WO2024048845A1 - 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템 - Google Patents

수소 충전 보조장치 및 이를 구비한 수소 충전 시스템 Download PDF

Info

Publication number
WO2024048845A1
WO2024048845A1 PCT/KR2022/017228 KR2022017228W WO2024048845A1 WO 2024048845 A1 WO2024048845 A1 WO 2024048845A1 KR 2022017228 W KR2022017228 W KR 2022017228W WO 2024048845 A1 WO2024048845 A1 WO 2024048845A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydrogen
discharge
unit
control unit
Prior art date
Application number
PCT/KR2022/017228
Other languages
English (en)
French (fr)
Inventor
공임모
정길성
Original Assignee
한국자동차연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국자동차연구원 filed Critical 한국자동차연구원
Publication of WO2024048845A1 publication Critical patent/WO2024048845A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • F17C13/126Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures for large storage containers for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations

Definitions

  • the present invention relates to a hydrogen charging auxiliary device and a hydrogen charging system equipped therewith, and more specifically, to a hydrogen charging auxiliary device and a hydrogen charging system equipped therewith that can improve charging safety and accuracy for hydrogen mobility.
  • a hydrogen car In general, a hydrogen car is a vehicle that uses hydrogen as a fuel for power, and converts the chemical energy of hydrogen into mechanical energy by burning hydrogen in an internal combustion engine to drive an electric motor or reacting hydrogen with oxygen in a fuel cell. Hydrogen is used to supply transportation fuel. Hydrogen fuel is dangerous compared to gasoline because it is charged quickly at high pressure, and is not fully charged due to heat generation due to compression and the Joule-Thomson effect. This is not easy.
  • HFP Hydrogen Fueling Protocol
  • the hydrogen charging process is divided into the start stage, main charge stage, and shutdown stage.
  • the start stage after the charging nozzle and receptacle are connected, less than 200g of hydrogen is pre-injected into the vehicle's fuel tank.
  • pulse pressure defined as a connection pulse
  • Hydrogen charging stations use the change in fuel tank pressure due to pulse pressure to measure the initial pressure value of the vehicle's fuel tank, the capacity of the fuel tank, and whether hydrogen is leaking, and this process is essential for safe charging. It corresponds to the core procedure that must be performed.
  • the purpose of the present invention is to provide a hydrogen charging auxiliary device that can improve charging safety and accuracy for hydrogen mobility and a hydrogen charging system equipped with the same.
  • the hydrogen charging system includes: a hydrogen supply unit that supplies hydrogen; a dispenser unit that injects hydrogen supplied from the hydrogen supply unit into a fuel tank of the vehicle; A hydrogen charging auxiliary device that receives hydrogen from the hydrogen supply unit, generates pulse pressure, and transmits the generated pulse pressure to the dispenser unit; and a hydrogen recovery unit that recovers hydrogen remaining in the dispenser unit to the hydrogen charging auxiliary device.
  • the hydrogen charging auxiliary device includes a pressure storage unit provided between the hydrogen supply unit and the dispenser unit, and configured to receive and store hydrogen from the hydrogen supply unit; An access control unit that regulates the entry and exit of hydrogen into the pressure storage unit; And a pressure control unit that adjusts the pressure of hydrogen flowing into or discharged from the pressure storage unit.
  • the pressure storage unit includes a first buffer tank; and a second buffer tank disposed to be spaced apart from the first buffer tank and having a storage capacity different from that of the first buffer tank.
  • the access control unit includes a supply control valve connected to one side of the pressure storage unit and restricting or allowing the flow of hydrogen flowing into the pressure storage unit; and a discharge control valve connected to the other side of the pressure storage unit and restricting or allowing the flow of hydrogen discharged from the pressure storage unit.
  • the pressure control unit includes a supply pressure control unit connected to one side of the pressure storage unit and maintaining the pressure of hydrogen flowing into the pressure storage unit at the set supply pressure; and a discharge pressure control unit connected to the other side of the pressure storage unit and maintaining the pressure of hydrogen discharged from the pressure storage unit above the set discharge pressure.
  • the discharge pressure control unit includes a first discharge pressure control unit connected to the other side of the pressure storage unit and maintaining the pressure of hydrogen discharged from the pressure storage unit above a first set discharge pressure; and a second discharge pressure control unit connected to the other side of the pressure storage unit and maintaining the pressure of hydrogen discharged from the pressure storage unit above the second set discharge pressure.
  • the discharge control valve includes: a first discharge control valve connected to the first discharge pressure control unit; and a second discharge control valve connected to the second discharge pressure control unit.
  • it further includes an opening/closing control unit that controls the operation of the access control unit.
  • the opening/closing control unit sequentially opens the second discharge control valve and the first discharge control valve.
  • the opening/closing control unit controls the opening/closing operations of the first discharge control valve and the second discharge control valve based on the initial pressure value of the fuel tank of the vehicle.
  • the opening/closing control unit opens the second discharge control valve when the initial pressure value of the fuel tank is less than the second set discharge pressure, and the fuel tank When the initial pressure value of the tank is greater than the second set discharge pressure and less than the first set discharge pressure, the first discharge control valve is opened.
  • the hydrogen recovery unit includes a recovery pipe on one side connected to the dispenser unit and on the other side connected to the hydrogen charging auxiliary device; and a recovery valve connected to the recovery pipe and restricting or allowing the flow of hydrogen through the recovery pipe.
  • the other side of the recovery pipe is connected to the rear end of the supply control valve.
  • the hydrogen recovery unit is connected to the recovery pipe and further includes a recovery check valve that prevents hydrogen from flowing from the hydrogen charging auxiliary device to the dispenser unit.
  • the hydrogen recovery unit further includes a recovery driving unit that generates driving force to flow the hydrogen inside the recovery pipe toward the hydrogen charging auxiliary device.
  • the hydrogen charging auxiliary device according to the present invention and the hydrogen charging system equipped with the same generate and store the pulse pressure applied to the fuel tank at the charging start stage at a preset size before the start of charging, thereby generating pulses of different sizes at each existing hydrogen charging station.
  • Pressure can be standardized and the accuracy of data such as the initial pressure value and capacity of the fuel tank measured through pulse pressure can be improved.
  • the hydrogen charging auxiliary device according to the present invention and the hydrogen charging system equipped with the same recover the hydrogen remaining in the dispenser unit with the hydrogen charging auxiliary device after hydrogen charging is completed, thereby reducing the risk of fire caused by the remaining hydrogen and consumption efficiency can be improved.
  • FIG. 1 is a diagram schematically showing the configuration of a hydrogen charging system according to a first embodiment of the present invention.
  • Figure 2 is a diagram schematically showing the configuration of a hydrogen charging system according to a second embodiment of the present invention.
  • Figure 3 is a diagram schematically showing the configuration of a hydrogen charging system according to a third embodiment of the present invention.
  • Figure 4 is a diagram schematically showing the configuration of a hydrogen charging system according to a fourth embodiment of the present invention.
  • Figure 5 is a diagram schematically showing the configuration of a hydrogen charging system according to a fifth embodiment of the present invention.
  • Figure 6 is a diagram schematically showing the configuration of a hydrogen charging system according to a sixth embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing the configuration of a hydrogen charging system according to a first embodiment of the present invention.
  • the hydrogen charging system includes a hydrogen supply unit 10, a dispenser unit 20, and a hydrogen charging auxiliary device 30.
  • the hydrogen supply unit 10 stores hydrogen and supplies the stored hydrogen to the dispenser unit 20 and the hydrogen charging auxiliary device 30, which will be described later.
  • the hydrogen supply unit 10 includes a storage tank 11, a supply pipe 12, a main supply valve 13, a supply control unit 14, and a delivery pipe 15.
  • the storage tank 11 stores hydrogen in a compressed state.
  • the storage tank 11 supplies the hydrogen stored therein to the dispenser unit 20, which will be described later, by the differential pressure with the fuel tank T provided in the vehicle V when the main supply valve 13, which will be described later, is opened.
  • the storage tank 11 includes a first storage tank 11a, a second storage tank 11b, and a third storage tank 11c.
  • the first storage tank 11a, the second storage tank 11b, and the third storage tank 11c may be various types of pressure storage containers capable of storing hydrogen in a compressed state.
  • the first storage tank (11a), the second storage tank (11b), and the third storage tank (11c) store hydrogen at different pressures. More specifically, the second storage tank (11b) stores hydrogen at a pressure lower than the first storage tank (11a), and the third storage tank (11c) stores hydrogen at a pressure lower than the second storage tank (11b). You can.
  • the specific pressure value of the hydrogen stored in the first storage tank (11a), the second storage tank (11b), and the third storage tank (11c) can be designed and changed to various values.
  • the supply pipe 12 is connected to the storage tank 11 and guides the flow of hydrogen discharged from the storage tank 11.
  • the supply pipe 12 includes a first supply pipe 12a, a second supply pipe 12b, and a third supply pipe 12c.
  • the first supply pipe (12a), the second supply pipe (12b), and the third supply pipe (12c) are formed to have the shape of an empty pipe and are arranged to be spaced apart from each other.
  • the first supply pipe (12a), the second supply pipe (12b), and the third supply pipe (12c) have one side connected to the first storage tank (11a), the second storage tank (11b), and the third storage tank (11c), respectively. are individually connected to.
  • the main supply valve 13 is connected to the supply pipe 12 and controls the flow of hydrogen through the supply pipe 12.
  • the main supply valve 13 includes a first main supply valve 13a, a second main supply valve 13b, and a third main supply valve 13c.
  • the first main supply valve 13a, the second main supply valve 13b, and the third main supply valve 13c may be various types of pneumatic valves whose opening and closing states are controlled by pneumatic pressure.
  • the first main supply valve (13a), the second main supply valve (13b), and the third main supply valve (13c) are connected to the first supply pipe (12a), the second supply pipe (12b), and the third supply pipe (12c). Each is individually connected to.
  • the opening and closing of the first main supply valve (13a), the second main supply valve (13b), and the third main supply valve (13c) is independently controlled by the supply control unit 14, which will be described later, and the first supply pipe (12a) , the flow of hydrogen through the second supply pipe (12b) and the third supply pipe (12c) is individually restricted or permitted.
  • the supply control unit 14 generally controls the operation of the main supply valve 13. More specifically, the supply control unit 14 independently controls the opening and closing operations of the first main supply valve (13a), the second main supply valve (13b), and the third main supply valve (13c) to the delivery pipe (15). The connection status of the first supply pipe (12a), the second supply pipe (12b), and the third supply pipe (12c) can be adjusted.
  • the supply control unit 14 may be configured to include an electronic control unit (ECU), a central processing unit (CPU), a processor, or a system on chip (SoC), and may include an operating system or By running an application, you can control multiple hardware or software components and perform various data processing and calculations.
  • the supply control unit 14 may be configured to execute at least one command stored in the memory and store the execution result data in the memory.
  • the delivery pipe 15 is connected to the supply pipe 12 and delivers hydrogen flowing along the supply pipe 12 to the dispenser unit 20, which will be described later.
  • the delivery pipe 15 may be formed to have the shape of a pipe with an empty interior.
  • One side of the delivery pipe 15 is indirectly connected to the supply pipe 12 through the supply control unit 14.
  • the delivery pipe 15 is formed as a single side so that one side can be simultaneously connected to the other side of the first supply pipe 12a, the second supply pipe 12b, and the third supply pipe 12c. Alternatively, it can be formed in plural pieces.
  • the other side of the delivery pipe 15 is connected to the dispenser body 21 of the dispenser unit 20, which will be described later, and delivers hydrogen into the interior of the dispenser body 21.
  • the dispenser unit 20 injects hydrogen supplied from the hydrogen supply unit 10 and the hydrogen charging auxiliary device 30 into the fuel tank (T) of the vehicle (V).
  • the dispenser unit 20 includes a dispenser body 21, a precooler 22, a charging nozzle 23, a breakaway 24, and a communication module 25.
  • the dispenser body 21 is connected to the delivery pipe 15 of the hydrogen supply unit 10 and the discharge pipe 130 of the hydrogen charging auxiliary device 30 to receive internal hydrogen supply. Piping of various structures may be installed inside the dispenser body 21 to guide the flow of hydrogen supplied from the hydrogen supply unit 10 and the hydrogen charging auxiliary device 30.
  • the precooler 22 cools the hydrogen supplied to the dispenser body 21.
  • the precooler 22 according to this embodiment can be exemplified as various types of heat exchange devices that can cool the hydrogen by heat exchanging the refrigerant with the hydrogen supplied to the dispenser body 21.
  • the charging nozzle 23 injects the hydrogen supplied to the dispenser body 21 into the fuel tank T of the vehicle V.
  • One side of the charging nozzle 23 according to this embodiment is connected to the dispenser body 21 to receive hydrogen inside, and the other side is detachably connected to the receptacle (R) of the vehicle (V) to connect to the fuel tank (T). It can be exemplified by various types of nozzle devices that inject hydrogen into a furnace.
  • the breakaway 24 is provided between the dispenser body 21 and the filling nozzle 23.
  • the breakaway (24) breaks the dispenser body (21) and the charging nozzle (23) when an external force of a certain size or more is applied between the dispenser body (21) and the charging nozzle (23), such as when the vehicle (V) moves during charging. They are separated from each other to prevent damage to the dispenser body (21) or the filling nozzle (23).
  • the communication module 25 is connected wired or wirelessly to a control means such as the ECU of the vehicle (V), and is connected to the fuel tank from the vehicle (V) Data regarding the initial pressure value of (T), capacity of the fuel tank (T), etc. are received.
  • the communication module 25 is wired or wirelessly connected to the supply control unit 14 and the opening/closing control unit 400, which will be described later, and transmits the received information to the supply control unit 14 and the opening/closing control unit 400.
  • the hydrogen charging auxiliary device 30 receives hydrogen from the hydrogen supply unit 10, generates and stores pulse pressure, and transmits the generated pulse pressure to the dispenser unit 20. That is, the hydrogen charging auxiliary device 30 is a configuration that generates and stores the pulse pressure applied to the fuel tank (T) of the vehicle (V) by the dispenser unit (20) in the charging start stage at a preset size before the start of charging. It functions. Accordingly, the hydrogen charging auxiliary device 30 can standardize pulse pressures having different sizes for each existing hydrogen charging station, and ensures the accuracy of data such as the initial pressure value and capacity of the fuel tank (T) measured through pulse pressure. It can be improved.
  • the hydrogen charging auxiliary device 30 includes a pressure storage unit 100, an access control unit 200, a pressure control unit 300, and an opening/closing control unit 400.
  • the pressure storage unit 100 receives hydrogen from the hydrogen supply unit 10 and stores it.
  • the pressure storage unit 100 includes a buffer tank 110, a branch pipe 120, and a discharge pipe 130.
  • the buffer tank 110 may be exemplified as various types of pressure storage containers that can store hydrogen in a compressed state so that pulse pressure is generated therein.
  • a pressure sensor capable of measuring the internal pressure of the buffer tank 110 may be installed inside the buffer tank 110.
  • the branch pipe 120 branches off from the hydrogen supply unit 10 and guides the flow of hydrogen flowing from the hydrogen supply unit 10 to the buffer tank 110.
  • the branch pipe 120 may be formed to have the shape of a pipe with an empty interior.
  • One side of the branch pipe 120 is connected to the supply pipe 12, more specifically, the first supply pipe 12a, and the other side is connected to the inlet side of the buffer tank 110.
  • the branch pipe 120 allows hydrogen flowing along the supply pipe 12 to flow into the buffer tank 110 when the supply control valve 210, which will be described later, is opened.
  • one side of the branch pipe 120 may be connected to the front end of the first main supply valve 13a. Accordingly, the branch pipe 120 can allow hydrogen flowing along the supply pipe 12 to flow into the buffer tank 110 regardless of whether the first main supply valve 13a is opened or closed.
  • the discharge pipe 130 is provided between the buffer tank 110 and the dispenser unit 20, and guides the flow of hydrogen discharged from the buffer tank 110 and delivered to the dispenser unit 20.
  • the discharge pipe 130 according to this embodiment may be formed to have the shape of a pipe with an empty interior. One side of the discharge pipe 130 is connected to the outlet side of the buffer tank 110, and the other side is connected to the dispenser body 21.
  • the discharge pipe 130 allows hydrogen stored in the buffer tank 110 to flow into the interior of the dispenser body 21 when the discharge control valve 220, which will be described later, is opened.
  • a check valve 131 may be installed in the discharge pipe 130 to prevent hydrogen flowing along the discharge pipe 130 from flowing back from the dispenser unit 20 to the buffer tank 110.
  • the access control unit 200 regulates the access of hydrogen to the pressure storage unit 100.
  • the access control unit 200 includes a supply control valve 210 and a discharge control valve 220.
  • the supply control valve 210 is connected to one side of the pressure storage unit 100 and limits or allows the flow of hydrogen flowing into the pressure storage unit 100.
  • the supply control valve 210 may be exemplified by various types of pneumatic valves whose open and closed states are controlled by pneumatic pressure.
  • the supply control valve 210 is connected to the branch pipe 120 connected to the inlet side of the buffer tank 110.
  • the opening and closing operation of the supply control valve 210 is controlled by the opening and closing control unit 400, which will be described later, and it limits or allows hydrogen to flow into the buffer tank 110 through the branch pipe 120.
  • the discharge control valve 220 is connected to the other side of the pressure storage unit 100 and restricts or allows the flow of hydrogen discharged from the pressure storage unit 100.
  • the discharge control valve 220 according to this embodiment may be exemplified by various types of pneumatic valves whose opening and closing states are controlled by pneumatic pressure.
  • the discharge control valve 220 is connected to the discharge pipe 130 connected to the outlet side of the buffer tank 110.
  • the opening and closing operation of the discharge control valve 220 is controlled by the opening and closing control unit 400, which will be described later, and it limits or allows hydrogen to be discharged from the buffer tank 110 to the discharge pipe 130.
  • the pressure control unit 300 controls the pressure value of hydrogen flowing into or discharged from the pressure storage unit 100.
  • the pressure control unit 300 includes a supply pressure control unit 310 and a discharge pressure control unit 320.
  • the supply pressure control unit 310 is connected to one side of the pressure storage unit 100 and maintains the pressure of hydrogen flowing into the pressure storage unit 100 at the set supply pressure. Accordingly, the supply pressure control unit 310 can ensure that hydrogen at a constant pressure always flows into the pressure storage unit 100, regardless of the pressure of the hydrogen stored in the hydrogen supply unit 10.
  • the supply pressure control unit 310 may be exemplified by various types of regulator valves that maintain the pressure of the fluid discharged to the rear end constant.
  • the supply pressure control unit 310 is connected to the branch pipe 120 connected to the inlet side of the buffer tank 110.
  • the supply pressure adjusting unit 310 is arranged so that the front end faces the hydrogen supply unit 10 and the rear end faces the buffer tank 110.
  • the set supply pressure maintained by the supply pressure control unit 310 can be designed to various values within a range smaller than the pressure of hydrogen stored in the first storage tank 11a.
  • the discharge pressure control unit 320 is connected to the other side of the pressure storage unit 100 and maintains the pressure of hydrogen discharged from the pressure storage unit 100 above the set discharge pressure. Accordingly, the discharge pressure control unit 320 can prevent the phenomenon in which the pressure of hydrogen discharged from the pressure storage unit 100 is excessively lowered and the pulse pressure is not applied to the fuel tank (T).
  • the discharge pressure regulator 320 according to this embodiment can be exemplified by various types of back pressure regulators (BPR) that discharge fluid to the rear end when the pressure of the fluid flowing into the front end exceeds a set size. .
  • BPR back pressure regulators
  • the discharge pressure control unit 320 is connected to the discharge pipe 130 connected to the outlet side of the buffer tank 110.
  • the discharge pressure control unit 320 is arranged so that the front end faces the buffer tank 110 and the rear end faces the dispenser unit 20.
  • the set discharge pressure maintained by the discharge pressure control unit 320 can be designed to various values within a range smaller than the set supply pressure.
  • the opening/closing control unit 400 generally controls the operation of the access control unit 200. More specifically, the opening and closing control unit 400 is connected to the supply control valve 210 and the discharge control valve 220 and individually controls the opening and closing operations of the supply control valve 210 and the discharge control valve 220.
  • the opening/closing control unit 400 can receive data on the initial pressure value of the fuel tank (T) and the capacity of the fuel tank (T) through the communication module 25 that performs communication with the vehicle (V).
  • the opening/closing control unit 400 may be configured to include an electronic control unit (ECU), a central processing unit (CPU), a processor, or a system on chip (SoC), and may include an operating system or By running an application, you can control multiple hardware or software components and perform various data processing and calculations.
  • the opening/closing control unit 400 may be configured to execute at least one command stored in a memory and store execution result data in the memory.
  • the opening/closing control unit 400 Prior to charging the vehicle V, the opening/closing control unit 400 opens the supply control valve 210 while the discharge control valve 220 is closed.
  • the hydrogen stored in the first storage tank 11a flows along the branch pipe 120 and flows into the buffer tank 110.
  • the supply pressure regulator 310 maintains the pressure flowing into the buffer tank 110 at the set supply pressure regardless of the pressure value of the first storage tank 11a.
  • the opening/closing control unit 400 closes the supply control valve 210.
  • the opening/closing control unit 400 opens the discharge control valve 220 while the supply control valve 210 is closed.
  • the hydrogen stored inside the buffer tank 110 is sequentially injected into the inside of the fuel tank (T) through the dispenser body 21 and the charging nozzle 23, and is injected into the buffer tank ( The pulse pressure generated in 110) is applied to the inside of the fuel tank (T).
