WO2024050387A2 - Compositions d'encre au platine et procédés de revêtement conducteur à basse température - Google Patents
Compositions d'encre au platine et procédés de revêtement conducteur à basse température Download PDFInfo
- Publication number
- WO2024050387A2 WO2024050387A2 PCT/US2023/073121 US2023073121W WO2024050387A2 WO 2024050387 A2 WO2024050387 A2 WO 2024050387A2 US 2023073121 W US2023073121 W US 2023073121W WO 2024050387 A2 WO2024050387 A2 WO 2024050387A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ink composition
- particle
- conductive ink
- weight percent
- free conductive
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 228
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 189
- 238000000034 method Methods 0.000 title claims abstract description 80
- 229910052697 platinum Inorganic materials 0.000 title abstract description 86
- 238000000576 coating method Methods 0.000 title description 11
- 239000011248 coating agent Substances 0.000 title description 10
- 239000008139 complexing agent Substances 0.000 claims abstract description 45
- 239000002904 solvent Substances 0.000 claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 238000007639 printing Methods 0.000 claims description 30
- 150000003505 terpenes Chemical class 0.000 claims description 18
- 239000003446 ligand Substances 0.000 claims description 17
- ASUDFOJKTJLAIK-UHFFFAOYSA-N 2-methoxyethanamine Chemical group COCCN ASUDFOJKTJLAIK-UHFFFAOYSA-N 0.000 claims description 15
- 150000001412 amines Chemical group 0.000 claims description 15
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 14
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 claims description 14
- 229940116411 terpineol Drugs 0.000 claims description 14
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 12
- 235000007586 terpenes Nutrition 0.000 claims description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 8
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 8
- 239000000443 aerosol Substances 0.000 claims description 8
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 claims description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 7
- 235000001510 limonene Nutrition 0.000 claims description 7
- 229940087305 limonene Drugs 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 6
- 235000019253 formic acid Nutrition 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 125000005595 acetylacetonate group Chemical group 0.000 claims description 5
- SBOJXQVPLKSXOG-UHFFFAOYSA-N o-amino-hydroxylamine Chemical compound NON SBOJXQVPLKSXOG-UHFFFAOYSA-N 0.000 claims description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 4
- 229910021645 metal ion Inorganic materials 0.000 claims description 3
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical compound [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 7
- 239000000976 ink Substances 0.000 description 192
- 239000010408 film Substances 0.000 description 22
- WRYLYDPHFGVWKC-UHFFFAOYSA-N 4-terpineol Chemical compound CC(C)C1(O)CCC(C)=CC1 WRYLYDPHFGVWKC-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 10
- 238000009472 formulation Methods 0.000 description 8
- -1 CH3CH2OCH2CH2OH) Chemical compound 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000007641 inkjet printing Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 4
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical group COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical group COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000000806 elastomer Substances 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 238000007647 flexography Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 229920006113 non-polar polymer Polymers 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 238000010022 rotary screen printing Methods 0.000 description 3
- 238000007764 slot die coating Methods 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 2
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 2
- CUZKCNWZBXLAJX-UHFFFAOYSA-N 2-phenylmethoxyethanol Chemical compound OCCOCC1=CC=CC=C1 CUZKCNWZBXLAJX-UHFFFAOYSA-N 0.000 description 2
- HCGFUIQPSOCUHI-UHFFFAOYSA-N 2-propan-2-yloxyethanol Chemical compound CC(C)OCCO HCGFUIQPSOCUHI-UHFFFAOYSA-N 0.000 description 2
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- MOYAFQVGZZPNRA-UHFFFAOYSA-N Terpinolene Chemical compound CC(C)=C1CCC(C)=CC1 MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 150000001983 dialkylethers Chemical class 0.000 description 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229960005323 phenoxyethanol Drugs 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000307 polymer substrate Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- YHQGMYUVUMAZJR-UHFFFAOYSA-N α-terpinene Chemical compound CC(C)C1=CC=C(C)CC1 YHQGMYUVUMAZJR-UHFFFAOYSA-N 0.000 description 2
- YKFLAYDHMOASIY-UHFFFAOYSA-N γ-terpinene Chemical compound CC(C)C1=CCC(C)=CC1 YKFLAYDHMOASIY-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- CUDYYMUUJHLCGZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol Chemical compound COC(C)COC(C)CO CUDYYMUUJHLCGZ-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical group COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WSTYNZDAOAEEKG-UHFFFAOYSA-N Mayol Natural products CC1=C(O)C(=O)C=C2C(CCC3(C4CC(C(CC4(CCC33C)C)=O)C)C)(C)C3=CC=C21 WSTYNZDAOAEEKG-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- SWTCCCJQNPGXLQ-UHFFFAOYSA-N acetaldehyde di-n-butyl acetal Natural products CCCCOC(C)OCCCC SWTCCCJQNPGXLQ-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- QAPRUIOSNHZFHV-UHFFFAOYSA-N azane;platinum;trihydrate Chemical compound N.N.N.N.O.O.O.[Pt] QAPRUIOSNHZFHV-UHFFFAOYSA-N 0.000 description 1
- 229940014802 c12-15 pareth-12 Drugs 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/38—Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
Definitions
- the present disclosure relates generally to novel ink compositions comprising platinum and their methods of preparation and use. More particularly, the present disclosure relates to metal-organic decomposition (MOD) platinum ink compositions that are suitable for use on low temperature substrates. The disclosure also describes methods of forming dense conductive platinum films by applying the disclosed platinum ink compositions onto substrates of choice for electronic applications and conductive platinum films formed by such methods.
