WO2024050657A1 - 离子化合物、电解液、二次电池及用电装置 - Google Patents

离子化合物、电解液、二次电池及用电装置 Download PDF

Info

Publication number
WO2024050657A1
WO2024050657A1 PCT/CN2022/116986 CN2022116986W WO2024050657A1 WO 2024050657 A1 WO2024050657 A1 WO 2024050657A1 CN 2022116986 W CN2022116986 W CN 2022116986W WO 2024050657 A1 WO2024050657 A1 WO 2024050657A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
substituted
carbon atoms
group
ionic compound
Prior art date
Application number
PCT/CN2022/116986
Other languages
English (en)
French (fr)
Inventor
孙婧轩
刘倩
李全国
吴则利
秦一鸣
陈佳华
肖得隽
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/116986 priority Critical patent/WO2024050657A1/zh
Publication of WO2024050657A1 publication Critical patent/WO2024050657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials

Definitions

  • This application relates to the field of batteries, specifically to an ionic compound, an electrolyte, a secondary battery and an electrical device.
  • Secondary batteries are increasingly widely used due to their clean and renewable characteristics.
  • the industry's performance requirements for secondary batteries continue to increase.
  • people have an increasing demand for new energy vehicles such as electric vehicles and electric bicycles, and their performance requirements are also getting higher and higher.
  • Secondary batteries are an important power source for electric vehicles. Therefore, people have increasingly higher performance requirements for secondary batteries.
  • Secondary batteries mainly rely on the movement of active ions between the positive and negative electrodes to generate electrical energy.
  • active ions are deintercalated from the positive electrode and embedded in the negative electrode through the electrolyte. The opposite is true during discharge.
  • Secondary batteries have the advantages of high energy density, small self-discharge, and excellent cycle performance. And as the supply of lithium resources becomes increasingly tight, secondary batteries with richer raw material reserves and lower costs, such as sodium-ion and potassium-ion batteries, have come into people's sight.
  • this application provides an ionic compound, electrolyte, secondary battery and electrical device, aiming to improve the cycle performance of secondary batteries such as sodium ion and potassium ion batteries.
  • the first aspect of this application provides an ionic compound represented by formula (1):
  • each R 1 is independently selected from an alkyl group having 1 to 5 carbon atoms substituted by fluorine or an aryl group having 6 to 30 carbon atoms substituted by fluorine;
  • any two adjacent -OR 1 groups and A - can form a ring with the carbon atom in R 1 as the connection site;
  • a - represents B - or Si -
  • Y + represents sodium ion or potassium ion.
  • the above-mentioned ionic compounds When used as electrolyte salts to prepare secondary batteries such as sodium ions or potassium ions, they can increase the infiltration rate of the electrolyte to the electrodes and separators, reduce the film-forming resistance, and have good oxidation resistance, thereby improving the efficiency of secondary batteries. capacity, thereby improving the cycle stability of the secondary battery.
  • the ionic compound is represented by formula (1-1) or formula (1-2):
  • each R 11 is independently selected from an alkyl group with 1 to 10 carbon atoms substituted by fluorine, a cycloalkyl group with 3 to 10 carbon atoms substituted with fluorine, or a fluorine-substituted cycloalkyl group with 3 to 10 carbon atoms.
  • Aryl groups from 6 to 30;
  • each R 11 is independently selected from an alkyl group having 1 to 4 carbon atoms substituted by fluorine, a cycloalkyl group having 3 to 6 carbon atoms substituted by fluorine, or a cycloalkyl group having 3 to 6 carbon atoms substituted by fluorine.
  • Each R 12 is independently selected from an alkyl group with 1 to 5 carbon atoms substituted by fluorine, a cycloalkyl group with 3 to 6 carbon atoms substituted with fluorine, or a fluorine-substituted cycloalkyl group with 3 to 6 carbon atoms.
  • Aryl groups ranging from 6 to 30.
  • At least one R 11 is selected from a fluorine-substituted cycloalkyl group with 3 to 6 carbon atoms or a fluorine-substituted cycloalkyl group with 6 to 15 carbon atoms.
  • At least one R 12 is selected from a fluorine-substituted cycloalkyl group having 3 to 6 carbon atoms or a fluorine-substituted aryl group having 6 to 15 carbon atoms.
  • cycloalkyl groups are easier to be reduced during the formation process and can participate in the SEI film formation process more preferentially. In particular, they have better anode protection effects and can further improve the cycle stability of secondary batteries. ;
  • the aryl structure is easily oxidized to form a film during the first charging process, which has a better cathodic protection effect and can further improve the cycle stability of the secondary battery.
  • the fluorine-substituted cycloalkyl group having 3 to 6 carbon atoms satisfies at least one of the conditions in (a) to (b):
  • the fluorine-substituted cycloalkyl group having 3 to 6 carbon atoms is selected from the group consisting of fluorine-substituted cyclopropyl group, fluorine-substituted cyclobutyl group, fluorine-substituted cyclopentyl group, and fluorine-substituted cyclopentyl group. Any of the substituted cyclohexyl groups.
  • the fluorine-substituted aryl group having 6 to 15 carbon atoms is selected from the group consisting of fluorine-substituted phenyl group and fluorine-substituted naphthyl group.
  • each R 11 contains at least one fluorine atom
  • each R 11 contains at least two fluorine atoms
  • each R 11 contains at least three fluorine atoms.
  • each R 12 contains at least one fluorine atom
  • each R 12 contains at least two fluorine atoms
  • each R 12 contains at least three fluorine atoms.
  • Fluorine atoms are conducive to further increasing the infiltration rate of the electrolyte to the counter electrode and separator.
  • Y + is a sodium ion.
  • a second aspect of the present application provides the use of the ionic compound of the first aspect as an electrolyte salt.
  • the application is the use of the ionic compound as an electrolyte salt in the preparation of secondary batteries.
  • a third aspect of the present application provides an electrolyte solution, the components of which include the ionic compound of the first aspect.
  • the concentration of the ionic compound is 0.3 mol/L to 1.4 mol/L;
  • the concentration of the ionic compound is 0.9 mol/L to 1.3 mol/L.
  • the electrolyte has a conductivity of 6 mS/cm to 14 mS/cm at 25°C;
  • the electrolyte has a conductivity of 6.5 mS/cm to 13 mS/cm at 25°C.
  • a fourth aspect of the present application provides a secondary battery, which includes the electrolyte of the third aspect.
  • a fifth aspect of the present application provides an electrical device, which includes the secondary battery of the fourth aspect.
  • FIG. 1 is a schematic diagram of an embodiment of a secondary battery.
  • FIG. 2 is an exploded view of FIG. 1 .
  • Figure 3 is a schematic diagram of an embodiment of a battery pack.
  • FIG. 4 is an exploded view of FIG. 3 .
  • FIG. 5 is a schematic diagram of an embodiment of a power consumption device in which a secondary battery is used as a power source.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • alkyl refers to a group formed by the loss of one hydrogen from an alkane, for example, the loss of a hydrogen from methane to form a methyl group.
  • alkyl refers to alkanes in which the carbon atoms are connected by carbon-carbon single bonds and do not form a ring, and the remaining valence bonds are combined with hydrogen, including straight-chain alkanes and branched-chain alkanes.
  • the number of carbon atoms of "alkyl” can be 1 to 10, including 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, and refers to an alkane containing 1 to 10 carbon atoms. (i.e. C1 ⁇ 10 alkane) A group formed by losing one hydrogen.
  • alkyl group having 1 to 10 carbon atoms include methane group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 2 -Ethylbutyl, 3,3-dimethylbutyl, n-pentyl, isopentyl, neopentyl, 1-methylpentyl, 3-methylpentyl, 2 -Ethylpentyl, 4-methyl-2-pentyl, n-hexyl, 1-methylhexyl, 2-ethylhexyl, 2-butylhexyl, n-heptyl , 1-
  • Aryl refers to a hydrocarbon group containing at least one aromatic ring, including non-fused ring aryl groups and condensed ring aryl groups.
  • a fused ring aryl group refers to a group formed by two or more aromatic rings connected through two adjacent ring atoms that are shared, that is, a fused ring.
  • connection site when the connection site is not specified in the group, it means that the optional linkable site in the group is used as the connection site.
  • One embodiment of the present application provides an ionic compound represented by formula (1):
  • each R 1 is independently selected from an alkyl group having 1 to 10 carbon atoms substituted by fluorine or an aryl group having 6 to 30 carbon atoms substituted by fluorine;
  • any two adjacent -OR 1 groups and A - can form a ring with the carbon atom in R 1 as the connection site;
  • a - represents B - or Si -
  • Y + represents sodium ion or potassium ion.
  • the above-mentioned ionic compounds When used as electrolyte salts to prepare secondary batteries such as sodium ions or potassium ions, they can increase the infiltration rate of the electrolyte to the electrodes and separators, reduce the film-forming resistance, and have good oxidation resistance, thereby improving the efficiency of secondary batteries. capacity, thereby improving the cycle stability of the secondary battery.
  • the above-mentioned ionic compound is represented by formula (1-1) or formula (1-2):
  • each R 11 is independently selected from an alkyl group with 1 to 5 carbon atoms substituted by fluorine, a cycloalkyl group with 3 to 10 carbon atoms substituted with fluorine, or a fluorine-substituted cycloalkyl group with 3 to 10 carbon atoms.
  • Aryl groups from 6 to 30;
  • each R 11 is independently selected from an alkyl group having 1 to 4 carbon atoms substituted by fluorine, a cycloalkyl group having 3 to 6 carbon atoms substituted by fluorine, or a cycloalkyl group having 3 to 6 carbon atoms substituted by fluorine.
  • each R 11 is independently selected from a linear alkyl group with 1 to 4 carbon atoms substituted by fluorine, a branched alkyl group with 1 to 4 carbon atoms substituted by fluorine, A fluorine-substituted cycloalkyl group having 3 to 6 carbon atoms or a fluorine-substituted aryl group having 6 to 15 carbon atoms.
  • each R 11 is independently selected from a linear alkyl group with 1 to 4 carbon atoms substituted by fluorine, a branched alkyl group with 1 to 4 carbon atoms substituted by fluorine, A fluorine-substituted cycloalkyl group having 3 to 6 carbon atoms or a fluorine-substituted aryl group having 6 to 15 carbon atoms.
  • At least one R 11 is selected from a fluorine-substituted cycloalkyl group with 3 to 6 carbon atoms or a fluorine-substituted cycloalkyl group with 6 to 15 carbon atoms.
  • Aryl is selected from a fluorine-substituted cycloalkyl group with 3 to 6 carbon atoms or a fluorine-substituted cycloalkyl group with 6 to 15 carbon atoms.
  • the cycloalkyl group is easier to be reduced during the formation process, it preferentially participates in the film formation process of the SEI film, especially for the anode protection effect, which can further improve the cycle stability of the secondary battery; while the aryl structure is easy to be recharged during the first charge. It is oxidized to form a film during the process, which has better cathodic protection effect and can further improve the cycle stability of secondary batteries.
  • the molecular weight of the fluorine-substituted cycloalkyl group having 3 to 6 carbon atoms is not greater than 200 g/mol.
  • the molecular weight of the above-mentioned cycloalkyl group having 3 to 6 carbon atoms substituted by fluorine is 20g/mol to 180g/mol.
