WO2024048050A1 - キャリアペプチドフラグメント及びその利用 - Google Patents

キャリアペプチドフラグメント及びその利用 Download PDF

Info

Publication number
WO2024048050A1
WO2024048050A1 PCT/JP2023/024103 JP2023024103W WO2024048050A1 WO 2024048050 A1 WO2024048050 A1 WO 2024048050A1 JP 2023024103 W JP2023024103 W JP 2023024103W WO 2024048050 A1 WO2024048050 A1 WO 2024048050A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
construct
cell
cells
peptide fragment
Prior art date
Application number
PCT/JP2023/024103
Other languages
English (en)
French (fr)
Inventor
菜穂子 ベイリー小林
徹彦 吉田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2024048050A1 publication Critical patent/WO2024048050A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/13Labelling of peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)

Definitions

  • the present invention relates to a method for introducing (transferring) a foreign substance from the outside of a eukaryotic cell into the inside of the cell, and a carrier peptide fragment used in the method.
  • Patent Document 1 discloses a construct comprising a carrier peptide fragment consisting of the amino acid sequence: KKRTLRKSNRKKR (SEQ ID NO: 2) and a foreign substance. Since the carrier peptide fragment is a cell-penetrating peptide (hereinafter also referred to as "CPP") that exhibits excellent cell membrane permeability, the construct containing the carrier peptide fragment can be used outside eukaryotic cells. is efficiently introduced into the interior.
  • CPP cell-penetrating peptide
  • CPP is being considered for use in drug delivery systems, for example, from a medical perspective. Therefore, the development of CPP having excellent cell membrane permeability is desired.
  • the present inventor conducted extensive studies based on the amino acid sequence (SEQ ID NO: 2) disclosed in Patent Document 1 in order to create a carrier peptide fragment that exhibits better cell membrane permeability. As a result, it was found that cell membrane permeability was improved by using a D-amino acid residue as one of the amino acid residues constituting the amino acid sequence shown in SEQ ID NO: 2. Furthermore, by converting only the 12th lysine residue (also referred to as lysine residue) from the N-terminus of the amino acid sequence shown in SEQ ID NO: 2 into the D-form, exceptionally excellent cell membrane permeability has been achieved. I discovered that.
  • the carrier peptide fragment disclosed herein is a carrier peptide fragment that is introduced into at least the cytoplasm of a eukaryotic cell from outside the cell.
  • This carrier peptide fragment consists of the following amino acid sequence shown in SEQ ID NO: 1: KKRTLRKSNRKKR, where the 12th lysine residue from the N-terminus of the above amino acid sequence is in the D-configuration, and the remaining amino acid residues are in the L-configuration. be. According to this configuration, excellent cell membrane permeability is achieved.
  • the present disclosure also provides a construct for introducing a foreign substance (hereinafter also simply referred to as a "construct") comprising the carrier peptide fragment disclosed herein.
  • a construct for introducing a foreign substance which is prepared for introducing a target foreign substance from the outside of a eukaryotic cell into at least the cytoplasm of the cell. and a foreign substance bound to the N-terminus and/or C-terminus of the carrier peptide fragment. According to such a configuration, a construct exhibiting excellent cell membrane permeability is realized.
  • the foreign substance can be at least one organic compound selected from the group consisting of polypeptides, nucleic acids, dyes, and drugs.
  • polypeptide refers to a polymer having a structure in which a plurality of amino acids are bonded through peptide bonds. Polypeptides are not limited by the number of peptide bonds (ie, number of amino acid residues). That is, polypeptides include what is generally called a peptide, which has about 10 or more amino acid residues and less than 300 amino acid residues, and what is generally called a protein (a polymeric compound that typically has about 300 or more amino acid residues). . In this field, there is no strict distinction between polypeptides and proteins.
  • nucleic acid refers to a polymer of nucleotides, and includes DNA and RNA.
  • a “nucleic acid” is not limited by the number of bases.
  • the foreign substance may be placed on the C-terminal side of the carrier peptide fragment.
  • the present disclosure also provides a method for introducing a target foreign substance from the outside of a eukaryotic cell into at least the cytoplasm of the cell in vitro or in vivo.
  • the methods disclosed herein include (1) providing a construct disclosed herein; and (2) providing the construct into a sample containing eukaryotic cells of interest. Thereby, the target foreign substance can be efficiently introduced into eukaryotic cells.
  • the eukaryotic cell into which the construct is introduced can be a human or non-human mammalian cell.
  • Figure 1 shows the MFI values obtained by adding the constructs (additives) shown in Examples 1 to 16 to the culture solution of HeLa cells, culturing them, and then analyzing the cells using a flow cytometer. It is a graph.
  • Matters other than those specifically mentioned in this specification that are necessary for implementation can be understood as a matter of design by those skilled in the art based on conventional techniques in the fields of cell engineering, physiology, medicine, pharmacy, organic chemistry, biochemistry, genetic engineering, protein engineering, molecular biology, genetics, and the like. Further, the technology disclosed herein can be implemented based on the content disclosed in this specification and common technical knowledge in the field.
  • amino acids may be expressed by a one-letter notation based on the nomenclature for amino acids shown in the IUPAC-IUB guidelines.
  • amino acid residue includes the N-terminal amino acid and C-terminal amino acid of a peptide chain, unless otherwise specified.
  • a "synthetic peptide” refers to a peptide chain whose peptide chain does not stably exist independently in nature, but which is produced by artificial chemical synthesis or biosynthesis (i.e., production based on genetic engineering). refers to a peptide fragment produced by a peptide fragment that can stably exist in a given composition.
  • the term "peptide” used herein refers to an amino acid polymer having multiple peptide bonds, and is not limited by the number of amino acid residues.
  • amino acid residues constituting the peptide or protein may be in the L-configuration or the D-configuration unless otherwise specified.
  • amino acid sequences shown in the sequence listing L-form and D-form are distinguished.
  • the left side always represents the N-terminal side and the right side represents the C-terminal side.
  • carrier peptide fragment disclosed herein is comprised of the amino acid sequence shown in SEQ ID NO: 1: KKRTLRKSNRKKR.
  • the 12th lysine residue from the N-terminus is a D-form amino acid (i.e., D-lysine residue)
  • the remaining amino acid residues (1 to 11th and 13th from the N-terminus) amino acid residues) are composed of L-amino acids.
  • the carrier peptide fragment disclosed herein may be a modified sequence of the amino acid sequence shown in SEQ ID NO: 1, as long as it does not impair cell membrane permeability.
  • modified sequence refers to an amino acid sequence formed by substitution, deletion, and/or addition (insertion) of one or several (typically two or three) amino acid residues ( modified amino acid sequence).
  • modified sequences in this specification include, for example, sequences resulting from so-called conservative amino acid replacement in which one, two, or three amino acid residues are replaced conservatively, and sequences where a predetermined amino acid Examples include sequences in which one, two, or three amino acid residues are added (inserted) or deleted.
