to bond the three.
  • the vacuum is evacuated to 0.1Pa, and the chamber of the seed crystal bonding equipment is heated.
  • the heating temperature is 1000°C and the heating time is
  • Seed crystal bonding quality inspection After the bonding is completed, the bonded seed crystal is detected by ultrasonic detection equipment. The pores are mostly concentrated at a distance of 15mm from the edge of the seed crystal, and the pore size is between 0.01mm 2 and 20mm 2 Within the range, the pore shapes are different, and the pore density is 2/cm 2 . After the seed crystal is bonded, the pores are mostly concentrated at the edge of the seed crystal. The pore size is small, the pore density is low, and the bonding effect is good.
  • the seed crystals are bonded by a rolling operation as shown in Figures 14A and 14B.
  • the first angle between the pressure roller and the non-contact part of the buffer layer and the seed crystal is 0.1°
  • the first pressure exerted by the pressure roller is 0.5kPa
  • the first speed of the pressure roller movement is 0.5 mm/s, perform rolling operation to bond the seed crystal to the buffer layer.
  • the bonded seed crystal and buffer layer are bonded to the cavity cover: the second angle between the pressure roller and the non-contact part between the buffer layer and the cavity cover is 0.1°, the second pressure exerted by the pressure roller is 0.5kPa, The second speed of movement of the pressure roller is 0.5 mm/s, and the rolling operation is performed to bond the bonded seed crystal and buffer layer to the cavity cover.
  • Seed crystal bonding quality inspection Use ultrasonic detection equipment to detect the bonded seed crystal.
  • the pore locations are mostly concentrated at a distance of 5mm from the edge of the seed crystal, and the pore size is in the range of 0.01mm 2 to 10mm 2 , different pore shapes, and pore density of 1
  • the pores are mostly concentrated at the edge of the seed crystal.
  • the pore size is small, the pore density is low, and the bonding effect is good.
  • Crystal growth is performed using the crystal growth device shown in FIG. 16A and the temperature measuring component shown in FIG. 18 .
  • Place raw materials Place the raw materials in the raw material area of the growth cavity.
  • the raw material area is heated by the first heating component (resistance heating component), and the temperature is raised to 2500°C within 5 hours to sublimate the raw material into the gas phase components required for crystal growth.
  • Heating near the partition Use the second heating component (resistance heating component) to heat the area 5mm up or down along the location of the partition, and raise the temperature to 2400°C within 5 hours to maintain the gas phase components passing through at least The discharge rate of a discharge port.
  • resistance heating component resistance heating component
  • Heating the growth zone The growth zone is heated by a third heating component (resistance heating component), and the temperature is raised to 2300°C within 5 hours.
  • Crystal growth control obtain multiple temperatures related to the growth chamber through the temperature measurement component. Then, based on the plurality of temperature information obtained by the temperature measurement component, the host computer issues an adjustment instruction, and after receiving the adjustment instruction, the PLC outputs a control signal to control the heating power of the first heating component, the second heating component, or the third heating component, and/or Control the opening or closing of the upper cover of the outlet 108-21 to control at least one of the position, shape, distribution or flow area of at least one outlet, thereby adjusting the growth rate of the crystal and achieving the crystal growth rate of stability. For example, as shown in Figure 16A, when the measured temperature near the cavity cover is lower than the growth temperature, the crystal crystallization rate will accelerate.
  • the power of the third heating component is adjusted to increase the temperature of the growth area.
  • the power of the second heating component reduces the temperature of the raw material area to slow down the rate of gas components passing through the partition, thereby reducing the growth rate of the crystal.
  • the size or shape of the discharge port on the partition can also be changed by adjusting the position between different layers on the partition, or by adjusting the opening or closing of the cover on the discharge port, to achieve heating.
  • the gas phase components in the zone pass through the separator at the transmission rate required for crystal growth, thereby reducing the crystal growth rate.
  • the temperature adjustment range of the second heating component may be 2300-2600°C.
  • Threading Screw Dislocation ⁇ 300cm -2
  • Threading Edge Dislocation TED
  • Basal Plane Dislocation BPD
  • Crystal growth was performed by a crystal growth apparatus as shown in Fig. 16A.
  • Place raw materials Place the raw materials in the raw material area of the growth chamber.
  • the raw material area is heated by the first heating component (resistance heating component), and the temperature is raised to 2350°C within 5 hours, so that the raw material is sublimated into the gas phase components required for crystal growth.
  • first heating component resistance heating component
  • Heating near the partition Use the second heating component (resistance heating component) to heat the area 5mm upward or downward along the location of the partition, and raise the temperature to 2300°C within 5 hours to maintain the gas phase components passing through at least The discharge rate of a discharge port.
  • resistance heating component resistance heating component
  • Heating the growth zone Heating the growth zone through a third heating component (resistance heating component), and raising the temperature to 2250°C within 5 hours.
  • Crystal growth control Obtain the distribution of gas phase components required for crystal growth in the growth chamber through virtual reactor software. Then, based on the distribution of the gas phase components in the growth chamber, the host computer issues an adjustment instruction. After receiving the adjustment instruction, the PLC outputs a control signal to control the opening or closing of the upper cover of the discharge port 108-21, or adjust the different conditions on the partition.
  • the position between the layers realizes the control of at least one of the position, shape, distribution or flow area of at least one outlet, so as to realize that the gas phase components in the heating zone pass through the partition at the transmission rate required for crystal growth, Thereby regulating the growth rate of the crystal and achieving stability of the crystal growth rate.
  • Crystal growth is performed by a crystal growth device as shown in FIG. 16A and a monitoring component as shown in FIG. 19A.
  • Place raw materials Place the raw materials in the raw material area of the growth chamber.
  • the raw material area is heated by the first heating component (resistance heating component), and the temperature is raised to 2300°C within 5 hours, so that the raw material is sublimated into the gas phase components required for crystal growth.
  • first heating component resistance heating component
  • Heating near the partition Use the second heating component (resistance heating component) to heat the area 5mm upward or downward along the location of the partition, and raise the temperature to 2250°C within 5 hours to maintain the gas phase components passing through at least The discharge rate of a discharge port.
  • resistance heating component resistance heating component
  • Heating the growth zone Heating the growth zone through a third heating component (resistance heating component), and raising the temperature to 2200°C within 5 hours.
  • Crystal growth control Monitor the crystal growth through monitoring components. Then, based on the growth of the crystal, the host computer issues an adjustment instruction, and after receiving the adjustment instruction, the PLC outputs a control signal to adjust the heating parameters of the first heating component, the second heating component, or the third heating component, and/or control the discharge port 108
  • the opening or closing of the upper cover of -21 enables control of at least one of the position, shape, distribution or flow area of at least one outlet, thereby regulating the growth rate of the crystal and achieving stability of the crystal growth rate.
  • the temperature adjustment range of the second heating component may be 2200-2400°C.
  • Crystal growth is performed using the crystal growth device shown in FIG. 16B and the temperature measuring component shown in FIG. 18 .
  • Place raw materials Place the raw materials in the raw material area of the growth chamber.
  • the raw material area is heated by the first heating component (resistance heating component), and the temperature is raised to 2500°C within 4 hours, so that the raw material is sublimated into the gas phase components required for crystal growth.
  • first heating component resistance heating component
  • Heating near the partition Use the second heating component (resistance heating component) to heat the area 5mm up or down along the location of the partition, and raise the temperature to 2400°C within 4 hours to maintain the gas phase components passing through at least The discharge rate of a discharge port.
  • resistance heating component resistance heating component
  • Heating the growth zone The growth zone is heated by the third heating component (resistance heating component), and the temperature is raised to 2300°C within 4 hours.
  • Crystal growth control obtain multiple temperatures related to the growth chamber through the temperature measurement component. Then, based on the plurality of temperature information obtained by the temperature measurement component, the host computer issues an adjustment instruction, and after receiving the adjustment instruction, the PLC outputs a control signal to control the heating power of the first heating component, the second heating component, or the third heating component, and/or Control the opening or closing of the upper cover of the outlet 108-21 to control at least one of the position, shape, distribution or flow area of at least one outlet, thereby adjusting the growth rate of the crystal and achieving the crystal growth rate of stability.
  • the crystal crystallization rate when the measured temperature near the cavity cover is lower than the growth temperature, the crystal crystallization rate will accelerate.
  • the power of the third heating component is adjusted to increase the temperature of the growth area.
  • the power of the first heating component or the second heating component reduces the temperature of the raw material zone to slow down the rate of gas components passing through the separator, thereby reducing the growth rate of the crystal.