  • the molecular weight of the fluorine-substituted cycloalkyl group having 3 to 6 carbon atoms is 20g/mol100g/mol.
  • each R 12 is independently selected from an alkyl group having 1 to 10 carbon atoms substituted by fluorine, or a cycloalkyl group having 3 to 10 carbon atoms substituted by fluorine, or a cycloalkyl group having 3 to 10 carbon atoms substituted by fluorine. Fluorine-substituted aryl group having 6 to 30 carbon atoms.
  • At least one R 12 is selected from a fluorine-substituted cycloalkyl group with 3 to 6 carbon atoms or a fluorine-substituted cycloalkyl group with 6 to 15 carbon atoms.
  • Aryl is selected from a fluorine-substituted cycloalkyl group with 3 to 6 carbon atoms or a fluorine-substituted cycloalkyl group with 6 to 15 carbon atoms.
  • the cycloalkyl group is easier to be reduced during the formation process, it preferentially participates in the film formation process of the SEI film, especially for the anode protection effect, which can further improve the cycle stability of the secondary battery; while the aryl structure is easy to be recharged during the first charge. It is oxidized to form a film during the process, which has better cathodic protection effect and can further improve the cycle stability of secondary batteries.
  • the fluorine-substituted cycloalkyl group having 3 to 6 carbon atoms is selected from the group consisting of fluorine-substituted cyclopropyl group, fluorine-substituted cyclobutyl group, and fluorine-substituted cyclopentyl group. and any one of cyclohexyl substituted by fluorine.
  • the aryl group having 6 to 15 carbon atoms substituted by fluorine is selected from the group consisting of phenyl group substituted with fluorine and naphthyl group substituted with fluorine.
  • the fluorine-substituted cycloalkyl group having 3 to 6 carbon atoms is selected from the group consisting of fluorine-substituted cyclopropyl group, fluorine-substituted cyclobutyl group, and fluorine-substituted cyclopentyl group. and any one of cyclohexyl substituted by fluorine.
  • each R 11 is independently selected from methyl substituted by fluorine, ethyl substituted by fluorine, n-propyl substituted by fluorine, isopropyl substituted by fluorine, n-propyl substituted by fluorine.
  • Each R 11 may be the same or different.
  • each R 11 is the same.
  • At least one R 11 is selected from cyclopropyl substituted with fluorine, cyclobutyl substituted with fluorine, cyclopentyl substituted with fluorine, cyclohexyl substituted with fluorine, cyclohexyl substituted with fluorine, Either a substituted phenyl group or a fluorine-substituted naphthyl group.
  • each R 12 is independently selected from methyl substituted by fluorine, ethyl substituted by fluorine, n-propyl substituted by fluorine, isopropyl substituted by fluorine, n-propyl substituted by fluorine.
  • Each R 12 may be the same or different.
  • each R 12 is the same.
  • At least one R 12 is selected from cyclopropyl substituted with fluorine, cyclobutyl substituted with fluorine, cyclopentyl substituted with fluorine, cyclohexyl substituted with fluorine, cyclohexyl substituted with fluorine, Either a substituted phenyl group or a fluorine-substituted naphthyl group.
  • each R 11 contains at least one fluorine atom.
  • each R 11 contains at least two fluorine atoms.
  • each R 11 contains at least three fluorine atoms.
  • each R 12 contains at least one fluorine atom
  • each R 12 contains at least two fluorine atoms.
  • each R 12 contains at least three fluorine atoms.
  • Fluorine atoms are conducive to further increasing the infiltration rate of the electrolyte to the counter electrode and separator.
  • the molecular weight of each R 11 mentioned above is 10g/mol ⁇ 200g/mol; optionally, the molecular weight of each R 11 is 20g/mol ⁇ 180g/mol.
  • the molecular weight of each R 12 mentioned above is 10g/mol ⁇ 200g/mol; optionally, the molecular weight of each R 12 is 20g/mol ⁇ 180g/mol.
  • A- is B- or Si-
  • Y + is sodium ion
  • the Si-O bond contained is more likely to react with H 2 O and HF in the electrolyte, thereby suppressing acid and reducing corrosion of the interface film on the surface of the positive and negative electrodes.
  • the above ionic compounds can be prepared by referring to the preparation methods of boraneoxy ionic compounds commonly used in this field. Here are examples of the preparation methods:
  • the above-mentioned solvent is 1,2-dimethoxyethane (DME)
  • the reaction conditions are: heating and refluxing for 6 hours
  • the post-treatment steps include: cooling the system after the reaction is completed and stirring at 50°C for 16 hours, The solvent is then removed to obtain a concentrated crude product, and a salt is precipitated from the concentrated crude product using pentane and purified to obtain an ionic compound.
  • DME 1,2-dimethoxyethane
  • the reaction conditions are: heating and refluxing for 6 hours
  • the post-treatment steps include: cooling the system after the reaction is completed and stirring at 50°C for 16 hours, The solvent is then removed to obtain a concentrated crude product, and a salt is precipitated from the concentrated crude product using pentane and purified to obtain an ionic compound.
  • A- is Si-
  • the preparation process is as above, except that the above-mentioned sodium borohydride or potassium borohydride is replaced with orthosilicic acid.
  • One embodiment of the present application also provides the use of the above-mentioned ionic compound as an electrolyte salt.
  • the above application is the use of ionic compounds as electrolyte salts in the preparation of secondary batteries.
  • the above-mentioned ionic compounds When used as electrolyte salts to prepare secondary batteries such as sodium ions or potassium ions, they can increase the infiltration rate of the electrolyte to the electrodes and separators, reduce the film-forming resistance, and have good oxidation resistance, thereby improving the efficiency of secondary batteries. capacity, thereby improving the cycle stability of the secondary battery.
  • the above-mentioned secondary battery is a sodium-ion battery or a potassium-ion battery.
  • One embodiment of the present application also provides an electrolyte solution, the components of the electrolyte solution include the above-mentioned ionic compounds.
  • the concentration of the above ionic compound is 0.3 mol/L to 1.4 mol/L.
  • the concentration of the above ionic compound is 0.9 mol/L ⁇ 1.3 mol/L.
  • the concentration of the ionic compound is too high, the gas production will increase, and if it is too low, the conductivity of the electrolyte will decrease, thereby increasing the impedance of the secondary battery.
  • the electrolyte has a conductivity of 6 mS/cm to 14 mS/cm at 25°C.
  • the conductivity of the electrolyte solution at 25°C is 6.5 mS/cm to 13 mS/cm.
  • the conductivity of the electrolyte solution at 25°C is 6.5 mS/cm to 13 mS/cm.
  • the components of the above-mentioned electrolyte also include organic solvents.
  • the organic solvents can be selected from electrolyte solvents commonly used in this field: including ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl carbonate.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl esters
  • the components of the above electrolyte also include additives, including fluoroethylene carbonate (FEC), vinyl sulfate (DTD), 1,3-propane sultone (PS), 1,3-propenyl- Sultone (PST), succinic anhydride (SA), lithium difluoroborate borate (LiDFOB), lithium difluorobisoxalate phosphate (LiDFOP), tris(trimethylsilane)phosphate (TMSP), tris( One or more of trimethylsilyl borate (TMSB) and so on.
  • FEC fluoroethylene carbonate
  • DTD vinyl sulfate
  • PS 1,3-propane sultone
  • PST 1,3-propenyl- Sultone
  • SA succinic anhydride
  • LiDFOB lithium difluoroborate borate
  • LiDFOP lithium difluorobisoxalate phosphate
  • TMSP tris(trimethylsilane)phosphate
  • TMSB trimethyl
  • additives may also include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature performance, and additives that improve battery performance. Additives for battery low-temperature performance, etc.
  • One embodiment of the present application also provides a secondary battery including the above electrolyte.
  • the secondary battery is a sodium ion battery or a potassium ion battery.
  • the above-mentioned secondary battery also includes a positive electrode sheet, a negative electrode sheet and a separator.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active layer loaded on the surface of the positive electrode current collector.
  • the components of the positive active layer include positive active materials.
  • the mass proportion of the cathode active material in the cathode active layer is 70% to 100%.
  • the cathode active material may be a cathode active material known in the art for secondary batteries.
  • the positive active material includes any one of a sodium ion positive active material and a potassium ion positive active material.
  • the sodium ion cathode active material may include at least one of the following materials: at least one of sodium transition metal oxides, polyanionic compounds, and Prussian blue compounds.
  • the present application is not limited to these materials, and other conventionally known materials that can be used as positive electrode active materials of sodium ion batteries can also be used.
  • the positive active material includes at least one of sodium transition metal oxide, polyanionic compound and Prussian blue compound;
  • the positive active material includes at least one of sodium transition metal oxide and polyanionic compound.
  • Sodium transition metal oxide has a layered transition metal structure. Compared with the rhombohedral phase of Prussian blue compounds, theoretically, the thickness rebound rate of the layered transition metal structure will be greater. However, in practical applications, because Prussian blue compounds are easy to Water absorption forms crystal water and vacancy defects, leading to an increase in thickness rebound rate and even structural collapse. Therefore, when sodium transition metal oxide is used as the cathode active material, the thickness rebound rate of the cathode sheet is smaller.
  • the anionic structural units in the polyanionic compound are connected into a three-dimensional structure through covalent bonds, and the structure has good structural stability. When it is a positive electrode active material, the thickness rebound rate of the positive electrode sheet is low.
  • the transition metal in the sodium transition metal oxide, includes at least one of Mn, Fe, Ni, Co, Cr, Cu, Ti, Zn, V, Zr and Ce.
  • the sodium transition metal oxide is, for example, Na x MO 2 , where M includes at least one or more of Ti, V, Mn, Co, Ni, Fe, Cr and Cu, 0 ⁇ x ⁇ 1.
  • the polyanionic compound may be a type of compound having sodium ions, transition metal ions and tetrahedral (YO 4 ) n- anion units.
  • Transition metals include at least one of Mn, Fe, Ni, Co, Cr, Cu, Ti, Zn, V, Zr and Ce;
  • Y includes at least one of P, S and Si;
  • n represents (YO 4 ) n -valency.
  • Polyanionic compounds may also be compounds having sodium ions, transition metal ions, tetrahedral (YO 4 ) n- anion units and halogen anions.
  • Transition metals include at least one of Mn, Fe, Ni, Co, Cr, Cu, Ti, Zn, V, Zr and Ce;
  • Y includes at least one of P, S and Si, n represents (YO 4 )
  • the valence state of n- ; the halogen can be at least one of F, Cl and Br.
  • Polyanionic compounds may also be a class of compounds having sodium ions, tetrahedral (YO 4 ) n- anion units, polyhedral units (ZO y ) m+ , and optionally halogen anions.
  • Y includes at least one of P, S and Si
  • n represents the valence state of (YO 4 ) n-
  • Z represents a transition metal, including at least Mn, Fe, Ni, Co, Cr, Cu, Ti, Zn, V , Zr and Ce
  • m represents the valence state of (ZO y ) m+
  • the halogen can be at least one of F, Cl and Br.
  • polyanionic compounds are NaFePO 4 , Na 3 V 2 (PO 4 ) 3 (sodium vanadium phosphate, NVP for short), Na 4 Fe 3 (PO 4 ) 2 (P 2 O 7 ), NaM'PO 4 F(M ' is one or more of V, Fe, Mn and Ni) and at least one of Na 3 (VO y ) 2 (PO 4 ) 2 F 3-2y (0 ⁇ y ⁇ 1).