- MOD metal-organic decomposition
- a particle-free conductive ink composition including: a platinum metal; a first bidentate complexing agent; and a solvent; wherein the composition forms a conductive metallic film by curing at no more than 250 °C.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the platinum metal is a platinum (II) metal ion.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the first bidentate complexing agent is an amine- containing organic complexing agent.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the amine-containing organic complexing agent is a Ca-Cs amino ether ligand.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the amine-containing organic complexing agent is a primary amino ether ligand.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the amine-containing organic complexing agent is a primary C3-C8 amino ether ligand. [0013] Tn some aspects, the techniques described herein relate to a particle-free conductive ink composition, wherein the amine-containing organic complexing agent is 2- methoxy-ethylamine.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the solvent includes a terpene, a terpenoid, or a combination thereof.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the terpene is a purified terpene or the terpenoid is a purified terpenoid.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the terpene is a pinene or a limonene.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the terpenoid is a terpineol.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the solvent includes water.
- the techniques described herein relate to a particle-free conductive ink composition, further including a second bidentate complexing agent.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the second bidentate complexing agent is a [>- diketone.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the [3-diketone is acetylacetonate.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the first bidentate complexing agent is 2-methoxy- ethylamine and the solvent includes a terpineol.
- the techniques described herein relate to a particle-free conductive ink composition, further including a reducing ligand.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the reducing ligand is formic acid.
- the techniques described herein relate to a particle-free conductive ink composition, further including a second bidentate complexing agent. [0026] Tn some aspects, the techniques described herein relate to a particle-free conductive ink composition, wherein the second bidentate complexing agent is a P- diketone.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the P-diketone is acetylacetonate.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the first bidentate complexing agent is 2-methoxy- ethylamine and the solvent includes a terpineol.
- the techniques described herein relate to a particle-free conductive ink composition, further including a glycol.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the glycol is 1 ,2-propylene glycol, 1,3-propylene glycol, or a combination thereof.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the first bidentate complexing agent is 2-methoxy- ethylamine and the solvent includes water.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the composition forms a conductive metallic film by curing at no more than 250 °C.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the composition forms a conductive metallic film by curing at no more than 200 °C.
- the techniques described herein relate to a particle-free conductive ink composition, wherein the conductive metallic film displays a conductivity of at least 1% bulk metal conductivity.
- the techniques described herein relate to a method of applying the above compositions to a substrate and curing the composition at an elevated temperature to form a conductive film.
- the techniques described herein relate to a method, wherein the applying step includes printing.
- the techniques described herein relate to a method, wherein the printing is jet printing. [0038] Tn some aspects, the techniques described herein relate to a method, wherein the jet printing is aerosol jet printing.
- the techniques described herein relate to a method, wherein the curing step is at no more than 250 °C.
- the techniques described herein relate to a method, wherein the curing step is at no more than 200 °C.
- the techniques described herein relate to a conductive film formed by applying the particle-free conductive ink composition to a substrate and curing the composition at no more than 250 °C to form the conductive film.
- FIGs. 1A-1C show coating and imaging using a platinum ink composition of the disclosure.
- complex-based, particle free ink compositions comprising platinum. These ink compositions can be applied and cured at low temperatures in order to meet the needs of the current conductive printing industry.
- the particle-free conductive ink compositions are stable formulations that can deposit pure platinum metal on a variety of substrates at temperatures as low as 150 °C, or even lower.
- the vast majority of commercially produced conductive inks are specifically designed for inkjet, screen-printing, or roll-to-roll processing methods in order to process large areas with fine-scale features in short time periods. These inks have disparate viscosities and synthesis parameters.
- Particle-based inks are based on conductive metal particles, which are typically synthesized separately and then incorporated into an ink formulation. The resulting ink is then tuned for specific particle process.
- the platinum ink formulations can comprise a platinum acetylacetonate as a precursor chelated by an amine ligand.
- the platinum ink formulations can comprise a platinum complex in combination with formic acid.
- particle-free conductive ink compositions comprising a platinum metal, a first bidentate complexing agent, and a solvent.
- the particle-free conductive ink compositions preferably form a conductive metallic film by curing at no more than 250 °C.
- the platinum metal is a platinum (II) metal ion.
- a bidentate complexing agent is a ligand that contains two donor groups capable of binding to a central metal atom in a coordination complex.
- the central metal atom is a platinum metal atom
- the first bidentate complexing agent comprises at least two heteroatoms.
- the at least two heteroatoms of the first bidentate complexing agent are at least two nitrogen atoms, at least two oxygen atoms, or at least a nitrogen atom and at least an oxygen atom.
- the first bidentate complexing agent of the instant particle-free conductive ink compositions is an amine-containing organic complexing agent.
- the amine-containing organic complexing agent can be a C3-C8 alkylamine ligand.
- the amine-containing organic complexing agent can be a primary amino ether ligand.