  • the size or shape of the discharge port on the partition can also be changed by adjusting the position between different layers on the partition, or by adjusting the opening or closing of the cover on the discharge port, to achieve heating.
  • the gas phase components in the zone pass through the separator at the transmission rate required for crystal growth, thereby reducing the crystal growth rate.
  • the temperature adjustment range of the second heating component may be 2300-2600°C.
  • Crystal growth is performed using the crystal growth device shown in FIG. 16C and the temperature measuring component shown in FIG. 18 .
  • Place raw materials Place the raw materials in the raw material area of the growth cavity.
  • the raw material area is heated by the first heating component (induction heating component), and the temperature is raised to 2180°C within 5 hours, so that the raw material is sublimated into the gas phase components required for crystal growth.
  • first heating component induction heating component
  • Heating near the partition Use the second heating component (induction heating component) to heat the area 5 mm upward (not shown in Figure 16C) or downward along the location of the partition, and raise the temperature to 2130°C within 5 hours. , to maintain the discharge rate of the gas phase component through at least one discharge port.
  • induction heating component induction heating component
  • Heating the growth zone The growth zone is heated by a third heating component (resistance heating component), and the temperature is raised to 2090°C within 5 hours.
  • Crystal growth control obtain multiple temperatures related to the growth cavity through the temperature measurement component. Then, based on the multiple temperature information obtained by the temperature measurement component, the host computer issues a temperature field adjustment instruction, and after receiving the instruction, the PLC outputs a control signal to control the heating power of the first heating component, the second heating component, or the third heating component, and/ Or control the opening or closing of the cover plate on the outlet 108-21 to control at least one of the position, shape, distribution or flow area of at least one outlet, thereby adjusting the growth rate of the crystal and achieving crystal growth. rate stability.
  • the crystal has no phase change, the positioning edge is polycrystalline, the crystal thickness is 16mm, TSD ⁇ 450cm -2 , TED ⁇ 7500cm -2 , BPD ⁇ 1600cm -2 .
  • Possible beneficial effects of the embodiments of this specification include but are not limited to: (1) Separating the raw material area and the growth area by partitions, and individually controlling the temperatures of the raw material area, near the partitions, and the growth area can significantly reduce the risk of crystal growth. Thermal stress can effectively regulate the growth rate; (2) By heating the raw material area of the first heating component, heating the partition near the second heating component, and heating the growth area of the third component, the sublimation rate of the raw material can be controlled and the stable discharge of the discharge port can be maintained.
  • the position, shape, distribution or circulation area, etc. can control the carbon-silicon molar ratio, transmission path, transmission speed, etc. of the raw material gas phase components. It can effectively control the crystal growth interface, significantly reduce the probability of dislocation formation, reduce crystal defects, and improve the growth efficiency. Crystal quality; (4) In the process of raw material preparation, it is carried out in two stages. The small particles of silicon carbide generated by the reaction in the first stage sublimate and recrystallize on the surface of the silicon carbide particles in the second stage, forming raw materials with larger particles.
  • the evaporation process on the back of the seed crystal during the growth process of silicon carbide crystal can be suppressed , effectively eliminate the planar hexagonal defects caused by evaporation on the back of the seed crystal, and improve the quality and yield of the grown silicon carbide crystal; (6) grow carbon films on the backs of multiple seed crystals at the same time through vapor deposition, with high coating efficiency and high coating efficiency The uniformity is better, which in turn makes the growing crystals have better consistency; (7) Remove the bubbles inside the adhesive by vacuuming to ensure that the bubbles in the adhesive have been drained before bonding, or before the buffer layer and the adhesive are The adhesive is processed into one-piece molding to avoid uneven flattening of the liquid adhesive or the generation of bubbles during the flattening process.
  • the seed crystal is then bonded under pressure and heating in a vacuum state, which can further prevent the generation of new particles during the bonding process. Bubbles, thereby avoiding defects such as microtubes and hexagonal cavities in the silicon carbide crystal, and improving the quality of the silicon carbide crystal; (8) Using ultrasonic detection equipment to detect the bonded seed crystals, you can screen out the ones with better bonding quality (such as , less bubbles) for crystal growth, improving the quality of subsequent crystal growth; (9) By recycling the remaining raw materials in a simple and efficient way, the remaining materials can be fully utilized without affecting the quality of the next crystal growth. Improve raw material utilization rate.
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical ranges and parameters used to identify the breadth of ranges in some embodiments of this specification are approximations, in specific embodiments, such numerical values are set as accurately as is feasible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种晶体生长方法和装置,该方法包括将原料置于生长腔体的原料区;将籽晶置于生长腔体的生长区,其中,原料区和生长区通过隔板分隔,隔板包括至少一个出料口;以及基于籽晶和原料,通过物理气相传输法生长晶体。

Description

一种晶体生长方法和装置 技术领域
本说明书涉及晶体生长领域,特别涉及一种晶体生长方法和装置。
背景技术
半导体晶体(例如,碳化硅单晶)具有优异的物理化学性能,因此成为制造高频率和大功率器件的重要材料。物理气相传输法(Physical Vapor Transport,PVT)是一种用于制备半导体晶体的方法。然而,在PVT法制备碳化硅晶体的过程中仍存在诸多技术难题,例如,原料组分纯度不高或籽晶表面未满足要求,影响晶体质量;籽晶粘接时易产生气泡,导致晶体生长过程产生平面六角缺陷;晶体生长过程中,难以控制温度情况或原料升华情况,导致晶体产生位错、微管、多型等缺陷;碳化硅粉料利用率低等。
因此,有必要提供一种晶体生长方法和装置,提高晶体制备质量和效率。
发明内容
本说明书实施例之一提供一种晶体生长方法。所述晶体生长方法包括:将原料置于生长腔体的原料区;将籽晶置于所述生长腔体的生长区,其中,所述原料区和所述生长区通过隔板分隔,所述隔板包括至少一个出料口;以及基于所述籽晶和所述原料,通过物理气相传输法生长晶体。
本说明书实施例之一提供一种晶体生长装置,所述装置包括:生长腔体,所述生长腔体包括原料区和生长区,其中,所述原料区用于放置原料,所述生长区用于放置籽晶,以及所述原料区和所述生长区通过隔板分隔,所述隔板包括至少一个出料口;以及加热组件,用于加热所述生长腔体,以实现基于所述籽晶和所述原料的物理气相传输法的晶体生长。
本说明书实施例之一提供一种镀膜设备,所述镀膜设备包括:镀膜腔体;镀膜架,所述镀膜架上设置多个托盘,所述托盘用于放置籽晶;驱动组件,与所述镀膜架连接,用于带动镀膜架旋转;加热组件,用于提供镀膜处理所需热量;进气口,用于向所述镀膜腔体中通入镀膜气体;出气口,用于排出所述镀膜腔体中的气体;抽气组件,与所述出气口连接,用于对所述镀膜腔体进行抽气处理。
本说明书实施例之一提供一种设备,用于粘接籽晶,所述设备包括:粘接腔体;真空组件,用于对所述粘接腔体进行抽真空处理;上传动组件,所述上传动组件与所述粘接腔体顶端连接;下传动组件,所述下传动组件与所述粘接腔体底端连接;加热组件;以及压紧组件,通过与所述上传动组件、所述下传动组件和所述加热组件联动作用,将籽晶粘接于盖上。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的示例性晶体生长系统的示意图;
图2是根据本说明书一些实施例所示的示例性计算设备的示意图;
图3是根据本说明书一些实施例所示的示例性晶体生长方法的流程图;
图4是根据本说明书一些实施例所示的示例性原料制备方法的流程图;
图5是根据本说明书一些实施例所示的示例性原料预处理方法及籽晶预处理方法的流程图;
图6是根据本说明书一些实施例所示的示例性籽晶镀膜方法的流程图;
图7是根据本说明书一些实施例所示的示例性籽晶背向蒸发的示意图;
图8是根据本说明书又一些实施例所示的示例性籽晶镀膜方法的流程图;
图9是根据本说明书一些实施例所示的示例性镀膜设备的结构示意图;
图10是根据本说明书一些实施例所示的示例性籽晶粘接方法的流程图;
图11A是根据本说明书一些实施例所示的示例性籽晶粘接设备的结构示意图;
图11B是根据本说明书一些实施例所示的示例性籽晶粘接后的示意图;
图12A是根据本说明书又一些实施例所示的示例性籽晶粘接设备的结构示意图;
图12B是根据本说明书又一些实施例所示的示例性籽晶粘接后的示意图;
图13是根据本说明书又一些实施例所示的示例性籽晶粘接方法的流程图;
图14A是根据本说明书一些实施例所示的示例性滚压操作的示意图;
图14B是根据本说明书又一些实施例所示的示例性滚压操作的示意图;
图15是根据本说明书又一些实施例所示的示例性晶体生长方法的流程图;
图16A是根据本说明书一些实施例所示的示例性晶体生长装置的结构示意图;
图16B是根据本说明书又一些实施例所示的示例性晶体生长装置的结构示意图;
图16C是根据本说明书又一些实施例所示的示例性晶体生长装置的结构示意图;
图17是根据本说明书一些实施例所示的示例性晶体生长装置温度分布的示意图;
图18是根据本说明书一些实施例所示的示例性测温组件的布置示意图;
图19A是根据本说明书一些实施例所示的示例性监控组件的结构示意图;
图19B是根据本说明书又一些实施例所示的示例性监控组件的结构示意图;
图20是根据本说明书又一些实施例所示的示例性晶体生长方法的流程图;
图21是根据本说明书又一些实施例所示的示例性晶体生长方法的流程图;
图22是根据本说明书又一些实施例所示的示例性晶体生长方法的流程图;
图23是根据本说明书一些实施例所示的示例性余料回收方法的流程图;
图24是根据本说明书又一些实施例所示的示例性余料回收方法的流程图。
图中,100为晶体生长系统,101为处理设备,102为控制设备,103为测温组件,103-1为温度传感器,103-2为保温层,103-3为冷却组件,104为监测组件,104-1为超声测厚仪,104-11为超声探头,104-2为冷却装置,104-3为石墨棒,105为测压组件,106为镀膜设备,106-1为镀膜腔体,106-11为管,106-12为挡板,106-2为镀膜架,106-3为加热组件,106-4为进气口,106-5为出气口,106-6为风叶,106-7为保温棉,106-8为保温层,107为籽晶粘接设备,107-1为粘接腔体,107-2为真空组件,107-3为上传动组件,107-4为下传动组件,107-5为加热组件,107-6为压紧组件,107-61为吸盘,107-62为支撑台,107-7为压感组件,107-8为支撑组件,107-9为粘接台面、107-10为压辊,108为晶体生长装置,108-1为生长腔体,108-11为生长区,108-111为腔体盖,108-12为原料区,108-2为隔板,108-21为出料口,108-3为加热组件,108-31为第一加热组件,108-32为第二加热组件,108-33为第三加热组件,108-4为保温组件,109为存储设备,110为交互组件,110-1为显示设备,110-2为交互设备。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据本说明书一些实施例所示的示例性晶体生长系统的示意图。
在一些实施例中,晶体生长系统100可以基于物理气相传输法(Physical Vapor Transport,PVT),制备多种晶体(例如碳化硅(SiC)晶体、氮化铝(AIN)晶体、硒化锌(ZnSe)晶体、硫化镉(CdS)晶体、碲化锌(ZnTe)等)。
在一些实施例中,如图1所示,晶体生长系统100可以包括处理设备101、控制设备102、测温组件103、监测组件104、测压组件105、镀膜设备106、籽晶粘接设备107、晶体生长装置108、存储设备109和交互组件110。
处理设备101可以用于处理晶体生长过程中涉及的多种数据和/或信息。在一些实施例中,处理设备101可以从测温组件103获取生长腔体内的温度信息,并基于温度信息调节至少一个出料口(例如,如图16A-图16C所示的出料口108-21,用于通过气相组分)的位置、形状、分布、流通面积等或其任意组合。在一些实施例中,处理设备101可以通过监测组件104监测晶体生长情况,并基于晶体生长情况调节加热组件(例如,如图16A-图16C所示的加热组件108-3)的加热参数和/或至少一个出料口的位置、形状、分布、流通面积等或其任意组合。在一些实施例中,处理设备101可以通过监测组件104监测晶体生长情况,并基于本次晶体生长情况调节下一次晶体生长过程中加热组件(例如,如图16A-图16C所示的加热组件108-3)的加热参数和/或至少一个出料口的位置、形状、分布、流通面积等或其任意组合。在一 些实施例中,处理设备101可以通过压感组件(例如,图11A和图12A中的压感组件107-7)获取籽晶粘接设备107的压紧组件(例如,如图11A、图12A所示的压紧组件107-6)的施加压力,并相应调整施加压力。
在一些实施例中,处理设备101可以将控制指令发送至控制设备102,由控制设备102基于控制指令控制晶体生长过程。
在一些实施例中,处理设备101可以包括工业控制计算机。在一些实施例中,处理设备101可以作为上位控制监控设备或上位处理设备。
控制设备102可以用于控制晶体生长过程涉及的多种操作(例如,籽晶镀膜、籽晶粘接、晶体生长等)。在一些实施例中,控制设备102可以从处理设备101接收控制指令,并基于控制指令控制晶体生长过程。
在一些实施例中,控制设备102可以包括可编程序逻辑控制器(Programmable Logic Controller,PLC)。在一些实施例中,控制设备102可以作为下位实时控制设备。
在一些实施例中,处理设备101和/或控制设备102可以包括中央处理单元(CPU)、专用集成电路(ASIC)、专用指令集处理器(ASIP)、图像处理单元(GPU)、物理运算处理单元(PPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑装置(PLD)、控制器、微控制器单元、精简指令集计算机(RISC)、微处理器等或以上任意组合。在一些实施例中,处理设备101和控制设备102可以集成为一个设备。在一些实施例中,控制设备102可以是处理设备101的一部分。在一些实施例中,处理设备101和控制设备102的功能可以彼此共享或共同完成。
测温组件103可以用于检测生长腔体侧壁和/或生长腔体顶部的温度,并将测温信号发送至处理设备101。在一些实施例中,测温组件103可以包括热电偶传感器、热敏电阻传感器、红外测温仪、光学高温计或比色高温计等。
监测组件104可以用于监测晶体生长情况,并将监测信号发送至处理设备101。在一些实施例中,晶体生长情况可以包括生长中的晶体的厚度、生长速率或缺陷中的至少一种。在一些实施例中,监测组件104可以包括接触式监控组件(例如,图19A中的超声测厚仪104-1)或非接触式监控组件(例如,空气耦合超声无损检测、电磁超声(EMAT)无损检测、静电耦合超声无损检测和激光超声无损检测)。
测压组件105可以用于监测籽晶粘接设备107的压力,并将监测信号发送至处理设备101。在一些实施例中,测压组件105可以包括压力传感器。例如,压电式压力传感器、压阻式压力传感器、电容式压力传感器、电磁式压力传感器、振弦式压力传感器等。
镀膜设备106可以用于执行籽晶镀膜的操作。在一些实施例中,镀膜设备106可以包括镀膜腔体、镀膜架、驱动组件、抽气组件、加热组件、进气口和出气口等。关于镀膜设备106的更多描述可见图9及其相关描述,在此不作赘述。
籽晶粘接设备107可以用于执行粘接籽晶的操作。在一些实施例中,籽晶粘接设备107包括粘接腔体、真空组件、上传动组件、下传动组件、加热组件、压紧组件、支撑组件等。关于籽晶粘接设备107的更多描述可见图11A、图12A及其相关描述,在此不作赘述。
晶体生长装置108可以用于执行晶体生长的操作。在一些实施例中,晶体生长装置108可以包括生长腔体、加热组件等。关于晶体生长装置108的更多描述可见图16A-16C及其相关描述,在此不作赘述。
以具体的晶体生长过程为例,控制设备102可以控制镀膜设备106在籽晶背面镀膜。在一些实施例中,控制设备102可以控制籽晶粘接设备107将籽晶(或镀膜后的籽晶)粘接在腔体盖或籽晶托上。压感组件可以检测籽晶粘接设备107的压紧组件的施加压力,并反馈给处理设备101。处理设备101可以发送控制指令至控制设备102,控制设备102可以相应控制籽晶粘接设备107的施加压力。在一些实施例中,控制设备102可以控制晶体生长装置108生长晶体。测温组件103可以检测生长腔体侧壁和/或生长腔体顶部的温度,并将温度反馈给处理设备101。处理设备101可以发送控制指令至控制设备102,控制设备102可以控制调节至少一个出料口的位置、形状、分布、流通面积等或其任意组合。监测组件104可以监测晶体生长情况,并将晶体生长情况反馈给处理设备101。处理设备101可以发送控制指令至控制设备102,控制设备102可以控制调节加热组件的加热参数和/或至少一个出料口的位置、形状、分布、流通面积等或其任意组合。
