WO2024048694A1 - 発注支援装置、発注支援方法、及び、発注支援プログラム - Google Patents
発注支援装置、発注支援方法、及び、発注支援プログラム Download PDFInfo
- Publication number
- WO2024048694A1 WO2024048694A1 PCT/JP2023/031653 JP2023031653W WO2024048694A1 WO 2024048694 A1 WO2024048694 A1 WO 2024048694A1 JP 2023031653 W JP2023031653 W JP 2023031653W WO 2024048694 A1 WO2024048694 A1 WO 2024048694A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- product
- sales
- safety factor
- recommended
- predicted
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 15
- 238000004364 calculation method Methods 0.000 claims abstract description 40
- 239000002699 waste material Substances 0.000 description 40
- 230000007774 longterm Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 11
- 238000004590 computer program Methods 0.000 description 7
- 238000013473 artificial intelligence Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/087—Inventory or stock management, e.g. order filling, procurement or balancing against orders
Definitions
- the present disclosure relates to an ordering support device, an ordering support method, and an ordering support program.
- Patent Document 1 discloses that a demand forecasting model for a product is constructed based on sales records, a predicted demand quantity for the product is calculated using the demand forecasting model, and a product demand forecasting model is constructed for each ordered quantity of the product based on the predicted demand quantity.
- an ordering support system that calculates a risk value indicating the magnitude of at least one of the risk of a loss of sales opportunities and the risk of overstocking a product, and outputs a recommended order amount based on the risk value.
- An object of the present disclosure is to provide a technology that can tolerate the discrepancy between the actual sales number and the predicted sales number and propose a recommended order number that reduces opportunity loss and/or waste loss.
- the ordering support system of the present disclosure includes an inventory number DB that holds the number of products in stock that has an expiration date, a predicted sales number DB that holds the predicted sales number of the product in the future target period, and a safety factor calculating unit that calculates a safety factor indicating a ratio of the inventory quantity whose expiration date does not expire within the target period before the start of the target period to the predicted sales volume of the target period, and based on the safety factor,
- the product includes a recommended order quantity calculation unit that calculates a recommended order quantity that is a recommended order quantity of the product to be stocked after the start of the target period, and an input display control unit that displays the recommended order quantity.
- the ordering support method of the present disclosure obtains the number of products in stock that has an expiry date, obtains the predicted sales volume of the product in the target period in the future, and compares the predicted sales volume of the product with the target period in the target period. Calculate a safety factor indicating the percentage of the inventory that does not expire within the target period before the start of the period, and based on the safety factor, recommend the products to be stocked after the start of the target period.
- the recommended order quantity which is the order quantity, is calculated, and the recommended order quantity is displayed.
- the ordering support program of the present disclosure obtains the number of products in stock that has an expiration date, obtains the predicted sales volume of the product in the target period in the future, and compares the predicted sales volume of the product in the target period with the target product. Calculate a safety factor indicating the percentage of the inventory that does not expire within the target period before the start of the period, and based on the safety factor, recommend the products to be stocked after the start of the target period.
- the computer is made to calculate a recommended order quantity, which is the order quantity, and display the recommended order quantity.
- Block diagram showing a configuration example of an ordering support system according to Embodiment 1 A diagram showing an example of an ordering support screen according to Embodiment 1 A graph showing an example of a case where the safety factor, sales volume, and inventory volume change as predicted according to Embodiment 1.
- a diagram showing an example of a product list screen according to Embodiment 1 A diagram showing an example of an ordering support screen for manual ordering according to Embodiment 1
- a diagram showing an example of an ordering support screen for automatic ordering according to Embodiment 1 A diagram showing an example of an order support screen for fixed orders according to Embodiment 1
- Block diagram showing a configuration example of an ordering support system according to Embodiment 2 A diagram showing the hardware configuration of a computer according to the present disclosure
- FIG. 1 is a block diagram showing a configuration example of an ordering support system 10 according to the first embodiment.
- the ordering support system 10 is a device that assists the product orderer 1 in determining the number of products to order that has an expiration date so as to minimize opportunity loss and waste loss.
- the ordering support system 10 displays on the terminal 12 the recommended order quantity for each product so that opportunity loss and waste loss are minimized.
- the orderer 1 inputs the order quantity of each product into the ordering device 4 with reference to the recommended order quantity of each product displayed on the terminal 12.
- the ordering device 4 transmits the order quantity of each product input by the orderer 1 to the product delivery center 3.
- the product delivery center 3 delivers the ordered number of products received from the ordering device 4 to, for example, the store of the orderer 1.
- the product is a food or drink with an expiry date that is provided to a customer at a store
- the orderer 1 is assumed to be a person (for example, a store manager) who orders the food or drink.
- the products are not limited to these.
- the product may be food and drink with an expiration date provided to patients admitted to a hospital, and the orderer 1 may be a person who coordinates the ordering of the food and drink.
- the product may be a medicine (for example, eye drops) that has an expiration date and is sold at a pharmacy, and the orderer 1 may be a person who orders the medicine.
- the ordering support system 10 includes an actual sales quantity DB (DataBase) 41, a sales quantity prediction unit 31, a predicted sales quantity DB 42, an expiry date master 47, a safety factor calculation unit 33, an inventory quantity DB 43, and an order quantity DB 44. , a recommended order quantity calculation section 32 , and an input display control section 34 as functional blocks.
- the actual sales number DB 41 is a DB that holds the number of products actually sold in the past for each product (hereinafter referred to as actual sales number).
- the actual sales number DB 41 stores, for each product, a product ID, a product name, a past date, and the actual sales number of the product on that date in association with each other.
- the sales volume prediction unit 31 calculates the sales volume of the product at each future date and time (hereinafter referred to as the predicted sales volume) based on the past actual sales volume of the product held in the performance sales volume DB 41.
- the sales volume prediction unit 31 calculates the predicted sales volume for each product.
- the sales volume prediction unit 31 registers the calculated predicted sales volume at each future date and time in the predicted sales volume DB 42.
- the sales volume prediction unit 31 may calculate the predicted sales volume using the following (A1) and/or (A2).
- the sales volume prediction unit 31 calculates the predicted sales volume based on statistical analysis. For example, the sales volume prediction unit 31 statistically analyzes the past actual sales numbers of products held in the actual sales number DB 41, and based on the analysis results, predicts the predicted sales volume of the product at a future date and time. calculate. For example, the sales forecast unit 31 statistically analyzes past sales numbers for a plurality of weeks to identify a weekly sales trend (for example, a sales trend for each day of the week), and based on the identified sales trend. Then, calculate the predicted sales volume for one week in the future.
- a weekly sales trend for example, a sales trend for each day of the week
- the sales volume prediction unit 31 calculates the predicted sales volume using AI (Artificial Intelligence).
- AI Artificial Intelligence
- the sales volume prediction unit 31 uses a learning model (for example, a deep learning model) that has learned the relationship between the actual sales volume and weather information using the past sales volume of the product and past weather information as learning data. Calculate the predicted sales volume for the target date and time based on weather information, etc. for the target date and time in the future.
- the weather information may include, for example, weather forecasts such as sunny, cloudy, rain, and snow, temperature forecasts, humidity forecasts, atmospheric pressure forecasts, and the like.
- the sales volume prediction unit 31 may acquire weather information for the target date and time from the predetermined weather information server 5.
- the sales quantity prediction unit 31 uses a learning model that has learned the relationship between the actual sales quantity and the calendar information using the past actual sales quantity of the product and the past calendar information as learning data to predict the future target date and time. Calculate the number of sales.
- Calendar information may include, for example, dates, days of the week, holidays, national events, anniversaries, festivals, and the like.
- the sales volume prediction unit 31 may acquire calendar information for the target date and time from the predetermined calendar information server 6.
- the sales quantity prediction unit 31 may register both the predicted sales quantity calculated by the method (A1) above and the predicted sales quantity calculated by the method (A2) above in the predicted sales quantity DB 42. .
- the predicted sales volume DB 42 holds the predicted sales volume of each product at each future date and time, which is registered from the sales volume prediction unit 31.
- the predicted sales number DB 42 stores, for each product, a product ID, a product name, a future date and time, and a predicted sales number of the product at that date and time in association with each other.
- the expiration date master 47 holds the expiration date of each product.
- the expiration date master 47 holds a product ID, a product name, and an expiration date in association with each other for each product.
- the stock quantity DB 43 holds the actual stock quantity of each product in the store.
- the inventory number DB 43 stores a product ID, a product name, a date and time, and the number of products in stock at that date and time in association with each other.
- the order number DB 44 holds the number of orders that have been placed for each product at the store.
- the order quantity DB 44 corresponds to a product ID, a product name, an order date and time, a warehousing date and time, and the number of orders placed for that product at that order date and time (that is, the number of items that were received for that product at that warehousing date and time). Attach and hold.
- the safety factor calculation unit 33 calculates the expiration date of the product held in the expiration date master 47, the predicted sales number of the product held in the predicted sales volume DB 42, and the number of stocks of the product held in the inventory number DB 43. Calculate the safety factor for the product based on Next, the safety factor will be explained assuming that the expiration date of the product is 48 hours, for example.
- a safety factor is defined as an index regarding the number of items in stock at the start of business.
- the safety factor is calculated by the following formula (1A), formula (1B), or formula (1C).
- Safety factor on day X (Actual inventory at the start of day X) / (Actual sales amount on day X) (1A)
- Safety factor on day X (Actual inventory at the start of day X) / (Predicted sales volume on day X) (1B)
- Safety factor for X day (Forecasted inventory at the start of day X) / (Forecasted sales volume for X day) (1C)
- the safety factor calculation unit 33 calculates the safety factor for each date of each product using the above formula (1A), formula (1B), or formula (1C).
- the safety factor calculation unit 33 uses the above formula (1A) when calculating the safety factor for a past date, uses the above formula (1B) when calculating the safety factor for the current date, and uses the above formula (1B) to calculate the future safety factor.
- the above equation (1C) may be used.
- This safety factor indicates the extent to which the demand for the predicted sales can be met with the inventory at the start of business. Furthermore, since inventory whose expiration date has expired as of day X will be discarded, the number of inventory at the start of business on day X, which is used to define the safety factor on day X, is the number of inventory whose expiration date has not expired on day It shows. Therefore, if the condition that "all of the inventory at the start of the business day will be sold on day (on the predicted value) can be met with certainty. In other words, it is possible to reliably satisfy the condition that "all inventory at the start of business is sold within the expiration date.” In other words, if the safety factor is less than 100%, no waste loss will occur based on the predicted value.
- ⁇ days a predetermined period of time (hereinafter referred to as ⁇ days) from order placement to stocking, so the number that will be stocked on that day will be the number that was ordered as of ⁇ days ago.
- ⁇ days a predetermined period of time
- you want to meet the demand on day X with a safety factor of 0% you will have to perfectly predict the sales volume on day X a day in advance.
- the operation can be carried out with a safety rate of 0% the inventory will never expire, so if the sales volume forecast is perfect, it is desirable to continue the state with a safety rate of 0%.
- it is extremely difficult to make such perfect predictions so a realistic response is to place orders with a safety margin that is likely to reduce both opportunity loss and waste loss. .
- the recommended order quantity calculation unit 32 calculates the predicted sales volume for the target period from today (order date) to the stocking date of the ordered product acquired from the predicted sales volume DB 42 and each date of the target period acquired from the safety factor calculation unit 33.
- the recommended order quantity for today's order is calculated based on the safety factor. Note that details of the method for calculating the recommended order quantity will be described later (see FIGS. 2A and 2B).
- the input display control unit 34 causes the terminal 12 to display an order support screen that includes the safety factor and the recommended order quantity.
- the input display control unit 34 may be connected to the terminal 12 via a predetermined communication network (for example, a wired LAN (Local Area Network) or a wireless LAN).
- a predetermined communication network for example, a wired LAN (Local Area Network) or a wireless LAN.
- the terminal 12 Based on instructions from the input display control unit 34, the terminal 12 displays an ordering support screen that includes the safety factor and the recommended order quantity.
- Examples of the terminal 12 include a PC, a smartphone, a tablet terminal, and the like.
- the orderer 1 determines the number of products to order with reference to the recommended order number displayed on the terminal 12 and inputs it into the ordering device 4. As a result, the orderer 1 can order products in a quantity that minimizes opportunity loss and waste loss. Note that since the orderer 1 can determine the number to order if he or she can confirm at least the recommended number to order, the terminal 12 may omit displaying information other than the recommended number to order (eg, safety factor, etc.).