  • Prussian blue compounds can be compounds containing sodium ions, transition metal ions and cyanide ions (CN - ).
  • the transition metal includes at least one of Mn, Fe, Ni, Co, Cr, Cu, Ti, Zn, V, Zr and Ce.
  • Prussian blue compounds are, for example, Na a Me b Me' c (CN) 6 , wherein Me and Me' each independently include at least one of Ni, Cu, Fe, Mn, Co and Zn, 0 ⁇ a ⁇ 2 , 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1.
  • the components of the positive electrode active layer also include a positive electrode binder, and the mass proportion of the positive electrode binder in the positive electrode active layer is 0.05% to 10%.
  • the mass proportion of the positive electrode binder in the positive electrode active layer is 0.1% to 8%.
  • the positive electrode binder can use various binders commonly used in this field.
  • the positive electrode binder includes polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene tripolymer.
  • Copolymer tetrafluoroethylene-hexafluoropropylene copolymer, fluorine-containing acrylate resin, sodium carboxymethylcellulose, hydroxypropylcellulose, sodium hydroxymethylcellulose, potassium hydroxymethylcellulose, diacetyl fiber
  • fluorine-containing acrylate resin sodium carboxymethylcellulose, hydroxypropylcellulose, sodium hydroxymethylcellulose, potassium hydroxymethylcellulose, diacetyl fiber
  • polyacrylic acid sodium alginate, styrene-butadiene rubber, acrylic butadiene rubber, polypyrrole, polyaniline, epoxy resin and guardo gum.
  • the components of the positive electrode active layer also include a positive electrode conductive agent, and the mass proportion of the positive electrode conductive agent in the positive electrode active layer is 0.05% to 8%.
  • the mass proportion of the positive electrode conductive agent in the positive electrode active layer is 0.1% to 6%.
  • the positive conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode current collector can use metal foil or composite current collector.
  • the metal foil copper foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode sheet can be prepared by dispersing the above-mentioned components for preparing the positive electrode sheet, such as the positive electrode active material, the positive electrode conductive agent, the positive electrode binder and any other components in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active layer supported on the surface of the negative electrode current collector.
  • the components of the negative electrode active layer include negative electrode active materials.
  • the mass proportion of the negative active material in the negative active layer is 85% to 99%.
  • the mass proportion of the negative active material in the negative active layer is 90% to 99%.
  • the negative electrode active material may be carbon materials or silicon-based materials known in the art for secondary batteries.
  • the negative active material includes at least one of carbon nanotubes, graphite, graphene, carbon fiber, mesocarbon microspheres, glassy carbon, soft carbon, and hard carbon.
  • the graphite includes at least one of artificial graphite and natural graphite. Specifically, the graphite can be expanded graphite, highly oriented graphite, three-dimensional graphite, etc. However, this application is not limited to these materials. Only one type of the above-mentioned negative electrode active material may be used alone, or two or more types may be used in combination.
  • the negative active material includes a silicon-based material, and further, the weight proportion of the silicon-based material in the negative active material is ⁇ 40%; preferably, the weight proportion of the silicon-based material in the negative active material It is 15% ⁇ 30%.
  • the components of the negative electrode active layer include a negative electrode binder, and the mass proportion of the negative electrode binder in the negative electrode active layer is 0.1% to 10%.
  • Negative electrode binders include sodium carboxymethylcellulose, hydroxypropylcellulose, sodium hydroxymethylcellulose, potassium hydroxymethylcellulose, diacetylcellulose, polyacrylic acid, sodium alginate, styrene-butadiene rubber, butyl acrylate At least one of diene rubber, polypyrrole, polyaniline, epoxy resin and guardo gum. This type of binder has a low swelling rate, which can further reduce the thickness elasticity of the negative electrode sheet.
  • the components of the negative electrode active layer also include a negative electrode conductive agent, and the mass proportion of the negative electrode conductive agent in the negative electrode active layer is 0.1% to 10%.
  • the mass proportion of the negative electrode conductive agent in the negative electrode active layer is 0.15% to 8%.
  • the negative conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the negative electrode current collector can use metal foil or composite current collector.
  • the metal foil copper foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as negative active material, negative electrode conductive agent, negative electrode binder and any other components in a solvent (such as N -methylpyrrolidone) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the positive electrode sheet, negative electrode sheet and separator film can be made into an electrode assembly through a winding process or a lamination process.
  • the electrolyte acts as a conductor for ions between the positive and negative electrodes.
  • isolation membrane there is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride, and can also be an isolation membrane with a boehmite coating. , that is, including a porous substrate and a boehmite coating loaded on the surface of the porous substrate.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the thickness of the separator is controlled between 2 ⁇ m and 15 ⁇ m; optionally, the thickness of the separator is controlled between 2 ⁇ m and 13 ⁇ m.
  • FIG. 1 shows a square-structured secondary battery 4 as an example.
  • the housing may include a housing 41 and a cover 43 .
  • the housing 41 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 41 has an opening communicating with the accommodation cavity, and the cover plate 43 can cover the opening to close the accommodation cavity.
  • the positive electrode sheet, the negative electrode sheet and the separator film can be formed into the electrode assembly 42 through a winding process or a lamination process.
  • the electrode assembly 42 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 42 .
  • the number of electrode assemblies 42 contained in the battery 4 can be one or more, and can be adjusted according to requirements.
  • This application also provides an electrical device, which includes the above-mentioned secondary battery.
  • the secondary battery may exist in the form of a battery cell or may be further assembled into a battery pack.
  • the battery pack 1 includes a battery box and one or more secondary batteries 4 provided in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for the secondary battery 4 .
  • the plurality of secondary batteries 4 can be arranged in the battery box in any manner.
  • the above-mentioned secondary battery or the battery pack assembled therefrom can be used as a power source for an electrical device, or as an energy storage unit for an electrical device.
  • the above-mentioned electric devices may be, but are not limited to, mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf golf carts, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • mobile devices such as mobile phones, laptops, etc.
  • electric vehicles such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf golf carts, electric trucks, etc.
  • electric trains ships and satellites, energy storage systems, etc.
  • FIG. 5 shows an electrical device 5 as an example.
  • the electric device 5 is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or the like.
  • a battery pack may be used.
  • the power-consuming device may be a mobile phone, a tablet computer, a laptop computer, etc.
  • the device is usually required to be thin and light, and a battery can be used as a power source.
  • Sodium borohydride reacts with molar excess % of hexafluoroisopropanol in 1,2-dimethoxyethane (DME) solvent under reflux for 6 hours. The solution is then cooled and stirred at 50°C for 16 hours before evaporation. Most of the solvent is removed to obtain a concentrated solution of the ionic compound (a), and then the concentrated solution of the ionic compound (a) is precipitated and purified in pentane to obtain the ionic compound (a).
  • DME 1,2-dimethoxyethane
  • hexafluoroisopropanol is replaced by hexafluoro-2,3-bis(trifluoromethyl)-2,3-butanediol.
  • ionic compound (c) Refer to the preparation of ionic compound (a), replace hexafluoroisopropanol with 2,2,3,3,3-pentafluoro-1-propanol.
  • ionic compound (d) Refer to the preparation of ionic compound (a), replace hexafluoroisopropanol with pentafluorophenol.
  • ionic compound (e) Refer to the preparation of ionic compound (a), replace hexafluoroisopropanol with 2-fluorocyclohexanol.
  • ionic compound (f) Refer to the preparation of ionic compound (f): Refer to the preparation of ionic compound (b), replace hexafluoroisopropanol with the following structural compound:
  • ionic compound (g) Refer to the preparation of ionic compound (h): Refer to the preparation of ionic compound (a), replace sodium borohydride with sodium orthosilicate.
  • the positive electrode active material Prussian blue material NaNi 1/3 Fe 1/3 Mn 1/3 O 2 , conductive agent multi-walled carbon nanotubes, and binder polyvinylidene fluoride (PVDF) were mixed with each other in a mass ratio of 90:5:5.
  • the organic solvent N-methylpyrrolidone (NMP) is mixed evenly to prepare a positive electrode slurry, in which the mass content of the binder in the positive electrode slurry is 1 wt%.
  • the positive electrode slurry is then evenly coated on the positive electrode current collector aluminum foil, and dried to form a positive electrode active layer to obtain a prefabricated electrode piece, which is then cold-pressed and slit to obtain a positive electrode piece.
  • electrolytes used in Examples 1 to 9 are ionic compounds (a) to (h) respectively, and the prepared electrolytes are correspondingly designated as electrolytes (a) to (g).
  • a conventional polypropylene (PP) film is used as the isolation film.
  • the positive electrode sheet, negative electrode sheet and separator film obtained in the above steps are rolled and put into a packaging case, and the above electrolyte solutions (a) ⁇ (g) are respectively injected.
  • the electrolyte injection volume is 1.8g/Ah, and then formed into , standing and other processes to prepare sodium-ion batteries.
  • the prepared sodium-ion batteries are correspondingly designated as sodium-ion batteries (a) to (h).
  • X 1000 (%) (Discharge capacity of the 1000th cycle/Discharge capacity of the 1st cycle) ⁇ 100%.
  • Embodiments 8 to 11 are basically the same as Embodiment 1. The only difference is that in the preparation of the electrolyte, the ionic compound (b) is selected as the electrolyte, and the concentration of the ionic compound (b) is controlled to obtain electrolytes of different concentrations.
  • Comparative Example 1 is basically the same as the Example. The only difference is that in the preparation of the electrolyte in Comparative Example 1, the ionic compound was replaced with equimolar NaClO 4 and the injection volume of the electrolyte was 2g/Ah.
  • Comparative Example 2 is basically the same as the Example. The only difference is that in the preparation of the electrolyte of Comparative Example 1, the ionic compound was replaced with equimolar NaPF 6 , and the injection amount of the electrolyte was 2g/Ah.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及一种离子化合物、电解液、二次电池及用电装置,该离子化合物如式(1)所示;其中,各R1分别独立地选自被氟取代的碳原子数为1~10的烷基或被氟取代的碳原子数为6~30的芳基;其中,任意相邻的两个-OR1基团与A-可通过各自R1中的碳原子为连接位点成环;A-代表B-或Si-,Y +代表钠离子或钾离子。该离子化合物能提高钠离子及钾离子电池等二次电池的循环性能。