存储设备109可以存储晶体生长过程中涉及的多种数据和/或信息。在一些实施例中,存储设备109可以存储晶体生长过程中的参数(例如,温度、晶体生长情况)、控制指令等。在一些实施例中,存储设备109可以与晶体生长系统100中的一个或以上组件(例如,处理设备101、控制设备102、测温组件103、监测组件104、测压组件105、镀膜设备106、籽晶粘接设备107、晶体生长装置108、存储设备109、交互组件110等)直接连接或通信。晶体生长系统100中的一个或以上组件可以通过网络或直接访 问存储设备109中存储的数据和/或指令。在一些实施例中,存储设备109可以是处理设备101和/或控制设备102的一部分。晶体生长控制过程中的相关数据(如,压力控制参数、出料口控制参数等)可以实时记录在存储设备109中。
在一些实施例中,存储设备109可以存储处理设备101用于执行或使用以完成本说明书中描述的示例性方法的数据和/或指令。在一些实施例中,存储设备109可以包括大容量存储器、可移动存储器、易失性读写存储器、只读存储器(ROM)等或其任意组合。在一些实施例中,存储设备109可以在云平台上实现。在一些实施例中,云平台可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。
交互组件110可以用于与用户或晶体生长系统100中其他组件进行交互。在一些实施例中,交互组件110可以包括显示设备110-1和交互设备110-2。显示设备110-1可以包括数码管显示器、二维显示器、三维显示器等。交互设备110-2可以包括鼠标、键盘、语音输入设备等。
在一些实施例中,处理设备101可以通过显示设备110-1和/或交互设备110-2与操作人员(例如,晶体制备工程师)进行人机交互,操作人员可以通过显示设备110-1查询实际晶体生长情况、压力控制参数、出料口控制参数(例如,出料口的位置、形状、分布或流通面积)等。
需要注意的是,以上对于晶体生长系统100的描述,仅为描述方便,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对系统及其组件做出各种改变。例如,测温组件103、监测组件104、测压组件105和籽晶粘接设备107可以是独立于晶体生长装置108的组件,即,晶体生长装置108的组件可以不包括测温组件103、监测组件104、测压组件105和籽晶粘接设备107。
图2是根据本说明书一些实施例所示的示例性计算设备的示意图。
在一些实施例中,处理设备101、控制设备102和/或存储设备109可以在计算设备200上实现,并被配置为实现本说明书中所披露的功能。
计算设备200可以包括用来实现本说明书所描述的系统的任意部件。例如,PLC可以在计算设备200上通过其硬件、软件程序、固件或其组合实现。为了方便起见图中仅绘制了一台计算机,但是本说明书所描述的与加料控制相关的计算功能可以以分布的方式、由一组相似的平台所实施,以分散系统的处理负荷。
计算设备200可以包括与网络连接的通信端口205,用于实现数据通信。计算设备200可以包括一个处理器202(例如,CPU),可以以一个或多个处理器的形式执行程序指令。示例性的计算机平台可以包括一个内部总线201、不同形式的程序存储器和数据存储器,例如,硬盘207、只读存储器(ROM)203或随机存取存储器(RAM)204,用于存储由计算机处理和/或传输的各种各样的数据文件。计算设备还可以包括存储在只读存储器203、随机存取存储器204和/或其他类型的非暂时性存储介质中的由处理器202执行的程序指令。本说明书的方法和/或流程可以以程序指令的方式实现。计算设备200也包括输入/输出部件206,用于支持计算机与其他部件之间的输入/输出。计算设备200也可以通过网络通讯接收本披露中的程序和数据。
为理解方便,图2中仅示例性绘制了一个处理器。然而,需要注意的是,本说明书中的计算设备200可以包括多个处理器,本说明书中描述的由一个处理器实现的操作和/或方法也可以共同地或独立地由多个处理器实现。例如,如果本说明书中描述的计算设备200的处理器执行操作A和操作B,应当理解的是,操作A和操作B也可以由计算设备200中的两个或两个以上不同处理器共同或分别执行(例如,第一处理器执行操作A和第二处理器执行操作B,或第一处理器和第二处理器共同执行操作A和B)。
图3是根据本说明书一些实施例所示的示例性晶体生长方法的流程图。在一些实施例中,流程300可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程300可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程300。在一些实施例中,流程300可以由操作人员手动执行或半自动执行。在一些实施例中,流程300可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图3所示的操作的顺序并非限制性的。
步骤310,将原料置于生长腔体的原料区。
在一些实施例中,原料可以是生长晶体所需的原材料。在一些实施例中,原料可以是粉体、块状、颗粒等。在一些实施例中,原料的纯度可以大于或等于90.00%。在一些实施例中,原料的纯度可以大于或等于92.00%。在一些实施例中,原料的纯度可以大于或等于95.00%。在一些实施例中,原料的纯度可以大于或等于99.00%。在一些实施例中,原料的纯度可以大于或等于99.9%。在一些实施例中,原料的纯度可以大于或等于99.99%。在一些实施例中,原料的纯度可以大于或等于99.999%。
以下以制备碳化硅晶体为例进行说明。
在一些实施例中,原料可以包括碳化硅粉料。关于制备碳化硅粉料的更多内容可以参见本说明书其他部分(例如,图4及其相关描述),在此不再赘述。
在一些实施例中,生长腔体可以是碳化硅晶体生长的场所。关于生长腔体的更多内容可以参见本说明书其他部分(例如,图16A-16C、图18及其相关描述),在此不再赘述。
在一些实施例中,原料区可以是放置碳化硅粉料的场所。在一些实施例中,原料区可以位于生长腔体的下方。
在一些实施例中,可以通过手动方式将原料置于生长腔体的原料区。通过手动方式装入原料,该过程操作灵活、设备简单、成本较低。在一些实施例中,可以通过处理设备和/或控制设备控制机械臂将原料置于生长腔体的原料区。在一些实施例中,机械臂可以按照设定程序自动拾取原料,将其置于生长腔体的原料区。通过机械臂装入原料,可以减少人工成本、取料精确易操控。
步骤320,将籽晶置于生长腔体的生长区。
在一些实施例中,籽晶可以是结晶质量高、结晶缺陷少的小碳化硅晶体,可以理解为生长碳化硅晶体的种子。
在一些实施例中,生长区可以是基于籽晶生长碳化硅晶体的场所。在一些实施例中,生长区可以位于生长腔体的上方。
在一些实施例中,原料区和生长区可以通过隔板分隔。在一些实施例中,在晶体生长过程中,为了实现调控原料区的温度时对生长区的温度影响较小,以保持晶体生长环境的稳定性,隔热板可以是耐高温隔热材料。例如,石墨、多孔石墨等。在一些实施例中,隔板可以包括至少一个出料口。在一些实施例中,原料区的原料经过高温加热升华为气相组分,气相组分可以通过隔板上的出料口进入生长区,在籽晶表面生长碳化硅晶体。
通过隔板分隔原料区和生长区,可以实现原料区、隔板附近以及生长区的温度的分别单独控制,有效调控晶体生长过程,并且隔热板采用耐高温隔热材料,使得调节原料区温度时对生长区温度影响较小,从而保证了晶体生长环境的稳定性。此外,通过调节隔板上至少一个出料口的位置、形状、分布、流通面积等,可以调控原料气相组分的碳硅摩尔比、传输路径、传输速度等,能有效调控晶体生长界面,明显降低位错形成概率,减少晶体缺陷,提高生长的晶体质量。
在一些实施例中,可以通过手动方式将籽晶粘接于生长腔体的生长区。通过手动方式粘接籽晶,该过程操作灵活、设备简单、成本较低。在一些实施例中,可以通过处理设备和/或控制设备控制机械臂将籽晶粘接于生长腔体的生长区。在一些实施例中,机械臂可以按照设定程序自动拾取籽晶,将其粘接于生长腔体的生长区。通过机械臂粘接籽晶,可以减少人工成本、取料精确易操控。
在一些实施例中,可以通过籽晶粘接设备107将籽晶粘接于生长腔体的腔体盖或籽晶托上。关于籽晶粘接的更多内容可以参见本说明书其他部分(例如,图10~图14B及其相关描述),在此不再赘述。
在一些实施例中,在籽晶粘接过程中和/或将籽晶粘接于腔体盖或籽晶托后,可以通过超声探测设备对籽晶的粘接情况进行气孔检测。在一些实施例中,超声探测设备可以包括超声波探伤仪。
在一些实施例中,气孔检测可以是检测籽晶粘接过程中和/或籽晶粘接后籽晶中气孔的状态。在一些实施例中,气孔检测的结果包括气孔位置、气孔尺寸、气孔形状或气孔密度中的至少一个。
在一些实施例中,超声探测设备(例如,超声波探伤仪)可以通过籽晶生长面向籽晶内部发射超声波,以将超声波从籽晶生长面传入正在粘接过程中的籽晶或已粘接好的籽晶中。由于超声波在气泡(或称为“气孔”)中的传播与在粘接部位的传播速度和幅度等有一定的差别,超声探测设备在接受反射回来的超声波后根据该超声波的接收时间、幅度等情况判断出籽晶粘接过程中或籽晶粘接后籽晶上存在气泡的位置、尺寸、形状或密度。在一些实施例中,可以基于检测结果,调节籽晶粘接过程的压力。在一些实施例中,若检测到籽晶粘接过程中气孔密度大于气孔密度阈值(例如,8个/cm 2),可以提高压紧组件的施加压力和/或提高抽气组件的抽气功率以使粘接设备内的压力降低,以排出气泡。在一些实施例中,若检测到籽晶粘接过程中气孔密度小于气孔密度阈值,可以维持压紧组件的压力和/或粘接设备内的压力,继续进行压紧操作。在一些实施例中,若检测到籽晶粘接过程中籽晶的局部气孔密度大于气孔密度阈值,可以调整压紧组件的局部压力,以排出局部气泡。通过气孔检测结果,调节粘接过程压紧组件的压力、局部压力和/或粘接设备内的压力,可以提高籽晶粘接的质量。在一些实施例中,若检测到籽晶粘接后气孔密度大于气孔密度阈值,可以将籽晶取下来重新粘接,以提高籽晶粘接的质量。
步骤330,基于籽晶和原料,通过物理气相传输法生长晶体。
在一些实施例中,原料区中的碳化硅原料经高温加热升华为气相组分(例如,Si、Si 2C、SiC 2等),气相组分在温度梯度和/或浓度梯度的驱动下通过隔板上的至少一个出料口进入温度相对较低的生长区,接着又在温度梯度的驱动下输运到籽晶处,在籽晶处形核、长大,结晶形成SiC晶体。
在一些实施例中,在通过物理气相传输法生长晶体的过程中,可以通过加热组件加热生长腔体, 以实现原料升华、气相组分传输等。关于通过加热组件加热生长腔体的更多内容可以参见本说明书其他部分(例如,图15及其相关描述),在此不再赘述。
在一些实施例中,在通过物理气相传输法生长晶体的过程中,可以沿轴向或径向调节至少一个出料口的位置。通过调节至少一个出料口的位置,可以使晶体生长面的气相组分分布更加均匀,生长出较为平整的晶体,减少晶体生长缺陷,提高晶体质量。关于沿轴向或径向调节至少一个出料口的位置的更多内容可以参见本说明书其他部分(例如,图20及其相关描述),在此不再赘述。
在一些实施例中,在通过物理气相传输法生长晶体的过程中,可以获取生长腔体内的温度信息;并基于温度信息,调节至少一个出料口的位置、形状、分布或流通面积中的至少一种。在一些实施例中,在通过物理气相传输法生长晶体的过程中,可以获取生长腔体内的温度信息;并基于温度信息,调节下一次晶体生长过程中至少一个出料口的位置、形状、分布或流通面积中的至少一种。关于基于温度信息调节至少一个出料口的位置、形状、分布或流通面积中的至少一种的更多内容可以参见本说明书其他部分(例如,图20及其相关描述),在此不再赘述。
在一些实施例中,在通过物理气相传输法生长晶体的过程中,可以获取气相组分在生长腔体内的分布情况;并基于分布情况,调节至少一个出料口的位置、形状、分布或流通面积中的至少一种。在一些实施例中,在通过物理气相传输法生长晶体的过程中,可以获取气相组分在生长腔体内的分布情况;并基于分布情况,调节下一次晶体生长过程中至少一个出料口的位置、形状、分布或流通面积中的至少一种。关于基于分布情况调节至少一个出料口的位置、形状、分布或流通面积中的至少一种的更多内容可以参见本说明书其他部分(例如,图21及其相关描述),在此不再赘述。
在一些实施例中,在晶体生长过程中,可以监测晶体生长情况;并基于晶体生长情况,调节加热组件的加热参数和/或至少一个出料口的位置、形状、分布或流通面积中的至少一种。在一些实施例中,在晶体生长过程中,可以监测晶体生长情况;并基于晶体生长情况,调节下一次晶体生长过程中加热组件的加热参数和/或至少一个出料口的位置、形状、分布或流通面积中的至少一种。关于基于晶体生长情况调节加热组件的加热参数和/或至少一个出料口的位置、形状、分布或流通面积中的至少一种的更多内容可以参见本说明书其他部分(例如,图22及其相关描述),在此不再赘述。
应当注意的是,上述有关流程的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,流程300可以包括存储步骤,在存储步骤中,处理设备和/或控制设备可以将流程300涉及的信息和/或数据(例如,至少一个出料口的位置、形状、分布、流通面积等)存储在存储设备(例如,存储设备109)中。
在碳化硅晶体生长过程中,碳化硅原料的品质和纯度是至关重要的,而目前在市面上采购的碳化硅原料一般纯度偏低,杂质含量超过5ppm,杂质含量过高会影响后续生长的碳化硅晶体,主要表现为:(1)影响碳化硅晶体的电阻率调控;(2)影响碳化硅晶体颜色以及颜色均一性;(3)影响碳化硅晶体生长的形核能和晶型稳定性;(4)严重腐蚀坩埚,改变晶体生长过程中成分比。因此,本说明书实施例提供一种杂质浓度较低的碳化硅原料制备方法。
图4是根据本说明书一些实施例所示的示例性原料制备方法的流程图。在一些实施例中,流程400可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图4所示的操作的顺序并非限制性的。
步骤410,将源材料和添加剂混合均匀。
在一些实施例中,源材料可以是制备晶体所用原料的初始材料。在一些实施例中,源材料可以包括碳粉、硅粉和预设占比的碳化硅颗粒。
在一些实施例中,碳粉可以采用灰分小于5ppm的高纯碳粉。在一些实施例中,碳粉可以采用灰分小于4ppm的高纯碳粉。在一些实施例中,碳粉可以采用灰分小于3ppm的高纯碳粉。在一些实施例中,碳粉可以采用灰分小于2ppm的高纯碳粉。在一些实施例中,碳粉可以采用灰分小于1ppm的高纯碳粉。在一些实施例中,硅粉可以采用3N级的高纯硅粉。在一些实施例中,硅粉可以采用4N级的高纯硅粉。在一些实施例中,硅粉可以采用5N级的高纯硅粉。在一些实施例中,硅粉可以采用6N级的高纯硅粉。在一些实施例中,硅粉可以采用7N级的高纯硅粉。
在一些实施例中,为了使得源材料混合均匀以及原料合成操作反应充分,碳粉、硅粉和/或碳化硅颗粒的粒径需满足一定要求。
在一些实施例中,碳粉的粒径可以在0.01μm~2mm的范围内。在一些实施例中,碳粉的粒径可以在0.03μm~1.8mm的范围内。在一些实施例中,碳粉的粒径可以在0.05μm~1.5mm的范围内。在一些实施例中,碳粉的粒径可以在0.08μm~1.0mm的范围内。在一些实施例中,碳粉的粒径可以在0.1μm~800μm的范围内。在一些实施例中,碳粉的粒径可以在0.3μm~500μm的范围内。在一些实施例中,碳粉的 粒径可以在0.5μm~300μm的范围内。在一些实施例中,碳粉的粒径可以在1μm~200μm的范围内。在一些实施例中,碳粉的粒径可以在5μm~150μm的范围内。在一些实施例中,碳粉的粒径可以在10μm~128μm的范围内。在一些实施例中,碳粉的粒径可以在30μm~100μm的范围内。在一些实施例中,碳粉的粒径可以在50μm~80mm的范围内。在一些实施例中,碳粉的粒径可以在60μm~70μm的范围内。
在一些实施例中,硅粉的粒径可以在0.01mm~5mm的范围内。在一些实施例中,硅粉的粒径可以在0.1mm~4.5mm的范围内。在一些实施例中,硅粉的粒径可以在0.3mm~4.0mm的范围内。在一些实施例中,硅粉的粒径可以在0.5mm~3.5mm的范围内。在一些实施例中,硅粉的粒径可以在0.7mm~3.0mm的范围内。在一些实施例中,硅粉的粒径可以在1mm~2.5mm的范围内。在一些实施例中,硅粉的粒径可以在1.3mm~2.0mm的范围内。在一些实施例中,硅粉的粒径可以在1.5mm~1.8mm的范围内。在一些实施例中,硅粉的粒径可以在1.6mm~1.7mm的范围内。
在一些实施例中,碳化硅颗粒的粒径可以在10目~120目的范围内。在一些实施例中,碳化硅颗粒的粒径可以在16目~100目的范围内。在一些实施例中,碳化硅颗粒的粒径可以在20目~80目的范围内。在一些实施例中,碳化硅颗粒的粒径可以在25目~60目的范围内。在一些实施例中,碳化硅颗粒的粒径可以在30目~50目的范围内。在一些实施例中,碳化硅颗粒的粒径可以在35目~45目的范围内。在一些实施例中,碳化硅颗粒的粒径可以在35目~40目的范围内。
在一些实施例中,预设占比可以是碳化硅颗粒与碳粉和硅粉总重量的比值。在一些实施例中,预设占比可以在碳粉和硅粉总重量的1%~30%的范围内。在一些实施例中,预设占比可以在碳粉和硅粉总重量的3%~28%的范围内。在一些实施例中,预设占比可以在碳粉和硅粉总重量的5%~26%的范围内。在一些实施例中,预设占比可以在碳粉和硅粉总重量的7%~24%的范围内。在一些实施例中,预设占比可以在碳粉和硅粉总重量的10%~22%的范围内。在一些实施例中,预设占比可以在碳粉和硅粉总重量的13%~20%的范围内。在一些实施例中,预设占比可以在碳粉和硅粉总重量的15%~18%的范围内。在一些实施例中,预设占比可以在碳粉和硅粉总重量的16%~17%的范围内。
在一些实施例中,添加剂可以包括聚四氟乙烯。
在一些实施例中,添加剂可以与源材料按一定比例添加。在一些实施例中,碳粉:硅粉:聚四氟乙烯的质量比可以为1:2:(0.01~0.5)。在一些实施例中,碳粉:硅粉:聚四氟乙烯的质量比可以为1:2:(0.03~0.4)。在一些实施例中,碳粉:硅粉:聚四氟乙烯的质量比可以为1:2:(0.05~0.3)。在一些实施例中,碳粉:硅粉:聚四氟乙烯的质量比可以为1:2:(0.08~0.2)。在一些实施例中,碳粉:硅粉:聚四氟乙烯的质量比可以为1:2:(0.1~0.15)。在一些实施例中,碳粉:硅粉:聚四氟乙烯的质量比可以为1:2:(0.12~0.14)。
在一些实施例中,可以使用粉体混合设备,将源材料和添加剂混合均匀。在一些实施例中,粉体混合设备可以包括双螺旋锥形混合机、卧式无重力混合机、卧式犁刀混合机、卧式螺带混合机等或其任意组合。在一些实施例中,可以使用研钵(例如,玛瑙研钵)将源材料和添加剂混合均匀。
步骤420,将混合均匀的源材料和添加剂置于预合成装置中进行原料合成操作,得到初始原料。
在一些实施例中,预合成装置可以是能够提供一定温度、压力和/或气氛以进行原料合成的场所。在一些实施例中,可以将混合均匀的源材料和添加剂放置于埚中,再将盛有源材料和添加剂的埚置于预合成装置中进行原料合成操作。在一些实施例中,埚可以包括碳化钽坩埚、内部涂覆碳化钽涂层的高纯石墨坩埚、高纯石墨坩埚等。与使用传统碳坩埚相比,使用碳化钽坩埚或者内部涂覆碳化钽涂层的坩埚可以避免在原料合成过程中碳坩埚中的B、Al等杂质对原料的污染,提高原料纯度。
在一些实施例中,原料合成操作可以包括第一阶段和第二阶段。在一些实施例中,第一阶段为反应阶段,第二阶段为升华重结晶阶段。
在一些实施例中,反应阶段的反应温度可以在1200℃~1600℃的范围内。在一些实施例中,反应阶段的反应温度可以在1250℃~1550℃的范围内。在一些实施例中,反应阶段的反应温度可以在1300℃~1500℃的范围内。在一些实施例中,反应阶段的反应温度可以在1350℃~1450℃的范围内。在一些实施例中,反应阶段的反应温度可以在1370℃~1430℃的范围内。在一些实施例中,反应阶段的反应温度可以在1390℃~1410℃的范围内。
由于压力较高时有利于抑制原料气相传输,原料可以原位发生反应生成SiC晶核;而压力较低时有利于排除杂质,因此可以设置反应阶段的反应压力在较宽的范围内。在一些实施例中,反应阶段的反应压力可以在10 -5Pa~101kPa的范围内。在一些实施例中,反应阶段的反应压力可以在10 -4Pa~90kPa的范围内。在一些实施例中,反应阶段的反应压力可以在10 -3Pa~80kPa的范围内。在一些实施例中,反应阶段的反应压力可以在10 -2Pa~70kPa的范围内。在一些实施例中,反应阶段的反应压力可以在0.1Pa~60kPa的范围内。在一些实施例中,反应阶段的反应压力可以在1Pa~50kPa的范围内。在一些实施例中,反应阶段的反应压力可以在10Pa~40kPa的范围内。在一些实施例中,反应阶段的反应压力可以在15Pa~35kPa的范围 内。在一些实施例中,反应阶段的反应压力可以在20Pa~30Pa的范围内。在一些实施例中,反应阶段的反应压力可以在22Pa~28Pa的范围内。在一些实施例中,反应阶段的反应压力可以在23Pa~25Pa的范围内。
在一些实施例中,反应阶段的反应时间可以在0.5h~10h的范围内。在一些实施例中,反应阶段的反应时间可以在1h~9h的范围内。在一些实施例中,反应阶段的反应时间可以在2h~8h的范围内。在一些实施例中,反应阶段的反应时间可以在3h~7h的范围内。在一些实施例中,反应阶段的反应时间可以在4h~6h的范围内。在一些实施例中,反应阶段的反应时间可以在5h~5.5h的范围内。
经过第一阶段(反应阶段)后,通常生成的碳化硅颗粒较小(例如,40目-80目)。如果使用小颗粒碳化硅原料进行晶体生长,一方面,小颗粒碳化硅原料的孔隙率很小,不利于原料受热后的气相传输,
并且传输通道容易堵塞,最终由于原料供给不足而影响晶体质量;另一方面,坩埚底部碳化硅小颗粒受热碳化后的细小碳颗粒可能会随气相传输到晶体生长面,形成碳包裹物缺陷,降低晶体质量。因此,需要进行第二阶段(即升华重结晶阶段),在该阶段碳化硅小颗粒会发生升华,然后在步骤410中加入源材料的碳化硅颗粒表面重新结晶,生成颗粒较大(例如,8目-40目)的初始原料,从而提高后续晶体生长的质量。
在一些实施例中,升华重结晶阶段的反应温度可以在1600℃~2500℃的范围内。在一些实施例中,
升华重结晶阶段的反应温度可以在1650℃~2450℃的范围内。在一些实施例中,升华重结晶阶段的反应温度可以在1700℃~2400℃的范围内。在一些实施例中,升华重结晶阶段的反应温度可以在1750℃~2350℃的范围内。在一些实施例中,升华重结晶阶段的反应温度可以在1800℃~2300℃的范围内。在一些实施例中,升华重结晶阶段的反应温度可以在1850℃~2250℃的范围内。在一些实施例中,升华重结晶阶段的反应温度可以在1900℃~2200℃的范围内。在一些实施例中,升华重结晶阶段的反应温度可以在1950℃~2150℃的范围内。在一些实施例中,升华重结晶阶段的反应温度可以在2000℃~2100℃的范围内。在一些实施例中,升华重结晶阶段的反应温度可以在2030℃~2170℃的范围内。
在一些实施例中,升华重结晶阶段的反应压力可以在10 -3Pa~0.1MPa的范围内。在一些实施例中,升华重结晶阶段的反应压力可以在10 -2Pa~0.01MPa的范围内。在一些实施例中,升华重结晶阶段的反应压力可以在0.1Pa~1kPa的范围内。在一些实施例中,升华重结晶阶段的反应压力可以在1Pa~100Pa的范围内。在一些实施例中,升华重结晶阶段的反应压力可以在3Pa~90Pa的范围内。在一些实施例中,升华重结晶阶段的反应压力可以在5Pa~80Pa的范围内。在一些实施例中,升华重结晶阶段的反应压力可以在7Pa~70Pa的范围内。在一些实施例中,升华重结晶阶段的反应压力可以在10Pa~60Pa的范围内。在一些实施例中,升华重结晶阶段的反应压力可以在20Pa~50Pa的范围内。在一些实施例中,升华重结晶阶段的反应压力可以在30Pa~40Pa的范围内。
在一些实施例中,升华重结晶阶段的反应时间可以在5h~60h的范围内。在一些实施例中,升华重结晶阶段的反应时间可以在10h~55h的范围内。在一些实施例中,升华重结晶阶段的反应时间可以在15h~50h的范围内。在一些实施例中,升华重结晶阶段的反应时间可以在20h~45h的范围内。在一些实施例中,升华重结晶阶段的反应时间可以在25h~40h的范围内。在一些实施例中,升华重结晶阶段的反应时间可以在30h~35h的范围内。
步骤430,对初始原料进行后处理,得到碳化硅粉料。
在一些实施例中,对初始原料进行后处理可以包括对初始原料进行粉碎、筛分、除碳、清洗、烘干、封装中的一种或多种。
通过对初始原料进行后处理,可以得到粒径均匀、纯度高的碳化硅原料。
在本说明书中,在源材料中加入碳化硅颗粒,可以在后续原料合成操作中起到引晶的作用,使得反应生成的碳化硅小颗粒升华后在其表面重结晶,生长为大颗粒碳化硅原料,从而减少初始原料中的缺陷,提高初始原料的质量。此外,在源材料中加入聚四氟乙烯添加剂,聚四氟乙烯受热可分解为气体,由于其分解温度低于初始原料的合成温度,因此聚四氟乙烯分解后初始原料的合成反应尚未开始,不会对初始原料的合成造成影响。此外,聚四氟乙烯受热分解成气体时,会在堆积的源材料内部形成空间,可以使堆积的源材料内部的空气(特别是氮气)被真空泵抽离,从而提高初始原料合成时环境的纯度,进而提高最终制备的初始原料和碳化硅粉料的纯度。
图5是根据本说明书一些实施例所示的示例性原料预处理方法及籽晶预处理方法的流程图。在一些实施例中,流程500可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图5所示的操作的顺序并非限制性的。
步骤510,对原料进行酸处理和/或清洗。
在一些实施例中,酸处理所使用的酸溶液可以包括盐酸、硫酸、王水或氢氟酸。通过对原料进行酸处理,可以去除碳化硅原料中的金属杂质,避免晶体生长过程中碳化硅与金属杂质发生反应,从而提高晶体质量。