- the terminal 12 may be connected to the ordering device 4 via a communication network, and the ordering device 4 may be configured to automatically order the recommended number of products based on instructions from the terminal 12. In this case, since the orderer 1 does not need to determine the number of items to be ordered, the terminal 12 may omit displaying the recommended number of items to be ordered.
- the terminal 12 reflects the actual sales numbers of products that change over time in the actual sales number DB 41 as appropriate, and reflects the inventory numbers of products that change over time in the inventory number DB 43 as appropriate. good. Further, the terminal 12 may reflect the number of ordered products for which the order has been completed in the number of orders DB 44. Alternatively, the sales record number and the stock number may be automatically reflected in the sales record number DB and the stock number DB 43 according to an order from a customer.
- At least one of the actual sales number DB 41, the stock number DB 43, and the order number DB 44 may be placed in a so-called cloud or locally (for example, in a store).
- a DB that is a copy or synchronization of at least one of the actual sales quantity DB 41, the stock quantity DB 43, and the order quantity DB 44 arranged in the cloud may be arranged locally.
- the terminal 12 may access a locally located DB instead of accessing a DB located in the cloud.
- a store that sells products may be equipped with a robot that automatically takes out products from inventory in response to orders from customers.
- the store clerk only has to provide the customer with the product picked out by the robot, thereby reducing mistakes by the store clerk.
- FIG. 2A is a diagram showing an example of the order support screen 100 according to the first embodiment.
- the order support screen 100 may be generated by the input display control unit 34 and displayed on the terminal 12.
- the explanation will be given assuming that the starting time is 8:00, the expiration date of the product is 48 hours, and the ordered product will be stocked at 3:00 p.m., two days after the order date.
- these start time, expiration date, and storage time are just examples.
- the ordering time and the warehousing time are not limited to once in a day, but may be twice or more.
- the order support screen 100 includes a product list area 101, a graph area 102, and an information area 103.
- a list of products is displayed in the product list area 101.
- the orderer 1 selects one product from the product list area 101.
- the graph area 102 includes a line graph (hereinafter referred to as the sales graph 104) that shows the changes in the number of products sold over time for the product selected from the product list area 101, and a line graph that shows the changes in the number of items in stock over time.
- a line graph (hereinafter referred to as inventory quantity graph 105) is displayed. Note that the line graph is just an example, and other types of graphs may be used.
- the sales quantity graph 104 and the stock quantity graph 105 may be calculated by the recommended order quantity calculation unit 32 and drawn in the graph area 102.
- the information area 103 displays the safety factor and the number of items in stock for each date.
- the input display control section 34 displays the safety factor for each date calculated by the safety factor calculation section 33 in the information area 103.
- the input display control unit 34 displays the number of items in stock for each date in the information area 103 based on the number of orders for each date acquired from the number of orders DB 44 .
- the safety factor on February 9th is calculated by "(actual inventory at the start of business on February 9th)/(actual sales volume on February 9th)". Furthermore, the number of items received on February 9th corresponds to the number of orders placed on February 7th.
- the safety factor for February 10th is calculated by "(actual inventory at the start of business on February 10th)/(predicted sales volume for February 10th)".
- the actual number of stocks at the start of business on February 10th matches the actual number of stocks at the end of business on February 9th.
- the number of items received on February 10th corresponds to the number of orders placed on February 8th.
- the safety factor for February 11th is calculated by "(estimated inventory quantity at the start of business on February 11th)/(estimated sales quantity on February 11th)".
- the predicted inventory at the start of business on February 11th is "(Actual inventory at the start of business on February 10th) + (Number of stock received on February 10th) - (Forecasted number of sales on February 10th)" Calculated by Note that the predicted inventory quantity at the start of the business day on February 11th matches the predicted inventory quantity at the end of the business day on February 10th. Furthermore, the number of items received on February 11th corresponds to the number of orders placed on February 9th (yesterday).
- the safety factor for February 12th is calculated by "(estimated number of stocks at the start of business on February 12th)/(estimated number of sales on February 12th)".
- the predicted inventory at the start of business on February 12th is calculated by "(forecasted inventory at the start of business on February 11th) + (number of items received on February 11th) - (estimated number of sales on February 11th)" Calculated. Note that the predicted inventory quantity at the start of the business day on February 12th matches the predicted inventory quantity at the end of the business day on February 11th. Furthermore, the number of items received on February 12th corresponds to the number of orders scheduled to be placed on February 10th (today).
- the recommended order quantity calculation unit 32 calculates the recommended order quantity for February 10th (today) (that is, (equivalent to the number of items received on the 12th) is calculated. For example, the recommended order quantity calculation unit 32 calculates the recommended order quantity for items to be stocked on February 12th so that it is equal to or greater than the predicted sales quantity on February 12th minus the quantity that can be covered with a safety factor of 13%. .
- the input display control unit 34 displays the calculated recommended order quantity on the terminal 12.
- the orderer 1 may input the number of orders to the ordering device 4 with reference to the recommended number of orders displayed on the terminal 12. Thereby, the orderer 1 can easily place an order that minimizes the total of opportunity loss and disposal loss.
- the recommended number of orders is at least the predicted sales volume on February 12th minus the number that can be covered with a safety factor of 13% (hereinafter referred to as the number of shortages on the day). It must be. However, if orders are placed for the exact number of items that are in short supply on that day, there is a risk that an opportunity loss will occur on February 12th if the actual sales quantity on February 12th exceeds the predicted sales quantity. However, the recommended order quantity calculation unit 32 calculates the recommended order quantity to be stocked on February 12th so as to satisfy the predetermined safety factor for the next day, February 13th. A certain amount of margin has been added to exactly the number of shortages on the day.
- the recommended number of orders may be set to a number lower than the number obtained by subtracting the number that can be covered by the safety factor from the predicted sales number.
- FIG. 2B is a graph showing an example of the case where the safety factor, the number of sales, and the number of stocks change as predicted, according to the first embodiment.
- the recommended order quantity calculation unit 32 may calculate the recommended order quantity so that the daily safety factor is a predetermined value (for example, 30%).
- the expiry date of a product is 48 hours
- the inventory that was received on March 7th and remained at the end of the day on March 7th needs to be consumed within the next day, March 8th.
- the number of stocks at the end of the business day on March 7th will be the number of stocks at the beginning of the next day's business day, March 8th, which corresponds to the safety factor of 30% on March 8th, sold to. Therefore, no waste loss occurs.
- some of the products that are stocked at 15:00 on March 8th will be consumed during March 8th, and some of them will be in stock at the end of the business day on March 8th, without causing any opportunity loss.
- the number of stocks at the end of business on March 8th will be the number of stocks at the start of business on the next day, March 9th, which corresponds to a safety rate of 30% on March 9th, and will be prioritized for sale within March 9th. be done. This is repeated every day, so as shown in Figure 2B, if orders are placed to satisfy an appropriate safety factor (for example, 30%) and the sales and inventory numbers move as predicted, there will be waste loss and opportunity loss. do not.
- the expiration date is 48 hours
- the expiration date is longer than 48 hours (for example, 72 hours, 96 hours, etc.).
- FIG. 3 is a diagram showing an example of the product list screen 120 according to the first embodiment.
- the product list screen 120 may be generated by the input display control unit 34 and displayed on the terminal 12.
- the product list screen 120 has a calendar area 121 and a graph area 122.
- a monthly calendar is displayed in the calendar area 121.
- the orderer 1 selects a date on which the graph is to be displayed in the graph area 122 from the calendar displayed in the calendar area 121.
- a pie chart 123 related to the number of orders for each product on the date selected in the calendar area 121 is displayed.
- the size of the pie chart 123 indicates the number of orders placed on the selected date. In other words, the pie chart 123 becomes larger as the number of orders for a product increases.
- the breakdown of the pie chart 123 shows the percentage of inventory, the percentage of opportunity loss, and the percentage of waste loss among the number of orders.
- each percentage may be shown in a different color or pattern. For example, the inventory percentage may be shown in green, the opportunity loss percentage may be shown in red, and the waste loss percentage may be shown in purple. If it is predicted that none of the orders will result in either an opportunity loss or a waste loss (that is, all will be sold), the percentage of inventory in the pie chart 123 will be 100%. If it is predicted that a1% of the number of orders will be an opportunity loss, the opportunity loss ratio of the pie chart 123 will be a1%. If it is predicted that a2% of the number of orders will be a waste loss, the percentage of the waste loss in the pie chart 123 will be a2%.
- FIG. 4 is a diagram showing an example of the ordering support screen 140 for manual ordering according to the first embodiment.
- the order support screen 140 may be generated by the input display control unit 34 and displayed on the terminal 12.
- the ordering support screen 140 for manual ordering includes a graph area 141, a manual ordering button 142, an automatic ordering button 143, a fixed ordering button 144, a recommended order quantity area 151, an order quantity input area 152, and a display area at the end of business hours. includes an inventory quantity area 153, a disposal loss area 154, an opportunity loss area 155, and a total loss area 156.
- An ordering support screen 140 for manual ordering shown in FIG. 4 is displayed when the manual ordering button 142 is pressed.
- the graph area 141 includes a line graph (hereinafter referred to as a predicted sales graph 145) showing changes in predicted sales over time for each date for the target product, and a line graph showing changes in predicted inventory over time.
- a bar graph (hereinafter referred to as the predicted inventory quantity graph 146) is displayed.
- the graph area 141 includes a line graph (hereinafter referred to as a waste loss graph 147) showing changes in the number of waste losses over time for each date for the target product, and a line graph showing changes in the number of opportunity losses over time.
- a bar graph (hereinafter referred to as an opportunity loss graph 148) is displayed. Note that the bar graph and the line graph are just examples, and graphs in other formats may be used.
- the recommended order quantity area 151 displays the recommended order quantity for the target date and time (April 4 in FIG. 4) calculated by the recommended order quantity calculation unit 32.
- the order quantity is input into the order quantity input area 152 by the orderer 1.
- the predicted stock quantity at the end of business hours area 153 displays the predicted stock quantity at the end of business hours on the previous day of the target date and time (that is, at the start of business at the target date and time).
- the predicted number and amount of waste loss will be displayed if the number of orders entered in the order quantity input area 152 is placed.
- the opportunity loss area 155 displays the predicted number and amount of opportunity loss when the number of orders entered in the order quantity input area 152 is placed.
- the total loss area 156 displays the sum of the predicted amount of waste loss and the amount of opportunity loss.
- the orderer 1 When the orderer 1 inputs the number of orders into the number of orders input area 152 while referring to the recommended number of orders displayed in the recommended number of orders area 151, the predicted inventory quantity graph 146, waste loss graph 147, and opportunity loss graph in the graph area 141 are displayed. 148 changes depending on the input order quantity. Thereby, the orderer 1 can determine the number of orders to reduce the waste loss and opportunity loss while visually checking the changes in the waste loss and opportunity loss.
- the manual ordering shown in FIG. 4 is suitable for placing an order when a group has already made a reservation, or for ordering a product for which the predicted sales volume is not very accurate.
- FIG. 5 is a diagram showing an example of an ordering support screen 160 for automatic ordering according to the first embodiment.
- An ordering support screen 160 for automatic ordering shown in FIG. 5 is displayed when the automatic ordering button 143 is pressed. Further, the order support screen 160 may be generated by the input display control unit 34 and displayed on the terminal 12.
- the ordering support screen 160 for automatic ordering includes a graph area 141, a manual ordering button 142, an automatic ordering button 143, a fixed ordering button 144, a recommended order quantity area 151, an order quantity area 161, and a display area at the end of business hours. It includes an inventory quantity area 153, a disposal loss area 154, an opportunity loss area 155, and a total loss area 156.
- a graph similar to that shown in FIG. 4 is displayed in the graph area 141.
- the recommended order quantity area 151 displays the recommended order quantity for the target date and time (April 4 in FIG. 4) calculated by the recommended order quantity calculation unit 32.
- the order quantity area 161 automatically displays the order quantity corresponding to the recommended order quantity displayed in the recommended order quantity area 151.
- the predicted stock quantity at the end of business hours area 153 displays the predicted stock quantity at the end of business hours on the previous day of the target date and time (that is, at the start of business at the target date and time).