  • the discharge pressure control unit 320 maintains the pressure of the hydrogen discharged from the buffer tank 110 above the set discharge pressure so that all of the hydrogen stored in the buffer tank 110 is injected into the interior of the fuel tank (T). can do.
  • the opening/closing control unit 400 closes the discharge control valve 220 as the internal pressure of the buffer tank 110 matches the set discharge pressure.
  • the supply control unit 14 operates the first main supply valve 13a and the second main supply valve based on information about the initial pressure value of the fuel tank T and the capacity of the fuel tank T measured through pulse pressure.
  • the opening and closing operations of the valve 13b and the third main supply valve 13c are controlled, and the dispenser unit 20 fills the fuel tank T with hydrogen.
  • Figure 2 is a diagram schematically showing the configuration of a hydrogen charging system according to a second embodiment of the present invention.
  • the hydrogen charging system includes a hydrogen supply unit 10, a dispenser unit 20, and a hydrogen charging auxiliary device 30.
  • the hydrogen charging system according to the present embodiment is configured to differ only in the detailed configuration of the hydrogen charging auxiliary device 30 from the hydrogen charging system according to the first embodiment of the present invention.
  • the hydrogen charging system according to the present invention Descriptions that overlap with the hydrogen charging system according to the first embodiment will be omitted.
  • the hydrogen charging auxiliary device 30 includes a pressure storage unit 100, an access control unit 200, a pressure control unit 300, and an opening/closing control unit 400.
  • the pressure storage unit 100 receives hydrogen from the hydrogen supply unit 10 and stores it.
  • the pressure storage unit 100 includes a buffer tank 110, a branch pipe 120, and a discharge pipe 130.
  • the buffer tank 110 may be exemplified as various types of pressure storage containers that can store hydrogen in a compressed state so that pulse pressure is generated therein.
  • the buffer tank 110 includes a first buffer tank 111 and a second buffer tank 112.
  • the first buffer tank 111 and the second buffer tank 112 are arranged to be spaced apart from each other.
  • the first buffer tank 111 and the second buffer tank 112 are formed to have different storage capacities under the same pressure conditions.
  • the second buffer tank 112 may be formed to have a smaller storage capacity than the first buffer tank 111.
  • Pressure sensors capable of measuring the internal pressure of the first buffer tank 111 and the second buffer tank 112 may be individually installed inside the first buffer tank 111 and the second buffer tank 112. .
  • the branch pipe 120 branches off from the hydrogen supply unit 10 and guides the flow of hydrogen flowing from the hydrogen supply unit 10 to the buffer tank 110.
  • the branch pipe 120 may be formed to have the shape of a pipe with an empty interior.
  • One side of the branch pipe 120 is connected to the supply pipe 12, more specifically to the first supply pipe 12a.
  • one side of the branch pipe 120 may be connected to the front end of the first main supply valve 13a. Accordingly, the branch pipe 120 flows hydrogen flowing along the supply pipe 12 into the first buffer tank 111 and the second buffer tank 112 regardless of whether the first main supply valve 13a is opened or closed. You can do it.
  • a first buffer inlet pipe 120a and a second buffer inlet pipe 120b are formed on the other side of the branch pipe 120.
  • the first buffer inflow pipe 120a and the second buffer inflow pipe 120b according to this embodiment have the form of a pipe where one side is connected to the other side of the branch pipe 120 and the other side branches off from the branch pipe 120. It can be formed to have.
  • the other sides of the first buffer inlet pipe 120a and the second buffer inlet pipe 120b are connected to the inlet sides of the first buffer tank 111 and the second buffer tank 112, respectively.
  • the first buffer inflow pipe 120a and the second buffer inflow pipe 120b branch the hydrogen flowing along the branch pipe 120 and allow it to flow into the first buffer tank 111 and the second buffer tank 112, respectively. .
  • the discharge pipe 130 is provided between the buffer tank 110 and the dispenser unit 20, and guides the flow of hydrogen discharged from the buffer tank 110 and delivered to the dispenser unit 20.
  • the discharge pipe 130 may be formed to have the shape of a pipe with an empty interior.
  • One side of the discharge pipe 130 is connected to the buffer tank 110. More specifically, a first buffer discharge pipe 130a and a second buffer discharge pipe 130b are formed on one side of the discharge pipe 130.
  • One side of the first buffer discharge pipe 130a and the second buffer discharge pipe 130b according to this embodiment is connected to the outlet side of the first buffer tank 111 and the second buffer tank 112, respectively, and the other side is connected to the outlet side of the first buffer tank 111 and the second buffer tank 112, respectively.
  • It may be formed to have the shape of a pipe branching from one side of the discharge pipe 130.
  • the first buffer discharge pipe 130a and the second buffer discharge pipe 130b allow hydrogen stored in the first buffer tank 111 and the second buffer tank 112 to flow into one side of the discharge pipe 130.
  • the other side of the discharge pipe 130 is connected to the dispenser body 21.
  • a check valve 131 may be installed in the discharge pipe 130 to prevent hydrogen flowing along the discharge pipe 130 from flowing back from the dispenser unit 20 to the buffer tank 110.
  • the entry/exit control unit 200 regulates the entry and exit of hydrogen into the pressure storage unit 100.
  • the access control unit 200 includes a supply control valve 210 and a discharge control valve 220.
  • the supply control valve 210 is connected to one side of the pressure storage unit 100 and limits or allows the flow of hydrogen flowing into the pressure storage unit 100.
  • the supply control valve 210 according to this embodiment may be exemplified by various types of pneumatic valves whose open and closed states are controlled by pneumatic pressure.
  • the supply control valve 210 includes a first supply control valve 211 and a second supply control valve 212.
  • the first supply control valve 211 is connected to the first buffer inlet pipe 120a connected to the inlet side of the first buffer tank 111.
  • the opening and closing of the first supply control valve 211 is controlled by the opening/closing control unit 400, which will be described later, and limits or allows hydrogen to flow into the first buffer tank 111 through the first buffer inlet pipe 120a. .
  • the second supply control valve 212 is connected to the second buffer inlet pipe 120b connected to the inlet side of the second buffer tank 112.
  • the opening and closing of the second supply control valve 212 is controlled by the opening/closing control unit 400, which will be described later, and limits or allows hydrogen to flow into the second buffer tank 112 through the second buffer inflow pipe 120b. .
  • the discharge control valve 220 is connected to the other side of the pressure storage unit 100 and restricts or allows the flow of hydrogen discharged from the pressure storage unit 100.
  • the discharge control valve 220 according to this embodiment may be exemplified by various types of pneumatic valves whose opening and closing states are controlled by pneumatic pressure.
  • the discharge control valve 220 includes a first discharge control valve 221 and a second discharge control valve 222.
  • the first discharge control valve 221 is connected to the first buffer discharge pipe 130a connected to the outlet side of the first buffer tank 111.
  • the opening and closing of the first discharge control valve 221 is controlled by the opening/closing control unit 400, which will be described later, and restricts or allows hydrogen to be discharged from the first buffer tank 111 to the discharge pipe 130.
  • the second discharge control valve 222 is connected to the second buffer discharge pipe 130b connected to the outlet side of the second buffer tank 112.
  • the opening and closing of the second discharge control valve 222 is controlled by the opening/closing control unit 400, which will be described later, and restricts or allows hydrogen to be discharged from the second buffer tank 112 to the discharge pipe 130.
  • the pressure control unit 300 controls the pressure value of hydrogen flowing into or discharged from the pressure storage unit 100.
  • the pressure control unit 300 includes a supply pressure control unit 310 and a discharge pressure control unit 320.
  • the supply pressure control unit 310 is connected to one side of the pressure storage unit 100 and maintains the pressure of hydrogen flowing into the pressure storage unit 100 at the set supply pressure. Accordingly, the supply pressure control unit 310 can ensure that hydrogen at a constant pressure always flows into the pressure storage unit 100, regardless of the pressure of the hydrogen stored in the hydrogen supply unit 10.
  • the supply pressure control unit 310 may be exemplified by various types of regulator valves that maintain the pressure of the fluid discharged to the rear end constant.
  • the supply pressure control unit 310 is connected to the branch pipe 120 connected to the inlet side of the first buffer tank 111 and the second buffer tank 112.
  • the supply pressure adjusting unit 310 is arranged so that the front end faces the hydrogen supply unit 10 and the rear end faces the first buffer tank 111 and the second buffer tank 112.
  • the set supply pressure maintained by the supply pressure control unit 310 can be designed to various values within a range smaller than the pressure of hydrogen stored in the first storage tank 11a.
  • the discharge pressure control unit 320 is connected to the other side of the pressure storage unit 100 and maintains the pressure of hydrogen discharged from the pressure storage unit 100 above the set discharge pressure. Accordingly, the discharge pressure control unit 320 can prevent the phenomenon in which the pressure of hydrogen discharged from the pressure storage unit 100 is excessively lowered and the pulse pressure is not applied to the fuel tank (T).
  • the discharge pressure regulator 320 according to this embodiment can be exemplified by various types of back pressure regulators (BPR) that discharge fluid to the rear end when the pressure of the fluid flowing into the front end exceeds a set size. .
  • BPR back pressure regulators
  • the discharge pressure control unit 320 is connected to the discharge pipe 130 connected to the outlet side of the first buffer tank 111 and the second buffer tank 112.
  • the discharge pressure control unit 320 is arranged so that the front end faces the first buffer tank 111 and the second buffer tank 112, and the rear end faces the dispenser unit 20.
  • the set discharge pressure maintained by the discharge pressure control unit 320 can be designed to various values within a range smaller than the set supply pressure.
  • the opening/closing control unit 400 generally controls the operation of the access control unit 200. More specifically, the opening/closing control unit 400 is connected to the first supply control valve 211, the second supply control valve 212, the first discharge control valve 221, and the second discharge control valve 222 to provide the first supply control valve 211. The opening and closing operations of the supply control valve 211, the second supply control valve 212, the first discharge control valve 221, and the second discharge control valve 222 are individually controlled.
  • the opening/closing control unit 400 can receive data on the initial pressure value of the fuel tank (T) and the capacity of the fuel tank (T) through the communication module 25 that performs communication with the vehicle (V).
  • the opening/closing control unit 400 When the communication state between the communication module 25 and the vehicle (V) is smooth, the opening/closing control unit 400 operates the first discharge control valve 221 and the second discharge control valve 222 based on the capacity of the fuel tank (T). The opening and closing operation can be controlled. More specifically, the opening/closing control unit 400 operates the first discharge control valve ( 221) is opened, and when the capacity of the fuel tank (T) received from the communication module 25 corresponds to the second buffer tank 112, the second discharge control valve 222 is opened.
  • the opening/closing control unit 400 can apply a quantified pulse pressure to the fuel tank (T) by injecting a capacity of hydrogen corresponding to the capacity of the fuel tank (T) into the fuel tank (T) when pulse pressure is applied, Overheating of the fuel tank (T) that occurs when an excessive amount of hydrogen is injected into the fuel tank (T) can be prevented.
  • the opening/closing control unit 400 can sequentially open the second discharge control valve 222 and the first discharge control valve 221. there is. Accordingly, the opening/closing control unit 400 preferentially injects the hydrogen stored in the second buffer tank 112, which has a relatively small storage capacity, into the fuel tank (T), thereby preventing excessive hydrogen from being injected into the fuel tank (T). Overheating of the fuel tank (T) can be prevented.
  • the opening/closing control unit 400 may be configured to include an electronic control unit (ECU), a central processing unit (CPU), a processor, or a system on chip (SoC), and may include an operating system or By running an application, you can control multiple hardware or software components and perform various data processing and calculations.
  • the opening/closing control unit 400 may be configured to execute at least one command stored in a memory and store execution result data in the memory.
  • the opening/closing control unit 400 Prior to charging the vehicle (V), the opening/closing control unit 400 operates the first supply control valve 211 and the second supply control valve in a state in which the first discharge control valve 221 and the second discharge control valve 222 are closed. Open (212).
  • the supply pressure control unit 310 adjusts the pressure flowing into the first buffer tank 111 and the second buffer tank 112 to the set supply pressure, regardless of the pressure value of the first storage tank 11a. Maintain it.
  • the opening/closing control unit 400 operates the first supply control valve 211 and the second supply control valve 212. Close it.
  • the charging nozzle 23 is connected to the receptacle (R) of the vehicle (V), and the opening/closing control unit (400) receives data about the capacity of the fuel tank (T) through the communication module (25).
  • the opening and closing control unit 400 operates the first discharge control valve 221 and the second discharge control valve ( 222) controls the opening and closing operation. More specifically, the opening/closing control unit 400 operates the first discharge control valve ( 221) is opened and the second discharge control valve 222 is closed at the same time. In addition, when the capacity of the fuel tank (T) received from the communication module 25 corresponds to the second buffer tank 112, the opening/closing control unit 400 opens the second discharge control valve 222 and discharges the first discharge at the same time. Close the control valve (221).
  • the opening/closing control unit 400 can sequentially open the second discharge control valve 222 and the first discharge control valve 221. there is.
  • the hydrogen stored inside the first buffer tank 111 or the second buffer tank 112 is stored in the dispenser body 21 and the charging nozzle. It is injected into the inside of the fuel tank (T) sequentially through (23), and pulse pressure is applied to the inside of the fuel tank (T).
  • the discharge pressure control unit 320 maintains the pressure of hydrogen discharged from the first buffer tank 111 or the second buffer tank 112 above the set discharge pressure to All of the hydrogen stored in the buffer tank 112 can be injected into the fuel tank (T).
  • the opening/closing control unit 400 closes the first discharge control valve 221 or the second discharge control valve 222 as the internal pressure of the buffer tank 110 matches the set discharge pressure.
  • the supply control unit 14 operates the first main supply valve 13a and the second main supply valve based on information about the initial pressure value of the fuel tank T and the capacity of the fuel tank T measured through pulse pressure.
  • the opening and closing operations of the valve 13b and the third main supply valve 13c are controlled, and the dispenser unit 20 fills the fuel tank T with hydrogen.
  • Figure 3 is a diagram schematically showing the configuration of a hydrogen charging system according to a third embodiment of the present invention.
  • the hydrogen charging system includes a hydrogen supply unit 10, a dispenser unit 20, and a hydrogen charging auxiliary device 30.
  • the hydrogen charging system according to the present embodiment is configured to differ only in the detailed configuration of the hydrogen charging auxiliary device 30 from the hydrogen charging system according to the first embodiment of the present invention.
  • the hydrogen charging system according to the present invention Descriptions that overlap with the hydrogen charging system according to the first embodiment will be omitted.
  • the hydrogen charging auxiliary device 30 includes a pressure storage unit 100, an access control unit 200, a pressure control unit 300, and an opening/closing control unit 400.
  • the pressure storage unit 100 receives hydrogen from the hydrogen supply unit 10 and stores it.
  • the pressure storage unit 100 includes a buffer tank 110, a branch pipe 120, and a discharge pipe 130.
  • the buffer tank 110 may be exemplified as various types of pressure storage containers that can store hydrogen in a compressed state so that pulse pressure is generated therein.
  • a pressure sensor capable of measuring the internal pressure of the buffer tank 110 may be installed inside the buffer tank 110.
  • the branch pipe 120 branches off from the hydrogen supply unit 10 and guides the flow of hydrogen flowing from the hydrogen supply unit 10 to the buffer tank 110.
  • the branch pipe 120 may be formed to have the shape of a pipe with an empty interior.
  • One side of the branch pipe 120 is connected to the supply pipe 12, more specifically, the first supply pipe 12a, and the other side is connected to the inlet side of the buffer tank 110.
  • the branch pipe 120 allows hydrogen flowing along the supply pipe 12 to flow into the buffer tank 110 when the supply control valve 210, which will be described later, is opened.
  • one side of the branch pipe 120 may be connected to the front end of the first main supply valve 13a. Accordingly, the branch pipe 120 can allow hydrogen flowing along the supply pipe 12 to flow into the buffer tank 110 regardless of whether the first main supply valve 13a is opened or closed.
  • the discharge pipe 130 is provided between the buffer tank 110 and the dispenser unit 20, and guides the flow of hydrogen discharged from the buffer tank 110 and delivered to the dispenser unit 20.
  • the discharge pipe 130 may be formed to have the shape of a pipe with an empty interior.
  • One side of the discharge pipe 130 is connected to the buffer tank 110. More specifically, a first discharge branch pipe 130c and a second discharge branch pipe 130d are formed on one side of the discharge pipe 130.
  • One side of the first discharge branch pipe 130c and the second discharge branch pipe 130d according to this embodiment is connected to the outlet side of the buffer tank 110, and the other side is branched from one side of the discharge pipe 130. It may be formed to have the shape of a tube.
  • first discharge branch pipe 130c and the second discharge branch pipe 130d hydrogen flowing along the first discharge branch pipe 130c and the second discharge branch pipe 130d flows from the dispenser unit 20 to the buffer tank ( A first check valve 131a and a second check valve 131b may be installed to prevent backflow to 110).
  • the first discharge branch pipe 130c and the second discharge branch pipe 130d allow hydrogen stored in the buffer tank 110 to flow into one side of the discharge pipe 130.
  • the other side of the discharge pipe 130 is connected to the dispenser body 21.
  • the access control unit 200 regulates the access of hydrogen to the pressure storage unit 100.
  • the access control unit 200 includes a supply control valve 210 and a discharge control valve 220.
  • the supply control valve 210 is connected to one side of the pressure storage unit 100 and limits or allows the flow of hydrogen flowing into the pressure storage unit 100.
  • the supply control valve 210 may be exemplified by various types of pneumatic valves whose open and closed states are controlled by pneumatic pressure.
  • the supply control valve 210 is connected to the branch pipe 120 connected to the inlet side of the buffer tank 110.
  • the opening and closing operation of the supply control valve 210 is controlled by the opening and closing control unit 400, which will be described later, and it limits or allows hydrogen to flow into the buffer tank 110 through the branch pipe 120.
  • the discharge control valve 220 is connected to the other side of the pressure storage unit 100 and restricts or allows the flow of hydrogen discharged from the pressure storage unit 100.
  • the discharge control valve 220 according to this embodiment may be exemplified by various types of pneumatic valves whose opening and closing states are controlled by pneumatic pressure.
  • the discharge control valve 220 includes a first discharge control valve 223 and a second discharge control valve 224.
  • the first discharge control valve 223 is connected to the first discharge branch pipe 130c connected to the outlet side of the buffer tank 110.
  • the opening and closing of the first discharge control valve 223 is controlled by the opening/closing control unit 400, which will be described later, and restricts or allows hydrogen to be discharged from the buffer tank 110 to the discharge pipe 130.
  • the second discharge control valve 224 is connected to the second discharge branch pipe 130d connected to the outlet side of the buffer tank 110.
  • the opening and closing of the second discharge control valve 222 is controlled by the opening/closing control unit 400, which will be described later, and restricts or allows hydrogen to be discharged from the buffer tank 110 to the discharge pipe 130.
  • the pressure control unit 300 controls the pressure value of hydrogen flowing into or discharged from the pressure storage unit 100.
  • the pressure control unit 300 includes a supply pressure control unit 310 and a discharge pressure control unit 320.
  • the supply pressure control unit 310 is connected to one side of the pressure storage unit 100 and maintains the pressure of hydrogen flowing into the pressure storage unit 100 at the set supply pressure. Accordingly, the supply pressure control unit 310 can ensure that hydrogen at a constant pressure always flows into the pressure storage unit 100, regardless of the pressure of the hydrogen stored in the hydrogen supply unit 10.
  • the supply pressure control unit 310 may be exemplified by various types of regulator valves that keep the pressure of the fluid discharged to the rear end constant.
  • the supply pressure control unit 310 is connected to the branch pipe 120 connected to the inlet side of the buffer tank 110.
  • the supply pressure adjusting unit 310 is arranged so that the front end faces the hydrogen supply unit 10 and the rear end faces the buffer tank 110.
  • the set supply pressure maintained by the supply pressure control unit 310 can be designed and changed to various values within a range smaller than the pressure of hydrogen stored in the first storage tank 11a.
  • the discharge pressure control unit 320 is connected to the other side of the pressure storage unit 100 and maintains the pressure of hydrogen discharged from the pressure storage unit 100 above the set discharge pressure. Accordingly, the discharge pressure control unit 320 can prevent the phenomenon in which the pressure of hydrogen discharged from the pressure storage unit 100 is excessively lowered and the pulse pressure is not applied to the fuel tank (T).
  • the discharge pressure regulator 320 may be exemplified by various types of back pressure regulators (BPR) that discharge fluid to the rear end when the pressure of the fluid flowing into the front end exceeds a set size.
  • the discharge pressure control unit 320 includes a first discharge pressure control unit 321 and a second discharge pressure control unit 322.
  • the first discharge pressure control unit 321 is connected to the other side of the pressure storage unit 100 and maintains the pressure of hydrogen discharged from the pressure storage unit 100 above the first set discharge pressure.
  • the first discharge pressure control unit 321 according to this embodiment is connected to the first discharge branch pipe 130c connected to the outlet side of the buffer tank 110.
  • the first discharge pressure control unit 321 is arranged so that the front end faces the buffer tank 110 and is connected to the rear end of the first discharge control valve 221.
  • the first discharge pressure adjusting unit 321 is arranged so that its rear end faces the dispenser unit 20.
  • the first set discharge pressure maintained by the discharge pressure adjusting unit 320 can be designed to various values within a range smaller than the set supply pressure.