在一些实施例中,清洗所使用的溶液可以包括超纯水、纯水、去离子水或蒸馏水。在一些实施例 中,为了避免清洗过程中水中的杂质带来的二次污染,可以使用超纯水进行清洗。
通过对碳化硅粉料进行酸处理和/或清洗等工艺步骤,可以降低后续制备的晶体中的微管的密度,提高晶体质量。
步骤520,对籽晶进行抛光处理、镀膜处理、表面检查或直径扩张处理中的至少一种。
在一些实施例中,抛光处理可以包括将籽晶放置于抛光设备上,控制抛光设备在抛光条件下抛光一定抛光时间,得到抛光处理后的籽晶。
在一些实施例中,抛光条件可以包括抛光压力和抛光转速。
抛光压力过大会导致抛光过程不稳定或导致抛光后的籽晶厚度过薄,而抛光压力过小则会导致抛光后的籽晶表面的粗糙度或平整度无法达到要求,因此,需要设置合适的抛光压力。在一些实施例中,抛光压力可以在0.05MPa~1MPa的范围内。在一些实施例中,抛光压力可以在0.5MPa~0.95MPa的范围内。在一些实施例中,抛光压力可以在0.1MPa~0.9MPa的范围内。在一些实施例中,抛光压力可以在0.15MPa~0.85MPa的范围内。在一些实施例中,抛光压力可以在0.2MPa~0.8MPa的范围内。在一些实施例中,抛光压力可以在0.25MPa~0.75MPa的范围内。在一些实施例中,抛光压力可以在0.3MPa~0.7MPa的范围内。在一些实施例中,抛光压力可以在0.35MPa~0.65MPa的范围内。在一些实施例中,抛光压力可以在0.4MPa~0.6MPa的范围内。在一些实施例中,抛光压力可以在0.45MPa~0.55MPa的范围内。在一些实施例中,抛光压力可以在0.49MPa~0.51MPa的范围内。
抛光转速过大会导致抛光过程不稳定、易出现裂片和划痕,或导致抛光后的籽晶厚度过薄,而抛光转速过小则会使得抛光时间过长、抛光效率降低,因此,需要设置合适的抛光转速。在一些实施例中,转速可以在10r/min-80r/min的范围内。在一些实施例中,转速可以在15r/min-75r/min的范围内。在一些实施例中,转速可以在20r/min-70r/min的范围内。在一些实施例中,转速可以在25r/min-65r/min的范围内。在一些实施例中,转速可以在30r/min-60r/min的范围内。在一些实施例中,转速可以在35r/min-55r/min的范围内。在一些实施例中,转速可以在40r/min-50r/min的范围内。在一些实施例中,转速可以在43r/min-47r/min的范围内。
在一些实施例中,抛光时间可以在5min~480min的范围内。在一些实施例中,抛光时间可以在30min~450min的范围内。在一些实施例中,抛光时间可以在60min~420min的范围内。在一些实施例中,抛光时间可以在90min~390min的范围内。在一些实施例中,抛光时间可以在120min~360min的范围内。在一些实施例中,抛光时间可以在150min~330min的范围内。在一些实施例中,抛光时间可以在180min~300min的范围内。在一些实施例中,抛光时间可以在210min~270min的范围内。在一些实施例中,抛光时间可以在230min~250min的范围内。在一些实施例中,抛光时间可以在235min~245min的范围内。
在一些实施例中,抛光处理过程中可以使用抛光粉。在一些实施例中,抛光粉可以包括稀土抛光粉、金刚石抛光粉(例如,多晶金刚石微粉、单晶金刚石微粉、纳米金刚石微粉)、氧化铝系列微粉、氧化铈系列微粉、镀衣金刚石微粉。
抛光粉粒径过大会导致籽晶表面划伤,而抛光粉粒径过小则会导致抛光后的籽晶表面的粗糙度和平整度无法达到要求,因此,需要设置合适的抛光粉粒径。在一些实施例中,抛光粉的粒径可以在0.01μm~2μm的范围内。在一些实施例中,抛光粉的粒径可以在0.1μm~1.9μm的范围内。在一些实施例中,抛光粉的粒径可以在0.2μm~1.8μm的范围内。在一些实施例中,抛光粉的粒径可以在0.4μm~1.6μm的范围内。在一些实施例中,抛光粉的粒径可以在0.6μm~1.4μm的范围内。在一些实施例中,抛光粉的粒径可以在0.8μm~1.2μm的范围内。在一些实施例中,抛光粉的粒径可以在1.0μm~1.1μm的范围内。
在一些实施例中,不同类型、不同厚度和/或不同条件(例如,表面粗糙度)的籽晶可以对应不同的抛光条件、不同的抛光时间和/或不同的抛光粉粒径。
通过对籽晶进行抛光处理,可以减少表面缺陷和表面污染程度,有效避免生长的晶体中新微管的产生。
在一些实施例中,可以对籽晶生长面的背面进行镀膜处理。在一些实施例中,镀膜方式可以包括热蒸发法、磁控溅射法、物理气相沉积法、化学气相沉积法、电子束蒸发法、反应烧结法、等离子体涂层法、分子束外延法、液相外延法、激光沉积法等。关于镀膜处理的更多内容可以参见本说明书其他部分(例如,图6-图9及其相关描述),在此不再赘述。
通过在籽晶生长面的背面进行镀膜处理,可以减少晶体内六方空洞的密度,从而有效避免晶体生长过程中微管数量的增加。
在一些实施例中,表面检查可以包括检查籽晶表面是否有微管、籽晶表面是否有机械损伤、籽晶表面是否清洁等。
在一些实施例中,可以多种方式实现籽晶的表面检查。例如,X射线衍射法、激光散射法、显微拉曼光谱法。
通过表面检查可以在晶体生长前严格监控籽晶的表面状态,有效避免晶体生长过程中微管数量的增加。
在一些实施例中,由于低缺陷密度的大尺寸籽晶较难获取,可以使用尺寸较小的低缺陷密度籽晶通过直径扩张处理扩大籽晶的直径以得到大尺寸籽晶。在一些实施例中,可以将籽晶置于直径大于籽晶直径的圆环中使籽晶先进行径向生长。在一些实施例中,圆环的直径可以根据实际晶体生长过程中所需的晶体直径进行设置。例如,待生长的晶体直径为8英寸,设置圆环的直径也为8英寸。在一些实施例中,待籽晶直径增长为圆环的直径后,再控制工艺参数在籽晶表面进行轴向生长。在一些实施例中,还可以使用尺寸较小的低缺陷密度籽晶,通过扩径生长的方式获得大尺寸晶锭,然后再切片加工成所需晶体直径的大尺寸籽晶。
通过对籽晶进行直径扩张处理,可以增加低缺陷密度区域面积,减少制备的晶体内的微管数量。
在晶体生长前,通过对籽晶进行抛光处理、镀膜处理、表面检查或直径扩张处理等,可以提高籽晶品质,减少制备的晶体内的微管数量。
图6是根据本说明书一些实施例所示的示例性籽晶镀膜方法的流程图。在一些实施例中,流程600可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程600可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程600。在一些实施例中,流程600可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图6所示的操作的顺序并非限制性的。
步骤610,对籽晶背面进行喷砂处理。
在一些实施例中,为了使得籽晶镀膜后的附着效果更好,可以在对籽晶进行镀膜处理前,对籽晶背面进行喷砂处理,以获得一定粗糙度的籽晶。在一些实施例中,籽晶背面可以是与籽晶生长面相对的籽晶面。
在一些实施例中,可以采用100目~200目的喷料(例如,金刚砂、石英砂、铁砂、铜矿砂)对籽晶背面进行喷砂处理。在一些实施例中,可以采用110目~190目的喷料对籽晶背面进行喷砂处理。在一些实施例中,可以采用120目~180目的喷料对籽晶背面进行喷砂处理。在一些实施例中,可以采用130目~170目的喷料对籽晶背面进行喷砂处理。在一些实施例中,可以采用140目~160目的喷料对籽晶背面进行喷砂处理。在一些实施例中,可以采用150目~155目的喷料对籽晶背面进行喷砂处理。
经过喷砂处理后,如果籽晶背面的粗糙度太小,则镀膜后膜的附着力较差,容易脱落;如果粗糙度太大,则会影响籽晶背面的平整度,籽晶不易粘接在腔体盖或籽晶托上,因此,喷砂处理后的籽晶背面的粗糙度需满足一定要求。在一些实施例中,喷砂处理后的籽晶的粗糙度在1μm~80μm的范围内。在一些实施例中,喷砂处理后的籽晶的粗糙度在5μm~75μm的范围内。在一些实施例中,喷砂处理后的籽晶的粗糙度在10μm~70μm的范围内。在一些实施例中,喷砂处理后的籽晶的粗糙度在15μm~65μm的范围内。在一些实施例中,喷砂处理后的籽晶的粗糙度在20μm~60μm的范围内。在一些实施例中,喷砂处理后的籽晶的粗糙度在25μm~55μm的范围内。在一些实施例中,喷砂处理后的籽晶的粗糙度在30μm~50μm的范围内。在一些实施例中,喷砂处理后的籽晶的粗糙度在35μm~45μm的范围内。在一些实施例中,喷砂处理后的籽晶的粗糙度在38μm~42μm的范围内。
通过对籽晶背面进行喷砂处理,使得籽晶背面满足一定的粗糙度,便于后续对籽晶背面进行镀膜,并保证镀膜效果较好且不容易脱落。
步骤620,对喷砂处理后的籽晶进行加热预处理。
由于镀膜过程温度较高,可以通过预先对籽晶进行加热预处理,以避免膜材质与籽晶温差过大而导致籽晶由于热应力过大造成断裂,或者由于膜材质与籽晶的热膨胀不同而造成的镀膜不牢固等问题出现。
在一些实施例中,加热预处理的温度可以在300℃~900℃的范围内。在一些实施例中,加热预处理的温度可以在400℃~800℃的范围内。在一些实施例中,加热预处理的温度可以在500℃~700℃的范围内。在一些实施例中,加热预处理的温度可以在600℃~650℃的范围内。
步骤630,使用膜材料对加热预处理后的籽晶进行镀膜。
在一些实施例中,膜材料可以为具有高温稳定性和化学稳定性的物质。在一些实施例中,膜材料可以包括W、Mo、N 2W、TaC中的一种或多种。
镀膜厚度太大,膜材料的附着力较差,容易脱落;而镀膜厚度太小,难以保证镀膜均匀,影响镀膜效果,因此,需要选择合适的镀膜厚度。在一些实施例中,镀膜厚度可以在1μm~200μm的范围内。在一些实施例中,镀膜厚度可以在5μm~175μm的范围内。在一些实施例中,镀膜厚度可以在10μm~150μm的范围内。在一些实施例中,镀膜厚度可以在25μm~125μm的范围内。在一些实施例中,镀膜厚度可以在50μm~100μm的范围内。在一些实施例中,镀膜厚度可以在60μm~90μm的范围内。在一些实 施例中,镀膜厚度可以在75μm~85μm的范围内。在一些实施例中,镀膜厚度可以在80μm~85μm的范围内。
在一些实施例中,镀膜方式可以包括热蒸发法、物理气相沉积法、化学气相沉积法、电子束蒸发法、反应烧结法、等离子体涂层法、分子束外延法、液相外延法、激光沉积法等。
通过对籽晶背面进行镀膜处理,可以抑制碳化硅晶体生长过程中籽晶背面的蒸发过程,有效消除由于籽晶背面蒸发而导致的平面六角缺陷,从而提高晶体质量及产率。具体地,如图7所示,Z表示籽晶,108-111表示腔体盖,通过粘接剂A将籽晶Z粘接于腔体盖108-111上。由于腔体盖108-111表面机械加工精度不高、粘接剂A粘接不均匀和/或粘接剂A本身的物化性质等原因,使得籽晶Z背面与腔体盖108-111粘接界面可能存在一些气孔Q,气孔Q导致传热受阻,热量凝聚于气孔处,进而导致籽晶背面蒸发,影响后续晶体生长。例如,假设无气孔情况下,腔体盖108-111处的温度为T 2,籽晶Z处的温度为T 1,二者间温差为ΔT。这一正常温差不会导致籽晶Z的升华。而由于气孔Q的存在,阻碍热量传输,导致热量聚集于气孔Q处,进而导致腔体盖108-111处的温度为T 2’,籽晶Z处的温度为T 1’,其中,T 2’<T 2,T 1’>T 1,相应地,二者间温差ΔT’大于正常情况下的温差ΔT,进而导致籽晶Z背面的背向蒸发,蒸发的气相组分随时间推移凝聚在气孔Q处。随着时间推移,由于传热受阻,热量的积聚导致界面温度T 1<T 1’,即气孔Q所在的生长界面处温度高,晶体生长的温度梯度小,晶体生长速度小,因此气孔Q所在的生长界面处的生长速率小于周围没有气孔Q的生长界面处的生长速度,由于同一生长界面上各处的生长速率不同,从而导致晶体生长缺陷(例如位错、微管或空洞)的产生,大面积的空位群(或称为气孔群)甚至会导致晶体生长界面宏观可见的界面凹陷X,这将严重影响晶体J的质量和产量。因此,通过对籽晶背面镀膜处理,可以消除晶体生长过程中由于背面蒸发而导致的六方孔洞,从而提高碳化硅晶体的质量及产率。在一些实施例中,腔体盖108-111也可以替换为籽晶托。在一些实施例中,籽晶托可以为支撑籽晶的组件。
图8是根据本说明书又一些实施例所示的示例性籽晶镀膜方法的流程图。在一些实施例中,流程800可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程800可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程800。在一些实施例中,流程800可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图8所示的操作的顺序并非限制性的。
步骤810,将多个籽晶置于镀膜设备的多个镀膜架上。
在一些实施例中,镀膜架上可以设置多个托盘,用于放置籽晶。在一些实施例中,可以通过手动方式将多个籽晶分别置于多个托盘中。通过手动方式装入籽晶,该过程操作灵活、设备简单、成本较低。在一些实施例中,可以通过处理设备和/或控制设备控制机械臂将籽晶置于托盘。在一些实施例中,机械臂可以按照设定程序自动拾取籽晶,将其置于托盘。通过机械臂装入籽晶,可以减少人工成本、取料精确易操控。
在一些实施例中,多个镀膜架可以设置于镀膜设备内部。关于镀膜设备的更多内容可以参见本说明书其他部分(例如,图9及其相关描述),在此不再赘述。
步骤820,向镀膜设备中通入镀膜气体,通过气相沉积法同时在多个籽晶背面生长碳膜。
在一些实施例中,可以在非镀膜面预先贴上一层聚酰亚胺薄膜(PolyimideFilm,PI),镀膜完成后再取下聚酰亚胺薄膜,从而防止非镀膜面被镀膜。在一些实施例中,非镀膜面可以通过静电吸附等方式和托盘紧密贴合,以避免非镀膜面被镀膜。
在一些实施例中,镀膜气体可以包括甲烷或乙炔。
在一些实施例中,可以将碳化硅籽晶固定在托盘上,对镀膜设备的腔室进行抽气处理并保持。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在0.001Pa~100Pa的范围内。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在0.01Pa~95Pa的范围内。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在0.1Pa~90Pa的范围内。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在1Pa~85Pa的范围内。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在10Pa~80Pa的范围内。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在20Pa~75Pa的范围内。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在30Pa~70Pa的范围内。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在40Pa~60Pa的范围内。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在45Pa~55Pa的范围内。在一些实施例中,经抽气处理后镀膜设备的腔室的压力可以在48Pa~52Pa的范围内。
在一些实施例中,可以对镀膜设备的腔室进行加热处理。在一些实施例中,加热处理的温度可以在200℃~1000℃的范围内。在一些实施例中,加热处理的温度可以在300℃~900℃的范围内。在一些实施例中,加热处理的温度可以在400℃~800℃的范围内。在一些实施例中,加热处理的温度可以在500℃~700℃ 的范围内。在一些实施例中,加热处理的温度可以在550℃~650℃的范围内。在一些实施例中,加热处理的温度可以在580℃~620℃的范围内。
在一些实施例中,可以以惰性气体为载气,同时向镀膜设备的腔室内通入反应气体(或称为镀膜气体),持续一定时间后停止通入反应气体,并维持载气流量不变。
在一些实施例中,惰性气体可以为Ar或He等。在一些实施例中,惰性气体的气体流量可以在1mL/min~1000mL/min的范围内。在一些实施例中,惰性气体的气体流量可以在50mL/min~950mL/min的范围内。在一些实施例中,惰性气体的气体流量可以在100mL/min~900mL/min的范围内。在一些实施例中,惰性气体的气体流量可以在200mL/min~800mL/min的范围内。在一些实施例中,惰性气体的气体流量可以在300mL/min~700mL/min的范围内。在一些实施例中,惰性气体的气体流量可以在400mL/min~600mL/min的范围内。在一些实施例中,惰性气体的气体流量可以在450mL/min~550mL/min的范围内。在一些实施例中,惰性气体的气体流量可以在480mL/min~520mL/min的范围内。
在一些实施例中,反应气体的气体流量可以在1mL/min~1000mL/min的范围内。在一些实施例中,反应气体的气体流量可以在50mL/min~950mL/min的范围内。在一些实施例中,反应气体的气体流量可以在100mL/min~900mL/min的范围内。在一些实施例中,反应气体的气体流量可以在200mL/min~800mL/min的范围内。在一些实施例中,反应气体的气体流量可以在300mL/min~700mL/min的范围内。在一些实施例中,反应气体的气体流量可以在400mL/min~600mL/min的范围内。在一些实施例中,反应气体的气体流量可以在450mL/min~550mL/min的范围内。在一些实施例中,反应气体的气体流量可以在480mL/min~520mL/min的范围内。
在一些实施例中,通入反应气体的时间可以在1min~30min的范围内。在一些实施例中,通入反应气体的时间可以在4min~27min的范围内。在一些实施例中,通入反应气体的时间可以在7min~24min的范围内。在一些实施例中,通入反应气体的时间可以在10min~21min的范围内。在一些实施例中,通入反应气体的时间可以在13min~18min的范围内。在一些实施例中,通入反应气体的时间可以在15min~16min的范围内。
在一些实施例中,还可以在通入反应气体之前先通入惰性气体载气,直至镀膜设备的腔室压力达到压力阈值时再通入反应气体,持续一定时间后停止通入反应气体,并维持载气流量不变。
在一些实施例中,压力阈值可以在0.01MPa~0.1MPa的范围内。在一些实施例中,压力的阈值可以在0.02MPa~0.09MPa的范围内。在一些实施例中,压力的阈值可以在0.03MPa~0.08MPa的范围内。在一些实施例中,压力的阈值可以在0.04MPa~0.07MPa的范围内。在一些实施例中,压力的阈值可以在0.05MPa~0.06MPa的范围内。
在一些实施例中,镀膜反应完成后,可以将镀膜设备的腔室冷却到室温。在一些实施例中,为了避免生长的碳膜出现缺陷或开裂,可以将腔室冷却到室温的降温速率控制在一定速率范围内。在一些实施例中,冷却到室温的降温速率可以在1℃/min~50℃/min的范围内。在一些实施例中,冷却到室温的降温速率可以在5℃/min~45℃/min的范围内。在一些实施例中,冷却到室温的降温速率可以在10℃/min~40℃/min的范围内。在一些实施例中,冷却到室温的降温速率可以在15℃/min~35℃/min的范围内。在一些实施例中,冷却到室温的降温速率可以在20℃/min~30℃/min的范围内。在一些实施例中,冷却到室温的降温速率可以在23℃/min~27℃/min的范围内。
碳膜的厚度受反应时间、反应温度及反应气体比例影响。在一些实施例中,可以通过控制反应时间、反应温度及反应气体比例等,使得碳膜的厚度可以在0.1~100μm的范围内。在一些实施例中,碳膜的厚度可以在10~90μm的范围内。在一些实施例中,碳膜的厚度可以在20~80μm的范围内。在一些实施例中,碳膜的厚度可以在30~70μm的范围内。在一些实施例中,碳膜的厚度可以在40~60μm的范围内。在一些实施例中,碳膜的厚度可以在45~55μm的范围内。
通过气相沉积法可以同时在多个籽晶背面生长碳膜,镀膜效率高,镀膜的均一性较好,进而使得生长的晶体一致性较好。
图9是根据本说明书一些实施例所示的示例性镀膜设备的结构示意图。
在一些实施例中,如图9所示,镀膜设备106可以包括镀膜腔体106-1、镀膜架106-2、驱动组件(图9中未示出)、抽气组件(图9中未示出)、加热组件106-3、进气口106-4和出气口106-5。
在一些实施例中,镀膜腔体106-1可以是对籽晶进行镀膜的场所。在一些实施例中,镀膜腔体106-1可以包括管106-11和挡板106-12。在一些实施例中,两个挡板106-12可以分别与管106-11的左右两端密封连接。在一些实施例中,管106-11可以为石英管。
在一些实施例中,镀膜架106-2可以为耐高温材质制作的支架。在一些实施例中,镀膜架106-2的下端可以与底座转动连接,底座固定连接于镀膜腔体106-1的底部。在一些实施例中,镀膜架106-2的数量可以为一个或多个。在一些实施例中,镀膜架106-2的数量为多个时,多个镀膜架106-2可以交错设 置于进气口106-4的进气方向的两侧,以使得镀膜气体可以均匀扩散到每个镀膜架106-2上。
在一些实施例中,镀膜架106-2上可以设置多个托盘。在一些实施例中,托盘可以用于放置籽晶。在一些实施例中,多个托盘在镀膜架106-2上可以上下层依次排列。在一些实施例中,在镀膜架106-2上每一层中,多个托盘可以绕镀膜架106-2的中心轴排列。
在一些实施例中,驱动组件可以用于带动镀膜架106-2绕中心轴旋转。在一些实施例中,驱动组件可以包括风叶106-6。在一些实施例中,风叶106-6可以设置在镀膜架106-2的侧面,在通入镀膜气体时,风叶106-6可以在镀膜气体的带动下旋转,从而带动镀膜架106-2绕中心轴旋转。
在一些实施例中,抽气组件可以与出气口106-5连接,用于对镀膜腔体106-1进行抽气处理。在一些实施例中,抽气组件可以为真空设备(例如,真空泵)。
在一些实施例中,加热组件106-3可以设置于管106-11的外侧,用于提供籽晶镀膜所需要的热量。在一些实施例中,加热组件106-3与管106-11之间可以设置保温棉106-7,使得加热组件106-3辐射的热量可以均匀加热镀膜架106-2上托盘中的籽晶。在一些实施例中,保温棉106-7可以包括氧化铝、氧化锆等保温材料。在一些实施例中,加热组件106-3的外侧可以设置保温层106-8,以对镀膜设备106进行保温。
在一些实施例中,进气口106-4可以设置于挡板106-12上,用于向镀膜腔体106-1中通入镀膜气体。在一些实施例中,出气口106-5可以设置于另一挡板106-12上,用于排出镀膜腔体106-1中的空气或镀膜气体。关于镀膜气体的更多内容可以参见图8的相关描述,在此不作赘述。
在一些实施例中,镀膜设备160不限于图9所示的结构,可以在图9所示的镀膜设备106的基础上进行结构变形。
在一些实施例中,镀膜腔体106-1也可以为金属材料(例如,不锈钢)制作的密闭腔体,例如,圆柱形腔体或长方体腔体。
在一些实施例中,驱动组件可以包括驱动电机。在一些实施例中,镀膜架106-2的下端可以与驱动电机传动连接,以在驱动电机的驱动下绕其中心轴旋转。
在一些实施例中,加热组件106-3可以设置于镀膜腔体106-1的内部,用于提供籽晶镀膜所需要的热量。在一些实施例中,镀膜腔体106-1的外侧可以设置保温层106-8,以对镀膜设备106进行保温。
在一些实施例中,进气口106-4可以设置于镀膜腔体106-1上,用于向镀膜腔体106-1中通入镀膜气体。在一些实施例中,出气口106-5可以设置于镀膜腔体106-1上,用于排出镀膜腔体106-1中的空气或镀膜气体。
通过设置多个镀膜架交错设置以及在驱动组件带动下绕其中心轴旋转,可以在对托盘上的籽晶镀膜时,使得镀膜气体均匀扩散至各个籽晶处,从而提高各个籽晶上镀膜厚度的均一性。
图10是根据本说明书一些实施例所示的示例性籽晶粘接方法的流程图。在一些实施例中,流程1000可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程1000可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程1000。在一些实施例中,流程1000可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图10所示的操作的顺序并非限制性的。
步骤1010,将粘接剂(例如,如图11A或12A所示的粘接剂A)涂覆在生长腔体的腔体盖(例如,如图11A或12A所示的腔体盖108-111)下表面。
在一些实施例中,也可以将粘接剂(例如,如图11A或12A所示的粘接剂A)涂覆在籽晶托表面。在一些实施例中,粘接剂可以包括液体胶、AB胶、合成树脂、合成橡胶等。
在一些实施例中,可以通过手动方式将粘接剂涂覆在生长腔体的腔体盖下表面或籽晶托表面。通过手动方式涂覆粘接剂,该过程操作灵活、设备简单、成本较低。在一些实施例中,可以通过处理设备和/或控制设备控制机械臂将粘接剂涂覆在生长腔体的腔体盖下表面或籽晶托表面。在一些实施例中,机械臂可以按照设定程序自动涂覆粘接剂。通过机械臂涂覆粘接剂,可以减少人工成本、重复性高、并且取料精确易操控。在一些实施例中,可以通过处理设备和/或控制设备控制匀胶机、喷胶机、点胶机或刮胶机等将粘接剂涂覆在生长腔体的腔体盖下表面或籽晶托表面。通过匀胶机、喷涂机、点胶机或刮胶机等涂覆粘接剂,可以减少涂覆操作的复杂性、重复性高、并且取料精确易操控。
步骤1020,将涂覆有粘接剂的腔体盖置于粘接设备(例如,如图11A或12A所示的籽晶粘接设备107)内。