- the waste loss area 154 displays the predicted number and amount of waste loss when the number of orders displayed in the order quantity area 161 is placed.
- the opportunity loss area 155 displays the predicted number and amount of opportunity loss when the number of orders displayed in the order quantity area 161 is placed.
- the total loss area 156 displays the sum of the predicted amount of waste loss and the amount of opportunity loss.
- the recommended order quantity calculation unit 32 displays a predicted inventory quantity graph 146, a waste loss graph 147, and an opportunity loss graph 148 in the graph area 141 according to the order quantity displayed in the order quantity area 161. Thereby, the orderer 1 can visually check changes in waste loss and opportunity loss when orders are automatically placed based on the recommended order quantity.
- the automatic ordering shown in FIG. 5 is suitable for ordering products with relatively short expiration dates and/or products with a large number of sales per day.
- FIG. 6 is a diagram showing an example of the order support screen 180 for fixed orders according to the first embodiment.
- An order support screen 180 for fixed orders shown in FIG. 6 is displayed when the fixed order button 144 is pressed. Further, the order support screen 180 may be generated by the input display control unit 34 and displayed on the terminal 12.
- the order support screen 180 for fixed orders includes a graph area 141, a manual order button 142, an automatic order button 143, a fixed order button 144, a recommended order quantity area 151, a lower limit input area 181, and a fixed order input area. 182 , an inventory quantity area 153 at the end of business, a disposal loss area 154 , an opportunity loss area 155 , and a total loss area 156 .
- a graph similar to that shown in FIG. 4 is displayed in the graph area 141.
- the recommended order quantity area 151 displays the recommended order quantity for the target date and time (April 4 in FIG. 4) calculated by the recommended order quantity calculation unit 32.
- the lower limit value of the inventory quantity is input by the orderer 1.
- the number of orders to be automatically placed when the inventory quantity decreases below the lower limit input in the lower limit input area 181 is input by the orderer 1.
- the predicted stock quantity at the end of business hours area 153 displays the predicted stock quantity at the end of business hours on the previous day of the target date and time (that is, at the start of business at the target date and time).
- the scrapping loss area 154 displays the predicted number and amount of scrapping loss when the number of orders entered in the fixed order input area 182 is placed.
- the opportunity loss area 155 displays the predicted number and amount of opportunity losses when the number of orders entered in the fixed order input area 182 is placed.
- the total loss area 156 displays the sum of the predicted amount of waste loss and the amount of opportunity loss.
- the orderer 1 When the orderer 1 inputs the number of orders into the fixed order input area 182 while referring to the recommended number of orders displayed in the recommended number of orders area 151, the predicted inventory quantity graph 146, waste loss graph 147, and opportunity loss graph in the graph area 141 are displayed. 148 changes depending on the input order quantity. Thereby, the orderer 1 can determine a fixed order quantity while visually checking changes in waste loss and opportunity loss.
- the fixed order shown in FIG. 6 is suitable for ordering products with relatively long expiration dates and/or products whose sales volume per day is not so large.
- the actual sales number DB 41 may hold short-term actual sales numbers and long-term sales results.
- the short-term sales performance number may be, for example, the sales performance number in units of one week or one month.
- the long-term sales performance number may be, for example, the sales performance number on an annual basis such as one year or two years.
- the sales volume prediction unit 31 calculates a short-term predicted sales volume based on the short-term sales results, and registers it in the predicted sales volume DB 42. Further, the sales volume prediction unit 31 calculates a long-term predicted sales volume based on the long-term sales results, and registers it in the predicted sales volume DB 42. Note that the short-term predicted sales number may be replaced with the first predicted sales number, and the long-term predicted sales number may be replaced with the second predicted sales number.
- the sales forecast unit 31 calculates short-term predicted sales based on statistical analysis as described in (A1) above, and calculates long-term predicted sales using AI as described in (A2) above. It may also be calculated using
- the safety factor calculation unit 33 calculates a short-term safety factor using the short-term predicted sales numbers registered in the predicted sales number DB 42. Furthermore, the safety factor calculation unit 33 calculates a long-term safety factor using the long-term predicted sales numbers registered in the predicted sales number DB 42. Note that the short-term safety factor may be replaced with the first safety factor, and the long-term safety factor may be replaced with the second safety factor.
- the recommended order quantity calculation unit 32 calculates the short-term recommended order quantity using the short-term safety factor, and calculates the long-term recommended order quantity using the long-term safety factor. Note that the short-term recommended number of orders may be replaced with the first recommended number of orders, and the long-term recommended number of orders may be replaced with the second recommended number of orders. Then, the recommended order quantity calculation unit 32 may calculate the recommended order quantity by the following method (B1) or (B2).
- the recommended order quantity calculation unit 32 compares the short-term recommended order quantity and the long-term recommended order quantity, and determines the recommended order quantity based on the comparison result. For example, if the difference between the short-term recommended order number and the long-term recommended order number is less than a predetermined threshold, the recommended order number calculation unit 32 selects either the short-term recommended order number or the long-term recommended order number. , is the recommended order quantity. For example, if the difference between the short-term recommended order number and the long-term recommended order number is equal to or greater than a predetermined threshold, the recommended order number calculation unit 32 calculates the short-term recommended order number and long-term recommended order number as shown in (B2) below. The recommended order quantity is calculated by varying the weighting of each of the recommended order quantities.
- the recommended order quantity calculation unit 32 determines the recommended order quantity using the following formula.
- Recommended number of orders ( ⁇ 1 ⁇ recommended number of short-term orders) + ( ⁇ 2 ⁇ recommended number of long-term orders)
- the short-term coefficient ⁇ 1 and the long-term coefficient ⁇ 2 may be determined by, for example, the following (B2-1) or (B2-2).
- Embodiment 2 In Embodiment 2, components already explained in Embodiment 1 are given common reference numerals, and their explanations may be omitted.
- FIG. 7 is a block diagram showing a configuration example of the ordering support system 10 according to the second embodiment.
- the order support system 10 includes a store information DB 48 in addition to the components included in the order support system 10 shown in FIG.
- the store information DB 48 is a DB that holds store information that is information about each store that sells products. Examples of information included in the store information include the location conditions of the store, the surrounding environment of the store, the distance from the product distribution center 3 to the store, weather information at the store location, and events held around the store.
- the sales volume prediction unit 31 calculates the predicted sales volume for each store, also taking into account the store information in the store information DB 48. For example, if the store information includes that an event will be held near a certain store at a predicted date and time where many people will gather, the sales volume prediction unit 31 may calculate the predicted sales at the target date and time from the predicted sales at a normal time. Calculate more than.
- the sales volume prediction unit 31 uses the actual sales numbers of existing products similar to the new product to generate a provisional actual sales number for the new product, and uses that provisional actual sales number to You can predict the sales volume of new products. Thereby, the sales volume prediction unit 31 can also predict the sales volume of the new product.
- the sales volume prediction unit 31 uses the actual sales numbers of existing stores of similar size to the new store or existing stores with similar location conditions to the new store, to predict the new store's sales volume.
- a provisional actual sales number may be generated, and the sales number of each product at a new store may be predicted using the provisional actual sales number.
- the sales quantity prediction unit 31 can also predict the sales quantity of each product at a new store.
- the functional blocks of the ordering support system 10 described above can be realized by a computer program.
- FIG. 8 is a diagram showing the hardware configuration of a computer that implements the functional blocks of the ordering support system 10 according to the present disclosure using a computer program.
- the computer 1000 includes a processor 1001, a memory 1002, a storage 1003, an input device 1004, an output device 1005, a communication device 1006, a GPU (Graphics Processing Unit) 1007, a reading device 1008, and a bus 1009. These devices are connected to bus 1009 and can send and receive data bidirectionally via bus 1009.
- the processor 1001 is a device that executes a computer program stored in the memory 1002 and implements the functional blocks described above.
- Examples of the processor 1001 include a CPU (Central Processing Unit), MPU (Micro Processing Unit), controller, LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field-Programmable Gate). Array).
- the memory 1002 is a device that stores computer programs and data handled by the computer 1000.
- the memory 1002 may include ROM (Read-Only Memory) and RAM (Random Access Memory).
- the storage 1003 is a device that is composed of a non-volatile storage medium and stores computer programs and data handled by the computer 1000. Examples of the storage 1003 include HDD (Hard Disk Drive) and SSD (Solid State Drive).
- the input device 1004 is a device that accepts data input to the processor 1001. Examples of the input device 1004 include a keyboard, mouse, touch pad, microphone, and the like.
- the output device 1005 is a device that outputs data generated by the processor 1001. Examples of the output device 1005 include a display, a speaker, and the like.
- the communication device 1006 is a device that transmits and receives data to and from other devices (for example, the weather information server 5 or the terminal 12) via a communication network.
- the communication device 1006 may support either wired communication or wireless communication.
- An example of wired communication is Ethernet (registered trademark).
- Examples of wireless communication include Wi-Fi (registered trademark), Bluetooth, LTE, 4G, 5G, and the like.
- the GPU 1007 is a device that processes image depiction at high speed. Note that the GPU 1007 may be used for AI (artificial intelligence) processing (for example, deep learning).
- AI artificial intelligence
- deep learning deep learning
- the reading device 1008 is a device that reads data from a recording medium such as a DVD-ROM (Digital Versatile Disk Read Only Memory) or a USB (Universal Serial Bus) memory.
- a recording medium such as a DVD-ROM (Digital Versatile Disk Read Only Memory) or a USB (Universal Serial Bus) memory.
- the safety factor is defined by the following equations (1A) to (1C).
- Safety factor on day X (Actual inventory at the start of day X) / (Actual sales amount on day X) (1A)
- Safety factor on day X (Actual inventory at the start of day X) / (Predicted sales volume on day X) (1B)
- Safety factor for X day (Forecasted inventory at the start of day X) / (Forecasted sales volume for X day) (1C)
- these equations (1A) to (1C) are simplified equations.
- the safety factor indicates the ratio of the product to be ordered this time to the number of sales that should be covered by the product corresponding to the order, to what extent the product is kept in stock before receiving the product. It is a value. Therefore, the detailed definition of the safety factor is the following equation (2).
- Safety factor (Predicted inventory quantity before warehousing for the current order) / (Predicted sales quantity between ⁇ After warehousing for the current order'' and ⁇ Before warehousing for the next order'') (2)
- this equation (2) is simplified based on some assumptions, the above-mentioned equations (1A) to (1C) are obtained.
- the product ordered on the (X- ⁇ ) day is scheduled to be stocked on the X day, and the product ordered next on the (X- ⁇ ) day will arrive on the (X+1) day. If we assume that becomes. As a result, the safety factor on day X is as shown in equation (1C).
- the ordering support system 10 of the present disclosure includes an inventory number DB 43 that holds the number of products in stock that has an expiration date, a predicted sales number DB 42 that holds the predicted sales number of the product in a future target period, and the target sales number of the product. a safety factor calculation unit 33 that calculates a safety factor indicating a ratio of the number of stocks whose expiration date does not expire within the target period before the start of the target period to the predicted sales volume of the period; and a safety factor calculation unit 33 based on the safety factor. and a recommended order quantity calculation unit 32 that calculates a recommended order quantity that is the recommended order quantity of the product to be stocked after the start of the target period, and an input display control unit 34 that displays the recommended order quantity. .
- the recommended order quantity is calculated and displayed based on the safety factor, so the orderer 1 can reduce the total of opportunity loss and waste loss by placing an order based on the recommended order quantity.
- the ordering support system 10 calculates the predicted sales number based on the actual sales number DB 41 that holds the past actual sales numbers of the product and the actual sales number, and registers it in the predicted sales number DB.
- the sales volume prediction unit 31 further includes a sales volume prediction unit 31. Thereby, the order support system 10 can calculate the predicted sales volume based on the past actual sales volume.
- the sales volume prediction unit 31 calculates a first predicted sales volume of the product based on the actual sales volume of the product in a first period, and A second predicted sales number of the product is calculated based on the actual sales number of the product in a second period that is longer than the period, and the safety factor calculation unit 33 calculates a second predicted sales number of the product based on the first predicted sales number. 1, and calculates a second safety factor based on the second predicted sales volume, and the recommended order quantity calculation unit 32 calculates a first order recommendation based on the first safety factor. A second recommended order quantity is calculated based on the second safety factor.