  • the second discharge pressure control unit 322 is connected to the other side of the pressure storage unit 100 and maintains the pressure of hydrogen discharged from the pressure storage unit 100 above the second set discharge pressure.
  • the second discharge pressure control unit 322 according to this embodiment is connected to the second discharge branch pipe 130d connected to the outlet side of the buffer tank 110.
  • the second discharge pressure control unit 322 is arranged so that the front end faces the buffer tank 110 and is connected to the rear end of the second discharge control valve 222.
  • the second discharge pressure control unit 322 is arranged so that its rear end faces the dispenser unit 20.
  • the second set discharge pressure maintained by the second discharge pressure adjusting unit 322 can be designed to various values within a range smaller than the set supply pressure and the first set discharge pressure.
  • the opening/closing control unit 400 generally controls the operation of the access control unit 200. More specifically, the opening/closing control unit 400 is connected to the supply control valve 210, the first discharge control valve 223, and the second discharge control valve 224, and is connected to the supply control valve 210 and the first discharge control valve ( The opening and closing operations of 223) and the second discharge control valve 224 are individually controlled.
  • the opening/closing control unit 400 can receive data on the initial pressure value of the fuel tank (T) and the capacity of the fuel tank (T) through the communication module 25 that performs communication with the vehicle (V).
  • the opening/closing control unit 400 operates the first discharge control valve 221 and the second discharge control valve (221) based on the initial pressure value of the fuel tank (T). 222) can control the opening and closing operation. More specifically, the opening/closing control unit 400 opens the second discharge control valve 224 when the initial pressure value of the fuel tank (T) is less than the second set discharge pressure, and the initial pressure value of the fuel tank (T) is lower than the second set discharge pressure. If it is more than the 2nd set discharge pressure but less than the first set discharge pressure, the first discharge control valve 223 is opened.
  • the opening/closing control unit 400 maintains the pressure of hydrogen injected into the fuel tank (T) at a state greater than the initial pressure value of the fuel tank (T) even if the initial charge of the fuel tank (T) changes, thereby maintaining the buffer tank ( It is possible to prevent the phenomenon in which hydrogen stored in 110) is not injected into the fuel tank (T).
  • the opening/closing control unit 400 can sequentially open the second discharge control valve 222 and the first discharge control valve 221. there is. Accordingly, the opening/closing control unit 400 preferentially injects hydrogen discharged at a relatively low set discharge pressure through the second discharge pressure control unit 322 into the fuel tank (T), thereby allowing an excessive amount of hydrogen to be discharged into the fuel tank (T). Overheating of the fuel tank (T) caused by injection can be prevented.
  • the opening/closing control unit 400 may be configured to include an electronic control unit (ECU), a central processing unit (CPU), a processor, or a system on chip (SoC), and may include an operating system or By running an application, you can control multiple hardware or software components and perform various data processing and calculations.
  • the opening/closing control unit 400 may be configured to execute at least one command stored in a memory and store execution result data in the memory.
  • the opening/closing control unit 400 Prior to charging the vehicle V, the opening/closing control unit 400 opens the supply control valve 210 with the first discharge control valve 223 and the second discharge control valve 224 closed.
  • the supply pressure regulator 310 maintains the pressure flowing into the buffer tank 110 at the set supply pressure regardless of the pressure value of the first storage tank 11a.
  • the opening/closing control unit 400 closes the supply control valve 210.
  • the charging nozzle 23 is connected to the receptacle (R) of the vehicle (V), and the opening/closing control unit (400) receives data about the initial pressure value of the fuel tank (T) through the communication module (25).
  • the opening/closing control unit 400 controls the first discharge control valve 221 and the second discharge control based on the received initial pressure value of the fuel tank (T). Controls the opening and closing operation of the valve 222. More specifically, when the initial pressure value of the fuel tank (T) is less than the second set discharge pressure, the opening/closing control unit 400 opens the second discharge control valve 224 and closes the first discharge control valve 223 at the same time. do. In addition, when the initial pressure value of the fuel tank T is greater than the second set discharge pressure and less than the first set discharge pressure, the first discharge control valve 223 is opened and the second discharge control valve 224 is closed at the same time.
  • the opening/closing control unit 400 can sequentially open the second discharge control valve 222 and the first discharge control valve 221. there is.
  • the hydrogen stored inside the buffer tank 110 sequentially passes through the dispenser body 21 and the charging nozzle 23 to the fuel tank ( It is injected into the inside of the fuel tank (T), and pulse pressure is applied to the inside of the fuel tank (T).
  • the opening/closing control unit 400 closes the first discharge control valve 221 or the second discharge control valve 222 as the internal pressure of the buffer tank 110 matches the first set discharge pressure or the second set discharge pressure. .
  • the supply control unit 14 operates the first main supply valve 13a and the second main supply valve based on information about the initial pressure value of the fuel tank T and the capacity of the fuel tank T measured through pulse pressure.
  • the opening and closing operations of the valve 13b and the third main supply valve 13c are controlled, and the dispenser unit 20 fills the fuel tank T with hydrogen.
  • Figure 4 is a diagram schematically showing the configuration of a hydrogen charging system according to a fourth embodiment of the present invention.
  • the hydrogen charging system includes a hydrogen supply unit 10, a dispenser unit 20, and a hydrogen charging auxiliary device 30.
  • the hydrogen charging system according to the present embodiment is configured to differ only in the detailed configuration of the hydrogen charging auxiliary device 30 from the hydrogen charging system according to the first embodiment of the present invention.
  • the hydrogen charging system according to the present invention Descriptions that overlap with the hydrogen charging system according to the first embodiment will be omitted.
  • the hydrogen charging auxiliary device 30 includes a first hydrogen charging auxiliary device 31, a second hydrogen charging auxiliary device 32, and an opening/closing control unit 33.
  • the first hydrogen charging auxiliary device 31 is connected to the first storage tank 11a, receives hydrogen from the first storage tank 11a, generates and stores pulse pressure, and distributes the generated pulse pressure to the dispenser unit 20. Pass it to
  • the first hydrogen charging auxiliary device 31 includes a first buffer tank 1110, a first branch pipe 1120, a first discharge pipe 1130, a first supply control valve 1210, and a first It includes a discharge control valve 1220, a first supply pressure control unit 1310, and a first discharge pressure control unit 1320.
  • the first buffer tank 1110, the first branch pipe 1120, the first discharge pipe 1130, the first supply control valve 1210, and the first discharge control valve 1220 according to this embodiment are each according to the present invention. It may be configured in the same way as the buffer tank 110, branch pipe 120, discharge pipe 130, supply control valve 210, and discharge control valve 220 according to the first embodiment.
  • the first supply pressure control unit 1310 maintains the pressure of hydrogen flowing into the first buffer tank 1110 at the first set supply pressure
  • the first discharge pressure control unit 1320 maintains the pressure of hydrogen flowing into the first buffer tank 1110 at the first set supply pressure.
  • the second hydrogen charging auxiliary device 32 is connected to the second storage tank 11b, receives hydrogen from the second storage tank 11b, generates and stores pulse pressure, and supplies the generated pulse pressure to the dispenser unit 20. Pass it to
  • the second hydrogen charging auxiliary device 32 includes a second buffer tank 2110, a second branch pipe 2120, a second discharge pipe 2130, a second supply control valve 2210, and a second It includes a discharge control valve 2220, a second supply pressure control unit 2310, and a second discharge pressure control unit 2320.
  • the second buffer tank 2110, the second discharge pipe 2130, the second supply control valve 2210, and the second discharge control valve 2220 according to the present embodiment are each buffer according to the first embodiment of the present invention. It may be configured in the same way as the tank 110, branch pipe 120, discharge pipe 130, supply control valve 210, and discharge control valve 220.
  • the second branch pipe 2120 according to this embodiment may be configured the same as the branch pipe 120 according to the first embodiment of the present invention, except that it is connected to the second supply pipe 12b.
  • the second supply pressure control unit 2310 maintains the pressure of hydrogen flowing into the second buffer tank 2110 at the second set supply pressure, and the second discharge pressure control unit 2320 controls the second buffer tank 2110. Except that the pressure of hydrogen discharged from the tank 2110 is maintained above the second set discharge pressure, the supply pressure control unit 310 and the discharge pressure control unit 320 according to the first embodiment of the present invention. It can be configured the same way.
  • the second set supply pressure and the second set discharge pressure may have values smaller than the first set supply pressure and the first set discharge pressure, respectively.
  • the opening/closing control unit 33 is connected to the first supply control valve 1210, the first discharge control valve 1220, the second supply control valve 2210, and the second discharge control valve 2220 to operate the first supply control valve ( 1210), the opening and closing operations of the first discharge control valve 1220, the second supply control valve 2210, and the second discharge control valve 2220 are individually controlled.
  • the opening/closing control unit 400 can receive data about the initial pressure value of the fuel tank (T) and the capacity of the fuel tank (T) through the communication module 25 that performs communication with the vehicle (V).
  • the opening/closing control unit 33 operates the first discharge control valve 1220 and the second discharge control valve ( 2220) can control the opening and closing operation. More specifically, the opening/closing control unit 33 opens the second discharge control valve 2220 when the initial pressure value of the fuel tank (T) is less than the second set discharge pressure, and the initial pressure value of the fuel tank (T) is lower than the second set discharge pressure. If it is more than the 2nd set discharge pressure but less than the first set discharge pressure, the first discharge control valve 1220 is opened.
  • the opening/closing control unit 33 applies pulse pressure by always maintaining the pressure of hydrogen injected into the fuel tank (T) at a state greater than the initial pressure value of the fuel tank (T) even if the initial charge amount of the fuel tank (T) changes. This can prevent the phenomenon of hydrogen not being injected into the fuel tank (T).
  • the opening/closing control unit 33 can sequentially open the second discharge control valve 2220 and the first discharge control valve 1220. there is. Accordingly, the opening/closing control unit 33 preferentially injects hydrogen discharged at a relatively low set discharge pressure through the second discharge pressure control unit 2320 into the fuel tank (T), thereby allowing an excessive amount of hydrogen to be discharged into the fuel tank (T). Overheating of the fuel tank (T) caused by injection can be prevented.
  • the opening/closing control unit 33 may be configured to include an electronic control unit (ECU), a central processing unit (CPU), a processor, or a system on chip (SoC), and may include an operating system or By running an application, you can control multiple hardware or software components and perform various data processing and calculations.
  • the opening/closing control unit 33 may be configured to execute at least one command stored in a memory and store execution result data in the memory.
  • the opening/closing control unit 33 Prior to charging the vehicle (V), the opening/closing control unit 33 operates the first supply control valve 1210 and the second supply control valve in a state in which the first discharge control valve 1220 and the second discharge control valve 2220 are closed. (2210) is open.
  • the first supply pressure control unit 1310 and the second supply pressure control unit 2310 are connected to the first buffer tank 1110 regardless of the pressure values of the first storage tank 11a and the second storage tank 11b. ) and the pressure flowing into the second buffer tank 2110 is maintained at the first set supply pressure and the second set supply pressure, respectively.
  • the opening/closing control unit 33 operates the first supply control valve 1210 and Close the second supply control valve (2210).
  • the charging nozzle 23 is connected to the receptacle (R) of the vehicle (V), and the opening/closing control unit (33) receives data about the initial pressure value of the fuel tank (T) through the communication module (25).
  • the opening/closing control unit 33 controls the first discharge control valve 1220 and the second discharge control based on the received initial pressure value of the fuel tank (T). Controls the opening and closing operation of the valve 2220. More specifically, when the initial pressure value of the fuel tank (T) is less than the second set discharge pressure, the opening/closing control unit 33 opens the second discharge control valve 2220 and closes the first discharge control valve 1220 at the same time. do.
  • the first discharge control valve 1220 is opened and the second discharge control valve 2220 is closed at the same time.
  • the opening/closing control unit 400 can sequentially open the second discharge control valve 2220 and the first discharge control valve 1220 when the communication state between the communication module 25 and the vehicle (V) is not smooth. there is.
  • the hydrogen stored inside the first buffer tank 1110 or the second buffer tank 2110 is stored in the dispenser body 21 and the charging nozzle. It is injected into the inside of the fuel tank (T) sequentially through (23), and pulse pressure is applied to the inside of the fuel tank (T).
  • the opening/closing control unit 33 operates the first discharge control valve 1220 or the first discharge control valve 1220 as the internal pressure of the first buffer tank 1110 or the second buffer tank 2110 matches the first set discharge pressure or the second set discharge pressure. 2 Close the discharge control valve (2220).
  • the supply control unit 14 operates the first main supply valve 13a and the second main supply valve based on information about the initial pressure value of the fuel tank T and the capacity of the fuel tank T measured through pulse pressure.
  • the opening and closing operations of the valve 13b and the third main supply valve 13c are controlled, and the dispenser unit 20 fills the fuel tank T with hydrogen.
  • Figure 5 is a diagram schematically showing the configuration of a hydrogen charging system according to a fifth embodiment of the present invention.
  • the hydrogen charging system includes a hydrogen supply unit 10, a dispenser unit 20, and a hydrogen charging auxiliary device 30.
  • the hydrogen charging system according to the present embodiment is configured to differ only in the detailed configuration of the hydrogen supply unit 10 from the hydrogen charging system according to the first embodiment of the present invention.
  • the hydrogen charging system according to the first embodiment of the present invention will be described. Descriptions that overlap with the hydrogen charging system according to the embodiment will be omitted.
  • the hydrogen supply unit 10 includes a storage tank 11, a supply pipe 12, a main supply valve 13, a supply control unit 14, a delivery pipe 15, and a compressor 16. .
  • the storage tank 11 stores hydrogen in a compressed state.
  • the storage tank 11 supplies the hydrogen stored therein to the dispenser unit 20, which will be described later, by the differential pressure with the fuel tank T provided in the vehicle V when the main supply valve 13, which will be described later, is opened.
  • the storage tank 11 according to this embodiment can be exemplified as various types of pressure storage containers capable of storing hydrogen in a compressed state.
  • the supply pipe 12 is connected to the storage tank 11 and guides the flow of hydrogen discharged from the storage tank 11 and the compressor 16, which will be described later.
  • the supply pipe 12 according to this embodiment is formed to have the shape of a pipe with an empty interior, and one side is branched and connected to the storage tank 11 and the compressor 16, respectively.
  • the main supply valve (13) is connected to the supply pipe (12) and controls the flow of hydrogen through the supply pipe (12).
  • the main supply valve 13 according to this embodiment is connected to the supply pipe 12 and can be exemplified by various types of pneumatic valves whose open and closed states are controlled by pneumatic pressure.
  • the main supply valve 13 is controlled to open and close by the supply control unit 14, which will be described later, and limits or allows the flow of hydrogen through the supply pipe 12.
  • the supply control unit 14 generally controls the operation of the main supply valve 13.
  • the supply control unit 14 may be configured to include an electronic control unit (ECU), a central processing unit (CPU), a processor, or a system on chip (SoC), and may include an operating system or By running an application, you can control multiple hardware or software components and perform various data processing and calculations.
  • the supply control unit 14 may be configured to execute at least one command stored in the memory and store the execution result data in the memory.
  • the delivery pipe 15 is connected to the supply pipe 12 and delivers hydrogen flowing along the supply pipe 12 to the dispenser unit 20, which will be described later.
  • the delivery pipe 15 may be formed to have the shape of a pipe with an empty interior.
  • One side of the delivery pipe 15 is indirectly connected to the supply pipe 12 through the supply control unit 14. In contrast, it is possible for one side of the delivery pipe 15 to be directly connected to the supply pipe 12.
  • the other side of the delivery pipe 15 is connected to the dispenser body 21 and delivers hydrogen into the interior of the dispenser body 21.
  • the compressor 16 compresses hydrogen and supplies the compressed hydrogen directly to the dispenser unit 20.
  • the compressor 16 according to this embodiment may be exemplified by various types of compression devices capable of compressing hydrogen introduced to the inlet side and discharging the compressed hydrogen to the outlet side.
  • compressor 16 can compress hydrogen to about 900 bar.
  • the outlet side of the compressor 16 is connected to one side of the supply pipe 12.
  • Figure 6 is a diagram schematically showing the configuration of a hydrogen charging system according to a sixth embodiment of the present invention.
  • the hydrogen charging system includes a hydrogen supply unit 10, a dispenser unit 20, a hydrogen charging auxiliary device 30, and a hydrogen recovery unit 40.
  • the hydrogen supply unit 10 and dispenser unit 20 according to this embodiment may be configured in the same way as the hydrogen supply unit 10 and dispenser unit 20 according to the first embodiment of the present invention.
  • the hydrogen charging auxiliary device 30 according to this embodiment may be configured the same as any one of the hydrogen charging auxiliary devices 30 according to the first, second, and third embodiments of the present invention. That is, in Figure 6, the hydrogen charging auxiliary device 30 according to the present embodiment is shown as an example of being configured the same as the hydrogen charging auxiliary device 30 according to the first embodiment of the present invention.
  • the hydrogen charging auxiliary device 30 according to the present invention is not limited to these details, and may be configured in the same manner as any one of the hydrogen charging auxiliary devices 30 according to the second and third embodiments of the present invention.
  • the hydrogen recovery unit 40 recovers the hydrogen remaining in the dispenser unit 20 using the hydrogen charging auxiliary device 30 after hydrogen charging into the fuel tank T is completed. Accordingly, the hydrogen recovery unit 40 can reduce the risk of fire caused by hydrogen remaining in the dispenser unit 20 after charging and improve hydrogen consumption efficiency.
  • the hydrogen recovery unit 40 includes a recovery pipe 41, a recovery valve 42, a recovery drive unit 43, and a recovery check valve 44.
  • the recovery pipe 41 is provided between the dispenser unit 20 and the hydrogen charging auxiliary device 30, and guides the flow of hydrogen recovered from the dispenser unit 20 to the hydrogen charging auxiliary device 30.
  • the recovery pipe 41 according to this embodiment is formed to have the shape of a pipe with an empty interior.
  • One side of the recovery pipe 41 is connected to the dispenser unit 20. More specifically, the recovery pipe 41 may be indirectly connected to the dispenser unit 20 by having one side connected to the discharge pipe 130 connected to the dispenser main body 21.
  • the other side of the recovery pipe 41 is connected to the hydrogen charging auxiliary device 30. More specifically, the other side of the recovery pipe 41 is connected to the rear end of the supply control valve 210, that is, between the supply control valve 210 and the buffer tank 110. Accordingly, the recovery pipe 41 can allow hydrogen recovered from the dispenser unit 20 to flow into the buffer tank 110 regardless of whether the supply control valve 210 is opened or closed.
  • the recovery valve 42 is connected to the recovery pipe 41 and restricts or allows the flow of hydrogen through the recovery pipe 41.
  • the recovery valve 42 according to this embodiment may be exemplified by various types of pneumatic valves whose open and closed states are controlled by pneumatic pressure.
  • the opening and closing operation of the recovery valve 42 is controlled by the opening and closing control unit 400, and it limits or allows hydrogen to flow into the buffer tank 110 through the recovery pipe 41.
  • the recovery drive unit 43 generates a driving force to cause the hydrogen inside the recovery pipe 41 to flow toward the hydrogen charging auxiliary device 30.
  • the recovery drive unit 43 according to this embodiment is connected to the recovery pipe 41 and may be exemplified by various types of pumps that receive power from the outside and apply fluid force to the hydrogen inside the recovery pipe 41.
  • the recovery drive unit 43 applies flow force to the hydrogen inside the recovery pipe 41 in the direction from the dispenser unit 20 toward the hydrogen charging auxiliary device 30. Accordingly, when the internal pressure difference between the buffer tank 110 and the dispenser main body 21 is not large, or when the internal pressure of the buffer tank 110 is greater than the internal pressure of the dispenser main body 21, the recovery drive unit 43 does not absorb hydrogen. By applying a direct external force, hydrogen can be induced to be smoothly recovered into the buffer tank 110 along the recovery pipe 41. Whether or not the driving force is generated in the recovery drive unit 43 may be controlled by the opening/closing control unit 400.
  • the recovery check valve 44 is connected to the recovery pipe 41 and prevents hydrogen from flowing from the hydrogen charging auxiliary device 30 to the dispenser unit 20.
  • the recovery check valve 44 functions as a component to prevent the hydrogen in the recovery pipe 41 from flowing back.
  • the recovery check valve 44 according to this embodiment may be exemplified by various types of check valves that can be connected to the recovery pipe 41.
  • the supply control unit 14 closes all of the main supply valves 13 to stop supplying hydrogen to the dispenser unit 20, and the charging nozzle 23 and the receptacle (R) are separated from each other.
  • the opening/closing control unit 400 opens the recovery valve 42.
  • the recovery valve 42 As the recovery valve 42 is opened, the hydrogen remaining in the dispenser body 21 is recovered to the buffer tank 110 through the recovery pipe 41 due to the differential pressure between the buffer tank 110 and the dispenser body 21. .
  • the opening/closing control unit 400 operates the recovery drive unit. Operate (43).
  • Hydrogen inside the recovery pipe 41 is recovered into the buffer tank 110 by the flow force applied by the recovery drive unit 43.
  • the opening/closing control unit 400 closes the recovery valve 42.

