WO2024048655A1 - 表面処理鋼板 - Google Patents

表面処理鋼板 Download PDF

Info

Publication number
WO2024048655A1
WO2024048655A1 PCT/JP2023/031546 JP2023031546W WO2024048655A1 WO 2024048655 A1 WO2024048655 A1 WO 2024048655A1 JP 2023031546 W JP2023031546 W JP 2023031546W WO 2024048655 A1 WO2024048655 A1 WO 2024048655A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
plating layer
chemical conversion
content
treated steel
Prior art date
Application number
PCT/JP2023/031546
Other languages
English (en)
French (fr)
Inventor
浩輔 川本
完 齊藤
靖人 後藤
浩雅 莊司
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024048655A1 publication Critical patent/WO2024048655A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present disclosure relates to a surface-treated steel sheet having a plating layer and a chemical conversion coating on the surface.
  • the surface-treated steel plate includes a base steel plate, a plating layer formed on the base steel plate, and a coating formed on the plating layer.
  • Surface-treated steel sheets are widely used in applications such as building materials, automobiles, and home appliances. Surface-treated steel sheets have improved corrosion resistance through plating layers and coatings.
  • coatings to improve the corrosion resistance of surface-treated steel sheets coatings made of inorganic materials, organic resin coatings, and coatings made of inorganic materials and organic resins formed by chemical conversion treatments such as chromate treatment and phosphate treatment have been proposed. ing.
  • Patent Document 1 proposes a metal surface treatment agent containing a vanadium compound and a metal compound containing at least one metal selected from zirconium, titanium, molybdenum, tungsten, manganese, and cerium.
  • Patent Document 2 proposes a zinc-containing plated steel material treated with a composite film using a treatment liquid containing a basic zirconium compound, a vanadyl-containing compound, a phosphoric acid compound, a cobalt compound, an organic acid, and water.
  • Patent Document 3 proposes an organic resin film formed from a surface treatment agent for metal materials consisting of an anionic water-dispersed resin and an alkali metal silicate salt.
  • Patent Document 4 proposes an organic resin coating formed with a surface treatment agent consisting of ammonium zirconium carbonate, a tetravalent vanadium compound, an organic phosphonic acid, and an anionic water-dispersible acrylic resin.
  • Patent Document 5 proposes a surface-treated steel sheet in which a coating made of a zirconium compound and a vanadium compound is formed on a Zn-Al-Mg-Si alloy plating.
  • Patent Document 6 proposes a surface-treated steel sheet in which a coating made of an acrylic resin composed of a vanadium compound, a phosphoric acid compound, a metal component, and a specific monomer component is formed on a Zn-Al alloy plating. .
  • Surface-treated steel sheets with these coatings can have improved corrosion resistance.
  • these surface-treated steel sheets sometimes fail to provide sufficient adhesion with adhesives.
  • it is also required to suppress the blackening phenomenon in the surface-treated steel sheet, that is, to improve the blackening resistance.
  • Patent Document 7 a surface-treated steel sheet that provides corrosion resistance, sufficient adhesiveness with adhesives, and sufficient blackening resistance is proposed in International Publication No. 2017/155028 (Patent Document 7).
  • the surface-treated steel sheet disclosed in Patent Document 7 includes a steel sheet, a plating layer containing zinc formed on the steel sheet, and a coating formed on the plating layer.
  • This film contains acrylic resin, zirconium, vanadium, and cobalt, and the area ratio of the acrylic resin is 80 to 100% by area in a region from the surface to 1/5 of the film thickness in the cross section of the film.
  • the area ratio of the acrylic resin is It is 5 to 50 area%.
  • the surface-treated steel sheet disclosed in Patent Document 7 provides sufficient corrosion resistance, sufficient adhesion with adhesives, and sufficient resistance to blackening.
  • Dew condensation discoloration does not particularly affect the mechanical properties of the surface-treated steel sheet. However, since a pattern is formed in the dew condensation area, the appearance of the surface-treated steel sheet deteriorates. Therefore, in the surface-treated steel sheet, it is preferable that discoloration due to dew condensation is less likely to occur. In other words, the surface-treated steel sheet is also required to have excellent resistance to condensation and discoloration.
  • An object of the present disclosure is to provide a surface-treated steel sheet that provides excellent corrosion resistance, excellent adhesion with adhesives, excellent blackening resistance, and furthermore, excellent condensation resistance and discoloration. It is.
  • the surface treated steel sheet of the present disclosure is base material steel plate, A plating layer formed on a base steel plate, Comprising a chemical conversion film formed on the plating layer,
  • the chemical composition of the plating layer is in mass%, Al: more than 5.0 to less than 25.0%, Mg: more than 3.0 to less than 12.5%, Sn: 0-3.00%, Bi: 0-5.00%, In: 0 to 2.00%, Ca: 0-3.00%, Y: 0-3.00%, La: 0-3.00%, Ce: 0-3.00%, Si: 0 to 2.50%, Cr: 0-0.5%, Ti: 0 to 0.5%, Ni: 0 to 0.5%, Co: 0 to 0.5%, V: 0 to 0.5%, Nb: 0 to 0.5%, Cu: 0 to 0.5%, Mn: 0 to 0.5%, Fe: 0 to 5.0%, Sr: 0 to 0.5%, Sb: 0 to 0.5%, Pb: 0 to 0.5%, and Contains B:
  • FIG. 1 is a graph of glow emission spectra (GDS spectra) of elements in the chemical conversion coating and plating layer in a surface-treated steel sheet.
  • FIG. 2 is a cross-sectional view perpendicular to the rolling direction of the surface-treated steel sheet of this embodiment.
  • FIG. 3 is a side view of a lap shear test piece used in the adhesion evaluation test in Examples.
  • the present inventors conducted research and studies in order to solve the above problems. As a result, the present inventors obtained the following knowledge.
  • the chemical conversion film formed on the plating layer contains Zr, V, P, Co, and acrylic resin, excellent corrosion resistance may be obtained.
  • the adhesion with the adhesive depends on the amount of the chemical conversion coating having the above-mentioned composition applied. Specifically, if the amount of the chemical conversion coating is 300 to 1000 mg/m 2 , excellent adhesion can be obtained in the surface-treated steel sheet.
  • the V mass in the chemical conversion film is defined as [V] (mg/m 2 )
  • the P mass is defined as [P] (mg/m 2 ).
  • corrosion resistance and blackening resistance are affected by [V]/[P]. Specifically, if [V]/[P] is less than 0.60, sufficient blackening resistance cannot be obtained. Although this mechanism is not clear, it is thought that if the P mass [P] is too large, the oxidation reaction of the plating, which is the cause of blackening, is promoted. On the other hand, if [V]/[P] exceeds 2.80, sufficient corrosion resistance cannot be obtained.
  • the dew condensation discoloration resistance is influenced by the V mass [V] (mg/m 2 ) in the chemical conversion film and the Mg content [Mg] b (mass %) in mass % of the chemical composition of the plating layer. Specifically, if the V mass [V] (mg/m 2 ) in the chemical conversion coating and the Mg content [Mg]b (mass%) in the plating layer satisfy formula (2), sufficient condensation resistance is achieved. Provides color change properties. 0 ⁇ [V]/[Mg]b ⁇ 20.00 (2) This point will be explained below.
  • the present inventors used an electron beam microanalyzer (EPMA) to measure the concentrations of major elements on the surface of a surface-treated steel sheet in areas where discoloration occurred due to dew condensation and areas where discoloration did not occur due to condensation. .
  • EPMA electron beam microanalyzer
  • the surface-treated steel sheet of this embodiment was completed based on the above technical idea, and has the following configuration.
  • the surface-treated steel sheet with the first configuration is base material steel plate, A plating layer formed on a base steel plate, Comprising a chemical conversion film formed on the plating layer,
  • the chemical composition of the plating layer is in mass%, Al: more than 5.0 to less than 25.0%, Mg: more than 3.0 to less than 12.5%, Sn: 0-3.00%, Bi: 0-5.00%, In: 0 to 2.00%, Ca: 0-3.00%, Y: 0-3.00%, La: 0-3.00%, Ce: 0-3.00%, Si: 0 to 2.50%, Cr: 0-0.5%, Ti: 0 to 0.5%, Ni: 0 to 0.5%, Co: 0 to 0.5%, V: 0 to 0.5%, Nb: 0 to 0.5%, Cu: 0 to 0.5%, Mn: 0 to 0.5%, Fe: 0 to 5.0%, Sr: 0 to 0.5%, Sb: 0 to 0.5%, Pb: 0 to 0.5%, and Contains B:
  • the surface-treated steel sheet with the second configuration is A surface-treated steel sheet having a first configuration, further comprising: Mg concentration [Mg]s mass% in the surface layer of the plating layer obtained by elemental analysis in the depth direction of the plating layer using glow discharge optical emission spectrometry and Mg content [Mg]b mass of the chemical composition of the plating layer %, the Mg concentration difference ⁇ [Mg]mass% and the above-mentioned V mass [V]mg/ m2 satisfy equation (3). ⁇ [Mg] ⁇ [V] ⁇ 200 (3)
  • Figure 1 is a graph of glow emission spectroscopic spectra (GDS spectra) of elements in the chemical conversion coating and plating layer, which was obtained by performing glow discharge emission spectroscopic analysis from the surface of the chemical conversion coating on a surface-treated steel sheet in the sheet thickness direction. be.
  • the horizontal axis in FIG. 1 indicates the depth from the surface (measurement time).
  • the vertical axis indicates the concentration (emission intensity) of each element.
  • the emission intensity of carbon (C) is high from the surface of the surface-treated steel sheet (position 0 on the horizontal axis) to a predetermined depth.
  • a region where the emission intensity of C is high means a region of a chemical conversion film.
  • a region where the emission intensity of Mg and Al is high means that it is a region of a plating layer.
  • the present inventors found that Mg is concentrated in the surface region of the plating layer that is in contact with the chemical conversion coating. I paid attention to.
  • the present inventors have found that in a surface-treated steel sheet that satisfies formulas (1) and (2), discoloration due to condensation can be further reduced by a synergistic reaction between the Mg concentration on the surface layer of the plating layer and the components in the chemical conversion film. I thought it might be possible to suppress it. Therefore, based on the above considerations, the present inventors conducted further studies. As a result, the following items were found.
  • Mg in the plating layer and V in the chemical conversion film affect dew condensation discoloration.
  • the Mg concentration difference ⁇ is the difference between the Mg concentration [Mg]s (mass%) in the surface layer of the plating layer and the Mg content [Mg]b (mass%) of the chemical composition of the plating layer.
  • the present inventors further investigated the relationship between the Mg concentration difference ⁇ [Mg] in the plating layer, the V mass [V] in the chemical conversion film, and discoloration due to dew condensation. As a result, the present inventors further discovered the following findings.
  • the surface-treated steel sheet will have excellent corrosion resistance. , excellent adhesion with adhesives, excellent blackening resistance, and further excellent dew condensation discoloration resistance can be obtained. ⁇ [Mg] ⁇ [V] ⁇ 200 (3)
  • the surface-treated steel sheet with the third configuration is A surface-treated steel sheet having a first configuration or a second configuration
  • the chemical composition of the plating layer is in mass%, Sn: 0.01-3.00%, Bi: 0.01-5.00%, In: 0.01-2.00%, Ca: 0.01-3.00%, Y: 0.01-3.00%, La: 0.01-3.00%, Ce: 0.01-3.00%, Si: 0.01 to 2.50%, Cr: 0.1-0.5%, Ti: 0.1 to 0.5%, Ni: 0.1 to 0.5%, Co: 0.1 to 0.5%, V: 0.1 to 0.5%, Nb: 0.1 to 0.5%, Cu: 0.1 to 0.5%, Mn: 0.1 to 0.5%, Fe: 0.1 to 5.0%, Sr: 0.1 to 0.5%, Sb: 0.1 to 0.5%, Pb: 0.1 to 0.5%, and B: Contains one or more selected from the group consisting of 0.1 to 0.5%.
  • FIG. 2 is a cross-sectional view perpendicular to the rolling direction of the surface-treated steel sheet of this embodiment.
  • surface-treated steel sheet 1 includes a base steel sheet 10, a plating layer 20, and a chemical conversion coating 30.
  • the plating layer 20 is formed on the surface of the base steel plate 10.
  • a chemical conversion coating 30 is formed on the surface of the plating layer 20.
  • the plating layer 20 may be formed on one side of the base steel plate 10, or the plating layer 20 may be formed on both sides of the base steel plate 10.
  • the chemical conversion coating 30 may be formed only on the plating layer 20 on one side, or may be formed on the plating layer 20 on both sides. good.
  • the base material steel plate 10 is not particularly limited.
  • it may be a steel plate whose microstructure mainly consists of ferrite.
  • the steel plate may have a microstructure mainly composed of ferrite and pearlite.
  • the steel plate may have a microstructure mainly composed of ferrite and one or more of martensite and bainite.
  • the type of base material steel sheet 10 does not particularly affect the effect of the surface-treated steel sheet 1 of this embodiment. Therefore, the base material steel plate 10 is not particularly limited.
  • the plating layer 20 is formed on the surface (one side or both sides) of the base steel plate 10.
  • the plating layer 20 contains, in mass %, Al: more than 5.0% to less than 25.0%, Mg: more than 3.0% to less than 12.5%, and Zn: 65.0% or more. Each element will be explained below.
  • Al more than 5.0% to less than 25.0%
  • Aluminum (Al) is an easily oxidizable element, and improves the corrosion resistance of the plating layer 20 through sacrificial corrosion protection. If the Al content is more than 5.0% and less than 25.0%, the above effects can be sufficiently obtained.
  • the preferable lower limit of the Al content is 5.1%, more preferably 7.5%, still more preferably 10.0%, and still more preferably 12.0%.
  • a preferable upper limit of the Al content is 24.9%, more preferably 24.5%, even more preferably 24.0%, still more preferably 22.0%, and still more preferably 20.0%. %.
  • the preferable range of the Al content is, for example, 5.1 to 24.9%, more preferably 7.5 to 24.5%, still more preferably 10.0 to 24.0%, and even more preferably is 12.0 to 22.0%, more preferably 12.0 to 20.0%.
  • Mg more than 3.0% to less than 12.5%
  • Magnesium (Mg) is an easily oxidizable element, and improves the corrosion resistance of the plating layer 20 through sacrificial corrosion protection. If the Mg content is more than 3.0% and less than 12.5%, the above effects can be sufficiently obtained.
  • the preferable lower limit of the Mg content is 3.1%, more preferably 3.5%, even more preferably 4.0%, even more preferably 4.5%, even more preferably 5.0%. %, more preferably 5.5%.
  • a preferable upper limit of the Mg content is 12.4%, more preferably 12.0%, still more preferably 11.0%, and even more preferably 10.0%.
  • the preferable range of Mg content is, for example, 3.1 to 12.4%, more preferably 3.5 to 12.0%, still more preferably 4.0 to 11.0%, and even more preferably is 4.5 to 10.0%, more preferably 5.0 to 10.0%, even more preferably 5.5 to 10.0%.
  • the remainder of the chemical composition of the plating layer 20 of this embodiment consists of 65.0% or more of Zn and impurities.
  • the plating layer 20 mainly contains Zn. Specifically, the plating layer 20 contains 65.0% or more of Zn in mass %. If the Zn content of the plating layer 20 is 65.0% or more by mass %, sufficient corrosion resistance can be obtained.
  • the lower limit of the Zn content is preferably 67.5%, more preferably 70.0%.
  • a preferable upper limit of the Zn content is less than 92.0%, more preferably 90.0%, still more preferably 85.0%, and still more preferably 80.0%.
  • the preferred range of Zn content is, for example, 67.5 to less than 92.0%, more preferably 70.0 to 90.0%, still more preferably 70.0 to 85.0%, and Preferably it is 70.0 to 80.0%.
  • the above-mentioned impurities are those that are mixed in from the raw materials of the plating layer 20 or the manufacturing environment when the surface-treated steel sheet 1 is industrially manufactured, and do not have a negative impact on the plating layer 20 according to the present embodiment. means that it is permissible to the extent that it is not.
  • the chemical composition of the plating layer 20 may further include one or more types selected from the following groups 1 to 6 in place of a part of Zn.
  • Si 0-2.50%
  • the chemical composition of the plating layer 20 may further include one or more selected from the group consisting of tin (Sn), bismuth (Bi), and indium (In) in place of a portion of Zn.
  • These elements are optional elements and may not be included. That is, the Sn content, Bi content, and In content may each be 0%. When contained, these elements form an intermetallic compound with Mg. As a result, the corrosion resistance of the surface-treated steel sheet increases. If at least one of Sn, Bi, and In is contained, the above effects can be obtained to some extent.
  • the Sn content is 0 to 3.00%
  • the Bi content is 0 to 5.00%
  • the In content is 0 to 2.00%.
  • the preferable lower limit of the Sn content is more than 0%, more preferably 0.01%, and still more preferably 0.05%.
  • a preferable upper limit of the Sn content is 2.70%, more preferably 2.50%, still more preferably 2.00%, and still more preferably 1.70%.
  • the preferable range of the Sn content is, for example, more than 0 to 2.70%, more preferably 0.01 to 2.50%, even more preferably 0.05 to 2.00%, and even more preferably 0. It is .05 to 1.70%.
  • the preferable lower limit of the Bi content is more than 0%, more preferably 0.01%, and still more preferably 0.05%.
  • a preferable upper limit of the Bi content is 4.80%, more preferably 4.50%, and still more preferably 4.00%.
  • a preferable range of the Bi content is, for example, more than 0 to 4.80%, more preferably 0.01 to 4.50%, and still more preferably 0.05 to 4.00%.
  • the lower limit of the In content is preferably more than 0%, more preferably 0.01%, and still more preferably 0.05%.
  • a preferable upper limit of the In content is 1.90%, more preferably 1.80%, and still more preferably 1.70%.
  • the preferable range of the In content is, for example, more than 0 to 1.90%, more preferably 0.01 to 1.80%, and still more preferably 0.05 to 1.70%.
  • the chemical composition of the plating layer 20 further includes one or more selected from the group consisting of calcium (Ca), yttrium (Y), lanthanum (La), and selenium (Ce) in place of a portion of Zn. It's okay. All of these elements are optional elements and may not be included. That is, the content of these elements may be 0%. When contained, these elements form an intermetallic compound with Al and Zn in the plating layer 20. As a result, the corrosion resistance of the surface-treated steel sheet 1 is improved. If even a small amount of these elements is contained, the above effects can be obtained to some extent.
  • the Ca content is 0-3.00%
  • the Y content is 0-3.00%
  • the La content is 0-3.00%
  • the Ce content is 0-3.00%. %.
  • the preferable lower limit of each element content of Ca, Y, La, and Ce is more than 0%, more preferably 0.01%, still more preferably 0.05%, and still more preferably 0.10%. be.
  • the upper limit of the content of each element of Ca, Y, La, and Ce is preferably 2.80%, more preferably 2.50%, and still more preferably 2.00%.
  • the preferable range of the content of each element of Ca, Y, La, and Ce is, for example, more than 0% to 2.80%, more preferably 0.01 to 2.50%, and still more preferably 0.05 to 2.80%. 00%, more preferably 0.10 to 2.00%.
  • the chemical composition of the plating layer 20 may further include silicon (Si) in place of a portion of Zn.
  • Si is an optional element and may not be included. That is, the Si content may be 0%.
  • Si increases the corrosion resistance of the surface-treated steel sheet 1. If even a small amount of Si is contained, the above effects can be obtained to some extent. However, if the Si content is too high, the viscosity of the plating bath will increase even if the other element contents are within the ranges of this embodiment. In this case, the appearance quality of the surface-treated steel sheet 1 deteriorates. Therefore, the Si content is between 0 and 2.50%.
  • the lower limit of the Si content is preferably more than 0%, more preferably 0.01%, even more preferably 0.05%, and even more preferably 0.10%.
  • a preferable upper limit of the Si content is 2.00%, more preferably 1.50%, still more preferably 1.00%, and still more preferably 0.50%.
  • the preferable range of the Si content is, for example, more than 0 to 2.00%, more preferably 0.01 to 1.50%, still more preferably 0.05 to 1.00%, and still more preferably 0. .10 to 0.50%.
  • the chemical composition of the plating layer 20 further includes chromium (Cr), titanium (Ti), nickel (Ni), cobalt (Co), vanadium (V), niobium (Nb), and copper (Cu) in place of a part of Zn. ) and manganese (Mn). All of these elements are optional elements and may not be included. That is, the content of these elements may be 0%. When contained, these elements improve the appearance quality of the surface-treated steel sheet 1. These elements further form an intermetallic compound with Al in the plating layer 20. As a result, the corrosion resistance of the surface-treated steel sheet 1 increases.
  • the Cr content is 0-0.5%
  • the Ti content is 0-0.5%
  • the Ni content is 0-0.5%
  • the Co content is 0-0.5%
  • the V content is 0 to 0.5%
  • the Nb content is 0 to 0.5%
  • the Cu content is 0 to 0.5%
  • the Mn content is 0 to 0. .5%.
  • the lower limit of the content of each element of Cr, Ti, Ni, Co, V, Nb, Cu, and Mn is preferably more than 0%, and more preferably 0.1%.
  • the upper limit of the content of each element of Cr, Ti, Ni, Co, V, Nb, Cu, and Mn is preferably less than 0.5%, and more preferably 0.4%.
  • the preferred range of the content of each element of Cr, Ti, Ni, Co, V, Nb, Cu, and Mn is, for example, more than 0 to less than 0.5%, and more preferably 0.1 to 0.4%.
  • the chemical composition of the plating layer 20 may further include Fe in place of a portion of Zn. That is, the Fe content may be 0%.
  • Fe increases the hardness of the plating layer 20 and improves the workability of the surface-treated steel sheet 1. If even a small amount of Fe is contained, the above effects can be obtained to some extent. However, if the Fe content is too high, the hardness of the plating layer will become too high even if the other element contents are within the ranges of this embodiment. In this case, the workability of the surface-treated steel sheet 1 is rather reduced. Therefore, the Fe content is between 0 and 5.0%.
  • the preferable lower limit of the Fe content is more than 0%, more preferably 0.1%, and still more preferably 0.5%.
  • the preferable upper limit of the Fe content is 4.5%, more preferably 4.0%, and still more preferably 3.5%.
  • the preferable range of the Fe content is, for example, more than 0 to 4.5%, more preferably 0.1 to 4.0%, and still more preferably 0.5 to 3.5%.
  • the chemical composition of the plating layer 20 further includes one or more selected from the group consisting of strontium (Sr), antimony (Sb), lead (Pb), and boron (B) in place of a portion of Zn. Good too. All of these elements are optional elements and may not be included. That is, the content of these elements may be 0%. When contained, these elements enhance the metallic luster of the plating layer 20 and improve the appearance quality of the surface-treated steel sheet 1. If even a small amount of these elements is contained, the above effects can be obtained to some extent. However, if the contents of these elements are too high, oxidized dross will increase even if the contents of other elements are within the range of this embodiment.
  • the appearance quality of the surface-treated steel sheet 1 deteriorates. Therefore, the Sr content is 0-0.5%, the Sb content is 0-0.5%, the Pb content is 0-0.5%, and the B content is 0-0.5%. %.
  • the lower limit of the content of each element of Sr, Sb, Pb, and B is preferably more than 0%, and more preferably 0.1%.
  • the upper limit of the content of each element of Sr, Sb, Pb, and B is preferably less than 0.5%, and more preferably 0.4%.
  • the preferable range of the content of each element of Sr, Sb, Pb, and B is, for example, more than 0 to less than 0.5%, and more preferably 0.1 to 0.4%.
  • the adhesion amount (mg/m 2 ) of the plating layer 20 is not particularly limited.
  • a preferable amount of the plating layer 20 to be deposited is, for example, 20 to 500 mg/m 2 .
  • a more preferable lower limit of the amount of the plating layer 20 deposited is 30 mg/m 2 , more preferably 40 mg/m 2 , and even more preferably 50 mg/m 2 .
  • the upper limit of the amount of the plating layer 20 deposited is preferably 400 mg/m 2 , more preferably 300 mg/m 2 , and still more preferably 200 mg/m 2 .