- the amine-containing organic complexing agent can be a primary C3-C8 amino ether ligand.
- the amine-containing organic complexing agent can be 2- methoxy-ethylamine.
- the solvent used in the instant conductive ink compositions is ideally suitable for use at an industrial scale in mass production.
- aromatic hydrocarbons such as xylene, toluene, mesitylene, and the like, are highly regulated in most industrial countries. The use alternatives to these solvents can therefore be advantageous.
- conductive inks formulated from aromatic hydrocarbons can have flash points that are lower than 60°C and that are therefore not typically acceptable in mass production environments.
- the solvent of the instant conductive ink compositions does not comprise an aromatic hydrocarbon, although in other embodiments, the solvent can comprise an aromatic solvent such as anisole, xylene, toluene or the like.
- the solvent comprises a polar, aprotic solvent. More specifically, the solvent can comprise a cyclic or acyclic ether solvent.
- the cyclic ether solvent can be a furan, such as tetrahyrofuran.
- the acyclic ether solvent can be a glycol ether, a dialkyl ether, or an ester.
- the glycol ether can be ethylene glycol monomethyl ether (2- methoxyelhanol, CH3OCH2CH2OH), ethylene glycol monoethyl ether (2-ethoxyethanol, CH3CH2OCH2CH2OH), ethylene glycol monopropyl ether (2-propoxyethanol, CH3CH2CH2OCH2CH2OH), ethylene glycol monoisopropyl ether (2-isopropoxyethanol, (CFF CHOCFFCFfcOH), ethylene glycol monobutyl ether (2-butoxyethanol, CH3CH2CH2CH2OCH2CH2OH), ethylene glycol monophenyl ether (2-phenoxyethanol, C6H5OCH2CH2OH), ethylene glycol monobenzyl ether (2-benzyloxyethanol, C6H5CH2OCH2CH2OH), propylene glycol methyl ether (l-methoxy-2-propanol, CH3OCH2CH(OH)CH3), di
- the dialkyl ether can be ethylene glycol dimethyl ether (dimethoxyethane, CH3OCH2CH2OCH3), ethylene glycol diethyl ether (diethoxyethane, CH3CH2OCH2CH2OCH2CH3), or ethylene glycol dibutyl ether (dibutoxyethane, CH3CH2CH2CH2OCH2CH2OCH2CH2CH2CH3.
- the ester can be ethylene glycol methyl ether acetate (2- methoxyethyl acetate, CH3OCH2CH2OCOCH3), ethylene glycol monoethyl ether acetate (2-ethoxyethyl acetate, CH3CH2OCH2CH2OCOCH3), ethylene glycol monobutyl ether acetate (2-butoxyethyl acetate, CH3CH2CH2CH2OCH2CH2OCOCH3), or propylene glycol methyl ether acetate (l-methoxy-2-propanol acetate).
- Other glycols suitable for inclusion in the instant particle-free conductive ink compositions include 1,2-propylene glycol, 1,3-propylene glycol, or a combination thereof.
- the solvent comprises water.
- the solvent comprises a terpene, a terpenoid, or a combination thereof.
- the solvent comprises a pinene, a limonene, in particular a D-limonene, a terpineol, or a combination thereof.
- the solvent comprises limonene.
- the solvent comprises terpineol.
- the solvent comprises a combination of limonene and terpineol.
- the instant solvent does not comprise alpha-terpinene, gamma-terpinene, terpinolene, or terpene-4-ol.
- the solvent it can be advantageous for the solvent to be a purified form of the solvent.
- the solvent is a purified terpineol, a purified limonene, or a combination of a purified terpineol and a purified limonene.
- a purified solvent is understood to be at least 95% pure, at least 97% pure, at least 98% pure, at least 99% pure, or even more pure.
- the conductive ink compositions further comprise a second bidentate complexing agent.
- the second bidentate complexing agent comprises at least two heteroatoms.
- the at least two heteroatoms of the second bidentate complexing agent are at least two nitrogen atoms, at least two oxygen atoms, or at least a nitrogen atom and at least an oxygen atom.
- the second bidentate complexing agent comprises a ketone.
- the second bidentate complexing agent is a P-diketone. Even more specifically, the P-diketone is acetylacetonate.
- the conductive ink compositions further comprise a reducing ligand.
- the reducing ligand can be an organic acid such as formic acid.
- the conductive ink compositions may possess low viscosity so that they are compatible with a broad range of patterning techniques, including slot die coating, spin coating, roll-to-roll printing, including gravure, flexography, rotary screen printing, screen-printing, aerosol jet printing, inkjet printing, airbrushing, Mayer rod coating, flood coating, 3D printing, and electrohydrodynamic printing.
- the inks are compatible with inkjet printing, dip coating, and spray coating.
- the patterned features can be highly conductive at room temperature and can achieve bulk conductivity upon decomposing at mild temperatures (e.g., in some cases at less than about 100 °C).
- the ink compositions can remain stable at room temperature for months without particle precipitation.
- conductive ink compositions also referred to as “conductive inks” or “inks”
- conductive inks can be stable, particle-free, and suitable for a wide range of patterning techniques.
- a “particle-free” ink is one that does not include any particles at a diameter of greater than about 10 nm.