Description

离子化合物、电解液、二次电池及用电装置 技术领域
本申请涉及电池领域,具体涉及一种离子化合物、电解液、二次电池及用电装置。
背景技术
二次电池因其清洁和可再生的特点得到日益广泛的应用,而为了适应不同环境和应用场景需要,业内对二次电池的性能要求不断提高。近年来,随着新能源行业的快速发展,人们对电动汽车、电动自行车等新能源交通工具的需求越来大,对其性能要求也越来越高,而二次电池是电动汽车的重要动力来源,因此,人们对二次电池的性能要求也越来越高。
二次电池主要依靠活性离子在正极和负极之间移动来产生电能,充电时,活性离子从正极脱嵌,经过电解液嵌入负极,放电时则相反。二次电池具有能量密度高、自放电小、循环性能优越等优点。且随着锂资源的供应越来越紧张,钠离子及钾离子电池等原材料储量更丰富、成本更低廉的二次电池进入人们的视线。
但钠离子及钾离子电池的性能远不能满足人们对二次电池性能越来越高的期望,传统技术仍有待改进。
发明内容
鉴于上述问题,本申请提供一种离子化合物、电解液、二次电池及用电装置,旨在提高钠离子及钾离子电池等二次电池的循环性能。
本申请第一方面,提供了一种如式(1)所示的离子化合物:
Figure PCTCN2022116986-appb-000001
其中,各R 1分别独立地选自被氟取代的碳原子数为1~5的烷基或被氟取代的碳原子数为6~30的芳基;
其中,任意相邻的两个-OR 1基团与A -能以R 1中的碳原子为连接位点成环;
A -代表B -或Si -,Y +代表钠离子或钾离子。
上述离子化合物,作为电解质盐制备钠离子或钾离子等二次电池时,能提高电解液对电极和隔膜的浸润速率,可以降低成膜阻抗,且耐氧化性较好,从而可以提高二次电池的容量发挥,进而提高二次电池的循环稳定性。
在其中一些实施例中,所述离子化合物如式(1-1)或式(1-2)所示:
Figure PCTCN2022116986-appb-000002
其中,各R 11分别独立地选自被氟取代的碳原子数为1~10的链烷基、被氟取代的碳原子数为3~10的环烷基或被氟取代的碳原子数为6~30的芳基;
各X 1分别独立地选自CR 12R 12,各R 12分别独立地选自F、或碳原子数为1~5的链烷基、或碳原子数为3~10的环烷基、或碳原子数为6~30的芳基、或被氟取代的碳原子数为1~5的链烷基、或被氟取代的碳原子数为3~10的环烷基、或被氟取代的碳原子数为6~30的芳基,且至少一个X 1中含有氟原子。
在其中一些实施例中,各R 11分别独立地选自被氟取代的碳原子数为1~4的链烷基、被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基;
各R 12分别独立地选自被氟取代的碳原子数为1~5的链烷基、或被氟取代的碳原子数为3~6的环烷基、或被氟取代的碳原子数为6~30的芳基。
在其中一些实施例中,式(1-1)中,至少有一个R 11选自被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基;
式(1-2)中,至少有一个R 12选自被氟取代的碳原子数为3~6的环烷基 或被氟取代的碳原子数为6~15的芳基。
相较于链状基团,环烷基更容易在化成过程中被还原,能更优先参与SEI膜的成膜过程,尤其是对于阳极保护效果更好,可进一步提高二次电池的循环稳定性;而芳基结构易于在首次充电过程中被氧化成膜,对于阴极保护效果更好,也可进一步提高二次电池的循环稳定性。
在其中一些实施例中,所述被氟取代的碳原子数为3~6的环烷基满足如(a)~(b)中至少一条件:
(a)所述被氟取代的碳原子数为3~6的环烷基的分子量不大于200g/mol;
(b)所述被氟取代的碳原子数为3~6的环烷基选自被氟取代的环丙烷基、被氟取代的环丁烷基、被氟取代的环戊烷基和被氟取代的环己烷基中的任意一种。
进一步调控氟取代的碳原子数为3~6的环烷基的结构,使其具有较小溶剂化半径,从而降低电解液的粘度,提高电解液电导率,从而进一步提高二次电池的动力学性能。
在其中一些实施例中,所述被氟取代的碳原子数为6~15的芳基选自被氟取代的苯基、被氟取代的萘基中的任意一种。
在其中一些实施例中,每个R 11至少含有一个氟原子;
可选地,每个R 11至少含有两个氟原子;
可选地,每个R 11至少含有三个氟原子。
在其中一些实施例中,每个R 12至少含有一个氟原子;
可选地,每个R 12至少含有两个氟原子;
可选地,每个R 12至少含有三个氟原子。
氟原子有利于进一步提高电解液对对电极和隔膜的浸润速率。
在其中一些实施例中,Y +为钠离子。
本申请第二方面,提供第一方面的离子化合物作为电解质盐的应用。
在其中一些实施例中,所述应用为所述离子化合物作为电解质盐在制备二次电池中的应用。
本申请第三方面,提供一种电解液,所述电解液的组分包括第一方面的离子化合物。
在其中一些实施例中,所述离子化合物的浓度为0.3mol/L~1.4mol/L;
可选地,所述离子化合物的浓度为0.9mol/L~1.3mol/L。
在其中一些实施例中,所述电解液在25℃时的电导率为6mS/cm~14mS/cm;
可选地,所述电解液在25℃时的电导率为6.5mS/cm~13mS/cm。
本申请的第四方面,提供了一种二次电池,所述二次电池包括第三方面的电解液。
本申请的第五方面提供一种用电装置,所述用电装置包括第四方面的二次电池。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1是二次电池的一实施方式的示意图。
图2是图1的分解图。
图3是电池包的一实施方式的示意图。
图4是图3的分解图。
图5是二次电池用作电源的用电装置的一实施方式的示意图。
附图标记说明:
1、电池包;2、上箱体;3、下箱体;4、二次电池;41、壳体;42、电极组件;43、盖板;5、用电装置。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能 以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也 可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请中,术语“烷基”指的是烷烃失去一个氢后形成的基团,例如甲烷失去一个氢后形成甲基。
术语“链烷基”是指碳原子都以碳碳单键相连且不成环,其余的价键都与氢结合而成的烷烃,包括直链烷烃和支链烷烃。
本发明中,“烷基”的碳原子数可以为1至10,包括1、2、3、4、5、6、7、8、9或10,是指包含1~10个碳原子的烷烃(即C1~10烷烃)失去一个氢后形成的基团,具体实例包括C1烷烃、C2烷烃、C3烷烃、C4烷烃、C5烷烃、C6烷烃、C7烷烃、C8烷烃、C9烷烃或C10烷烃失去一个氢后形成的基团,“碳原子数为1~10的烷基”非限制性实例包括甲烷基、乙烷基、正丙烷基、异丙烷基、正丁烷基、异丁烷基、2-乙基丁烷基、3,3-二甲基丁烷基、正戊烷基、异戊烷基、新戊烷基、1-甲基戊烷基、3-甲基戊烷基、2-乙基戊烷基、4-甲基-2-戊烷基、正己烷基、1-甲基己烷基、2-乙基己烷基、2-丁基己烷基、正庚烷基、1-甲基庚烷基、2,2-二甲基庚烷基、2-乙基庚烷基、正辛烷基、正壬烷基、正癸烷基。
“芳基”指至少包含一个芳环的烃基,包括非稠环芳基及稠环芳基。稠环芳基是指两个或多个芳香环通过共用的两个相邻的环原子连接后形成的基团,即稠环。
本申请中,基团中未指明连接位点时,表示基团中任选可连接位点作为连接位点。
如背景技术所述,传统技术中一直聚焦于对锂离子电池的研究,钾离子或钠离子的离子半径大于锂离子,无法嵌入石墨材料,需要采用硬碳或其他负极材料,能量密度低于石墨材料,导致电池的性能受限,本领域技术人员通常认为钠离子及钾离子电池的性能无法达到锂离子电池的性能高度。
而随着锂资源的供应越来越紧张,钠离子及钾离子电池等原材料储量 更丰富,成本更低廉的二次电池进入人们的视线。但传统技术中对钠离子及钾离子电池的研究较少,钠离子及钾离子电池的性能远不能满足人们对二次电池性能越来越高的期望。
本申请的技术人员也是在多年的实际生产及研究过程中,发现:传统的钠离子电池的电解质采用NaPF 6等钠盐,吸湿性较强,在钠离子电池中的充放电过程中,NaPF 6等钠盐容易分解产生副产物,从而导致钠离子电池的阻抗升高,导致循环稳定性降低。基于此,本申请技术人员在总结传统的锂离子电池技术的基础上,偶然发现:借鉴一些锂离子电池中的电解质结构,可进一步提高钠离子电池的性能,并在经过大量创造性探究实验、结构设计之后,获得本申请中能提高钠离子或钾离子电池的降低阻抗和循环稳定性的离子化合物。
本申请一实施方式提供了一种如式(1)所示的离子化合物:
Figure PCTCN2022116986-appb-000003
其中,各R 1分别独立地选自被氟取代的碳原子数为1~10的烷基或被氟取代的碳原子数为6~30的芳基;
其中,任意相邻的两个-OR 1基团与A -能以R 1中的碳原子为连接位点成环;
A -代表B -或Si -,Y +代表钠离子或钾离子。
上述离子化合物,作为电解质盐制备钠离子或钾离子等二次电池时,能提高电解液对电极和隔膜的浸润速率,可以降低成膜阻抗,且耐氧化性较好,从而可以提高二次电池的容量发挥,进而提高二次电池的循环稳定性。
在其中一些实施例中,上述离子化合物如式(1-1)或式(1-2)所示:
Figure PCTCN2022116986-appb-000004
其中,各R 11分别独立地选自被氟取代的碳原子数为1~5的链烷基、被氟取代的碳原子数为3~10的环烷基或被氟取代的碳原子数为6~30的芳基;