Abstract

본 발명은 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템에 관한 것으로, 수소를 공급받아 저장하는 압력저장부와, 압력저장부에 대한 수소의 출입을 단속하는 출입조절부 및 압력저장부로 유입되거나 압력저장부로부터 배출되는 수소의 압력값을 조절하는 압력조절부를 포함하는 것을 특징으로 한다.

Description

수소 충전 보조장치 및 이를 구비한 수소 충전 시스템
본 발명은 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템에 관한 것으로, 보다 상세하게는 수소모빌리티에 대한 충전 안전성 및 정확성을 개선할 수 있는 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템에 관한 것이다.
본 출원은 2022년 08월 29일자로 출원된 한국특허출원 제10-2022-0108130호로부터 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
일반적으로, 수소 자동차는 동력의 연료로서 수소를 사용하는 차량이며, 전동기 구동을 위해 내연기관의 수소를 태우거나 연료전지 내에서 수소를 산소와 반응시켜 수소의 화학 에너지를 역학적 에너지로 변환한다. 운송 연료 공급을 위해 수소를 사용하게 되는데, 수소 연료는 고압으로 빠르게 충전되는 특성으로 주유와 비교했을 때 위험성을 지니고 있고, 압축 및 줄-톰슨효과(Joule-Thomson effect)로 인한 열 발생으로 완전충전이 용이하지 않다.
이에, 2010년에 제정된 SAE(Society of Automotive Engineers) J2601의 수소충전 프로토콜(Hydrogen Fueling Protocol, HFP)에서는 열역학적 모델(thermodynamic model)에 의한 시뮬레이션을 통하여 미리 작성된 수많은 table과 계산식의 파라미터 및 계수(coefficients)를 이용하여 충전을 진행하도록 하는 방식을 채용하고 있다.
SAE J2601의 수소충전 프로토콜에 따르면 수소 충전 과정은 개시 단계, 메인 충전 단계, 셧다운 단계로 나누어 수행되며, 개시 단계에서 충전노즐과 리셉터클이 연결된 이후, 차량의 연료탱크로 200g 미만의 수소를 선주입함으로써 커넥션 펄스(connection pulse)로 정의되는 펄스 압력을 인가하도록 규정하고 있다. 수소충전소는 이러한 펄스 압력에 의한 연료탱크의 압력 변화량 등을 이용하여 차량의 연료탱크의 초기 압력값, 연료탱크의 용량 및 수소의 누출 여부를 측정하고, 이와 같은 과정은 안전한 충전을 위해 필수적으로 수행되어야하는 핵심 절차에 해당한다.
그러나 종래에는 이러한 펄스 압력 인가 시 충전소마다 공급하는 수소의 용량이 서로 상이함에 따라 정확한 차량상태 진단 및 충전결과 예상이 어렵고, 소형 모빌리티의 경우 과량의 펄스 압력에 의한 과열문제가 발생하며, 대형 모빌리티의 경우 소량의 펄스 압력에 의한 내부 정보 취득이 어려운 문제점이 있다.
본 발명의 배경기술은 대한민국 공개특허공보 제10-2022-0012051호(2022.02.03 공개, 발명의 명칭: 차량용 수소 충전 시스템)에 개시되어 있다.
본 발명은 수소모빌리티에 대한 충전 안전성 및 정확성을 개선할 수 있는 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템을 제공하는데 그 목적이 있다.
상술한 과제를 해결하기 위해 본 발명에 따른 수소 충전 시스템은: 수소를 공급하는 수소공급유닛; 상기 수소공급유닛으로부터 공급되는 수소를 차량의 연료탱크에 주입하는 디스펜서유닛; 상기 수소공급유닛으로부터 수소를 공급받아 펄스 압력을 생성하고, 생성된 펄스 압력을 상기 디스펜서유닛으로 전달하는 수소 충전 보조장치; 및 상기 디스펜서유닛에 잔류하는 수소를 상기 수소 충전 보조장치로 회수하는 수소회수유닛;을 포함한다.
또한, 상기 수소 충전 보조장치는, 상기 수소공급유닛과 상기 디스펜서유닛의 사이에 구비되고, 상기 수소공급유닛으로부터 수소를 공급받아 저장하는 압력저장부; 상기 압력저장부에 대한 수소의 출입을 단속하는 출입조절부; 및 상기 압력저장부로 유입되거나 상기 압력저장부로부터 배출되는 수소의 압력을 조절하는 압력조절부;를 포함한다.
또한, 상기 압력저장부는, 제1버퍼탱크; 및 상기 제1버퍼탱크와 이격되게 배치되고, 상기 제1버퍼탱크와 다른 저장 용량을 갖는 제2버퍼탱크;를 포함한다.
또한, 상기 출입조절부는, 상기 압력저장부의 일측에 연결되고, 상기 압력저장부로 유입되는 수소의 유동을 제한하거나 허용하는 공급조절밸브; 및 상기 압력저장부의 타측에 연결되고, 상기 압력저장부로부터 배출되는 수소의 유동을 제한하거나 허용하는 배출조절밸브;를 포함한다.
또한, 상기 압력조절부는, 상기 압력저장부의 일측에 연결되고, 상기 압력저장부로 유입되는 수소의 압력을 설정공급압력으로 유지시키는 공급압력조절부; 및 상기 압력저장부의 타측에 연결되고, 상기 압력저장부로부터 배출되는 수소의 압력을 설정배출압력 이상으로 유지시키는 배출압력조절부;를 포함한다.
또한, 상기 배출압력조절부는, 상기 압력저장부의 타측에 연결되고, 상기 압력저장부로부터 배출되는 수소의 압력을 제1설정배출압력 이상으로 유지시키는 제1배출압력조절부; 및 상기 압력저장부의 타측에 연결되고, 상기 압력저장부로부터 배출되는 수소의 압력을 제2설정배출압력 이상으로 유지시키는 제2배출압력조절부;를 포함한다.
또한, 상기 배출조절밸브는, 상기 제1배출압력조절부와 연결되는 제1배출조절밸브; 및 상기 제2배출압력조절부와 연결되는 제2배출조절밸브;를 포함한다.
또한, 상기 출입조절부의 동작을 제어하는 개폐제어부;를 더 포함한다.
또한, 상기 제1설정배출압력은 상기 제2설정배출압력보다 크고, 상기 개폐제어부는 상기 제2배출조절밸브 및 상기 제1배출조절밸브를 순차적으로 개방한다.
또한, 상기 개폐제어부는 차량의 연료탱크의 초기 압력값에 기초하여 상기 제1배출조절밸브 및 상기 제2배출조절밸브의 개폐 동작을 제어한다.
또한, 상기 제1설정배출압력은 상기 제2설정배출압력보다 크고, 상기 개폐제어부는 상기 연료탱크의 초기 압력값이 상기 제2설정배출압력 미만인 경우 상기 제2배출조절밸브를 개방하고, 상기 연료탱크의 초기 압력값이 상기 제2설정배출압력 이상 상기 제1설정배출압력 미만인 경우 상기 제1배출조절밸브를 개방한다.
또한, 상기 수소회수유닛은, 일측이 상기 디스펜서유닛과 연결되고, 타측이 상기 수소 충전 보조장치와 연결되는 회수배관; 및 상기 회수배관에 연결되고, 상기 회수배관을 통한 수소의 유동을 제한하거나 허용하는 회수밸브;를 포함한다.
또한, 상기 회수배관은 타측이 상기 공급조절밸브의 후단측에 연결된다.
또한, 상기 수소회수유닛은 상기 회수배관에 연결되고, 수소가 상기 수소 충전 보조장치로부터 상기 디스펜서유닛으로 유동되는 것을 방지하는 회수체크밸브;를 더 포함한다.
또한, 상기 수소회수유닛은 구동력을 발생시켜 상기 회수배관 내부의 수소를 상기 수소 충전 보조장치로 향해 유동시키는 회수구동부;를 더 포함한다.
본 발명에 따른 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템은 충전 개시 단계에서 연료탱크로 인가되는 펄스 압력을 충전 시작 전 미리 설정된 크기로 생성 및 저장함에 따라 기존 수소충전소마다 서로 상이한 크기를 갖는 펄스 압력을 규격화할 수 있고, 펄스 압력을 통해 측정되는 연료탱크의 초기 압력값, 용량 등과 같은 데이터의 정확성을 향상시킬 수 있다.
또한, 본 발명에 따른 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템은 수소 충전이 완료된 이후, 디스펜서유닛에 잔류하는 수소를 수소 충전 보조장치로 회수함에 따라 잔존 수소에 의한 화재 발생 위험을 줄이고, 수소의 소비 효율을 향상시킬 수 있다.
도 1은 본 발명의 제1실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 2는 본 발명의 제2실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 3은 본 발명의 제3실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 4는 본 발명의 제4실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 5는 본 발명의 제5실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 6은 본 발명의 제6실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템의 실시예를 설명한다.
이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
또한, 본 명세서에서, 어떤 부분이 다른 부분과 "연결(또는 접속)"되어 있다고 할 때, 이는 "직접적으로 연결(또는 접속)"되어 있는 경우뿐만 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결(또는 접속)"되어 있는 경우도 포함한다. 본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함(또는 구비)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 "포함(또는 구비)"할 수 있다는 것을 의미한다.
또한, 본 명세서 전체에 걸쳐 동일한 참조 부호는 동일한 구성 요소를 지칭할 수 있다. 동일한 참조 부호 또는 유사한 참조 부호들은 특정 도면에서 언급 또는 설명되지 않았더라도, 그 부호들은 다른 도면을 토대로 설명될 수 있다. 또한, 특정 도면에 참조 부호가 표시되지 않은 부분이 있더라도, 그 부분은 다른 도면들을 토대로 설명될 수 있다. 또한, 본 출원의 도면들에 포함된 세부 구성요소들의 개수, 형상, 크기 및 크기의 상대적인 차이 등은 이해의 편의를 위해 설정된 것으로서, 실시예들을 제한하지 않으며 다양한 형태로 구현될 수 있다.
도 1은 본 발명의 제1실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 1을 참조하면, 본 실시예에 따른 수소 충전 시스템은 수소공급유닛(10), 디스펜서유닛(20), 수소 충전 보조장치(30)를 포함한다.
수소공급유닛(10)은 수소를 저장하고, 후술하는 디스펜서유닛(20) 및 수소 충전 보조장치(30)으로 저장된 수소를 공급한다.
본 실시예에 따른 수소공급유닛(10)은 저장탱크(11), 공급배관(12), 메인공급밸브(13), 공급제어부(14), 전달배관(15)을 포함한다.
저장탱크(11)는 수소를 압축된 상태로 저장한다. 저장탱크(11)는 후술하는 메인공급밸브(13)의 개방 시 차량(V)에 구비된 연료탱크(T)와의 차압에 의해 내부에 저장된 수소를 후술하는 디스펜서유닛(20)으로 공급한다.
본 실시예에 따른 저장탱크(11)는 제1저장탱크(11a), 제2저장탱크(11b), 제3저장탱크(11c)를 포함한다. 제1저장탱크(11a), 제2저장탱크(11b), 제3저장탱크(11c)는 내부에 수소를 압축된 상태로 저장할 수 있는 다양한 종류의 압력저장용기로 예시될 수 있다. 제1저장탱크(11a), 제2저장탱크(11b), 제3저장탱크(11c)는 서로 다른 압력으로 수소를 저장한다. 보다 구체적으로, 제2저장탱크(11b)는 제1저장탱크(11a)보다 작은 압력으로 수소를 저장하고, 제3저장탱크(11c)는 제2저장탱크(11b)보다 작은 압력으로 수소를 저장할 수 있다. 이 경우, 제1저장탱크(11a), 제2저장탱크(11b), 제3저장탱크(11c)에 저장된 수소의 구체적인 압력값은 다양한 값으로 설계 변경이 가능하다.
공급배관(12)은 저장탱크(11)와 연결되고, 저장탱크(11)로부터 배출되는 수소의 유동을 안내한다.
본 실시예에 따른 공급배관(12)은 제1공급배관(12a), 제2공급배관(12b), 제3공급배관(12c)을 포함한다. 제1공급배관(12a), 제2공급배관(12b), 제3공급배관(12c)은 내부가 비어있는 관의 형태를 갖도록 형성되고, 상호 이격되게 배치된다. 제1공급배관(12a), 제2공급배관(12b), 제3공급배관(12c)은 일측이 각각 제1저장탱크(11a), 제2저장탱크(11b), 제3저장탱크(11c)에 개별적으로 연결된다.
메인공급밸브(13)는 공급배관(12)에 연결되고, 공급배관(12)을 통한 수소의 유동을 단속한다.
본 실시예에 따른 메인공급밸브(13)는 제1메인공급밸브(13a), 제2메인공급밸브(13b), 제3메인공급밸브(13c)를 포함한다. 제1메인공급밸브(13a), 제2메인공급밸브(13b), 제3메인공급밸브(13c)는 공압에 의해 개폐 상태가 조절되는 다양한 종류의 공압밸브로 예시될 수 있다. 제1메인공급밸브(13a), 제2메인공급밸브(13b), 제3메인공급밸브(13c)는 제1공급배관(12a), 제2공급배관(12b), 제3공급배관(12c)에 각각 개별적으로 연결된다. 제1메인공급밸브(13a), 제2메인공급밸브(13b), 제3메인공급밸브(13c)는 후술하는 공급제어부(14)에 의해 개폐 여부가 독립적으로 조절되며 제1공급배관(12a), 제2공급배관(12b), 제3공급배관(12c)을 통한 수소의 유동을 개별적으로 제한하거나 허용한다.
공급제어부(14)는 메인공급밸브(13)의 동작을 전반적으로 제어한다. 보다 구체적으로, 공급제어부(14)는 제1메인공급밸브(13a), 제2메인공급밸브(13b), 제3메인공급밸브(13c)의 개폐 동작을 독립적으로 제어하여 전달배관(15)에 대한 제1공급배관(12a), 제2공급배관(12b), 제3공급배관(12c)의 연결 상태를 조절할 수 있다. 공급제어부(14)는 전자 제어 유닛(ECU: Electronic Control Unit), 중앙 처리 장치(CPU: Central Processing Unit), 프로세서(Processor) 또는 SoC(System on Chip)를 포함하여 구성될 수 있으며, 운영 체제 또는 어플리케이션을 구동하여 복수의 하드웨어 또는 소프트웨어 구성요소들을 제어할 수 있고, 각종 데이터 처리 및 연산을 수행할 수 있다. 공급제어부(14)는 메모리에 저장된 적어도 하나의 명령을 실행시키고, 그 실행 결과 데이터를 메모리에 저장하도록 구성될 수 있다.
전달배관(15)은 공급배관(12)과 연결되고, 공급배관(12)을 따라 유동하는 수소를 후술하는 디스펜서유닛(20)으로 전달한다. 본 실시예에 따른 전달배관(15)은 내부가 비어있는 관의 형태를 갖도록 형성될 수 있다. 전달배관(15)은 일측이 공급제어부(14)를 매개로 공급배관(12)과 간접적으로 연결된다. 이와 달리 전달배관(15)은 일측이 공급배관(12)과 직접적으로 연결되는 것도 가능하다. 이 경우, 전달배관(15)은 단일하게 형성되어 일측이 제1공급배관(12a), 제2공급배관(12b), 제3공급배관(12c)의 타측에 동시에 연결될 수 있고, 이와 달리 복수개로 구비되어 제1공급배관(12a), 제2공급배관(12b), 제3공급배관(12c)의 타측에 개별적으로 연결되는 것도 가능하다. 전달배관(15)은 타측이 후술하는 디스펜서유닛(20)의 디스펜서본체(21)와 연결되어 디스펜서본체(21)의 내부로 수소를 전달한다.
디스펜서유닛(20)은 수소공급유닛(10) 및 수소 충전 보조장치(30)로부터 공급되는 수소를 차량(V)의 연료탱크(T)에 주입한다.
본 실시예에 따른 디스펜서유닛(20)은 디스펜서본체(21), 프리쿨러(22), 충전노즐(23), 브레이크어웨이(24), 통신모듈(25)을 포함한다.
디스펜서본체(21)는 수소공급유닛(10)의 전달배관(15) 및 수소 충전 보조장치(30)의 배출배관(130)과 연결되어 내부로 수소를 공급받는다. 디스펜서본체(21)의 내부에는 수소공급유닛(10) 및 수소 충전 보조장치(30)로부터 공급되는 수소의 유동을 안내할 수 있는 다양한 구조의 배관이 설치될 수 있다.
프리쿨러(22)는 디스펜서본체(21)로 공급된 수소를 냉각시킨다. 본 실시예에 따른 프리쿨러(22)는 냉매를 디스펜서본체(21)로 공급된 수소와 열교환시켜 수소를 냉각시킬 수 있는 다양한 종류의 열교환장치로 예시될 수 있다.
충전노즐(23)은 디스펜서본체(21)로 공급된 수소를 차량(V)의 연료탱크(T)로 주입한다. 본 실시예에 따른 충전노즐(23)은 일측이 디스펜서본체(21)와 연결되어 내부로 수소를 전달받고, 타측이 차량(V)의 리셉터클(R)에 착탈 가능하게 연결되어 연료탱크(T)로 수소를 주입하는 다양한 종류의 노즐 장치로 예시될 수 있다.
브레이크어웨이(24)는 디스펜서본체(21)와 충전노즐(23)의 사이에 구비된다. 브레이크어웨이(24)는 충전 중 차량(V)이 움직이는 경우와 같이 디스펜서본체(21)와 충전노즐(23)의 사이에 일정 크기 이상의 외력이 가해지면 디스펜서본체(21)와 충전노즐(23)을 상호 분리시켜 디스펜서본체(21) 또는 충전노즐(23)의 파손을 방지한다.
통신모듈(25)은 충전노즐(23)이 차량(V)의 리셉터클(R)과 연결됨에 따라, 차량(V)의 ECU 등과 같은 제어수단과 유선 또는 무선으로 연결되어 차량(V)으로부터 연료탱크(T)의 초기 압력값, 연료탱크(T)의 용량 등에 관한 데이터를 수신받는다. 또한, 통신모듈(25)은 공급제어부(14) 및 후술하는 개폐제어부(400)와 유선 또는 무선으로 연결되어 수신받은 정보를 공급제어부(14) 및 개폐제어부(400)로 전달한다.
수소 충전 보조장치(30)는 수소공급유닛(10)으로부터 수소를 공급받아 펄스 압력을 생성 및 저장하고, 생성된 펄스 압력을 디스펜서유닛(20)으로 전달한다. 즉, 수소 충전 보조장치(30)는 충전 개시 단계에서 디스펜서유닛(20)에 의해 차량(V)의 연료탱크(T)로 인가되는 펄스 압력을 충전 시작 전 미리 설정된 크기로 생성 및 저장하는 구성으로서 기능한다. 이에 따라 수소 충전 보조장치(30)는 기존 수소충전소마다 서로 상이한 크기를 갖는 펄스 압력을 규격화할 수 있고, 펄스 압력을 통해 측정되는 연료탱크(T)의 초기 압력값, 용량 등과 같은 데이터의 정확성을 향상시킬 수 있다.
본 실시예에 따른 수소 충전 보조장치(30)는 압력저장부(100), 출입조절부(200), 압력조절부(300), 개폐제어부(400)를 포함한다.
압력저장부(100)는 수소공급유닛(10)으로부터 수소를 공급받아 저장한다.
본 실시예에 따른 압력저장부(100)는 버퍼탱크(110), 분기배관(120), 배출배관(130)을 포함한다.
버퍼탱크(110)는 내부에 펄스 압력이 생성되도록 수소를 압축된 상태로 저장할 수 있는 다양한 종류의 압력저장용기로 예시될 수 있다. 버퍼탱크(110)의 내부에는 버퍼탱크(110)의 내부 압력을 측정할 수 있는 압력센서가 설치될 수 있다.