  • Typical examples of conservative substitutions include sequences in which a basic amino acid residue is replaced with another basic amino acid residue (for example, mutual substitution of a lysine residue and an arginine residue), or a sequence in which a hydrophobic amino acid residue is Examples include sequences in which hydrophobic amino acid residues are substituted (for example, mutual substitution of leucine residues, isoleucine residues, and valine residues).
  • the construct for introducing a foreign substance disclosed herein has the carrier peptide fragment disclosed herein and a foreign substance bound to the N-terminal side and/or C-terminal side of the carrier peptide fragment.
  • the construct disclosed herein can be designed by linking (linking) a desired foreign substance directly or indirectly to the N-terminus and/or C-terminus of the carrier peptide fragment. ⁇ Can be constructed.
  • the linker is not particularly limited, but may be a peptidic linker or a non-peptidic linker.
  • the amino acid sequence constituting the peptidic linker is preferably a flexible amino acid sequence that does not cause steric hindrance.
  • the peptidic linker contains, for example, one or more amino acid residues selected from glycine, alanine, serine, etc., and contains 10 or less (more preferably 1 to 5, such as 1 or 2) , 3, 4, or 5 amino acid residues).
  • ⁇ -alanine may be used as such a linker.
  • the non-peptide linker is not particularly limited, but for example, an alkyl linker, a PEG (polyethylene glycol) linker, an aminohexanoyl spacer, etc. can be used.
  • the foreign substance can be, for example, an organic compound such as a polypeptide, a nucleic acid, a dye, a drug, etc.
  • a peptide chain is designed to include the amino acid sequence constituting the polypeptide and the amino acid sequence constituting the carrier peptide fragment, and the peptide chain is biosynthesized or chemically synthesized. By doing so, a construct for introducing a foreign substance of interest can be prepared.
  • anti-tumor agents including various nucleic acids such as DNA or RNA, dyes (for example, various fluorescent dye compounds such as FAM and FITC), or drugs (for example, nucleic acid-based anti-tumor agents such as 5-fluorouracil (5FU)),
  • An organic compound that functions as an antiviral agent such as azidothymidine (AZT) is directly or indirectly bound to the N-terminal side and/or C-terminal side of the carrier peptide fragment described above by various conventionally known scientific methods.
  • the construct can be prepared by Although not particularly limited, the functions of foreign substances include, for example, promotion of differentiation induction of stem cells (stem cell differentiation inducing activity), suppression of growth of tumor cells (antitumor activity), and suppression of growth of virus-infected cells (antiviral activity). activity) etc.
  • the number of foreign substances that bind to the carrier peptide fragment is not particularly limited.
  • one or more foreign substances may be attached to one carrier peptide fragment.
  • a polypeptide, a nucleic acid, a drug, etc. may be bound to the C-terminus of one carrier peptide fragment, and a dye may be bound to the N-terminus. Binding a dye to a carrier peptide fragment is preferable because it facilitates evaluation of the efficiency of introduction of the construct into eukaryotic cells and its localization within the cell.
  • the polypeptide (amino acid sequence) to be employed is not particularly limited.
  • substances with a relatively large number of amino acid residues such as polypeptides or proteins with about 100 to 1000 amino acid residues, can also be employed as foreign substances.
  • the total number of amino acid residues constituting a synthetic peptide prepared as a construct for introducing a foreign substance is several to several dozen or more (for example, 10 or more), and is suitably 1000 or less, preferably 1000 or less. It is 600 or less, more preferably 500 or less, and particularly preferably 300 or less (for example, 10 to 300).
  • Polypeptides of such length are easy to synthesize (biosynthesis, chemical synthesis) and easy to use.
  • Foreign substances include mature forms or precursors (pro-forms) of polypeptides that are involved in functions such as development, differentiation, proliferation, canceration, homeostasis, and metabolic regulation of various cells and tissues (organs). , including pre-pro type) are preferred.
  • the method for introducing a foreign substance disclosed herein can be carried out in order to introduce a polypeptide whose function has not been previously known into a cell and elucidate the function of the polypeptide in the cell (inside a living tissue). You can also do it.
  • the eukaryotic cells to which the foreign substance is introduced are human or other mammalian stem cells, use of mature forms or precursors thereof of polypeptides that have various physiological activities involved in inducing differentiation of the stem cells.
  • stem cells include somatic stem cells, embryonic stem cells, and induced pluripotent stem cells (iPS cells).
  • iPS cells induced pluripotent stem cells
  • the eukaryotic cells to be introduced are bacterially or virus-infected cells
  • various polypeptides that are involved in inducing apoptosis in the infected cells or suppressing the proliferation of bacteria or viruses in the infected cells are added. It is preferable to use polypeptides that can suppress the spread of bacterial or viral infection from the infected cells.
  • the polypeptide as a foreign substance is formed by substituting, deleting, and/or adding (inserting) one or several amino acid residues as long as it retains its function. It may also contain modified amino acid sequences.
  • the ⁇ -amino group of the amino acid residue at the N-terminal side of the carrier peptide fragment is preferably acetylated.
  • the ⁇ -amino group of the N-terminal amino acid of many proteins in eukaryotic cells is modified by acetylation, so this structure increases the stability of the construct within the cell. can be improved.
  • the C-terminal amino acid residue of the construct is amidated.
  • Amidating the carboxyl group of an amino acid residue can improve the structural stability (eg, protease resistance) of such constructs in the cytoplasm and within the nucleolus.
  • the solubility of the construct in an aqueous solvent can be improved.
  • aqueous solvents include water, various buffer solutions, physiological saline (eg, PBS), and cell culture solutions.
  • the carboxyl group of the amino acid residue at the C-terminal side of the carrier peptide fragment is amidated.
  • the foreign substance is a polypeptide and such polypeptide is bonded to the C-terminal side of the carrier peptide fragment, it is preferable to amidate the carboxyl group of the C-terminal amino acid residue of the polypeptide.
  • those with relatively short peptide chains can be easily produced according to general chemical synthesis methods.
  • any of the conventionally known solid phase synthesis method or liquid phase synthesis method may be employed.
  • a solid phase synthesis method using Boc (t-butyloxycarbonyl) or Fmoc (9-fluorenylmethoxycarbonyl) as a protecting group for an amino group is suitable.
  • the above-mentioned peptide chain having a desired amino acid sequence and modification can be synthesized by solid-phase synthesis using a commercially available peptide synthesizer. Note that only a portion of the peptide chain may be synthesized by the above method, for example, a peptide chain containing only a carrier peptide fragment or a carrier peptide fragment and a peptidic linker portion may be synthesized.