  • the preferred range of the amount of the plating layer 20 to be deposited is, for example, 30 to 400 mg/m 2 , more preferably 40 to 300 mg/m 2 , and even more preferably 50 to 200 mg/m 2 .
  • the content (mass %) of each element in the chemical composition of the plating layer 20 and the adhesion amount (mg/m 2 ) of the plating layer 20 can be measured by the following method.
  • the thickness of the plating layer 20 and the thickness of the chemical conversion coating 30 of the surface-treated steel sheet 1 are measured. Specifically, a test piece is taken that includes a cross section perpendicular to the surface of the surface-treated steel sheet 1 and uses the cross section as the observation surface. Mirror-polish the viewing surface. Of the observation surface after mirror polishing, a region including the chemical conversion coating 30, the plating layer 20, and at least the surface layer portion of the base steel sheet 10 is observed using a scanning electron microscope (SEM). The magnification is 400 times.
  • the chemical conversion coating 30 and the plating layer 20 can be clearly distinguished by contrast.
  • the thickness ( ⁇ m) of the plating layer 20 and the thickness ( ⁇ m) of the chemical conversion film 30 are determined at five arbitrary locations in the observation field.
  • the arithmetic mean value of the determined thicknesses of the plating layer 20 at five locations is defined as the thickness ( ⁇ m) of the plating layer 20.
  • the arithmetic mean value of the determined thicknesses of the chemical conversion coating 30 at five locations is defined as the thickness ( ⁇ m) of the chemical conversion coating 30.
  • test pieces including the chemical conversion coating 30, the plating layer 20, and the base steel sheet 10 are taken from the surface-treated steel sheet 1.
  • the thickness of the basic test piece is the thickness of the surface-treated steel plate 1.
  • the plating layer 20 and the chemical conversion coating 30 are completely dissolved with hexamethylenetetramine hydrochloric acid. Elemental analysis is performed on the solution by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Thereby, the total adhesion amount (mg/m 2 ) of the plating layer 20 and the chemical conversion film 30 and the mass (mg/m 2 ) of each element contained in the plating layer 20 and the chemical conversion film 30 are determined.
  • a test piece for plating layer analysis is prepared using another basic test piece. Specifically, the chemical conversion coating 30 of another basic test piece is removed by polishing. At this time, a depth of the chemical conversion coating 30 + (thickness of the plating layer 20 x 0.05) ⁇ m is removed from the surface of the basic test piece by polishing.
  • a test piece for plating layer analysis composed of the plating layer 20 and the base steel plate 10 is prepared.
  • the plating layer 20 is completely dissolved with hexamethylenetetramine hydrochloric acid.
  • the dissolved solution is subjected to elemental analysis by ICP-MS. Thereby, the provisional adhesion amount (mg/m 2 ) of the plating layer 20 and the provisional mass (mg/m 2 ) of each element contained in the plating layer 20 are determined.
  • the thickness of the plating layer 20 of the test piece for plating layer analysis corresponds to 0.95 times the thickness of the plating layer 20 of the surface-treated steel sheet 1. Therefore, the value obtained by multiplying the obtained provisional adhesion amount (mg/m 2 ) of the plating layer 20 by 1/0.95 is defined as the adhesion amount (mg/m 2 ) of the plating layer 20. Further, the value obtained by multiplying the provisional mass (mg/m 2 ) of each element by 1/0.95 is defined as the mass (mg/m 2 ) of each element in the plating layer 20 .
  • the content (mass %) of each element in the plating layer 20 is determined based on the adhesion amount (mg/m 2 ) of the plating layer 20 and the mass (mg/m 2 ) of each element in the plating layer 20 .
  • a chemical conversion coating 30 is formed on the surface of the plating layer 20.
  • the chemical conversion film 30 contains Zr, V, P, Co, and acrylic resin.
  • Zr, V, P, and Co each have different corrosion environments in which they effectively exhibit their functions as corrosion inhibitors. Therefore, Zr, V, P, and Co are contained as corrosion inhibitors. As a result, corrosion in various corrosive environments can be suppressed in the surface-treated steel sheet 1, and excellent corrosion resistance can be obtained.
  • Zr in the chemical conversion film 30 forms a crosslinked structure with the acrylic resin. Therefore, the chemical conversion film 30 has excellent barrier properties. As a result, excellent corrosion resistance can be obtained in the surface-treated steel sheet 1. It is believed that Zr further forms a Zr-OM bond (M: metal element in the plating layer) with the surface of the plating layer 20. Therefore, Zr also improves the adhesion of the chemical conversion film 30 to the plating layer 20.
  • M metal element in the plating layer
  • the Zr mass [Zr] in the chemical conversion coating 30 is 4.0 to 510.0 mg/m 2 . If the Zr mass [Zr] per unit area (1 m 2 ) is 4.0 mg/m 2 or more, the adhesion between Zr in the chemical conversion film 30 and the surface of the plating layer 20 will further increase. Furthermore, the crosslinked structure formed by Zr and acrylic resin in the chemical conversion film 30 further increases the barrier properties of the chemical conversion film 30 and further increases the corrosion resistance. If the Zr mass [Zr] is 510.0 mg/m 2 or less, the generation of cracks in the chemical conversion coating 30 can be suppressed, and the corrosion resistance will further increase.
  • a more preferable lower limit of the Zr mass [Zr] is 50.0 mg/m 2 , even more preferably 100.0 mg/m 2 , and still more preferably 120.0 mg/m 2 .
  • a more preferable upper limit of the Zr mass [Zr] is 500.0 mg/m 2 , still more preferably 400.0 mg/m 2 , and still more preferably 350.0 mg/m 2 .
  • a preferable range of Zr mass [Zr] is, for example, 50.0 to 500.0 mg/m 2 , more preferably 100.0 to 400.0 mg/m 2 , and still more preferably 120.0 to 350.0 mg. / m2 .
  • V in the chemical conversion coating 30 is preferentially eluted into the plating layer 20 in a corrosive environment. This suppresses an increase in pH due to dissolution of the plating layer 20. As a result, the corrosion resistance of the surface-treated steel sheet 1 increases.
  • the V mass [V] in the chemical conversion coating 30 is 5.0 to 110.0 mg/m 2 . If the V mass [V] per unit area (1 m 2 ) is 5.0 mg/m 2 or more, the corrosion resistance of the surface-treated steel sheet 1 will further increase. If the V mass [V] is 110.0 mg/m 2 or less, the dew condensation discoloration resistance of the surface-treated steel sheet 1 will further increase.
  • the preferable lower limit of V mass [V] is 7.0 mg/m 2 , more preferably 10.0 mg/m 2 , even more preferably 30.0 mg/m 2 , even more preferably 50.0 mg/m 2 It is 2 .
  • a preferable upper limit of V mass [V] is 100.0 mg/m 2 , more preferably 90.0 mg/m 2 , and still more preferably 80.0 mg/m 2 .
  • the preferable range of V mass [V] is, for example, 7.0 to 100.0 mg/m 2 , more preferably 10.0 to 90.0 mg/m 2 , and still more preferably 30.0 to 80.0 mg/m 2 m 2 , more preferably 50.0 to 80.0 mg/m 2 .
  • P in the chemical conversion film 30 forms a passivation film such as zinc phosphate on the surface of the plating layer 20.
  • This passivation film increases the corrosion resistance of the surface-treated steel sheet 1.
  • the passivation film is produced by a reaction between metal ions produced by dissolving a portion of the plating layer 20 and P.
  • the passivation film can be formed by applying a water-based surface treatment agent containing P, which is a raw material for the chemical conversion film 30, to the surface of the plating layer 20, and/or by applying the coating layer 20 to the surface of the plating layer 20 in a corrosive environment after forming the chemical conversion film 30. It is formed by partially dissolving.
  • the P mass [P] in the chemical conversion coating 30 is 20.0 to 200.0 mg/m 2 . If the P mass [P] per unit area (1 m 2 ) is 20.0 mg/m 2 or more, the corrosion resistance of the surface-treated steel sheet 1 will further increase. If the P mass [P] is 200.0 mg/m 2 or less, the blackening resistance of the surface-treated steel sheet 1 will further increase.
  • the preferable lower limit of the P mass [P] is 20.0 mg/m 2 , more preferably 30.0 mg/m 2 , even more preferably 40.0 mg/m 2 , even more preferably 50.0 mg/m 2 It is 2 .
  • the preferable upper limit of the P mass [P] is 190.0 mg/m 2 , more preferably 180.0 mg/m 2 , even more preferably 150.0 mg/m 2 , and still more preferably 100.0 mg/m 2 It is 2 .
  • the preferable range of P mass [P] is, for example, 20.0 to 190.0 mg/m 2 , more preferably 30.0 to 180.0 mg/m 2 , and still more preferably 40.0 to 150.0 mg/m 2 m 2 , more preferably 50.0 to 100.0 mg/m 2 .
  • Co in the chemical conversion coating 30 improves the blackening resistance and corrosion resistance of the surface-treated steel sheet 1.
  • Al and Mg in the plating layer 20 exhibit sacrificial corrosion protection in a corrosive environment.
  • Zn in the plating layer 20 is oxidized in an oxygen-deficient state and turns black. This phenomenon is called black discoloration.
  • the blackening phenomenon tends to occur in parts of the plating layer 20 that are easily dissolved.
  • Co in the chemical conversion film 30 slows down the oxidation rate (corrosion rate) of Zn in the plating layer 20. This suppresses the blackening phenomenon and increases the blackening resistance of the surface-treated steel sheet 1.
  • the Co mass [Co] in the chemical conversion coating 30 is 1.0 to 20.0 mg/m 2 . If the Co mass [Co] per unit area (1 m 2 ) is 1.0 mg/m 2 or more, the blackening resistance of the surface-treated steel sheet 1 will further increase. If the Co mass [Co] is 20.0 mg/m 2 or less, the corrosion resistance of the surface-treated steel sheet 1 will further increase.
  • the preferable lower limit of the Co mass [Co] is 2.0 mg/m 2 , more preferably 3.0 mg/m 2 , even more preferably 4.0 mg/m 2 , and still more preferably 5.0 mg/m 2 It is 2 .
  • a preferable upper limit of the Co mass [Co] is 15.0 mg/m 2 , more preferably 12.0 mg/m 2 , even more preferably 10.0 mg/m 2 , and still more preferably 8.0 mg/m 2 It is 2 .
  • the preferable range of Co mass [Co] is, for example, 2.0 to 15.0 mg/m 2 , more preferably 3.0 to 12.0 mg/m 2 , and still more preferably 4.0 to 10.0 mg/m 2 . m 2 , more preferably 5.0 to 8.0 mg/m 2 .
  • the mass of Zr, V, P, and Co in the chemical conversion film 30 can be measured by the following method.
  • the mass (mg/m 2 ) of each element contained in the plating layer 20 and the chemical conversion film 30 is determined according to the method described in the above-mentioned [Method for measuring chemical composition and adhesion amount of the plating layer 20]. Furthermore, the mass (mg/m 2 ) of each element in the plating layer 20 is determined.
  • the content in the chemical conversion coating 30 can be determined by Zr mass [Zr] (mg/m 2 ), V mass [V] (mg/m 2 ), P mass [P] (mg/m 2 ) and Co mass [Co] (mg/m 2 ) to be demand.
  • the "acrylic resin” in this embodiment is a resin containing a polymer of (meth)acrylic acid ester.
  • the acrylic resin is a resin containing a polymer of (meth)acrylic acid alkyl ester.
  • the acrylic resin may be a polymer obtained by polymerizing only (meth)acrylic acid alkyl ester, or may be a copolymer obtained by polymerizing (meth)acrylic acid alkyl ester and other monomers.
  • (meth)acrylic means "acrylic" or "methacrylic".
  • the acrylic resin improves the adhesion between the chemical conversion coating 30 and the adhesive.
  • the acrylic resin further improves the corrosion resistance of the surface-treated steel sheet 1.
  • the acrylic resin is a copolymer of (meth)acrylic acid alkyl ester and other monomers
  • examples of the copolymer include styrene (b1), (meth)acrylic acid (b2), and (meth)acrylic acid (b2). It is a copolymer of acrylic acid alkyl ester (b3) and acrylonitrile (b4).
  • the acrylic resin contains 15-25% by weight of styrene (b1), 1-10% by weight of (meth)acrylic acid (b2), and 40-58% by weight of (meth)acrylic acid alkyl ester (b3). ) and 20 to 38% by mass of acrylonitrile (b4).
  • the acrylic resin is the above-mentioned copolymer, the adhesiveness with the adhesive is further improved. Moreover, the corrosion resistance of the surface-treated steel sheet 1 is further improved.
  • Styrene (b1) improves the adhesion of the chemical conversion coating 30 to the adhesive. Styrene (b1) further improves the corrosion resistance of the surface-treated steel sheet 1. If the styrene (b1) content is 15% by mass or more based on the total mass of the monomer components (that is, when the acrylic resin is 100% by mass), the above-mentioned effects obtained by styrene (b1) are further improved. If the styrene (b1) content is 25% by mass or less, the chemical conversion coating 30 can be prevented from becoming excessively hard. Therefore, the adhesiveness of the chemical conversion coating 30 to the adhesive is further increased, and the corrosion resistance of the surface-treated steel sheet 1 is further increased.
  • the preferred range of styrene (b1) content is 15 to 25% by mass.
  • a more preferable lower limit of the styrene (b1) content is 17% by mass.
  • a more preferable upper limit of the styrene (b1) content is 23% by mass.
  • a more preferable range of the styrene (b1) content is, for example, 17 to 23% by mass.
  • (Meth)acrylic acid (b2) improves the adhesiveness between the chemical conversion coating 30, the plating layer 20, and the adhesive, and improves the corrosion resistance of the surface-treated steel sheet 1. If the (meth)acrylic acid (b2) content is 1% by mass or more based on the total mass of the monomer components (that is, when the acrylic resin is 100% by mass), it can be obtained with (meth)acrylic acid (b2) The effect is further improved. If the (meth)acrylic acid (b2) content is 10% by mass or less, the water resistance of the chemical conversion coating 30 will increase, and as a result, the corrosion resistance will further increase. Therefore, the preferred range of the (meth)acrylic acid (b2) content is 1 to 10% by mass.
  • a more preferable lower limit of the (meth)acrylic acid (b2) content is 2% by mass.
  • a more preferable upper limit of the (meth)acrylic acid (b2) content is 6% by mass.
  • a more preferable range of the (meth)acrylic acid (b2) content is, for example, 2 to 6% by mass.
  • the (meth)acrylic acid alkyl ester (b3) improves the corrosion resistance of the surface-treated steel sheet 1. If the (meth)acrylic acid alkyl ester (b3) is 40% by mass or more based on the total mass of the monomer components (that is, when the acrylic resin is 100% by mass), the corrosion resistance will further increase. Moreover, if the content of the (meth)acrylic acid alkyl ester (b3) is 58% by mass or less, the corrosion resistance will further increase. Therefore, the preferred range of (meth)acrylic acid alkyl ester (b3) is 40 to 58% by mass. A more preferable lower limit of the (meth)acrylic acid alkyl ester (b3) content is 43% by mass.
  • a more preferable upper limit of the (meth)acrylic acid alkyl ester (b3) content is 55% by mass.
  • a more preferable range of the (meth)acrylic acid alkyl ester (b3) content is, for example, 43 to 55% by mass.
  • (Meth)acrylic acid alkyl ester (b3) is, for example, a group consisting of methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-methylhexyl acrylate, and isomers thereof.
  • the (meth)acrylic acid alkyl ester (b3) is ethyl acrylate and/or butyl acrylate. In this case, corrosion resistance is further improved.
  • Acrylonitrile (b4) improves the adhesion between the chemical conversion coating 30 and the adhesive. If the acrylonitrile (b4) content is 20% by mass or more based on the total mass of the monomer components (that is, when the acrylic resin is 100% by mass), the adhesiveness between the chemical conversion coating 30 and the adhesive will further increase. If the acrylonitrile (b4) content is 38% by mass or less, the water resistance of the chemical conversion coating 30 will increase, and the corrosion resistance will further increase. Therefore, the preferred range of acrylonitrile (b4) is 20 to 38% by weight. A more preferable lower limit of the acrylonitrile (b4) content is 22% by mass. A more preferable upper limit of the acrylonitrile (b4) content is 35% by mass. A more preferable range of the acrylonitrile (b4) content is, for example, 22 to 35% by mass.
  • the acrylic resin is a copolymer
  • styrene (b1) (meth)acrylic acid (b2), (meth)acrylic acid alkyl ester (b3), acrylonitrile (b4), and other vinyl group-containing monomers It may be a copolymer containing.
  • vinyl group-containing monomers are not particularly limited.
  • Other vinyl group-containing monomers include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl ( meth)acrylate, ethoxy-diethylene glycol (meth)acrylate, 2-hydroxyethyl (meth)allyl ether, 3-hydroxypropyl (meth)allyl ether, 4-hydroxybutyl (meth)allyl ether, 2-dimethylaminoethyl acrylate, Acrylamide, allyl alcohol, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, citraconic acid, cinnamic acid, vinyltrimethoxysilane, vinyltriethoxysilane, allyl glycidyl ether, glycidyl (meth)acrylate, 2-
  • the other vinyl group-containing monomer consists of one or more selected from the group consisting of 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate, ethoxy-diethylene glycol acrylate, and acrylamide.
  • the stability of the emulsion increases.
  • (meth)acrylate means “acrylate” or “methacrylate”.
  • (meth)allyl ether means “allyl ether” or “methallyl ether”.
  • (Meta)acrylo means "acrylo” or "methacrylo”.
  • a test piece containing the chemical conversion film 30 (hereinafter referred to as a test piece for resin component analysis) is taken from the surface-treated steel sheet 1.
  • the thickness of the test piece for resin component analysis is the thickness of the surface-treated steel plate 1.
  • a measurement using Fourier transform infrared spectroscopy is performed on a 40 mm x 40 mm area of the test piece for resin component analysis under conditions of 16 integrations. At this time, the angle of incidence of the infrared light on the chemical conversion coating 30 is set to 70 to 75°. Through the measurements, a graph of the infrared absorption spectrum is created, with the horizontal axis representing wave number (cm -1 ) and the vertical axis representing transmittance (%).
  • a calibration curve of styrene (b1), (meth)acrylic acid (b2), (meth)acrylic acid alkyl ester (b3), and acrylonitrile (b4) is prepared.
  • styrene (b1) a plurality of chemical conversion film samples having different contents (mass %) of styrene (b1) in the chemical conversion film 30 are prepared.
  • the prepared chemical conversion film sample is subjected to measurement using Fourier transform infrared spectroscopy under the same conditions as described above, and the height of the main peak of styrene (b1) is determined.
  • a calibration curve is created based on the height of the obtained main peak and the styrene (b1) content in the chemical conversion coating sample. Calibration curves are prepared for (meth)acrylic acid (b2), (meth)acrylic acid alkyl ester (b3), and acrylonitrile (b4) in the same manner as for styrene (b1).
  • the glass transition temperature of the acrylic resin is -12 to 24°C. If the glass transition temperature is ⁇ 12° C. or higher, the corrosion resistance of the chemical conversion coating 30 will further increase. If the glass transition temperature is 24° C. or lower, the adhesion to the adhesive will further increase. A preferable lower limit of the glass transition temperature of the acrylic resin is -10°C. A preferable upper limit of the glass transition temperature of the acrylic resin is 20°C.
  • Tg in the formula is the glass transition temperature (K) of the acrylic resin (A)
  • W 1 , W 2 , ..., W n (n is a natural number) are each monomer constituting the acrylic resin.
  • Tg 1 , Tg 2 , ..., Tg n (n is a natural number) is the glass transition temperature of the homopolymer of each monomer.
  • the preferable content of the acrylic resin in the entire chemical conversion film 30 is 20.0 to 60.0% by mass. If the acrylic resin content is 20.0% by mass or more, the effects obtained by containing the acrylic resin can be obtained more effectively. If the acrylic resin content is 60.0% by mass or less, corrosion resistance will further increase due to the synergistic effect of containing Zr and acrylic resin.
  • a more preferable lower limit of the content of the acrylic resin is 25.0% by mass, and even more preferably 30.0% by mass.
  • a more preferable upper limit of the content of the acrylic resin is 55.0% by mass, and even more preferably 50.0% by mass.
  • a more preferable range of the content of the acrylic resin is, for example, 25.0 to 55.0% by mass, and even more preferably 30.0 to 50.0% by mass.
  • a test piece containing the chemical conversion coating 30, the plating layer 20, and the base steel sheet 10 is taken from the surface-treated steel sheet 1.
  • the thickness of the test piece is the thickness of the surface-treated steel plate 1.
  • GC-MS Pyrolysis gas chromatography mass spectrometry
  • the content (% by mass) of the acrylic resin in the chemical conversion film is determined.
  • the mass of the chemical conversion coating 30 is determined by the total deposition amount (mg/m 2 ) of the plating layer 20 and the chemical conversion coating 30 obtained by the method described in [Method for measuring the chemical composition and deposition amount of the plating layer 20], and the plating layer It can be determined from the adhesion amount (mg/m 2 ) of 20.
  • the amount of the chemical conversion film 30 deposited is 300 to 1000 mg/m 2 . If the amount of the chemical conversion film 30 attached is less than 300 mg/m 2 , the formed chemical conversion film 30 is too thin. In this case, adhesion and corrosion resistance are reduced. On the other hand, if the amount of the chemical conversion film 30 attached exceeds 1000 mg/m 2 , the formed chemical conversion film 30 is too thick. In this case, adhesion is reduced.
  • the thickness of the chemical conversion film 30 is appropriate if the amount of the chemical conversion film 30 deposited is 300 to 1000 mg/m 2 . Therefore, sufficient adhesiveness and corrosion resistance can be obtained.
  • a preferable lower limit of the amount of the chemical conversion film 30 deposited is 350 mg/m 2 , more preferably 400 mg/m 2 , and still more preferably 450 mg/m 2 .
  • a preferable upper limit of the amount of the chemical conversion film 30 deposited is 950 mg/m 2 , more preferably 900 mg/m 2 , and still more preferably 850 mg/m 2 .
  • the preferred range of the amount of the chemical conversion film 30 deposited is 350 to 950 mg/m 2 , more preferably 400 to 900 mg/m 2 , and even more preferably 450 to 850 mg/m 2 .
  • the adhesion amount of the chemical conversion film 30 can be determined by the following method.
  • the total deposition amount (mg/m 2 ) of the plating layer 20 and the chemical conversion film 30 is determined according to the method described in the above-mentioned [Method for measuring chemical composition and deposition amount of the plating layer 20]. Furthermore, the amount of adhesion (mg/m 2 ) in the plating layer 20 is determined.
  • the amount of adhesion (mg/m 2 ) of the chemical conversion film 30 is determined by subtracting the amount of adhesion (mg/m 2 ) in the plating layer 20 from the total amount of adhesion (mg/m 2 ) of the plating layer 20 and the chemical conversion film 30. .
  • F1 When F1 is 0.60 to 2.80, excellent blackening resistance and excellent corrosion resistance can be obtained.
  • the lower limit of F1 is preferably 0.65, more preferably 0.70, and even more preferably 0.80.
  • the upper limit of F1 is preferably 2.40, more preferably 2.00, and still more preferably 1.80.
  • the preferred range of F1 is, for example, 0.65 to 2.40, more preferably 0.70 to 2.00, and still more preferably 0.80 to 1.80.
  • V mass [V] (mg/m 2 ) and the P mass [P] (mg/m 2 ) in the chemical conversion coating 30 are the above-mentioned [Zr mass, V mass, P mass in the chemical conversion coating 30 and Co mass measurement method].
  • the lower limit of F2 is preferably 5.00, more preferably 6.00, and still more preferably 7.00.
  • the upper limit of F2 is preferably 19.00, more preferably 18.00, and still more preferably 17.00.
  • the preferred range of F2 is, for example, 5.00 to 19.00, more preferably 6.00 to 18.00, and still more preferably 7.00 to 17.00.
  • the plating layer 20 and the chemical conversion film 30 have the above-mentioned chemical composition, the amount of the chemical conversion film 30 deposited is 300 to 1000 mg/m 2 , and furthermore, the formula (1) and the formula (2) is satisfied. Therefore, in the surface-treated steel sheet 1 of the present embodiment, sufficient corrosion resistance, sufficient adhesion with an adhesive, and sufficient resistance to blackening are obtained, and furthermore, sufficient resistance to dew discoloration is obtained.