各X 1分别独立地选自CR 12R 12,各R 12分别独立地选自F、或碳原子数为1~5的链烷基、或碳原子数为3~10的环烷基、或碳原子数为6~30的芳基、或被氟取代的碳原子数为1~5的链烷基、或被氟取代的碳原子数为3~10的环烷基、或被氟取代的碳原子数为6~30的芳基,且至少一个X 1中含有氟原子。
在其中一些实施例中,各R 11分别独立地选自被氟取代的碳原子数为1~4的链烷基、被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基。
在其中一些实施例中,各R 11分别独立地选自被氟取代的碳原子数为1~4的直链烷基、被氟取代的碳原子数为1~4的支链烷基、被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基。
在其中一些实施例中,各R 11分别独立地选自被氟取代的碳原子数为1~4的直链烷基、被氟取代的碳原子数为1~4的支链烷基、被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基。
在其中一些实施例中,式(1-1)中,至少有一个R 11选自被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基。
由于环烷基更容易在化成过程中被还原,优先参与SEI膜的成膜过程,尤其是对于阳极保护效果更好,可进一步提高二次电池的循环稳定性;而芳基结构易于在首次充电过程中被氧化成膜,对于阴极保护效果更好,也可进一步提高二次电池的循环稳定性。
在其中一些实施例中,上述被氟取代的碳原子数为3~6的环烷基的分子量不大于200g/mol。
可选地,上述被氟取代的碳原子数为3~6的环烷基的分子量为20g/mol 180g/mol。
可选地,上述被氟取代的碳原子数为3~6的环烷基的分子量为20g/mol100g/mol。
进一步调控氟取代的碳原子数为3~6的环烷基的结构,使其具有较小溶剂化半径,从而降低电解液的粘度,提高电解液电导率,从而进一步提高二次电池的动力学性能。
在其中一些实施例中,各R 12分别独立地选自被氟取代的碳原子数为1~10的链烷基、或被氟取代的碳原子数为3~10的环烷基、或被氟取代的碳原子数为6~30的芳基。
在其中一些实施例中,式(1-2)中,至少有一个R 12选自被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基。
由于环烷基更容易在化成过程中被还原,优先参与SEI膜的成膜过程,尤其是对于阳极保护效果更好,可进一步提高二次电池的循环稳定性;而芳基结构易于在首次充电过程中被氧化成膜,对于阴极保护效果更好,也可进一步提高二次电池的循环稳定性。
在其中一些实施例中,上述被氟取代的碳原子数为3~6的环烷基选自被氟取代的环丙烷基、被氟取代的环丁烷基、被氟取代的环戊烷基和被氟取代的环己烷基中的任意一种。
在其中一些实施例中,上述被氟取代的碳原子数为6~15的芳基选自被氟取代的苯基、被氟取代的萘基中的任意一种。
在其中一些实施例中,上述被氟取代的碳原子数为3~6的环烷基选自被氟取代的环丙烷基、被氟取代的环丁烷基、被氟取代的环戊烷基和被氟取代的环己烷基中的任意一种。
在其中一些实施例中,各R 11分别独立地选自被氟取代的甲基、被氟取代的乙基、被氟取代的正丙基、被氟取代的异丙基、被氟取代的正丁基、被氟取代的异丁基、被氟取代的环丙烷基、被氟取代的环丁烷基、被氟取代的环戊烷基、被氟取代的环己烷基、被氟取代的苯基、被氟取代的萘基中的任意一种。
各R 11可相同或不同。
在其中一些实施例中,各R 11相同。
在其中一些实施例中,至少一个R 11选自被氟取代的环丙烷基、被氟取代的环丁烷基、被氟取代的环戊烷基、被氟取代的环己烷基、被氟取代的苯基、被氟取代的萘基中的任意一种。
在其中一些实施例中,各R 12分别独立地选自被氟取代的甲基、被氟取代的乙基、被氟取代的正丙基、被氟取代的异丙基、被氟取代的正丁基、被氟取代的异丁基、被氟取代的环丙烷基、被氟取代的环丁烷基、被氟取代的环戊烷基、被氟取代的环己烷基、被氟取代的苯基、被氟取代的萘基中的任意一种。
各R 12可相同或不同。
在其中一些实施例中,各R 12相同。
在其中一些实施例中,至少一个R 12选自被氟取代的环丙烷基、被氟取代的环丁烷基、被氟取代的环戊烷基、被氟取代的环己烷基、被氟取代的苯基、被氟取代的萘基中的任意一种。
在其中一些实施例中,每个R 11至少含有一个氟原子。
可选地,每个R 11至少含有两个氟原子。
可选地,每个R 11至少含有三个氟原子。
在其中一些实施例中,每个R 12至少含有一个氟原子;
可选地,每个R 12至少含有两个氟原子。
可选地,每个R 12至少含有三个氟原子。
氟原子有利于进一步提高电解液对对电极和隔膜的浸润速率。
在其中一些实施例中,上述各R 11的分子量为10g/mol~200g/mol;可选地,各R 11的分子量为20g/mol~180g/mol。
在其中一些实施例中,上述各R 12的分子量为10g/mol~200g/mol;可选地,各R 12的分子量为20g/mol~180g/mol。
R 11或R 12分子量过大,链过长易分解,且易发生副反应,分子量过小或链过短则氧化性不足,会降低溶剂化速度。
在其中一些实施例中,A -为B -或Si -,Y +为钠离子。
当A -为Si -时,含有的Si-O键更易与电解液中H 2O和HF反应,从而达到抑酸以及减少对正负极表面界面膜腐蚀的作用。
上述离子化合物可参照本领域常用的硼烷氧基离子化合物的制备方法 制备,此处对其制备方法举例说明:
当A -为B -时,制备过程如下:
硼氢化钠或硼氢化钾与R 11-OH在溶剂中反应,得到式(1-1)所示离子化合物。
具体地,上述溶剂为1,2-二甲氧基乙烷(DME),反应条件为:加热回流6小时,后处理步骤包括:将反应完毕后的体系冷却并在50℃下搅拌16小时,然后除去溶剂得到浓缩的粗产物,再使用戊烷从浓缩的粗产物中沉淀出盐并纯化,得到离子化合物。
当A -为Si -时,制备过程参照如上,不同之处在于:将上述硼氢化钠或硼氢化钾替换成正硅酸。
本申请一实施方式,还提供上述离子化合物作为电解质盐的应用。
在其中一些实施例中,上述应用为离子化合物作为电解质盐在制备二次电池中的应用。
上述离子化合物,作为电解质盐制备钠离子或钾离子等二次电池时,能提高电解液对电极和隔膜的浸润速率,可以降低成膜阻抗,且耐氧化性较好,从而可以提高二次电池的容量发挥,进而提高二次电池的循环稳定性。
在其中一些实施例中,上述二次电池为钠离子电池或钾离子电池。
本申请一实施方式,还提供一种电解液,电解液的组分包括上述的离子化合物。
在其中一些实施例中,上述离子化合物的浓度为0.3mol/L~1.4mol/L。
可选地,上述离子化合物的浓度为0.9mol/L~1.3mol/L。
离子化合物的浓度过高,会导致产气量增加,过低会导致电解液的电导率降低,从而导致二次电池的阻抗提高。
在其中一些实施例中,所述电解液在25℃时的电导率为6mS/cm~14mS/cm。
可选地,上述电解液在25℃时的电导率为6.5mS/cm~13mS/cm。
可选地,上述电解液在25℃时的电导率为6.5mS/cm~13mS/cm。
上述电解液的组分还包括有机溶剂,有机溶剂可选自本领域常用的电解液溶剂:包括碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、 碳酸甲乙酯(EMC)中的一种或几种。
进一步地,上述电解液的组分还包括添加剂,添加剂包括氟代碳酸乙烯酯(FEC)、硫酸乙烯酯(DTD)、1,3-丙烷磺内酯(PS)、1,3-丙烯基-磺酸内酯(PST)、丁二酸酐(SA)、二氟草酸硼酸锂(LiDFOB)、二氟双草酸磷酸锂(LiDFOP)、三(三甲基甲硅烷)磷酸酯(TMSP)、三(三甲基甲硅烷)硼酸酯(TMSB)等等中的一种或几种。
进一步地,上述添加剂还可以包括负极成膜添加剂,也可以包括正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、改善电池低温性能的添加剂等。
本申请的一实施方式,还提供一种二次电池,该二次电池包括上述电解液。
该二次电池是钠离子电池或钾离子电池。
进一步地,上述二次电池还包括正极片、负极片及隔膜。
【正极片】
正极片包括正极集流体及负载于正极集流体表面的正极活性层。
正极活性层的组分包括正极活性材料。
在其中一些实施例中,正极活性材料在正极活性层中的质量占比为70%~100%。
在一些实施方式中,正极活性材料可采用本领域公知的用于二次电池的正极活性材料。
在本申请任意实施方式中,正极活性材料包括钠离子正极活性材料和钾离子正极活性材料中的任意一种。
作为示例,钠离子正极活性材料可包括以下材料中的至少一种:钠过渡金属氧化物、聚阴离子型化合物和普鲁士蓝类化合物中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作钠离子电池正极活性材料的传统公知的材料。
在本申请任意实施方式中,正极活性材料包括钠过渡金属氧化物、聚阴离子型化合物和普鲁士蓝类化合物中的至少一种;
可选地,正极活性材料包括钠过渡金属氧化物和聚阴离子型化合物中 的至少一种。
钠过渡金属氧化物具有层状过渡金属结构,相比普鲁士蓝类化合物的菱方相,理论上,层状过渡金属结构的厚度反弹率会更大,但实际应用时,由于普鲁士蓝类化合物易吸水形成结晶水和空位缺陷,导致厚度反弹率增加,甚至导致结构坍塌。因此,钠过渡金属氧化物作为正极活性材料时,正极片的厚度反弹率反而更小。