- a “particle- free” ink is one that has less than about 1% particles, preferably less than about 0.1% particles.
- Platinum salts are employed in the inks as a precursor material, which ultimately yields the platinum in the platinum coatings, lines, or patterns of the structure formed in the printing process.
- the particle-free platinum ink composition is configured for application to a substrate.
- the particle-free platinum ink composition can be converted to a conductive platinum structure at a temperature of about 250 °C or less.
- the particle-free platinum ink composition can be converted to a conductive platinum structure at a temperature of about 100 °C or less.
- the particle-free platinum ink composition can be converted to a conductive platinum structure at a temperature of about 220 °C or less, of about 210 °C or less, of about 190 °C or less, of about 180 °C or less, of about 170 °C or less, of about 160 °C or less, of about 150 °C or less, of about 140 °C or less, of about 130 °C or less, of about 120 °C or less, of about 110 °C or less, of about 90 °C or less, of about 80 °C or less, of about 70 °C or less, of about 60 °C or less, or even of about 50 °C or less.
- the particle-free platinum conductive ink composition has a concentration of about 1 to about 50 weight percent platinum of the conductive ink composition. In some embodiments, the particle-free platinum conductive ink composition has a concentration of about 1 to about 40 weight percent platinum of the conductive ink composition. Tn some embodiments, the particle-free platinum conductive ink composition has a concentration of about 1 to about 30 weight percent platinum of the conductive ink composition. In some embodiments, the particle-free platinum conductive ink composition has a concentration of about 1 to about 20 weight percent platinum of the conductive ink composition. In some embodiments, the particle-free platinum conductive ink composition has a concentration of about 1 to about 10 weight percent platinum of the conductive ink composition.
- the particle-free platinum conductive ink composition has a concentration of about 5 to about 15 weight percent platinum of the conductive ink composition. In some embodiments, the particle-free platinum conductive ink composition has a concentration of about 1 weight percent, about 2 weight percent, about 3 weight percent, about 4 weight percent, about 5 weight percent, about 6 weight percent, about 7 weight percent, about 8 weight percent, about 9 weight percent, about 10 weight percent, about 11 weight percent, about 12 weight percent, about 13 weight percent, about 14 weight percent, about 15 weight percent, about 16 weight percent, about 17 weight percent, about 18 weight percent, about 19 weight percent, about 20 weight percent, about 21 weight percent, about 22 weight percent, about 23 weight percent, about 24 weight percent, about 25 weight percent, about 26 weight percent, about 27 weight percent, about 28 weight percent, about 29 weight percent, about 30 weight percent, about 31 weight percent, about 32 weight percent, about 33 weight percent, about 34 weight percent, about 35 weight percent, about 36 weight percent, about 37 weight percent, about 38 weight percent, about 39 weight percent, about 40 weight percent
- the particle-free platinum conductive ink compositions of the instant disclosure have a desired viscosity.
- the desired viscosity is obtained using a micro VISC viscometer.
- the viscosity is measured at room temperature, such as at, or about, 22 °C.
- the conductive ink composition has a viscosity from about 50 centipoise to about 1000 centipoise.
- the conductive ink composition has a viscosity from about 0.5 centipoise to about 50 centipoise.
- the conductive ink composition has a viscosity from about 1 .0 centipoise to about 40 centipoise. Tn some embodiments, the conductive ink composition has a viscosity from about 2 centipoise to about 30 centipoise. In some embodiments, the conductive ink composition has a viscosity from about 0.5 centipoise to about 10 centipoise. In some embodiments, the conductive ink composition has a viscosity of about 1.0, about 2.0, or about 3.0 centipoise.
- the conductive ink composition has a viscosity of at least about 0.5 centipoise, about 1.0 centipoise, about 2.0 centipoise, about 3.0 centipoise, about 4.0 centipoise, about 5.0 centipoise, about 6.0 centipoise, about 7.0 centipoise, about 8.0 centipoise, about 9.0 centipoise, about 10.0 centipoise, about 20.0 centipoise, about 30.0 centipoise, about 40.0 centipoise, about 50.0 centipoise, about 60.0 centipoise, about 70.0 centipoise, about 80.0 centipoise, or about 90.0 centipoise.
- the conductive ink composition has a viscosity of at most about 100.0 centipoise, about 90.0 centipoise, about 80.0 centipoise, about 70.0 centipoise, about 60.0 centipoise, about 50.0 centipoise, about 40.0 centipoise, about 30.0 centipoise, about 20.0 centipoise, about 10.0 centipoise, about 9.0 centipoise, about 8.0 centipoise, about 7.0 centipoise, about 6.0 centipoise, about 5.0 centipoise, about 4.0 centipoise, about 3.0 centipoise, about 2.0 centipoise, or about 1.0 centipoise.
- the conductive ink composition has a viscosity of 0.8 - 1.3 centipoise at 22 °C.
- the methods include the step of applying any of the above-described conductive ink compositions to a substrate. In some embodiments, the methods include the step of heating the conductive ink composition on the substrate at a decomposition temperature of about 250 °C or less to form the conductive structure.