  • the Mg concentration [Mg]s mass % in the surface layer of the plating layer 20 obtained by elemental analysis in the depth direction of the plating layer 20 using glow discharge optical emission spectrometry and the plating layer
  • the difference between the Mg content [Mg] b mass % of the chemical composition of No. 20 is defined as the Mg concentration difference ⁇ [Mg] (mass %).
  • the Mg concentration difference ⁇ [Mg] (mass%) and the mass [V] (mg/m 2 ) further satisfy equation (3).
  • the Mg concentration difference ⁇ [Mg] in the plating layer 20 and the V mass [V] in the chemical conversion film 30 synergistically affect the dew condensation resistance.
  • the Mg concentration difference ⁇ [Mg] is low and the V mass [V] is small, the synergistic effect of the concentrated Mg on the surface layer of the plating layer 20 and the V concentration in the chemical conversion film 30 further increases the condensation resistance to discoloration. . Therefore, F3 is an index of condensation resistance to discoloration.
  • F3 is 200 or less, the interaction between the concentrated Mg in the surface layer of the plating layer 20 and the V in the chemical conversion film 30 can be sufficiently suppressed. As a result, resistance to dew condensation and discoloration increases significantly.
  • a more preferable upper limit of F3 is 180, still more preferably 160, still more preferably 150, still more preferably 140, still more preferably 130, and even more preferably 120.
  • the lower limit of F3 is not particularly limited.
  • a preferable lower limit of F3 is, for example, 5, more preferably 10, still more preferably 20, still more preferably 25, and even more preferably 30.
  • a more preferable range of F3 is, for example, 5 to 180, more preferably 10 to 160, even more preferably 20 to 150, still more preferably 25 to 140, still more preferably 30 to 130, and Preferably it is 30-120.
  • the Mg concentration difference ⁇ [Mg] in the surface layer of the plating layer 20 can be determined by the following method.
  • a test piece is taken from the surface-treated steel plate 1.
  • the test piece includes a base steel plate 10, a plating layer 20, and a chemical conversion coating 30.
  • the thickness of the test piece shall be the thickness of the surface-treated steel plate.
  • Glow discharge emission spectrometry is performed from the surface of the chemical conversion coating 30 of the test piece in the thickness direction of the base steel plate 10 to measure glow emission spectra (GDS spectra) of Mg and C.
  • GD-OES high-frequency glow emission spectrometer
  • GDA750 manufactured by Rigaku Co., Ltd.
  • argon atmosphere Ar pressure: 3 hPa
  • a power output of 30 W was applied using the test piece as a cathode. is applied to measure the Mg GDS spectrum and the C GDS spectrum.
  • the measurement area is 4 mm ⁇
  • the measurement time is 100 seconds
  • the measurement interval is 0.025 seconds.
  • a position P0 where the obtained Mg GDS spectrum intersects with the C GDS spectrum is defined as the surface of the plating layer 20 (that is, the interface between the chemical conversion film 30 and the plating layer 20).
  • the area SF within 10 seconds of measurement from the surface of the plating layer 20 is defined as the surface area SF of the plating layer 20.
  • the maximum value of the Mg concentration in the surface layer SF of the plating layer 20 is defined as Mg concentration [Mg]s (mass%).
  • Mg content in the chemical composition of the plating layer 20 obtained in [Method for measuring the chemical composition and adhesion amount of the plating layer 20] is [Mg]b (mass%).
  • Examples of adhesives that can provide good adhesion to the chemical conversion coating 30 of the surface-treated steel sheet 1 include silicone-based (including acrylic-modified and epoxy-modified), epoxy-based, acrylic resin-based, phenol-based, urethane-based, and vinyl acetate-based adhesives. , cyanoacrylate type, styrene-butadiene rubber type, etc.
  • the material bonded onto the chemical conversion coating 30 of the surface-treated steel sheet 1 via an adhesive is not particularly limited. Examples of the above-mentioned materials include steel plates, mortar, float glass, ceramic tiles, porcelain tiles, and MDF (medium-density fiberboard).
  • the surface-treated steel sheet having the above-mentioned configuration may be manufactured by a manufacturing method other than the manufacturing method described below.
  • the manufacturing method described below is a preferable example of the manufacturing method of the surface-treated steel sheet according to the present embodiment.
  • Step 1 Base steel sheet preparation step
  • Step 2 Plating layer formation step
  • Step 3 Skin pass rolling step
  • Step 4 Chemical conversion film formation step Steps 1 to 4 will be described below.
  • Base material steel plate preparation process In the base material steel plate preparation step, the above-mentioned base material steel plate 10 is prepared.
  • the base material steel plate 10 may be supplied from a third party.
  • a plating process (hot-dip plating process) is performed on the base steel plate 10 to form a plating layer 20 on the surface of the base steel plate 10 .
  • a plating bath is prepared.
  • the composition of the plating bath is adjusted depending on the composition of the plating layer 20 to be formed.
  • the base steel plate 10 is pulled out of the plating bath by a known method. For example, a sink roll is placed in the plating bath.
  • the base steel plate 10 immersed in the plating bath has its traveling direction changed upward by a sink roll.
  • Plating is attached to the surface of the base steel plate 10 that has been pulled out of the plating bath.
  • the amount of plating deposited on the base steel plate 10 is adjusted using a well-known gas wiping device.
  • the plating adhering to the base steel plate 10 pulled out of the plating bath is cooled.
  • the plating is solidified by cooling to form the plating layer 20.
  • the average cooling rate CR1 is 16°C/second or more and the average cooling rate CR2 is 21°C/second or more, the structure of the plating layer 20 after solidification becomes fine. Therefore, Mg concentration in the surface layer of the plating layer 20 is sufficiently suppressed, and the Mg concentration difference ⁇ [Mg] becomes sufficiently low. As a result, F3 satisfies equation (3).
  • the upper limit of the average cooling rate CR1 and the upper limit of the average cooling rate CR2 are not particularly limited.
  • a preferable upper limit of the average cooling rate CR1 is 46° C./sec.
  • a preferable upper limit of the average cooling rate CR2 is 51° C./sec.
  • Skin pass rolling process the steel plate after the plating layer forming process is subjected to skin pass rolling.
  • skin pass rolling a steel plate on which the plating layer 20 is formed is cold rolled using a rolling stand having a pair of skin pass rolls.
  • Preferred manufacturing conditions 2 and 3 The arithmetic mean roughness Ra of the surface of the skin pass roll in the roll axis direction is set to 1.0 to 5.0 ⁇ m, and the rolling force P(t) in skin pass rolling is set to 100 to 500 t.
  • Preferred manufacturing conditions 3 The average cooling rates CR1 and CR2 (° C./sec), the arithmetic mean roughness Ra ( ⁇ m) of the surface of the skin pass roll, and the rolling force P(t) in skin pass rolling satisfy formula (A). (CR1+CR2)/ ⁇ 2(Ra ⁇ P) ⁇ 0.020 (A) Manufacturing conditions 2 and 3 will be explained below.
  • the surface roughness of the skin pass roll affects Mg concentration in the surface layer of the plating layer 20. If the arithmetic mean roughness Ra is 5.0 ⁇ m or less, the surface roughness of the plating layer 20 can be sufficiently suppressed. In this case, excessive concentration of Mg in the surface layer of the plating layer 20 is suppressed, and the Mg concentration difference ⁇ [Mg] becomes sufficiently low. As a result, F3 satisfies equation (3). Therefore, preferably, the arithmetic mean roughness Ra of the surface of the skin pass roll is 5.0 ⁇ m or less.
  • Arithmetic mean roughness Ra is measured by the following method. For each of the pair of skin pass rolls, the arithmetic mean roughness Ra of the surface in the roll axis direction is measured in accordance with JIS B 0601:2013. A contact type roughness meter is used to measure the arithmetic mean roughness Ra. The conditions for calculating the roughness curve are cutoff value ⁇ c: 80 mm, cutoff value ⁇ s: 80 ⁇ m, measurement speed: 0.5 mm/sec, reference length: 1 mm, and evaluation length: 10 mm. The arithmetic mean value of the arithmetic mean roughness obtained by each skin pass roll (total of 2 rolls) is defined as the arithmetic mean roughness Ra ( ⁇ m).
  • the lower limit of the arithmetic mean roughness Ra is not particularly limited. However, if the arithmetic mean roughness Ra is too small, the base steel plate 10 on which the plating layer 20 is formed will be difficult to be bitten by the skin pass roll. Therefore, the lower limit of the arithmetic mean roughness Ra is 1.0 ⁇ m.
  • the rolling force P in skin pass rolling affects Mg concentration in the surface layer of the plating layer 20.
  • the rolling force P is 100 to 500 t
  • the concentration of Mg in the surface layer of the plating layer 20 is sufficiently suppressed, and the Mg concentration difference ⁇ [Mg] becomes sufficiently low.
  • F3 satisfies equation (3). Therefore, preferably the rolling force P is 100 to 500t.
  • FA is defined as follows.
  • the average cooling rates CR1 and CR2 the arithmetic mean roughness Ra, and the rolling force P influence the Mg concentration difference ⁇ [Mg]. If FA is 0.020 or more, the Mg concentration difference ⁇ [Mg] in the surface layer of the plating layer 20 of the surface-treated steel sheet 1 after manufacturing will be sufficiently low, assuming that manufacturing conditions 1 and 2 are satisfied. . As a result, F3 satisfies equation (3).
  • Step 4 Chemical conversion film formation step
  • a water-based surface treatment agent containing each component included in the chemical conversion film 30 is prepared.
  • the prepared aqueous surface treatment agent is applied onto the plating layer 20.
  • the applied aqueous surface treatment agent is dried to form a chemical conversion film 30 on the plating layer 20.
  • the water-based surface treatment agent contains Zr, V, P, Co, and acrylic resin.
  • the water-based surface treatment agent contains, for example, an acrylic resin (A), a zirconium carbonate compound (B), a vanadium compound (C), a phosphorus compound (D), a cobalt compound (E), and water.
  • the pH of the surface treatment agent is 8.0 to 11.0.
  • the acrylic resin (A) becomes the acrylic resin contained in the chemical conversion film 30 by applying a water-based surface treatment agent and drying it.
  • the preferred content of the acrylic resin (A) in the aqueous surface treatment agent is 20.0 to 60.0% by mass based on the total solid content of the aqueous surface treatment agent.
  • “based on the total solid content” means mass % when components other than water are 100.0% by mass in the aqueous surface treatment agent.
  • a more preferable lower limit of the acrylic resin (A) content in the aqueous surface treatment agent is 25.0%.
  • a more preferable upper limit of the acrylic resin (A) content in the aqueous surface treatment agent is 40.0%.
  • a more preferable range of the acrylic resin (A) content in the aqueous surface treatment agent is 25.0 to 40.0%.
  • the method of polymerizing the acrylic resin (A) contained in the water-based surface treatment agent is not particularly limited.
  • the acrylic resin (A) can be polymerized using suspension polymerization, emulsion polymerization, and solution polymerization.
  • a solvent and/or a polymerization initiator may be used.
  • the polymerization initiator is not particularly limited.
  • the polymerization initiator is, for example, a radical polymerization initiator such as an azo compound or a peroxide compound.
  • the polymerization initiator is preferably used in an amount of 0.1 to 10% by mass based on the total solid content of the acrylic resin.
  • the reaction temperature and reaction time may be under known conditions.
  • the reaction temperature is, for example, room temperature to 200°C, and the reaction time is 30 minutes to 8 hours.
  • zirconium carbonate compound (B) The zirconium carbonate compound (B) in the aqueous surface treatment agent crosslinks with the acrylic resin (A) by applying and drying the aqueous surface treatment agent. As a result, a chemical conversion film 30 having a crosslinked structure of Zr and acrylic resin (A) is formed. In the zirconium carbonate compound (B), carbonate ions are further volatilized when the aqueous surface treatment agent is applied and dried. Furthermore, the remaining Zr is bonded to each other via oxygen to increase the molecular weight. As a result, the -Zr-OH group forms a Zr-OM bond (M: metal element in the plating layer) with the surface of the plating layer 20.
  • M metal element in the plating layer
  • the type of zirconium carbonate compound (B) is not particularly limited.
  • the zirconium carbonate compound (B) is, for example, one or more selected from the group consisting of zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, and sodium zirconium carbonate.
  • the zirconium carbonate compound (B) is zirconium carbonate and/or zirconium ammonium carbonate. In this case, corrosion resistance is further improved.
  • Vanadium compounds (C) contained in the aqueous surface treatment agent include, for example, vanadium pentoxide (V 2 O 5 ), metavanadate (HVO 3 ), ammonium metavanadate, sodium metavanadate, vanadium oxytrichloride (VOCl 3 ), etc.
  • the phosphorus compound (D) contained in the aqueous surface treatment agent is, for example, an inorganic acid anion having a phosphorus-containing acid group and/or an organic acid anion having a phosphorus-containing acid group.
  • inorganic acid anions having a phosphorus-containing acid group include inorganic acids in which at least one hydrogen is liberated, such as orthophosphoric acid, metaphosphoric acid, condensed phosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, tetraphosphoric acid, and hexametaphosphoric acid.
  • inorganic acids in which at least one hydrogen is liberated such as orthophosphoric acid, metaphosphoric acid, condensed phosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, tetraphosphoric acid, and hexametaphosphoric acid.
  • organic acid anions having a phosphorus-containing acid group examples include 1-hydroxymethane-1,1-diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, 1-hydroxypropane-1,1-diphosphonic acid, 1-Hydroxyethylene-1,1-diphosphonic acid, 2-hydroxyphosphonoacetic acid, aminotri(methylenephosphonic acid), ethylenediamine-N,N,N',N'-tetra(methylenephosphonic acid), hexamethylenediamine-N , N,N',N'-tetra(methylenephosphonic acid), diethylenetriamine-N,N,N',N'',N'-penta(methylenephosphonic acid), butane-1,2-2-phosphonate, One or more selected from the group consisting of organic acid anions in which at least one hydrogen is released, such as organic phosphonic acids such as 4-tricarboxylic acid, inositol hexaphosphonic acid, and phytic acid, and
  • the cobalt compound (E) contained in the aqueous surface treatment agent is, for example, one or more selected from the group consisting of cobalt sulfate, cobalt nitrate, and cobalt carbonate.
  • the aqueous surface treatment agent may contain a lubricant. That is, the lubricant is an optional component. When contained, the lubricant increases the scratch resistance of the surface-treated steel sheet 1.
  • the lubricant is, for example, one or more types selected from the group consisting of polyethylene wax, oxidized polyethylene wax, and oxidized polypropylene wax.
  • the pH of the aqueous surface treatment agent is between 8.0 and 11.0. If the pH of the aqueous surface treatment agent is 8.0 or higher, the zirconium carbonate compound (B) will stably dissolve in the aqueous surface treatment agent. On the other hand, if the pH of the aqueous surface treatment agent is 11.0 or less, excessive dissolution of the plating layer 20 can be suppressed when the aqueous surface treatment agent is applied to the plating layer 20. Furthermore, if the pH is within the above range, the aqueous surface treatment agent will be stable. A more preferable lower limit of the pH of the aqueous surface treatment agent is 8.5.
  • a more preferable upper limit of the pH of the aqueous surface treatment agent is 10.0.
  • a more preferable pH range of the aqueous surface treatment agent is 8.0 to 11.0.
  • the pH of the aqueous surface treatment agent can be measured, for example, using Toa DKK Co., Ltd. (HM-30R) at a measurement temperature of 25°C.
  • the adjusting agent used to adjust the pH of the aqueous surface treatment agent is not particularly limited.
  • the regulator is, for example, one or more selected from the group consisting of ammonia, guanidine carbonate, carbonic acid, acetic acid, and hydrofluoric acid.
  • the water-based surface treatment agent can be obtained by mixing the above-mentioned components with water such as deionized water or distilled water.
  • Water-based surface treatment agents include alcohol, ketones, cellosolve-based water-soluble solvents, surfactants, antifoaming agents, leveling agents, antibacterial and antifungal agents, thickeners, and additives to improve weldability.
  • a conductive substance, a coloring pigment or a matte material for improving the design may be added. The amount of these components added is preferably less than 5% by mass based on the total solid content of the aqueous surface treatment agent.
  • the above water-based surface treatment agent is applied onto the surface of the plating layer 20 by a well-known method to form a coating film.
  • a water-based surface treatment agent is applied using a roll coater.
  • the thickness of the coating film can be adjusted by adjusting the peripheral speed ratio of the roll coater.
  • the thickness of the coating film is adjusted so that the amount of chemical conversion coating 30 deposited is 300 to 1000 mg/m 2 . After forming a coating film on the surface of the plating layer 20, the coating film is dried.
  • the surface-treated steel sheet 1 of this embodiment is manufactured.
  • the effects of the surface-treated steel sheet of this embodiment will be explained in more detail with examples.
  • the conditions in the following examples are examples of conditions adopted to confirm the feasibility and effects of the surface-treated steel sheet of this embodiment. Therefore, the surface-treated steel sheet of this embodiment is not limited to this one example condition.
  • a base steel plate on which a plating layer having the chemical composition shown in Table 1 (Table 1-1 and Table 1-2) was formed was prepared.
  • the plating layer was formed by hot-dip plating.
  • the amount of the plating layer deposited was within the range of 40 to 300 mg/m 2 .
  • the average cooling rate CR1 (°C/sec) when the surface temperature of the steel plate pulled up from the plating bath is 450 to 340°C
  • the average cooling rate CR2 (°C/sec) when the surface temperature is 340 to 250°C. were as shown in Table 2.
  • Skin pass rolling was performed on the steel plate on which the plating layer was formed.
  • the arithmetic mean roughness Ra ( ⁇ m) and rolling force P (t) of the skin pass roll used in the skin pass rolling were as shown in Table 2.
  • a water-based surface treatment agent having the compounding ratio shown in Table 3 was prepared in the following manner. Each component shown in Table 3 was added to a certain amount of deionized water being stirred using a propeller stirrer, and the solid content concentration was adjusted to 15% by mass. The pH of the aqueous surface treatment agent was adjusted to 8.0 to 11.0. Carbonic acid and/or ammonia was used as a pH adjuster for the aqueous surface treatment agent.
  • Zr compound The following compounds were prepared as a Zr compound, a V compound, a P compound, and a Co compound.
  • Zr compound The following three compounds were prepared as Zr compounds.
  • V compound] C1: Vanadium acetylacetonate
  • D1 Phosphoric acid
  • D2 1-hydroxyethane-1,1-diphosphonic acid
  • E1 Cobalt carbonate
  • a steel plate with plating layers of each test number shown in Table 1 (Table 1-1 and Table 1-2) formed on both sides was treated with a degreasing agent (alkaline degreasing agent manufactured by Nippon Parkerizing Co., Ltd., product name: Fine Cleaner E6406). (20g/L prepared bath, 60°C). Thereafter, water washing was performed for 10 seconds using a spray (spray pressure 50 kPa).
  • a degreasing agent alkaline degreasing agent manufactured by Nippon Parkerizing Co., Ltd., product name: Fine Cleaner E6406
  • a water-based surface treatment agent shown in Table 3 was applied to both surfaces of a degreased steel plate having plating layers on both sides. Specifically, a water-based surface treatment agent was applied using a roll coater. At this time, the peripheral speed ratio of the roll coater was adjusted to adjust the film thickness of the coating film. A steel plate with a coating film formed on the plating layer was heated using a hot air circulation oven (heating furnace) while supplying hot air onto the coating film, thereby drying the coating film formed on the plating layer. .
  • a hot air circulation oven heating furnace
  • V mass [V] (mg/m 2 ) and P mass [ P] (mg/m 2 ) was determined.
  • Table 6 shows the obtained V mass [V] (mg/m 2 ), P mass [P] (mg/m 2 ), F1 value, and F2 value.
  • the components of the chemical conversion film are determined based on [method for measuring Zr mass, V mass, P mass, and Co mass in the chemical conversion film 30] and [method for confirming acrylic resin in the chemical conversion film 30 and method for measuring content].
  • the chemical conversion coating contained Zr, V, P, and Co, and acrylic resin in all test numbers.
  • the Zr content (mass%), V content (mass%), P content (mass%), Co content (mass%), and acrylic resin content (mass%) in the chemical conversion coating are shown in Table 3. It was as shown.
  • the content of each component in the acrylic resin in the chemical conversion film 30 was determined based on the method described in [Method for measuring the content of each component in the acrylic resin in the chemical conversion film 30]. As a result, the content of each component of the acrylic resin was as shown in Table 5.
  • Test 6 Adhesion evaluation test Two test pieces were taken from the surface-treated steel sheet for each test number. The size of the test piece was width: 25 mm, thickness: plate thickness, and length: 100 mm.
  • the two test pieces 100 were arranged so that their ends overlapped, and adhesive 120 was applied to the overlapped portion of the two test pieces 100.
  • the area of the bonded portion was 25 mm in width x 12.5 mm in length.
  • the adhesive used was acrylic adhesive Hardlock (manufactured by Denka Corporation, trade name: c355-20). After applying an adhesive and adhering the two test pieces 100 as shown in FIG. 3, a cover plate 150 was placed at the end of each test piece 100 to produce a lap shear test piece 200.
  • Test 7 Blackening resistance evaluation test
  • a test piece of 50 mm x 100 mm x plate thickness was taken from the surface-treated steel plate of each test number. Using a constant temperature and humidity tester, the test piece was allowed to stand for 144 hours in an atmosphere of 70° C. and 85% relative humidity (RH).
  • the L * value, a * value, and b * value were determined for the surface of the test piece before the test and the surface of the test piece after the test. Specifically, the surface of the test piece before the test and the surface of the test piece after the test were measured using the CIE standard illuminant D65 as the light source, with a viewing angle of 10°, and by the SCE method in CIELAB display colors . Value, a * value, and b * value were determined. Note that the definition of the SCE method is specified in JIS Z 8722:2009. Based on the L * value, a * value, and b * value before and after the test, the color difference ⁇ E * was determined using the following formula.
  • the surface-treated steel sheets of test numbers 1 to 35 satisfied the preferred manufacturing conditions 1 to 3. Therefore, F1 and F2 were appropriate, and furthermore, F3 was appropriate. Therefore, even better resistance to dew condensation and discoloration was obtained compared to test numbers 36 to 44.
  • test numbers 45 and 46 the amount of attached chemical conversion film was too small. Therefore, sufficient corrosion resistance and sufficient adhesiveness could not be obtained.
  • test numbers 47 and 48 the amount of chemical conversion film attached was too large. Therefore, sufficient adhesiveness could not be obtained.
  • test numbers 51 and 52 F1 was too high. Therefore, sufficient corrosion resistance could not be obtained.
  • test number 55 the Mg content in the plating layer was low. Therefore, sufficient corrosion resistance could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