분기배관(120)은 수소공급유닛(10)으로부터 분기되고, 수소공급유닛(10)으로부터 버퍼탱크(110)로 유입되는 수소의 유동을 안내한다. 본 실시예에 따른 분기배관(120)는 내부가 비어있는 관의 형태를 갖도록 형성될 수 있다. 분기배관(120)은 일측이 공급배관(12), 보다 구체적으로 제1공급배관(12a)에 연결되고, 타측이 버퍼탱크(110)의 입구측에 연결된다. 분기배관(120)은 후술하는 공급조절밸브(210)의 개방 시 공급배관(12)을 따라 유동하는 수소를 버퍼탱크(110)로 유입시킨다. 이 경우, 분기배관(120)의 일측은 제1메인공급밸브(13a)의 전단측에 연결될 수 있다. 이에 따라 분기배관(120)은 제1메인공급밸브(13a)의 개폐 여부에 관계없이 공급배관(12)을 따라 유동하는 수소를 버퍼탱크(110)로 유입시킬 수 있다.
배출배관(130)은 버퍼탱크(110)와 디스펜서유닛(20)의 사이에 구비되고, 버퍼탱크(110)로부터 배출되어 디스펜서유닛(20)으로 전달되는 수소의 유동을 안내한다. 본 실시예에 따른 배출배관(130)은 내부가 비어있는 관의 형태를 갖도록 형성될 수 있다. 배출배관(130)은 일측이 버퍼탱크(110)의 출구측에 연결되고, 타측이 디스펜서본체(21)와 연결된다. 배출배관(130)은 후술하는 배출조절밸브(220)의 개방 시 버퍼탱크(110)에 저장된 수소를 디스펜서본체(21)의 내부로 유입시킨다. 배출배관(130)에는 배출배관(130)을 따라 유동하는 수소가 디스펜서유닛(20)으로부터 버퍼탱크(110)로 역류하는 것을 방지하기 위한 체크밸브(131)가 설치될 수 있다.
출입조절부(200)는 압력저장부(100)에 대한 수소의 출입을 단속한다.
본 실시예에 따른 출입조절부(200)는 공급조절밸브(210), 배출조절밸브(220)를 포함한다.
공급조절밸브(210)는 압력저장부(100)의 일측에 연결되고, 압력저장부(100)로 유입되는 수소의 유동을 제한하거나 허용한다. 본 실시예에 따른 공급조절밸브(210)는 공압에 의해 개폐 상태가 조절되는 다양한 종류의 공압밸브로 예시될 수 있다. 공급조절밸브(210)는 버퍼탱크(110)의 입구측에 연결된 분기배관(120)에 연결된다. 공급조절밸브(210)는 후술하는 개폐제어부(400)에 의해 개폐 동작이 조절되며 분기배관(120)을 통해 수소가 버퍼탱크(110)로 유입되는 것을 제한하거나 허용한다.
배출조절밸브(220)는 압력저장부(100)의 타측에 연결되고, 압력저장부(100)로부터 배출되는 수소의 유동을 제한하거나 허용한다. 본 실시예에 따른 배출조절밸브(220)는 공압에 의해 개폐 상태가 조절되는 다양한 종류의 공압밸브로 예시될 수 있다. 배출조절밸브(220)는 버퍼탱크(110)의 출구측에 연결된 배출배관(130)에 연결된다. 배출조절밸브(220)는 후술하는 개폐제어부(400)에 의해 개폐 동작이 제어되며 수소가 버퍼탱크(110)로부터 배출배관(130)으로 배출되는 것을 제한하거나 허용한다.
압력조절부(300)는 압력저장부(100)로 유입되거나 압력저장부(100)로부터 배출되는 수소의 압력값을 조절한다.
본 실시예에 따른 압력조절부(300)는 공급압력조절부(310), 배출압력조절부(320)를 포함한다.
공급압력조절부(310)는 압력저장부(100)의 일측에 연결되고, 압력저장부(100)로 유입되는 수소의 압력을 설정공급압력으로 유지시킨다. 이에 따라 공급압력조절부(310)는 수소공급유닛(10)에 저장된 수소의 압력과 관계 없이 항상 일정한 압력의 수소가 압력저장부(100)로 유입되도록 할 수 있다. 본 실시예에 따른 공급압력조절부(310)는 후단측으로 배출되는 유체의 압력을 일정하게 유지시키는 다양한 종류의 레귤레이터 밸브로 예시될 수 있다. 공급압력조절부(310)는 버퍼탱크(110)의 입구측에 연결된 분기배관(120)에 연결된다. 공급압력조절부(310)는 전단측이 수소공급유닛(10)을 향하고, 후단측이 버퍼탱크(110)를 향하도록 배치된다. 공급압력조절부(310)에 의해 유지되는 설정공급압력은 제1저장탱크(11a)에 저장된 수소의 압력보다 작은 범위 내에서 다양한 값으로 설계 변경이 가능하다.
배출압력조절부(320)는 압력저장부(100)의 타측에 연결되고, 압력저장부(100)로부터 배출되는 수소의 압력을 설정배출압력 이상으로 유지시킨다. 이에 따라 배출압력조절부(320)는 압력저장부(100)로부터 배출되는 수소의 압력이 과도하게 낮아져 펄스 압력이 연료탱크(T)로 인가되지 못하는 현상을 방지할 수 있다. 본 실시예에 따른 배출압력조절부(320)는 전단측으로 유입되는 유체의 압력이 설정 크기를 초과하면 후단측으로 유체를 배출시키는 다양한 종류의 역압력 조절기(BPR, Back Pressure Regulator)로 예시될 수 있다. 배출압력조절부(320)는 버퍼탱크(110)의 출구측에 연결된 배출배관(130)에 연결된다. 배출압력조절부(320)는 전단측이 버퍼탱크(110)를 향하고, 후단측이 디스펜서유닛(20)을 향하도록 배치된다. 배출압력조절부(320)에 의해 유지되는 설정배출압력은 설정공급압력보다 작은 범위 내에서 다양한 값으로 설계 변경이 가능하다.
개폐제어부(400)는 출입조절부(200)의 동작을 전반적으로 제어한다. 보다 구체적으로, 개폐제어부(400)는 공급조절밸브(210) 및 배출조절밸브(220)와 연결되어 공급조절밸브(210) 및 배출조절밸브(220)의 개폐 동작을 개별적으로 제어한다. 개폐제어부(400)는 차량(V)과의 통신을 수행하는 통신모듈(25)을 통해 연료탱크(T)의 초기 압력값 및 연료탱크(T)의 용량에 대한 데이터를 전달받을 수 있다. 개폐제어부(400)는 전자 제어 유닛(ECU: Electronic Control Unit), 중앙 처리 장치(CPU: Central Processing Unit), 프로세서(Processor) 또는 SoC(System on Chip)를 포함하여 구성될 수 있으며, 운영 체제 또는 어플리케이션을 구동하여 복수의 하드웨어 또는 소프트웨어 구성요소들을 제어할 수 있고, 각종 데이터 처리 및 연산을 수행할 수 있다. 개폐제어부(400)는 메모리에 저장된 적어도 하나의 명령을 실행시키고, 그 실행 결과 데이터를 메모리에 저장하도록 구성될 수 있다.
이하에서는 본 발명의 제1실시예에 따른 수소 충전 시스템의 동작을 상세하게 설명하도록 한다.
차량(V)의 충전에 앞서 개폐제어부(400)는 배출조절밸브(220)가 폐쇄된 상태에서 공급조절밸브(210)를 개방한다.
공급조절밸브(210)가 개방됨에 따라 제1저장탱크(11a)에 저장된 수소는 분기배관(120)을 따라 유동되며 버퍼탱크(110)의 내부로 유입된다.
이 경우, 공급압력조절부(310)는 제1저장탱크(11a)의 압력값과 관계 없이 버퍼탱크(110)의 내부로 유입되는 압력을 설정공급압력으로 유지시킨다.
버퍼탱크(110)의 내부로 수소가 유입됨에 따라, 버퍼탱크(110)의 내부에는 펄스 압력이 생성된다.
버퍼탱크(110)의 내부 압력이 설정공급압력과 일치됨에 따라 개폐제어부(400)는 공급조절밸브(210)를 폐쇄한다.
이후, 충전노즐(23)이 차량(V)의 리셉터클(R)과 연결됨에 따라 개폐제어부(400)는 공급조절밸브(210)가 폐쇄된 상태에서 배출조절밸브(220)를 개방한다.
배출조절밸브(220)가 개방됨에 따라 버퍼탱크(110)의 내부에 저장된 수소는 디스펜서본체(21), 충전노즐(23)을 순차적으로 거쳐 연료탱크(T)의 내부로 주입되고, 버퍼탱크(110)에 생성된 펄스 압력이 연료탱크(T)의 내부로 인가된다.
이 경우, 배출압력조절부(320)는 버퍼탱크(110)로부터 배출되는 수소의 압력을 설정배출압력 이상으로 유지시킴으로써 버퍼탱크(110)에 저장된 수소가 모두 연료탱크(T)의 내부로 주입되도록 할 수 있다.
개폐제어부(400)는 버퍼탱크(110)의 내부 압력이 설정배출압력과 일치됨에 따라 배출조절밸브(220)를 폐쇄한다.
이후, 공급제어부(14)는 펄스 압력을 통해 측정된 연료탱크(T)의 초기 압력값 및 연료탱크(T)의 용량에 대한 정보를 바탕으로 제1메인공급밸브(13a), 제2메인공급밸브(13b), 제3메인공급밸브(13c)의 개폐 동작을 제어하고, 디스펜서유닛(20)은 연료탱크(T)로 수소를 충전한다.
이하에서는 본 발명의 제2실시예에 따른 수소 충전 시스템의 구성을 상세하게 설명하도록 한다.
도 2는 본 발명의 제2실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 2를 참조하면, 본 실시예에 따른 수소 충전 시스템은 수소공급유닛(10), 디스펜서유닛(20), 수소 충전 보조장치(30)를 포함한다.
본 실시예에 따른 수소 충전 시스템은 본 발명의 제1실시예에 따른 수소 충전 시스템과 수소 충전 보조장치(30)의 세부 구성만을 달리하도록 구성되는 바, 이하에서는 설명의 편의를 위해 본 발명의 제1실시예에 따른 수소 충전 시스템과 중복되는 설명은 생략하기로 한다.
본 실시예에 따른 수소 충전 보조장치(30)는 압력저장부(100), 출입조절부(200), 압력조절부(300), 개폐제어부(400)를 포함한다.
압력저장부(100)는 수소공급유닛(10)으로부터 수소를 공급받아 저장한다.
본 실시예에 따른 압력저장부(100)는 버퍼탱크(110), 분기배관(120), 배출배관(130)을 포함한다.
버퍼탱크(110)는 내부에 펄스 압력이 생성되도록 수소를 압축된 상태로 저장할 수 있는 다양한 종류의 압력저장용기로 예시될 수 있다.
본 실시예에 따른 버퍼탱크(110)는 제1버퍼탱크(111), 제2버퍼탱크(112)를 포함한다. 제1버퍼탱크(111)와 제2버퍼탱크(112)는 상호 이격되게 배치된다. 제1버퍼탱크(111)와 제2버퍼탱크(112)는 동일한 압력 조건하에서 서로 다른 저장 용량을 갖도록 형성된다. 예를 들어 제2버퍼탱크(112)는 제1버퍼탱크(111)보다 작은 저장용량을 갖도록 형성될 수 있다. 제1버퍼탱크(111)와 제2버퍼탱크(112)의 내부에는 제1버퍼탱크(111)와 제2버퍼탱크(112)의 내부 압력을 측정할 수 있는 압력센서가 개별적으로 설치될 수 있다.
분기배관(120)은 수소공급유닛(10)으로부터 분기되고, 수소공급유닛(10)으로부터 버퍼탱크(110)로 유입되는 수소의 유동을 안내한다. 본 실시예에 따른 분기배관(120)는 내부가 비어있는 관의 형태를 갖도록 형성될 수 있다. 분기배관(120)은 일측이 공급배관(12), 보다 구체적으로 제1공급배관(12a)에 연결된다. 이 경우, 분기배관(120)의 일측은 제1메인공급밸브(13a)의 전단측에 연결될 수 있다. 이에 따라 분기배관(120)은 제1메인공급밸브(13a)의 개폐 여부에 관계없이 공급배관(12)을 따라 유동하는 수소를 제1버퍼탱크(111)와 제2버퍼탱크(112)로 유입시킬 수 있다.
분기배관(120)의 타측에는 제1버퍼유입배관(120a), 제2버퍼유입배관(120b)이 형성된다. 본 실시예에 따른 제1버퍼유입배관(120a), 제2버퍼유입배관(120b)은 일측이 분기배관(120)의 타측과 연결되고, 타측이 분기배관(120)으로부터 분기되는 관의 형태를 갖도록 형성될 수 있다. 제1버퍼유입배관(120a), 제2버퍼유입배관(120b)의 타측은 각각 제1버퍼탱크(111)와 제2버퍼탱크(112)의 입구측에 연결된다. 제1버퍼유입배관(120a), 제2버퍼유입배관(120b)은 분기배관(120)을 따라 유동하는 수소를 분기시켜 각각 제1버퍼탱크(111)와 제2버퍼탱크(112)로 유입시킨다.
배출배관(130)은 버퍼탱크(110)와 디스펜서유닛(20)의 사이에 구비되고, 버퍼탱크(110)로부터 배출되어 디스펜서유닛(20)으로 전달되는 수소의 유동을 안내한다.
본 실시예에 따른 배출배관(130)은 내부가 비어있는 관의 형태를 갖도록 형성될 수 있다. 배출배관(130)은 일측이 버퍼탱크(110)와 연결된다. 보다 구체적으로, 배출배관(130)의 일측에는 제1버퍼배출배관(130a), 제2버퍼배출배관(130b)이 형성된다. 본 실시예에 따른 제1버퍼배출배관(130a), 제2버퍼배출배관(130b)은 일측이 각각 제1버퍼탱크(111)와 제2버퍼탱크(112)의 출구측에 연결되고, 타측이 배출배관(130)의 일측으로부터 분기되는 관의 형태를 갖도록 형성될 수 있다. 제1버퍼배출배관(130a), 제2버퍼배출배관(130b)은 제1버퍼탱크(111)와 제2버퍼탱크(112)에 저장된 수소를 배출배관(130)의 일측으로 유입시킨다. 배출배관(130)은 타측이 디스펜서본체(21)와 연결된다. 배출배관(130)에는 배출배관(130)을 따라 유동하는 수소가 디스펜서유닛(20)으로부터 버퍼탱크(110)로 역류하는 것을 방지하기 위한 체크밸브(131)가 설치될 수 있다.
출입조절부(200)는 압력저장부(100)에 대한 수소의 출입을 단속한다.
본 실시예에 따른 출입조절부(200)는 공급조절밸브(210), 배출조절밸브(220)를 포함한다.
공급조절밸브(210)는 압력저장부(100)의 일측에 연결되고, 압력저장부(100)로 유입되는 수소의 유동을 제한하거나 허용한다. 본 실시예에 따른 공급조절밸브(210)는 공압에 의해 개폐 상태가 조절되는 다양한 종류의 공압밸브로 예시될 수 있다.
본 실시예에 따른 공급조절밸브(210)는 제1공급조절밸브(211), 제2공급조절밸브(212)를 포함한다.
제1공급조절밸브(211)는 제1버퍼탱크(111)의 입구측에 연결된 제1버퍼유입배관(120a)에 연결된다. 제1공급조절밸브(211)는 후술하는 개폐제어부(400)에 의해 개폐 여부가 조절되며 제1버퍼유입배관(120a)을 통해 수소가 제1버퍼탱크(111)로 유입되는 것을 제한하거나 허용한다.
제2공급조절밸브(212)는 제2버퍼탱크(112)의 입구측에 연결된 제2버퍼유입배관(120b)에 연결된다. 제2공급조절밸브(212)는 후술하는 개폐제어부(400)에 의해 개폐 여부가 조절되며 제2버퍼유입배관(120b)을 통해 수소가 제2버퍼탱크(112)로 유입되는 것을 제한하거나 허용한다.
배출조절밸브(220)는 압력저장부(100)의 타측에 연결되고, 압력저장부(100)로부터 배출되는 수소의 유동을 제한하거나 허용한다. 본 실시예에 따른 배출조절밸브(220)는 공압에 의해 개폐 상태가 조절되는 다양한 종류의 공압밸브로 예시될 수 있다.
본 실시예에 따른 배출조절밸브(220)는 제1배출조절밸브(221), 제2배출조절밸브(222)를 포함한다.
제1배출조절밸브(221)는 제1버퍼탱크(111)의 출구측에 연결된 제1버퍼배출배관(130a)에 연결된다. 제1배출조절밸브(221)는 후술하는 개폐제어부(400)에 의해 개폐 여부가 조절되며 수소가 제1버퍼탱크(111)로부터 배출배관(130)으로 배출되는 것을 제한하거나 허용한다.
제2배출조절밸브(222)는 제2버퍼탱크(112)의 출구측에 연결된 제2버퍼배출배관(130b)에 연결된다. 제2배출조절밸브(222)는 후술하는 개폐제어부(400)에 의해 개폐 여부가 조절되며 수소가 제2버퍼탱크(112)로부터 배출배관(130)으로 배출되는 것을 제한하거나 허용한다.
압력조절부(300)는 압력저장부(100)로 유입되거나 압력저장부(100)로부터 배출되는 수소의 압력값을 조절한다.
본 실시예에 따른 압력조절부(300)는 공급압력조절부(310), 배출압력조절부(320)를 포함한다.
공급압력조절부(310)는 압력저장부(100)의 일측에 연결되고, 압력저장부(100)로 유입되는 수소의 압력을 설정공급압력으로 유지시킨다. 이에 따라 공급압력조절부(310)는 수소공급유닛(10)에 저장된 수소의 압력과 관계 없이 항상 일정한 압력의 수소가 압력저장부(100)로 유입되도록 할 수 있다. 본 실시예에 따른 공급압력조절부(310)는 후단측으로 배출되는 유체의 압력을 일정하게 유지시키는 다양한 종류의 레귤레이터 밸브로 예시될 수 있다. 공급압력조절부(310)는 제1버퍼탱크(111) 및 제2버퍼탱크(112)의 입구측에 연결된 분기배관(120)에 연결된다. 공급압력조절부(310)는 전단측이 수소공급유닛(10)을 향하고, 후단측이 제1버퍼탱크(111) 및 제2버퍼탱크(112)를 향하도록 배치된다. 공급압력조절부(310)에 의해 유지되는 설정공급압력은 제1저장탱크(11a)에 저장된 수소의 압력보다 작은 범위 내에서 다양한 값으로 설계 변경이 가능하다.
배출압력조절부(320)는 압력저장부(100)의 타측에 연결되고, 압력저장부(100)로부터 배출되는 수소의 압력을 설정배출압력 이상으로 유지시킨다. 이에 따라 배출압력조절부(320)는 압력저장부(100)로부터 배출되는 수소의 압력이 과도하게 낮아져 펄스 압력이 연료탱크(T)로 인가되지 못하는 현상을 방지할 수 있다. 본 실시예에 따른 배출압력조절부(320)는 전단측으로 유입되는 유체의 압력이 설정 크기를 초과하면 후단측으로 유체를 배출시키는 다양한 종류의 역압력 조절기(BPR, Back Pressure Regulator)로 예시될 수 있다. 배출압력조절부(320)는 제1버퍼탱크(111) 및 제2버퍼탱크(112)의 출구측에 연결된 배출배관(130)에 연결된다. 배출압력조절부(320)는 전단측이 제1버퍼탱크(111) 및 제2버퍼탱크(112)를 향하고, 후단측이 디스펜서유닛(20)을 향하도록 배치된다. 배출압력조절부(320)에 의해 유지되는 설정배출압력은 설정공급압력보다 작은 범위 내에서 다양한 값으로 설계 변경이 가능하다.
개폐제어부(400)는 출입조절부(200)의 동작을 전반적으로 제어한다. 보다 구체적으로, 개폐제어부(400)는 제1공급조절밸브(211), 제2공급조절밸브(212), 제1배출조절밸브(221) 및 제2배출조절밸브(222)와 연결되어 제1공급조절밸브(211), 제2공급조절밸브(212), 제1배출조절밸브(221) 및 제2배출조절밸브(222)의 개폐 동작을 개별적으로 제어한다. 개폐제어부(400)는 차량(V)과의 통신을 수행하는 통신모듈(25)을 통해 연료탱크(T)의 초기 압력값 및 연료탱크(T)의 용량에 대한 데이터를 전달받을 수 있다.
개폐제어부(400)는 통신모듈(25)과 차량(V)의 통신 상태가 원활한 경우, 연료탱크(T)의 용량에 기초하여 제1배출조절밸브(221) 및 제2배출조절밸브(222)의 개폐 동작을 제어할 수 있다. 보다 구체적으로, 개폐제어부(400)는 메모리에 저장된 테이블을 바탕으로 통신모듈(25)로부터 전달받은 연료탱크(T)의 용량이 제1버퍼탱크(111)에 대응되는 경우 제1배출조절밸브(221)를 개방하고, 통신모듈(25)로부터 전달받은 연료탱크(T)의 용량이 제2버퍼탱크(112)에 대응되는 경우 제2배출조절밸브(222)를 개방한다. 이에 따라 개폐제어부(400)는 펄스 압력 인가 시 연료탱크(T)의 용량에 대응되는 용량의 수소를 연료탱크(T)로 주입시킴으로써 연료탱크(T)로 정량화된 펄스 압력을 인가할 수 있고, 과도한 용량의 수소가 연료탱크(T)로 주입됨에 따라 발생되는 연료탱크(T)의 과열을 방지할 수 있다.