- the order support system 10 calculates the first recommended order quantity based on the first period and the second recommended order quantity based on the second period, and depending on the situation, for example, It is possible to use the recommended quantity and the second recommended quantity to order, or to judge the accuracy of the calculated recommended quantity to order.
- the recommended order quantity calculation unit 32 calculates the number of sales of the product in the first period and the past sales performance of the product in the same period as the first period. Based on the correlation with the number, a ratio between the first recommended number to order and the second recommended number to order is determined, and the recommended number to order is calculated. Thereby, the order support system 10 can calculate a recommended order quantity that is more suitable for the situation, depending on the level of correlation between the sales situation in the first period and the sales situation in the same period in the past.
- the ordering support system 10 according to any one of techniques 2 to 4 further includes a store information DB 48 that stores store information regarding each store that sells the product, and the sales volume prediction unit 31 stores information about each store that sells the product.
- the predicted sales volume for each store is calculated based on the actual sales volume of the product and the store information for each store. Thereby, the ordering support system 10 can calculate an appropriate predicted sales volume for each store.
- the ordering support method of the present disclosure the number of products in stock that has an expiration date is acquired, the predicted sales volume of the product in the target period in the future is acquired, and the target Calculate a safety factor indicating the percentage of the inventory that does not expire within the target period before the start of the period, and based on the safety factor, recommend the products to be stocked after the start of the target period.
- the recommended order quantity which is the order quantity, is calculated, and the recommended order quantity is displayed.
- the recommended order quantity is calculated and displayed based on the safety factor, so the orderer 1 can reduce the total of opportunity loss and waste loss by placing an order based on the recommended order quantity.
- the ordering support program of the present disclosure obtains the number of products in stock that has an expiration date, obtains the predicted sales volume of the product in the target period in the future, and compares the predicted sales volume of the product in the target period with the target product. Calculate a safety factor indicating the percentage of the inventory that does not expire within the target period before the start of the period, and based on the safety factor, recommend the products to be stocked after the start of the target period.
- the computer is made to calculate a recommended order quantity, which is the order quantity, and display the recommended order quantity. As a result, the recommended order quantity is calculated and displayed based on the safety factor, so the orderer 1 can reduce the total of opportunity loss and waste loss by placing an order based on the recommended order quantity.
- the technology of the present disclosure is useful when determining the number of products to be ordered that have an expiration date.
- Order support screen 101 Product list area 102 Graph area 103 Information area 104 Sales graph 105 Inventory graph 120 Product list screen 121 Calendar area 122 Graph area 123 Pie chart 140 Order support screen 141 Graph area 142 Manual order button 143 Automatic order button 144 Fixed order button 145 Forecast sales graph 146 Forecast inventory graph 147 Disposal loss graph 148 Opportunity loss graph 151 Recommended order quantity area 152 Order quantity input area 153 Inventory quantity at end of business area 154 Disposal loss area 155 Opportunity loss area 156 Total loss area 160 Order support screen 161 Order quantity area 180 Order support screen 181 Lower limit input area 182 Fixed order input area 1000 Computer 1001 Processor 1002 Memory 1003 Storage 1004 Input device 1005 Output device 1005 Output device
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Development Economics (AREA)
- Theoretical Computer Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- General Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Game Theory and Decision Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
発注支援システムは、消費期限を有する商品の在庫数を保持する在庫数DBと、商品の将来の対象期間の予測販売数を保持する予測販売数DBと、商品の対象期間の予測販売数に対する、対象期間の開始前における対象期間内に消費期限が切れない在庫数の割合を示す安全率を算出する安全率算出部と、安全率に基づいて、対象期間の開始後に入庫する商品の推奨される発注数である発注推奨数を算出する発注推奨数算出部と、発注推奨数を表示させる入力表示制御部とを備える。
Description
本開示は、発注支援装置、発注支援方法、及び、発注支援プログラムに関する。
特許文献1には、販売実績に基づいて商品の需要予測モデルを構築し、当該需要予測モデルを用いて商品の予測需要量を算出し、当該予測需要量に基づいて商品の発注量ごとに商品の販売機会損失が発生するリスク及び商品の過剰在庫が発生するリスクの少なくとも一方の大きさを示すリスク値を算出し、当該リスク値に基づいて推奨発注量を出力する発注支援システムが開示されている。
実際の需要量と完璧に一致する予測需要量を算出することは極めて困難であり、実際の需要量が予測需要量とずれた場合、販売機会損失又は過剰在庫も大きく増えてしまう。また、消費期限を有する商品の過剰在庫は廃棄ロスにつながる。
本開示の目的は、実際の販売数と予測販売数とのずれを許容し、機会ロス及び/又は廃棄ロスが小さくなる推奨発注数を提案できる技術を提供することにある。
本開示の発注支援システムは、消費期限を有する商品の在庫数を保持する在庫数DBと、前記商品の将来の対象期間の予測販売数を保持する予測販売数DBと、前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出する安全率算出部と、前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出する発注推奨数算出部と、前記発注推奨数を表示させる入力表示制御部と、を備える。
本開示の発注支援方法は、消費期限を有する商品の在庫数を取得し、前記商品の将来の対象期間の予測販売数を取得し、前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出し、前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出し、前記発注推奨数を表示させる。
本開示の発注支援プログラムは、消費期限を有する商品の在庫数を取得し、前記商品の将来の対象期間の予測販売数を取得し、前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出し、前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出し、前記発注推奨数を表示させる、ことをコンピュータに実行させる。
なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又は記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
本開示の技術によれば、実際の販売数と予測販売数とのずれを許容し、機会ロス及び/又は廃棄ロスが小さくなる発注数を提案することができる。
以下、図面を適宜参照して、本開示の実施の形態について、詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、すでによく知られた事項の詳細説明及び実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の記載の主題を限定することは意図されていない。
(実施の形態1)
<システム構成>
図1は、実施の形態1に係る発注支援システム10の構成例を示すブロック図である。
<システム構成>
図1は、実施の形態1に係る発注支援システム10の構成例を示すブロック図である。
発注支援システム10は、商品の発注者1が、消費期限を有する商品の発注数を決定する際に、機会ロスと廃棄ロスができるだけ小さくなるような発注数を決定できるよう支援する装置である。
例えば、発注支援システム10は、各商品について、機会ロスと廃棄ロスができるだけ小さくなるような発注推奨数を端末12に表示する。発注者1は端末12に表示された各商品の発注推奨数を参考に、発注装置4に各商品の発注数を入力する。発注装置4は、発注者1に入力された各商品の発注数を商品配送センタ3に送信する。商品配送センタ3は、発注装置4から受信した発注数の各商品を、例えば発注者1の店舗に配送する。