- the methods include the step of heating the conductive ink composition on the substrate at a decomposition temperature of about 220 °C or less, of about 200 °C or less, of about 190 °C, of about 180 °C or less, of about 170 °C or less, of about 160 °C, of about 150 °C or less, of about 140 °C or less, of about 130 °C or less, of about 120 °C or less, of about 110 °C or less, of about 90 °C or less, of about 80 °C or less, of about 70 °C or less, of about 60 °C or less, or of about 50 °C or less to form the conductive structure.
- the conductive ink composition is heated with a heat source. Examples of heat sources include an TR lamp, oven, or a heated substrate.
- the electrical conductivity of the conductive structure formed from the conductive ink composition is measured. In some embodiments, the electrical conductivity of the conductive structure is from about 2xl0 -6 Ohm-cm to about IxlO -5 Ohm-cm. In some embodiments, the electrical conductivity of the conductive structure is from about 3xl0 -6 Ohm-cm to about 6xl0 -6 Ohm-cm.
- the electrical conductivity of the conductive structure is at least about 2xl0 -6 Ohm-cm, about 3xl0 -6 Ohm-cm, about 4xl0 -6 Ohm -cm, about 5xl0 -6 Ohm-cm, about 6xl0 -6 Ohm- cm, about 7xl0 -6 Ohm-cm, about 8xl0 -6 Ohm-cm, or about 9xl 0 -6 Ohm-cm.
- the electrical conductivity of the conductive structure is at most about IxlO -5 Ohm-cm, about 9xl0 -6 Ohm-cm, about 8xl0 -6 Ohm-cm, about 7xl0 -6 Ohm-cm, about 6x10 6 Ohm-cm, about 5x10 6 Ohm-cm, about 4x10 6 Ohm-cm, or about 3x10 6 Ohm-cm.
- the electrical conductivity of the conductive structure can in some embodiments be expressed in terms of sheet resistance (i.e., bulk resistivity divided by thickness) in units of ohms per square (also referred to as ohms/square or OPS).
- the resistance of the conductive structure is no more than 5 ohms per square, no more than 2 ohms per square, no more than 1 ohm per square, no more than 0.5 ohms per square, or even lower.
- the resistance of the conductive structure is no more than 1 ohm per square.
- the conductive ink compositions of the instant disclosure can be used to form conductive structures having high levels of bulk platinum.
- the conductive structure has a bulk platinum content of at least 1%.
- the conductive structure has a bulk platinum content of at least 2%, at least 5%, at least 10%, at least 15%, at least 20%, or even higher.
- the conductive ink compositions of the instant disclosure can be used in various printing applications, including slot die coating, spin coating, roll-to-roll printing, including gravure, flexography, rotary screen printing, screen printing, aerosol jet printing, inkjet printing, airbrushing, Mayer rod coating, flood coating, 3D printing, dispenser, and electrohydrodynamic printing.
- the inks can be used in inkjet printing, dip coating, and spray coating.
- patterns can be created using photolithography to create a mask to etch silver from certain areas, thereby creating high-fidelity features. Both positive and negative patterning processes may be used to create the patterns.
- the particle-free platinum conductive ink composition is applied to a polymer substrate. In some embodiments, the particle-free platinum conductive ink composition is applied to a nonpolar polymer substrate. In some embodiments, the particle-free platinum conductive ink composition is applied to a glass substrate. In some embodiments, the particle-free platinum conductive ink composition is applied to a ceramic substrate.
- the particle-free platinum conductive ink composition is applied to an elastomer. In some embodiments, the particle-free platinum conductive ink composition is applied to a 3D substrate.
- the particle-free platinum conductive ink composition of the instant methods has a concentration of about 0.1-50 weight percent platinum of the ink composition. In some embodiments, the ink composition of the instant methods has a concentration of about 0.1-40 weight percent platinum of the ink composition. In some embodiments, the ink composition has a concentration of about 1-30 weight percent platinum of the ink composition. In some embodiments, the ink composition has a concentration of about 1-20 weight percent platinum of the ink composition. In some embodiments, the ink composition has a concentration of about 1-10 weight percent platinum of the ink composition. In some embodiments, the ink composition has a concentration of about 5-15 weight percent platinum of the ink composition.
- the ink composition has a concentration of about 0.1 weight percent, about 0.2 weight percent, about 0.3 weight percent, about 0.4 weight percent, about 0.5 weight percent, about 0.6 weight percent, about 0.7 weight percent, about 0.8 weight percent, about 0.9 weight percent, about 1 weight percent, about 2 weight percent, about 3 weight percent, about 4 weight percent, about 5 weight percent, about 6 weight percent, about 7 weight percent, about 8 weight percent, about 9 weight percent, about 10 weight percent, about 11 weight percent, about 12 weight percent, about 13 weight percent, about 14 weight percent, about 15 weight percent, about 16 weight percent, about 17 weight percent, about 18 weight percent, about 19 weight percent, or about 20 weight percent platinum of the ink composition.