  • the peptide portion may be produced by biosynthesis based on genetic engineering techniques. That is, a polynucleotide (typically DNA) having a nucleotide sequence (including the ATG start codon) encoding the desired amino acid sequence is synthesized. Various regulatory elements (including a promoter, a ribosome binding site, a terminator, an enhancer, and various cis elements that control the expression level) are used to express the synthesized polynucleotide (DNA) and the amino acid sequence in host cells. ) A recombinant vector carrying an expression gene construct consisting of the following is constructed depending on the host cell.
  • This recombinant vector is introduced into a predetermined host cell (eg, yeast, insect cell, plant cell) by a common technique, and the host cell or a tissue or individual containing the cell is cultured under predetermined conditions.
  • a predetermined host cell eg, yeast, insect cell, plant cell
  • the desired peptide moiety can be obtained by isolating the peptide moiety from the host cell (in the medium if secreted) and performing refolding, purification, etc. as necessary.
  • the method for constructing a recombinant vector and the method for introducing the constructed recombinant vector into a host cell may be any method conventionally used in the field, and such methods themselves are particularly characteristic of the present technology. Since this is not a complete description, a detailed explanation will be omitted.
  • a fusion protein expression system can be used for efficient large-scale production within host cells. That is, a gene (DNA) encoding the amino acid sequence of a polypeptide of interest is chemically synthesized, and the synthetic gene is used in an appropriate fusion protein expression vector (for example, the pET series provided by Novagen, or the pET series provided by Amersham Biosciences).
  • the vector is introduced into a suitable site of a GST (Glutathione S-transferase) fusion protein expression vector such as the pGEX series that has been developed.
  • a host cell typically E. coli
  • the obtained transformant is cultured to prepare the desired fusion protein.
  • the protein is then extracted and purified.
  • the obtained purified fusion protein is cleaved with a predetermined enzyme (protease), and the liberated target peptide fragment (ie, the designed artificial polypeptide) is recovered by a method such as affinity chromatography.
  • a predetermined enzyme protease
  • a desired construct artificial polypeptide
  • a template DNA for a cell-free protein synthesis system i.e., a synthetic gene fragment containing a nucleotide sequence encoding the amino acid sequence of the peptide portion of the construct
  • various compounds ATP, RNA, Polypeptides of interest can be synthesized in vitro using a so-called cell-free protein synthesis system (polymerase, amino acids, etc.).
  • cell-free protein synthesis systems for example, Shimizu et al., Nature Biotechnology, 19, 751-755 (2001), Madin et al., Proc. Natl. Acad. Sci. USA, 97(2), 559-564(2000) may be helpful.
  • cell-free protein synthesis kits for example, cell-free protein synthesis kits (for example, Cell Free Science Co., Ltd. in Japan) are producing polypeptides on a contract basis. available) are commercially available.
  • a single-stranded or double-stranded polynucleotide containing a nucleotide sequence encoding the peptide portion of the construct and/or a nucleotide sequence complementary thereto can be easily produced (synthesized) by conventionally known methods. That is, by selecting codons corresponding to each amino acid residue constituting the designed amino acid sequence, the nucleotide sequence corresponding to the amino acid sequence can be easily determined and provided. Once the nucleotide sequence is determined, a polynucleotide (single strand) corresponding to the desired nucleotide sequence can be easily obtained using a DNA synthesizer or the like.
  • the desired double-stranded DNA can be obtained by using the obtained single-stranded DNA as a template and employing various enzymatic synthesis methods (typically PCR).
  • the polynucleotide may be in the form of DNA or RNA (such as mRNA).
  • DNA can be provided in double-stranded or single-stranded form. When provided as a single strand, it may be a coding strand (sense strand) or a non-coding strand (antisense strand) having a complementary sequence thereto.
  • the polynucleotides thus obtained can be used as materials for constructing recombinant genes (expression cassettes) for peptide production in various host cells or in cell-free protein synthesis systems, as described above. can.
  • constructs can be suitably used as an active ingredient of a composition for use based on the function of a foreign substance.
  • the construct may be in the form of a salt as long as the function of the foreign substance is not lost.
  • acid addition salts obtainable by addition reaction of commonly used inorganic or organic acids according to conventional methods can be used. Accordingly, "constructs" as described herein and in the claims may include such salt forms.
  • the construct can be used as an active ingredient in a composition that can contain various pharmaceutically acceptable carriers depending on the form of use.
  • the carrier for example, carriers commonly used as diluents, excipients, etc. in peptide medicines are preferable.
  • Such carriers may vary depending on the use and form of the construct for introducing a foreign substance, but typically include water, physiological buffers, and various organic solvents.
  • Such carriers can also be aqueous solutions of alcohol (such as ethanol) at appropriate concentrations, glycerol, non-drying oils such as olive oil, or liposomes.
  • alcohol such as ethanol
  • non-drying oils such as olive oil, or liposomes.
  • subsidiary components that may be included in the pharmaceutical composition, various fillers, extenders, binders, humectants, surfactants, pigments, fragrances, etc. can be mentioned.
  • the form of the composition is not particularly limited. Examples include forms such as solutions, suspensions, emulsions, aerosols, foams, granules, powders, tablets, capsules, and ointments. Furthermore, for use in injections, etc., it can be made into a lyophilized product or granulated product by dissolving it in physiological saline or an appropriate buffer solution (for example, PBS) to prepare a drug solution immediately before use.
  • physiological saline or an appropriate buffer solution for example, PBS
  • PBS buffer solution
  • the process itself of preparing drugs (compositions) in various forms using the construct (main component) and various carriers (auxiliary components) may be carried out in accordance with conventionally known methods, and such formulation methods themselves may be based on the present technology. A detailed explanation will be omitted since it is not a characteristic feature.
  • An example of a detailed information source regarding prescriptions is Comprehensive Medicinal Chemistry, supervised by Corwin Hansch, published by Pergamon Press (1990).
  • the present disclosure provides methods for introducing foreign substances in vivo or in vitro using the constructs disclosed herein.
  • this method includes the following steps (1) and (2): (1) preparing the construct disclosed herein; (2) supplying the above construct into a sample containing eukaryotic cells of interest. Furthermore, in the method disclosed herein, after the step (2), as the step (3), the sample supplied with the construct is incubated, and the construct is introduced into the eukaryotic cells in the sample.
  • the method may include the step of introducing the construct.
  • the above-mentioned “eukaryotic cells” include, for example, various tissues, organs, organs, blood, lymph, and the like.
  • the above-mentioned “eukaryotic cells” include, for example, various cell masses, tissues, organs, organs, blood, and lymph fluid extracted from living bodies, cell lines, and the like.
  • Examples of eukaryotic cells include cells derived from the animal kingdom such as mammals, birds, fish, amphibians, reptiles, and insects, cells derived from the fungal kingdom, and cells derived from the plant kingdom, but preferably human or non-human cells. mammalian cells.
  • a composition containing the construct disclosed herein can be used in vivo in a manner and at a dose depending on its form and purpose.