なお、本実施の形態では、商品は店舗にて顧客に提供される消費期限を有する飲食物であり、発注者1は当該飲食物を発注する者(例えば店長)として説明する。しかし、商品はこれらに限られない。例えば、商品は病院に入院している患者に提供される消費期限を有する飲食物であり、発注者1は当該飲食物の発注を取り纏める者であってよい。例えば、商品は薬局で販売される消費期限を有する薬(例えば目薬)であり、発注者1は当該薬を発注する者であってよい。
以下、発注支援システム10について詳細に説明する。
発注支援システム10は、実績販売数DB(DataBase)41と、販売数予測部31と、予測販売数DB42と、消費期限マスタ47と、安全率算出部33と、在庫数DB43と、発注数DB44と、発注推奨数算出部32と、入力表示制御部34とを、機能ブロックとして備える。
実績販売数DB41は、各商品について過去に実際に販売された数(以下、実績販売数と称する)を保持するDBである。例えば、実績販売数DB41は、各商品について、商品IDと、商品名と、過去の日付と、その日付におけるその商品の実績販売数とを対応付けて保持する。
販売数予測部31は、実績販売数DB41に保持されている商品の過去の実績販売数に基づいて、その商品の将来の各日時における販売数(以下、予測販売数と称する)を算出する。販売数予測部31は、商品毎に予測販売数を算出する。販売数予測部31は、算出した将来の各日時における予測販売数を、予測販売数DB42に登録する。
販売数予測部31は、次の(A1)及び/又は(A2)によって予測販売数を算出してよい。
(A1)販売数予測部31は、統計的分析に基づいて予測販売数を算出する。例えば、販売数予測部31は、実績販売数DB41に保持されている商品の過去の実績販売数を統計的に分析し、その分析結果に基づいて、当該商品の将来の日時における予測販売数を算出する。例えば、販売数予測部31は、過去の複数の1週間の販売実績数を統計的に分析して1週間の販売傾向(例えば曜日毎の販売傾向)を特定し、その特定した販売傾向に基づいて、将来の1週間の予測販売数を算出する。
(A2)販売数予測部31は、AI(Artificial Intelligence)を用いて予測販売数を算出する。例えば、販売数予測部31は、商品の過去の実績販売数と過去の天気情報とを学習データとして実績販売数と天気情報との関係を学習した学習モデル(例えば深層学習モデル)を用いて、将来の対象日時における天気情報等に基づく対象日時の予測販売数を算出する。天気情報には、例えば、晴れ、曇り、雨、雪など天気予報、気温の予報、湿度の予報、気圧の予報等が含まれてよい。販売数予測部31は、所定の天気情報サーバ5から、対象日時の天気情報を取得してよい。また、販売数予測部31は、商品の過去の実績販売数と過去のカレンダー情報とを学習データとして実績販売数とカレンダー情報との関係を学習した学習モデルを用いて、将来の対象日時の予測販売数を算出する。カレンダー情報には、例えば、日付、曜日、祝日、国事、記念日、祭典等が含まれてよい。販売数予測部31は、所定のカレンダー情報サーバ6から、対象日時のカレンダー情報を取得してよい。
なお、販売数予測部31は、上記(A1)の方法で算出した予測販売数と、上記(A2)の方法で算出した予測販売数とを、両方とも予測販売数DB42に登録してもよい。
予測販売数DB42は、販売数予測部31から登録された、各商品の将来の各日時の予測販売数を保持する。例えば、予測販売数DB42は、各商品について、商品IDと、商品名と、将来の日時と、その日時におけるその商品の予測販売数とを対応付けて保持する。
消費期限マスタ47は、各商品の消費期限を保持する。例えば、消費期限マスタ47は、各商品について、商品IDと、商品名と、消費期限とを対応付けて保持する。
在庫数DB43は、店舗における各商品の実際の在庫数を保持する。例えば、在庫数DB43は、商品IDと、商品名と、日時と、その日時におけるその商品の在庫数とを対応付けて保持する。
発注数DB44は、店舗における各商品の発注済みの発注数を保持する。例えば、発注数DB44は、商品IDと、商品名と、発注日時と、入庫日時と、その商品のその発注日時に発注された発注数(つまりその商品のその入庫日時の入庫数)とを対応付けて保持する。
安全率算出部33は、消費期限マスタ47に保持される商品の消費期限と、予測販売数DB42に保持される当該商品の予測販売数と、在庫数DB43に保持されている当該商品の在庫数とに基づいて、当該商品の安全率を算出する。次に、例えば商品の消費期限が48時間であるとして、安全率について説明する。
<安全率について>
もしX日の始業時に在庫が全くなく、X日の入庫数がX日の実際の販売数よりも少ない場合、機会ロスが発生する。そこで、この機会ロスの発生を防ぐために、X日の始業時の在庫(すなわち、前日以前から繰り越されており、かつ、消費期限を超過していない在庫)を利用する。これにより、X日の実際の販売数がX日の始業時の在庫数とX日の入庫数との合計を上回らない限り、機会ロスは発生しない。一方で、X日の始業時の在庫は、消費期限内(つまりその在庫の商品が入庫されたときから48時間以内)に販売されれば、廃棄ロスとならない。
もしX日の始業時に在庫が全くなく、X日の入庫数がX日の実際の販売数よりも少ない場合、機会ロスが発生する。そこで、この機会ロスの発生を防ぐために、X日の始業時の在庫(すなわち、前日以前から繰り越されており、かつ、消費期限を超過していない在庫)を利用する。これにより、X日の実際の販売数がX日の始業時の在庫数とX日の入庫数との合計を上回らない限り、機会ロスは発生しない。一方で、X日の始業時の在庫は、消費期限内(つまりその在庫の商品が入庫されたときから48時間以内)に販売されれば、廃棄ロスとならない。
したがって、「始業時の在庫の全てが消費期限内に販売される」、かつ、「いずれの日においても、その日の販売数が、その日の始業時の在庫数とその日の入庫数との合計を上回ることがない」という条件が満たされた状態を維持できれば、機会ロスと廃棄ロスの両方を抑制できる。
そこで、始業時の在庫数に関する指標として、安全率を定義する。安全率は次の式(1A)、式(1B)又は式(1C)によって算出される。
X日の安全率=(X日の始業時の実際の在庫数)/(X日の実績販売数) (1A)
X日の安全率=(X日の始業時の実際の在庫数)/(X日の予測販売数) (1B)
X日の安全率=(X日の始業時の予測在庫数)/(X日の予測販売数) (1C)
安全率算出部33は、上記の式(1A)、式(1B)又は式(1C)により、各商品の各日付の安全率を算出する。安全率算出部33は、過去の日付の安全率を算出する場合、上記の式(1A)を用い、当日の日付の安全率を算出する場合、上記の式(1B)を用い、将来の安全率を算出する場合、上記の式(1C)を用いてよい。
X日の安全率=(X日の始業時の実際の在庫数)/(X日の実績販売数) (1A)
X日の安全率=(X日の始業時の実際の在庫数)/(X日の予測販売数) (1B)
X日の安全率=(X日の始業時の予測在庫数)/(X日の予測販売数) (1C)
安全率算出部33は、上記の式(1A)、式(1B)又は式(1C)により、各商品の各日付の安全率を算出する。安全率算出部33は、過去の日付の安全率を算出する場合、上記の式(1A)を用い、当日の日付の安全率を算出する場合、上記の式(1B)を用い、将来の安全率を算出する場合、上記の式(1C)を用いてよい。
この安全率は、始業時の在庫で予測販売数分の需要をどの程度満たせるかを示している。なお、X日の時点で消費期限が切れている在庫は廃棄されるため、X日の安全率の定義に用いられるX日の始業時の在庫数は、X日に消費期限が切れない在庫数を示している。そのため、「始業時の在庫の全てがX日に販売される」という条件が(予測値上で)満たされれば、「始業時の在庫の全てが消費期限内に販売される」という条件を(予測値上で)確実に満たすことができる。すなわち、「始業時の在庫の全てが消費期限内に販売される」という条件を確実に満たすことができる。つまり、安全率が100%未満であれば、予測値上は、廃棄ロスは発生しない。なお、消費期限がX日より後に到来するようであれば、安全率が100%を超えていても(X+1)日以降、かつ、消費期限の到来前に在庫を販売できる可能性はある。しかし、廃棄ロスの発生するリスクを負ってまで余剰の在庫を確保する利益は薄いため、基本的には安全率が100%を下回るように在庫の管理を行うことが望ましい。また、「いずれの日においても、その日の販売数が、その日の始業時の在庫数とその日の入庫数との合計を上回ることがない」という条件を(予測値上で)満たすためには安全率が0%となることは避けた方がよい。安全率が0%の場合、当日の入庫のみで当日の販売数の全てを満たす必要があるが、このような状態を維持することは極めて難しいためである。以下、この理由を詳述する。
一般に、発注から入庫までには所定の期間(以下、α日とする)がかかるため、当日に入庫される数は、α日前時点で発注した数となる。すなわち、安全率0%の状態で、X日の需要を満たそうとすると、α日前の時点で、X日の販売数を完璧に予測しなくてはならなくなる。なお、安全率0%で運用できれば、在庫の消費期限が切れることはなくなるため、販売数の予測が完璧であれば、安全率0%の状態を継続することが望ましい。しかし、このような完璧な予測を行うことは極めて困難であるため、機会ロスと廃棄ロスの両方を抑制できる可能性が高い安全率となるように、発注を行うことが現実的な対応となる。
発注推奨数算出部32は、予測販売数DB42から取得した本日(発注日)から発注商品の入庫日までの対象期間の予測販売数と、安全率算出部33から取得した、対象期間の各日付の安全率とに基づいて、本日発注分の発注推奨数を算出する。なお、発注推奨数の算出方法の詳細については後述する(図2A、図2B参照)。
入力表示制御部34は、安全率及び発注推奨数を含む発注支援画面を端末12に表示させる。なお、入力表示制御部34は端末12と所定の通信ネットワーク(例えば有線LAN(Local Area Network)又は無線LAN等)を介して接続されてよい。
端末12は、入力表示制御部34からの指示に基づいて、安全率及び発注推奨数を含む発注支援画面を表示する。端末12の例として、PC、スマートフォン、タブレット端末等が挙げられる。発注者1は、端末12に表示された発注推奨数を参考に、商品の発注数を決定し発注装置4に入力する。これにより、発注者1は、機会ロスと廃棄ロスをできるだけ小さくできる発注数で商品を発注できる。なお、発注者1は、少なくとも発注推奨数を確認できれば発注数を決定することができるため、端末12は、発注推奨数以外の情報(例えば、安全率など)の表示を省略してもよい。また、端末12は発注装置4と通信ネットワークを介して接続されており、発注装置4は端末12からの指示により自動で発注推奨数の商品を発注する構成であってもよい。この場合、発注者1は発注数を決定する作業を行う必要がないため、端末12は発注推奨数の表示を省略してもよい。
なお、端末12は、時間経過に伴って変化する商品の実績販売数を適宜、実績販売数DB41に反映し、時間経過に伴って変化する商品の在庫数を適宜、在庫数DB43に反映してよい。また、端末12は、発注完了した商品の発注数を発注数DB44に反映してよい。あるいは、販売実績数及び在庫数は、顧客からの注文に応じて、自動的に販売実績数DB及び在庫数DB43に反映されてもよい。
なお、実績販売数DB41、在庫数DB43、及び、発注数DB44の少なくとも1つは、いわゆるクラウドに配置されてもよいし、ローカル(例えば店舗内)に配置されてもよい。あるいは、クラウドに配置された実績販売数DB41、在庫数DB43、及び、発注数DB44の少なくとも1つを複製又は同期したDBが、ローカルに配置されてもよい。この場合、端末12は、クラウドに配置されたDBへのアクセスに代えて、ローカルに配置されたDBにアクセスしてもよい。
また、商品を販売する店舗には、顧客からの注文に応じて自動的に商品を在庫から取り出すロボットが設置されてよい。これにより、店員はロボットが取り出した商品を顧客に提供すればよいので、店員によるミスを抑制できる。
<発注支援画面の第1例>
図2Aは、実施の形態1に係る発注支援画面100の一例を示す図である。発注支援画面100は、入力表示制御部34によって生成され、端末12に表示されてよい。
図2Aは、実施の形態1に係る発注支援画面100の一例を示す図である。発注支援画面100は、入力表示制御部34によって生成され、端末12に表示されてよい。
ここでは、始業時刻が8時であり、商品の消費期限が48時間であり、発注した商品が発注日から2日後の15時に入庫されるものとして説明する。ただし、これらの始業時刻、消費期限及び入庫時刻は一例である。また、発注時刻及び入庫時刻は、1日のうち、1回に限られず、2回以上であってもよい。
発注支援画面100は、商品リスト領域101と、グラフ領域102と、情報領域103とを含む。
商品リスト領域101には、商品のリストが表示される。発注者1は、商品リスト領域101から商品を1つ選択する。
グラフ領域102には、商品リスト領域101から選択された商品の、時間経過に伴う販売数の推移を示す折れ線グラフ(以下、販売数グラフ104と称する)と、時間経過に伴う在庫数の推移を示す折れ線グラフ(以下、在庫数グラフ105と称する)とが表示される。なお、折れ線グラフは一例であり、他の形式のグラフであってもよい。販売数グラフ104及び在庫数グラフ105は、発注推奨数算出部32によって算出され、グラフ領域102に描画されてよい。
情報領域103には、各日付における安全率と入庫数とが表示される。入力表示制御部34は、安全率算出部33によって算出された各日付の安全率を情報領域103に表示する。入力表示制御部34は、発注数DB44から取得した各日付の発注数に基づき、各日付の入庫数を情報領域103に表示する。
次に、図2Aを参照しながら、安全率及び在庫数について詳細に説明する。
2月9日(昨日)において、安全率は12%、入庫数は46皿となっている。2月9日の安全率は、「(2月9日の始業時の実際の在庫数)/(2月9日の実績販売数)」によって算出される。また、2月9日の入庫数は、2月7日に発注済みの発注数に対応する。
2月10日(本日)の8時において、安全率は56%、入庫数は40皿となっている。2月10日の安全率は、「(2月10日の始業時の実際の在庫数)/(2月10日の予測販売数)」によって算出される。2月10日の始業時の実際の在庫数は、2月9日の終業時の実際の在庫数と一致する。また、2月10日の入庫数は、2月8日に発注済みの発注数に対応する。
2月11日(1日後)の8時において、安全率は38%、入庫数は40皿となっている。2月11日の安全率は、「(2月11日の始業時の予測在庫数)/(2月11日の予測販売数)」によって算出される。2月11日の始業時の予測在庫数は、「(2月10日の始業時の実際の在庫数)+(2月10日の入庫数)-(2月10日の予測販売数)」によって算出される。なお、2月11日の始業時の予測在庫数は、2月10日の終業時の予測在庫数と一致する。また、2月11日の入庫数は、2月9日(昨日)に発注済みの発注数に対応する。