한편, 개폐제어부(400)는 통신모듈(25)과 차량(V)의 통신 상태가 원활하지 않은 경우, 제2배출조절밸브(222) 및 제1배출조절밸브(221)를 순차적으로 개방할 수 있다. 이에 따라 개폐제어부(400)는 상대적으로 작은 저장 용량을 갖는 제2버퍼탱크(112)에 저장된 수소를 연료탱크(T)에 우선적으로 주입시킴으로써 과도한 용량의 수소가 연료탱크(T)로 주입됨에 따라 발생되는 연료탱크(T)의 과열을 방지할 수 있다.
개폐제어부(400)는 전자 제어 유닛(ECU: Electronic Control Unit), 중앙 처리 장치(CPU: Central Processing Unit), 프로세서(Processor) 또는 SoC(System on Chip)를 포함하여 구성될 수 있으며, 운영 체제 또는 어플리케이션을 구동하여 복수의 하드웨어 또는 소프트웨어 구성요소들을 제어할 수 있고, 각종 데이터 처리 및 연산을 수행할 수 있다. 개폐제어부(400)는 메모리에 저장된 적어도 하나의 명령을 실행시키고, 그 실행 결과 데이터를 메모리에 저장하도록 구성될 수 있다.
이하에서는 본 발명의 제2실시예에 따른 수소 충전 시스템의 동작을 상세하게 설명하도록 한다.
차량(V)의 충전에 앞서 개폐제어부(400)는 제1배출조절밸브(221) 및 제2배출조절밸브(222)가 폐쇄된 상태에서 제1공급조절밸브(211) 및 제2공급조절밸브(212)를 개방한다.
제1공급조절밸브(211) 및 제2공급조절밸브(212)가 개방됨에 따라 제1저장탱크(11a)을 통해 분기배관(120)으로 유입된 수소는 제1버퍼유입배관(120a) 및 제2버퍼유입배관(120b)을 통해 각각 제1버퍼탱크(111) 및 제2버퍼탱크(112)의 내부로 유입된다.
이 경우, 공급압력조절부(310)는 제1저장탱크(11a)의 압력값과 관계 없이 제1버퍼탱크(111) 및 제2버퍼탱크(112)의 내부로 유입되는 압력을 설정공급압력으로 유지시킨다.
제1버퍼탱크(111) 및 제2버퍼탱크(112)의 내부로 수소가 유입됨에 따라, 제1버퍼탱크(111) 및 제2버퍼탱크(112)의 내부에는 펄스 압력이 생성된다.
제1버퍼탱크(111) 및 제2버퍼탱크(112)의 내부 압력이 설정공급압력과 일치됨에 따라 개폐제어부(400)는 제1공급조절밸브(211) 및 제2공급조절밸브(212)를 폐쇄한다.
이후, 충전노즐(23)이 차량(V)의 리셉터클(R)과 연결되고, 개폐제어부(400)는 통신모듈(25)을 통해 연료탱크(T)의 용량에 대한 데이터를 전달받는다.
개폐제어부(400)는 통신모듈(25)과 차량(V)의 통신 상태가 원활한 경우, 전달받은 연료탱크(T)의 용량에 기초하여 제1배출조절밸브(221) 및 제2배출조절밸브(222)의 개폐 동작을 제어한다. 보다 구체적으로, 개폐제어부(400)는 메모리에 저장된 테이블을 바탕으로 통신모듈(25)로부터 전달받은 연료탱크(T)의 용량이 제1버퍼탱크(111)에 대응되는 경우 제1배출조절밸브(221)를 개방함과 동시에 제2배출조절밸브(222)를 폐쇄한다. 또한 개폐제어부(400)는 통신모듈(25)로부터 전달받은 연료탱크(T)의 용량이 제2버퍼탱크(112)에 대응되는 경우 제2배출조절밸브(222)를 개방함과 동시에 제1배출조절밸브(221)를 폐쇄한다.
한편, 개폐제어부(400)는 통신모듈(25)과 차량(V)의 통신 상태가 원활하지 않은 경우, 제2배출조절밸브(222) 및 제1배출조절밸브(221)를 순차적으로 개방할 수 있다.
제1배출조절밸브(221) 또는 제2배출조절밸브(222)가 개방됨에 따라 제1버퍼탱크(111) 또는 제2버퍼탱크(112)의 내부에 저장된 수소는 디스펜서본체(21), 충전노즐(23)을 순차적으로 거쳐 연료탱크(T)의 내부로 주입되고, 펄스 압력이 연료탱크(T)의 내부로 인가된다.
이 경우, 배출압력조절부(320)는 제1버퍼탱크(111) 또는 제2버퍼탱크(112)로부터 배출되는 수소의 압력을 설정배출압력 이상으로 유지시킴으로써 제1버퍼탱크(111) 또는 제2버퍼탱크(112)에 저장된 수소가 모두 연료탱크(T)의 내부로 주입되도록 할 수 있다.
개폐제어부(400)는 버퍼탱크(110)의 내부 압력이 설정배출압력과 일치됨에 따라 제1배출조절밸브(221) 또는 제2배출조절밸브(222)를 폐쇄한다.
이후, 공급제어부(14)는 펄스 압력을 통해 측정된 연료탱크(T)의 초기 압력값 및 연료탱크(T)의 용량에 대한 정보를 바탕으로 제1메인공급밸브(13a), 제2메인공급밸브(13b), 제3메인공급밸브(13c)의 개폐 동작을 제어하고, 디스펜서유닛(20)은 연료탱크(T)로 수소를 충전한다.
이하에서는 본 발명의 제3실시예에 따른 수소 충전 시스템의 구성을 상세하게 설명하도록 한다.
도 3은 본 발명의 제3실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 3을 참조하면, 본 실시예에 따른 수소 충전 시스템은 수소공급유닛(10), 디스펜서유닛(20), 수소 충전 보조장치(30)를 포함한다.
본 실시예에 따른 수소 충전 시스템은 본 발명의 제1실시예에 따른 수소 충전 시스템과 수소 충전 보조장치(30)의 세부 구성만을 달리하도록 구성되는 바, 이하에서는 설명의 편의를 위해 본 발명의 제1실시예에 따른 수소 충전 시스템과 중복되는 설명은 생략하기로 한다.
본 실시예에 따른 수소 충전 보조장치(30)는 압력저장부(100), 출입조절부(200), 압력조절부(300), 개폐제어부(400)를 포함한다.
압력저장부(100)는 수소공급유닛(10)으로부터 수소를 공급받아 저장한다.
본 실시예에 따른 압력저장부(100)는 버퍼탱크(110), 분기배관(120), 배출배관(130)을 포함한다.
버퍼탱크(110)는 내부에 펄스 압력이 생성되도록 수소를 압축된 상태로 저장할 수 있는 다양한 종류의 압력저장용기로 예시될 수 있다. 버퍼탱크(110)의 내부에는 버퍼탱크(110)의 내부 압력을 측정할 수 있는 압력센서가 설치될 수 있다.
분기배관(120)은 수소공급유닛(10)으로부터 분기되고, 수소공급유닛(10)으로부터 버퍼탱크(110)로 유입되는 수소의 유동을 안내한다. 본 실시예에 따른 분기배관(120)는 내부가 비어있는 관의 형태를 갖도록 형성될 수 있다. 분기배관(120)은 일측이 공급배관(12), 보다 구체적으로 제1공급배관(12a)에 연결되고, 타측이 버퍼탱크(110)의 입구측에 연결된다. 분기배관(120)은 후술하는 공급조절밸브(210)의 개방 시 공급배관(12)을 따라 유동하는 수소를 버퍼탱크(110)로 유입시킨다. 이 경우, 분기배관(120)의 일측은 제1메인공급밸브(13a)의 전단측에 연결될 수 있다. 이에 따라 분기배관(120)은 제1메인공급밸브(13a)의 개폐 여부에 관계없이 공급배관(12)을 따라 유동하는 수소를 버퍼탱크(110)로 유입시킬 수 있다.
배출배관(130)은 버퍼탱크(110)와 디스펜서유닛(20)의 사이에 구비되고, 버퍼탱크(110)로부터 배출되어 디스펜서유닛(20)으로 전달되는 수소의 유동을 안내한다.
본 실시예에 따른 배출배관(130)은 내부가 비어있는 관의 형태를 갖도록 형성될 수 있다. 배출배관(130)은 일측이 버퍼탱크(110)와 연결된다. 보다 구체적으로, 배출배관(130)의 일측에는 제1배출분기배관(130c), 제2배출분기배관(130d)이 형성된다. 본 실시예에 따른 제1배출분기배관(130c), 제2배출분기배관(130d)은 일측이 각각 버퍼탱크(110)의 출구측에 연결되고, 타측이 배출배관(130)의 일측으로부터 분기되는 관의 형태를 갖도록 형성될 수 있다. 제1배출분기배관(130c), 제2배출분기배관(130d)에는 제1배출분기배관(130c), 제2배출분기배관(130d)을 따라 유동하는 수소가 디스펜서유닛(20)으로부터 버퍼탱크(110)로 역류하는 것을 방지하기 위한 제1체크밸브(131a), 제2체크밸브(131b)가 설치될 수 있다. 제1배출분기배관(130c), 제2배출분기배관(130d)은 버퍼탱크(110)에 저장된 수소를 배출배관(130)의 일측으로 유입시킨다. 배출배관(130)은 타측이 디스펜서본체(21)와 연결된다.
출입조절부(200)는 압력저장부(100)에 대한 수소의 출입을 단속한다.
본 실시예에 따른 출입조절부(200)는 공급조절밸브(210), 배출조절밸브(220)를 포함한다.
공급조절밸브(210)는 압력저장부(100)의 일측에 연결되고, 압력저장부(100)로 유입되는 수소의 유동을 제한하거나 허용한다. 본 실시예에 따른 공급조절밸브(210)는 공압에 의해 개폐 상태가 조절되는 다양한 종류의 공압밸브로 예시될 수 있다. 공급조절밸브(210)는 버퍼탱크(110)의 입구측에 연결된 분기배관(120)에 연결된다. 공급조절밸브(210)는 후술하는 개폐제어부(400)에 의해 개폐 동작이 조절되며 분기배관(120)을 통해 수소가 버퍼탱크(110)로 유입되는 것을 제한하거나 허용한다.
배출조절밸브(220)는 압력저장부(100)의 타측에 연결되고, 압력저장부(100)로부터 배출되는 수소의 유동을 제한하거나 허용한다. 본 실시예에 따른 배출조절밸브(220)는 공압에 의해 개폐 상태가 조절되는 다양한 종류의 공압밸브로 예시될 수 있다.
본 실시예에 따른 배출조절밸브(220)는 제1배출조절밸브(223), 제2배출조절밸브(224)를 포함한다.
제1배출조절밸브(223)는 버퍼탱크(110)의 출구측에 연결된 제1배출분기배관(130c)에 연결된다. 제1배출조절밸브(223)는 후술하는 개폐제어부(400)에 의해 개폐 여부가 조절되며 수소가 버퍼탱크(110)로부터 배출배관(130)으로 배출되는 것을 제한하거나 허용한다.
제2배출조절밸브(224)는 버퍼탱크(110)의 출구측에 연결된 제2배출분기배관(130d)에 연결된다. 제2배출조절밸브(222)는 후술하는 개폐제어부(400)에 의해 개폐 여부가 조절되며 수소가 버퍼탱크(110)로부터 배출배관(130)으로 배출되는 것을 제한하거나 허용한다.
압력조절부(300)는 압력저장부(100)로 유입되거나 압력저장부(100)로부터 배출되는 수소의 압력값을 조절한다.
본 실시예에 따른 압력조절부(300)는 공급압력조절부(310), 배출압력조절부(320)를 포함한다.
공급압력조절부(310)는 압력저장부(100)의 일측에 연결되고, 압력저장부(100)로 유입되는 수소의 압력을 설정공급압력으로 유지시킨다. 이에 따라 공급압력조절부(310)는 수소공급유닛(10)에 저장된 수소의 압력과 관계 없이 항상 일정한 압력의 수소가 압력저장부(100)로 유입되도록 할 수 있다. 본 실시예에 따른 공급압력조절부(310)는 후단측으로 배출되는 유체의 압력을 일정하게 유지시키는 다양한 종류의 레귤레이터 밸브로 예시될 수 있다. 공급압력조절부(310)는 버퍼탱크(110)의 입구측에 연결된 분기배관(120)에 연결된다. 공급압력조절부(310)는 전단측이 수소공급유닛(10)을 향하고, 후단측이 버퍼탱크(110)를 향하도록 배치된다. 공급압력조절부(310)에 의해 유지되는 설정공급압력은 제1저장탱크(11a)에 저장된 수소의 압력보다 작은 범위 내에서 다양한 값으로 설계 변경이 가능하다.
배출압력조절부(320)는 압력저장부(100)의 타측에 연결되고, 압력저장부(100)로부터 배출되는 수소의 압력을 설정배출압력 이상으로 유지시킨다. 이에 따라 배출압력조절부(320)는 압력저장부(100)로부터 배출되는 수소의 압력이 과도하게 낮아져 펄스 압력이 연료탱크(T)로 인가되지 못하는 현상을 방지할 수 있다. 배출압력조절부(320)는 전단측으로 유입되는 유체의 압력이 설정 크기를 초과하면 후단측으로 유체를 배출시키는 다양한 종류의 역압력 조절기(BPR, Back Pressure Regulator)로 예시될 수 있다.
본 실시예에 따른 배출압력조절부(320)는 제1배출압력조절부(321), 제2배출압력조절부(322)를 포함한다.
제1배출압력조절부(321)는 압력저장부(100)의 타측에 연결되고, 압력저장부(100)로부터 배출되는 수소의 압력을 제1설정배출압력 이상으로 유지시킨다. 본 실시예에 따른 제1배출압력조절부(321)는 버퍼탱크(110)의 출구측에 연결된 제1배출분기배관(130c)에 연결된다. 제1배출압력조절부(321)는 전단측이 버퍼탱크(110)를 향하도록 배치되어 제1배출조절밸브(221)의 후단측과 연결된다. 제1배출압력조절부(321)는 후단측이 디스펜서유닛(20)을 향하도록 배치된다. 배출압력조절부(320)에 의해 유지되는 제1설정배출압력은 설정공급압력보다 작은 범위 내에서 다양한 값으로 설계 변경이 가능하다.
제2배출압력조절부(322)는 압력저장부(100)의 타측에 연결되고, 압력저장부(100)로부터 배출되는 수소의 압력을 제2설정배출압력 이상으로 유지시킨다. 본 실시예에 따른 제2배출압력조절부(322)는 버퍼탱크(110)의 출구측에 연결된 제2배출분기배관(130d)에 연결된다. 제2배출압력조절부(322)는 전단측이 버퍼탱크(110)를 향하도록 배치되어 제2배출조절밸브(222)의 후단측과 연결된다. 제2배출압력조절부(322)는 후단측이 디스펜서유닛(20)을 향하도록 배치된다. 제2배출압력조절부(322)에 의해 유지되는 제2설정배출압력은 설정공급압력 및 제1설정배출압력보다 작은 범위 내에서 다양한 값으로 설계 변경이 가능하다.
개폐제어부(400)는 출입조절부(200)의 동작을 전반적으로 제어한다. 보다 구체적으로, 개폐제어부(400)는 공급조절밸브(210), 제1배출조절밸브(223) 및 제2배출조절밸브(224)와 연결되어 공급조절밸브(210), 제1배출조절밸브(223) 및 제2배출조절밸브(224)의 개폐 동작을 개별적으로 제어한다. 개폐제어부(400)는 차량(V)과의 통신을 수행하는 통신모듈(25)을 통해 연료탱크(T)의 초기 압력값 및 연료탱크(T)의 용량에 대한 데이터를 전달받을 수 있다.
개폐제어부(400)는 통신모듈(25)과 차량(V)의 통신 상태가 원활한 경우, 연료탱크(T)의 초기 압력값에 기초하여 제1배출조절밸브(221) 및 제2배출조절밸브(222)의 개폐 동작을 제어할 수 있다. 보다 구체적으로, 개폐제어부(400)는 연료탱크(T)의 초기 압력값이 제2설정배출압력 미만인 경우 제2배출조절밸브(224)를 개방하고, 연료탱크(T)의 초기 압력값이 제2설정배출압력 이상 제1설정배출압력 미만인 경우 제1배출조절밸브(223)를 개방한다. 이에 따라 개폐제어부(400)는 연료탱크(T)의 초기 충전량이 변경되더라도 연료탱크(T)로 주입되는 수소의 압력을 항상 연료탱크(T)의 초기 압력값보다 큰 상태로 유지시킴으로써 버퍼탱크(110)에 저장된 수소가 연료탱크(T)로 주입되지 않는 현상을 방지할 수 있다.
한편, 개폐제어부(400)는 통신모듈(25)과 차량(V)의 통신 상태가 원활하지 않은 경우, 제2배출조절밸브(222) 및 제1배출조절밸브(221)를 순차적으로 개방할 수 있다. 이에 따라 개폐제어부(400)는 제2배출압력조절부(322)를 통해 상대적으로 낮은 설정배출압력으로 배출되는 수소를 연료탱크(T)에 우선적으로 주입시킴으로써 과도한 용량의 수소가 연료탱크(T)로 주입됨에 따라 발생되는 연료탱크(T)의 과열을 방지할 수 있다.
개폐제어부(400)는 전자 제어 유닛(ECU: Electronic Control Unit), 중앙 처리 장치(CPU: Central Processing Unit), 프로세서(Processor) 또는 SoC(System on Chip)를 포함하여 구성될 수 있으며, 운영 체제 또는 어플리케이션을 구동하여 복수의 하드웨어 또는 소프트웨어 구성요소들을 제어할 수 있고, 각종 데이터 처리 및 연산을 수행할 수 있다. 개폐제어부(400)는 메모리에 저장된 적어도 하나의 명령을 실행시키고, 그 실행 결과 데이터를 메모리에 저장하도록 구성될 수 있다.
이하에서는 본 발명의 제3실시예에 따른 수소 충전 시스템의 동작을 상세하게 설명하도록 한다.
차량(V)의 충전에 앞서 개폐제어부(400)는 제1배출조절밸브(223) 및 제2배출조절밸브(224)가 폐쇄된 상태에서 공급조절밸브(210)를 개방한다.
공급조절밸브(210)가 개방됨에 따라 제1저장탱크(11a)을 통해 분기배관(120)으로 유입된 수소는 버퍼탱크(110)의 내부로 유입된다.
이 경우, 공급압력조절부(310)는 제1저장탱크(11a)의 압력값과 관계 없이 버퍼탱크(110)의 내부로 유입되는 압력을 설정공급압력으로 유지시킨다.
버퍼탱크(110)의 내부로 수소가 유입됨에 따라, 버퍼탱크(110)의 내부에는 펄스 압력이 생성된다.
버퍼탱크(110)의 내부 압력이 설정공급압력과 일치됨에 따라 개폐제어부(400)는 공급조절밸브(210)를 폐쇄한다.
이후, 충전노즐(23)이 차량(V)의 리셉터클(R)과 연결되고, 개폐제어부(400)는 통신모듈(25)을 통해 연료탱크(T)의 초기 압력값에 대한 데이터를 전달받는다. 통신모듈(25)과 차량(V)의 통신 상태가 원활한 경우, 개폐제어부(400)는 전달받은 연료탱크(T)의 초기 압력값에 기초하여 제1배출조절밸브(221) 및 제2배출조절밸브(222)의 개폐 동작을 제어한다. 보다 구체적으로, 개폐제어부(400)는 연료탱크(T)의 초기 압력값이 제2설정배출압력 미만인 경우 제2배출조절밸브(224)를 개방함과 동시에 제1배출조절밸브(223)를 폐쇄한다. 또한, 연료탱크(T)의 초기 압력값이 제2설정배출압력 이상 제1설정배출압력 미만인 경우 제1배출조절밸브(223)를 개방함과 동시에 제2배출조절밸브(224)를 폐쇄한다.
한편, 개폐제어부(400)는 통신모듈(25)과 차량(V)의 통신 상태가 원활하지 않은 경우, 제2배출조절밸브(222) 및 제1배출조절밸브(221)를 순차적으로 개방할 수 있다.
제1배출조절밸브(221) 또는 제2배출조절밸브(222)가 개방됨에 따라 버퍼탱크(110)의 내부에 저장된 수소는 디스펜서본체(21), 충전노즐(23)을 순차적으로 거쳐 연료탱크(T)의 내부로 주입되고, 펄스 압력이 연료탱크(T)의 내부로 인가된다.
개폐제어부(400)는 버퍼탱크(110)의 내부 압력이 제1설정배출압력 또는 제2설정배출압력과 일치됨에 따라 제1배출조절밸브(221) 또는 제2배출조절밸브(222)를 폐쇄한다.
이후, 공급제어부(14)는 펄스 압력을 통해 측정된 연료탱크(T)의 초기 압력값 및 연료탱크(T)의 용량에 대한 정보를 바탕으로 제1메인공급밸브(13a), 제2메인공급밸브(13b), 제3메인공급밸브(13c)의 개폐 동작을 제어하고, 디스펜서유닛(20)은 연료탱크(T)로 수소를 충전한다.
이하에서는 본 발명의 제4실시예에 따른 수소 충전 시스템의 구성을 상세하게 설명하도록 한다.
도 4는 본 발명의 제4실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 4를 참조하면, 본 실시예에 따른 수소 충전 시스템은 수소공급유닛(10), 디스펜서유닛(20), 수소 충전 보조장치(30)를 포함한다.