- the ink composition of the instant methods has a concentration of at least about 0.1 weight percent, about 0.2 weight percent, about 0.3 weight percent, about 0.4 weight percent, about 0.5 weight percent, about 0.6 weight percent, about 0.7 weight percent, about 0.8 weight percent, about 0.9 weight percent, 1 weight percent, about 2 weight percent, about 3 weight percent, about 4 weight percent, about 5 weight percent, about 6 weight percent, about 7 weight percent, about 8 weight percent, about 9 weight percent, about 10 weight percent, about 11 weight percent, about 12 weight percent, about 1 weight percent, about 14 weight percent, about 15 weight percent, about 16 weight percent, about 17 weight percent, about 18 weight percent, about
- the ink composition has a concentration of at most about 40 weight percent, about 39 weight percent, about 38 weight percent, about 37 weight percent, about 36 weight percent, about 35 weight percent, about 34 weight percent, about 33 weight percent, about 32 weight percent, 31 weight percent, about 30 weight percent, about 29 weight percent, about 28 weight percent, about 27 weight percent, about 26 weight percent, about 25 weight percent, about 24 weight percent, about 23 weight percent, about 22 weight percent, about 21 weight percent, about 20 weight percent, about 19 weight percent, about 18 weight percent, about 17 weight percent, about 16 weight percent, about 15 weight percent, about 14 weight percent, about 13 weight percent, or about 12 weight percent platinum of the ink composition.
- the ink composition of the instant methods has a concentration of about 0.1-50 weight percent platinum of the ink composition. In some embodiments, the ink composition of the instant methods has a concentration of about 0.1- 40 weight percent platinum of the ink composition. In some embodiments, the ink composition has a concentration of about 1-30 weight percent platinum of the ink composition. In some embodiments, the ink composition has a concentration of about 1-
- the ink composition has a concentration of about 1-10 weight percent platinum of the ink composition. In some embodiments, the ink composition has a concentration of about 5- 15 weight percent platinum of the ink composition. In some embodiments, the ink composition has a concentration of about 0.1 weight percent, about 0.2 weight percent, about 0.3 weight percent, about 0.4 weight percent, about 0.5 weight percent, about 0.6 weight percent, about 0.7 weight percent, about 0.8 weight percent, about 0.9 weight percent, 1 weight percent, about 2 weight percent, about 3 weight percent, about 4 weight percent, about 5 weight percent, about 6 weight percent, about 7 weight percent, about 8 weight percent, about 9 weight percent, about 10 weight percent, about 11 weight percent, about 12 weight percent, about 13 weight percent, about 14 weight percent, about 15 weight percent, about 16 weight percent, about 17 weight percent, about 18 weight percent, about 19 weight percent, or about 20 weight percent platinum of the ink composition.
- the particle- free platinum conductive ink compositions of the disclosure are decomposed on a substrate to form a conductive structure on the substrate.
- the particle-free platinum conductive ink composition is decomposed by heating the composition at a temperature of about 270 °C or less.
- the conductive ink composition is decomposed by heating the composition at a temperature of about 260 °C or less, about 250 °C or less, about 240 °C or less, about 230 °C or less, about 220 °C or less, about 210 °C or less, about 200 °C or less, about
- the conductive ink composition is heated by a heat source.
- heat sources include an IR lamp, oven, or a heated substrate.
- the conductive ink composition is decomposed by exposing the composition to a light source at a wavelength from about 100 nm to about 1500 nm. In some embodiments, the conductive ink composition is decomposed by exposing the composition to a light source such as a Xenon lamp or IR lamp at a wavelength from about 100 nm to about 1000 nm. In some embodiments, the conductive ink composition is decomposed by exposing the composition to a light source at a wavelength from about 100 nm to about 700 nm. In some embodiments, the conductive ink composition is decomposed by exposing the composition to a light source at a wavelength from about 100 nm to about 500 nm.
- the conductive ink composition is decomposed by exposing the composition to a light source at a wavelength from about 100 nm to about 300 nm. In some embodiments, the conductive ink composition is decomposed by exposing the composition to a light source at a wavelength of about 100 nm, about 200 nm, about 300 nm, about 400 nm, about 500 nm, about 600 nm, about 700 nm, about 800 nm, about 900 nm, or about 1000 nm.
- the conductive ink composition is decomposed by a combination of heating the reducible metal complex, for example at any of the abovelisted temperatures, and exposing the composition to a light source, for example at any of the above-listed wavelengths.
- the electrical conductivity of the conductive structures is measured. In some embodiments, the electrical conductivity of the conductive structures is about IxlO -6 Ohm-cm or greater. In some embodiments, the electrical conductivity of the conductive structures is from about 1x10 6 Ohm-cm to about 8x10 4 Ohm-cm. In some embodiments, the electrical conductivity of the conductive structures is from about 3x1 O’ 6 Ohm-cm to about 6xl0 -6 Ohm-cm.