2月12日(2日後)の8時において、安全率は13%、入庫数は60皿となっている。2月12日の安全率は、「(2月12日の始業時の予測在庫数)/(2月12日の予測販売数)」によって算出される。2月12日の始業時の予測在庫数は、「(2月11日の始業時の予測在庫数)+(2月11日の入庫数)-(2月11日の予測販売数)」によって算出される。なお、2月12日の始業時の予測在庫数は、2月11日の終業時の予測在庫数と一致する。また、2月12日の入庫数は、2月10日(本日)に発注予定の発注数に対応する。
ここで、発注推奨数算出部32は、2月12日の安全率13%と、2月12日の予測販売数とに基づいて、2月10日(本日)の発注推奨数(つまり2月12日の入庫数に相当)を算出する。例えば、発注推奨数算出部32は、2月12日の予測販売数から安全率13%で賄える数を差し引いた数以上となるように、2月12日に入庫分の発注推奨数を算出する。入力表示制御部34は、その算出した発注推奨数を端末12に表示する。発注者1は、端末12に表示された発注推奨数を参考に、発注装置4に発注数を入力してよい。これにより、発注者1は、機会ロスと廃棄ロスの合計をできるだけ小さくする発注を容易に行うことができる。
上述した通り、2月12日の機会ロスを防ぐためには、発注推奨数は2月12日の予測販売数から安全率13%で賄える数を差し引いた数(以下、当日不足数と称する)以上である必要がある。ただし、この当日不足数ちょうどの発注を行うと2月12日の実際の販売数が予測販売数を上回った場合に、2月12日に機会ロスが発生するおそれがある。しかし、発注推奨数算出部32は、翌日の2月13日の所定の安全率を満たすように、2月12日に入庫される発注推奨数を算出することにより、発注推奨数には、この当日不足数ちょうどにある程度のマージンが追加されている。よって、本実施の形態によれば、2月12日の実際の販売数が予測販売数を少し上回ったとしても、このマージンにより機会ロスが発生しない。一方、実際の販売数が予測販売数を少し下回り、2月13日の始業時の在庫数が想定よりも増えたとしても、その在庫数が2月13日の実際の販売数以下であれば消費期限(48時間)内である2月13日中に消費されるので、廃棄ロスが発生しない。
また、発注者1が機会ロスよりも廃棄ロスの低減を重視する場合、予測販売数から安全率で賄える数を差し引いた数よりも低い数を発注推奨数としてもよい。
また、発注者1は、図2Aに示す販売数グラフ104及び在庫数グラフ105を確認することにより、各日付における、安全率に対応する始業時の在庫数の変遷と、入庫後の在庫数との関係を視覚的に確認できる。
図2Bは、実施の形態1に係る、安全率と販売数と在庫数が予測通りに推移した場合の一例を示すグラフである。
図2Bに示すように、発注推奨数算出部32は、日々の安全率が所定値(例えば30%)となるように、発注推奨数を算出してよい。
例えば、商品の消費期限が48時間である場合、3月7日に入庫され、3月7日の終業時に残った在庫は、翌日の3月8日中に消費される必要がある。この3月7日の終業時の在庫数は、翌日の3月8日の始業時の在庫数となり、これは3月8日の安全率30%に相当し、3月8日中に優先的に販売される。よって、廃棄ロスが発生しない。また、3月8日の15時に入庫された商品は、一部が3月8日中に消費され、機会ロスを発生させることなく、3月8日の終業時に一部在庫となる。この3月8日の終業時の在庫数は、翌日の3月9日の始業時の在庫数となり、3月9日の安全率30%に相当し、3月9日中に優先的に販売される。これが日々繰り返されるので、図2Bに示すように、適切な安全率(例えば30%)を満たすように発注を行い、販売数と在庫数が予測通りに推移した場合、廃棄ロスも機会ロスも発生しない。
なお、上述では消費期限が48時間の例を説明したが、消費期限が48時間よりも長い(例えば72時間、96時間等)場合でも同様である。すなわち、日々の始業時の在庫がその後の消費期限内に消費されるような適切な安全率を設定し、その安全率を満たすように発注を行うことで、販売数と在庫数が予測通りに推移した場合に、廃棄ロスも機会ロスも発生しない。
<発注支援画面の第2例>
図3は、実施の形態1に係る商品一覧画面120の一例を示す図である。商品一覧画面120は、入力表示制御部34によって生成され、端末12に表示されてよい。
図3は、実施の形態1に係る商品一覧画面120の一例を示す図である。商品一覧画面120は、入力表示制御部34によって生成され、端末12に表示されてよい。
商品一覧画面120は、カレンダー領域121と、グラフ領域122とを有する。
カレンダー領域121には、月のカレンダーが表示される。発注者1は、カレンダー領域121に表示されるカレンダーから、グラフ領域122にグラフを表示させたい日付を選択する。
グラフ領域122には、カレンダー領域121にて選択された日付における各商品の発注数に関する円グラフ123が表示される。円グラフ123の大きさは、選択された日付における発注数の多さを示す。つまり、円グラフ123は、発注数の多い商品ほど大きくなる。
円グラフ123の内訳は、発注数のうちの、在庫の割合と、機会ロスの割合と、廃棄ロスの割合とを示す。円グラフ123において、各割合は互いに異なる色又はパターンで示されてよい。例えば、在庫の割合は緑色、機会ロスの割合は赤色、廃棄ロスの割合は紫色で示されてよい。もし発注数のうちすべてが機会ロス及び廃棄ロスのいずれにもならない(つまりすべて販売される)と予測される場合、円グラフ123の在庫の割合が100%となる。もし発注数のa1%が機会ロスとなると予測される場合、円グラフ123の機会ロスの割合がa1%となる。もし発注数のa2%が廃棄ロスとなると予測される場合、円グラフ123の廃棄ロスの割合がa2%となる。
図4は、実施の形態1に係る手動発注用の発注支援画面140の例を示す図である。発注支援画面140は、入力表示制御部34によって生成され、端末12に表示されてよい。
手動発注用の発注支援画面140は、グラフ領域141と、手動発注ボタン142と、自動発注ボタン143と、固定発注ボタン144と、発注推奨数領域151と、発注数入力領域152と、営業終了時の在庫数領域153と、廃棄ロス領域154と、機会ロス領域155と、合計ロス領域156とを含む。図4に示す手動発注用の発注支援画面140は、手動発注ボタン142が押下された場合に表示される。
グラフ領域141には、対象商品について、各日付において、時間経過に伴う予測販売数の変化を示す折れ線グラフ(以下、予測販売数グラフ145と称する)と、時間経過に伴う予測在庫数の変化を示す棒グラフ(以下、予測在庫数グラフ146と称する)と、が表示される。さらに、グラフ領域141には、対象商品について、各日付において、時間経過に伴う廃棄ロス数の変化を示す線グラフ(以下、廃棄ロスグラフ147と称する)と、時間経過に伴う機会ロス数の変化を示す棒グラフ(以下、機会ロスグラフ148と称する)と、が表示される。なお、棒グラフ及び折れ線グラフは一例であり、他の形式のグラフであってもよい。
発注推奨数領域151には、発注推奨数算出部32によって算出された、対象日時(図4では4月4日)に対する発注推奨数が表示される。
発注数入力領域152には、発注者1によって発注数が入力される。
営業終了時の在庫数領域153には、対象日時の前日の営業終了時(つまり対象日時の始業時)の予測在庫数が表示される。
廃棄ロス領域154には、発注数入力領域152に入力された発注数の発注が行われた場合の、予測される廃棄ロスの数及び金額が表示される。
機会ロス領域155には、発注数入力領域152に入力された発注数の発注が行われた場合の、予測される機会ロスの数及び金額が表示される。
合計ロス領域156には、予測される廃棄ロスの金額と機会ロスの金額との合計が表示される。
発注者1が、発注推奨数領域151に表示された発注推奨数を参考にしながら、発注数入力領域152に発注数を入力すると、グラフ領域141における予測在庫数グラフ146、廃棄ロスグラフ147及び機会ロスグラフ148は、その入力された発注数に応じて変化する。これにより、発注者1は、廃棄ロス及び機会ロスの変化を視覚的に確認しながら、廃棄ロス及び機会ロスが小さくなるような発注数を決定することができる。
図4に示す手動発注は、すでに団体の予約が入っているときの発注、又は、予測販売数の精度があまり高くない商品の発注等に適している。
図5は、実施の形態1に係る自動発注用の発注支援画面160の一例を示す図である。図5に示す自動発注用の発注支援画面160は、自動発注ボタン143が押下された場合に表示される。また、発注支援画面160は、入力表示制御部34によって生成され、端末12に表示されてよい。
自動発注用の発注支援画面160は、グラフ領域141と、手動発注ボタン142と、自動発注ボタン143と、固定発注ボタン144と、発注推奨数領域151と、発注数領域161と、営業終了時の在庫数領域153と、廃棄ロス領域と154、機会ロス領域155と、合計ロス領域156とを含む。
グラフ領域141には、図4と同様のグラフが表示される。
発注推奨数領域151には、発注推奨数算出部32によって算出された、対象日時(図4では4月4日)に対する発注推奨数が表示される。
発注数領域161には、発注推奨数領域151に表示された発注推奨数に対応する発注数が自動的に表示される。
営業終了時の在庫数領域153には、対象日時の前日の営業終了時(つまり対象日時の始業時)の予測在庫数が表示される。
廃棄ロス領域154には、発注数領域161に表示された発注数の発注が行われた場合の、予測される廃棄ロスの数及び金額が表示される。
機会ロス領域155には、発注数領域161に表示された発注数の発注が行われた場合の、予測される機会ロスの数及び金額が表示される。
合計ロス領域156には、予測される廃棄ロスの金額と機会ロスの金額との合計が表示される。
発注推奨数算出部32は、発注数領域161に表示された発注数に応じた、予測在庫数グラフ146、廃棄ロスグラフ147及び機会ロスグラフ148を、グラフ領域141に表示する。これにより、発注者1は、発注推奨数に基づく発注を自動的に行った場合の廃棄ロス及び機会ロスの変化を視覚的に確認することができる。
図5に示す自動発注は、比較的消費期限の短い商品、及び/又は、1日の販売数が多い商品等の発注に適している。
図6は、実施の形態1に係る固定発注用の発注支援画面180の一例を示す図である。図6に示す固定発注用の発注支援画面180は、固定発注ボタン144が押下された場合に表示される。また、発注支援画面180は、入力表示制御部34によって生成され、端末12に表示されてよい。
固定発注用の発注支援画面180は、グラフ領域141と、手動発注ボタン142と、自動発注ボタン143と、固定発注ボタン144と、発注推奨数領域151と、下限入力領域181と、固定発注入力領域182と、営業終了時の在庫数領域153と、廃棄ロス領域154と、機会ロス領域155と、合計ロス領域156とを含む。
グラフ領域141には、図4と同様のグラフが表示される。
発注推奨数領域151には、発注推奨数算出部32によって算出された、対象日時(図4では4月4日)に対する発注推奨数が表示される。
下限入力領域181には、発注者1によって、在庫数の下限値が入力される。
固定発注入力領域182には、在庫数が下限入力領域181に入力された下限値より減った場合に自動的に発注する発注数が、発注者1によって入力される。
営業終了時の在庫数領域153には、対象日時の前日の営業終了時(つまり対象日時の始業時)の予測在庫数が表示される。
廃棄ロス領域154には、固定発注入力領域182に入力された発注数の発注が行われた場合の、予測される廃棄ロスの数及び金額が表示される。
機会ロス領域155には、固定発注入力領域182に入力された発注数の発注が行われた場合の、予測される機会ロスの数及び金額が表示される。
合計ロス領域156には、予測される廃棄ロスの金額と機会ロスの金額との合計が表示される。
発注者1が、発注推奨数領域151に表示された発注推奨数を参考にしながら、固定発注入力領域182に発注数を入力すると、グラフ領域141における予測在庫数グラフ146、廃棄ロスグラフ147及び機会ロスグラフ148は、その入力された発注数に応じて変化する。これにより、発注者1は、廃棄ロス及び機会ロスの変化を視覚的に確認しながら、固定の発注数を決定することができる。
図6に示す固定発注は、比較的消費期限の長い商品、及び/又は、1日の販売数がそれほど多くない商品等の発注に適している。
<短期と長期の実績販売数の利用>
次に、短期と長期の実績販売数を用いて予測販売数を算出する方法について説明する。
次に、短期と長期の実績販売数を用いて予測販売数を算出する方法について説明する。
実績販売数DB41は、短期の実績販売数と、長期の販売実績数とを保持してよい。短期の販売実績数は、例えば、1週間又は1か月といった単位の販売実績数であってよい。長期の販売実績数は、例えば、1年間又は2年間といった年単位の販売実績数であってよい。
販売数予測部31は、短期の販売実績数に基づいて短期の予測販売数を算出し、予測販売数DB42に登録する。また、販売数予測部31は、長期の販売実績数に基づいて長期の予測販売数を算出し、予測販売数DB42に登録する。なお、短期の予測販売数は第1の予測販売数と読み替えられ、長期の予測販売数は第2の予測販売数と読み替えられてよい。
なお、販売数予測部31は、短期の予測販売数については上述した(A1)のように統計的分析に基づいて算出し、長期の予測販売数については上述した(A2)のようにAIを用いて算出してもよい。
安全率算出部33は、予測販売数DB42に登録されている短期の予測販売数を用いて、短期の安全率を算出する。また、安全率算出部33は、予測販売数DB42に登録されている長期の予測販売数を用いて、長期の安全率を算出する。なお、短期の安全率は第1の安全率と読み替えられ、長期の安全率は第2の安全率と読み替えられてもよい。
発注推奨数算出部32は、短期の安全率を用いて短期の発注推奨数を算出し、長期の安全率を用いて長期の発注推奨数を算出する。なお、短期の発注推奨数は第1の発注推奨数と読み替えられ、長期の発注推奨数は第2の発注推奨数と読み替えられてよい。そして、発注推奨数算出部32は、以下の(B1)又は(B2)の方法により発注推奨数を算出してよい。
(B1)発注推奨数算出部32は、短期の発注推奨数と長期の発注推奨数とを比較し、その比較結果に基づいて発注推奨数を決定する。例えば、発注推奨数算出部32は、短期の発注推奨数と長期の発注推奨数との差分が所定の閾値未満である場合、短期の発注推奨数又は長期の発注推奨数のいずれかを選択し、発注推奨数とする。例えば、発注推奨数算出部32は、短期の発注推奨数と長期の発注推奨数との差分が所定の閾値以上である場合、下記の(B2)に示すように、短期の発注推奨数と長期の発注推奨数のそれぞれの重み付けを可変して、発注推奨数を算出する。
(B2)発注推奨数算出部32は、次の式により、発注推奨数を決定する。
発注推奨数=(β1×短期の発注推奨数)+(β2×長期の発注推奨数)