優れた耐食性、接着剤との接着性、及び耐黒変性が得られ、さらに、優れた耐結露変色性が得られる、表面処理鋼板を提供する。本実施形態の表面処理鋼板において、めっき層は、質量%で、Al:5.0超~25.0%未満、及び、Mg:3.0超~12.5%未満、を含有し、残部は65.0%以上のZn及び不純物からなる。めっき層上に形成されている化成被膜は、Zr、V、P、及び、Coと、アクリル樹脂とを含有する。化成被膜中のV質量[V]mg/m2とP質量[P]mg/m2とが式(1)を満たし、めっき層のMg含有量[Mg]b質量%とV質量[V]mg/m2とが式(2)を満たす。 0.60≦[V]/[P]≦2.80 (1) 0<[V]/[Mg]b≦20.00 (2)

Description

表面処理鋼板
 本開示は、表面にめっき層及び化成被膜を備える表面処理鋼板に関する。
 表面処理鋼板は、母材鋼板と、母材鋼板上に形成されためっき層と、めっき層上に形成された被膜とを備える。表面処理鋼板は、建材、自動車、及び、家電製品等の用途に広く利用されている。表面処理鋼板は、めっき層及び被膜により、耐食性を高めている。
 表面処理鋼板の耐食性を高める被膜として、クロメート処理やりん酸塩処理等の化成処理により形成された、無機材料からなる被膜、有機樹脂被膜、及び、無機材料及び有機樹脂からなる被膜、が提案されている。
 例えば、無機材料からなる被膜は、特開2002-030460号公報(特許文献1)及び国際公開第2007/123276号(特許文献2)に開示されている。特許文献1では、バナジウム化合物と、ジルコニウム、チタニウム、モリブデン、タングステン、マンガン及びセリウムから選択される少なくとも1種の金属を含む金属化合物とを含有する金属表面処理剤が提案されている。また、特許文献2では、塩基性ジルコニウム化合物、バナジル含有化合物、りん酸化合物、コバルト化合物、有機酸及び水を含有する処理液を用いた複合被膜処理亜鉛含有めっき鋼材が提案されている。
 有機樹脂被膜は、国際公開第2007/069783号(特許文献3)及び国際公開第2009/004684号(特許文献4)に開示されている。特許文献3では、アニオン性水分散樹脂とケイ酸アルカリ金属塩とからなる金属材料用表面処理剤により形成される有機樹脂被膜が提案されている。また、特許文献4では、炭酸ジルコニウムアンモニウム、4価のバナジウム化合物、有機ホスホン酸、アニオン性水分散性アクリル樹脂からなる表面処理剤により形成される有機樹脂被膜が提案されている。
 無機材料及び有機樹脂からなる被膜は、特開2003-055777号公報(特許文献5)及び特開2005-097733号公報(特許文献6)に開示されている。特許文献5では、Zn-Al-Mg-Si合金めっき上にジルコニウム化合物、バナジウム化合物からなる被膜が形成された表面処理鋼板が提案されている。また、特許文献6では、Zn-Al合金めっき上に、バナジウム化合物、りん酸化合物、金属成分、特定のモノマー成分で構成されるアクリル樹脂からなる被膜が形成された表面処理鋼板が提案されている。
 これらの被膜を有する表面処理鋼板では、耐食性を高めることができる。しかしながら、これらの表面処理鋼板では、接着剤との十分な接着性が得られない場合があった。さらに、外観性の観点から、表面処理鋼板において黒変現象を抑制すること、つまり、耐黒変性を高めることも求められる。
 そこで、耐食性とともに、接着剤との十分な接着性、及び、十分な耐黒変性が得られる表面処理鋼板が、国際公開第2017/155028号(特許文献7)に提案されている。特許文献7に開示された表面処理鋼板は、鋼板と、鋼板上に形成されている亜鉛を含むめっき層と、めっき層上に形成された被膜とを有する。この被膜は、アクリル樹脂とジルコニウムとバナジウムとりんとコバルトとを含み、被膜の断面における表面から膜厚1/5の厚みまでの領域において、アクリル樹脂の面積率が80~100面積%であり、被膜の膜厚中心から表面側に膜厚1/10の厚みまでの領域と、膜厚中心からめっき層側に膜厚1/10の厚みまでの領域とからなる領域において、アクリル樹脂の面積率が5~50面積%である。
特開2002-030460号公報 国際公開第2007/123276号 国際公開第2007/069783号 国際公開第2009/004684号 特開2003-055777号公報 特開2005-097733号公報 国際公開第2017/155028号
 特許文献7に開示された表面処理鋼板では、十分な耐食性と、接着剤との十分な接着性と、十分な耐黒変性とが得られる。
 ところで、表面処理鋼板では、表面が結露した場合に、結露部分が変色する現象が起こる場合がある。このような現象を、本明細書では、「結露変色」と称する。結露変色は表面処理鋼板の力学特性に特段の影響を与えるものではない。しかしながら、結露部分に模様が形成されてしまうため、表面処理鋼板の外観性が低くなる。そのため、表面処理鋼板において、結露変色が発生しにくい方が好ましい。つまり、表面処理鋼板には、優れた耐結露変色性も求められる。
 本開示の目的は、優れた耐食性と、接着剤との優れた接着性と、優れた耐黒変性とが得られ、さらに、優れた耐結露変色性が得られる、表面処理鋼板を提供することである。
 本開示の表面処理鋼板は、
 母材鋼板と、
 母材鋼板上に形成されためっき層と、
 めっき層上に形成された化成被膜とを備え、
 めっき層の化学組成は、質量%で、
 Al:5.0超~25.0%未満、
 Mg:3.0超~12.5%未満、
 Sn:0~3.00%、
 Bi:0~5.00%、
 In:0~2.00%、
 Ca:0~3.00%、
 Y:0~3.00%、
 La:0~3.00%、
 Ce:0~3.00%、
 Si:0~2.50%、
 Cr:0~0.5%、
 Ti:0~0.5%、
 Ni:0~0.5%、
 Co:0~0.5%、
 V:0~0.5%、
 Nb:0~0.5%、
 Cu:0~0.5%、
 Mn:0~0.5%、
 Fe:0~5.0%、
 Sr:0~0.5%、
 Sb:0~0.5%、
 Pb:0~0.5%、及び、
 B:0~0.5%、を含有し、
 残部は、65.0%以上のZnと、不純物とからなり、
 化成被膜は、
 Zr、V、P、及び、Coと、
 アクリル樹脂と、
 を含有し、
 化成被膜の付着量は300~1000mg/mであり、
 化成被膜中のV質量[V]mg/mと、化成被膜中のP質量[P]mg/mとが式(1)を満たし、
 めっき層の化学組成のMg含有量[Mg]b質量%と上記V質量[V]mg/mとが式(2)を満たす。
 0.60≦[V]/[P]≦2.80 (1)
 0<[V]/[Mg]b≦20.00 (2)
 本開示の表面処理鋼板では、優れた耐食性と、接着剤との優れた接着性と、優れた耐黒変性とが得られ、さらに、優れた耐結露変色性が得られる。
図1は、表面処理鋼板における、化成被膜及びめっき層中の元素のグロー発光分光スペクトル(GDSスペクトル)のグラフである。 図2は、本実施形態の表面処理鋼板の圧延方向に垂直な断面図である。 図3は、実施例中の接着性評価試験で用いるラップシアー試験体の側面図である。
 本発明者らは、上記課題を解決するために、調査及び検討を行った。その結果、本発明者らは次の知見を得た。
 Znを主体として含有し、さらに、質量%で5.0超~25.0%未満のAlと、3.0超~12.5%未満のMgとを含有するめっき層が形成された母材鋼板では、めっき層上に形成される化成被膜が、Zr、V、P及びCoと、アクリル樹脂とを含有すれば、優れた耐食性が得られる可能性がある。
 そこで、上述の構成を有する表面処理鋼板において、耐食性、接着剤との接着性、耐黒変性とを調査した。その結果、本発明者らは、さらに次の知見を得た。
 接着剤との接着性は、上述の組成の化成被膜の付着量に依存する。具体的には、化成被膜の付着量が300~1000mg/mであれば、表面処理鋼板において、優れた接着性が得られる。
 さらに、化成被膜中のV質量を[V](mg/m)と定義し、P質量を[P](mg/m)と定義する。この場合、耐食性及び耐黒変性は、[V]/[P]の影響を受ける。具体的には、[V]/[P]が0.60未満であれば、十分な耐黒変性が得られない。このメカニズムは明らかになっていないが、P質量[P]が多過ぎれば、黒変原因であるめっきの酸化反応が促進されると考えられる。一方、[V]/[P]が2.80を超えれば、十分な耐食性が得られない。これは、化成被膜中のP質量[P]がV質量[V]に対して相対的に少なくなり過ぎれば、Pにより形成される不動態化被膜の腐食抑制効果が小さくなるためである。[V]/[P]が式(1)を満たせば、優れた耐食性及び優れた耐黒変性が得られる。
 0.60≦[V]/[P]≦2.80 (1)
 しかしながら、上述の構成を有する表面処理鋼板であっても、依然として、十分な耐結露変色性が得られない場合があった。そこで、本発明者らはさらに検討を行った。その結果、本発明者らは、新たに次の知見を得た。
 耐結露変色性は、化成被膜中のV質量[V](mg/m)と、めっき層の化学組成の質量%でのMg含有量[Mg]b(質量%)との影響を受ける。具体的には、化成被膜中のV質量[V](mg/m)とめっき層中のMg含有量[Mg]b(質量%)とが式(2)を満たせば、十分な耐結露変色性が得られる。
 0<[V]/[Mg]b≦20.00 (2)
 以下、この点について説明する。
 本発明者らは、表面処理鋼板の表面において、電子線マイクロアナライザ(EPMA)を用いて、結露変色が生じた領域と、結露変色が生じていない領域とで、主要な元素の濃度を測定した。その結果、結露変色が生じた領域では、[V]/[Mg]bが20.00を超えていた。一方、結露変色が生じていない領域では、[V]/[Mg]bが0超~20.00であった。したがって、Mg含有量が3.0%を超える上述のめっき層上にVを含有する上述の化成被膜が形成されている場合、[V]/[Mg]bが20.00以下であれば、結露変色の発生を抑制でき、十分な耐結露変色性が得られる。
 本実施形態の表面処理鋼板は、以上の技術思想に基づいて完成したものであり、次の構成を有する。
 第1の構成の表面処理鋼板は、
 母材鋼板と、
 母材鋼板上に形成されためっき層と、
 めっき層上に形成された化成被膜とを備え、
 めっき層の化学組成は、質量%で、
 Al:5.0超~25.0%未満、
 Mg:3.0超~12.5%未満、
 Sn:0~3.00%、
 Bi:0~5.00%、
 In:0~2.00%、
 Ca:0~3.00%、
 Y:0~3.00%、
 La:0~3.00%、
 Ce:0~3.00%、
 Si:0~2.50%、
 Cr:0~0.5%、
 Ti:0~0.5%、
 Ni:0~0.5%、
 Co:0~0.5%、
 V:0~0.5%、
 Nb:0~0.5%、
 Cu:0~0.5%、
 Mn:0~0.5%、
 Fe:0~5.0%、
 Sr:0~0.5%、
 Sb:0~0.5%、
 Pb:0~0.5%、及び、
 B:0~0.5%、を含有し、
 残部は、65.0%以上のZnと、不純物とからなり、
 化成被膜は、
 Zr、V、P、及び、Coと、
 アクリル樹脂と、
 を含有し、
 化成被膜の付着量は300~1000mg/mであり、
 化成被膜中のV質量[V]mg/mと、化成被膜中のP質量[P]mg/mとが式(1)を満たし、
 めっき層の化学組成のMg含有量[Mg]b質量%と上記V質量[V]mg/mとが式(2)を満たす。
 0.60≦[V]/[P]≦2.80 (1)
 0<[V]/[Mg]b≦20.00 (2)
 第2の構成の表面処理鋼板は、
 第1の構成の表面処理鋼板であってさらに、
 グロー放電発光分析法を用いためっき層の深さ方向の元素分析により得られるめっき層の表層でのMg濃度[Mg]s質量%と、めっき層の化学組成のMg含有量[Mg]b質量%との差分であるMg濃度差Δ[Mg]質量%と、上記V質量[V]mg/mとが式(3)を満たす。
 Δ[Mg]×[V]≦200 (3)
 図1は、表面処理鋼板の化成被膜の表面から板厚方向にグロー放電発光分光分析を実施して得られた、化成被膜及びめっき層中の元素のグロー発光分光スペクトル(GDSスペクトル)のグラフである。図1の横軸は表面からの深さ(測定時間)を示す。縦軸は各元素の濃度(発光強度)を示す。
 図1において、表面処理鋼板の表面(横軸で0の位置)から所定深さまでは炭素(C)の発光強度が高い。Cの発光強度が高い領域は、化成被膜の領域であることを意味する。一方、Mg及びAlの発光強度が高い領域は、めっき層の領域であることを意味する。
 図1を参照して、式(1)及び式(2)を満たす表面処理鋼板において、本発明者らは、化成被膜と接触しているめっき層の表層領域では、Mgが濃化していることに注目した。そして、本発明者らは、式(1)及び式(2)を満たす表面処理鋼板において、めっき層の表層のMg濃化量と、化成被膜中の成分との相乗反応により、結露変色をさらに抑制できるのではないかと考えた。そこで、上記考察に基づいて、本発明者らはさらなる検討を行った。その結果、次の事項が判明した。
 式(1)及び式(2)を満たす表面処理鋼板において、めっき層中のMgと化成被膜中のVとが、結露変色に影響する。図1に示すとおり、めっき層の表層でのMg濃度[Mg]s(質量%)と、めっき層の化学組成のMg含有量[Mg]b(質量%)との差分であるMg濃度差Δ[Mg]を小さくする場合、又は、化成被膜中のV質量[V]を少なく抑える場合、MgとVとの相乗効果により、結露変色がさらに抑制される。
 以上の知見に基づいて、本発明者らはさらに、めっき層のMg濃度差Δ[Mg]と、化成被膜中のV質量[V]と、結露変色との関係を調査した。その結果、本発明者らはさらに、次の知見を見出した。
 めっき層のMg濃度差Δ[Mg](質量%)と、化成被膜中のV質量[V](mg/m)とが式(3)を満たせば、表面処理鋼板において、優れた耐食性と、接着剤との優れた接着性と、優れた耐黒変性とが得られ、かつ、さらに優れた耐結露変色性が得られる。
 Δ[Mg]×[V]≦200 (3)
 第3の構成の表面処理鋼板は、
 第1の構成又は第2の構成の表面処理鋼板であって、
 めっき層の化学組成は、質量%で、
 Sn:0.01~3.00%、
 Bi:0.01~5.00%、
 In:0.01~2.00%、
 Ca:0.01~3.00%、
 Y:0.01~3.00%、
 La:0.01~3.00%、
 Ce:0.01~3.00%、
 Si:0.01~2.50%、
 Cr:0.1~0.5%、
 Ti:0.1~0.5%、
 Ni:0.1~0.5%、
 Co:0.1~0.5%、
 V:0.1~0.5%、
 Nb:0.1~0.5%、
 Cu:0.1~0.5%、
 Mn:0.1~0.5%、
 Fe:0.1~5.0%、
 Sr:0.1~0.5%、
 Sb:0.1~0.5%、
 Pb:0.1~0.5%、及び、
 B:0.1~0.5%、からなる群から選択される1種以上を含有する。
 以下、図面を参照しながら、本実施形態の表面処理鋼板について説明する。図中において、実質的に同一の構成については、同一の符号を付して、その説明は省略する。各元素の含有量を説明する場合の「%」は、特に断りが無い限り、質量%を意味する。
 [表面処理鋼板の構成]
 図2は、本実施形態の表面処理鋼板の圧延方向に垂直な断面図である。図2を参照して、表面処理鋼板1は、母材鋼板10と、めっき層20と、化成被膜30とを備える。めっき層20は、母材鋼板10の表面上に形成されている。化成被膜30は、めっき層20の表面上に形成されている。母材鋼板10の片面にめっき層20が形成されていてもよいし、母材鋼板10の両面にめっき層20が形成されていてもよい。母材鋼板10の両面にめっき層20が形成されている場合、化成被膜30は、片面のめっき層20上のみに形成されていてもよいし、両面のめっき層20上に形成されていてもよい。
 [母材鋼板10について]
 母材鋼板10は特に限定されない。例えば、ミクロ組織が主としてフェライトからなる鋼板であってもよい。ミクロ組織が主としてフェライト及びパーライトからなる鋼板であってもよい。ミクロ組織が主としてフェライトと、マルテンサイト及びベイナイトの1種以上とからなる鋼板であってもよい。本実施形態の表面処理鋼板1の効果に、母材鋼板10の種類は特に影響しない。したがって、母材鋼板10は特に限定されない。
 [めっき層20について]
 めっき層20は、母材鋼板10の表面(片面又は両面)上に形成されている。めっき層20は、質量%で、Al:5.0超~25.0%未満、及び、Mg:3.0超~12.5%未満と、Zn:65.0%以上とを含有する。以下、各元素について説明する。
 Al:5.0超~25.0%未満
 アルミニウム(Al)は易酸化元素であり、犠牲防食によりめっき層20の耐食性を高める。Al含有量が5.0超~25.0%未満であれば、上記効果が十分に得られる。
 Al含有量の好ましい下限は5.1%であり、さらに好ましくは7.5%であり、さらに好ましくは10.0%であり、さらに好ましくは12.0%である。
 Al含有量の好ましい上限は24.9%であり、さらに好ましくは24.5%であり、さらに好ましくは24.0%であり、さらに好ましくは22.0%であり、さらに好ましくは20.0%である。
 Al含有量の好ましい範囲は例えば、5.1~24.9%であり、さらに好ましくは7.5~24.5%であり、さらに好ましくは10.0~24.0%であり、さらに好ましくは12.0~22.0%であり、さらに好ましくは12.0~20.0%である。
 Mg:3.0超~12.5%未満
 マグネシウム(Mg)は易酸化元素であり、犠牲防食によりめっき層20の耐食性を高める。Mg含有量が3.0超~12.5%未満であれば、上記効果が十分に得られる。
 Mg含有量の好ましい下限は3.1%であり、さらに好ましくは3.5%であり、さらに好ましくは4.0%であり、さらに好ましくは4.5%であり、さらに好ましくは5.0%であり、さらに好ましくは5.5%である。
 Mg含有量の好ましい上限は12.4%であり、さらに好ましくは12.0%であり、さらに好ましくは11.0%であり、さらに好ましくは10.0%である。
 Mg含有量の好ましい範囲は例えば、3.1~12.4%であり、さらに好ましくは3.5~12.0%であり、さらに好ましくは4.0~11.0%であり、さらに好ましくは4.5~10.0%であり、さらに好ましくは5.0~10.0%であり、さらに好ましくは5.5~10.0%である。
 本実施形態のめっき層20の化学組成の残部は、65.0%以上のZnと、不純物とからなる。
 上述のとおり、めっき層20は、主としてZnを含有する。具体的には、めっき層20は、質量%で65.0%以上のZnを含有する。めっき層20のZn含有量が質量%で65.0%以上であれば、十分な耐食性が得られる。
 Zn含有量の好ましい下限は67.5%であり、さらに好ましくは70.0%である。
 Zn含有量の好ましい上限は92.0%未満であり、さらに好ましくは90.0%であり、さらに好ましくは85.0%であり、さらに好ましくは80.0%である。
 Zn含有量の好ましい範囲は例えば、67.5~92.0%未満であり、さらに好ましくは70.0~90.0%であり、さらに好ましくは70.0~85.0%であり、さらに好ましくは70.0~80.0%である。
 上述の不純物とは、表面処理鋼板1を工業的に製造するときに、めっき層20の原料、又は、製造環境等から混入されるものであって、本実施形態によるめっき層20に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素について]
 めっき層20の化学組成はさらに、Znの一部に代えて、次の第1群~第6群から選択される1種以上を含有してもよい。
 [第1群(Sn群)]
 Sn:0~3.00%、
 Bi:0~5.00%、及び、
 In:0~2.00%
 [第2群(Ca群)]
 Ca:0~3.00%、
 Y:0~3.00%、
 La:0~3.00%、及び、
 Ce:0~3.00%
 [第3群]
 Si:0~2.50%
 [第4群(Cr群)]
 Cr:0~0.5%、
 Ti:0~0.5%、
 Ni:0~0.5%、
 Co:0~0.5%、
 V:0~0.5%、
 Nb:0~0.5%、
 Cu:0~0.5%、及び、
 Mn:0~0.5%
 [第5群]
 Fe:0~5.0%
 [第6群(Sr群)]
 Sr:0~0.5%、
 Sb:0~0.5%、
 Pb:0~0.5%、及び、
 B:0~0.5%
 以下、第1群~第6群について説明する。
 [第1群(Sn、Bi及びIn)]
 めっき層20の化学組成はさらに、Znの一部に代えて、スズ(Sn)、ビスマス(Bi)及び、インジウム(In)からなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、含有されなくてもよい。すなわち、Sn含有量、Bi含有量、In含有量はそれぞれ0%であってもよい。
 含有される場合、これらの元素は、Mgと金属間化合物を形成する。その結果、表面処理鋼板の耐食性が高まる。Sn、Bi及びInのいずれか1種以上が少しでも含有されれば、上記効果はある程度得られる。
 しかしながら、これらの元素含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、めっき浴の粘度が高まる。この場合、表面処理鋼板1の外観品質が低下する。
 したがって、Sn含有量は0~3.00%であり、Bi含有量は0~5.00%であり、In含有量は0~2.00%である。
 Sn含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%である。Sn含有量の好ましい上限は2.70%であり、さらに好ましくは2.50%であり、さらに好ましくは2.00%であり、さらに好ましくは1.70%である。
 Sn含有量の好ましい範囲は例えば0超~2.70%であり、さらに好ましくは0.01~2.50%であり、さらに好ましくは0.05~2.00%であり、さらに好ましくは0.05~1.70%である。
 Bi含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%である。Bi含有量の好ましい上限は4.80%であり、さらに好ましくは4.50%であり、さらに好ましくは4.00%である。
 Bi含有量の好ましい範囲は例えば0超~4.80%であり、さらに好ましくは0.01~4.50%であり、さらに好ましくは0.05~4.00%である。
 In含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%である。In含有量の好ましい上限は1.90%であり、さらに好ましくは1.80%であり、さらに好ましくは1.70%である。
 In含有量の好ましい範囲は例えば0超~1.90%であり、さらに好ましくは0.01~1.80%であり、さらに好ましくは0.05~1.70%である。
 [第2群(Ca、Y、La及びCe)]
 めっき層20の化学組成はさらに、Znの一部に代えて、カルシウム(Ca)、イットリウム(Y)、ランタン(La)、及びセレン(Ce)からなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、含有されなくてもよい。すなわち、これらの元素含有量は0%であってもよい。
 含有される場合、これらの元素は、めっき層20中でAl及びZnと金属間化合物を形成する。その結果、表面処理鋼板1の耐食性を高める。これらの元素が少しでも含有されれば、上記効果はある程度得られる。
 しかしながら、これらの元素含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、酸化ドロスが増加する。この場合、表面処理鋼板1の外観品質が低下する。
 したがって、Ca含有量は0~3.00%であり、Y含有量は0~3.00%であり、La含有量は0~3.00%であり、Ce含有量は0~3.00%である。
 Ca、Y、La及びCeの各元素含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。
 Ca、Y、La及びCeの各元素含有量の好ましい上限は2.80%であり、さらに好ましくは2.50%であり、さらに好ましくは2.00%である。
 Ca、Y、La及びCeの各元素含有量の好ましい範囲は例えば0超~2.80%であり、さらに好ましくは0.01~2.50%であり、さらに好ましくは0.05~2.00%であり、さらに好ましくは0.10~2.00%である。
 [第3群(Si)]
 めっき層20の化学組成はさらに、Znの一部に代えて、珪素(Si)を含有してもよい。Siは任意元素であり、含有されなくてもよい。すなわち、Si含有量は0%であってもよい。
 含有される場合、Siは表面処理鋼板1の耐食性を高める。Siが少しでも含有されれば、上記効果はある程度得られる。
 しかしながら、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、めっき浴の粘度が高まる。この場合、表面処理鋼板1の外観品質が低下する。
 したがって、Si含有量は0~2.50%である。
 Si含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。
 Si含有量の好ましい上限は2.00%であり、さらに好ましくは1.50%であり、さらに好ましくは1.00%であり、さらに好ましくは0.50%である。
 Si含有量の好ましい範囲は例えば0超~2.00%であり、さらに好ましくは0.01~1.50%であり、さらに好ましくは0.05~1.00%であり、さらに好ましくは0.10~0.50%である。
 [第4群(Cr、Ti、Ni、Co、V、Nb、Cu及びMn)]
 めっき層20の化学組成はさらに、Znの一部に代えて、クロム(Cr)、チタン(Ti)、ニッケル(Ni)、コバルト(Co)、バナジウム(V)、ニオブ(Nb)、銅(Cu)及びマンガン(Mn)からなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、含有されなくてもよい。すなわち、これらの元素含有量は0%であってもよい。
 含有される場合、これらの元素は表面処理鋼板1の外観品質を高める。これらの元素はさらに、めっき層20中でAlと金属間化合物を形成する。その結果、表面処理鋼板1の耐食性が高まる。これらの元素が少しでも含有されれば、上記効果はある程度得られる。
 しかしながら、これらの元素含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、めっき浴の粘度が高まる。この場合、表面処理鋼板1の外観品質が低下する。
 したがって、Cr含有量は0~0.5%であり、Ti含有量は0~0.5%であり、Ni含有量は0~0.5%であり、Co含有量は0~0.5%であり、V含有量は0~0.5%であり、Nb含有量は0~0.5%であり、Cu含有量は0~0.5%であり、Mn含有量は0~0.5%である。
 Cr、Ti、Ni、Co、V、Nb、Cu及びMnの各元素含有量の好ましい下限は0%超であり、さらに好ましくは0.1%である。
 Cr、Ti、Ni、Co、V、Nb、Cu及びMnの各元素含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
 Cr、Ti、Ni、Co、V、Nb、Cu及びMnの各元素含有量の好ましい範囲は例えば0超~0.5%未満であり、さらに好ましくは0.1~0.4%である。
 [第5群(Fe)]
 めっき層20の化学組成はさらに、Znの一部に代えて、Feを含有してもよい。すなわち、Fe含有量は0%であってもよい。
 含有される場合、Feはめっき層20の硬さを高め、表面処理鋼板1の加工性を高める。Feが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Fe含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、めっき層の硬さが高くなりすぎる。この場合、表面処理鋼板1の加工性がかえって低下する。
 したがって、Fe含有量は0~5.0%である。
 Fe含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.5%である。
 Fe含有量の好ましい上限は4.5%であり、さらに好ましくは4.0%であり、さらに好ましくは3.5%である。
 Fe含有量の好ましい範囲は例えば0超~4.5%であり、さらに好ましくは0.1~4.0%であり、さらに好ましくは0.5~3.5%である。
 [第6群(Sr、Sb、Pb及びB)]
 めっき層20の化学組成はさらに、Znの一部に代えて、ストロンチウム(Sr)、アンチモン(Sb)、鉛(Pb)及びボロン(B)からなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、含有されなくてもよい。すなわち、これらの元素含有量は0%であってもよい。