  • the desired amount is administered to the affected area (e.g., malignant tumor tissue, virus-infected tissue, inflamed tissue, etc.) of a patient (i.e., living body) by intravenous, intramuscular, subcutaneous, intradermal, or intraperitoneal injection. be able to.
  • a solid form such as a tablet or a gel-like or aqueous jelly-like product such as an ointment may be applied directly to a desired tissue (i.e., an affected area such as a tissue or organ containing tumor cells, virus-infected cells, inflammatory cells, etc.). It can be administered to Alternatively, solid forms such as tablets can be administered orally. In the case of oral administration, it is preferable to encapsulate or apply a protective (coating) material to prevent decomposition by digestive enzymes in the gastrointestinal tract.
  • an appropriate amount of the construct may be supplied at least once to the culture medium of the eukaryotic cells of interest.
  • the amount of supply per time and the number of times of supply are not particularly limited as they may vary depending on conditions such as the type of eukaryotic cells to be cultured, cell density (cell density at the start of culture), passage number, culture conditions, type of medium, etc. .
  • the carrier peptide fragment concentration in the culture solution is approximately within the range of 0.05 ⁇ M or more and 100 ⁇ M or less, for example, 0.5 ⁇ M or more and 50 ⁇ M or less, or for example, 1 ⁇ M or more and 30 ⁇ M or less.
  • the incubation time after addition of the construct is not particularly limited as it may vary depending on the type of eukaryotic cells and various conditions.
  • the duration may be 0.5 hours or more, 1 hour or more, 4 hours or more, 8 hours or more, or 20 hours or more.
  • Incubation conditions are not particularly limited as they may vary depending on the type of eukaryotic cells; for example, incubation can be carried out at 37° C. in a 5% CO 2 atmosphere.
  • An example of the in vitro introduction method is shown in the test example below.
  • the method for evaluating the efficiency of construct introduction is not particularly limited. For example, if a dye (typically a fluorescent dye compound) is attached to the construct, microscopy (e.g. fluorescence microscopy) or flow cytometry may be used to assess the efficiency of introduction into eukaryotic cells. can be evaluated. Furthermore, the introduction efficiency of the above-mentioned construct can also be evaluated by immunochemical techniques (eg, Western blotting, immune cell staining, etc.) using an antibody that specifically recognizes the peptide portion of the above-mentioned construct.
  • immunochemical techniques eg, Western blotting, immune cell staining, etc.
  • Item 1 Consists of the following amino acid sequence shown in SEQ ID NO: 1: KKRTLRKSNRKKR, where the 12th lysine residue from the N-terminus of the above amino acid sequence is D-form, and the remaining amino acid residues are L-form.
  • Peptide fragment A construct comprising the carrier peptide fragment according to Item 1 and a foreign substance bound to the N-terminus and/or C-terminus of the carrier peptide fragment.
  • Item 3 The construct according to Item 2, wherein the foreign substance is at least one organic compound selected from the group consisting of polypeptides, nucleic acids, dyes, and drugs.
  • Item 4 The construct according to item 2 or 3, wherein the foreign substance is located on the C-terminal side of the carrier peptide fragment.
  • Item 5 A method for introducing a target foreign substance from outside a eukaryotic cell into at least the cytoplasm of the cell in vitro, the method comprising: (1) preparing the construct according to any one of Items 2 to 4; (2) supplying the construct into a sample containing eukaryotic cells of interest; How to include.
  • Item 6 The method according to Item 5, wherein the eukaryotic cell into which the construct is introduced is a human or non-human mammalian cell.
  • a construct having a synthetic peptide consisting of the amino acid sequence shown in Table 1 was prepared.
  • Samples 1 to 15 were obtained from Eurofin Genomics Co., Ltd., using sample n as a construct having peptide n (n is a natural number from 1 to 15) shown in Table 1.
  • amino acid residues written in uppercase letters indicate L-form
  • amino acid residues written in lowercase letters indicate D-form.
  • samples 1 to 15 were prepared in which the ⁇ -amino groups of the amino acid residues on the N-terminal side of peptides 1 to 15 were all acetylated.
  • the fluorescent dye FAM (C 21 H 12 O 7 :5(6)-Carboxyfluorescein, molecular weight 376.3, excitation wavelength 495 nm, fluorescence wavelength 520 nm) was prepared.
  • Samples 1 to 15 were each diluted with dimethyl sulfoxide (DMSO) to prepare sample solutions 1 to 15 each having a sample concentration of 2 mM.
  • DMSO dimethyl sulfoxide
  • HeLa cells an established cell line derived from human cervical cancer cells
  • the cell membrane permeability of samples 1 to 15 was analyzed.
  • the sample solutions 1 to 15 prepared above were used, respectively, and in Example 16, the FAM solution was used.
  • HeLa cells were cultured in a culture medium of DMEM (Dulbecco's modified Eagle's medium (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., Cat No. 044-29765)) containing 10% FBS (fetal bovine serum). After washing the HeLa cells adhered to the culture plate with PBS, 0.25% trypsin/EDTA solution was added and incubated at 37°C for 3 minutes. After the incubation, the above 10% FBS-containing DMEM was added to inactivate trypsin, followed by centrifugation at 150 xg for 5 minutes to precipitate the cells.
  • DMEM Dulbecco's modified Eagle's medium (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., Cat No. 044-29765)
  • FBS fetal bovine serum
  • the above 10% FBS-containing DMEM was added to the precipitate (cell pellet) to prepare a cell suspension of approximately 2 ⁇ 10 5 cells/mL. 1 mL of the cell suspension was added to the wells of a commercially available 6-well plate (manufactured by AGC Techno Glass Co., Ltd.), and cells were seeded (approximately 2 ⁇ 10 5 cells/well). Further, the above 2mM sample solution 1 was diluted with the above 10% FBS-containing DMEM to prepare a sample solution 1 having a concentration of sample 1 of 20 ⁇ M.
  • the culture supernatant was removed from the wells, and the cells in the wells were washed twice with 1 mL of PBS.
  • 200 ⁇ L of 0.25% trypsin/EDTA solution was added to the wells and incubated at 37° C. for 3 minutes.
  • trypsin was inactivated by adding 400 ⁇ L of the above 10% FBS-containing DMEM to the wells, and then the cell suspension in the wells was transferred to a tube and the cells were collected. Thereafter, 600 ⁇ L of PBS was further added to the wells to wash the wells. Then, by transferring the PBS in the well to the tube, the cells remaining in the well were collected into the tube.
  • This tube was centrifuged at 4° C. and 210 ⁇ g for 5 minutes. After centrifugation, the supernatant was removed, the precipitate (cell pellet) was suspended (washed) in 1 mL of PBS, and centrifugation was performed under the same conditions as above. After repeating this operation twice, the supernatant was removed to obtain cells (cell pellets) cultured in the sample 1-containing medium.