본 실시예에 따른 수소 충전 시스템은 본 발명의 제1실시예에 따른 수소 충전 시스템과 수소 충전 보조장치(30)의 세부 구성만을 달리하도록 구성되는 바, 이하에서는 설명의 편의를 위해 본 발명의 제1실시예에 따른 수소 충전 시스템과 중복되는 설명은 생략하기로 한다.
본 실시예에 따른 수소 충전 보조장치(30)는 제1 수소 충전 보조장치(31), 제2 수소 충전 보조장치(32), 개폐제어부(33)를 포함한다.
제1 수소 충전 보조장치(31)는 제1저장탱크(11a)와 연결되어 제1저장탱크(11a)로부터 수소를 공급받아 펄스 압력을 생성 및 저장하고, 생성된 펄스 압력을 디스펜서유닛(20)으로 전달한다.
본 실시예에 따른 제1 수소 충전 보조장치(31)는 제1버퍼탱크(1110), 제1분기배관(1120), 제1배출배관(1130), 제1공급조절밸브(1210), 제1배출조절밸브(1220), 제1공급압력조절부(1310), 제1배출압력조절부(1320)를 포함한다.
본 실시예에 따른 제1버퍼탱크(1110), 제1분기배관(1120), 제1배출배관(1130), 제1공급조절밸브(1210), 제1배출조절밸브(1220)는 각각 본 발명의 제1실시예에 따른 버퍼탱크(110), 분기배관(120), 배출배관(130), 공급조절밸브(210), 배출조절밸브(220)와 동일하게 구성될 수 있다.
본 실시예에 따른 제1공급압력조절부(1310)는 제1버퍼탱크(1110)로 유입되는 수소의 압력을 제1설정공급압력으로 유지시키고, 제1배출압력조절부(1320)는 제1버퍼탱크(1110)로부터 배출되는 수소의 압력을 제1설정배출압력 이상으로 유지시킨다는 점을 제외하고, 본 발명의 제1실시예에 따른 공급압력조절부(310), 배출압력조절부(320)와 동일하게 구성될 수 있다.
제2 수소 충전 보조장치(32)는 제2저장탱크(11b)와 연결되어 제2저장탱크(11b)로부터 수소를 공급받아 펄스 압력을 생성 및 저장하고, 생성된 펄스 압력을 디스펜서유닛(20)으로 전달한다.
본 실시예에 따른 제2 수소 충전 보조장치(32)는 제2버퍼탱크(2110), 제2분기배관(2120), 제2배출배관(2130), 제2공급조절밸브(2210), 제2배출조절밸브(2220), 제2공급압력조절부(2310), 제2배출압력조절부(2320)를 포함한다.
본 실시예에 따른 제2버퍼탱크(2110), 제2배출배관(2130), 제2공급조절밸브(2210), 제2배출조절밸브(2220)는 각각 본 발명의 제1실시예에 따른 버퍼탱크(110), 분기배관(120), 배출배관(130), 공급조절밸브(210), 배출조절밸브(220)와 동일하게 구성될 수 있다.
본 실시예에 따른 제2분기배관(2120)은 제2공급배관(12b)에 연결된다는 점을 제외하고 본 발명의 제1실시예에 따른 분기배관(120)과 동일하게 구성될 수 있다.
본 실시예에 따른 제2공급압력조절부(2310)는 2버퍼탱크(2110)로 유입되는 수소의 압력을 제2설정공급압력으로 유지시키고, 제2배출압력조절부(2320)는 제2버퍼탱크(2110)로부터 배출되는 수소의 압력을 제2설정배출압력 이상으로 유지시킨다는 점을 제외하고, 본 발명의 제1실시예에 따른 공급압력조절부(310), 배출압력조절부(320)와 동일하게 구성될 수 있다. 여기서, 제2설정공급압력과 제2설정배출압력은 각각 제1설정공급압력과 제1설정배출압력보다 작은 값을 가질 수 있다.
개폐제어부(33)는 제1공급조절밸브(1210), 제1배출조절밸브(1220), 제2공급조절밸브(2210) 및 제2배출조절밸브(2220)와 연결되어 제1공급조절밸브(1210), 제1배출조절밸브(1220), 제2공급조절밸브(2210) 및 제2배출조절밸브(2220)의 개폐 동작을 개별적으로 제어한다. 개폐제어부(400)는 차량(V)과의 통신을 수행하는 통신모듈(25)을 통해 연료탱크(T)의 초기 압력값 및 연료탱크(T)의 용량에 대한 데이터를 전달받을 수 있다.
개폐제어부(33)는 통신모듈(25)과 차량(V)의 통신 상태가 원활한 경우, 연료탱크(T)의 초기 압력값에 기초하여 제1배출조절밸브(1220) 및 제2배출조절밸브(2220)의 개폐 동작을 제어할 수 있다. 보다 구체적으로, 개폐제어부(33)는 연료탱크(T)의 초기 압력값이 제2설정배출압력 미만인 경우 제2배출조절밸브(2220)를 개방하고, 연료탱크(T)의 초기 압력값이 제2설정배출압력 이상 제1설정배출압력 미만인 경우 제1배출조절밸브(1220)를 개방한다. 이에 따라 개폐제어부(33)는 연료탱크(T)의 초기 충전량이 변경되더라도 연료탱크(T)로 주입되는 수소의 압력을 항상 연료탱크(T)의 초기 압력값보다 큰 상태로 유지시킴으로써 펄스 압력 인가 시 수소가 연료탱크(T)로 주입되지 않는 현상을 방지할 수 있다.
한편, 개폐제어부(33)는 통신모듈(25)과 차량(V)의 통신 상태가 원활하지 않은 경우, 제2배출조절밸브(2220) 및 제1배출조절밸브(1220)를 순차적으로 개방할 수 있다. 이에 따라 개폐제어부(33)는 제2배출압력조절부(2320)를 통해 상대적으로 낮은 설정배출압력으로 배출되는 수소를 연료탱크(T)에 우선적으로 주입시킴으로써 과도한 용량의 수소가 연료탱크(T)로 주입됨에 따라 발생되는 연료탱크(T)의 과열을 방지할 수 있다.
개폐제어부(33)는 전자 제어 유닛(ECU: Electronic Control Unit), 중앙 처리 장치(CPU: Central Processing Unit), 프로세서(Processor) 또는 SoC(System on Chip)를 포함하여 구성될 수 있으며, 운영 체제 또는 어플리케이션을 구동하여 복수의 하드웨어 또는 소프트웨어 구성요소들을 제어할 수 있고, 각종 데이터 처리 및 연산을 수행할 수 있다. 개폐제어부(33)는 메모리에 저장된 적어도 하나의 명령을 실행시키고, 그 실행 결과 데이터를 메모리에 저장하도록 구성될 수 있다.
이하에서는 본 발명의 제4실시예에 따른 수소 충전 시스템의 동작을 상세하게 설명하도록 한다.
차량(V)의 충전에 앞서 개폐제어부(33)는 제1배출조절밸브(1220) 및 제2배출조절밸브(2220)가 폐쇄된 상태에서 제1공급조절밸브(1210) 및 제2공급조절밸브(2210)를 개방한다.
제1공급조절밸브(1210) 및 제2공급조절밸브(2210)가 개방됨에 따라 제1저장탱크(11a)을 통해 제1분기배관(1120)으로 유입된 수소는 제1버퍼탱크(1110)의 내부로 유입되고, 제2저장탱크(11b)를 통해 제2분기배관(2120)으로 유입된 수소는 제1버퍼탱크(2110)의 내부로 유입된다.
이 경우, 제1공급압력조절부(1310) 및 제2공급압력조절부(2310)는 제1저장탱크(11a) 및 제2저장탱크(11b)의 압력값과 관계 없이 제1버퍼탱크(1110) 및 제2버퍼탱크(2110)의 내부로 유입되는 압력을 각각 제1설정공급압력 및 제2설정공급압력으로 유지시킨다.
제1버퍼탱크(1110) 및 제2버퍼탱크(2110)의 내부로 수소가 유입됨에 따라, 제1버퍼탱크(1110) 및 제2버퍼탱크(2110)의 내부에는 펄스 압력이 생성된다.
제1버퍼탱크(1110) 및 제2버퍼탱크(2110)의 내부 압력이 각각 제1설정공급압력 및 제2설정공급압력과 일치됨에 따라 개폐제어부(33)는 제1공급조절밸브(1210) 및 제2공급조절밸브(2210)를 폐쇄한다.
이후, 충전노즐(23)이 차량(V)의 리셉터클(R)과 연결되고, 개폐제어부(33)는 통신모듈(25)을 통해 연료탱크(T)의 초기 압력값에 대한 데이터를 전달받는다. 통신모듈(25)과 차량(V)의 통신 상태가 원활한 경우, 개폐제어부(33)는 전달받은 연료탱크(T)의 초기 압력값에 기초하여 제1배출조절밸브(1220) 및 제2배출조절밸브(2220)의 개폐 동작을 제어한다. 보다 구체적으로, 개폐제어부(33)는 연료탱크(T)의 초기 압력값이 제2설정배출압력 미만인 경우 제2배출조절밸브(2220)를 개방함과 동시에 제1배출조절밸브(1220)를 폐쇄한다. 또한, 연료탱크(T)의 초기 압력값이 제2설정배출압력 이상 제1설정배출압력 미만인 경우 제1배출조절밸브(1220)를 개방함과 동시에 제2배출조절밸브(2220)를 폐쇄한다.
한편, 개폐제어부(400)는 통신모듈(25)과 차량(V)의 통신 상태가 원활하지 않은 경우, 제2배출조절밸브(2220) 및 제1배출조절밸브(1220)를 순차적으로 개방할 수 있다.
제1배출조절밸브(1220) 또는 제2배출조절밸브(2220)가 개방됨에 따라 제1버퍼탱크(1110) 또는 제2버퍼탱크(2110)의 내부에 저장된 수소는 디스펜서본체(21), 충전노즐(23)을 순차적으로 거쳐 연료탱크(T)의 내부로 주입되고, 펄스 압력이 연료탱크(T)의 내부로 인가된다.
개폐제어부(33)는 제1버퍼탱크(1110) 또는 제2버퍼탱크(2110)의 내부 압력이 제1설정배출압력 또는 제2설정배출압력과 일치됨에 따라 제1배출조절밸브(1220) 또는 제2배출조절밸브(2220)를 폐쇄한다.
이후, 공급제어부(14)는 펄스 압력을 통해 측정된 연료탱크(T)의 초기 압력값 및 연료탱크(T)의 용량에 대한 정보를 바탕으로 제1메인공급밸브(13a), 제2메인공급밸브(13b), 제3메인공급밸브(13c)의 개폐 동작을 제어하고, 디스펜서유닛(20)은 연료탱크(T)로 수소를 충전한다.
이하에서는 본 발명의 제5실시예에 따른 수소 충전 시스템의 구성을 상세하게 설명하도록 한다.
도 5는 본 발명의 제5실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 5를 참조하면, 본 실시예에 따른 수소 충전 시스템은 수소공급유닛(10), 디스펜서유닛(20), 수소 충전 보조장치(30)를 포함한다.
본 실시예에 따른 수소 충전 시스템은 본 발명의 제1실시예에 따른 수소 충전 시스템과 수소공급유닛(10)의 세부 구성만을 달리하도록 구성되는 바, 이하에서는 설명의 편의를 위해 본 발명의 제1실시예에 따른 수소 충전 시스템과 중복되는 설명은 생략하기로 한다.
본 실시예에 따른 수소공급유닛(10)은 저장탱크(11), 공급배관(12), 메인공급밸브(13), 공급제어부(14), 전달배관(15), 압축기(16)를 포함한다.
저장탱크(11)는 수소를 압축된 상태로 저장한다. 저장탱크(11)는 후술하는 메인공급밸브(13)의 개방 시 차량(V)에 구비된 연료탱크(T)와의 차압에 의해 내부에 저장된 수소를 후술하는 디스펜서유닛(20)으로 공급한다. 본 실시예에 따른 저장탱크(11)는 내부에 수소를 압축된 상태로 저장할 수 있는 다양한 종류의 압력저장용기로 예시될 수 있다.
공급배관(12)은 저장탱크(11)와 연결되고, 저장탱크(11) 및 후술하는 압축기(16)로부터 배출되는 수소의 유동을 안내한다. 본 실시예에 따른 공급배관(12)은 내부가 비어있는 관의 형태를 갖도록 형성되고, 일측이 분기되어 각각 저장탱크(11) 및 압축기(16)에 연결된다.
메인공급밸브(13)는 공급배관(12)에 연결되고, 공급배관(12)을 통한 수소의 유동을 단속한다. 본 실시예에 따른 메인공급밸브(13)는 공급배관(12)에 연결되고,공압에 의해 개폐 상태가 조절되는 다양한 종류의 공압밸브로 예시될 수 있다. 메인공급밸브(13)는 후술하는 공급제어부(14)에 의해 개폐 동작이 제어되며 공급배관(12)을 통한 수소의 유동을 제한하거나 허용한다.
공급제어부(14)는 메인공급밸브(13)의 동작을 전반적으로 제어한다. 공급제어부(14)는 전자 제어 유닛(ECU: Electronic Control Unit), 중앙 처리 장치(CPU: Central Processing Unit), 프로세서(Processor) 또는 SoC(System on Chip)를 포함하여 구성될 수 있으며, 운영 체제 또는 어플리케이션을 구동하여 복수의 하드웨어 또는 소프트웨어 구성요소들을 제어할 수 있고, 각종 데이터 처리 및 연산을 수행할 수 있다. 공급제어부(14)는 메모리에 저장된 적어도 하나의 명령을 실행시키고, 그 실행 결과 데이터를 메모리에 저장하도록 구성될 수 있다.
전달배관(15)은 공급배관(12)과 연결되고, 공급배관(12)을 따라 유동하는 수소를 후술하는 디스펜서유닛(20)으로 전달한다. 본 실시예에 따른 전달배관(15)은 내부가 비어있는 관의 형태를 갖도록 형성될 수 있다. 전달배관(15)은 일측이 공급제어부(14)를 매개로 공급배관(12)과 간접적으로 연결된다. 이와 달리 전달배관(15)은 일측이 공급배관(12)과 직접적으로 연결되는 것도 가능하다. 전달배관(15)은 타측이 디스펜서본체(21)와 연결되어 디스펜서본체(21)의 내부로 수소를 전달한다.
압축기(16)는 수소를 압축하고, 압축된 수소를 디스펜서유닛(20)으로 직접 공급한다. 본 실시예에 따른 압축기(16)는 입구측으로 유입된 수소를 압축하고, 출구측으로 압축된 수소를 배출할 수 있는 다양한 종류의 압축 장치로 예시될 수 있다. 예를 들어 압축기(16)는 수소를 약 900bar로 압축시킬 수 있다. 압축기(16)는 출구측이 공급배관(12)의 일측과 연결된다.
이하에서는 본 발명의 제6실시예에 따른 수소 충전 시스템의 구성을 상세하게 설명하도록 한다.
도 6은 본 발명의 제6실시예에 따른 수소 충전 시스템의 구성을 개략적으로 나타내는 도면이다.
도 6을 참조하면, 본 실시예에 따른 수소 충전 시스템은 수소공급유닛(10), 디스펜서유닛(20), 수소 충전 보조장치(30), 수소회수유닛(40)을 포함한다.
본 실시예에 따른 수소공급유닛(10), 디스펜서유닛(20)은 본 발명의 제1실시예에 따른 수소공급유닛(10), 디스펜서유닛(20)과 동일하게 구성될 수 있다.
본 실시예에 따른 수소 충전 보조장치(30)는 본 발명의 제1실시예, 제2실시예 및 제3실시예에 따른 수소 충전 보조장치(30) 중 어느 하나와 동일하게 구성될 수 있다. 즉, 도 6에서는 본 실시예에 따른 수소 충전 보조장치(30)가 본 발명의 제1실시예에 따른 수소 충전 보조장치(30)와 동일하게 구성되는 것을 예로 들어 도시하고 있으나, 본 실시예에 따른 수소 충전 보조장치(30)는 이러한 사항에 한정되는 것은 아니고, 본 발명의 제2실시예 및 제3실시예에 따른 수소 충전 보조장치(30) 중 어느 하나와 동일하게 구성되는 것도 가능하다.
수소회수유닛(40)은 연료탱크(T)로의 수소 충전이 완료된 이후, 디스펜서유닛(20)에 잔류하는 수소를 수소 충전 보조장치(30)로 회수한다. 이에 따라 수소회수유닛(40)은 충전 후 디스펜서유닛(20)에 잔존하는 수소에 의한 화재 발생 위험을 줄이고, 수소의 소비 효율을 향상시킬 수 있다.
본 실시예에 따른 수소회수유닛(40)은 회수배관(41), 회수밸브(42), 회수구동부(43), 회수체크밸브(44)를 포함한다.
회수배관(41)은 디스펜서유닛(20)과 수소 충전 보조장치(30)의 사이에 구비되고, 디스펜서유닛(20)으로부터 수소 충전 보조장치(30)로 회수되는 수소의 유동을 안내한다. 본 실시예에 따른 회수배관(41)은 내부가 비어있는 관의 형태를 갖도록 형성된다. 회수배관(41)은 일측이 디스펜서유닛(20)과 연결된다. 보다 구체적으로, 회수배관(41)은 일측이 디스펜서본체(21)와 연결된 배출배관(130)과 연결되어 디스펜서유닛(20)과 간접적으로 연결될 수 있다. 회수배관(41)은 타측이 수소 충전 보조장치(30)와 연결된다. 보다 구체적으로, 회수배관(41)은 타측이 공급조절밸브(210)의 후단측, 즉 공급조절밸브(210)와 버퍼탱크(110)의 사이에 연결된다. 이에 따라 회수배관(41)은 공급조절밸브(210)의 개폐 여부와 관계 없이 디스펜서유닛(20)으로부터 회수되는 수소를 버퍼탱크(110)의 내부로 유입시킬 수 있다.
회수밸브(42)는 회수배관(41)에 연결되고, 회수배관(41)을 통한 수소의 유동을 제한하거나 허용한다. 본 실시예에 따른 회수밸브(42)는 공압에 의해 개폐 상태가 조절되는 다양한 종류의 공압밸브로 예시될 수 있다. 회수밸브(42)는 개폐제어부(400)에 의해 개폐 동작이 제어되며 회수배관(41)을 통해 수소가 버퍼탱크(110)로 유입되는 것을 제한하거나 허용한다.
회수구동부(43)는 구동력을 발생시켜 회수배관(41) 내부의 수소를 수소 충전 보조장치(30)로 향해 유동시킨다. 본 실시예에 따른 회수구동부(43)는 회수배관(41)과 연결되고, 외부로부터 전원을 인가받아 회수배관(41) 내부의 수소에 유동력을 인가하는 다양한 종류의 펌프로 예시될 수 있다. 회수구동부(43)는 회수배관(41) 내부의 수소에 디스펜서유닛(20)으로부터 수소 충전 보조장치(30)를 향하는 방향으로 유동력을 인가한다. 이에 따라 회수구동부(43)는 버퍼탱크(110)와 디스펜서본체(21)의 내부 압력 차이가 크지 않거나, 버퍼탱크(110)의 내부 압력이 디스펜서본체(21)의 내부 압력보다 큰 경우, 수소에 직접적인 외력을 부가함으로써 수소가 회수배관(41)을 따라 버퍼탱크(110)로 원활하게 회수되도록 유도할 수 있다. 회수구동부(43)는 개폐제어부(400)에 의해 구동력의 발생 여부가 제어될 수 있다.
회수체크밸브(44)는 회수배관(41)에 연결되고, 수소가 수소 충전 보조장치(30)로부터 디스펜서유닛(20)으로 유동되는 것을 방지한다. 즉, 회수체크밸브(44)는 회수배관(41) 내의 수소가 역류하는 것을 방지하는 구성으로서 기능하다. 본 실시예에 따른 회수체크밸브(44)는 회수배관(41)에 연결 가능한 다양한 종류의 체크밸브로 예시될 수 있다.
이하에서는 본 발명의 제6실시예에 따른 수소 충전 시스템의 동작을 상세하게 설명하도록 한다.
충전 완료 이후, 공급제어부(14)는 메인공급밸브(13)를 모두 폐쇄하여 디스펜서유닛(20)으로의 수소 공급을 중단하고, 충전노즐(23)과 리셉터클(R)은 상호 분리된다.
이 경우, 디스펜서본체(21)의 내부에는 배관의 길이 등에 의해 일정량의 수소가 잔존하게 된다.
이후, 개폐제어부(400)는 회수밸브(42)를 개방한다.
회수밸브(42)가 개방됨에 따라, 버퍼탱크(110)와 디스펜서본체(21)의 차압에 의해 디스펜서본체(21)에 잔존하는 수소는 회수배관(41)을 통해 버퍼탱크(110)로 회수된다.
한편, 버퍼탱크(110)와 디스펜서본체(21)의 내부 압력 차이가 크지 않거나, 버퍼탱크(110)의 내부 압력이 디스펜서본체(21)의 내부 압력보다 큰 경우, 개폐제어부(400)는 회수구동부(43)를 동작시킨다.
회수배관(41) 내부의 수소는 회수구동부(43)에 의해 가해지는 유동력에 의해 버퍼탱크(110)로 회수된다.
이후, 디스펜서본체(21)의 내부에 잔존하는 수소가 모두 회수됨에 따라 개폐제어부(400)는 회수밸브(42)를 폐쇄한다.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.
따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.