 含有される場合、これらの元素はめっき層20の金属光沢を高め、表面処理鋼板1の外観品質を高める。これらの元素が少しでも含有されれば、上記効果はある程度得られる。
 しかしながら、これらの元素含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、酸化ドロスが増加する。この場合、表面処理鋼板1の外観品質が低下する。
 したがって、Sr含有量は0~0.5%であり、Sb含有量は0~0.5%であり、Pb含有量は0~0.5%であり、B含有量は0~0.5%である。
 Sr、Sb、Pb及びBの各元素含有量の好ましい下限は0%超であり、さらに好ましくは0.1%である。
 Sr、Sb、Pb及びBの各元素含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
 Sr、Sb、Pb及びBの各元素含有量の好ましい範囲は例えば0超~0.5%未満であり、さらに好ましくは0.1~0.4%である。
 [めっき層20の好ましい付着量]
 めっき層20の付着量(mg/m)は特に限定されない。めっき層20の好ましい付着量は例えば、20~500mg/mである。めっき層20の付着量のさらに好ましい下限は30mg/mであり、さらに好ましくは40mg/mであり、さらに好ましくは50mg/mである。めっき層20の付着量の好ましい上限は400mg/mであり、さらに好ましくは300mg/mであり、さらに好ましくは200mg/mである。めっき層20の付着量の好ましい範囲は例えば30~400mg/mであり、さらに好ましくは40~300mg/mであり、さらに好ましくは50~200mg/mである。
 [めっき層20の化学組成及び付着量の測定方法]
 めっき層20の化学組成中の各元素の含有量(質量%)及びめっき層20の付着量(mg/m)は、次の方法で測定できる。
 初めに、表面処理鋼板1のめっき層20の厚さ及び化成被膜30の厚さを測定する。
 具体的には、表面処理鋼板1の表面に垂直な断面を含み、当該断面を観察面とする試験片を採取する。観察面を鏡面研磨する。鏡面研磨後の観察面のうち、化成被膜30、めっき層20、及び、母材鋼板10の少なくとも表層部分を含む領域を、走査型電子顕微鏡(SEM)で観察する。倍率は400倍とする。
 観察視野において、化成被膜30とめっき層20とは、コントラストにより明確に区別できる。観察視野の任意の5箇所で、めっき層20の厚さ(μm)及び化成被膜30の厚さ(μm)を求める。求めた5箇所のめっき層20の厚さの算術平均値を、めっき層20の厚さ(μm)とする。同様に、求めた5箇所の化成被膜30の厚さの算術平均値を、化成被膜30の厚さ(μm)とする。
 次に、表面処理鋼板1から、化成被膜30、めっき層20、及び、母材鋼板10を含む試験片を複数採取する。以下、これらの試験片を基本試験片という。基本試験片の厚さは表面処理鋼板1の厚さとする。1つの基本試験片において、めっき層20及び化成被膜30を、ヘキサメチレンテトラミン塩酸で全て溶解する。溶解液に対してICP-MS(Inductively Coupled Plasma Mass Spectrometry)による元素分析を実施する。これにより、めっき層20及び化成被膜30の総付着量(mg/m)、及び、めっき層20及び化成被膜30に含有される各元素の質量(mg/m)を求める。
 次に、別の基本試験片を用いて、めっき層分析用試験片を作製する。具体的には、別の基本試験片の化成被膜30を、研磨により除去する。このとき、基本試験片の表面から、化成被膜30の厚さ+(めっき層20の厚さ×0.05)μm深さを、研磨により除去する。以上の方法により、めっき層20及び母材鋼板10で構成されためっき層分析用試験片を準備する。
 めっき層分析用試験片において、めっき層20を、ヘキサメチレンテトラミン塩酸で全て溶解する。溶解液に対してICP-MSによる元素分析を実施する。これにより、めっき層20の暫定付着量(mg/m)、及び、めっき層20に含有される各元素の暫定質量(mg/m)を求める。
 ここで、めっき層分析用試験片のめっき層20の厚さは、表面処理鋼板1のめっき層20の厚さの0.95倍に相当する。そこで、得られためっき層20の暫定付着量(mg/m)を1/0.95倍した値を、めっき層20の付着量(mg/m)とする。
 また、各元素の暫定質量(mg/m)を1/0.95倍した値を、めっき層20中の各元素の質量(mg/m)とする。
 めっき層20の付着量(mg/m)及びめっき層20中の各元素の質量(mg/m)に基づいて、めっき層20中の各元素の含有量(質量%)を求める。
 [化成被膜30について]
 化成被膜30は、めっき層20の表面上に形成されている。化成被膜30は、Zr、V、P及びCoと、アクリル樹脂とを含有する。
 [Zr、V、P及びCoについて]
 ジルコニウム(Zr)、バナジウム(V)、りん(P)及びコバルト(Co)はいずれも、表面処理鋼板1の腐食抑制剤(インヒビター)として機能し、表面処理鋼板1の耐食性を向上させる。Zr、V、P及びCoは、それぞれ腐食抑制剤としての機能が効果的に発揮される腐食環境が異なる。そのため、腐食抑制剤として、Zr、V、P、及びCoを含有する。これにより、表面処理鋼板1において、様々な腐食環境下での腐食が抑制でき、優れた耐食性が得られる。
 [化成被膜30中のZrについて]
 化成被膜30中のZrは、アクリル樹脂と架橋構造を形成している。そのため、化成被膜30は、優れたバリア性を有する。その結果、表面処理鋼板1において、優れた耐食性が得られる。Zrはさらに、めっき層20の表面とZr-O-M結合(M:めっき層中の金属元素)を形成していると考えられる。そのため、Zrは、化成被膜30のめっき層20に対する密着性も高める。
 好ましくは、化成被膜30中のZr質量[Zr]は、4.0~510.0mg/mである。単位面積(1m)当たりのZr質量[Zr]が4.0mg/m以上であれば、化成被膜30中のZrとめっき層20の表面との結合による密着性がさらに高まる。さらに、化成被膜30中において、Zrとアクリル樹脂とで形成される架橋構造により、化成被膜30のバリア性がさらに高まり、耐食性がさらに高まる。Zr質量[Zr]が510.0mg/m以下であれば、化成被膜30中にクラックが発生するのを抑制でき、耐食性がさらに高まる。
 Zr質量[Zr]のさらに好ましい下限は50.0mg/mであり、さらに好ましくは100.0mg/mであり、さらに好ましくは120.0mg/mである。
 Zr質量[Zr]のさらに好ましい上限は500.0mg/mであり、さらに好ましくは400.0mg/mであり、さらに好ましくは350.0mg/mである。
 Zr質量[Zr]の好ましい範囲は例えば、50.0~500.0mg/mであり、さらに好ましくは100.0~400.0mg/mであり、さらに好ましくは120.0~350.0mg/mである。
 [化成被膜30中のVについて]
 化成被膜30中のVは、腐食環境下でめっき層20に優先的に溶出する。これにより、めっき層20の溶解によるpHの上昇を抑制する。その結果、表面処理鋼板1の耐食性が高まる。
 好ましくは、化成被膜30中のV質量[V]は、5.0~110.0mg/mである。単位面積(1m)当たりのV質量[V]が5.0mg/m以上であれば、表面処理鋼板1の耐食性がさらに高まる。V質量[V]が110.0mg/m以下であれば、表面処理鋼板1の耐結露変色性がさらに高まる。
 V質量[V]の好ましい下限は7.0mg/mであり、さらに好ましくは10.0mg/mであり、さらに好ましくは30.0mg/mであり、さらに好ましくは50.0mg/mである。
 V質量[V]の好ましい上限は100.0mg/mであり、さらに好ましくは90.0mg/mであり、さらに好ましくは80.0mg/mである。
 V質量[V]の好ましい範囲は例えば7.0~100.0mg/mであり、さらに好ましくは10.0~90.0mg/mであり、さらに好ましくは30.0~80.0mg/mであり、さらに好ましくは50.0~80.0mg/mである。
 [化成被膜30中のPについて]
 化成被膜30中のPは、めっき層20の表面に、りん酸亜鉛等の不動態化被膜を形成する。この不動態化被膜により、表面処理鋼板1の耐食性が高まる。不動態化被膜は、めっき層20の一部が溶解して生成した金属イオンと、Pとが反応して生成する。不動態化被膜は、化成被膜30の原料となるPを含有する水系表面処理薬剤をめっき層20の表面に塗布すること、及び/又は、化成被膜30の形成後に腐食環境下でめっき層20の一部が溶解すること、により形成される。
 好ましくは、化成被膜30中のP質量[P]は、20.0~200.0mg/mである。単位面積(1m)当たりのP質量[P]が20.0mg/m以上であれば、表面処理鋼板1の耐食性がさらに高まる。P質量[P]が200.0mg/m以下であれば、表面処理鋼板1の耐黒変性がさらに高まる。
 P質量[P]の好ましい下限は20.0mg/mであり、さらに好ましくは30.0mg/mであり、さらに好ましくは40.0mg/mであり、さらに好ましくは50.0mg/mである。
 P質量[P]の好ましい上限は190.0mg/mであり、さらに好ましくは180.0mg/mであり、さらに好ましくは150.0mg/mであり、さらに好ましくは100.0mg/mである。
 P質量[P]の好ましい範囲は例えば20.0~190.0mg/mであり、さらに好ましくは30.0~180.0mg/mであり、さらに好ましくは40.0~150.0mg/mであり、さらに好ましくは50.0~100.0mg/mである。
 [化成被膜30中のCoについて]
 化成被膜30中のCoは、表面処理鋼板1の耐黒変性及び耐食性を向上させる。めっき層20中のAl及びMgは腐食環境下で犠牲防食作用を発現する。この場合、めっき層20中のZnが、酸素欠乏状態で酸化して黒色に変色する。このような現象を黒変現象という。黒変現象は、めっき層20のうち、溶解しやすい部分で発生しやすい。化成被膜30中のCoは、めっき層20中のZnの酸化速度(腐食速度)を遅らせる。これにより、黒変現象が抑制され、表面処理鋼板1の耐黒変性が高まる。
 好ましくは、化成被膜30中のCo質量[Co]は、1.0~20.0mg/mである。単位面積(1m)当たりのCo質量[Co]が1.0mg/m以上であれば、表面処理鋼板1の耐黒変性がさらに高まる。Co質量[Co]が20.0mg/m以下であれば、表面処理鋼板1の耐食性がさらに高まる。
 Co質量[Co]の好ましい下限は2.0mg/mであり、さらに好ましくは3.0mg/mであり、さらに好ましくは4.0mg/mであり、さらに好ましくは5.0mg/mである。
 Co質量[Co]の好ましい上限は15.0mg/mであり、さらに好ましくは12.0mg/mであり、さらに好ましくは10.0mg/mであり、さらに好ましくは8.0mg/mである。
 Co質量[Co]の好ましい範囲は例えば2.0~15.0mg/mであり、さらに好ましくは3.0~12.0mg/mであり、さらに好ましくは4.0~10.0mg/mであり、さらに好ましくは5.0~8.0mg/mである。
 [化成被膜30中のZr質量、V質量、P質量及びCo質量の測定方法]
 化成被膜30中のZr、V、P及びCo質量は、次の方法で測定できる。
 上述の[めっき層20の化学組成及び付着量の測定方法]に記載の方法に準拠して、めっき層20及び化成被膜30に含有される各元素の質量(mg/m)を求める。さらに、めっき層20中の各元素の質量(mg/m)を求める。
 めっき層20及び化成被膜30に含有される各元素の質量(mg/m)から、めっき層20中の各元素の質量(mg/m)を差分することにより、化成被膜30中に含有されるZr質量[Zr](mg/m)、V質量[V](mg/m)、P質量[P](mg/m)及びCo質量[Co](mg/m)を求める。
 [アクリル樹脂について]
 本実施形態における「アクリル樹脂」は、(メタ)アクリル酸エステルの重合体を含む樹脂である。好ましくは、アクリル樹脂は、(メタ)アクリル酸アルキルエステルの重合体を含む樹脂である。アクリル樹脂は、(メタ)アクリル酸アルキルエステルのみを重合した重合体であってもよいし、(メタ)アクリル酸アルキルエステルと、その他のモノマーとを重合した共重合体であってもよい。本明細書において「(メタ)アクリル」は「アクリル」又は「メタクリル」を意味する。
 アクリル樹脂は、化成被膜30と接着剤との接着性を高める。アクリル樹脂はさらに、表面処理鋼板1の耐食性を高める。
 アクリル樹脂が(メタ)アクリル酸アルキルエステルと、その他のモノマーとの共重合体である場合、共重合体としては例えば、スチレン(b1)と、(メタ)アクリル酸(b2)と、(メタ)アクリル酸アルキルエステル(b3)と、アクリロニトリル(b4)との共重合体である。
 好ましくは、アクリル樹脂は、15~25質量%のスチレン(b1)と、1~10質量%の(メタ)アクリル酸(b2)と、40~58質量%の(メタ)アクリル酸アルキルエステル(b3)と、20~38質量%のアクリロニトリル(b4)とを含有する共重合体である。アクリル樹脂が上述の共重合体である場合、接着剤との接着性がさらに高まる。また、表面処理鋼板1の耐食性がさらに高まる。
 スチレン(b1)は、化成被膜30の接着剤との接着性を高める。スチレン(b1)はさらに、表面処理鋼板1の耐食性を高める。モノマー成分の全質量に対する(つまり、アクリル樹脂を100質量%とした場合の)スチレン(b1)含有量が15質量%以上であれば、スチレン(b1)により得られる上述の効果がさらに向上する。スチレン(b1)含有量が25質量%以下であれば、化成被膜30が過度に硬くなるのを抑制できる。そのため、化成被膜30の接着剤との接着性がさらに高まり、表面処理鋼板1の耐食性がさらに高まる。したがって、スチレン(b1)含有量の好ましい範囲は15~25質量%である。
 スチレン(b1)含有量のさらに好ましい下限は17質量%である。スチレン(b1)含有量のさらに好ましい上限は23質量%である。スチレン(b1)含有量のさらに好ましい範囲は例えば17~23質量%である。
 (メタ)アクリル酸(b2)は、化成被膜30とめっき層20及び接着剤との接着性を高め、表面処理鋼板1の耐食性を高める。モノマー成分の全質量に対する(つまり、アクリル樹脂を100質量%とした場合の)(メタ)アクリル酸(b2)含有量が1質量%以上であれば、(メタ)アクリル酸(b2)により得られる効果がさらに向上する。(メタ)アクリル酸(b2)含有量が10質量%以下であれば、化成被膜30の耐水性が高まり、その結果、耐食性がさらに高まる。したがって、(メタ)アクリル酸(b2)含有量の好ましい範囲は1~10質量%である。
 (メタ)アクリル酸(b2)含有量のさらに好ましい下限は2質量%である。(メタ)アクリル酸(b2)含有量のさらに好ましい上限は6質量%である。(メタ)アクリル酸(b2)含有量のさらに好ましい範囲は例えば2~6質量%である。
 (メタ)アクリル酸アルキルエステル(b3)は、表面処理鋼板1の耐食性を高める。モノマー成分の全質量に対する(つまり、アクリル樹脂を100質量%とした場合の)(メタ)アクリル酸アルキルエステル(b3)が40質量%以上であれば、耐食性がさらに高まる。また、(メタ)アクリル酸アルキルエステル(b3)の含有量が58質量%以下であれば、耐食性がさらに高まる。したがって、(メタ)アクリル酸アルキルエステル(b3)の好ましい範囲は40~58質量%である。
 (メタ)アクリル酸アルキルエステル(b3)含有量のさらに好ましい下限は43質量%である。(メタ)アクリル酸アルキルエステル(b3)含有量のさらに好ましい上限は55質量%である。(メタ)アクリル酸アルキルエステル(b3)含有量のさらに好ましい範囲は例えば43~55質量%である。
 (メタ)アクリル酸アルキルエステル(b3)は例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、アクリル酸2-メチルヘキシル、及び、これらの異性体からなる群から選択される1種以上である。好ましくは、(メタ)アクリル酸アルキルエステル(b3)は、アクリル酸エチル及び/又はアクリル酸ブチルである。この場合、耐食性がさらに高まる。
 アクリロニトリル(b4)は、化成被膜30と接着剤との接着性を高める。モノマー成分の全質量に対する(つまり、アクリル樹脂を100質量%とした場合の)アクリロニトリル(b4)含有量が20質量%以上であれば、化成被膜30と接着剤との接着性がさらに高まる。アクリロニトリル(b4)含有量が38質量%以下であれば、化成被膜30の耐水性が高まり、耐食性がさらに高まる。したがって、アクリロニトリル(b4)の好ましい範囲は20~38質量%である。
 アクリロニトリル(b4)含有量のさらに好ましい下限は22質量%である。アクリロニトリル(b4)含有量のさらに好ましい上限は35質量%である。アクリロニトリル(b4)含有量のさらに好ましい範囲は例えば22~35質量%である。
 アクリル樹脂が共重合体である場合、スチレン(b1)と、(メタ)アクリル酸(b2)と、(メタ)アクリル酸アルキルエステル(b3)と、アクリロニトリル(b4)と、他のビニル基含有モノマーとを含有する共重合体であってもよい。
 他のビニル基含有モノマーは、特に限定されない。他のビニル基含有モノマーは例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アリルエーテル、3-ヒドロキシプロピル(メタ)アリルエーテル、4-ヒドロキシブチル(メタ)アリルエーテル、アクリル酸2-ジメチルアミノエチル、アクリルアミド、アリルアルコール、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、桂皮酸、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルグリシジルエーテル、グリシジル(メタ)アクリレート、2-(1-アジリジニル)エチルアクリレート、イミノールメタクリレート、アクリロイルモルホリン、蟻酸ビニル、酢酸ビニル、酪酸ビニル、アクリル酸ビニル、ビニルトルエン、ケイ皮酸ニトリル、(メタ)アクリロキシエチルフォスフェート、及び、ビス-(メタ)アクリロキシエチルフォスフェートからなる群から選択される1種以上である。
 好ましくは、他のビニル基含有モノマーは、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート、エトキシ-ジエチレングリコールアクリレート及びアクリルアミドからなる群から選択される1種以上からなる。この場合、エマルションの安定性が高まる。
 本明細書において「(メタ)アクリレート」は「アクリレート」又は「メタクリレート」を意味する。「(メタ)アリルエーテル」は「アリルエーテル」又は「メタリルエーテル」を意味する。「(メタ)アクリロ」は「アクリロ」又は「メタクリロ」を意味する。
 [化成被膜30中のアクリル樹脂中の各成分の含有量の測定方法]
 アクリル樹脂中のスチレン(b1)、(メタ)アクリル酸(b2)、(メタ)アクリル酸アルキルエステル(b3)、アクリロニトリル(b4)の各成分の含有量(質量%)は、FT-IR反射法、具体的には、高感度反射法(RAS法)を利用したフーリエ変換赤外分光法により、次のとおり測定する。
 表面処理鋼板1から、化成被膜30を含む試験片(以下、樹脂成分分析用試験片という)を採取する。樹脂成分分析用試験片の厚さは、表面処理鋼板1の厚さとする。樹脂成分分析用試験片のうち、40mm×40mmの領域に対して、積算回数16回の条件で、フーリエ変換赤外分光法による測定を実施する。このとき、化成被膜30への赤外光の入射角は70~75°とする。測定により、横軸を波数(cm-1)、縦軸を透過率(%)とする赤外吸収スペクトルのグラフを作成する。
 赤外吸収スペクトルのグラフにおいて、スチレン(b1)、(メタ)アクリル酸(b2)、(メタ)アクリル酸アルキルエステル(b3)、アクリロニトリル(b4)のメインピークの高さを求める。
 次に、スチレン(b1)、(メタ)アクリル酸(b2)、(メタ)アクリル酸アルキルエステル(b3)、及び、アクリロニトリル(b4)の検量線を作製する。例えば、スチレン(b1)の場合、化成被膜30中のスチレン(b1)の含有量(質量%)が異なる複数の化成被膜サンプルを作製する。作製した化成被膜サンプルに対して、上述と同じ条件でフーリエ変換赤外分光法による測定を実施し、スチレン(b1)のメインピークの高さを求める。得られたメインピークの高さと、化成被膜サンプル中のスチレン(b1)含有量とに基づいて、検量線を作製する。(メタ)アクリル酸(b2)、(メタ)アクリル酸アルキルエステル(b3)、及び、アクリロニトリル(b4)についてもスチレン(b1)の場合と同様の方法により、検量線を作製する。
 樹脂成分分析用試験片で得られた各成分のメインピークの高さと、各成分の検量線とに基づいて、スチレン(b1)、(メタ)アクリル酸(b2)、(メタ)アクリル酸アルキルエステル(b3)、及びアクリロニトリル(b4)の含有量(質量%)を求める。
 好ましくは、アクリル樹脂のガラス転移温度は-12~24℃である。ガラス転移温度が-12℃以上であれば、化成被膜30の耐食性がさらに高まる。ガラス転移温度が24℃以下であれば、接着剤との接着性がさらに高まる。アクリル樹脂のガラス転移温度の好ましい下限は-10℃である。アクリル樹脂のガラス転移温度の好ましい上限は20℃である。
 アクリル樹脂のガラス転移温度は、以下の式で算出される。
 1/Tg(K)=W/Tg+W/Tg+・・・+W/Tg (1)
 ここで、式中のTgは、アクリル樹脂(A)のガラス転移温度(K)であり、W、W、・・・、W(nは自然数)は、アクリル樹脂を構成する各モノマーのホモポリマーの含有量(質量%)であり、Tg、Tg、・・・、Tg(nは自然数)は、各モノマーのホモポリマーのガラス転移温度である。
 [化成被膜30中のアクリル樹脂の好ましい含有量]
 化成被膜30全体のアクリル樹脂の好ましい含有量は、20.0~60.0質量%である。アクリル樹脂含有量が20.0質量%以上であれば、アクリル樹脂を含有することにより得られる効果がより有効に得られる。アクリル樹脂含有量が60.0質量%以下であれば、Zrとアクリル樹脂とを含有することによる相乗効果により、耐食性がさらに高まる。
 アクリル樹脂の含有量のさらに好ましい下限は25.0質量%であり、さらに好ましくは30.0質量%である。
 アクリル樹脂の含有量のさらに好ましい上限は55.0質量%であり、さらに好ましくは50.0質量%である。
 アクリル樹脂の含有量のさらに好ましい範囲は例えば25.0~55.0質量%であり、さらに好ましくは30.0~50.0質量%である。
 [化成被膜30中のアクリル樹脂の確認方法及び含有量測定方法]
 化成被膜30中に含有されるアクリル樹脂の有無、及び、アクリル樹脂の含有量(質量%)は、次の方法で確認できる。
 表面処理鋼板1から、化成被膜30、めっき層20及び母材鋼板10を含む試験片を採取する。試験片の厚さは表面処理鋼板1の厚さとする。
 試験片に対して、熱分解ガスクロマトグラフィー質量分析法(GC-MS)分析を実施する。具体的には、試験片をGC-MS装置で600℃に加熱する。このとき、化成被膜30中の樹脂は熱分解され、分解生成物が生成される。分解生成物をGC-MSで分析し、分解生成物の種類と量を決定する。分解生成物の種類から、化成被膜30中のアクリル樹脂の有無を確認できる。
 分析された分解生成物の量と、化成被膜30の質量とに基づいて、化成被膜中のアクリル樹脂の含有量(質量%)を求める。化成被膜30の質量は、[めっき層20の化学組成及び付着量の測定方法]に記載の方法で得られためっき層20及び化成被膜30の総付着量(mg/m)と、めっき層20の付着量(mg/m)とから、求める事ができる。
 [化成被膜30の付着量について]
 化成被膜30の付着量は300~1000mg/mである。化成被膜30の付着量が300mg/m未満であれば、形成された化成被膜30が薄すぎる。この場合、接着性が低下し、耐食性も低下する。一方、化成被膜30の付着量が1000mg/mを超えれば、形成された化成被膜30が厚すぎる。この場合、接着性が低下する。
 化成被膜30の付着量が300~1000mg/mであれば、化成被膜30の厚さが適切である。そのため、十分な接着性が得られ、かつ、十分な耐食性が得られる。
 化成被膜30の付着量の好ましい下限は350mg/mであり、さらに好ましくは400mg/mであり、さらに好ましくは450mg/mである。
 化成被膜30の付着量の好ましい上限は950mg/mであり、さらに好ましくは900mg/mであり、さらに好ましくは850mg/mである。
 化成被膜30の付着量の好ましい範囲は350~950mg/mであり、さらに好ましくは400~900mg/mであり、さらに好ましくは450~850mg/mである。
 [化成被膜30の付着量の測定方法]
 化成被膜30の付着量は、次の方法で求めることができる。
 上述の[めっき層20の化学組成及び付着量の測定方法]に記載の方法に準拠して、めっき層20及び化成被膜30の総付着量(mg/m)を求める。さらに、めっき層20中の付着量(mg/m)を求める。
 めっき層20及び化成被膜30の総付着量(mg/m)からめっき層20中の付着量(mg/m)を差分して、化成被膜30の付着量(mg/m)を求める。
 [式(1)について]
 本実施形態の表面処理鋼板1では、化成被膜30中のV質量[V]mg/mと、化成被膜30中のP質量[P]mg/mとが式(1)を満たす。
 0.60≦[V]/[P]≦2.80 (1)
 F1を次のとおり定義する。
 F1=[V]/[P]
 F1が0.60未満であれば、化成被膜30中のV質量[V]に対してP質量[P]が過剰に多い。この場合、表面処理鋼板1の耐黒変性が低下する。V質量[V]に対してP質量[P]が多過ぎれば、黒変原因であるめっきの酸化反応が促進されるものと考えられる。一方、F1が2.80を超えれば、十分な耐食性が得られない。P質量[P]がV質量[V]に対して少な過ぎれば、Pにより形成される不動態化被膜の腐食抑制効果が低下するためである。F1が0.60~2.80であれば、優れた耐黒変性及び優れた耐食性が得られる。
 F1の好ましい下限は0.65であり、さらに好ましくは0.70であり、さらに好ましくは0.80である。
 F1の好ましい上限は2.40であり、さらに好ましくは2.00であり、さらに好ましくは1.80である。
 F1の好ましい範囲は例えば0.65~2.40であり、さらに好ましくは0.70~2.00であり、さらに好ましくは0.80~1.80である。
 なお、化成被膜30中のV質量[V](mg/m)、及び、P質量[P](mg/m)は、上述の[化成被膜30中のZr質量、V質量、P質量及びCo質量の測定方法]に記載の方法で求めることができる。
 [式(2)について]
 本実施形態の表面処理鋼板1ではさらに、めっき層20の化学組成のMg含有量を[Mg]b(質量%)と定義したとき、Mg含有量[Mg]b(質量%)と化成被膜30のV質量[V](mg/m)とが式(2)を満たす。
 0<[V]/[Mg]b≦20.00 (2)
 F2を次のとおり定義する。
 F2=[V]/[Mg]b
 めっき層20の化学組成のMg含有量が3.0質量%を超える場合、めっき層20中のMg含有量[Mg]bに対する化成被膜30中のV質量[V]が高ければ、結露変色が発生する。具体的には、F2が20.00を超えれば、めっき層20中のMg質量に対する化成被膜30中のV質量が過剰に高くなる。この場合、十分な耐結露変色性が得られない。F2が0超~20.00であれば、表面処理鋼板1において、優れた耐結露変色性が得られる。
 F2の好ましい下限は5.00であり、さらに好ましくは6.00であり、さらに好ましくは7.00である。
 F2の好ましい上限は19.00であり、さらに好ましくは18.00であり、さらに好ましくは17.00である。
 F2の好ましい範囲は例えば5.00~19.00であり、さらに好ましくは6.00~18.00であり、さらに好ましくは7.00~17.00である。
 [表面処理鋼板1の効果]
 本実施形態の表面処理鋼板1では、めっき層20及び化成被膜30が上述の化学組成を有し、化成被膜30の付着量は300~1000mg/mであり、さらに、式(1)及び式(2)を満たす。そのため、本実施形態の表面処理鋼板1では、十分な耐食性と、接着剤との十分な接着性と、十分な耐黒変性とが得られ、さらに、十分な耐結露変色性が得られる。
 [表面処理鋼板1の好ましい形態について]
 本実施形態の表面処理鋼板1において、グロー放電発光分析法を用いためっき層20の深さ方向の元素分析により得られるめっき層20の表層でのMg濃度[Mg]s質量%と、めっき層20の化学組成のMg含有量[Mg]b質量%との差分を、Mg濃度差Δ[Mg](質量%)と定義する。