短期係数β1及び長期係数β2は、例えば、次の(B2-1)又は(B2-2)によって決定されてよい。
発注推奨数=(β1×短期の発注推奨数)+(β2×長期の発注推奨数)
短期係数β1及び長期係数β2は、例えば、次の(B2-1)又は(B2-2)によって決定されてよい。
(B2-1)例えば、通常モードではβ1=0.5、β2=0.5とし(つまり短期係数と長期係数を等しくし)、直近の精度がかなり高い場合はβ1=0.8、β2=0.2とし(つまり短期係数を長期係数よりも大きくし)、今年の気候が昨年の気候と大きく変わっている場合はβ1=1.0、β2=0とする(つまり長期係数を0とする)。短期の発注推奨数と長期の発注推奨数との差分が小さいほど、直近の精度は高いと判定されてよい。
(B2-2)過去のある時期(例えば2021年4月)の販売実績数と、今年の同時期(例えば2022年4月)の販売実績数との相関関係に基づいて、短期係数β1と長期係数β2を決定する。例えば、相関係数rが所定の閾値(例えば0.5)以上である場合、通常モードとしてβ1=0.5、β2=0.5とし(つまり短期係数と長期係数を等しくし)、直近の精度がかなり高い場合はβ1=0.8、β2=0.2とし(つまり短期係数を長期係数よりも大きくし)、相関係数rが所定の閾値(例えば0.5)未満である場合、過去のデータに引きずられないように、β1=0.9、β2=0.1とする(つまり短期係数を長期係数よりも大きくする)。
(実施の形態2)
実施の形態2では、実施の形態1にて説明済みの構成要素については共通の参照符号を付し、説明を省略する場合がある。
実施の形態2では、実施の形態1にて説明済みの構成要素については共通の参照符号を付し、説明を省略する場合がある。
図7は、実施の形態2に係る発注支援システム10の構成例を示すブロック図である。
実施の形態2に係る発注支援システム10は、図1に示す発注支援システム10が備える構成要素に加えて、店舗情報DB48を備える。
店舗情報DB48は、商品を販売する各店舗に関する情報である店舗情報を保持するDBである。店舗情報に含まれる情報の例として、店舗の立地条件、店舗の周辺環境、商品配送センタ3から店舗までの距離、店舗の場所の天気情報、店舗の周辺で行われるイベント等が挙げられる。
販売数予測部31は、店舗情報DB48の店舗情報も考慮して、店舗毎の予測販売数を算出する。例えば、ある店舗の付近で予測対象日時に人が多く集まるイベントが開催される旨が店舗情報に含まれる場合、販売数予測部31は、対象日時の予測販売数を、通常時の予測販売数よりも多く算出する。
<販売実績数DBのデータが不足している場合>
販売開始直後の新商品の販売実績数は、実績販売数DB41に保持されていない。このような場合、販売数予測部31は、新商品に類似する既存商品の実績販売数を用いて、当該新商品の仮の実績販売数を生成し、その仮の実績販売数を用いて、新商品の販売数を予測してよい。これにより、販売数予測部31は、新商品の販売数も予測できる。
販売開始直後の新商品の販売実績数は、実績販売数DB41に保持されていない。このような場合、販売数予測部31は、新商品に類似する既存商品の実績販売数を用いて、当該新商品の仮の実績販売数を生成し、その仮の実績販売数を用いて、新商品の販売数を予測してよい。これにより、販売数予測部31は、新商品の販売数も予測できる。
また、新規の店舗の実績販売数は、実績販売数DB41に保持されていない。このような場合、販売数予測部31は、新規の店舗と同じような規模の既存の店舗又は新規の店舗と立地条件が類似する既存の店舗の実績販売数を用いて、当該新規の店舗の仮の実績販売数を生成し、その仮の実績販売数を用いて、新規の店舗における各商品の販売数を予測してよい。これにより、販売数予測部31は、新規の店舗における各商品の販売数も予測できる。
(ハードウェア構成)
上述した発注支援システム10の機能ブロックは、コンピュータプログラムにより実現され得る。
上述した発注支援システム10の機能ブロックは、コンピュータプログラムにより実現され得る。
図8は、本開示に係る発注支援システム10の機能ブロックをコンピュータプログラムにより実現するコンピュータのハードウェア構成を示す図である。
コンピュータ1000は、プロセッサ1001、メモリ1002、ストレージ1003、入力装置1004、出力装置1005、通信装置1006、GPU(Graphics Processing Unit)1007、読取装置1008、及び、バス1009を備える。これらの装置は、バス1009に接続され、バス1009を介して双方向にデータを送受信できる。
プロセッサ1001は、メモリ1002に記憶されたコンピュータプログラムを実行し、上述した機能ブロックを実現する装置である。プロセッサ1001の例として、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、コントローラ、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)が挙げられる。
メモリ1002は、コンピュータ1000が取り扱うコンピュータプログラム及びデータを記憶する装置である。メモリ1002は、ROM(Read-Only Memory)及びRAM(Random Access Memory)を含んでよい。
ストレージ1003は、不揮発性記憶媒体で構成され、コンピュータ1000が取り扱うコンピュータプログラム及びデータを記憶する装置である。ストレージ1003の例として、HDD(Hard Disk Drive)、SSD(Solid State Drive)が挙げられる。
入力装置1004は、プロセッサ1001に入力するデータを受け付ける装置である。入力装置1004の例として、キーボード、マウス、タッチパッド、マイク等が挙げられる。
出力装置1005は、プロセッサ1001が生成したデータを出力する装置である。出力装置1005の例として、ディスプレイ、スピーカー等が挙げられる。
通信装置1006は、他の装置(例えば天気情報サーバ5又は端末12)と、通信ネットワークを介して、データを送受信する装置である。通信装置1006は、有線通信及び無線通信の何れに対応してもよい。有線通信の例として、Ethernet(登録商標)が挙げられる。無線通信の例として、Wi-Fi(登録商標)、Bluetooth、LTE、4G、5G等が挙げられる。
GPU1007は、画像描写を高速に処理する装置である。なお、GPU1007は、AI(artificial intelligence)の処理(例えばディープラーニング)に利用されてもよい。
読取装置1008は、DVD-ROM(Digital Versatile Disk Read Only Memory)又はUSB(Universal Serial Bus)メモリといった記録媒体からデータを読み取る装置である。
(その他変形例)
上述した各実施の形態では、安全率を以下の式(1A)~(1C)で定義した。
X日の安全率=(X日の始業時の実際の在庫数)/(X日の実績販売数) (1A)
X日の安全率=(X日の始業時の実際の在庫数)/(X日の予測販売数) (1B)
X日の安全率=(X日の始業時の予測在庫数)/(X日の予測販売数) (1C)
しかし、これらの式(1A)~(1C)は、簡略化した式である。安全率は、詳細には、今回発注する商品により、その発注に対応する商品を用いて賄うべき販売数に対して、入庫前の時点で予めどの程度在庫として確保しているかを示す割合を示す値である。そのため、安全率の詳細な定義は、以下の式(2)となる。
安全率=(「今回発注分の入庫前」における予測在庫数)/(「今回発注分の入庫後」から「次回発注分の入庫前」までの間の予測販売数) (2)
この式(2)を幾つかの仮定に基づき、簡略化すると上述した式(1A)~(1C)となる。例えば、式(2)において、(X-α)日に発注した商品がX日に入庫される予定であり、かつ、(X-α)日の次に発注した商品が(X+1)日に到着するものと仮定すると、式(2)の分子は「X日の始業時の在庫数」となり、分母は、X日~(X+1)日の入庫前までの予測販売数=X日の予測販売数となる。その結果、X日の安全率は、式(1C)の通りとなる。
上述した各実施の形態では、安全率を以下の式(1A)~(1C)で定義した。
X日の安全率=(X日の始業時の実際の在庫数)/(X日の実績販売数) (1A)
X日の安全率=(X日の始業時の実際の在庫数)/(X日の予測販売数) (1B)
X日の安全率=(X日の始業時の予測在庫数)/(X日の予測販売数) (1C)
しかし、これらの式(1A)~(1C)は、簡略化した式である。安全率は、詳細には、今回発注する商品により、その発注に対応する商品を用いて賄うべき販売数に対して、入庫前の時点で予めどの程度在庫として確保しているかを示す割合を示す値である。そのため、安全率の詳細な定義は、以下の式(2)となる。
安全率=(「今回発注分の入庫前」における予測在庫数)/(「今回発注分の入庫後」から「次回発注分の入庫前」までの間の予測販売数) (2)
この式(2)を幾つかの仮定に基づき、簡略化すると上述した式(1A)~(1C)となる。例えば、式(2)において、(X-α)日に発注した商品がX日に入庫される予定であり、かつ、(X-α)日の次に発注した商品が(X+1)日に到着するものと仮定すると、式(2)の分子は「X日の始業時の在庫数」となり、分母は、X日~(X+1)日の入庫前までの予測販売数=X日の予測販売数となる。その結果、X日の安全率は、式(1C)の通りとなる。
(本開示のまとめ)
本開示には以下の技術が開示される。
本開示には以下の技術が開示される。
<技術1>
本開示の発注支援システム10は、消費期限を有する商品の在庫数を保持する在庫数DB43と、前記商品の将来の対象期間の予測販売数を保持する予測販売数DB42と、前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出する安全率算出部33と、前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出する発注推奨数算出部32と、前記発注推奨数を表示させる入力表示制御部34と、を備える。
これにより、安全率に基づく発注推奨数が算出及び表示されるので、発注者1は発注推奨数に基づいて発注を行うことにより、機会ロスと廃棄ロスの合計を小さくすることができる。
本開示の発注支援システム10は、消費期限を有する商品の在庫数を保持する在庫数DB43と、前記商品の将来の対象期間の予測販売数を保持する予測販売数DB42と、前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出する安全率算出部33と、前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出する発注推奨数算出部32と、前記発注推奨数を表示させる入力表示制御部34と、を備える。
これにより、安全率に基づく発注推奨数が算出及び表示されるので、発注者1は発注推奨数に基づいて発注を行うことにより、機会ロスと廃棄ロスの合計を小さくすることができる。
<技術2>
技術1に記載の発注支援システム10は、前記商品の過去の実績販売数を保持する実績販売数DB41と、前記実績販売数に基づいて前記予測販売数を算出し、前記予測販売数DBに登録する販売数予測部31と、をさらに備える。
これにより、発注支援システム10は、過去の実績販売数に基づいて予測販売数を算出することができる。
技術1に記載の発注支援システム10は、前記商品の過去の実績販売数を保持する実績販売数DB41と、前記実績販売数に基づいて前記予測販売数を算出し、前記予測販売数DBに登録する販売数予測部31と、をさらに備える。
これにより、発注支援システム10は、過去の実績販売数に基づいて予測販売数を算出することができる。
<技術3>
技術2に記載の発注支援システム10において、前記販売数予測部31は、第1の期間における前記商品の販売実績数に基づいて前記商品の第1の予測販売数を算出し、前記第1の期間よりも長い第2の期間における前記商品の販売実績数に基づいて前記商品の第2の予測販売数を算出し、前記安全率算出部33は、前記第1の予測販売数に基づいて第1の安全率を算出し、前記第2の予測販売数に基づいて第2の安全率を算出し、前記発注推奨数算出部32は、前記第1の安全率に基づいて第1の発注推奨数を算出し、前記第2の安全率に基づいて第2の発注推奨数を算出する。
これにより、発注支援システム10は、第1の期間に基づく第1の発注推奨数と、第2の期間に基づく第2の発注推奨数とを算出し、例えば状況に応じて、第1の発注推奨数と第2の発注推奨数とを使い分けたり、算出された発注推奨数の精度を判定したりすることができる。
技術2に記載の発注支援システム10において、前記販売数予測部31は、第1の期間における前記商品の販売実績数に基づいて前記商品の第1の予測販売数を算出し、前記第1の期間よりも長い第2の期間における前記商品の販売実績数に基づいて前記商品の第2の予測販売数を算出し、前記安全率算出部33は、前記第1の予測販売数に基づいて第1の安全率を算出し、前記第2の予測販売数に基づいて第2の安全率を算出し、前記発注推奨数算出部32は、前記第1の安全率に基づいて第1の発注推奨数を算出し、前記第2の安全率に基づいて第2の発注推奨数を算出する。
これにより、発注支援システム10は、第1の期間に基づく第1の発注推奨数と、第2の期間に基づく第2の発注推奨数とを算出し、例えば状況に応じて、第1の発注推奨数と第2の発注推奨数とを使い分けたり、算出された発注推奨数の精度を判定したりすることができる。
<技術4>
技術3に記載の発注支援システム10において、前記発注推奨数算出部32は、前記第1の期間における前記商品の販売実績数と、過去の前記第1の期間と同時期における前記商品の販売実績数との相関関係に基づいて、前記第1の発注推奨数と前記第2の発注推奨数との割合を決定し、前記発注推奨数を算出する。
これにより、発注支援システム10は、第1の期間の販売状況と過去の同時期の販売状況との相関関係の高低に応じて、より状況に適した発注推奨数を算出することができる。
技術3に記載の発注支援システム10において、前記発注推奨数算出部32は、前記第1の期間における前記商品の販売実績数と、過去の前記第1の期間と同時期における前記商品の販売実績数との相関関係に基づいて、前記第1の発注推奨数と前記第2の発注推奨数との割合を決定し、前記発注推奨数を算出する。
これにより、発注支援システム10は、第1の期間の販売状況と過去の同時期の販売状況との相関関係の高低に応じて、より状況に適した発注推奨数を算出することができる。
<技術5>
技術2から4のいずれか1つに記載の発注支援システム10は、前記商品を販売する各店舗に関する店舗情報を格納する店舗情報DB48をさらに備え、前記販売数予測部31は、前記各店舗における前記商品の実績販売数と、前記各店舗における前記店舗情報とに基づいて、前記各店舗の前記予測販売数を算出する。
これにより、発注支援システム10は、店舗毎に適切な予測販売数を算出することができる。