Claims (14)

  1. 수소를 공급받아 저장하는 압력저장부;
    상기 압력저장부에 대한 수소의 출입을 단속하는 출입조절부; 및
    상기 압력저장부로 유입되거나 상기 압력저장부로부터 배출되는 수소의 압력값을 조절하는 압력조절부;를 포함하는 것을 특징으로 하는 수소 충전 보조장치.
  2. 제 1항에 있어서,
    상기 압력저장부는,
    제1버퍼탱크; 및
    상기 제1버퍼탱크와 이격되게 배치되고, 상기 제1버퍼탱크와 다른 저장 용량을 갖는 제2버퍼탱크;를 포함하는 것을 특징으로 하는 수소 충전 보조장치.
  3. 제 1항에 있어서,
    상기 출입조절부는,
    상기 압력저장부의 일측에 연결되고, 상기 압력저장부로 유입되는 수소의 유동을 제한하거나 허용하는 공급조절밸브; 및
    상기 압력저장부의 타측에 연결되고, 상기 압력저장부로부터 배출되는 수소의 유동을 제한하거나 허용하는 배출조절밸브;를 포함하는 것을 특징으로 하는 수소 충전 보조장치.
  4. 제 3항에 있어서,
    상기 압력조절부는,
    상기 압력저장부의 일측에 연결되고, 상기 압력저장부로 유입되는 수소의 압력을 설정공급압력으로 유지시키는 공급압력조절부; 및
    상기 압력저장부의 타측에 연결되고, 상기 압력저장부로부터 배출되는 수소의 압력을 설정배출압력 이상으로 유지시키는 배출압력조절부;를 포함하는 것을 특징으로 하는 수소 충전 보조장치.
  5. 제 4항에 있어서,
    상기 배출압력조절부는,
    상기 압력저장부의 타측에 연결되고, 상기 압력저장부로부터 배출되는 수소의 압력을 제1설정배출압력 이상으로 유지시키는 제1배출압력조절부; 및
    상기 압력저장부의 타측에 연결되고, 상기 압력저장부로부터 배출되는 수소의 압력을 제2설정배출압력 이상으로 유지시키는 제2배출압력조절부;를 포함하는 것을 특징으로 하는 수소 충전 보조장치.
  6. 제 5항에 있어서,
    상기 배출조절밸브는,
    상기 제1배출압력조절부와 연결되는 제1배출조절밸브; 및
    상기 제2배출압력조절부와 연결되는 제2배출조절밸브;를 포함하는 것을 특징으로 하는 수소 충전 보조장치.
  7. 제 6항에 있어서,
    상기 출입조절부의 동작을 제어하는 개폐제어부;를 더 포함하는 것을 특징으로 하는 수소 충전 보조장치.
  8. 제 7항에 있어서,
    상기 제1설정배출압력은 상기 제2설정배출압력보다 크고,
    상기 개폐제어부는 상기 제2배출조절밸브 및 상기 제1배출조절밸브를 순차적으로 개방하는 것을 특징으로 하는 수소 충전 보조장치.
  9. 제 7항에 있어서,
    상기 개폐제어부는 차량의 연료탱크의 초기 압력값에 기초하여 상기 제1배출조절밸브 및 상기 제2배출조절밸브의 개폐 동작을 제어하는 것을 특징으로 하는 수소 충전 보조장치.
  10. 제 9항에 있어서,
    상기 제1설정배출압력은 상기 제2설정배출압력보다 크고,
    상기 개폐제어부는 상기 연료탱크의 초기 압력값이 상기 제2설정배출압력 미만인 경우 상기 제2배출조절밸브를 개방하고, 상기 연료탱크의 초기 압력값이 상기 제2설정배출압력 이상 상기 제1설정배출압력 미만인 경우 상기 제1배출조절밸브를 개방하는 것을 특징으로 하는 수소 충전 보조장치.
  11. 수소를 공급하는 수소공급유닛;
    상기 수소공급유닛으로부터 공급되는 수소를 차량의 연료탱크에 주입하는 디스펜서유닛; 및
    상기 수소공급유닛으로부터 수소를 공급받아 펄스 압력을 생성하고, 생성된 펄스 압력을 상기 디스펜서유닛으로 전달하는 수소 충전 보조장치;를 포함하는 것을 특징으로 하는 수소 충전 시스템.
  12. 제 11항에 있어서,
    상기 수소 충전 보조장치는,
    상기 수소공급유닛과 상기 디스펜서유닛의 사이에 구비되고, 상기 수소공급유닛으로부터 수소를 공급받아 저장하는 압력저장부;
    상기 압력저장부에 대한 수소의 출입을 단속하는 출입조절부; 및
    상기 압력저장부로 유입되거나 상기 압력저장부로부터 배출되는 수소의 압력을 조절하는 압력조절부;를 포함하는 것을 특징으로 하는 수소 충전 시스템.
  13. 제 11항에 있어서,
    상기 수소공급유닛은,
    수소를 저장하는 제1저장탱크; 및
    상기 제1저장탱크와 다른 압력으로 수소를 저장하는 제2저장탱크;를 포함하고,
    상기 수소 충전 보조장치는,
    상기 제1저장탱크와 연결되는 제1 수소 충전 보조장치; 및
    상기 제2저장탱크와 연결되는 제2 수소 충전 보조장치;를 포함하는 것을 특징으로 하는 수소 충전 시스템.
  14. 제 11항에 있어서,
    상기 수소공급유닛은,
    수소를 저장하고, 저장된 수소를 상기 디스펜서유닛으로 공급하는 저장탱크; 및
    수소를 압축하고, 압축된 수소를 상기 디스펜서유닛으로 공급하는 압축기;를 포함하는 것을 특징으로 하는 수소 충전 시스템.
PCT/KR2022/017228 2022-08-29 2022-11-04 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템 WO2024048845A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220108130A KR20240032187A (ko) 2022-08-29 2022-08-29 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템
KR10-2022-0108130 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048845A1 true WO2024048845A1 (ko) 2024-03-07

Family

ID=90098109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017228 WO2024048845A1 (ko) 2022-08-29 2022-11-04 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템

Country Status (2)

Country Link
KR (1) KR20240032187A (ko)
WO (1) WO2024048845A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100175778A1 (en) * 2007-03-13 2010-07-15 Robert Adler Method for filling a hydrogen storage container
JP2011117481A (ja) * 2009-12-01 2011-06-16 Iwatani Internatl Corp 高圧水素試験設備や高圧水素充填設備での充填制御方法およびその装置
KR20140088224A (ko) * 2011-12-20 2014-07-09 가부시키가이샤 고베 세이코쇼 가스 공급 방법 및 가스 공급 장치
KR20150052185A (ko) * 2012-09-04 2015-05-13 린데 악티엔게젤샤프트 탱크 및 탱크 충전 장치에 대한 압력 시험 수행 방법
JP2022066177A (ja) * 2020-10-16 2022-04-28 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 加圧ガスタンクを充填するための装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100175778A1 (en) * 2007-03-13 2010-07-15 Robert Adler Method for filling a hydrogen storage container
JP2011117481A (ja) * 2009-12-01 2011-06-16 Iwatani Internatl Corp 高圧水素試験設備や高圧水素充填設備での充填制御方法およびその装置
KR20140088224A (ko) * 2011-12-20 2014-07-09 가부시키가이샤 고베 세이코쇼 가스 공급 방법 및 가스 공급 장치
KR20150052185A (ko) * 2012-09-04 2015-05-13 린데 악티엔게젤샤프트 탱크 및 탱크 충전 장치에 대한 압력 시험 수행 방법
JP2022066177A (ja) * 2020-10-16 2022-04-28 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 加圧ガスタンクを充填するための装置及び方法

Also Published As

Publication number Publication date
KR20240032187A (ko) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2018093064A1 (ko) 선박용 연료유 전환 시스템 및 방법
WO2019027190A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2024048845A1 (ko) 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템
WO2024048844A1 (ko) 수소 충전 보조장치 및 이를 구비한 수소 충전 시스템
WO2013183890A1 (en) Refrigerator
WO2016013874A1 (ko) 피동잔열제거계통 및 이를 구비하는 원전
WO2012173408A2 (ko) 파워 릴레이 어셈블리 구동 장치 및 그 구동 방법
WO2019027276A1 (ko) 가스통 밸브 자동 개폐장치 및 그 방법
WO2016126025A1 (ko) 선박의 연료가스 공급시스템
WO2013111980A1 (ko) 차량용 터보 컴파운드 시스템
WO2017159960A1 (ko) 엑스선관모듈의 절연유 교체장치와 절연유 교체방법
WO2022108257A1 (ko) 실시간 대응 수소충전 제어 방법 및 이를 위한 장치
WO2018034550A1 (ko) Dc-dc 전압 컨버터의 동작 모드를 제어하기 위한 제어 시스템
WO2014081053A1 (ko) 건설기계의 우선 기능 제어장치 및 그 제어방법
WO2018190572A1 (en) Vehicle door handle assembly
WO2021187777A1 (ko) 배터리 스웰링 검사 장치
WO2021132955A1 (ko) 선박의 액화가스 공급 시스템 및 방법 그리고 선박의 액화가스 연료 공급 시스템
WO2018190573A1 (en) Vehicle door handle assembly
WO2015099437A1 (ko) 건설기계의 유압시스템 및 유압시스템의 제어방법
WO2020111899A1 (ko) 스위치 제어 장치 및 방법
WO2022107947A1 (ko) 선박
WO2017188671A1 (ko) 공압에 의한 흡기압력 증대장치
WO2023191352A1 (ko) 복합 압축 장치 및 복합 압축 시스템의 제어 방법
WO2020125430A1 (zh) 消除面板上关机残影的方法及装置
EP3110261A1 (en) Super critical hydrolysis extraction apparatus and hydrolysis method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957522

Country of ref document: EP

Kind code of ref document: A1