 好ましくは、本実施形態の表面処理鋼板1ではさらに、Mg濃度差Δ[Mg](質量%)と、V質量[V](mg/m)とが式(3)を満たす。
 Δ[Mg]×[V]≦200 (3)
 F3を次のとおり定義する。
 F3=Δ[Mg]×[V]
 めっき層20のMg濃度差Δ[Mg]、及び、化成被膜30中のV質量[V]は、耐結露変色性に相乗的に影響する。Mg濃度差Δ[Mg]が低く、V質量[V]が少なければ、めっき層20の表層の濃化Mgと、化成被膜30中のV濃度との相乗作用により、耐結露変色性がさらに高まる。したがって、F3は、耐結露変色性の指標である。
 F3が200以下であれば、めっき層20の表層の濃化Mgと、化成被膜30中のVとの相互作用を十分に抑制できる。その結果、耐結露変色性が顕著に高まる。
 F3のさらに好ましい上限は180であり、さらに好ましくは160であり、さらに好ましくは150であり、さらに好ましくは140であり、さらに好ましくは130であり、さらに好ましくは120である。
 F3の下限は特に限定されない。F3の好ましい下限は例えば5であり、さらに好ましくは10であり、さらに好ましくは20であり、さらに好ましくは25であり、さらに好ましくは30である。
 F3のさらに好ましい範囲は例えば5~180であり、さらに好ましくは10~160であり、さらに好ましくは20~150であり、さらに好ましくは25~140であり、さらに好ましくは30~130であり、さらに好ましくは30~120である。
 [Mg濃度差Δ[Mg]の測定方法]
 めっき層20の表層のMg濃度差Δ[Mg]は次の方法で求めることができる。
 表面処理鋼板1から試験片を採取する。試験片は、母材鋼板10とめっき層20と化成被膜30とを含む。試験片の厚さは、表面処理鋼板の厚さとする。試験片の化成被膜30の表面から母材鋼板10の板厚方向にグロー放電発光分光分析を実施して、Mg及びCのグロー発光分光スペクトル(GDSスペクトル)を測定する。具体的には、高周波グロー発光分光装置(GD-OES、株式会社リガク製の商品名:GDA750)を用いて、アルゴン雰囲気下(Ar圧力:3hPa)において、試験片を陰極として、出力30Wの電力を印加して、MgのGDSスペクトルと、CのGDSスペクトルを測定する。測定面積を4mmφとし、測定時間を100秒とし、測定間隔を0.025秒とする。
 図1を参照して、得られたMgのGDSスペクトルと、CのGDSスペクトルとが交差する位置P0を、めっき層20の表面(つまり、化成被膜30とめっき層20との界面)とする。めっき層20の表面から測定時間10秒以内の領域SFを、めっき層20の表層領域SFと定義する。めっき層20の表層領域SFにおけるMg濃度の最大値を、Mg濃度[Mg]s(質量%)とする。また、[めっき層20の化学組成及び付着量の測定方法]で得られためっき層20の化学組成中のMg含有量を[Mg]b(質量%)とする。
 得られたMg濃度[Mg]s及びMg含有量[Mg]bを用いて、次式によりMg濃度差Δ[Mg](質量%)を求める。
 Δ[Mg]=[Mg]s-[Mg]b
 [表面処理鋼板1に塗布する接着剤について]
 表面処理鋼板1の化成被膜30と、良好な接着性が得られる接着剤は例えば、シリコン系(アクリル変性、エポキシ変性を含む)、エポキシ系、アクリル樹脂系、フェノール系、ウレタン系、酢酸ビニル系、シアノアクリレート系、スチレンーブタジエンゴム系のもの等が挙げられる。
 なお、表面処理鋼板1の化成被膜30上に、接着剤を介して接着される材料は特に限定されない。上述の材料は例えば、鋼板、モルタル、フロートガラス、陶器質タイル、磁器質タイル、及び、MDF(medium-density fiberboard:中密度繊維板)等である。
 [表面処理鋼板1の製造方法]
 本実施形態の表面処理鋼板の製造方法の一例を説明する。上述の構成を有する表面処理鋼板は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。しかしながら、以降に説明する製造方法は、本実施形態による表面処理鋼板の製造方法の好ましい一例である。
 本実施形態の表面処理鋼板の製造方法の一例は、次の工程を含む。
 (工程1)母材鋼板準備工程
 (工程2)めっき層形成工程
 (工程3)スキンパス圧延工程
 (工程4)化成被膜形成工程
 以下、工程1~工程4について説明する。
 [(工程1)母材鋼板準備工程]
 母材鋼板準備工程では、上述の母材鋼板10を準備する。母材鋼板10は第三者から供給されたものであってもよい。
 [(工程2)めっき層形成工程]
 めっき層形成工程では、母材鋼板10に対してめっき処理(溶融めっき処理)を実施して、母材鋼板10の表面上に、めっき層20を形成する。具体的には、めっき浴を準備する。形成されるめっき層20の組成に応じて、めっき浴の組成を調整する。めっき浴に母材鋼板10を一定時間浸漬した後、母材鋼板10をめっき浴から周知の方法で引き上げる。例えば、めっき浴中にはシンクロールが配置されている。めっき浴に浸漬された母材鋼板10は、その進行方向を、シンクロールにより上方に転換される。
 めっき浴から引き上げた母材鋼板10の表面には、めっきが付着している。周知のガスワイピング装置で、母材鋼板10に付着するめっきの付着量を調整する。めっき浴から引き上げられた母材鋼板10に付着しためっきを冷却する。冷却によりめっきを凝固させて、めっき層20を形成する。
 [めっき層形成工程での好ましい冷却条件]
 めっき層形成工程では、好ましくは、次の製造条件1を満たす。
 (好ましい製造条件1)
 めっき浴から引き上げためっき付きの母材鋼板10の表面温度が450℃から340℃までの平均冷却速度CR1を16~46℃/秒とし、340℃から250℃までの平均冷却速度CR2を21~51℃/秒とする。
 平均冷却速度CR1が16℃/秒以上であり、平均冷却速度CR2が21℃/秒以上であれば、凝固後のめっき層20の組織が微細になる。そのため、めっき層20の表層でのMg濃化が十分に抑制され、Mg濃度差Δ[Mg]が十分に低くなる。その結果、F3が式(3)を満たす。
 平均冷却速度CR1の上限、及び、平均冷却速度CR2の上限は特に制限されない。平均冷却速度CR1の好ましい上限は46℃/秒である。平均冷却速度CR2の好ましい上限は51℃/秒である。
 [(工程3)スキンパス圧延工程]
 スキンパス圧延工程では、めっき層形成工程後の鋼板に対して、スキンパス圧延を実施する。スキンパス圧延では、一対のスキンパスロールを有する圧延スタンドを用いて、めっき層20が形成された鋼板を冷間で圧延する。
 [スキンパス圧延工程での好ましい製造条件]
 スキンパス圧延工程では、好ましくは、次の製造条件2及び製造条件3を満たす。
 (好ましい製造条件2)
 スキンパスロールの表面のロール軸方向での算術平均粗さRaを1.0~5.0μmとし、スキンパス圧延での圧下力P(t)を100~500tとする。
 (好ましい製造条件3)
 平均冷却速度CR1及びCR2(℃/秒)と、スキンパスロールの表面の算術平均粗さRa(μm)と、スキンパス圧延での圧下力P(t)とが、式(A)を満たす。
 (CR1+CR2)/{2(Ra×P)}≧0.020 (A)
 以下、製造条件2及び製造条件3について説明する。
 [好ましい製造条件2について]
 スキンパスロールの表面粗さは、めっき層20の表層のMg濃化に影響する。算術平均粗さRaが5.0μm以下であれば、めっき層20の表面粗さが十分に抑えられる。この場合、めっき層20の表層でのMgの過度の濃化が抑制され、Mg濃度差Δ[Mg]が十分に低くなる。その結果、F3が式(3)を満たす。したがって、好ましくは、スキンパスロールの表面の算術平均粗さRaは5.0μm以下である。
 算術平均粗さRaは次の方法で測定する。
 一対のスキンパスロールの各々において、表面のロール軸方向の算術平均粗さRaを、JIS B 0601:2013に準拠して測定する。算術平均粗さRaの測定には、接触式の粗さ計を用いる。粗さ曲線算出による条件として、カットオフ値λc:80mm、カットオフ値λs:80μm、測定速度:0.5mm/秒、基準長さ:1mm、評価長さ:10mm、とする。各スキンパスロールで得られた算術平均粗さ(合計2個)の算術平均値を、算術平均粗さRa(μm)と定義する。
 Mg濃度差Δ[Mg]の観点において、算術平均粗さRaの下限は特に限定されない。しかしながら、算術平均粗さRaが過度に小さければ、めっき層20が形成された母材鋼板10が、スキンパスロールに噛み込みにくくなる。したがって、算術平均粗さRaの下限は1.0μmである。
 スキンパス圧延での圧下力Pは、めっき層20の表層のMg濃化に影響する。圧下力Pが100~500tであれば、めっき層20の表層でのMgの濃化が十分に抑制され、Mg濃度差Δ[Mg]が十分に低くなる。その結果、F3が式(3)を満たす。したがって、好ましくは、圧下力Pは100~500tである。
 [好ましい製造条件3について]
 FAを次のとおり定義する。
 FA=(CR1+CR2)/{2(Ra×P)}
 FAは、めっき層20の表層のMg濃化に関する指標である。上述のとおり、平均冷却速度CR1及びCR2、算術平均粗さRa、及び、圧下力Pは、Mg濃度差Δ[Mg]に影響する。FAが0.020以上であれば、製造条件1及び製造条件2を満たすことを前提として、製造後の表面処理鋼板1のめっき層20の表層のMg濃度差Δ[Mg]が十分に低くなる。その結果、F3が式(3)を満たす。
 [(工程4)化成被膜形成工程]
 化成被膜形成工程では、化成被膜30に含まれる各成分を含む水系表面処理薬剤を準備する。準備した水系表面処理薬剤をめっき層20上に塗布する。塗布した水系表面処理薬剤を乾燥して、めっき層20上に化成被膜30を形成する。
 [水系表面処理薬剤について]
 水系表面処理薬剤は、Zrと、Vと、Pと、Coと、アクリル樹脂とを含有する。水系表面処理薬剤は例えば、アクリル樹脂(A)と、炭酸ジルコニウム化合物(B)と、バナジウム化合物(C)と、りん化合物(D)と、コバルト化合物(E)と、水とを含有し、水系表面処理薬剤のpHは8.0~11.0である。
 [アクリル樹脂(A)について]
 アクリル樹脂(A)は、水系表面処理薬剤を塗布して乾燥することにより、化成被膜30に含有されるアクリル樹脂となる。水系表面処理薬剤中のアクリル樹脂(A)の好ましい含有量は、水系表面処理薬剤の全固形分に対して20.0~60.0質量%である。ここで、「全固形分に対して」とは、水系表面処理薬剤において、水以外の成分を質量%で100.0%とした場合の質量%を意味する。水系表面処理薬剤中のアクリル樹脂(A)含有量のさらに好ましい下限は25.0%である。水系表面処理薬剤中のアクリル樹脂(A)含有量のさらに好ましい上限は40.0%である。水系表面処理薬剤中のアクリル樹脂(A)含有量のさらに好ましい範囲は25.0~40.0%である。
 水系表面処理薬剤に含有されるアクリル樹脂(A)の重合方法は、特に限定されない。例えば、懸濁重合、乳化重合、及び、溶液重合法を用いて、アクリル樹脂(A)を重合できる。アクリル樹脂(A)を重合するときに、溶媒及び/又は重合開始剤を用いてもよい。重合開始剤は特に制限されない。重合開始剤は例えば、アゾ系化合物や過酸化物系化合物等のラジカル重合開始剤である。重合開始剤は、アクリル樹脂の全固形分に対し、0.1~10質量%用いることが好ましい。反応温度及び反応時間は周知の条件でよい。反応温度は例えば、常温~200℃であり、反応時間は30分間~8時間である。
 [炭酸ジルコニウム化合物(B)]
 水系表面処理薬剤中の炭酸ジルコニウム化合物(B)は、水系表面処理薬剤を塗布して乾燥することにより、アクリル樹脂(A)と架橋反応する。その結果、Zrとアクリル樹脂(A)との架橋構造を有する化成被膜30が形成される。炭酸ジルコニウム化合物(B)ではさらに、水系表面処理薬剤を塗布して乾燥させるときに炭酸イオンが揮発する。さらに、残ったZr同士が酸素を介して結合し、高分子量化する。その結果、-Zr-OH基がめっき層20の表面とZr-O-M結合(M:めっき層中の金属元素)を形成する。
 炭酸ジルコニウム化合物(B)の種類は特に限定されない。炭酸ジルコニウム化合物(B)は例えば、炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、及び、炭酸ジルコニウムナトリウムからなる群から選択される1種以上である。好ましくは、炭酸ジルコニウム化合物(B)は、炭酸ジルコニウム及び/又は炭酸ジルコニウムアンモニウムである。この場合、耐食性がさらに高まる。
 [バナジウム化合物(C)]
 水系表面処理薬剤に含有されるバナジウム化合物(C)は例えば、五酸化バナジウム(V)、メタバナジン酸(HVO)、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ三塩化バナジウム(VOCl)等の5価のバナジウム化合物を還元剤で2~4価に還元したもの、三酸化バナジウム(V)、二酸化バナジウム(VO)、オキシ硫酸バナジウム(VOSO)、オキシ蓚酸バナジウム[VO(COO)]、バナジウムオキシアセチルアセトネート[VO(OC(CH)=CHCOCH]、バナジウムアセチルアセトネート[V(OC(CH)=CHCOCH]、三塩化バナジウム(VCl)、リンバナドモリブデン酸{H15-X[PV12-xMo40]・nHO(6<x<12,n<30)}、硫酸バナジウム(VSO・8HO)、二塩化バナジウム(VCl)、及び、酸化バナジウム(VO)等の酸化数4~2価のバナジウム化合物、からなる群から選択される1種以上である。
 [りん化合物(D)]
 水系表面処理薬剤に含有されるりん化合物(D)は例えば、りんを含有する酸基を有する無機酸アニオン、及び/又は、りんを含有する酸基を有する有機酸アニオンである。
 りんを含有する酸基を有する無機酸アニオンは例えば、オルトリン酸、メタリン酸、縮合リン酸、ピロリン酸、トリポリリン酸、テトラリン酸、ヘキサメタリン酸等の無機酸の少なくとも1個の水素が遊離した無機酸アニオン、及び、それらの塩類からなる群から選択される1種以上である。
 りんを含有する酸基を有する有機酸アニオンは例えば、1-ヒドロキシメタン-1,1-ジホスホン酸、1-ヒドロキシエタン-1,1-ジホスホン酸、1-ヒドロキシプロパン-1,1-ジホスホン酸、1-ヒドロキシエチレン-1,1-ジホスホン酸、2-ヒドロキシホスホノ酢酸、アミノトリ(メチレンホスホン酸)、エチレンジアミン-N,N,N’,N’-テトラ(メチレンホスホン酸)、ヘキサメチレンジアミン-N,N,N’,N’-テトラ(メチレンホスホン酸)、ジエチレントリアミン-N,N,N’,N’’,N’’-ペンタ(メチレンホスホン酸)、2-ホスホン酸ブタン-1,2,4-トリカルボン酸、イノシトールヘキサホスホン酸、フィチン酸等の有機ホスホン酸、有機りん酸等の少なくとも1個の水素が遊離した有機酸アニオン、及び、それらの塩類からなる群から選択される1種以上である。
 [コバルト化合物(E)]
 水系表面処理薬剤に含有されるコバルト化合物(E)は例えば、硫酸コバルト、硝酸コバルト、及び、炭酸コバルトからなる群から選択される1種以上である。
 [潤滑剤]
 水系表面処理薬剤は、潤滑剤を含有してもよい。つまり、潤滑剤は任意の成分である。含有される場合、潤滑剤は、表面処理鋼板1の耐傷付き性を高める。潤滑剤は例えば、ポリエチレンワックス、酸化ポリエチレンワックス、及び、酸化ポリプロピレンワックスからなる群から選択される1種以上である。
 [水系表面処理薬剤のpHについて]
 好ましくは、水系表面処理薬剤のpHは8.0~11.0である。水系表面処理薬剤のpHが8.0以上であれば、炭酸ジルコニウム化合物(B)が安定して水系表面処理薬剤中に溶解する。一方、水系表面処理薬剤のpHが11.0以下であれば、水系表面処理薬剤をめっき層20に塗布したときに、めっき層20が過剰に溶解することを抑制できる。さらにpHが上記範囲内であれば、水系表面処理薬剤が安定する。水系表面処理薬剤のpHのさらに好ましい下限は8.5である。水系表面処理薬剤のpHのさらに好ましい上限は10.0である。水系表面処理薬剤のpHのさらに好ましい範囲は8.0~11.0である。水系表面処理薬剤のpHは例えば、東亜DKK株式会社製(HM-30R)を用いて測定温度25℃で測定できる。
 水系表面処理薬剤のpHの調整に用いる調整剤は特に限定されない。調整剤は例えば、アンモニア、炭酸グアニジン、炭酸、酢酸、及び、フッ化水素酸からなる群から選択される1種以上である。
 水系表面処理薬剤は、上記した成分を脱イオン水、蒸留水などの水で混合することにより得られる。
 水系表面処理薬剤には、必要に応じて、アルコール、ケトン、セロソルブ系の水溶性溶剤、界面活性剤、消泡剤、レベリング剤、防菌防カビ剤、増粘剤、溶接性向上のための導電性物質、意匠性向上のための着色顔料や艶消し材料などを添加してもよい。これらの成分の添加量は、好ましくは、水系表面処理薬剤の全固形分に対して5質量%未満である。
 上述の水系表面処理薬剤を、周知の方法でめっき層20の表面上に塗布し、塗膜を形成する。例えば、ロールコータを用いて、水系表面処理薬剤を塗布する。この場合、ロールコータの周速比を調整して、塗膜の膜厚を調整できる。化成被膜30の付着量が300~1000mg/mとなるように、塗膜の膜厚を調整する。めっき層20の表面上に塗膜を形成した後、塗膜を乾燥する。
 以上の工程により、本実施形態の表面処理鋼板1を製造する。
 実施例により本実施形態の表面処理鋼板の効果をさらに具体的に説明する。以下の実施例での条件は、本実施形態の表面処理鋼板の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の表面処理鋼板はこの一条件例に限定されない。
 表1(表1-1及び表1-2)に記載の化学組成を有するめっき層が形成された母材鋼板を準備した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 めっき層は溶融めっき処理により形成した。めっき層の付着量は40~300mg/mの範囲内であった。
 なお、溶融めっき処理において、めっき浴から引き上げた鋼板の表面温度が450~340℃での平均冷却速度CR1(℃/秒)と、340~250℃での平均冷却速度CR2(℃/秒)とは表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000003
 めっき層を形成した鋼板に対して、スキンパス圧延を実施した。スキンパス圧延に用いたスキンパスロールの算術平均粗さRa(μm)と、圧下力P(t)とは、表2に示すとおりであった。さらに、FA値(=(CR1+CR2)/{2(Ra×P)})は表2に示すとおりであった。
 表3に示す配合比の水系表面処理薬剤を次の方法で準備した。プロペラ攪拌機を用いて攪拌中の一定量の脱イオン水中に、表3に示す各成分を添加して、固形分濃度が15質量%となるように調製した。水系表面処理薬剤のpHは8.0~11.0に調整した。水系表面処理薬剤のpHの調整剤としては、炭酸及び/又はアンモニアを用いた。
Figure JPOXMLDOC01-appb-T000004
 表3に示す各成分の種類は、次のとおり調整した。
 [アクリル樹脂]
 表4に略号を示した、スチレン(b1)、(メタ)アクリル酸(b2)、(メタ)アクリル酸アルキルエステル(b3)、アクリロニトリル(b4)を、表5に示す比率で使用して、表5に示すA1~A17の共重合体(アクリル樹脂)を得た。なお、表3の水系表面処理薬剤中のアクリル樹脂の含有量は、水系表面処理薬剤の全固形分に対する質量(質量%)である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 Zr化合物、V化合物、P化合物及びCo化合物として、次の化合物を準備した。
 [Zr化合物]
 Zr化合物として、次の3つの化合物を準備した。
 B1:炭酸ジルコニウムカリウム
 B2:炭酸ジルコニウムアンモニウム
 B3:ジルコンフッ化アンモニウム
 [V化合物]
 C1:バナジウムアセチルアセトネート
 C2:オキシ蓚酸バナジウム
 [P化合物]
 D1:りん酸
 D2:1-ヒドロキシエタン-1,1-ジホスホン酸
 [Co化合物]
 E1:炭酸コバルト
 E2:硝酸コバルト
 表1(表1-1及び表1-2)に示す各試験番号のめっき層が両面に形成された鋼板を、脱脂剤(日本パーカライジング(株)製アルカリ脱脂剤、商品名:ファインクリーナーE6406)を用いて脱脂した(20g/L建浴、60℃)。その後、スプレーを用いて10秒間水洗を行った(スプレー圧50kPa)。
 脱脂した両面にめっき層を有する鋼板の両面に、表3に示す水系表面処理薬剤を塗布した。具体的には、ロールコータを用いて、水系表面処理薬剤を塗布した。このとき、ロールコータの周速比を調整して、塗膜の膜厚を調整した。めっき層上に塗膜が形成された鋼板を、温風循環型オーブン(加熱炉)を用いて塗膜上に熱風を供給しながら加熱し、めっき層上に形成された塗膜を乾燥させた。
 以上の工程により、各試験番号の表面処理鋼板を製造した。なお、各試験番号の表面処理鋼板の板厚は2.3mmであった。
 [評価試験]
 各試験番号の表面処理鋼板に対して、次の評価試験を実施した。
 (試験1)めっき層の化学組成分析試験
 (試験2)化成被膜の付着量測定試験
 (試験3)[V]及び[P]測定試験
 (試験4)Mg濃度差Δ[Mg]測定試験
 (試験5)耐食性評価試験
 (試験6)接着性評価試験
 (試験7)耐黒変性評価試験
 (試験8)耐結露変色性評価試験
 以下、試験1~試験8について説明する。
 [(試験1)めっき層の化学組成分析試験]
 上述の[めっき層20の化学組成及び付着量の測定方法]に記載の方法に基づいて、各試験番号のめっき層の化学組成中の各元素含有量(質量%)を求めた。その結果、各試験番号のめっき層の化学組成は、表1(表1-1及び表1-2)に示すとおりであった。
 [(試験2)化成被膜の付着量測定試験]
 上述の[化成被膜30の付着量の測定方法]に記載の方法に基づいて、各試験番号の化成被膜の付着量を測定した。得られた結果を、表6中の「化成被膜付着量(mg/m)」欄に示す。
Figure JPOXMLDOC01-appb-T000007
 [(試験3)[V]及び[P]測定試験]
 上述の[化成被膜30中のZr質量、V質量、P質量及びCo質量の測定方法]に記載の方法に基づいて、化成被膜中のV質量[V](mg/m)及びP質量[P](mg/m)を求めた。得られたV質量[V]、P質量[P]を用いて、F1(=[V]/[P])を求めた。さらに、めっき層の化学組成のMg含有量[Mg]b及びV質量[V]を用いて、F2(=[V]/[Mg]b)を求めた。得られたV質量[V](mg/m)、P質量[P](mg/m)、F1値、及びF2値を、表6に示す。
 なお、[化成被膜30中のZr質量、V質量、P質量及びCo質量の測定方法]、及び、[化成被膜30中のアクリル樹脂の確認方法及び含有量測定方法]に基づいて化成被膜の成分を測定した結果、いずれの試験番号においても、化成被膜はZr、V、P、及び、Coと、アクリル樹脂とを含有していた。さらに、化成被膜中のZr含有量(質量%)、V含有量(質量%)、P含有量(質量%)、Co含有量(質量%)及びアクリル樹脂含有量(質量%)は表3に示すとおりであった。さらに、[化成被膜30中のアクリル樹脂中の各成分の含有量の測定方法]に記載の方法に基づいて、化成被膜30中のアクリル樹脂中の各成分の含有量を求めた。その結果、アクリル樹脂の各成分の含有量は表5に示すとおりであった。
 [(試験4)Mg濃度差Δ[Mg]測定試験]
 上述の[Mg濃度差Δ[Mg]の測定方法]に記載の方法に基づいて、Mg濃度差Δ[Mg](質量%)を求めた。さらに、得られたMg濃度差Δ[Mg](質量%)と、化成被膜中のV質量[V](mg/m)とに基づいて、F3(=Δ[Mg]×[V])を求めた。得られたMg濃度差Δ[Mg](質量%)を、表6中の「Δ[Mg](質量%)」欄に示す。さらに、得られたF3値を表6の「F3」欄に示す。
 [(試験5)耐食性評価試験]
 各試験番号の表面処理鋼板から、平板試験片を採取した。平板試験片のサイズは50mm×100mm×板厚とした。平板試験片に対して、JIS Z 2371:2015に準拠した塩水噴霧試験を240時間実施した。試験後の平板試験片の表面を観察して、白錆の面積率を求めた。得られた白錆の面積率に基づいて、次のとおり評価した。
 E(Excellent):白錆の面積率が5.0%以下
 B(Bad):白錆の面積率が5.0%超
 得られた結果を表6中の「耐食性」欄に示す。
 [(試験6)接着性評価試験]
 各試験番号ごとに、表面処理鋼板から2つの試験片を採取した。試験片のサイズは幅:25mm、厚さ:板厚、長さ:100mmであった。
 図3に示すとおり、2枚の試験片100の端部が重なるように配置して、2枚の試験片100が重なる部分に接着剤120を塗布した。接着部分の面積を幅:25mm×長さ:12.5mmとした。接着剤はアクリル系接着剤ハードロック(デンカ株式会社製、商品名:c355-20)を用いた。接着剤を塗布して2枚の試験片100を図3に示すとおり接着した後、あて板150を各試験片100の端部に配置して、ラップシアー試験体200を作製した。
 作製されたラップシアー試験体を用いて、引張せん断試験を実施した。このとき、チャック間距離を112.5mmとし、引張速度を2mm/分とした。以上の条件の引張せん断試験により、引張せん断荷重(N)を求めた。
 得られた引張せん断荷重に基づいて、次のとおり評価した。
 E:引張せん断荷重が5.2×10N以上
 B:引張せん断荷重が5.2×10N未満
 得られた結果を表6中の「接着性」欄に示す。
 [(試験7)耐黒変性評価試験]
 各試験番号の表面処理鋼板から、50mm×100mm×板厚の試験片を採取した。恒温恒湿試験機を使用して、70℃、相対湿度(RH)85%の雰囲気下で、試験片を144時間静置した。
 試験前の試験片の表面、及び、試験後の試験片の表面に対して、L値、a値、及びb値を求めた。具体的には、試験前の試験片の表面、及び、試験後の試験片の表面に対して、光源としてCIE標準光源D65を用い、視野角度10°として、SCE方式によりCIELAB表示色でL値、a値、及びb値を求めた。なお、SCE方式の定義は、JIS Z 8722:2009に規定されている。試験前後のL値、a値、及びb値に基づいて、次の式により色差ΔEを求めた。
 ΔE={(ΔL+(Δa+(Δb1/2
 ΔL=試験後のL-試験前のL
 Δa=試験後のa-試験前のa
 Δb=試験後のb-試験前のb
 なお、試験前後のL値、a値、及びb値は、コニカミノルタ株式会社製の測色計(商品名:CM-2600d)を用いた。
 得られたΔEに基づいて、耐黒変性を次のとおり評価した。
 E:ΔE≦3.0
 B:ΔE>3.0
 得られた結果を表6中の「耐黒変性」欄に示す。
 [(試験8)耐結露変色性評価試験]
 各試験番号の表面処理鋼板から、50mm×100mm×板厚の試験片を採取した。試験片の表面に純水を6滴滴下した。このとき、1滴ごとに別々の領域に滴下した。滴下後の試験片を常温、大気中で12時間放置し、水滴を乾燥させた。12時間経過後の試験片の表面を観察し、12個の滴下領域のうち、変色している領域がいくつあるか確認した。変色領域の数に応じて、耐結露変色性を次のとおり評価した。
 E:変色領域が2個以下である。
 G:変色領域が3~5個である
 B:変色領域が6個以上である。
 得られた結果を表6中の「耐結露変色性」欄に示す。
 [評価結果]
 表6を参照して、試験番号1~44の表面処理鋼板では、めっき層の化学組成が適切であり、化成被膜が、Zr、V、P及びCoと、アクリル樹脂とを含有した。さらに、化成被膜の付着量は適切であり、F1、F2も適切であった。そのため、優れたな耐食性と、接着剤との優れた接着性と、優れた耐黒変性とが得られ、さらに、優れた耐結露変色性が得られた。
 特に、試験番号1~35の表面処理鋼板では、好ましい製造条件1~3を満たした。そのため、F1及びF2が適切であり、さらに、F3が適切であった。そのため、試験番号36~44と比較して、さらに優れた耐結露変色性が得られた。
 一方、試験番号45及び46では、化成被膜の付着量が少なすぎた。そのため、十分な耐食性及び十分な接着性が得られなかった。
 試験番号47及び48では、化成被膜の付着量が多すぎた。そのため、十分な接着性が得られなかった。
 試験番号49及び50では、F1が低すぎた。そのため、十分な耐黒変性が得られなかった。
 試験番号51及び52では、F1が高すぎた。そのため、十分な耐食性が得られなかった。
 試験番号53及び54では、F2が高すぎた。そのため、十分な結露変色性が得られなかった。
 試験番号55では、めっき層中のMg含有量が低かった。そのため、十分な耐食性が得られなかった。
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (3)