在一些实施例中,也可以将涂覆有粘接剂的籽晶托置于粘接设备(例如,如图11A或12A所示的籽晶粘接设备107)内。在一些实施例中,可以通过手动方式将涂覆有粘接剂的腔体盖或籽晶托置于粘接设备内。通过手动方式放置涂覆有粘接剂的腔体盖或籽晶托,该过程操作灵活、设备简单、成本较低。在 一些实施例中,可以通过处理设备和/或控制设备控制机械臂将涂覆有粘接剂的腔体盖或籽晶托置于粘接设备内。在一些实施例中,机械臂可以按照设定程序自动放置涂覆有粘接剂的腔体盖或籽晶托。通过机械臂放置涂覆有粘接剂的腔体盖或籽晶托,可以减少人工成本、自动化程度高、易操控。
步骤1030,对粘接设备进行抽气处理。
在一些实施例中,经抽气处理后粘接设备的压力在0.1Pa~10Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在0.5Pa~10Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在1Pa~9Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在2Pa~8Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在3Pa~7Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在4Pa~6Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在4.5Pa~5.5Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在5.0Pa~5.2Pa的范围内。
在一些实施例中,可以通过真空装置(例如,真空泵)对粘接设备进行抽气处理。
通过抽气处理,可以产生几乎无气体或气体较少的真空环境,并且有利于粘接设备、腔体盖或籽晶托、粘接剂内部等吸附的气体解吸附,从而排除或减少粘接剂内部的气泡,避免后续晶体制备过程中产生微管、六方空洞等缺陷,从而提高晶体质量。
步骤1040,通过压紧组件(例如,图11A或12A所示的压紧组件107-6)施加压力将籽晶粘接于腔体盖上。
在一些实施例中,也可以通过压紧组件(例如,图11A或12A所示的压紧组件107-6)将籽晶粘接于籽晶托上。在一些实施例中,籽晶可以通过吸附方式固定于压紧组件的吸盘上(例如,如图11A或12A所示的吸盘107-61)。在一些实施例中,吸附方式可以包括高温无痕胶粘接、静电吸附等或其任意组合。
在一些实施例中,如图11A和11B所示,可以通过处理设备和/或控制设备控制压紧组件运动(例如,上下运动),以将籽晶与腔体盖或籽晶托接触,并进一步施加压力,以将二者粘接。在一些实施例中,将籽晶与腔体盖或籽晶托接触后,在施加压力粘接前,可以通过处理设备和/或控制设备控制超声探测设备(例如,超声波探伤仪)检测籽晶和腔体盖或籽晶托的贴合质量(例如,气孔检测,即,是否存在气泡、气泡的面积比例)。在一些实施例中,贴合质量合格可以为无气泡或气泡面积比例小于比例阈值(例如,小于2%);反之,贴合质量不合格。在一些实施例中,若贴合质量合格,可以通过处理设备和/或控制设备控制压紧组件运动以施加压力,以将籽晶与腔体盖或籽晶托粘接。在一些实施例中,若贴合质量不合格,可以通过处理设备和/或控制设备控制压紧组件反向运动,以重新将籽晶和腔体盖或籽晶托贴合,再次检测贴合质量,直至贴合质量合格。关于气孔检测的更多内容可以参见步骤320的描述,在此不作赘述。
在一些实施例中,还可以在籽晶和腔体盖或籽晶托之间设置缓冲层。在一些实施例中,如图12A和12B所示,可以将粘接剂涂覆在缓冲层上表面和/或籽晶下表面,并将缓冲层卡接并置于籽晶的下方,以及将涂覆有粘接剂的腔体盖或籽晶托置于粘接设备内。在一些实施例,可以通过处理设备和/或控制设备控制压紧组件运动(例如,上下运动),以将籽晶和缓冲层(例如,图12A和12B所示的缓冲层H)与腔体盖接触,并进一步施加压力,以将三者粘接。在一些实施例中,将籽晶和缓冲层与腔体盖接触后,在施加压力粘接前,可以通过处理设备和/或控制设备控制超声探测设备(例如,超声波探伤仪)检测籽晶与缓冲层以及缓冲层与腔体盖的贴合质量(例如,是否存在气泡、气泡的面积比例)。在一些实施例中,若贴合质量合格,可以通过处理设备和/或控制设备控制压紧组件运动以施加压力,以将籽晶、缓冲层与腔体盖粘接。在一些实施例中,若贴合质量不合格,可以通过处理设备和/或控制设备控制压紧组件反向运动,以重新将籽晶和缓冲层和腔体盖贴合,再次检测贴合质量,直至贴合质量合格。在一些实施例中,图12A和12B所示的腔体盖也可以为籽晶托。关于气孔检测的更多内容可以参见步骤320的描述,在此不作赘述。
在一些实施例中,可以在粘接或压紧过程中,同时进行抽气处理和加热处理。
在一些实施例中,压紧组件的施加压力可以在0.01MPa~1.5MPa。在一些实施例中,压紧组件施加压力可以在0.1MPa~1.5MPa。在一些实施例中,压紧组件施加压力可以在0.2MPa~1.4MPa。在一些实施例中,压紧组件施加压力可以在0.3MPa~1.3MPa。在一些实施例中,压紧组件施加压力可以在0.4MPa~1.2MPa。在一些实施例中,压紧组件施加压力可以在0.5MPa~1.1MPa。在一些实施例中,压紧组件施加压力可以在0.6MPa~1.0MPa。在一些实施例中,压紧组件施加压力可以在0.7MPa~0.9MPa。在一些实施例中,压紧组件施加压力可以在0.75MPa~0.85MPa。
在一些实施例中,经抽气处理后粘接设备的压力在0.1Pa~10Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在0.5Pa~9.5Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在1Pa~9Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在1.5Pa~8.5Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在2Pa~8Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在2.5Pa~7.5Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在3Pa~7Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在3.5Pa~6.5Pa的范围内。在一些实施例中,经抽气处理后粘 接设备的压力在4Pa~6Pa的范围内。在一些实施例中,经抽气处理后粘接设备的压力在4.5Pa~5.5Pa的范围内。
在一些实施例中,加热处理的温度过低,粘接剂还未固化或碳化;加热处理的温度过高,粘接剂的粘度越小,因此需要设置合适的加热处理的温度范围。在一些实施例中,加热处理的温度可以在200℃~1200℃的范围内。在一些实施例中,加热处理的温度可以在300℃~1100℃的范围内。在一些实施例中,加热处理的温度可以在400℃~1000℃的范围内。在一些实施例中,加热处理的温度可以在500℃~900℃的范围内。在一些实施例中,加热处理的温度可以在600℃~800℃的范围内。在一些实施例中,加热处理的温度可以在650℃~750℃的范围内。在一些实施例中,加热处理的温度可以在680℃~720℃的范围内。
在一些实施例中,加热处理的时间可以在1min~600min的范围内。在一些实施例中,加热处理的时间可以在50min~600min的范围内。在一些实施例中,加热处理的时间可以在100min~550min的范围内。在一些实施例中,加热处理的时间可以在150min~500min的范围内。在一些实施例中,加热处理的时间可以在200min~450min的范围内。在一些实施例中,加热处理的时间可以在250min~400min的范围内。在一些实施例中,加热处理的时间可以在300min~350min的范围内。
通过抽气处理排除粘接剂内部的气泡,可以保证在粘接前粘接剂内气泡已基本排完,进一步施加压力压紧籽晶的同时进行进一步抽气处理及加热处理,可以进一步防止粘接过程中产生新的气泡,同时加热处理保证粘接剂的粘结性,从而提高粘接效果,避免后续晶体生长过程中产生微管、六方空洞等缺陷,提高晶体质量。
图11A是根据本说明书一些实施例所示的示例性籽晶粘接设备的结构示意图;图11B是根据本说明书一些实施例所示的示例性籽晶粘接后的示意图。其中,A为粘接剂,Z为籽晶。
在一些实施例中,如图11A和11B所示,籽晶粘接设备107可以包括粘接腔体107-1、真空组件107-2、上传动组件107-3、下传动组件107-4、加热组件107-5和压紧组件107-6。
粘接腔体107-1可以是籽晶粘接的场所。真空组件107-2可以用于对粘接腔体107-1进行抽真空处理。上传动组件107-3可以与粘接腔体107-1的顶端连接。下传动组件107-4可以与粘接腔体107-1的底端连接。加热组件107-5可以用于提供籽晶粘接所需要的热量。压紧组件107-6可以施加压力,将籽晶Z粘接于腔体盖108-111上。
在一些实施例中,压紧组件107-6可以包括吸盘107-61和支撑台107-62。在一些实施例中,吸盘107-61的上端可以通过上传动组件107-3与粘接腔体107-1顶端连接。在一些实施例中,支撑台107-62的下端可以通过下传动组件107-4与粘接腔体107-1底端连接。在一些实施例中,吸盘107-61的下端可以用于吸附籽晶Z。在一些实施例中,支撑台107-62的上端可以用于放置腔体盖108-111。在一些实施例中,腔体盖108-111上表面和/或籽晶Z下表面可以涂覆有粘接剂A。
在一些实施例中,压紧组件107-6可以通过与上传动组件107-3、下传动组件107-4和加热组件107-5联动作用,将籽晶Z粘接于腔体盖108-111上。在一些实施例中,可以通过上传动组件107-3和/或下传动组件107-4的运动来提供籽晶粘接所需要的压力。在一些实施例中,吸盘107-61可以通过上传动组件107-3的运动带动籽晶Z向下运动,支撑台107-62可以通过下传动组件107-4的运动带动腔体盖108-111向上运动,当籽晶Z与腔体盖108-111上的粘接剂A接触后,上传动组件107-3和/或下传动组件107-4继续运动以提供籽晶粘接所需要的压力,从而将籽晶Z粘接于腔体盖108-111上。
在一些实施例中,籽晶粘接设备107还可以包括压感组件107-7。在一些实施例中,压感组件107-7可以位于上传动组件107-3和/或下传动组件107-4中。在一些实施例中,压感组件107-7可以用于监测压紧组件107-6的施加压力,并相应调整施加压力。在一些实施例中,在压紧组件107-6中的吸盘107-61和支撑台107-62的压力较小时,可以下降上传动组件107-3和/或上升下传动组件107-4以增加施加压力;反之,可以上升上传动组件107-3和/或下降下传动组件107-4以减小施加压力;压感组件107-7位于上传动组件107-3和/或下传动组件107-4中并随之一起运动。
在一些实施例中,可以将籽晶Z吸附于吸盘107-61下表面,将腔体盖108-111置于支撑台107-62上面,籽晶Z、腔体盖108-111垂直方向上同心且不接触,并且在籽晶Z下表面和/或生长腔体盖的下表面(图11A中腔体盖108-111的上方)涂覆粘接剂A,通过上传动组件107-3的运动带动吸盘107-61上的籽晶Z向下运动,通过下传动组件107-4的运动带动支撑台107-62上的腔体盖108-111向上运动,当籽晶Z与腔体盖108-111上的粘接剂A接触后,上传动组件107-3和/或下传动组件107-4继续运动以提供籽晶粘接所需要的压力,在上述籽晶粘接过程中通过压感组件107-7监测压紧组件107-6的施加压力,并且保持粘接腔体密闭以及真空状态。
图12A是根据本说明书又一些实施例所示的示例性籽晶粘接设备的结构示意图;图12B是根据本说明书又一些实施例所示的示例性籽晶粘接的示意图,其中,A为粘接剂,Z为籽晶,H为缓冲层。
图12A与图11A中的籽晶粘接设备的结构相似,关于粘接腔体107-1、真空组件107-2、上传动 组件107-3、下传动组件107-4、加热组件107-5、压紧组件107-6和压感组件107-7的更多内容可以参见本说明书其他部分(例如,图11A及其相关描述),在此不再赘述。
在一些实施例中,图12A所示,籽晶粘接设备107还可以包括支撑组件107-8。在一些实施例中,支撑组件107-8可以为两个L形支架,两个L形支架分别对称设置于吸盘107-61的两侧,以将缓冲层H卡接并置于籽晶Z的下方。
在一些实施例中,缓冲层H可以是对籽晶Z和腔体盖108-111之间的粘接起到缓冲作用的材料。在一些实施例中,缓冲层H可以包括柔性碳基材料。例如,缓冲层H可以包括石墨纸、碳纤维或石墨烯等厚度均匀平整的柔性碳基材料。
由于缓冲层是柔性材料,具有一定的变形量,因此,通过在籽晶和腔体盖之间设置缓冲层,可以匹配腔体盖平面和籽晶背面的加工误差。同时由于缓冲层的致密性大于石墨腔体盖,可以避免粘接剂渗透,从而缓冲层和籽晶的粘接质量会优于籽晶直接和石墨腔体盖的粘接质量。
在一些实施例中,可以将缓冲层H置于支撑组件107-8上方,籽晶Z吸附于吸盘107-61下表面,腔体盖108-111置于支撑台107-62上表面,使得籽晶Z、缓冲层H、腔体盖108-111在垂直方向上依次同心设置且不接触;在籽晶Z下表面和/或缓冲层H上表面以及在缓冲层H下表面和/或生长腔体盖上方涂覆粘接剂A,通过上传动组件107-3的运动带动吸盘107-61上的籽晶Z向下运动,通过下传动组件107-4的运动带动支撑台107-62上的腔体盖108-111向上运动,当籽晶Z与缓冲层H接触后通过缓冲层H上表面的粘接剂A进行粘接,继续向下运动与向上运动的腔体盖108-111通过生长腔体盖上方的粘接剂A进行粘接,通过上传动组件107-3和/或下传动组件107-4的继续运动来提供籽晶粘接所需要的压力。在上述籽晶粘接过程中通过压感组件107-7监测压紧组件107-6的施加压力,并且保持粘接腔体密闭以及真空的状态,使得籽晶Z、缓冲层H、腔体盖108-111依次在垂直方向上粘接。
在一些实施例中,还可以将缓冲层H(例如,石墨纸)和粘接剂A加工为一体成型,形成固体胶。在一些实施例中,在籽晶粘接过程中,可以将一体成型的缓冲层H和粘接剂A置于支撑组件107-8上方,籽晶Z吸附于吸盘107-61下表面,腔体盖108-111置于支撑台107-62上表面,如前述描述,通过上传动组件107-3和下传动组件107-4的运动,利用一体成型的缓冲层H和粘接剂A,将籽晶Z粘接在腔体盖108-111上。在上述籽晶粘接过程中通过压感组件107-7监测压紧组件107-6的施加压力,并且保持粘接腔体密闭以及真空的状态,使得籽晶Z、缓冲层H、腔体盖108-111依次在垂直方向上粘接。
通过将缓冲层H和粘接剂A加工为一体成型,可以避免液体粘接剂摊平不均匀或摊平过程中产生气泡的问题,提高籽晶粘接质量,从而避免晶体生长过程中由于气泡引起的碳化硅晶体的微管、六方空洞等缺陷。
图13是根据本说明书又一些实施例所示的示例性籽晶粘结方法的流程图;图14A是根据本说明书一些实施例所示的示例性滚压操作的示意图;图14B是根据本说明书又一些实施例所示的示例性滚压操作的示意图。在一些实施例中,流程1300可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程1300可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程1300。在一些实施例中,流程1300可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图13所示的操作的顺序并非限制性的。
步骤1310,将籽晶和缓冲层叠放于粘接台面上。
在一些实施例中,缓冲层和籽晶的接触面涂覆粘接剂。在一些实施例中,缓冲层的下表面和籽晶的上表面相接触,相应地,缓冲层的下表面和/或籽晶的上表面可以涂覆粘接剂。在一些实施例中,缓冲层的上表面和籽晶的下表面相接触,相应地,缓冲层的上表面和/或籽晶的下表面可以涂覆粘接剂。
在一些实施例中,缓冲层的尺寸可以根据实际需要进行设置。在一些实施例中,缓冲层的尺寸可以大于或等于籽晶的尺寸。关于缓冲层的更多内容可以参见本说明书其他部分(例如,图12A、12B及其相关描述),在此不作赘述。在一些实施例中,粘接台面可以为用于放置籽晶且水平度满足要求的任意平台。
在一些实施例中,可以通过手动方式将缓冲层和籽晶叠放于粘接台面上。通过手动方式放置缓冲层和籽晶,该过程操作灵活、设备简单、成本较低。在一些实施例中,可以通过处理设备和/或控制设备控制机械臂将缓冲层和籽晶置于粘接台面上。在一些实施例中,机械臂可以按照设定程序自动放置缓冲层和籽晶。通过机械臂放置涂覆有粘接剂的缓冲层或籽晶,可以减少人工成本、自动化程度高、易操控。
在一些实施例中,可以通过手动方式将粘接剂涂覆在缓冲层和/或籽晶的接触面。通过手动方式涂覆粘接剂,该过程操作灵活、设备简单、成本较低。在一些实施例中,可以通过处理设备和/或控制设备控制机械臂将粘接剂涂覆在缓冲层和/或籽晶的接触面。在一些实施例中,机械臂可以按照设定程序自动涂覆粘接剂。通过机械臂涂覆粘接剂,可以减少人工成本、重复性高、并且精确易操控。
步骤1320,通过压紧组件进行滚压操作,使籽晶与缓冲层粘接。
在一些实施例中,压紧组件可以包括压辊。在一些实施例中,可以通过压辊进行滚压操作,使籽晶与缓冲层粘接。在一些实施例中,如图14A所示,可以将缓冲层H和籽晶Z叠放于粘接台面107-9上,籽晶Z、缓冲层H在垂直方向上同心设置,缓冲层H和籽晶Z的接触面涂覆粘接剂。可以通过压辊107-10对缓冲层H进行滚压操作,使籽晶Z与缓冲层H粘接。
在一些实施例中,在滚压过程中,为了使得滚压操作完成后籽晶与缓冲层粘接紧密,缓冲层与籽晶未接触部分间的第一角度(例如,图14A中的角度θ)、压辊施加的第一压力和/或压辊移动的第一速度需满足一定要求。
在一些实施例中,第一角度可以在0.1°~15°的范围内。在一些实施例中,第一角度可以在1°~14°的范围内。在一些实施例中,第一角度可以在2°~13°的范围内。在一些实施例中,第一角度可以在3°~12°的范围内。在一些实施例中,第一角度可以在4°~11°的范围内。在一些实施例中,第一角度可以在5°~10°的范围内。在一些实施例中,第一角度可以在6°~9°的范围内。在一些实施例中,第一角度可以在7°~8°的范围内。
在一些实施例中,第一压力可以在0.1kPa~25kPa的范围内。在一些实施例中,第一压力可以在2kPa~23kPa的范围内。在一些实施例中,第一压力可以在4kPa~21kPa的范围内。在一些实施例中,第一压力可以在6kPa~19kPa的范围内。在一些实施例中,第一压力可以在8kPa~17kPa的范围内。在一些实施例中,第一压力可以在10kPa~15kPa的范围内。在一些实施例中,第一压力可以在12kPa~13kPa的范围内。
在一些实施例中,第一速度可以在0.1mm/s~60mm/s的范围内。在一些实施例中,第一速度可以在5mm/s~55mm/s的范围内。在一些实施例中,第一速度可以在10mm/s~50mm/s的范围内。在一些实施例中,第一速度可以在15mm/s~45mm/s的范围内。在一些实施例中,第一速度可以在20mm/s~40mm/s的范围内。在一些实施例中,第一速度可以在25mm/s~35mm/s的范围内。在一些实施例中,第一速度可以在27mm/s~33mm/s的范围内。在一些实施例中,第一速度可以在29mm/s~31mm/s的范围内。
步骤1330,将生长腔体的腔体盖以及粘接后的缓冲层和籽晶叠放于粘接台面上,其中,缓冲层位于腔体盖和籽晶之间。
在一些实施例中,缓冲层和腔体盖的接触面涂覆粘接剂。在一些实施例中,缓冲层的下表面和腔体盖的上表面相接触。在一些实施例中,缓冲层的上表面和腔体盖的下表面相接触。
在一些实施例中,可以通过手动方式将生长腔体的腔体盖、粘接后的缓冲层和籽晶叠放于粘接台面上。通过手动方式放置生长腔体的腔体盖、粘接后的缓冲层和籽晶,该过程操作灵活、设备简单、成本较低。在一些实施例中,可以通过处理设备和/或控制设备控制机械臂将生长腔体的腔体盖、粘接后的缓冲层和籽晶置于粘接台面上。在一些实施例中,机械臂可以按照设定程序自动放置生长腔体的腔体盖、粘接后的缓冲层和籽晶。通过机械臂放置涂覆有粘接剂的腔体盖,可以减少人工成本、自动化程度高、易操控。
在一些实施例中,可以通过手动方式将粘接剂涂覆在缓冲层和腔体盖的接触面。通过手动方式涂覆粘接剂,该过程操作灵活、设备简单、成本较低。在一些实施例中,可以通过处理设备和/或控制设备控制机械臂将粘接剂涂覆在缓冲层和腔体盖的接触面。在一些实施例中,机械臂可以按照设定程序自动涂覆粘接剂。通过机械臂涂覆粘接剂,可以减少人工成本、重复性高、并且精确易操控。
步骤1340,通过压紧组件进行滚压操作,使籽晶粘接于腔体盖上。
在一些实施例中,可以通过压辊对籽晶进行滚压操作,使粘接籽晶后的缓冲层与腔体盖粘接,从而使籽晶粘接在腔体盖上。在一些实施例中,如图14B所示,将生长腔体的腔体盖108-111、粘接后的缓冲层H和籽晶Z依次叠放于粘接台面107-9上,腔体盖108-111、粘接后的缓冲层H和籽晶Z在垂直方向上同心设置,缓冲层H和/或腔体盖108-111的接触面涂覆粘接剂,可以通过压辊107-10对籽晶Z进行滚压操作,使籽晶Z粘接于腔体盖108-111上。在一些实施例中,在滚压过程中,为了使得滚压操作完成后腔体盖与缓冲层粘接紧密,缓冲层与腔体盖未接触部分和腔体盖的角度为第二角度,压辊施加的压力为第二压力,压辊的移动速度为第二速度,直至滚压操作完成。
在一些实施例中,第二角度可以在0.01°~0.2°的范围内。在一些实施例中,第二角度可以在0.03°~0.18°的范围内。在一些实施例中,第二角度可以在0.05°~0.16°的范围内。在一些实施例中,第二角度可以在0.07°~0.14°的范围内。在一些实施例中,第二角度可以在0.09°~0.12°的范围内。在一些实施例中,第二角度可以在0.11°~0.10°的范围内。在一些实施例中,第二角度可以在0.7°~0.9°的范围内。通过将第二角度设置在一定范围内,可以保证籽晶在较小的安全形变范围内,排空粘接剂中的气泡。
在一些实施例中,第二压力可以与第一压力相同或接近。在一些实施例中,第二速度可以与第一速度相同或接近。关于第一压力和第一速度的更多内容可以参见本说明书其他部分(例如,步骤1320、图14A及其相关描述),在此不再赘述。在一些实施例中,第二压力可以与第一压力不同。在一些实施例中,第二速度可以与第一速度不同。
通过滚压操作以及控制滚压过程中的第一角度和/或第二角度、第一压力和/或第二压力以及第一速度和/或第二速度,可以充分挤压消除粘接剂中的气泡,并且避免粘接过程中新气泡的产生,从而避免生长的碳化硅晶体中产生微管、六方空洞等缺陷,提高碳化硅晶体的质量。
在一些实施例中,还可以将籽晶直接粘接在腔体盖上,籽晶和腔体盖之间无需缓冲层,即可以省略步骤1310和步骤1320。在一些实施例中,可以将生长腔体的腔体盖和籽晶叠放于粘接台面上,腔体盖和籽晶之间涂覆有粘接剂。在一些实施例中,还可以通过压紧组件进行滚压操作,使籽晶粘接于腔体盖上。关于滚压操作的更多内容可以参见前述描述,在此不作赘述。
图15是根据本说明书又一些实施例所示的示例性晶体生长方法的流程图。在一些实施例中,流程1500可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程1500可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程1500。在一些实施例中,流程1500可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图15所示的操作的顺序并非限制性的。
步骤1510,通过第一加热组件(例如,如图16A所示的第一加热组件108-31、图16B所示的第一加热组件108-31、图16C所示的第一加热组件108-31)加热原料区,以使原料升华为晶体生长所需的气相组分。
在一些实施例中,第一加热组件可以提供原料区所需的热量。在一些实施例中,第一加热组件可以设置于原料区下方或原料区所处位置的腔体外周。
在一些实施例中,第一加热组件可以包括感应加热部件。在一些实施例中,感应加热部件可以包括电磁感应线圈、中频电源等。在一些实施例中,第一加热组件可以包括电阻加热部件。在一些实施例中,电阻加热部件可以包括高阻石墨、硅钼棒(MoSi 2)、镍铬丝(Ni-Cr)、铁铬铝丝(Fe-Cr-Al)、镍铁丝(Ni-Fe)、镍铜丝(Ni-Cu)、碳化硅棒(SiC)等。
在一些实施例中,以制备碳化硅晶体为例,气相组分可以包括Si、Si 2C、SiC 2等气相组分。
步骤1520,通过第二加热组件(例如,如图16A所示的第二加热组件108-32、图16B所示的第二加热组件108-32、图16C所示的第二加热组件108-32)加热隔板附近,以维持气相组分通过至少一个出料口的出料速率。
在一些实施例中,第二加热组件可以设置于隔板侧方,用于加热隔板附近范围,以维持气相组分通过至少一个出料口的出料速率。在一些实施例中,隔板附近可以指沿隔板所在位置向上或向下预设范围(例如,1mm、5mm、10mm等)的区域。
在一些实施例中,第二加热组件可以包括感应加热部件。在一些实施例中,感应加热部件可以包括电磁感应线圈、中频电源等。在一些实施例中,第二加热组件可以包括电阻加热部件。在一些实施例中,电阻加热部件可以包括高阻石墨、硅钼棒(MoSi 2)、镍铬丝(Ni-Cr)、铁铬铝丝(Fe-Cr-Al)、镍铁丝(Ni-Fe)、镍铜丝(Ni-Cu)、碳化硅棒(SiC)等。
在一些实施例中,第一加热组件和第二加热组件的类型可以相同或者不同。
在一些实施例中,出料速率可以是单位时间内气相组分通过出料口的总量。在一些实施例中,出料速率可以反映气相组分通过出料口的快慢。