技術2から4のいずれか1つに記載の発注支援システム10は、前記商品を販売する各店舗に関する店舗情報を格納する店舗情報DB48をさらに備え、前記販売数予測部31は、前記各店舗における前記商品の実績販売数と、前記各店舗における前記店舗情報とに基づいて、前記各店舗の前記予測販売数を算出する。
これにより、発注支援システム10は、店舗毎に適切な予測販売数を算出することができる。
<技術6>
本開示の発注支援方法では、消費期限を有する商品の在庫数を取得し、前記商品の将来の対象期間の予測販売数を取得し、前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出し、前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出し、前記発注推奨数を表示させる。
これにより、安全率に基づく発注推奨数が算出及び表示されるので、発注者1は発注推奨数に基づいて発注を行うことにより、機会ロスと廃棄ロスの合計を小さくすることができる。
本開示の発注支援方法では、消費期限を有する商品の在庫数を取得し、前記商品の将来の対象期間の予測販売数を取得し、前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出し、前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出し、前記発注推奨数を表示させる。
これにより、安全率に基づく発注推奨数が算出及び表示されるので、発注者1は発注推奨数に基づいて発注を行うことにより、機会ロスと廃棄ロスの合計を小さくすることができる。
<技術7>
本開示の発注支援プログラムは、消費期限を有する商品の在庫数を取得し、前記商品の将来の対象期間の予測販売数を取得し、前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出し、前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出し、前記発注推奨数を表示させる、ことをコンピュータに実行させる。
これにより、安全率に基づく発注推奨数が算出及び表示されるので、発注者1は発注推奨数に基づいて発注を行うことにより、機会ロスと廃棄ロスの合計を小さくすることができる。
本開示の発注支援プログラムは、消費期限を有する商品の在庫数を取得し、前記商品の将来の対象期間の予測販売数を取得し、前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出し、前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出し、前記発注推奨数を表示させる、ことをコンピュータに実行させる。
これにより、安全率に基づく発注推奨数が算出及び表示されるので、発注者1は発注推奨数に基づいて発注を行うことにより、機会ロスと廃棄ロスの合計を小さくすることができる。
以上、添付図面を参照しながら実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても本開示の技術的範囲に属すると了解される。また、発明の趣旨を逸脱しない範囲において、上述した実施の形態における各構成要素を任意に組み合わせてもよい。
なお、本出願は、2022年8月31日出願の日本特許出願(特願2022-138312)に基づくものであり、その内容は本出願の中に参照として援用される。
本開示の技術は、消費期限を有する商品の発注数を決定する際に有用である。
1 発注者
3 商品配送センタ
4 発注装置
5 天気情報サーバ
6 カレンダー情報サーバ
10 発注支援システム
12 端末
31 販売数予測部
32 発注推奨数算出部
33 安全率算出部
34 入力表示制御部
41 実績販売数DB
42 予測販売数DB
43 在庫数DB
44 発注数DB
47 消費期限マスタ
48 店舗情報DB
100 発注支援画面
101 商品リスト領域
102 グラフ領域
103 情報領域
104 販売数グラフ
105 在庫数グラフ
120 商品一覧画面
121 カレンダー領域
122 グラフ領域
123 円グラフ
140 発注支援画面
141 グラフ領域
142 手動発注ボタン
143 自動発注ボタン
144 固定発注ボタン
145 予測販売数グラフ
146 予測在庫数グラフ
147 廃棄ロスグラフ
148 機会ロスグラフ
151 発注推奨数領域
152 発注数入力領域
153 営業終了時の在庫数領域
154 廃棄ロス領域
155 機会ロス領域
156 合計ロス領域
160 発注支援画面
161 発注数領域
180 発注支援画面
181 下限入力領域
182 固定発注入力領域
1000 コンピュータ
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 入力装置
1005 出力装置
1006 通信装置
1007 GPU
1008 読取装置
1009 バス
3 商品配送センタ
4 発注装置
5 天気情報サーバ
6 カレンダー情報サーバ
10 発注支援システム
12 端末
31 販売数予測部
32 発注推奨数算出部
33 安全率算出部
34 入力表示制御部
41 実績販売数DB
42 予測販売数DB
43 在庫数DB
44 発注数DB
47 消費期限マスタ
48 店舗情報DB
100 発注支援画面
101 商品リスト領域
102 グラフ領域
103 情報領域
104 販売数グラフ
105 在庫数グラフ
120 商品一覧画面
121 カレンダー領域
122 グラフ領域
123 円グラフ
140 発注支援画面
141 グラフ領域
142 手動発注ボタン
143 自動発注ボタン
144 固定発注ボタン
145 予測販売数グラフ
146 予測在庫数グラフ
147 廃棄ロスグラフ
148 機会ロスグラフ
151 発注推奨数領域
152 発注数入力領域
153 営業終了時の在庫数領域
154 廃棄ロス領域
155 機会ロス領域
156 合計ロス領域
160 発注支援画面
161 発注数領域
180 発注支援画面
181 下限入力領域
182 固定発注入力領域
1000 コンピュータ
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 入力装置
1005 出力装置
1006 通信装置
1007 GPU
1008 読取装置
1009 バス
Claims (7)
- 消費期限を有する商品の在庫数を保持する在庫数DB(DataBase)と、
前記商品の将来の対象期間の予測販売数を保持する予測販売数DBと、
前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出する安全率算出部と、
前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出する発注推奨数算出部と、
前記発注推奨数を表示させる入力表示制御部と、を備える、
発注支援システム。 - 前記商品の過去の実績販売数を保持する実績販売数DBと、
前記実績販売数に基づいて前記予測販売数を算出し、前記予測販売数DBに登録する販売数予測部と、をさらに備える、
請求項1に記載の発注支援システム。 - 前記販売数予測部は、第1の期間における前記商品の販売実績数に基づいて前記商品の第1の予測販売数を算出し、前記第1の期間よりも長い第2の期間における前記商品の販売実績数に基づいて前記商品の第2の予測販売数を算出し、
前記安全率算出部は、前記第1の予測販売数に基づいて第1の安全率を算出し、前記第2の予測販売数に基づいて第2の安全率を算出し、
前記発注推奨数算出部は、前記第1の安全率に基づいて第1の発注推奨数を算出し、前記第2の安全率に基づいて第2の発注推奨数を算出する、
請求項2に記載の発注支援システム。 - 前記発注推奨数算出部は、前記第1の期間における前記商品の販売実績数と、過去の前記第1の期間と同時期における前記商品の販売実績数との相関関係に基づいて、前記第1の発注推奨数と前記第2の発注推奨数との割合を決定し、前記発注推奨数を算出する、
請求項3に記載の発注支援システム。 - 前記商品を販売する各店舗に関する店舗情報を格納する店舗情報DBをさらに備え、
前記販売数予測部は、前記各店舗における前記商品の前記実績販売数と、前記各店舗における前記店舗情報とに基づいて、前記各店舗の前記予測販売数を算出する、
請求項2から4のいずれか1項に記載の発注支援システム。 - 消費期限を有する商品の在庫数を取得し、
前記商品の将来の対象期間の予測販売数を取得し、
前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出し、
前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出し、
前記発注推奨数を表示させる、
発注支援方法。 - 消費期限を有する商品の在庫数を取得し、
前記商品の将来の対象期間の予測販売数を取得し、
前記商品の前記対象期間の前記予測販売数に対する、前記対象期間の開始前における前記対象期間内に前記消費期限が切れない前記在庫数の割合を示す安全率を算出し、
前記安全率に基づいて、前記対象期間の開始後に入庫する前記商品の推奨される発注数である発注推奨数を算出し、
前記発注推奨数を表示させる、
ことをコンピュータに実行させる、発注支援プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022138312A JP2024034215A (ja) | 2022-08-31 | 2022-08-31 | 発注支援装置、発注支援方法、及び、発注支援プログラム |
JP2022-138312 | 2022-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024048694A1 true WO2024048694A1 (ja) | 2024-03-07 |
Family
ID=90099761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/031653 WO2024048694A1 (ja) | 2022-08-31 | 2023-08-30 | 発注支援装置、発注支援方法、及び、発注支援プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024034215A (ja) |
WO (1) | WO2024048694A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6814302B2 (ja) * | 2017-09-13 | 2021-01-13 | 株式会社日立製作所 | 発注支援システム、発注支援プログラム及び発注支援方法 |
-
2022
- 2022-08-31 JP JP2022138312A patent/JP2024034215A/ja active Pending
-
2023
- 2023-08-30 WO PCT/JP2023/031653 patent/WO2024048694A1/ja unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6814302B2 (ja) * | 2017-09-13 | 2021-01-13 | 株式会社日立製作所 | 発注支援システム、発注支援プログラム及び発注支援方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2024034215A (ja) | 2024-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6814302B2 (ja) | 発注支援システム、発注支援プログラム及び発注支援方法 | |
CN110555578B (zh) | 一种销量预测方法和装置 | |
JP4139410B2 (ja) | 最適在庫量/発注量を指示する発注指示システム | |
JPWO2004022463A1 (ja) | 安全在庫量算出装置、安全在庫量算出プログラム及び発注点算出装置 | |
JP4678879B2 (ja) | 販売予測システム、方法及びコンピュータプログラム | |
JP3831328B2 (ja) | 在庫管理方法、在庫管理システムおよび在庫管理プログラム | |
JP6275078B2 (ja) | 商品発注数調整装置、商品発注数調整方法、発注システムおよびコンピュータプログラム | |
KR20030043678A (ko) | 매상 예측 장치 및 매상 예측 방법 | |
JP2005015140A (ja) | 発注量算出システム | |
US20160092828A1 (en) | System and Method for Taking Inventory and Ordering | |
JP2021060821A (ja) | 医薬品の調剤量を予測するためのシステム、方法、およびプログラム | |
JP5487699B2 (ja) | 在庫管理装置、在庫管理方法及びそのプログラム | |
WO2024048694A1 (ja) | 発注支援装置、発注支援方法、及び、発注支援プログラム | |
JP5847137B2 (ja) | 需要予測装置及びプログラム | |
JP2019091319A (ja) | 管理システム | |
JP2006018777A (ja) | 物品発注量決定方法、物品発注量決定装置、及びコンピュータプログラム | |
JP6807415B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
US20230245061A1 (en) | Systems and methods for arranging merchandise at shelving locations | |
JP5650510B2 (ja) | 在庫計画立案装置、在庫計画立案プログラム、及び在庫計画立案プログラムを記憶したコンピュータ読み取り可能な記録媒体 | |
WO2023032959A1 (ja) | 部品事前配備支援システム及び方法 | |
JP2020119029A (ja) | 発注情報計算プログラム、装置、及び方法 | |
JP2024114391A (ja) | 発注支援システム、発注支援方法、及び、発注支援プログラム | |
JP6918321B1 (ja) | 商品の発注数を決定する方法、システム及びプログラム | |
JP5093752B2 (ja) | 需要量予測装置及びコンピュータプログラム | |
Johnston et al. | Breadth of range and depth of stock: forecasting and inventory management at Euro Car Parts Ltd. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23860456 Country of ref document: EP Kind code of ref document: A1 |