  • the cell membrane permeability of Sample 1 was analyzed using a flow cytometer.
  • a flow cytometer On-Chip Flowcytometer (manufactured by On-Chip Biotechnologies Co., LTD.) was used.
  • the cell pellet obtained above was suspended in 100 ⁇ L of On-Chip T buffer to prepare a cell suspension for analysis.
  • Example 2 to 15 The same procedure as in Example 1 was carried out except that sample solution 1 was changed to one of sample solutions 2 to 15 prepared above.
  • the samples (constructs) used in each example are shown in Table 2.
  • Example 16 Example 1 was carried out in the same manner as in Example 1, except that a FAM solution diluted with DMSO was used instead of sample solution 1.
  • the concentration of the FAM solution was the same as that of sample solution 1 (ie, the FAM concentration of the culture medium in the well was 10 ⁇ M, and the DMSO concentration was 0.5%).
  • FIG. 1 is a graph showing the MFI values in each example.
  • Examples 1 to 14 had higher MFI values than Example 15. This shows that cell membrane permeability is improved when at least one of the amino acid residues constituting the amino acid sequence shown in SEQ ID NO: 2 is a D-amino acid residue. Furthermore, as shown in Table 2 and FIG. 1, the value of MFI was particularly high in Example 12. This shows that cell membrane permeability is significantly improved by converting only the 12th lysine residue from the N-terminus of the amino acid sequence: KKRTLRKSNRKKR into a D-form.
  • a target foreign substance can be introduced into the cytoplasm from the outside of eukaryotic cells (particularly various animal cells such as humans and other mammals that do not have cell walls). Artificially produced carrier peptide fragments and constructs having the carrier peptide fragments are provided. By using such a construct, it is possible to effectively introduce a foreign substance of interest into cells of interest, and to obtain cells into which the foreign substance has been introduced and biological tissues such as organs containing cells containing the foreign substance. . Furthermore, by utilizing carrier peptide fragments or constructs, therapeutic agents for various diseases (eg, therapeutic agents for ophthalmological treatment, nucleic acid drugs) can be provided. Additionally, the peptide fragments or constructs disclosed herein may be utilized as active ingredients or additives in external medicines (eg, eye drops).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本開示により、優れた細胞膜透過性を有するキャリアペプチドフラグメントが提供される。ここで開示されるキャリアペプチドフラグメントは、配列番号1に示す以下のアミノ酸配列:KKRTLRKSNRKKRから成り、上記アミノ酸配列のN末端側から12番目のリジン残基はD体、残りのアミノ酸残基はL体である。

Description

キャリアペプチドフラグメント及びその利用
 本発明は、真核細胞の外部から該細胞の内部に外来物質を導入(移送)する方法と、該方法に用いられるキャリアペプチドフラグメントに関する。なお、本出願は2022年8月30日に出願された日本国特許出願第2022-137043号に基づく優先権を主張しており、その出願の全内容は本明細書中の参照として組み入れられている。
 従来から、ヒトやそれ以外の哺乳動物等の細胞(真核細胞)内にポリペプチド等の外来物質、とりわけ生理活性物質を導入し、当該細胞(さらには該細胞から成る組織や器官)の形質を転換させること或いは当該細胞の機能を改善・向上させることが行われている。
 例えば、特許文献1には、アミノ酸配列:KKRTLRKSNRKKR(配列番号2)から成るキャリアペプチドフラグメントと外来物質とを備えた構築物が開示されている。当該キャリアペプチドフラグメントは優れた細胞膜透過性を発揮する細胞膜透過性ペプチド(cell-penetrating peptide:以下、「CPP」ともいう。)であるため、当該キャリアペプチドフラグメントを備えた構築物は真核細胞の外部から内部に効率的に導入される。
日本国特許出願公開第2022-047613号公報
 CPPは、例えば、医学的観点等から、ドラッグデリバリーシステム等への利用が検討されている。そのため、優れた細胞膜透過性を有するCPPの開発が望まれている。