通过第二加热组件加热隔板附近,可以维持气相组分通过出料口的出料速率,从而维持晶体生长面的稳定生长,明显降低位错形成概率,减少晶体缺陷,提高生长晶体的质量。
步骤1530,通过第三加热组件(例如,如图16A所示的第三加热组件108-33、图16B所示的第三加热组件108-33、图16C所示的第三加热组件108-33)加热生长区。
在一些实施例中,第三加热组件可以提供生长所需的热量。在一些实施例中,第三加热组件可以为分段或单独控制的加热组件。在一些实施例中,第三加热组件可以包括多个子加热部件。在一些实施例中,多个子加热部件可以环绕设置于生长区顶部的不同径向直径处。在一些实施例中,多个子加热部件的加热参数可以分别独立控制,以实现不同径向直径处温度的独立控制。例如,若局部径向温度梯度增大,可以通过单独控制多个子加热组件的加热参数,以减小局部径向温度梯度。在一些实施例中,多个子加热部件可以为多个沿径向逐渐减小的环形加热电阻部件,环形加热电阻部件并联组成第三加热组件。在一些实施例中,可以根据径向温度梯度分别独立地控制多个环形加热电阻部件,使得径向温度梯度小于预设梯度阈值,降低晶体热应力,避免晶体开裂,从而生长出高质量的晶体。在一些实施例中,第三加热组件可以设置于腔体盖的上方或腔体盖所处位置的腔体外周。
在一些实施例中,多个子加热部件可以环绕设置于生长区外周的不同轴向高度处。在一些实施例中,多个子加热部件的加热参数可以分别独立控制,以实现不同轴向高度处温度的独立控制。例如,若局部轴向温度梯度增大,可以通过单独控制多个子加热部件的加热参数,以减小局部轴向温度梯度。在一些 实施例中,多个子加热部件可以为多个沿轴向不同高度设置的环形感应线圈,环形感应线圈并联组成第三加热组件。在一些实施例中,可以根据轴向温度梯度分别独立地控制多个环形感应线圈,使得轴向温度梯度小于预设梯度阈值,降低晶体热应力,避免晶体开裂,从而生长出高质量的晶体。
在一些实施例中,第三加热组件可以包括感应加热部件。在一些实施例中,感应加热部件可以包括电磁感应线圈、导磁性物体等。在一些实施例中,第三加热组件可以包括电阻加热部件。在一些实施例中,电阻加热部件可以包括高阻石墨、硅钼棒(MoSi2)、镍铬丝(Ni-Cr)、铁铬铝丝(Fe-Cr-Al)、镍铁丝(Ni-Fe)、镍铜丝(Ni-Cu)、碳化硅棒(SiC)等。
在一些实施例中,第一加热组件、第二加热组件和/或第三加热组件的加热类型可以相同或者不同。
在一些实施例中,隔板附近的温度高于原料区的温度(或称为“原料处的温度”)和/或生长区的温度(或称为“籽晶处的温度”),即,隔板附近的温度>原料区的温度和/或生长区的温度。相应地,在生长腔体内可以形成隔板处为高温区、原料区和生长区为低温度的双向温度梯度。例如,如图17所示,生长腔体内的温度分布可以是出料口处温度最高、原料区(例如,原料上表面处)次之、生长区(例如,生长面)最低,从隔板附近的出料口到生长面以及从隔板附近的出料口到原料区的两个反向温度梯度。在一些实施例中,可以通过调节第二加热组件的加热参数以调节隔板附近的温度,从而调节出料口到生长面的温度梯度,进而维持气相组分通过至少一个出料口的出料速率。通过形成双向温度梯度,可以在满足原料升华的条件下,通过浓度梯度驱动气相组分传输,在一定程度上降低第一加热组件的功率,节省电能;并且,隔板附近温度最高,可以抑制气相组分在隔板附近成核长晶;进一步地,通过形成双向温度梯度,可以调整气相组分通过出料口的出料速率,在原料区温度变化时降低温度变化对出料速率的影响,有利于控制晶体生长速率的稳定性,维持晶体生长面的稳定生长。
在一些实施例中,原料区的温度高于隔板附近的温度,隔板附近的温度高于生长区的温度,即原料区的温度>隔板附近的温度>生长区的温度。相应地,在生长腔体内可以形成原料区、隔板处和生长区依次降低的温度梯度。在一些实施例中,可以通过调节第一加热组件和第二加热组件的加热参数以调节原料区和隔板附近的温度,从而调节原料区到出料口以及到生长面的温度梯度,并且由于原料区的气相组分浓度大于隔板附近的浓度和/或生长区的浓度梯度,因此,原料区到出料口以及到生长面的温度梯度以及浓度梯度都可以驱动气相组分往生长区运动。通过形成原料区到生长面的温度梯度和浓度梯度,可以在满足原料升华的条件下,通过温度梯度和浓度梯度驱动气相组分传输,在隔板的出料口处调节气相组分的出料速率,有利于控制晶体生长速率的稳定性,维持晶体生长面的稳定生长。
分别通过第一加热组件加热原料区、第二加热组件加热隔板附近以及第三加热组件加热生长区,第一加热组件可以控制原料温度以调控原料升华速率,以及在原料区底部发生碳化后,通过调控第一加热组件的功率补偿因碳化而导致的热分布和碳硅比的改变;第二加热组件可以抑制隔板附近气相成核结晶,以及减小原料区温度调控对出料速率的影响,维持出料口的出料速率,从而维持晶体生长面的稳定生长;第三加热组件可以调控出料口和生长区之间的温度梯度、调控籽晶径向的温度梯度,减少晶体生长的热应力,同时降低第一加热组件和/或第二加热组件对生长区的温度影响,控制晶体生长面温度的稳定性,降低位错形成概率,减少晶体缺陷,提高生长的晶体的质量。另外,通过将原料区和生长区分离设置,并且单独控制原料区、隔板附近以及生长区的温度,可以调控出料口和生长区之间的温度梯度以及籽晶径向的温度梯度,能显著减小晶体生长的热应力,提高晶体质量,有效调控生长速率。
图16A是根据本说明书一些实施例所示的示例性晶体生长装置的结构示意图;图16B是根据本说明书又一些实施例所示的示例性晶体生长装置的结构示意图;图16C是根据本说明书又一些实施例所示的示例性晶体生长装置的结构示意图。其中,Z为籽晶,Y为原料。下面结合图16A-图16C对晶体生长装置进行详细阐述。
在一些实施例中,晶体生长装置108可以包括生长腔体108-1和加热组件108-3。
在一些实施例中,生长腔体108-1可以包括生长区108-11和原料区108-12,生长区108-11用于放置籽晶,原料区108-12用于放置原料。在一些实施例中,生长区108-11和原料区108-12通过隔板108-2分隔。在一些实施例中,隔板108-2可以包括至少一个出料口108-21,气相组分通过至少一个出料口108-21传输至生长区108-11。通过设置出料口108-21,可以对原料升华分解产生的气相组分进行合理分布,从而进一步使出料口的出料速率稳定均匀,以沉积生长得到合适凸度的高质量晶体。
在一些实施例中,加热组件108-3可以用于加热生长腔体108-1,以实现基于籽晶Z和原料Y的物理气相传输法的晶体生长。在一些实施例中,加热组件108-3可以包括第一加热组件108-31、第二加热组件108-32和第三加热组件108-33,分别用于加热原料区、隔板附近和生长区。
在一些实施例中,可以通过机械打孔方式制备出料口108-21。在一些实施例中,隔板108-2本身可以由多孔材质制备,其中的空隙可以作为出料口108-21。例如,如图16A所示,可以在隔板108-2上通过机械打孔得到出料口108-21。又例如,如图16B和图16C所示,隔板108-2可以为多孔石墨,多孔石墨 上自带孔隙作为出料口108-21。使用多孔石墨上自带的孔隙作为出料口108-21,可以在保证原料气相组分通过的情况下补充碳组分,且不产生污染。在一些实施例中,隔板108-2还可以为多层网格状结构(图中未示出),通过调节隔板上不同层之间的位置关系,可以调节隔板上通孔的大小和/或形状。
在一些实施例中,出料口108-21的位置、形状、分布或流通面积中的至少一种可以是可调节的。在一些实施例中,出料口108-21的位置可以包括出料口108-21的轴向位置和出料口108-21的径向位置。在一些实施例中,出料口108-21的形状可以是横截面形状。在一些实施例中,出料口108-21的分布为出料口108-21在隔板108-2上的分布位置和/或分布密度。在一些实施例中,出料口108-21的流通面积为单个出料口108-21的横截面面积或多个出料口108-21的横截面面积之和。
在一些实施例中,可以在将腔体盖安装在滑轨上,通过滑轨调节腔体盖和出料口108-21间的相对位置。在一些实施例中,可以在出料口108-21上安装盖板,通过打开或关闭盖板调节出料口108-21的形状、分布或流通面积。
在一些实施例中,随着晶体的生长,原料逐渐消耗,原料上表面逐渐下降,晶体厚度逐渐增加,为了维持晶体生长面到出料口108-21的距离以使晶体生长稳定,可以调节出料口108-21的轴向位置,使出料口108-21逐渐下移。
在一些实施例中,随着晶体的生长,由于籽晶表面可能存在径向温度梯度,导致籽晶生长面上各处的生长速度不同,为了使得籽晶生长面上各处的生长速度相同或相近,生长为较为平整或凸度合适的表面,可以调节出料口108-21的径向位置,保持生长面径向各处的生长速度基本一致或相近。
在一些实施例中,可以通过开闭盖板以调节出料口108-21的形状、分布和/或流通面积,从而维持出料量以及生长面的生长速度稳定。
在一些实施例中,还可以基于上一次晶体生长过程中采集的晶体生长数据,调节下一次晶体生长过程中腔体盖和出料口108-21间的相对位置,或者调节出料口108-21的形状、分布或流通面积。
在一些实施例中,如果上一次晶体生长过程中籽晶表面存在径向温度梯度,导致籽晶生长面上各处的生长速度不同,为了使得籽晶生长面上各处的生长速度相同或相近,生长为较为平整或凸度合适的表面,可以调节下一次晶体生长过程中出料口108-21的径向位置,保持生长面径向各处的生长速度基本一致或相近。
在一些实施例中,如果上一次晶体生长过程中气相组分集中在部分位置,导致生长腔体内部分位置的浓度更高、其余位置浓度过低,为了使得籽晶生长面下方各处的气相组分浓度相同或相近,生长出较为平整或凸度合适的晶体,可以调节下一次晶体生长过程中出料口108-21的径向位置,保持生长面径向各处的生长速度基本一致或相近。
在一些实施例中,如果上一次晶体生长过程中晶体厚度小于厚度阈值(例如,3mm、5mm或8mm)或生长速率小于速率阈值(例如,0.1mm/h、0.3mm/h或0.5mm/h),可以调节下一次晶体生长过程中出料口108-21的轴向位置使出料口108-21的上升,或者通过打开盖板以调节出料口108-21的形状、分布或流通面积,以提高晶体生长速率。
关于调节出料口的位置、形状、分布或流通面积中的至少一种的更多内容可以参见本说明书其他部分(例如,图20-22及其相关描述),在此不再赘述。
在一些实施例中,第一加热组件108-31可以用于加热原料区108-12,以使原料Y升华为晶体生长所需的气相组分。例如,如图16A和16B所示,第一加热组件108-31可以为电阻加热部件。又例如,如图16C所示,第一加热组件108-31可以为感应加热部件。
在一些实施例中,在晶体生长过程中,第一加热组件108-31的功率可以随原料的碳化程度进行补偿调整,以维持出料口108-21气相组分的传输速率。
在一些实施例中,第二加热组件108-32可以设置在隔板108-2外侧,用于加热隔板108-2附近,以维持气相组分通过至少一个出料口108-21的出料速率。例如,如图16A和16B所示,第二加热组件108-32可以为电阻加热部件。又例如,如图16C所示,第二加热组件108-32可以为感应加热部件。
在一些实施例中,在晶体生长过程中,第二加热组件108-32的功率保持不变或微降,以控制气相组分的传输速度基本不变。
在一些实施例中,第三加热组件108-33可以用于加热生长区108-11。例如,如图16A、16B和16C所示,第三加热组件108-33可以为电阻加热部件。
在一些实施例中,在晶体生长过程中,通过控制第三加热组件108-33的功率,使得晶体的径向温度梯度尽可能小,并使得温度梯度在整个生长过程中维持恒定。
在一些实施例中,第三加热组件108-33可以包括多个子加热部件,环绕设置于生长区108-11外周的不同轴向高度处。在一些实施例中,多个子加热部件的加热参数可以分别独立控制,以实现不同轴向高度处温度的独立控制。例如,若局部轴向温度梯度增大,可以通过单独控制多个子加热部件的加热参数, 以减小局部轴向温度梯度。在一些实施例中,多个子加热部件可以为多个沿轴向不同高度设置的环形感应线圈,环形感应线圈并联组成第三加热组件。在一些实施例中,可以根据轴向温度梯度分别独立地控制多个环形感应线圈,使得轴向温度梯度小于预设梯度阈值,降低晶体热应力,避免晶体开裂,从而生长出高质量的晶体。
在一些实施例中,第三加热组件108-33可以包括多个子加热部件,环绕设置于生长区108-11顶部的不同径向直径处。在一些实施例中,多个子加热部件的加热参数可以分别独立控制,以实现不同径向直径处温度的独立控制。例如,若局部径向温度梯度增大,可以通过单独控制多个子加热部件的加热参数,以减小局部径向温度梯度。在一些实施例中,多个子加热部件可以为多个沿径向逐渐减小的环形加热电阻部件,环形加热电阻部件并联组成第三加热组件。在一些实施例中,可以根据径向温度梯度分别独立地控制多个环形加热电阻部件,使得径向温度梯度小于预设梯度阈值,降低晶体热应力,避免晶体开裂,从而生长出高质量的晶体。在一些实施例中,第三加热组件可以设置于腔体盖的上方或腔体盖所处位置的腔体外周。
在一些实施例中,晶体生长装置108还可以包括保温组件108-4。在一些实施例中,保温组件108-4可以设置于原料区108-11和生长区108-12之间,用来隔绝生长区108-11与原料区108-12的热交换,从而达到生长区108-11与原料区108-12单独控温的目的。在一些实施例中,保温组件108-4上可以设置多个孔,从而使得气相组分通过多个孔传输至生长区108-11。
在一些实施例中,晶体生长装置108还可以包括测温组件103,用于获取与生长腔体108-1相关的多个温度。更多内容可以参见图18及其相关描述。
在一些实施例中,晶体生长装置108还可以包括监测组件104,用于监测晶体生长情况。关于监测组件104的更多内容可以参见图19A和图19B及其相关描述。
在一些实施例中,晶体生长装置108还可以包括控制组件(图16A-图16C中未示出)。在一些实施例中,控制组件可以通过处理设备101和/或控制设备102实现。
在一些实施例中,控制组件可以获取生长腔体108-1内的温度信息;并基于温度信息调节至少一个出料口的位置、形状、分布或流通面积中的至少一种。在一些实施例中,温度信息可以基于多个温度通过建模确定。在一些实施例中,温度信息可以包括晶体生长面的温度信息。在一些实施例中,控制组件可以获取上一次晶体生长过程中生长腔体108-1内的温度信息;并基于上一次晶体生长过程中的温度信息调节下一次晶体生长过程中至少一个出料口的位置、形状、分布或流通面积中的至少一种。关于基于温度信息调节至少一个出料口的位置、形状、分布或流通面积中的至少一种或者基于上一次晶体生长过程中的温度信息调节下一次晶体生长过程中至少一个出料口的位置、形状、分布或流通面积中的至少一种的更多内容可以参见本说明书其他部分(例如,图20及其相关描述),在此不再赘述。
在一些实施例中,控制组件可以获取晶体生长所需的气相组分在生长腔体108-1内的分布情况;并基于分布情况,调节至少一个出料口的位置、形状、分布或流通面积中的至少一种。在一些实施例中,控制组件可以获取上一次晶体生长过程中晶体生长所需的气相组分在生长腔体108-1内的分布情况;并基于上一次晶体生长过程中的分布情况,调节下一次晶体生长过程中至少一个出料口的位置、形状、分布或流通面积中的至少一种。关于基于分布情况调节至少一个出料口的位置、形状、分布或流通面积中的至少一种或者基于上一次晶体生长过程中分布情况调节下一次晶体生长过程中至少一个出料口的位置、形状、分布或流通面积中的至少一种的更多内容可以参见本说明书其他部分(例如,图21及其相关描述),在此不再赘述。
在一些实施例中,控制组件还可以基于晶体生长情况,调节加热组件108-3的加热参数和/或至少一个出料口108-21的位置、形状、分布或流通面积中的至少一种。在一些实施例中,控制组件还可以基于上一次晶体生长过程中晶体生长情况,调节下一次晶体生长过程中加热组件108-3的加热参数和/或至少一个出料口108-21的位置、形状、分布或流通面积中的至少一种。在一些实施例中,晶体生长情况可以包括生长中的晶体的厚度、生长速率或缺陷中的至少一种。关于调节加热组件的加热参数和/或至少一个出料口的位置、形状、分布或流通面积或者调节下一次晶体生长过程中加热组件的加热参数和/或至少一个出料口的位置、形状、分布或流通面积的更多内容可以参见本说明书其他部分(例如,图22及其相关描述),在此不再赘述。
图18是根据本说明书一些实施例所示的示例性测温组件的布置示意图。
在一些实施例中,测温组件103可以包括多个温度传感器103-1。在一些实施例中,如图18所示,生长腔体108-1的侧壁和/或顶部可以包括保温层103-2,温度传感器103-1可以穿过保温层103-2设置于生长腔体108-1侧壁和/或顶部。
在一些实施例中,温度传感器103-1可以包括热电偶、红外高温计、热敏电阻等或其任意组合。
在一些实施例中,温度传感器103-1的位置及数量可以根据监测需要进行设置调整。在一些实施 例中,可以在生长腔体108-1侧壁轴向排布设置多个温度传感器103-1,也可以在生长腔体108-1顶部径向排布设置多个温度传感器103-1。
在一些实施例中,温度传感器103-1可以对称分布。例如,生长腔体108-1左侧壁轴向排布设置4个温度传感器103-1,右侧壁轴向排布设置4个温度传感器103-1。通过设置温度传感器103-1对称分布,可以从整体上检测生长腔体108-1的温度分布情况,并且开孔均匀,保证了温场的对称性,避免对晶体生长产生影响。
在一些实施例中,温度传感器103-1可以非对称分布在生长腔体108-1上。例如,生长腔体108-1左侧壁轴向排布设置4个温度传感器103-1,右侧壁轴向排布设置3个温度传感器103-1。通过设置温度传感器103-1非对称分布,可以重点检测生长腔体108-1内的局部温度情况,灵活性更高。
在一些实施例中,可以通过温度传感器103-1获得生长腔体108-1内的轴向温度梯度或径向温度梯度。
在一些实施例中,为了避免生长腔体内的挥发物在测温口沉积导致测温不准确,多个温度传感器103-1与生长腔体108-1顶部和/或侧壁之间设置有冷却组件103-3。在一些实施例中,若温度传感器103-1为红外高温计,可以在温度传感器103-1与生长腔体108-1顶部和/或侧壁之间设置冷阱。在一些实施例中,冷阱可以为中空柱状结构(例如,中空圆柱、中空四方体等),中空柱状结构的一端连接腔室且不密封,另一端由光学玻璃密封,温度传感器103-1的测温点位于冷阱的轴线上且位于光学玻璃外侧。冷阱的侧壁可以为中空结构,可以通过通冷却水降低内壁温度。
在一些实施例中,冷却组件103-3可以包括一个或多个。在一些实施例中,冷却组件103-3可以与多个温度传感器103-1对应设置。例如,对应每个温度传感器103-1,可以设置一个冷却组件103-3。通过在温度传感器103-1与生长腔体108-1顶部和/或侧壁之间设置冷却组件103-3,可以使生长腔体108-1内部的挥发物(例如,气相组分)经冷却后附着在冷却组件103-3的侧壁,不会到达温度传感器103-1处,导致影响温度传感器的检测效果。
在温度传感器与生长腔体顶部之间设置有冷却组件,测温组件位于冷却组件上方,由于冷却组件处温度较低,挥发物挥发过程中会附着在冷却组件侧壁上,不会到达上方测温组件处,从而避免挥发物附着在测温组件上,保证测温组件的测量准确。
图19A是根据本说明书一些实施例所示的示例性监控组件的结构示意图;图19B是根据本说明书又一些实施例所示的示例性监控组件的结构示意图。其中,Z为籽晶。
在一些实施例中,监测组件104可以包括接触式监控组件或非接触式监控组件。例如,图19A为接触式监控组件,图19B为非接触式监控组件。
在一些实施例中,如图19A所示,监测组件104可以为接触式监控组件。监测组件104可以包括超声测厚仪104-1、冷却装置104-2和石墨棒104-3。在一些实施例中,超声测厚仪104-1可以包括超声探头104-11。在一些实施例中,石墨棒104-3可以与腔体盖108-111一体成型。超声探头104-11可以发射超声波并经由生长中的晶体Z反射,进而可以基于超声波的传播时间测定生长中的晶体Z的厚度。进一步地,还可以基于多个时间点的厚度信息,计算晶体生长速率。
由于超声探头104-11对接触温度有一定要求,温度过高可能会导致损坏,因此需要降低超声探头104-11接触点的温度至500℃以下。在一些实施例中,可以通过增加石墨棒104-3的长度来降低超声探头104-11接触点的温度。在一些实施例中,可以通过在石墨棒104-3上部设置冷却装置104-2来降低超声探头104-11接触点的温度。在一些实施例中,冷却装置104-2可以为气冷装置。具体地,冷却装置104-2可以为密封的石墨筒,超声探头104-11由冷却装置104-2的上部置入冷却装置104-2的内部并放置于石墨棒104-3上,可以向冷却装置104-2中通入惰性气体以对超声探头104-11进行冷却。需要注意的是,冷却装置104-2与生长腔体108-1均为密封装置,二者中的气体不相互流通。
若石墨棒104-3的厚度过厚,会使超声波脉冲的传导受到影响,从而影响超声测厚仪104-1的测量结果;若石墨棒104-3的厚度过薄,无法起到很好冷却的效果,超声探头104-11接触点的温度过高,可能导致超声探头104-11损坏,因此,需要设置石墨棒104-3的厚度在适当的范围内。
在一些实施例中,石墨棒104-3的厚度可以在5cm~30cm的范围内。在一些实施例中,石墨棒104-3的厚度可以在8cm~27cm的范围内。在一些实施例中,石墨棒104-3的厚度可以在11cm~24cm的范围内。在一些实施例中,石墨棒104-3的厚度可以在14cm~21cm的范围内。在一些实施例中,石墨棒104-3的厚度可以在17cm~18cm的范围内。在一些实施例中,石墨棒104-3的厚度可以在17.3cm~18.7cm的范围内。
在一些实施例中,接触式监测组件104的超声探头104-11与石墨棒104-3的接触点可以使用耦合剂(例如,高分子水凝胶),以填充石墨棒104-3的接触点与超声探头104-11之间的微小缝隙,避免缝隙之间的微量空气影响测量效果。在一些实施例中,超声探头104-11可以在固定位置上间隔一定时间进行测 量,或沿着特定轨迹移动进行快速测量,从而得到固定位置处晶体的生长速率或一定区域内的厚度分布数据。
在一些实施例中,如图19B所示,监测组件104可以为非接触式监控组件。在一些实施例中,非接触式监测组件104可以包括空气耦合超声无损检测、电磁超声(EMAT)无损检测、静电耦合超声无损检测和激光超声无损检测等。
由于非接触式监测组件104的超声探头104-11与腔体盖108-111之间不需要接触,因此可以避免超声探头104-11接触高温被测物体时被损坏的风险。
图20是根据本说明书又一些实施例所示的示例性晶体生长方法的流程图。在一些实施例中,流程2000可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程2000可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程2000。在一些实施例中,流程2000可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图20所示的操作的顺序并非限制性的。
步骤2010,获取生长腔体内的温度信息。
在一些实施例中,温度信息可以是生长腔体内各处的温度值、温度梯度或温度分布。在一些实施例中,温度信息可以包括晶体生长面的温度信息。
在一些实施例中,处理设备和/或控制设备可以通过测温组件获取与生长腔体相关的多个温度。在一些实施例中,测温组件可以包括多个温度传感器。关于测温组件的更多内容可以参见本说明书其他部分(例如,图18及其相关描述),在此不再赘述。
在一些实施例中,处理设备和/或控制设备可以基于多个温度,通过建模确定生长腔体内的温度信息。在一些实施例中,处理设备和/或控制设备可以获取多个测温组件(例如,图18所示的温度传感器103-1)之间的位置信息以及测温组件与晶体生长面的位置信息。在一些实施例中,处理设备和/或控制设备可以根据晶体生长装置的结构参数(例如,晶体生长装置的尺寸)以及测温组件在晶体生长装置上的位置,确定多个测温组件之间的位置信息(例如,距离、角度)。在一些实施例中,处理设备和/或控制设备可以通过监测组件104(例如,图19A和图19B中的监测组件104)获取晶体厚度,以及根据晶体厚度、晶体生长装置的结构参数(例如,晶体生长装置的尺寸)和测温组件在晶体生长装置上的位置,确定多个测温组件与晶体生长面的位置信息(例如,距离、角度)。在一些实施例中,处理设备和/或控制设备可以将多个温度、多个测温组件之间的位置信息和多个测温组件与晶体生长面的位置信息输入温度模型中,并通过温度模型输出生长腔体内的温度信息。在一些实施例中,温度模型预先根据多个历史温度、多个测温组件之间的历史位置信息和多个测温组件与晶体生长面的历史位置信息和历史温度信息训练得到。其中,多个历史温度、多个测温组件之间的历史位置信息和多个测温组件与晶体生长面的历史位置信息为训练数据,历史温度信息为训练标签。
在又一些实施例中,处理设备和/或控制设备可以通过压力传感器获取生长腔体内的压力信息。在一些实施例中,压力信息可以包括至少一个压力值。在一些实施例中,处理设备和/或控制设备可以将多个温度、压力信息和晶体生长装置的结构参数输入模拟软件中,模拟软件输出生长腔体内的温度信息。在一些实施例中,模拟软件可以包括虚拟反应器软件。
步骤2020,基于温度信息,调节至少一个出料口的位置、形状、分布或流通面积中的至少一种。
在一些实施例中,处理设备和/或控制设备可以基于温度信息,调节当前晶体生长过程或下一次晶体生长过程中至少一个出料口的位置、形状、分布或流通面积中的至少一种。