聚阴离子型化合物中的阴离子结构单元通过共价键连成三维结构,结构稳定性好,为正极活性材料时,正极片的厚度反弹率较低。
作为本申请可选的技术方案,钠过渡金属氧化物中,过渡金属至少包括Mn、Fe、Ni、Co、Cr、Cu、Ti、Zn、V、Zr及Ce中的至少一种。钠过渡金属氧化物例如为Na xMO 2,其中M至少包括Ti、V、Mn、Co、Ni、Fe、Cr及Cu中的一种或几种,0<x≤1。
作为本申请可选的技术方案,聚阴离子型化合物可以是具有钠离子、过渡金属离子及四面体型(YO 4) n-阴离子单元的一类化合物。过渡金属至少包括Mn、Fe、Ni、Co、Cr、Cu、Ti、Zn、V、Zr及Ce中的至少一种;Y至少包括P、S及Si中的至少一种;n表示(YO 4) n-的价态。
聚阴离子型化合物还可以是具有钠离子、过渡金属离子、四面体型(YO 4) n-阴离子单元及卤素阴离子的一类化合物。过渡金属至少包括Mn、Fe、Ni、Co、Cr、Cu、Ti、Zn、V、Zr及Ce中的至少一种;Y至少包括P、S及Si中的至少一种,n表示(YO 4) n-的价态;卤素可以是F、Cl及Br中的至少一种。
聚阴离子型化合物还可以是具有钠离子、四面体型(YO 4) n-阴离子单元、多面体单元(ZO y) m+及可选的卤素阴离子的一类化合物。Y至少包括P、S及Si中的至少一种,n表示(YO 4) n-的价态;Z表示过渡金属,至少包括Mn、Fe、Ni、Co、Cr、Cu、Ti、Zn、V、Zr及Ce中的至少一种,m表示(ZO y) m+的价态;卤素可以是F、Cl及Br中的至少一种。
聚阴离子型化合物例如是NaFePO 4、Na 3V 2(PO 4) 3(磷酸钒钠,简称NVP)、Na 4Fe 3(PO 4) 2(P 2O 7)、NaM’PO 4F(M’为V、Fe、Mn及Ni中的一种或几种)及Na 3(VO y) 2(PO 4) 2F 3-2y(0≤y≤1)中的至少一种。
普鲁士蓝类化合物可以是具有钠离子、过渡金属离子及氰根离子(CN -) 的一类化合物。过渡金属至少包括Mn、Fe、Ni、Co、Cr、Cu、Ti、Zn、V、Zr及Ce中的至少一种。普鲁士蓝类化合物例如为Na aMe bMe’ c(CN) 6,其中Me及Me’各自独立地至少包括Ni、Cu、Fe、Mn、Co及Zn中的至少一种,0<a≤2,0<b<1,0<c<1。
在本申请任意实施方式中,正极活性层的组分还包括正极粘结剂,正极粘结剂在正极活性层中的质量占比为0.05%~10%。
可选地,正极粘结剂在正极活性层中的质量占比为0.1%~8%。
正极粘结剂可采用本领域常用的各类粘结剂。作为示例,正极粘结剂包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物、含氟丙烯酸酯树脂、羧甲基纤维素钠、羟丙基纤维素、羟甲基纤维素钠、羟甲基纤维素钾、双乙酰纤维素、聚丙烯酸、海藻酸钠、丁苯橡胶、丙烯酸丁二烯橡胶、聚吡咯、聚苯胺和环氧树脂和瓜尔多胶中的至少一种。
在本申请任意实施方式中,正极活性层的组分还包括正极导电剂,正极导电剂在正极活性层中的质量占比为0.05%~8%。
可选地,正极导电剂在正极活性层中的质量占比为0.1%~6%。
作为示例,正极导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,可以通过以下方式制备正极片:将上述用于制备正极片的组分,例如正极活性材料、正极导电剂、正极粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极片。
【负极片】
负极片包括负极集流体及负载于负极集流体表面的负极活性层,负极活性层的组分包括负极活性材料。
在本申请任意实施方式中,负极活性材料在负极活性层中的质量占比为85%~99%。
可选地,负极活性材料在负极活性层中的质量占比为90%~99%。
负极活性材料可采用本领域公知的用于二次电池的碳材料或硅基材料。作为示例,在一些实施例中,负极活性材料包括碳纳米管、石墨、石墨烯、碳纤维、中间相炭微球、玻璃碳、软炭、硬炭、中的至少一种。其中,石墨包括人造石墨、天然石墨中的至少一种,具体地,石墨可为膨胀石墨、高取向石墨、三维石墨等。但本申请并不限定于这些材料。上述负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在本申请任意实施方式中,负极活性材料包括硅基材料,进一步地,硅基材料在负极活性材料中的重量占比≤40%;优选地,硅基材料在负极活性材料中的重量占比为15%~30%。
在本申请任意实施方式中,负极活性层的组分包括负极粘结剂,负极粘结剂在负极活性层中的质量占比为0.1%~10%。
负极粘结剂包括羧甲基纤维素钠、羟丙基纤维素、羟甲基纤维素钠、羟甲基纤维素钾、双乙酰纤维素、聚丙烯酸、海藻酸钠、丁苯橡胶、丙烯酸丁二烯橡胶、聚吡咯、聚苯胺、环氧树脂和瓜尔多胶中的至少一种。此类粘结剂溶胀率较低,可进一步降低负极片的厚度弹率。
在本申请任意实施方式中,负极活性层的组分还包括负极导电剂,负极导电剂在负极活性层中的质量占比为0.1%~10%。
可选地,负极导电剂在负极活性层中的质量占比为0.15%~8%。
作为示例,负极导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、 聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,可以通过以下方式制备负极片:将上述用于制备负极片的组分,例如负极活性材料、负极导电剂、负极粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极片。
正极片、负极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。电解液在正极和负极之间起到传导离子的作用。
本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种,还可以是具有勃姆石类涂层的隔离膜,即包括多孔基材及负载在多孔基材表面的勃姆石涂层。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
隔膜的厚度控制在2μm~15μm;可选地,隔膜的厚度控制在2μm~13μm。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的二次电池4。
在一些实施例中,参照图2,外壳可包括壳体41和盖板43。其中,壳体41可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体41具有与容纳腔连通的开口,盖板43能够盖设于所述开口,以封闭所述容纳腔。
正极片、负极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件42。电极组件42封装于容纳腔。电解液浸润于电极组件42中。电池4所含电极组件42的数量可以为一个或多个,可根据需求来调节。
本申请还提供一种用电装置,该用电装置包括上述的二次电池。
进一步地,在上述用电装置中,二次电池可以电池单体的形式存在,也可以进一步组装成电池包的形式存在。
图3和图4是作为一个示例的电池包1。在电池包1中包括电池箱和 设置于电池箱中的一个或多个二次电池4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于二次电池4的封闭空间。
多个二次电池4可以按照任意的方式排布于电池箱中。
上述二次电池或其组装成的电池包可以用作用电装置的电源,也可以作为用电装置的能量存储单元。
上述用电装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
图5是作为一个示例的用电装置5。该用电装置5为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置5对二次电池的高功率和高能量密度的需求,可以采用电池包形式。
作为另一个示例的用电装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用电池作为电源。
下面将结合具体的实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围,在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
以下为具体实施例。
具体实施例
(1)离子化合物的制备:制备离子化合物(a)~(f),结构如下所示:
Figure PCTCN2022116986-appb-000005
Figure PCTCN2022116986-appb-000006
1、离子化合物(a)的制备过程如下:
硼氢化钠与过量%摩尔的六氟异丙醇在1,2-二甲氧基乙烷(DME)溶剂中加热回流反应6小时,然后将溶液冷却并在50℃下搅拌16小时,再蒸发除去大部分溶剂得到离子化合物(a)的浓缩液,然后将离子化合物(a)的浓缩液于戊烷中进行沉淀纯化,得到离子化合物(a)。
2、离子化合物(b)的制备过程如下:
参照离子化合物(a)的制备,将六氟异丙醇替换成六氟-2,3-双(三氟甲基)-2,3-丁二醇。
3、离子化合物(c)的制备:参照离子化合物(a)的制备,将六氟异丙醇替换成2,2,3,3,3-五氟-1-丙醇。
4、离子化合物(d)的制备:参照离子化合物(a)的制备,将六氟异丙醇替换成五氟苯酚。