- the electrical conductivity of the conductive structures is at least about IxlO -6 Ohm-cm, about 2xl0 -6 Ohm-cm, about 3xl0 -6 Ohm-cm, about 4xl0 -6 Ohm- cm, about 5xl0 -6 Ohm-cm, about 6xl0 -6 Ohm-cm, about 7xl0 -6 Ohm-cm, about 8xl0 -6 Ohm-cm, about 9xl0 -6 Ohm-cm, about IxlO -5 Ohm- cm, about 2xl0 -5 Ohm-cm, about 3xl0 -5 Ohm-cm, about 4xl0 -5 Ohm-cm, about 5xl0 -5 Ohm-cm, about 6xl0 -5 Ohm-cm, about 7xl0 -5 Ohm-cm, about 8xl0 -5 Ohm-cm, about 9xl0 -5 Ohm-cm, about IxlO -6 Ohm-
- the electrical conductivity of the conductive structures is at most about 8xl0 -4 Ohm-cm, 7xl0 -4 Ohm -cm, about 6xl0 4 Ohm-cm, about 5xl0 -4 Ohm- cm, about 4xl0 4 Ohm-cm, about 3xl0 -4 Ohm-cm, about 2xl0 -4 Ohm-cm, or about IxlO -4 Ohm-cm, about 9xl0 -5 Ohm-cm, about 8xl0 -5 Ohm-cm, about 7xl0 -5 Ohm-cm, about 6xl0 -5 Ohm-cm, about 5xl0 -5 Ohm-cm, about 4xl0 -5 Ohm-cm, about 3xl0 -5 Ohm-cm, about 2xl0 -5 Ohm-cm, about IxlO -5 Ohm-cm, about 9xl0 -6 Ohm-cm, about 8xl0 -4 Ohm-
- the ink compositions of the instant disclosure can be used in various printing applications, including slot die coating, spin coating, roll-to-roll printing, including gravure, flexography, rotary screen printing, screen printing, aerosol jet printing, inkjet printing, airbrushing, Mayer rod coating, flood coating, 3D printing, and electrohydrodynamic painting.
- the inks can be used in inkjet printing, dip coating, and spray coating.
- patterns can be created using photolithography to create a mask to etch the platinum from certain areas, thereby creating high-fidelity features.
- the ink compositions are used in aerosol jet printing applications to print conductive structures comprising platinum metal.
- This method which is also known as maskless mesoscale materials deposition or M3D (see, e.g., U.S. Patent No. 7,485,345), involves atomization of the particle-free ink composition, via ultrasonic or pneumatic techniques, to generate droplets of micrometer scale.
- the aerosolized ink is combined with a carrier gas and directed via a flowhead onto a substrate where the ink is ultimately cured to a conductive structure.
- the ink compositions are compatible with many nonpolar polymer substrates, glasses, and ceramic substrates, where polar complexes do not wet particularly well.
- the ink composition is applied to a polymer substrate.
- the ink composition is applied to a nonpolar polymer substrate.
- the ink composition is applied to a glass substrate.
- the ink composition is applied to a ceramic substrate.
- the ink composition is applied to an elastomer. In some embodiments, the ink composition is applied to a 3D substrate.
- the film Upon a 100 pL drop-cast deposition onto glass or wafer substrate, the film was thermally treated to 80°C on a hot plate for 10 minutes to which the film turns to an off- white color. The film was annealed in a binder oven at 200°C for 30 minutes, exhibiting a white to red to metallic gray transitional sequence, denoting that the platinum complex has decomposed into a metallic, conductive structure. Using a multimeter for resistance measurements, the platinum film had an electrical resistance of 178 to 400 Ohms after 30 minutes at 1.1 to 1.9 cm in diameter respectively. The electrical resistance may vary depending on the printing method and thermal decomposition appliance used to characterize the porous platinum ink.
- the ink was annealed in a binder oven for 1 hour at 230°C and on a hot plate at 200°C, exhibiting a red to black to metallic gray-black transitional sequence, denoting that the platinum complex has decomposed fully into a native, conductive platinum network.
- the platinum film had an electrical sheet resistance of 19 Ohms/square (OPS) after 1 hour at 230°C in a binder oven and 48 OPS after 1 hour on a hot plate at 200°C.
- OPS Ohms/square
- the electrical resistance may vary depending on the printing method and thermal decomposition appliance used to characterize the dense platinum ink.
- the prepared ink can be blade/bar coated onto various substrates such as glass, polyimide etc. Alternatively, the ink can also be aerosol jetted onto the substate of choice depending on the application.
- Typical annealing method includes heating for 1 h at 230 °C in convection oven or on a hot plate at 200 °C for 1 h.
- the ink exhibits a red to black to metallic gray-black transition leaving a smooth reflective surface during the annealing sequence, denoting that the platinum complex has converted into its metallic form.
- FIG. 1A shows the reflection of a camera photographing a 3x2 inch glass slide coated with platinum ink using a 20 um blade, cured at 200 °C for 1 h.
- the platinum film had an electrical sheet resistance of 19 Ohms/square ( Z ) after 1 hour at 230 °C in a binder oven and 48 Q/ after 1 hour on a hot plate at 200 °C.
- the electrical resistance may vary depending on the printing method and thermal decomposition appliance used to characterize the dense platinum ink. Scanning microscope imaging of the surface (FIG. IB, at 25K magnified optical image) and edge (FIG. 1C, at 10.5K magnification SEM imaging) reveal a tightly packed structure forming a dense film.
- the prepared ink can be blade/bar coated onto various substrates such as glass, polyimide etc. Alternatively, the ink can also be aerosol jetted onto the substate of choice depending on the application.
- the low curing ink was blade coated on glass slides and annealed inside convection oven for at 150 °C for 1 h to form a dense film of metallic platinum.