在一些实施例中,温度信息可以为温度梯度,若在晶体生长面附近的温度梯度分布不均匀,导致晶体生长面附近部分位置的温度梯度大、其余位置温度梯度小,为了使得籽晶生长面下方各处的温度梯度相同或相近,生长出较为平整或凸度合适的晶体,可以调节当前晶体生长过程或下一次晶体生长过程中出料口108-21的径向位置,使出料口108-21平移;还可以通过开闭盖板以调节出料口108-21的形状,使出料口108-21的形状改变;还可以通过开闭盖板以调节出料口108-21的分布,使其中部分出料口108-21打开或关闭;或者还可以通过开闭盖板以调节出料口108-21的流通面积,使其中部分出料口108-21打开或关闭。在一些实施例中,晶体生长面附近的温度梯度可以为晶体生长面上的径向温度梯度,也可以为晶体生长面附近竖直方向的轴向温度梯度。
通过基于温度信息调节当前晶体生长过程或下一次晶体生长过程中出料口的位置、形状、分布或流通面积,可以使当前或下一次晶体生长过程较为稳定,减少晶体生长缺陷,提高晶体质量。
图21是根据本说明书又一些实施例所示的示例性晶体生长方法的流程图。在一些实施例中,流程2100可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程2100可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元) 中,当处理器202执行程序或指令时,可以实现流程2100。在一些实施例中,流程2100可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图21所示的操作的顺序并非限制性的。
步骤2110,获取晶体生长所需的气相组分在生长腔体内的分布情况。
在一些实施例中,气相组分在生长腔体内的分布情况可以是气相组分在生长腔体内或生长腔体内各个位置处的浓度分布情况。
在一些实施例中,处理设备和/或控制设备可以通过测温组件获取生长腔体内的温度信息。在一些实施例中,处理设备和/或控制设备可以获取出料口的当前状态并基于出料口的当前状态确定至少一个出料口的相关信息。在一些实施例中,出料口的相关信息可以包括出料口的位置、形状、分布或流通面积中的至少一种。
进一步地,处理设备和/或控制设备可以基于生长腔体内的温度信息及至少一个出料口的相关信息,模拟确定气相组分在生长腔体内的分布情况。具体地,可以将生长腔体内的温度信息及至少一个出料口的相关信息输入模拟软件,模拟软件输出气相组分在生长腔体内的分布情况。在一些实施例中,模拟软件可以包括虚拟反应器软件。
步骤2120,基于分布情况,调节至少一个出料口的位置、形状、分布或流通面积中的至少一种。
在一些实施例中,处理设备和/或控制设备可以基于气相组分在生长腔体内的分布情况,调节当前晶体生长过程或下一次晶体生长过程中至少一个出料口的位置、形状、分布或流通面积中的至少一种。
在一些实施例中,若气相组分集中在部分位置,导致生长腔体内部分位置的浓度更高、其余位置浓度过低,为了使得籽晶生长面下方各处的气相组分浓度相同或相近,生长出较为平整的晶体,可以调节当前晶体生长过程或下一次晶体生长过程中出料口108-21的径向位置,使出料口108-21平移;还可以通过开闭盖板以调节出料口108-21的形状,使出料口108-21的形状改变;还可以通过开闭盖板以调节出料口108-21的分布,使其中部分出料口108-21打开或关闭;或者还可以通过开闭盖板以调节出料口108-21的流通面积,使其中部分出料口108-21打开或关闭。
通过基于分布情况调节当前晶体生长过程或下一次晶体生长过程中出料口的位置、形状、分布或流通面积,可以使当前晶体生长过程或下一次晶体生长过程中晶体生长面的气相组分分布更加均匀,生长出较为平整的晶体,减少晶体生长缺陷,提高晶体质量。
图22是根据本说明书又一些实施例所示的示例性晶体生长方法的流程图。在一些实施例中,流程2200可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程2200可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程2200。在一些实施例中,流程2200可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图22所示的操作的顺序并非限制性的。
步骤2210,在晶体生长过程中,监测晶体生长情况。
在一些实施例中,晶体生长情况可以包括生长中的晶体厚度、生长速率或缺陷中的至少一种。
在一些实施例中,处理设备和/或控制设备可以通过监控组件(例如,超声测厚仪104-1)监测晶体生长情况。关于通过监控组件监测晶体生长情况的更多内容可以参见本说明书其他部分(例如,图19A-图19B及其相关描述),在此不再赘述。
在一些实施例中,处理设备和/或控制设备还可以将获取的温度信息、压力信息、晶体厚度等输入到模拟软件中,模拟软件输出生长腔体内的晶体生长情况和/或原料使用情况,从而实现晶体生长过程的在线监控。在一些实施例中,原料使用情况可以包括晶体的重量、原料升华量、原料剩余量等中的至少一个。
步骤2220,基于晶体生长情况,调节加热组件的加热参数和/或至少一个出料口的位置、形状、分布或流通面积中的至少一种。
在一些实施例中,处理设备和/或控制设备可以基于晶体生长情况,调节当前晶体生长过程或下一次晶体生长过程中加热组件的加热参数。在一些实施例中,若晶体厚度小于厚度阈值(例如,3mm、5mm或8mm)或生长速率小于速率阈值(例如,0.1mm/h、0.3mm/h或0.5mm/h),为了提高晶体生长速率,可以调整当前晶体生长过程或下一次晶体生长过程中第一加热组件和/或第二加热组件的加热功率,使原料升华速率增大以及使气相组分向籽晶处扩散的驱动力增大。在一些实施例中,若晶体缺陷密度大于密度阈值,为了提高晶体生长质量,可以调整当前晶体生长过程或下一次晶体生长过程中第三加热组件的加热功率,使籽晶径向温度梯度降低。在一些实施例中,晶体缺陷密度可以为气孔密度。在一些实施例中,密度阈值可以为8个/cm 2、10个/cm 2或15个/cm 2
在一些实施例中,处理设备和/或控制设备可以基于晶体生长情况,调节当前晶体生长过程或下一次晶体生长过程中至少一个出料口的位置、形状、分布或流通面积中的至少一种。
在一些实施例中,若晶体厚度小于厚度阈值(例如,3mm、5mm或8mm)或生长速率小于速率阈值(例如,0.1mm/h、0.3mm/h或0.5mm/h),可以调节当前晶体生长过程或下一次晶体生长过程中出料口108-21的轴向位置使出料口108-21的上升,或者通过打开或关闭盖板以调节出料口108-21的形状、分布或流通面积,以提高晶体生长速率。在一些实施例中,若晶体缺陷密度(例如,气孔密度)大于密度阈值(例如,8个/cm 2、10个/cm 2或15个/cm 2),为了提高晶体生长质量,可以调节当前晶体生长过程或下一次晶体生长过程中出料口108-21的径向位置,或者通过打开或关闭盖板以调节出料口108-21的形状、分布或流通面积。
通过基于晶体生长情况调节当前晶体生长过程或下一次晶体生长过程中加热组件的加热参数和/或出料口的位置、形状、分布或流通面积,可以提高晶体生长速率、提高晶体生长质量。
在物理气相传输法生长碳化硅晶体的过程中,在生长完成后碳化硅粉料未被完全利用,而剩余未被利用的部分常以结块成多孔的碳化硅多晶块存在,由于高纯的碳化硅粉料价格昂贵,为了节约资源和降低成本,有必要对晶体生长完成后的余料进行回收利用。
图23是根据本说明书一些实施例所示的示例性余料回收方法的流程图。在一些实施例中,流程2300可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程2300可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程2300。在一些实施例中,流程2300可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图23所示的操作的顺序并非限制性的。
步骤2310,晶体生长完成后,对原料余料进行倒置处理。
在一些实施例中,原料余料可以是晶体生长完成后余下的原料。
在物理气相传输法生长碳化硅晶体过程中,原料并非同时全部分解为气相组分,而是在靠近生长腔体侧壁的温度较高处先分解,在生长腔体中间部分的温度较低处后分解。而在升华分解过程中,SiC原料受热分解升华后的产物主要包括气态的Si、Si 2C、SiC 2以及固态的碳颗粒,Si先于C蒸发(硅的升华温度1400℃左右,碳的升华温度约2877℃),一部分Si从侧壁附近向上运动,另一部分Si运动至原料中间。随着反应的进行,原料底部及四周侧壁产生的碳形成一个碳壳层(富碳区),包裹住未分解的中间原料,原料顶部总体呈富硅状态;碳壳层较蓬松且热导率低于原碳化硅,不利于热传导,碳壳层对中间原料分解产生的气相组分的传输将形成阻力。晶体生长完成后,导致整个原料余料的底部及侧壁部分富碳,中上部分富硅。
在一些实施例中,为了减少原料余料上富碳部分的影响,可以先去除原料余料的边缘部分上的富碳部分(碳渣),然后再将原料余料进行倒置。在一些实施例中,可以通过手动方式将原料余料进行倒置处理。通过手动方式进行倒置处理,该过程操作灵活、设备简单、成本较低。在一些实施例中,可以通过处理设备和/或控制设备控制机械臂将原料余料进行倒置处理。在一些实施例中,机械臂可以按照设定程序自动拾取余料,将原料余料进行倒置处理。通过机械臂倒置原料余料,可以减少人工成本、且易操控。
步骤2320,在倒置处理后的原料余料上铺设新原料,作为下一次晶体生长的原料。
在一些实施例中,新原料可以是未经反应的生长晶体所需的原材料。在一些实施例中,新原料可以包括碳化硅粉料。在一些实施例中,下一次晶体生长的原料可以是下一次进行碳化硅晶体生长的原料,即步骤310中的原料。在一些实施例中,新原料与原料余料可以按照一定比例进行铺设。在一些实施例中,一定比例可以为质量比。
在一些实施例,新原料与原料余料的质量比可以在0.01~1的范围内。在一些实施例,新原料与原料余料的质量比可以在0.1~0.9的范围内。在一些实施例,新原料与原料余料的质量比可以在0.2~0.8的范围内。在一些实施例,新原料与原料余料的质量比可以在0.3~0.7的范围内。在一些实施例,新原料与原料余料的质量比可以在0.4~0.6的范围内。在一些实施例,新原料与原料余料的质量比可以在0.45~0.55的范围内。在一些实施例,新原料与原料余料的质量比可以在0.45~0.50的范围内。
通过将原料余料倒置,并在其上铺设新原料作为下一次晶体生长的原料,可以充分利用余料,提高了原料的利用率。此外,由于铺设新原料的比例较大,可以起到平衡原料余料的作用,并且原料余料中富硅有利于晶型的控制,因此不会对下一次晶体生长的质量产生影响。
图24是根据本说明书又一些实施例所示的晶体生长方法的示例性流程图。在一些实施例中,流程2400可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,流程2400可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202执行程序或指令时,可以实现流程2400。在一些实施例中,流程2400可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图24所示的操作的顺序并非限制性的。
步骤2410,晶体生长完成后,去除原料余料的富碳部分,得到富硅部分。
在一些实施例中,结合图23所述,富碳部分可以是原料余料边缘的碳渣部分。在一些实施例中,富硅部分可以是余料中上部分的SiC与SiC的Si固溶结构组成的部分。
由于富碳部分是硬度低非结晶的碳渣,容易从原料余料上脱落,在回收过程中,可以仅选取中间的富硅部分。
步骤2420,对富硅部分进行预处理。
在一些实施例中,为了使得回收的富硅部分与新添加的碳粉混合均匀,可以对富硅部分进行预处理。在一些实施例中,可以将富硅部分进行球磨预处理。具体地,可以将富硅部分盛装在球磨机的容器(例如,聚四氟乙烯桶)内,并向容器内加入球磨介质(例如,10mm×10mm×10mm的碳化硅单晶块),通过球磨机在一定球磨条件下对富硅部分进行球磨,得到球磨预处理后的富硅部分。
在一些实施例中,球磨条件可以包括球磨转速和球磨时间。
在一些实施例中,球磨转速可以是100r/min~300r/min。在一些实施例中,球磨转速可以是150r/min~250r/min。在一些实施例中,球磨转速可以是200r/min~230r/min。
在一些实施例中,球磨时间可以是60min~200min。在一些实施例中,球磨时间可以是80min~180min。在一些实施例中,球磨时间可以是100min~150min。在一些实施例中,球磨时间可以是120min~140min。
在一些实施例中,可以对球磨预处理后的富硅部分进行筛分,选取一定粒径的碳化硅粉。在一些实施例中,碳化硅粉的粒径可以是8目~200目。在一些实施例中,碳化硅粉的粒径可以是10目~180目。在一些实施例中,碳化硅粉的粒径可以是20目~150目。在一些实施例中,碳化硅粉的粒径可以是30目~120目。在一些实施例中,碳化硅粉的粒径可以是40目~100目。在一些实施例中,碳化硅粉的粒径可以是50目~90目。在一些实施例中,碳化硅粉的粒径可以是60目~80目。在一些实施例中,碳化硅粉的粒径可以是70目~75目。
步骤2430,将预处理的富硅部分与碳粉按预设质量比混合均匀。
由于原料中碳硅摩尔比为1或接近1,为了保证在下一次晶体生长过程中原料的品质,因此需要在预处理的富硅部分中混合一定量的碳粉。
在一些实施例中,预设质量比可以为3:1~6:1。在一些实施例中,预设质量比可以为3.5:1~5.5:1。在一些实施例中,预设质量比可以为4:1~5:1。在一些实施例中,预设质量比可以为4.2:1~4.8:1。在一些实施例中,预设质量比可以为3:1~6:1。在一些实施例中,预设质量比可以为4.4:1~4.6:1。
在一些实施例中,可以使用粉体混合设备(例如,双螺旋锥形混合机、卧式无重力混合机、卧式犁刀混合机、卧式螺带混合机)对富硅部分和碳粉进行均匀混合。在一些实施例中,可以使用研钵(例如,玛瑙研钵)手动对富硅部分和碳粉进行均匀混合。
步骤2440,将混合均匀的富硅部分及碳粉置于回收装置中进行回收处理,得到初始碳化硅原料。
在一些实施例中,回收装置可以是对原料余料进行回收处理的场所。
在一些实施例中,可以将混合均匀的富硅部分与碳粉置于埚中,再将埚置于回收装置中,在一定反应条件下使富硅部分与碳粉反应。在一些实施例中,反应条件可以包括反应温度、反应气氛、反应压力和/或反应时间。
在一些实施例中,埚可以包括碳化钽坩埚或者埚内部涂覆碳化钽涂层的坩埚。
在一些实施例中,反应温度可以在1700℃~2500℃的范围内。在一些实施例中,反应温度可以在1800℃~2400℃的范围内。在一些实施例中,反应温度可以在1900℃~2300℃的范围内。在一些实施例中,反应温度可以在2000℃~2200℃的范围内。在一些实施例中,反应温度可以在2050℃~2150℃的范围内。
在一些实施例中,反应气氛可以包括惰性气体(例如,氦气、氖气、氩气等)。
在一些实施例中,反应压力可以在8kPa~14kPa的范围内。在一些实施例中,反应压力可以在8.5kPa~13.5kPa的范围内。在一些实施例中,反应压力可以在9kPa~13kPa的范围内。在一些实施例中,反应压力可以在9.5kPa~12.5kPa的范围内。在一些实施例中,反应压力可以在10kPa~12kPa的范围内。在一些实施例中,反应压力可以在10.5kPa~11.5kPa的范围内。
在一些实施例中,反应时间可以在0.5h~4h的范围内。在一些实施例中,反应时间可以在0.5h~4h的范围内。在一些实施例中,反应时间可以在1h~3.5h的范围内。在一些实施例中,反应时间可以在1.5h~3h的范围内。在一些实施例中,反应时间可以在1.7h~2.8h的范围内。在一些实施例中,反应时间可以在1.9h~2.6h的范围内。在一些实施例中,反应时间可以在2.1h~2.4h的范围内。
在一些实施例中,在反应完成后,冷却至一定温度(例如,1500℃~1600℃),保持一定时间(例如,30min),再重复上述反应冷却过程至少一次(例如,2此、3次、4次)。
在一些实施例中,重复上述反应冷却过程完成后,可以通过自然冷却的方式将回收装置冷却至室 温,得到初始碳化硅原料。
步骤2450,对初始碳化硅原料进行后处理,得到碳化硅原料,作为下一次晶体生长的原料。
在一些实施例中,下一次晶体生长的原料可以是下一次进行碳化硅晶体生长的原料,即步骤310中的原料。
在一些实施例中,后处理可以包括筛分、水洗、除碳等处理。在一些实施例中,可以对初始碳化硅原料进行筛分,选取一定粒径的碳化硅粉。在一些实施例中,还可以对碳化硅粉进行水洗以除去浮碳。在一些实施例中,还可以将水洗后的碳化硅粉置于除碳装置中,在一定温度下通入氧气进行除碳,得到碳化硅原料。
在一些实施例中,碳化硅粉的粒径可以在8目~40目的范围内。在一些实施例中,碳化硅粉的粒径可以在10目~35目的范围内。在一些实施例中,碳化硅粉的粒径可以在12目~33目的范围内。在一些实施例中,碳化硅粉的粒径可以在15目~30目的范围内。在一些实施例中,碳化硅粉的粒径可以在18目~28目的范围内。在一些实施例中,碳化硅粉的粒径可以在20目~25目的范围内。
在一些实施例中,除碳装置可以是去除碳的装置。例如,除碳装置可以包括马弗炉。
在一些实施例中,除碳的温度可以在600℃~1000℃的范围内。在一些实施例中,除碳的温度可以在650℃~950℃的范围内。在一些实施例中,除碳的温度可以在700℃~900℃的范围内。在一些实施例中,除碳的温度可以在750℃~850℃的范围内。在一些实施例中,除碳的温度可以在770℃~830℃的范围内。在一些实施例中,除碳的温度可以在790℃~810℃的范围内。
通过对初始碳化硅原料进行后处理,可以使得到的碳化硅原料纯度更高,作为下一次晶体生长的原料生长出的晶体质量更好。
下面将通过实施例对晶体生长方法进行详细阐述。需注意的是,实施例中的反应条件、反应物料和反应物料的用量仅为了说明制备晶体的方法,不限制本说明书的保护范围。
实施例1
(1)将源材料和添加剂混合:按钽坩埚的体积计算所需源材料的总重量为10000g,其中,源材料为粒径为0.1μm的碳粉、粒径为0.1mm的硅粉和粒径为100目的碳化硅颗粒。将碳粉、硅粉以及添加剂聚四氟乙烯按照1:2:0.2的比例,碳化硅颗粒与碳粉和硅粉总重量按照1%的比例加入玛瑙研钵,并在玛瑙研钵中进行混合均匀。
(2)初始原料合成:将原料和添加剂的混合物加入石墨坩埚(灰分小于5ppm),在反应温度为1400℃、压力为500Pa的范围内反应1h。经过第一阶段(反应阶段)后,进行第二阶段(即升华重结晶阶段),反应温度为2100℃、压力为10 -1Pa、反应时间为20h。
(3)冷却:反应完成后,充高纯氩气至500mbar后降温至30℃,得到初始原料。
(4)后处理:对获得的初始原料进行后处理,后处理包括对初始原料进行粉碎、筛分、除碳、清洗、烘干、封装等,得到碳化硅粉料。
(5)原料品质检测:将制得的碳化硅粉料进行检测,得到B<0.5ppm、Al=0.11ppm、Mg<0.05ppm、Ti<0.5ppm、V<0.09ppm、Cr<0.1ppm、Ni<0.01ppm、Cu<0.05ppm、Na=0.02ppm。
实施例2
(1)原料预处理:首先采用5L王水对原料进行酸处理;然后每次使用超纯水10L对原料进行4次清洗。
(2)籽晶处理:对籽晶进行以下处理:
a.直径扩张处理:使用尺寸较小的直径为150mm的低缺陷密度籽晶,通过扩径生长的方式获得大尺寸晶锭,然后再切片加工成直径153mm的大尺寸籽晶。
b.抛光处理:采用粒径为0.5μm的金刚石抛光粉,在抛光压力为0.08MPa,抛光转速为30r/min,对籽晶抛光120min。
c.镀膜处理:通过实施例3的方法,对籽晶进行镀膜。
d.表面检查:通过X射线衍射法检查籽晶表面是否有微管,通过显微镜观察籽晶表面是否有机械损伤、籽晶表面是否清洁等。
(3)原料和籽晶品质检测:将预处理后的原料进行检测,得到纯度为5PPm的原料;将预处理后的籽晶进行检测,得到籽晶的光洁度为2μm,总厚度偏差为3.5μm,局部厚度偏差为1.6μm,弯曲度为5μm,翘曲度为10μm。
实施例3
通过如图9所示的镀膜设备对籽晶进行镀膜。
(1)非镀膜面处理:选取多个待镀膜的籽晶,在籽晶的非镀膜面上预先粘贴一层聚酰亚胺薄膜。
(2)放置籽晶:将多个粘贴聚酰亚胺薄膜的直径为150mm的籽晶放置于镀膜设备内部的镀膜架 上。
(3)抽真空、升温:对镀膜设备抽真空至0.01Pa,对镀膜设备的腔室进行加热处理至加热温度为500℃。
(4)通入反应气体:向镀膜设备中通入惰性气体作为载气,惰性气体的流量为500mL/min,直至镀膜设备的腔室压力达到0.05MPa时,再向镀膜设备的腔室内通入反应气体甲烷,甲烷流量为50mL/min,持续通入甲烷10min后停止,并继续维持载气流量不变。
(5)冷却:继续通入载气,以30℃/min的降温速率,冷却到室温后,停止通入载气,取出籽晶。
(6)籽晶品质检测:将镀膜后的籽晶进行检测,得到镀膜厚度平均值为9μm。
实施例4
通过如图11A和图11B所示的籽晶粘接设备对籽晶进行粘接。
(1)粘接剂涂覆:将粘接剂涂覆在生长腔体的腔体盖下表面。
(2)放置腔体盖:将涂覆有粘接剂的腔体盖置于粘接设备内。
(3)抽气处理:通过真空泵对粘接设备进行抽气处理,经抽气处理后粘接设备的压力为
0.1Pa。
(4)籽晶粘接:通过高温无痕胶将籽晶粘接固定于压紧组件的吸盘上。控制压紧组件上下运动,以将籽晶与腔体盖接触,并进一步施加0.2MPa的压力,以将二者粘接。压紧过程中,抽真空至0.1Pa,对籽晶粘接设备的腔室进行加热处理,加热温度为1000℃,加热时间为120min。
(5)籽晶粘接品质检测:粘接完成后,通过超声探测设备检测粘接后的籽晶,气孔位置多聚集在离籽晶边沿间距30mm处、气孔尺寸在0.01mm 2~30mm 2的范围内、气孔形状各异,以及气孔密度为3个/cm 2。籽晶粘接后的气孔多集中在籽晶边沿处,气孔尺寸小,气孔密度低,粘接效果好。
实施例5
通过如图12A和图12B所示的籽晶粘接设备对籽晶进行粘接。
(1)粘接剂涂覆:将粘接剂涂覆在生长腔体的腔体盖下表面。
(2)放置腔体盖:将涂覆有粘接剂的腔体盖置于粘接设备内。
(3)抽气处理:通过真空泵对粘接设备进行抽气处理,经抽气处理后粘接设备的压力在
0.1Pa。
(4)籽晶粘接:通过高温无痕胶将籽晶粘接固定于压紧组件的吸盘上。通过处理设备控制压紧组件上下运动,以将籽晶、缓冲层H与腔体盖接触,并进一步施加0.5MPa的压力,以将三者粘接。压紧过程中,抽真空至0.1Pa,对籽晶粘接设备的腔室进行加热处理,加热温度为1000℃,加热时间为
120min。
(5)籽晶粘接品质检测:粘接完成后,通过超声探测设备检测粘接后的籽晶,气孔位置多聚集在离籽晶边沿间距15mm处、气孔尺寸在0.01mm 2~20mm 2的范围内、气孔形状各异,以及气孔密度为2个/cm 2。籽晶粘接后的气孔多集中在籽晶边沿处,气孔尺寸小,气孔密度低,粘接效果好。
实施例6
通过如图14A和图14B所示的滚压操作的方法对籽晶进行粘接。
(1)放置籽晶和缓冲层:将尺寸大于籽晶的缓冲层的下表面和籽晶的上表面涂覆粘接剂,并将缓冲层和籽晶叠放于粘接台面上。
(2)籽晶与缓冲层粘接:压辊与缓冲层和籽晶未接触部分间的第一角度为0.1°,压辊施加的第一压力为0.5kPa,压辊移动的第一速度0.5mm/s,进行滚压操作,使籽晶与缓冲层粘接。
(3)放置腔体盖、粘接后的籽晶和缓冲层:将缓冲层的下表面和腔体盖的上表面涂覆粘接剂,并将粘接后的籽晶和缓冲层与腔体盖叠放于粘接台面上。
(4)粘接后的籽晶和缓冲层与腔体盖粘接:压辊与缓冲层和腔体盖间未接触部分间的第二角度0.1°,压辊施加的第二压力0.5kPa,压辊移动的第二速度0.5mm/s,进行滚压操作,使粘接后的籽晶和缓冲层与腔体盖粘接。
(5)籽晶粘接品质检测:通过超声探测设备,将粘接后的籽晶进行检测,气孔位置多聚集在离籽晶边沿间距5mm处、气孔尺寸在0.01mm 2~10mm 2的范围内、气孔形状各异,以及气孔密度为1个
/cm 2。籽晶粘接后的气孔多集中在籽晶边沿处,气孔尺寸小,气孔密度低,粘接效果好。
实施例7
通过如图16A所示的晶体生长装置以及图18所示的测温组件进行晶体生长。
(1)放置原料:将原料置于生长腔体的原料区。
(2)放置籽晶:将粘接好的籽晶置于生长腔体的生长区。
(3)加热原料区:通过第一加热组件(电阻加热部件)加热原料区,在5小时内将温度升温至 2500℃,以使原料升华为晶体生长所需的气相组分。
(4)加热隔板附近:通过第二加热组件(电阻加热部件)加热沿隔板所在位置向上或向下5mm的区域,在5小时内将温度升温至2400℃,以维持气相组分通过至少一个出料口的出料速率。
(5)加热生长区:通过第三加热组件(电阻加热部件)加热生长区,在5小时内将温度升温至2300℃。
(6)晶体生长控制:通过测温组件获取与生长腔体相关的多个温度。接着,根据测温组件获取的多个温度信息,上位机发出调节指令,PLC接收调节指令后输出控制信号以控制第一加热组件、第二加热组件或第三加热组件的加热功率,和/或控制出料口108-21上盖板的打开或关闭,实现对至少一个出料口的位置、形状、分布或流通面积中的至少一种的控制,从而调节晶体的生长速率,实现晶体生长速率的稳定。例如,图16A所示,当测得腔体盖附近的温度小于生长温度时,晶体结晶速率会加快,这时通过调节第三加热组件的功率使生长区的温度上升,通过调节第一加热组件或第二加热组件的功率使原料区的温度降低,以减缓气体组分通过隔板的速率,从而降低晶体的生长速率。在一些实施例中,也可以通过调节隔板上不同层之间的位置,或者通过调节出料口上的盖板的打开或关闭,使隔板上出料口的大小或形状改变,以实现加热区的气相组分按晶体生长所需的传输速率通过隔板,从而降低晶体的生长速率。在一些实施例中,第二加热组件的温度调节范围可以为2300-2600℃。
(7)晶体品质检测:贯穿螺型位错(Threading Screw Dislocation,TSD)≤300cm -2、贯穿刃型位错(Threading Edge Dislocation,TED)≤5069cm -2、基矢面位错(Basal Plane Dislocation,BPD)≤1380cm - 2