 ここで開示される技術は、上記事情に鑑みて創出されたものであり、本開示の主な目的は、優れた細胞膜透過性を有するキャリアペプチドフラグメントを提供することにある。また、本開示は、かかるキャリアペプチドフラグメントを備えた外来物質導入用構築物を提供することを他の目的とする。また、本開示は、真核細胞の外部から少なくとも該細胞の細胞質内に目的とする外来物質を導入する方法を提供することを他の目的とする。
 本発明者は、特許文献1に開示されるアミノ酸配列(配列番号2)を基に、より優れた細胞膜透過性を発揮するキャリアペプチドフラグメントを創出すべく、鋭意検討を行った。その結果、配列番号2に示すアミノ酸配列を構成するアミノ酸残基の1つをD体アミノ酸残基とすることで、細胞膜透過性が向上することを見出した。さらに、そのなかでも、配列番号2に示すアミノ酸配列のN末端側から12番目のリジン残基(リシン残基ともいう)のみをD体とすることで、格別に優れた細胞膜透過性が実現されることを見出した。
 即ち、ここで開示されるキャリアペプチドフラグメントの一態様は、真核細胞の外部から少なくとも該細胞の細胞質内に導入されるキャリアペプチドフラグメントである。このキャリアペプチドフラグメントは、配列番号1に示す以下のアミノ酸配列:KKRTLRKSNRKKRから成り、ここで、上記アミノ酸配列のN末端側から12番目のリジン残基はD体、残りのアミノ酸残基はL体である。かかる構成によれば、優れた細胞膜透過性が実現される。
 また、本開示により、ここで開示されるキャリアペプチドフラグメントを備える外来物質導入用構築物(以下、単に「構築物」ともいう)が提供される。ここで開示される構築物の一態様は、真核細胞の外部から少なくとも該細胞の細胞質内に目的とする外来物質を導入するために作製された外来物質導入用構築物であって、ここで開示されるキャリアペプチドフラグメントと、上記キャリアペプチドフラグメントのN末端側及び/又はC末端側に結合した外来物質とを有する。かかる構成によれば、優れた細胞膜透過性を発揮する構築物が実現される。
 ここで開示される構築物の一態様では、上記外来物質が、ポリペプチド、核酸、色素および薬剤から成る群から選択される少なくとも1種の有機化合物であり得る。
 ここで、「ポリペプチド」とは、複数のアミノ酸がペプチド結合により結合した構造を有するポリマーをいう。ポリペプチドは、ペプチド結合の数(即ち、アミノ酸残基数)によって限定されない。即ち、ポリペプチドは、アミノ酸残基数が10以上300未満程度の一般にペプチドと呼ばれるものと、一般にタンパク質(典型的には300以上のアミノ酸残基から成る高分子化合物)と呼ばれるものとを包含する。当該分野においては、ポリペプチドとタンパク質とは厳密に区分されていない。本明細書においては、複数のアミノ酸残基から成るポリマー(オリゴマーを包含する。)を、ポリペプチドと総称する。
 また、「核酸」とは、ヌクレオチドの重合体をいい、DNAおよびRNAを包含する。「核酸」は、塩基数によって限定されない。
 ここで開示される構築物の一態様では、上記外来物質が、上記キャリアペプチドフラグメントのC末端側に配置され得る。
 また、本開示により、真核細胞の外部から少なくとも該細胞の細胞質内に目的とする外来物質をインビトロまたはインビボにおいて導入する方法が提供される。ここで開示される方法は、(1)ここで開示される構築物を用意する工程と、(2)上記構築物を、目的とする真核細胞を含む試料中に供給する工程とを包含する。これにより、目的とする外来物質を効率よく真核細胞の内部に導入することができる。
 ここで開示される方法の一態様では、上記構築物を導入する対象の真核細胞がヒトまたはヒト以外の哺乳動物の細胞であり得る。
図1は、HeLa細胞の培養液に対し、例1~16に示す構築物(添加物)を添加して培養した後、当該細胞をフローサイトメータにより解析することで得られたMFIの値を示すグラフである。
 以下、ここで開示される技術の実施形態について説明する。本明細書において特に言及している事項以外の事柄であって、実施に必要な事柄(例えばペプチドの化学合成法、細胞培養技法、ペプチドや核酸を成分として含む構築物の調製に関するような一般的事項)は、細胞工学、生理学、医学、薬学、有機化学、生化学、遺伝子工学、タンパク質工学、分子生物学、遺伝学等の分野における従来技術に基づく当業者の設計事項として把握され得る。
 また、ここで開示される技術は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、本明細書において、アミノ酸をIUPAC-IUBガイドラインで示されたアミノ酸に関する命名法に準拠した1文字表記で表す場合がある。なお、本明細書において「アミノ酸残基」とは、特に言及する場合を除いて、ペプチド鎖のN末端アミノ酸及びC末端アミノ酸を包含する用語である。
 また、本明細書において、「合成ペプチド」とは、そのペプチド鎖がそれのみ独立して自然界に安定的に存在するものではなく、人為的な化学合成あるいは生合成(即ち遺伝子工学に基づく生産)によって製造され、所定の組成物中で安定して存在し得るペプチド断片をいう。ここで「ペプチド」とは、複数のペプチド結合を有するアミノ酸ポリマーを指す用語であり、アミノ酸残基の数によって限定されない。
 また、本明細書において、ペプチドまたはタンパク質を構成するアミノ酸残基は、特に断りがない限り、L体であってもよく、D体であってもよい。ただし、配列表に示すアミノ酸配列については、L体とD体とを区別している。
 なお、本明細書中に記載されるアミノ酸配列は、常に左側がN末端側であり右側がC末端側を表す。
 ここで開示されるキャリアペプチドフラグメントの一態様は、配列番号1に示されるアミノ酸配列:KKRTLRKSNRKKRで構成される。このアミノ酸配列において、N末端側から12番目のリジン残基は、D体アミノ酸(即ち、D-リジン残基)であり、残りのアミノ酸残基(N末端側から1~11番目、13番目のアミノ酸残基)はL体アミノ酸で構成されている。
 ここで開示されるキャリアペプチドフラグメントは、細胞膜透過性を損なわない限りにおいて、配列番号1に示されるアミノ酸配列の改変配列であってもよい。ここで、「改変配列」とは、1個または数個(典型的には2個又は3個)のアミノ酸残基が置換、欠失及び/又は付加(挿入)されて形成されたアミノ酸配列(改変アミノ酸配列)である。
 本明細書における改変配列の典型例としては、例えば、1個、2個または3個のアミノ酸残基が保守的に置換したいわゆる同類置換(conservative amino acid replacement)によって生じた配列や、所定のアミノ酸配列について1個、2個または3個のアミノ酸残基が付加(挿入)した若しくは欠失した配列等が挙げられる。同類置換の典型例としては、例えば、塩基性アミノ酸残基が別の塩基性アミノ酸残基に置換した配列(例えばリジン残基とアルギニン残基との相互置換)や、疎水性アミノ酸残基が別の疎水性アミノ酸残基に置換した配列(例えばロイシン残基、イソロイシン残基、およびバリン残基の相互置換)等が挙げられる。
 ここで開示される外来物質導入用構築物は、ここで開示されるキャリアペプチドフラグメントと、当該キャリアペプチドフラグメントのN末端側及び/又はC末端側に結合した外来物質とを有する。
 ここで開示される構築物は、上記キャリアペプチドフラグメントのN末端側及び/又はC末端側に、所望する外来物質を直接的または適当なリンカーを介して間接的に結合(連結)することによって、設計・構築され得る。