  1.  母材鋼板と、
     前記母材鋼板上に形成されためっき層と、
     前記めっき層上に形成された化成被膜とを備え、
     前記めっき層の化学組成は、質量%で、
     Al:5.0超~25.0%未満、
     Mg:3.0超~12.5%未満、
     Sn:0~3.00%、
     Bi:0~5.00%、
     In:0~2.00%、
     Ca:0~3.00%、
     Y:0~3.00%、
     La:0~3.00%、
     Ce:0~3.00%、
     Si:0~2.50%、
     Cr:0~0.5%、
     Ti:0~0.5%、
     Ni:0~0.5%、
     Co:0~0.5%、
     V:0~0.5%、
     Nb:0~0.5%、
     Cu:0~0.5%、
     Mn:0~0.5%、
     Fe:0~5.0%、
     Sr:0~0.5%、
     Sb:0~0.5%、
     Pb:0~0.5%、及び、
     B:0~0.5%、を含有し、
     残部は、65.0%以上のZnと、不純物とからなり、
     前記化成被膜は、
     Zr、V、P、及び、Coと、
     アクリル樹脂と、
     を含有し、
     前記化成被膜の付着量は300~1000mg/mであり、
     前記化成被膜中のV質量[V]mg/mと、前記化成被膜中のP質量[P]mg/mとが式(1)を満たし、
     前記めっき層の化学組成のMg含有量[Mg]b質量%と前記V質量[V]mg/mとが式(2)を満たす、
     表面処理鋼板。
     0.60≦[V]/[P]≦2.80 (1)
     0<[V]/[Mg]b≦20.00 (2)
  2.  請求項1に記載の表面処理鋼板であってさらに、
     グロー放電発光分析法を用いた前記めっき層の深さ方向の元素分析により得られる前記めっき層の表層でのMg濃度[Mg]s質量%と、前記めっき層の化学組成の前記Mg含有量[Mg]b質量%との差分であるMg濃度差Δ[Mg]質量%と、前記V質量[V]mg/mとが式(3)を満たす、
     表面処理鋼板。
     Δ[Mg]×[V]≦200 (3)
  3.  請求項1又は請求項2に記載の表面処理鋼板であって、
     前記めっき層の化学組成は、質量%で、
     Sn:0.01~3.00%、
     Bi:0.01~5.00%、
     In:0.01~2.00%、
     Ca:0.01~3.00%、
     Y:0.01~3.00%、
     La:0.01~3.00%、
     Ce:0.01~3.00%、
     Si:0.01~2.50%、
     Cr:0.1~0.5%、
     Ti:0.1~0.5%、
     Ni:0.1~0.5%、
     Co:0.1~0.5%、
     V:0.1~0.5%、
     Nb:0.1~0.5%、
     Cu:0.1~0.5%、
     Mn:0.1~0.5%、
     Fe:0.1~5.0%、
     Sr:0.1~0.5%、
     Sb:0.1~0.5%、
     Pb:0.1~0.5%、及び、
     B:0.1~0.5%、からなる群から選択される1種以上を含有する、
     表面処理鋼板。
PCT/JP2023/031546 2022-08-31 2023-08-30 表面処理鋼板 WO2024048655A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022138585 2022-08-31
JP2022-138585 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048655A1 true WO2024048655A1 (ja) 2024-03-07