实施例8
通过如图16A所示的晶体生长装置进行晶体生长。
(1)放置原料:将原料置于生长腔体的原料区。
(2)放置籽晶:将粘接好的籽晶置于生长腔体的生长区。
(3)加热原料区:通过第一加热组件(电阻加热部件)加热原料区,在5小时内将温度升温至2350℃,以使原料升华为晶体生长所需的气相组分。
(4)加热隔板附近:通过第二加热组件(电阻加热部件)加热沿隔板所在位置向上或向下5mm的区域,在5小时内将温度升温至2300℃,以维持气相组分通过至少一个出料口的出料速率。
(5)加热生长区:通过第三加热组件(电阻加热部件)加热生长区,在5小时内将温度升温至2250℃。
(6)晶体生长控制:通过虚拟反应器软件获取晶体生长所需的气相组分在生长腔体内的分布情况。接着,基于气相组分在生长腔体内的分布情况,上位机发出调节指令,PLC接收调节指令后输出控制信号以控制出料口108-21上盖板的打开或关闭,或者调节隔板上不同层之间的位置,实现对至少一个出料口的位置、形状、分布或流通面积中的至少一种的控制,以实现加热区的气相组分按晶体生长所需的传输速率通过隔板,从而调节晶体的生长速率,实现晶体生长速率的稳定。
(7)晶体品质检测:TSD≤230cm -2、TED≤4000cm -2、BPD≤1207cm -2
实施例9
通过如图16A所示的晶体生长装置以及图19A所示的监控组件进行晶体生长。
(1)放置原料:将原料置于生长腔体的原料区。
(2)放置籽晶:将粘接好的籽晶置于生长腔体的生长区。
(3)加热原料区:通过第一加热组件(电阻加热部件)加热原料区,在5小时内将温度升温至2300℃,以使原料升华为晶体生长所需的气相组分。
(4)加热隔板附近:通过第二加热组件(电阻加热部件)加热沿隔板所在位置向上或向下5mm的区域,在5小时内将温度升温至2250℃,以维持气相组分通过至少一个出料口的出料速率。
(5)加热生长区:通过第三加热组件(电阻加热部件)加热生长区,在5小时内将温度升温至2200℃。
(6)晶体生长控制:通过监控组件监测晶体的生长情况。接着,基于晶体的生长情况,上位机发出调节指令,PLC接收调节指令后输出控制信号以调节第一加热组件、第二加热组件或第三加热组件的加热参数,和/或控制出料口108-21上盖板的打开或关闭,实现对至少一个出料口的位置、形状、分布或流通面积中的至少一种的控制,从而调节晶体的生长速率,实现晶体生长速率的稳定。在一些实施例中,第二加热组件的温度调节范围可以为2200-2400℃。
(7)晶体品质检测:TSD≤100cm -2、TED≤3000cm -2、BPD≤900cm -2
实施例10
通过如图16B所示的晶体生长装置以及图18所示的测温组件进行晶体生长。
(1)放置原料:将原料置于生长腔体的原料区。
(2)放置籽晶:将粘接好的籽晶置于生长腔体的生长区。
(3)加热原料区:通过第一加热组件(电阻加热部件)加热原料区,在4小时内将温度升温至2500℃,以使原料升华为晶体生长所需的气相组分。
(4)加热隔板附近:通过第二加热组件(电阻加热部件)加热沿隔板所在位置向上或向下5mm的区域,在4小时内将温度升温至2400℃,以维持气相组分通过至少一个出料口的出料速率。
(5)加热生长区:通过第三加热组件(电阻加热部件)加热生长区,在4小时内将温度升温至2300℃。
(6)晶体生长控制:通过测温组件获取与生长腔体相关的多个温度。接着,根据测温组件获取的多个温度信息,上位机发出调节指令,PLC接收调节指令后输出控制信号以控制第一加热组件、第二加热组件或第三加热组件的加热功率,和/或控制出料口108-21上盖板的打开或关闭,实现对至少一个出料口的位置、形状、分布或流通面积中的至少一种的控制,从而调节晶体的生长速率,实现晶体生长速率的稳定。
在一些实施例中,图16B所示,当测得腔体盖附近的温度小于生长温度时,晶体结晶速率会加快,这时通过调节第三加热组件的功率使生长区的温度上升,通过调节第一加热组件或第二加热组件的功率使原料区的温度降低,以减缓气体组分通过隔板的速率,从而降低晶体的生长速率。在一些实施例中,也可以通过调节隔板上不同层之间的位置,或者通过调节出料口上的盖板的打开或关闭,使隔板上出料口的大小或形状改变,以实现加热区的气相组分按晶体生长所需的传输速率通过隔板,从而降低晶体的生长速率。在一些实施例中,第二加热组件的温度调节范围可以为2300-2600℃。
(7)晶体品质检测:TSD≤350cm -2、TED≤6000cm -2、BPD≤1540cm -2
实施例11
通过如图16C所示的晶体生长装置以及图18所示的测温组件进行晶体生长。
(1)放置原料:将原料置于生长腔体的原料区。
(2)放置籽晶:将粘接好的籽晶置于生长腔体的生长区。
(3)加热原料区:通过第一加热组件(感应加热部件)加热原料区,在5小时内将温度升温至2180℃,以使原料升华为晶体生长所需的气相组分。
(4)加热隔板附近:通过第二加热组件(感应加热部件)加热沿隔板所在位置向上(图16C中未示出)或向下5mm的区域,在5小时内将温度升温至2130℃,以维持气相组分通过至少一个出料口的出料速率。
(5)加热生长区:通过第三加热组件(电阻加热部件)加热生长区,在5小时内将温度升温至2090℃。
(6)晶体生长控制:通过测温组件获取与生长腔体相关的多个温度。接着,根据测温组件获取的多个温度信息,上位机发出温场调节指令,PLC接收指令后输出控制信号以控制第一加热组件、第二加热组件或第三加热组件的加热功率,和/或控制出料口108-21上盖板的打开或关闭,实现对至少一个出料口的位置、形状、分布或流通面积中的至少一种的控制,从而调节晶体的生长速率,实现晶体生长速率的稳定。
(7)晶体品质检测:TSD≤208cm -2、TED≤7000cm -2、BPD≤1200cm -2
实施例12
晶体生长完成后,对原料余料进行余料回收。
(1)倒置处理:晶体生长完成后,通过手动方式先去除原料余料的边缘部分上的富碳部分(碳渣),然后再将原料余料进行倒置。
(2)铺设新原料:在倒置处理后的原料余料上铺设新原料,作为下一次晶体生长的原料,其中,新原料与原料余料的质量比为3:7。
(3)下一次晶体生长:使用上述处理后的余料进行晶体生长。
(4)下一次晶体生长完成后,进行晶体品质检测:晶体无相变、定位边有多晶、晶体厚度为16mm、TSD≤450cm -2、TED≤7500cm -2、BPD≤1600cm -2
本说明书实施例可能带来的有益效果包括但不限于:(1)通过隔板分隔原料区和生长区,并且单独控制原料区、隔板附近以及生长区的温度,能显著减小晶体生长的热应力,有效调控生长速率;(2)通过第一加热组件加热原料区、第二加热组件加热隔板附近以及第三组件加热生长区,可以调控原料升华速率,维持出料口的稳定的出料速率,以及维持晶体生长面的稳定生长,减少晶体生长的热应力,降低位错形成概率,减少晶体缺陷,提高生长的晶体的质量;(3)通过调节隔板上至少一个出料口的位置、形状、分布或流通面积等,可以调控原料气相组分的碳硅摩尔比、传输路径、传输速度等,能有效调控晶体生长 界面,明显降低位错形成概率,减少晶体缺陷,提高生长的晶体质量;(4)在原料制备过程中,分两个阶段进行,第一阶段反应生成的小颗粒碳化硅在第二阶段时发生升华并在碳化硅颗粒表面重结晶,生成颗粒较大的原料,从而避免了使用小颗粒碳化硅原料进行晶体生长造成的晶体缺陷,提高晶体的质量;(5)通过对籽晶背面进行镀膜处理,可以抑制了碳化硅晶体生长过程中籽晶背面的蒸发过程,有效消除由于籽晶背面蒸发而导致的平面六角缺陷,提高生长的碳化硅晶体的质量及产率;(6)通过气相沉积法同时在多个籽晶背面生长碳膜,镀膜效率高,镀膜的均一性较好,进而使得生长的晶体一致性较好;(7)通过抽真空排除粘接剂内部的气泡,保证粘接前粘接剂内气泡已排完,或者在将缓冲层和粘接剂加工为一体成型,避免因液体粘接剂摊平不均匀或摊平过程中产生气泡,然后在真空状态下加压和加热进行粘接籽晶,可以进一步防止粘接过程中产生新的气泡,从而避免碳化硅晶体产生微管、六方空洞等缺陷,提高碳化硅晶体的质量;(8)通过超声探测设备对粘接好的籽晶进行检测,可以筛选出粘接质量较好(例如,气泡较少)的籽晶进行晶体生长,提高后续生长的晶体质量;(9)通过简单高效的方式对原料余料进行回收,可以充分利用余料,在不影响下一次晶体生长质量的前提下提高原料利用率。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (35)

  1. 一种晶体生长方法,其中,所述方法包括:
    将原料置于生长腔体的原料区;
    将籽晶置于所述生长腔体的生长区,其中,所述原料区和所述生长区通过隔板分隔,所述隔板包括至少一个出料口;以及
    基于所述籽晶和所述原料,通过物理气相传输法生长晶体。
  2. 根据权利要求1所述的方法,其中,所述原料包括碳化硅粉料,所述碳化硅粉料通过以下方法制备:
    将源材料和添加剂混合均匀,所述源材料包括碳粉、硅粉和预设占比的碳化硅颗粒;
    将混合均匀的源材料和添加剂置于预合成装置中进行原料合成操作,得到初始原料,所述原料合成操作包括第一阶段和第二阶段,其中,所述第一阶段为反应阶段,所述第二阶段为升华重结晶阶段;以及
    对所述初始原料进行后处理,得到所述碳化硅粉料。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    在晶体生长前,
    对所述原料进行酸处理和/或清洗;或
    对所述籽晶进行抛光处理、镀膜处理、表面检查或直径扩张处理中的至少一种。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    在晶体生长前,对所述籽晶进行镀膜处理,其中,所述镀膜处理包括:
    对所述籽晶背面进行喷砂处理;
    对喷砂处理后的籽晶进行加热预处理;以及
    使用膜材料对加热预处理后的籽晶进行镀膜。
  5. 根据权利要求4所述的方法,其中,所述喷砂处理使得喷砂处理后的籽晶的粗糙度在10-50μm的范围内。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    在晶体生长前,对所述籽晶进行镀膜处理,其中,所述镀膜处理包括:
    将包括所述籽晶在内的多个籽晶置于镀膜设备的多个镀膜架上;以及
    向所述镀膜设备中通入镀膜气体,通过气相沉积法同时在所述多个籽晶背面生长碳膜。
  7. 根据权利要求1所述的方法,其中,所述将所述籽晶置于所述生长腔体的所述生长区包括:
    将粘接剂涂覆在所述生长腔体的腔体盖下表面;
    将涂覆有所述粘接剂的所述腔体盖置于粘接设备内;
    对所述粘接设备进行抽气处理;以及
    将所述籽晶粘接于所述腔体盖上,其中,在粘接过程中,同时进行抽气处理和加热处理。
  8. 根据权利要求1所述的方法,其中,所述将所述籽晶置于所述生长腔体的所述生长区包括:
    将所述籽晶和缓冲层叠放于粘接台面上,其中,所述缓冲层和所述籽晶的接触面涂覆粘接剂;
    通过压紧组件进行滚压操作,使所述籽晶与所述缓冲层粘接;
    将所述生长腔体的腔体盖以及粘接后的所述缓冲层和所述籽晶叠放于所述粘接台面上,其中,所述缓冲层位于所述腔体盖和所述籽晶之间,所述缓冲层和所述腔体盖的接触面涂覆粘接剂;以及
    通过压紧组件进行滚压操作,使所述籽晶粘接于所述腔体盖上。
  9. 根据权利要求1所述的方法,其中,
    所述将所述籽晶置于所述生长腔体的所述生长区包括:
    将所述籽晶粘接于所述生长腔体的腔体盖上;
    所述方法还包括:
    通过超声探测设备对所述籽晶的粘接情况进行气孔检测,所述气孔检测的结果包括气孔位置、气孔尺寸、气孔形状或气孔密度中的至少一个。
  10. 根据权利要求1所述的方法,其中,所述基于所述籽晶和所述原料,通过物理气相传输法生长晶 体包括:
    通过第一加热组件加热所述原料区,以使所述原料升华为晶体生长所需的气相组分;
    通过第二加热组件加热所述隔板附近,以维持所述气相组分通过所述至少一个出料口的出料速率;以及
    通过第三加热组件加热所述生长区。
  11. 根据权利要求10所述的方法,其中,所述隔板附近的温度高于所述原料区的温度或所述生长区的温度。
  12. 根据权利要求1所述的方法,其中,所述基于所述籽晶和所述原料,通过物理气相传输法生长晶体包括:
    在晶体生长过程中,沿轴向或径向调节所述至少一个出料口的位置。
  13. 根据权利要求1所述的方法,其中,所述基于所述籽晶和所述原料,通过物理气相传输法生长晶体包括:
    获取所述生长腔体内的温度信息;以及
    基于所述温度信息,调节所述至少一个出料口的位置、形状、分布或流通面积中的至少一种。
  14. 根据权利要求13所述的方法,其中,所述获取所述生长腔体内的温度信息包括:
    通过测温组件获取与所述生长腔体相关的多个温度;以及
    基于所述多个温度,通过建模确定所述生长腔体内的所述温度信息,所述温度信息包括晶体生长面的温度信息。
  15. 根据权利要求14所述的方法,其中,所述测温组件包括多个温度传感器,其中,所述多个温度传感器位于所述生长腔体侧壁和/或所述生长腔体顶部。
  16. 根据权利要求15所述的方法,其中,所述多个温度传感器与所述生长腔体顶部之间设置有冷却组件。
  17. 根据权利要求1所述的方法,其中,所述基于所述籽晶和所述原料,通过物理气相传输法生长晶体包括:
    获取晶体生长所需的气相组分在所述生长腔体内的分布情况;以及
    基于所述分布情况,调节所述至少一个出料口的位置、形状、分布或流通面积中的至少一种。
  18. 根据权利要求17所述的方法,其中,所述获取晶体生长所需的气相组分在所述生长腔体内的分布情况包括:
    获取所述生长腔体内的温度信息;
    确定所述至少一个出料口的相关信息,所述相关信息包括所述至少一个出料口的位置、形状、分布或流通面积中的至少一种;以及
    基于所述生长腔体内的所述温度信息及所述至少一个出料口的相关信息,模拟确定所述气相组分在所述生长腔体内的所述分布情况。
  19. 根据权利要求1所述的方法,其中,所述基于所述籽晶和所述原料,通过物理气相传输法生长晶体包括:
    在晶体生长过程中,监测晶体生长情况;
    基于所述晶体生长情况,调节加热组件的加热参数和/或所述至少一个出料口的位置、形状、分布或流通面积中的至少一种。
  20. 根据权利要求1所述的方法,其中,所述方法还包括:
    晶体生长完成后,对原料余料进行倒置处理;以及
    在倒置处理后的原料余料上铺设新原料,作为下一次晶体生长的原料。
  21. 根据权利要求1所述的方法,其中,所述方法还包括:
    晶体生长完成后,去除原料余料的富碳部分,得到富硅部分;
    对所述富硅部分进行预处理;
    将预处理的所述富硅部分与碳粉按预设质量比混合均匀;
    将混合均匀的所述富硅部分及碳粉置于回收装置中进行回收处理,得到初始碳化硅原料;以及
    对所述初始碳化硅原料进行后处理,得到碳化硅原料,作为下一次晶体生长的原料。
  22. 一种晶体生长装置,其中,所述装置包括:
    生长腔体,所述生长腔体包括原料区和生长区,其中,
    所述原料区用于放置原料,
    所述生长区用于放置籽晶,以及
    所述原料区和所述生长区通过隔板分隔,所述隔板包括至少一个出料口;以及
    加热组件,用于加热所述生长腔体,以实现基于所述籽晶和所述原料的物理气相传输法的晶体生长。
  23. 根据权利要求22所述的装置,其中,所述加热组件包括:
    第一加热组件,用于加热所述原料区,以使所述原料升华为晶体生长所需的气相组分;
    第二加热组件,加热所述隔板附近,以维持所述气相组分通过所述至少一个出料口的出料速率;以及
    第三加热组件,加热所述生长区。
  24. 根据权利要求22所述的装置,其中,所述至少一个出料口的位置、形状、分布或流通面积中的至少一种可调节。
  25. 根据权利要求22所述的装置,其中,所述装置还包括测温组件,用于获取与所述生长腔体相关的多个温度。
  26. 根据权利要求25所述的装置,其中,所述测温组件包括多个温度传感器,其中,所述多个温度传感器位于所述生长腔体侧壁和/或所述生长腔体顶部。
  27. 根据权利要求26所述的装置,其中,所述多个温度传感器与所述生长腔体顶部之间设置有冷却组件。
  28. 根据权利要求25所述的装置,其中,所述装置还包括控制组件,所述控制组件用于:
    获取所述生长腔体内的温度信息,其中,
    所述温度信息基于所述多个温度通过建模确定,
    所述温度信息包括晶体生长面的温度信息;以及
    基于所述温度信息,调节所述至少一个出料口的位置、形状、分布或流通面积中的至少一种。
  29. 根据权利要求22所述的装置,其中,所述装置还包括控制组件,所述控制组件用于:
    获取晶体生长所需的气相组分在所述生长腔体内的分布情况;以及
    基于所述分布情况,调节所述至少一个出料口的位置、形状、分布或流通面积中的至少一种。
  30. 根据权利要求29所述的装置,其中,为获取晶体生长所需的气相组分在所述生长腔体内的分布情况,所述控制组件用于:
    获取所述生长腔体内的温度信息;
    确定所述至少一个出料口的相关信息,所述相关信息包括所述至少一个出料口的位置、形状、分布或流通面积中的至少一种;以及
    基于所述生长腔体内的所述温度信息及所述至少一个出料口的相关信息,模拟确定所述气相组分在所述生长腔体内的所述分布情况。
  31. 根据权利要求22所述的装置,其中,所述装置还包括监测组件,用于监测晶体生长情况。
  32. 根据权利要求31所述的装置,其中,所述装置还包括控制组件,所述控制组件用于:
    基于所述晶体生长情况,调节加热组件的加热参数和/或所述至少一个出料口的位置、形状、分布或流通面积中的至少一种。
  33. 一种镀膜设备,其中,所述镀膜设备包括:
    镀膜腔体;
    镀膜架,所述镀膜架上设置多个托盘,所述托盘用于放置籽晶;
    驱动组件,与所述镀膜架连接,用于带动镀膜架旋转;
    加热组件,用于提供镀膜处理所需热量;
    进气口,用于向所述镀膜腔体中通入镀膜气体;
    出气口,用于排出所述镀膜腔体中的气体;
    抽气组件,与所述出气口连接,用于对所述镀膜腔体进行抽气处理。
  34. 一种设备,用于粘接籽晶,其中,所述设备包括:
    粘接腔体;
    真空组件,用于对所述粘接腔体进行抽真空处理;
    上传动组件,所述上传动组件与所述粘接腔体顶端连接;
    下传动组件,所述下传动组件与所述粘接腔体底端连接;
    加热组件;以及
    压紧组件,通过与所述上传动组件、所述下传动组件和所述加热组件联动作用,将籽晶粘接于盖上。
  35. 根据权利要求34所述的设备,其中,所述压紧组件包括吸盘和支撑台,其中,
    所述吸盘的上端通过所述上传动组件与所述粘接腔体顶端连接,
    所述吸盘的下端用于吸附籽晶,
    所述支撑台的下端通过所述下传动组件与所述粘接腔体底端连接,
    所述支撑台的上端用于放置腔体盖,所述生长腔体盖上涂覆有粘接剂。
PCT/CN2022/118260 2022-09-09 2022-09-09 一种晶体生长方法和装置 WO2024050843A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/118260 WO2024050843A1 (zh) 2022-09-09 2022-09-09 一种晶体生长方法和装置
TW112133879A TW202411479A (zh) 2022-09-09 2023-09-06 一種晶體生長方法和裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118260 WO2024050843A1 (zh) 2022-09-09 2022-09-09 一种晶体生长方法和装置

Publications (1)

Publication Number Publication Date
WO2024050843A1 true WO2024050843A1 (zh) 2024-03-14

Family

ID=90192592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118260 WO2024050843A1 (zh) 2022-09-09 2022-09-09 一种晶体生长方法和装置

Country Status (1)

Country Link
WO (1) WO2024050843A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050166833A1 (en) * 2004-02-04 2005-08-04 Matsushita Electric Industrial Co., Ltd. Method of fixing seed crystal and method of manufacturing single crystal using the same
CN110067026A (zh) * 2019-04-26 2019-07-30 山东天岳先进材料科技有限公司 一种碳化硅单晶及其pvt长晶方法
CN110129885A (zh) * 2019-04-22 2019-08-16 山东天岳先进材料科技有限公司 一种碳化硅晶体及其制备方法
CN112962083A (zh) * 2021-02-03 2021-06-15 哈尔滨科友半导体产业装备与技术研究院有限公司 一种用于碳化硅单晶生长的籽晶背部镀膜的装置与方法
CN114232095A (zh) * 2021-11-22 2022-03-25 浙江大学杭州国际科创中心 一种优化碳化硅籽晶表面初期成核的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050166833A1 (en) * 2004-02-04 2005-08-04 Matsushita Electric Industrial Co., Ltd. Method of fixing seed crystal and method of manufacturing single crystal using the same
CN110129885A (zh) * 2019-04-22 2019-08-16 山东天岳先进材料科技有限公司 一种碳化硅晶体及其制备方法
CN110067026A (zh) * 2019-04-26 2019-07-30 山东天岳先进材料科技有限公司 一种碳化硅单晶及其pvt长晶方法
CN112962083A (zh) * 2021-02-03 2021-06-15 哈尔滨科友半导体产业装备与技术研究院有限公司 一种用于碳化硅单晶生长的籽晶背部镀膜的装置与方法
CN114232095A (zh) * 2021-11-22 2022-03-25 浙江大学杭州国际科创中心 一种优化碳化硅籽晶表面初期成核的方法

Similar Documents

Publication Publication Date Title
CN109280976B (zh) 一种大尺寸高纯碳化硅单晶、单晶衬底及其制备方法
CN111118598B (zh) 一种高质量碳化硅单晶、衬底及其高效制备方法
TWI723579B (zh) 大尺寸高純度碳化矽單晶、基材及其製備方法和製備用裝置
CN107217236B (zh) 一种低温真空蒸发源
ES2768765T3 (es) Dispositivo y procedimiento para la producción de carburo de silicio
JP2021070623A (ja) 炭化珪素ウエハ、炭化珪素インゴットの製造方法及び炭化珪素ウエハの製造方法
US10584417B2 (en) Film forming apparatus, susceptor, and film forming method
CN115627522B (zh) 一种提高晶体生长质量的方法
JP2007513257A (ja) 化学蒸着によって形成される自立型炭化ケイ素製品及びそれらを製造するための方法
CN115573041A (zh) 一种籽晶粘接方法和设备
CN115747951A (zh) 一种晶体生长方法和装置
WO2023201934A1 (zh) 基于pvt法生长碳化硅单晶的设备及方法
CN116180219A (zh) 一种晶体生长方法和装置
JPH0456765B2 (zh)
CN112962083A (zh) 一种用于碳化硅单晶生长的籽晶背部镀膜的装置与方法
WO2024050843A1 (zh) 一种晶体生长方法和装置
CN111379026A (zh) 一种籽晶的处理方法及其装置
CN109280964B (zh) 一种生长碳化硅单晶的热场结构
TW202411479A (zh) 一種晶體生長方法和裝置
CN115992382A (zh) 一种晶体生长方法和装置
CN104773724B (zh) 基于气相动力学平衡的石墨烯化学气相沉积法制备方法
CN110670121A (zh) 局部涂层石英坩埚及其制作方法
CN106011747A (zh) 一种柔性热敏薄膜的制备方法
CN114540943A (zh) 一种大直径SiC单晶生长装置及生长方法
JP2003086516A (ja) サセプタ、cvd装置、成膜方法、および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957811

Country of ref document: EP

Kind code of ref document: A1