 リンカーは、特に限定されるものではないが、ペプチド性リンカーであってもよく、非ペプチド性リンカーであってもよい。特に限定されるものではないが、ペプチド性リンカーを構成するアミノ酸配列は立体障害を生じさせず、かつ、柔軟なアミノ酸配列であることが好ましい。ペプチド性リンカーは、例えば、グリシン、アラニン、およびセリン等から選択されるアミノ酸残基を1種または2種以上含む、10個以下(より好ましくは1個以上5個以下、例えば1個、2個、3個、4個、または5個のアミノ酸残基)のアミノ酸残基からなるリンカーであり得る。また、かかるリンカーとして、βアラニンを用いてもよい。非ペプチド性リンカーとしては、特に限定されるものではないが、例えばアルキルリンカー、PEG(ポリエチレングリコール)リンカー、アミノヘキサノイルスペーサ等を用いることができる。
 外来物質は、例えば、ポリペプチド、核酸、色素、薬剤等の有機化合物であり得る。
 外来物質がポリペプチドである場合には、該ポリペプチドを構成するアミノ酸配列と、キャリアペプチドフラグメントを構成するアミノ酸配列とを含むようにペプチド鎖を設計し、該ペプチド鎖を生合成あるいは化学合成することによって、目的の外来物質導入用構築物を作製することができる。また、種々のDNA又はRNAのような核酸、色素(例えばFAMやFITC等の種々の蛍光色素化合物)、あるいは薬剤(例えば5-フルオロウラシル(5FU)等の核酸系抗腫瘍剤を含む抗腫瘍剤やアジドチミジン(AZT)等の抗ウイルス剤等)として機能する有機化合物を従来公知の種々の科学的手法により、上述したキャリアペプチドフラグメントのN末端側及び/又はC末端側に直接的もしくは間接的に結合させて構築物を調製することができる。
 特に限定するものではないが、外来物質が有する機能は、例えば、幹細胞の分化誘導の促進(幹細胞分化誘導活性)、腫瘍細胞の増殖抑制(抗腫瘍活性)、ウイルス感染細胞の増殖抑制(抗ウイルス活性)等であり得る。
 ここで開示される構築物において、キャリアペプチドフラグメントと結合する外来物質の数は特に限定されない。例えば、1のキャリアペプチドフラグメントに対して1又はそれ以上の外来物質を結合させてもよい。特に限定するものではないが、例えば、1のキャリアペプチドフラグメントのC末端側にポリペプチド、核酸、薬剤等を結合させておき、N末端側に色素を結合させてもよい。キャリアペプチドフラグメントに色素を結合させることにより、構築物の真核細胞への導入効率および細胞内における局在を評価することが容易となるため好ましい。
 なお、外来物質がポリペプチドの場合、採用するポリペプチド(アミノ酸配列)は、特に限定されない。例えばアミノ酸残基数が100~1000程度のポリペプチド若しくはタンパク質のような、比較的アミノ酸残基数が多いものも外来物質として採用し得る。
 典型的には、外来物質導入用構築物として作製する合成ペプチドを構成する総アミノ酸残基数は、数個乃至数十個以上(例えば10以上)であって、1000以下が適当であり、好ましくは600以下であり、さらに好ましくは500以下であり、特に300以下(例えば10~300)が好適である。このような長さのポリペプチドは合成(生合成、化学合成)が容易であり、使用しやすい。
 外来物質としては、種々の細胞や組織(器官)の発生、分化、増殖、がん化、ホメオスタシス(恒常性)、代謝の調節、等の機能にかかわるポリペプチドの成熟型あるいは前駆体(プロ型、プレプロ型を包含する。)が好ましい。また、機能が従来知られていないポリペプチドを細胞内に導入して当該ポリペプチドの細胞内(生体組織内)における機能の解明のために、ここに開示される外来物質導入方法を実施することもできる。
 例えば、外来物質の導入する対象となる真核細胞がヒト又はその他哺乳動物の幹細胞である場合、当該幹細胞の分化誘導に関与する種々の生理活性を有するポリペプチドの成熟型またはその前駆体の利用が好ましい。なお、「幹細胞」は、体性幹細胞、胚性幹細胞、人工多能性幹細胞(Induced pluripotent stem cells:iPS細胞)を包含する。また、外来物質の導入する対象となる真核細胞ががん細胞(腫瘍細胞)である場合、当該がん細胞(腫瘍細胞)のアポトーシス誘導に関与する種々のポリペプチドの利用が好ましい。あるいは、この場合においては、がん細胞(腫瘍細胞)が免疫監視機構の機能を抑制することを阻害し得るポリペプチドの利用が好ましい。さらに、導入の対象となる真核細胞が細菌感染細胞やウイルス感染細胞である場合、当該感染細胞のアポトーシス誘導に関与する種々のポリペプチドや、当該感染細胞において細菌もしくはウイルスが増殖することを抑制し得るポリペプチドや、当該感染細胞から細菌もしくはウイルスの感染が拡大することを抑制し得るポリペプチドの利用が好ましい。
 なお、キャリアペプチドフラグメントと同様、外来物質としてのポリペプチドは、その機能を保持する限りにおいて、1個または数個のアミノ酸残基が置換、欠失及び/又は付加(挿入)されて形成される改変アミノ酸配列を含んでいてもよい。
 キャリアペプチドフラグメントのC末端側に外来物質が結合している構築物では、キャリアペプチドフラグメントのN末端側のアミノ酸残基のα-アミノ基がアセチル化されていることが好ましい。詳細なメカニズムは不明だが、真核細胞中のタンパク質の多くはN末端側のアミノ酸のα-アミノ基はアセチル化修飾されるため、このような構成であれば、構築物の細胞内での安定性が向上し得る。
 構築物は、C末端側のアミノ酸残基がアミド化されていることが好ましい。アミノ酸残基(典型的にはペプチド鎖のC末端アミノ酸残基)のカルボキシル基をアミド化すると、かかる構築物の細胞質内および核小体内における構造安定性(例えばプロテアーゼ耐性)が向上し得る。また、カルボキシル基がアミド化されることで、構築物の親水性が向上するため、かかる構築物の水系溶媒への溶解性を向上させることができる。かかる水系溶媒としては、例えば、水、種々の緩衝液、生理食塩水(例えばPBS)、細胞培養液等が挙げられる。
 例えば、キャリアペプチドフラグメントのN末端側に外来物質が結合している構築物の場合、キャリアペプチドフラグメントのC末端側のアミノ酸残基のカルボキシル基がアミド化されていることが好ましい。また、例えば外来物質がポリペプチドであり、かかるポリペプチドがキャリアペプチドフラグメントのC末端側に結合している場合は、当該ポリペプチドのC末端アミノ酸残基のカルボキシル基をアミド化することが好ましい。
 構築物のうちペプチド鎖(外来物質として構成されるポリペプチド、キャリアペプチドフラグメントおよびペプチド性リンカーを包含する)の比較的短いものは、一般的な化学合成法に準じて容易に製造することができる。例えば、従来公知の固相合成法又は液相合成法のいずれを採用してもよい。アミノ基の保護基としてBoc(t-butyloxycarbonyl)或いはFmoc(9-fluorenylmethoxycarbonyl)を適用した固相合成法が好適である。即ち、市販のペプチド合成機を用いた固相合成法により、所望するアミノ酸配列、修飾(N末端アセチル化、C末端アミド化等)部分を有する上記ペプチド鎖を合成することができる。なお、上記方法でペプチド鎖の一部のみを合成してもよく、例えば、キャリアペプチドフラグメントのみ、または、キャリアペプチドフラグメントとペプチド性リンカー部分とを含むペプチド鎖を合成し得る。
 或いは、遺伝子工学的手法に基づいてペプチド部分を生合成により作製してもよい。即ち、所望するアミノ酸配列をコードするヌクレオチド配列(ATG開始コドンを含む。)のポリヌクレオチド(典型的にはDNA)を合成する。そして、合成したポリヌクレオチド(DNA)と該アミノ酸配列を宿主細胞内で発現させるための種々の調節エレメント(プロモーター、リボゾーム結合部位、ターミネーター、エンハンサー、発現レベルを制御する種々のシスエレメントを包含する。)とから成る発現用遺伝子構築物を有する組換えベクターを、宿主細胞に応じて構築する。