- the electrical resistance may vary depending on the printing method and thermal decomposition appliance used to characterize the dense platinum ink.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Conductive Materials (AREA)
Abstract
L'invention concerne des compositions d'encre à décomposition organométallique (MOD) conductrice contenant du platine. L'invention concerne également des procédés de préparation des compositions d'encre conductrice, des procédés de formation de structures conductrices à partir des compositions d'encre conductrice, et des structures conductrices formées à partir des compositions d'encre conductrice, comprenant des films de platine conducteurs denses. Les compositions d'encre conductrice comprennent de préférence un métal de platine, un premier agent complexant bidenté et un solvant. Des films de platine conducteurs peuvent être formés à partir des compositions d'encre à basse température et peuvent par conséquent être utilisés sur divers substrats, y compris des substrats de choix pour des applications électroniques.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263402341P | 2022-08-30 | 2022-08-30 | |
US63/402,341 | 2022-08-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2024050387A2 true WO2024050387A2 (fr) | 2024-03-07 |
WO2024050387A3 WO2024050387A3 (fr) | 2024-05-02 |
Family
ID=90098807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2023/073121 WO2024050387A2 (fr) | 2022-08-30 | 2023-08-30 | Compositions d'encre au platine et procédés de revêtement conducteur à basse température |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202419590A (fr) |
WO (1) | WO2024050387A2 (fr) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL1853671T3 (pl) * | 2005-03-04 | 2014-01-31 | Inktec Co Ltd | Tusze przewodzące i sposób ich wytwarzania |
WO2015160938A1 (fr) * | 2014-04-17 | 2015-10-22 | Electroninks Incorporated | Compositions d'encre conductrice |
WO2016017836A1 (fr) * | 2014-07-30 | 2016-02-04 | (주)피이솔브 | Encre conductrice |
JP2018154806A (ja) * | 2017-03-15 | 2018-10-04 | Dic株式会社 | 金属微粒子分散体、導電性インク、および電子デバイス |
WO2019028435A1 (fr) * | 2017-08-03 | 2019-02-07 | Electroninks Incorporated | Compositions d'encre conductrice comprenant du palladium et leurs procédés de fabrication |
US20210307163A1 (en) * | 2018-08-03 | 2021-09-30 | Electroninks Incorporated | Conductive materials and their methods of preparation by metallization with metal complex conductive ink compositions |
US20230064831A1 (en) * | 2020-01-30 | 2023-03-02 | Liquid X Printed Metals, Inc. | Force sensor controlled conductive heating elements |
-
2023
- 2023-08-30 TW TW112132856A patent/TW202419590A/zh unknown
- 2023-08-30 WO PCT/US2023/073121 patent/WO2024050387A2/fr unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024050387A3 (fr) | 2024-05-02 |
TW202419590A (zh) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100711505B1 (ko) | 도전막 형성을 위한 은 페이스트 | |
WO2016017836A1 (fr) | Encre conductrice | |
KR100709724B1 (ko) | 도전막 형성을 위한 금속 페이스트 | |
KR101221716B1 (ko) | 전도성 금속 잉크 조성물 및 전도성 패턴의 형성 방법 | |
CN104024351A (zh) | 导电金属和方法 | |
KR101734789B1 (ko) | 구리막 형성용 조성물 및 이를 이용한 구리막의 제조방법 | |
JP5701379B2 (ja) | 導電性金属インク組成物および導電性パターンの形成方法 | |
US9683123B2 (en) | Silver ink | |
KR101605650B1 (ko) | 구리막 형성용 조성물 및 상기 조성물을 이용한 구리막의 제조방법 | |
JP2007182547A (ja) | 高導電性インク組成物および金属導電パターンの作製方法 | |
JP6717289B2 (ja) | 銅含有粒子、導体形成組成物、導体の製造方法、導体及び装置 | |
CN104641017A (zh) | 无电解镀基底剂 | |
CA2804136C (fr) | Composition de carboxylate insature de palladium et nanoparticules de palladium | |
WO2013073331A1 (fr) | Film de cuivre ainsi que procédé de formation de celui-ci, substrat de circuit, et solution de composition pour formation de film de cuivre | |
JP2009512970A (ja) | 導電線パターン形成のための銀オルガノゾルインク | |
KR101759004B1 (ko) | 은 함유 조성물 및 은 요소 형성 기재 | |
WO2013130450A2 (fr) | Encres à base de complexes métalliques auto-réducteurs solubles dans les solvants protiques polaires et procédés de durcissement améliorés | |
WO2024050387A2 (fr) | Compositions d'encre au platine et procédés de revêtement conducteur à basse température | |
JP6273805B2 (ja) | 銀含有組成物及び銀膜形成基材 | |
JP5693253B2 (ja) | 導電性組成物及び導電膜 | |
DE102011006022A1 (de) | Zusatzstoff für robuste metallische Tintenformulierungen | |
WO2023168452A2 (fr) | Compositions d'encre conductrices améliorées | |
JP5151229B2 (ja) | 太陽電池の電極形成用組成物及び該電極の形成方法並びに該形成方法により得られた電極を用いた太陽電池の製造方法 | |
KR100587402B1 (ko) | 도전선 패턴 형성을 위한 은 오르가노 졸 잉크 | |
KR101199969B1 (ko) | 도전선 패턴 형성을 위한 은 오르가노 졸 잉크 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23861510 Country of ref document: EP Kind code of ref document: A2 |