5、离子化合物(e)的制备:参照离子化合物(a)的制备,将六氟异丙醇替换成2-氟环己醇。
6、离子化合物(f)的制备:参照离子化合物(f)的制备:参照离子化合物(b)的制备,将六氟异丙醇替换成如下结构化合物:
Figure PCTCN2022116986-appb-000007
7、离子化合物(g)的制备:参照离子化合物(h)的制备:参照离子化合物(a)的制备,将硼氢化钠替换成正硅酸钠。
实施例1~7
(1)正极片的制备
将正极活性材料普鲁士蓝类材料NaNi 1/3Fe 1/3Mn 1/3O 2、导电剂多壁碳纳米管、粘结剂聚偏氟乙烯(PVDF)按照质量比90:5:5与有机溶剂N-甲基吡咯烷酮(NMP)混合均匀后制备成正极浆料,其中,粘结剂在正极浆料中的质量含量为1wt%。
然后将正极浆料均匀涂覆在正极集流体铝箔上,烘干后形成正极活性层,得到预制极片,再经过冷压、分条得到正极片。
(2)负极片的制备
将负极活性材料硬碳、粘结剂丁苯橡胶(SBR)、导电剂碳黑按照质量比为90:5:5的比例与溶剂去离子水混合均匀制备成负极浆料;然后将负极浆料涂覆在负极集流体铜箔上,经过烘干、冷压、分条,形成负极活性层,得到负极片。
(3)电解液的制备
在氩气气氛手套箱中(H2O<0.1ppm,O2<0.1ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)按照体积比为1:1进行混合得到混合有机溶剂,接着分别将充分干燥的电解质溶解于混合有机溶剂中,得到电解液,其中电解质的浓度为1mol/L。实施例1~9中采用的电解质分别为离子化合物(a)~(h),制得的电解液相应地记为电解液(a)~(g)。
对制得的电解液电导率进行测定:
用设备型号雷磁DDSJ-318电导率测试仪对电解液电导率σ进行测试,首先将电极探头置于标准电解液中进行标定,之后置于待测电解液中,待环境温度稳定后进行测量,重复测量三次,取平均值,四舍五入保留1位小数。具体结果请见表1。
(4)隔离膜的制备
以常规的聚丙烯(PP)膜作为隔离膜。
(5)钠离子电池的制备
将上述步骤得到的正极片、负极片和隔离膜卷绕后装入包装壳中,分别注入上述的电解液(a)~(g),电解液注液量为1.8g/Ah,再经过化成、静置等工艺制得钠离子电池。制得的钠离子电池相应地记为钠离子电池(a)~(h)。
(6)对制得的钠离子电池进行性能测试:
1、钠离子电池的阻抗测定:
将钠离子电池单体使用0.33C倍率调整至50%SOC,并且保持25℃静置2h,采用恒流I(4C)放电30s,根据起始电压V1、末端电压V2以及放电恒流电流I计算得到阻抗R:R=(V1-V2)/I。
2、循环性能测试:
在25℃下,将钠离子电池单体以0.33C倍率恒流充电至上限截止电压,再恒压充电至电流小于等于0.05C,之后搁置5分钟,再以1C倍率恒流放电至下限截止电压,此为一个循环充放电过程,此次的放电容量记为第1次循环的放电容量。
按照上述方法继续进行500次循环充放电测试,记录每一次循环的放电容量,按照下述公式计算得到循环1000次后的容量保持率X 1000
X 1000(%)=(第1000次循环的放电容量/第1次循环的放电容量)×100%。
具体结果请见表1。
实施例8~11
实施例8~11与实施例1基本相同,区别仅在于:电解液的制备中,选用离子化合物(b)作电解质,调控离子化合物(b)的浓度,得到不同浓度的电 解液
其余步骤及条件与实施例1相同。具体结果请见表1。
对比例1
对比例1与实施例基本相同,不同之处仅在于:对比例1电解液的制备中,将离子化合物替换成等摩尔的NaClO 4,电解液注液量为2g/Ah。
其余步骤及条件与实施例1相同。
对比例2
对比例2与实施例基本相同,不同之处仅在于:对比例1电解液的制备中,将离子化合物替换成等摩尔的NaPF 6,电解液注液量为2g/Ah。
其余步骤及条件与实施例1相同。
各实施例及对比例中相关的物理参数及测试结果请见表1。
表1
Figure PCTCN2022116986-appb-000008
由表1数据分析可知,采用本申请的离子化合物做电解质制备电解液时,能降低制得的二次电池的阻抗,提高二次电池的循环性能。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非 对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种如式(1)所示的离子化合物:
    Figure PCTCN2022116986-appb-100001
    其中,各R 1分别独立地选自被氟取代的碳原子数为1~10的烷基或被氟取代的碳原子数为6~30的芳基;
    其中,任意相邻的两个-OR 1基团与A -能以R 1中的碳原子为连接位点成环;
    A -代表B -或Si -,Y +代表钠离子或钾离子。
  2. 如权利要求1所述的离子化合物,其特征在于,所述离子化合物如式(1-1)或式(1-2)所示:
    Figure PCTCN2022116986-appb-100002
    其中,各R 11分别独立地选自被氟取代的碳原子数为1~5的链烷基、被氟取代的碳原子数为3~10的环烷基或被氟取代的碳原子数为6~30的芳基;
    各X 1分别独立地选自CR 12R 12,各R 12分别独立地选自F、或碳原子数为1~5的链烷基、或碳原子数为3~10的环烷基、或碳原子数为6~30的芳基、或被氟取代的碳原子数为1~5的链烷基、或被氟取代的碳原子数为3~10的环烷基、或被氟取代的碳原子数为6~30的芳基,且至少一个X 1中含有氟原子。
  3. 如权利要求2所述的离子化合物,其特征在于,各R 11分别独立地选自被氟取代的碳原子数为1~4的链烷基、被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基;
    各R 12分别独立地选自被氟取代的碳原子数为1~4的链烷基、或被氟取代的碳原子数为3~6的环烷基、或被氟取代的碳原子数为6~30的芳基。
  4. 如权利要求2~3任一项所述的离子化合物,其特征在于,式(1-1)中, 至少有一个R 11选自被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基;
    式(1-2)中,至少有一个R 12选自被氟取代的碳原子数为3~6的环烷基或被氟取代的碳原子数为6~15的芳基。
  5. 如权利要求4所述的离子化合物,其特征在于,所述被氟取代的碳原子数为3~6的环烷基满足如(a)~(b)中至少一条件:
    (a)所述被氟取代的碳原子数为3~6的环烷基的分子量不大于200g/mol;
    (b)所述被氟取代的碳原子数为3~6的环烷基选自被氟取代的环丙烷基、被氟取代的环丁烷基、被氟取代的环戊烷基和被氟取代的环己烷基中的任意一种。
  6. 如权利要求4~5任一项所述的离子化合物,其特征在于,所述被氟取代的碳原子数为6~15的芳基选自被氟取代的苯基、被氟取代的萘基中的任意一种。
  7. 如权利要求2~6任一项所述的离子化合物,其特征在于,每个R 11至少含有一个氟原子;
    可选地,每个R 11至少含有两个氟原子;
    可选地,每个R 11至少含有三个氟原子。
  8. 如权利要求2~7任一项所述的离子化合物,其特征在于,每个R 12至少含有一个氟原子;
    可选地,每个R 12至少含有两个氟原子;
    可选地,每个R 12至少含有三个氟原子。
  9. 如权利要求1~8任一项所述的离子化合物,其特征在于,Y +为钠离子。
  10. 如权利要求1~9任一项所述的离子化合物作为电解质盐的应用。
  11. 如权利要求10所述的应用,其特征在于,所述应用为所述离子化合物作为电解质盐在制备二次电池中的应用。
  12. 一种电解液,其特征在于,所述电解液的组分包括如权利要求1~9任一项所述的离子化合物。
  13. 如权利要求12所述的电解液,其特征在于,在所述电解液中,所 述离子化合物的浓度为0.3mol/L~1.4mol/L;
    可选地,所述离子化合物的浓度为0.9mol/L~1.3mol/L。
  14. 如权利要求12或13所述的电解液,其特征在于,所述电解液在25℃时的电导率为6mS/cm~14mS/cm;
    可选地,所述电解液在25℃时的电导率为6.5mS/cm~13mS/cm。
  15. 一种二次电池,其特征在于,所述电池包括如权利要求12~14任一项所述的电解液。
  16. 一种用电装置,其特征在于,所述用电装置包括如权利要求15所述的二次电池。
PCT/CN2022/116986 2022-09-05 2022-09-05 离子化合物、电解液、二次电池及用电装置 WO2024050657A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116986 WO2024050657A1 (zh) 2022-09-05 2022-09-05 离子化合物、电解液、二次电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116986 WO2024050657A1 (zh) 2022-09-05 2022-09-05 离子化合物、电解液、二次电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024050657A1 true WO2024050657A1 (zh) 2024-03-14