Family

ID=90099720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031546 WO2024048655A1 (ja) 2022-08-31 2023-08-30 表面処理鋼板

Country Status (2)

Country Link
TW (1) TW202419645A (ja)
WO (1) WO2024048655A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004684A1 (ja) * 2007-06-29 2009-01-08 Nihon Parkerizing Co., Ltd. 亜鉛系めっき鋼板用水系表面処理液及び亜鉛系めっき鋼板
WO2017155028A1 (ja) * 2016-03-09 2017-09-14 新日鐵住金株式会社 表面処理鋼板および表面処理鋼板の製造方法
WO2018083784A1 (ja) * 2016-11-04 2018-05-11 新日鐵住金株式会社 表面処理鋼板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004684A1 (ja) * 2007-06-29 2009-01-08 Nihon Parkerizing Co., Ltd. 亜鉛系めっき鋼板用水系表面処理液及び亜鉛系めっき鋼板
WO2017155028A1 (ja) * 2016-03-09 2017-09-14 新日鐵住金株式会社 表面処理鋼板および表面処理鋼板の製造方法
WO2018083784A1 (ja) * 2016-11-04 2018-05-11 新日鐵住金株式会社 表面処理鋼板

Also Published As

Publication number Publication date
TW202419645A (zh) 2024-05-16

Similar Documents

Publication Publication Date Title
TWI679303B (zh) 表面處理鋼板及表面處理鋼板的製造方法
KR101918879B1 (ko) 아연 도금 강판용 표면 처리제
JP5160866B2 (ja) 表面処理溶融Zn−Al系合金めっき鋼板
JP5600416B2 (ja) 表面処理組成物及び表面処理鋼板
JP5075321B2 (ja) 金属表面の水系処理薬剤
KR102107271B1 (ko) 아연-알루미늄-마그네슘 합금 도금 강판의 표면 처리 방법
JP5952877B2 (ja) 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
WO2021054450A1 (ja) 無方向性電磁鋼板および無方向性電磁鋼板用表面処理剤
WO2014084371A1 (ja) 溶融亜鉛めっき鋼板
JP2008291350A (ja) 表面処理溶融Zn−Al系合金めっき鋼板
CN107250434B (zh) 镀锌钢材用或镀锌基合金钢材用的金属表面处理剂、被覆方法及被覆钢材
WO2024048655A1 (ja) 表面処理鋼板
TWI714101B (zh) 表面處理鋼板
WO2023090458A1 (ja) 表面処理鋼材
JP7099424B2 (ja) 表面処理皮膜付き亜鉛系めっき鋼板及びその製造方法
WO2023190971A1 (ja) 表面処理鋼板
JP2023030618A (ja) 表面処理鋼板
JP2023030615A (ja) 表面処理鋼板
JP2024538107A (ja) 三元系溶融亜鉛合金めっき鋼板用表面処理組成物、それを用いて表面処理された三元系溶融亜鉛合金めっき鋼板及びその製造方法
JP2005290436A (ja) 耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860417

Country of ref document: EP

Kind code of ref document: A1