Family

ID=90192632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116986 WO2024050657A1 (zh) 2022-09-05 2022-09-05 离子化合物、电解液、二次电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024050657A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258103A (ja) * 2006-03-24 2007-10-04 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
CN109873204A (zh) * 2019-02-27 2019-06-11 杉杉新材料(衢州)有限公司 一种三元锂离子电池电解液及含有该电解液的锂离子电池
CN110957530A (zh) * 2019-12-02 2020-04-03 东莞维科电池有限公司 一种高电压锂离子电池电解液及高电压锂离子电池
CN112687955A (zh) * 2020-12-25 2021-04-20 宁德新能源科技有限公司 电解液、电化学装置和电子装置
CN112803067A (zh) * 2019-11-14 2021-05-14 广州天赐高新材料股份有限公司 电解液及包含该电解液的锂二次电池
CN112968213A (zh) * 2019-12-12 2021-06-15 珠海冠宇电池股份有限公司 一种电解液添加剂及电解液和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258103A (ja) * 2006-03-24 2007-10-04 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
CN109873204A (zh) * 2019-02-27 2019-06-11 杉杉新材料(衢州)有限公司 一种三元锂离子电池电解液及含有该电解液的锂离子电池
CN112803067A (zh) * 2019-11-14 2021-05-14 广州天赐高新材料股份有限公司 电解液及包含该电解液的锂二次电池
CN110957530A (zh) * 2019-12-02 2020-04-03 东莞维科电池有限公司 一种高电压锂离子电池电解液及高电压锂离子电池
CN112968213A (zh) * 2019-12-12 2021-06-15 珠海冠宇电池股份有限公司 一种电解液添加剂及电解液和应用
CN112687955A (zh) * 2020-12-25 2021-04-20 宁德新能源科技有限公司 电解液、电化学装置和电子装置

Similar Documents

Publication Publication Date Title
WO2021027782A1 (zh) 补锂负极极片、其制备方法、及其相关的锂离子电池、电池模块、电池包和装置
CN103811719B (zh) 一种锂离子电池硅负极极片及其制备方法和锂离子电池
JP7216869B2 (ja) 二次電池及び該二次電池を備える電池モジュール、電池パック、装置
WO2014134967A1 (zh) 一种锂离子电池正极膜及其制备和应用
CN112151855B (zh) 电化学装置和电子装置
CN110518286A (zh) 电解液及包括电解液的电化学装置及电子装置
WO2023004819A1 (zh) 二次电池与含有该二次电池的电池模块、电池包和用电装置
CN103762334A (zh) 锂离子二次电池及其正极
CN112909220A (zh) 二次电池及含有它的装置
CN106571463A (zh) 一种锂离子电池及其制备方法
WO2021127996A1 (zh) 二次电池及含有该二次电池的装置
US20220302501A1 (en) Electrolyte and electrochemical apparatus including such electrolyte
JP2023554205A (ja) 電気化学装置及び電子装置
CN117637988A (zh) 高能量密度电池的负极极片及制备方法、电池和用电装置
US20230318042A1 (en) Electrolyte solution, secondary battery, battery module, battery pack and powered device
WO2024050657A1 (zh) 离子化合物、电解液、二次电池及用电装置
WO2023225897A1 (zh) 电化学装置及包含其的电子装置
WO2023050832A1 (zh) 锂离子电池、电池模组、电池包及用电装置
CN102280662B (zh) 一种非水电解液电池
WO2023123031A1 (zh) 电化学装置和电子装置
WO2023123025A1 (zh) 电化学装置和电子装置
KR20210057818A (ko) 전기화학장치 및 전자장치
CN111725483A (zh) 锂离子电池和用电设备
JP7477707B2 (ja) 銅めっき液及びそれにより製造された負極複合集電体
WO2023221113A1 (zh) 电解质、二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022957633

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022957633

Country of ref document: EP

Effective date: 20240402

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957633

Country of ref document: EP

Kind code of ref document: A1