 一般的な技法によって、この組換えベクターを所定の宿主細胞(例えばイースト、昆虫細胞、植物細胞)に導入し、所定の条件で当該宿主細胞又は該細胞を含む組織や個体を培養する。このことにより、目的とするペプチドを細胞内で生産させることができる。そして、宿主細胞(分泌された場合は培地中)からペプチド部分を単離し、必要に応じてリフォールディング、精製等を行うことによって、目的のペプチド部分を得ることができる。
 なお、組換えベクターの構築方法及び構築した組換えベクターの宿主細胞への導入方法等は、当該分野で従来から行われている方法をそのまま採用すればよく、かかる方法自体は特に本技術を特徴付けるものではないため、詳細な説明は省略する。
 例えば、宿主細胞内で効率よく大量に生産させるために融合タンパク質発現システムを利用することができる。すなわち、目的のポリペプチドのアミノ酸配列をコードする遺伝子(DNA)を化学合成し、該合成遺伝子を適当な融合タンパク質発現用ベクター(例えばノバジェン社から提供されているpETシリーズおよびアマシャムバイオサイエンス社から提供されているpGEXシリーズのようなGST(Glutathione S-transferase)融合タンパク質発現用ベクター)の好適なサイトに導入する。そして該ベクターにより宿主細胞(典型的には大腸菌)を形質転換する。得られた形質転換体を培養して目的の融合タンパク質を調製する。次いで、該タンパク質を抽出及び精製する。次いで、得られた精製融合タンパク質を所定の酵素(プロテアーゼ)で切断し、遊離した目的のペプチド断片(即ち設計した人工ポリペプチド)をアフィニティクロマトグラフィー等の方法によって回収する。このような従来公知の融合タンパク質発現システム(例えばアマシャムバイオサイエンス社により提供されるGST/Hisシステムを利用し得る。)を用いることによって、目的の構築物(人工ポリペプチド)を製造することができる。
 或いは、無細胞タンパク質合成システム用の鋳型DNA(即ち、構築物のペプチド部分のアミノ酸配列をコードするヌクレオチド配列を含む合成遺伝子断片)を構築し、ペプチド部分の合成に必要な種々の化合物(ATP、RNAポリメラーゼ、アミノ酸類等)を使用し、いわゆる無細胞タンパク質合成システムを採用して目的のポリペプチドをインビトロで合成することができる。無細胞タンパク質合成システムについては、例えばShimizuらの論文(Shimizu et al., Nature Biotechnology, 19, 751-755(2001))、Madinらの論文(Madin et al., Proc. Natl. Acad. Sci. USA, 97(2), 559-564(2000))が参考になる。これら論文に記載された技術に基づいて、本願出願時点において既に多くの企業がポリペプチドの受託生産を行っており、また、無細胞タンパク質合成用キット(例えば、日本の(株)セルフリーサイエンスから入手可能)が市販されている。
 構築物のペプチド部分をコードするヌクレオチド配列及び/又は該配列と相補的なヌクレオチド配列を含む一本鎖又は二本鎖のポリヌクレオチドは、従来公知の方法によって容易に製造(合成)することができる。即ち、設計したアミノ酸配列を構成する各アミノ酸残基に対応するコドンを選択することによって、かかるアミノ酸配列に対応するヌクレオチド配列が容易に決定され、提供される。そして、ひとたびヌクレオチド配列が決定されれば、DNA合成機等を利用して、所望するヌクレオチド配列に対応するポリヌクレオチド(一本鎖)を容易に得ることができる。さらに得られた一本鎖DNAを鋳型として用い、種々の酵素的合成手段(典型的にはPCR)を採用して目的の二本鎖DNAを得ることができる。また、ポリヌクレオチドは、DNAの形態であってもよく、RNA(mRNA等)の形態であってもよい。DNAは、二本鎖又は一本鎖で提供され得る。一本鎖で提供される場合は、コード鎖(センス鎖)であってもよく、それと相補的な配列の非コード鎖(アンチセンス鎖)であってもよい。
 こうして得られるポリヌクレオチドは、上述のように、種々の宿主細胞中で又は無細胞タンパク質合成システムにて、ペプチド生産のための組換え遺伝子(発現カセット)を構築するための材料として使用することができる。
 ここで開示される構築物は、外来物質の機能に基づく用途の組成物の有効成分として好適に使用し得る。なお、構築物は、外来物質の機能を失わない限りにおいて塩の形態であってもよい。例えば、常法に従って通常使用されている無機酸または有機酸を付加反応させることにより得られ得る酸付加塩を使用することができる。従って、本明細書および請求の範囲に記載の「構築物」は、かかる塩形態のものを包含し得る。
 構築物は、使用形態に応じて医薬(薬学)上許容され得る種々の担体を含み得る組成物の有効成分として使用され得る。
 上記担体としては、例えば、希釈剤、賦形剤等としてペプチド医薬において一般的に使用される担体が好ましい。かかる担体としては、外来物質導入用構築物の用途や形態に応じて適宜異なり得るが、典型的には、水、生理学的緩衝液、種々の有機溶媒が挙げられる。また、かかる担体は、適当な濃度のアルコール(エタノール等)水溶液、グリセロール、オリーブ油のような不乾性油であり得、或いはリポソームであってもよい。また、医薬用組成物に含有させ得る副次的成分としては、種々の充填剤、増量剤、結合剤、付湿剤、表面活性剤、色素、香料等が挙げられる。
 組成物の形態は、特に限定されない。例えば、液剤、懸濁剤、乳剤、エアロゾル、泡沫剤、顆粒剤、粉末剤、錠剤、カプセル、軟膏などの形態が挙げられる。また、注射等に用いるため、使用直前に生理食塩水または適当な緩衝液(例えばPBS)等に溶解して薬液を調製するための凍結乾燥物、造粒物とすることもできる。
 構築物(主成分)および種々の担体(副成分)を材料にして種々の形態の薬剤(組成物)を調製するプロセス自体は従来公知の方法に準じればよく、かかる製剤方法自体は本技術を特徴付けるものでもないため詳細な説明は省略する。処方に関する詳細な情報源として、例えばComprehensive Medicinal Chemistry, Corwin Hansch監修,Pergamon Press刊(1990)が挙げられる。
 本開示により、ここで開示される構築物を用いて、生体内(インビボ)、または、生体外(インビトロ)において外来物質を導入する方法が提供される。当該方法では、おおまかにいって、以下の(1)~(2)の工程:
(1)ここで開示される構築物を用意する工程と、
(2)上記構築物を、目的とする真核細胞を含む試料中に供給する工程と
を包含する。また、ここで開示される方法では、さらに、上記(2)の工程の後、(3)の工程として、上記構築物が供給された試料をインキュベートして、該試料中の真核細胞内にかかる構築物を導入する工程を含み得る。
 上記「真核細胞」は、インビボにおいては、例えば種々の組織、臓器、器官、血液、およびリンパ液等を包含する。上記「真核細胞」は、インビトロにおいては、例えば生体から摘出された種々の細胞塊、組織、臓器、器官、血液、およびリンパ液ならびに、セルライン等を包含する。真核細胞としては、例えば、哺乳類、鳥類、魚類、両生類、爬虫類、昆虫などの動物界由来の細胞、菌界由来の細胞、植物界由来の細胞等が挙げられるが、好ましくはヒトまたはヒト以外の哺乳動物の細胞であり得る。
 ここで開示される構築物を含む組成物は、インビボにおいて、その形態および目的に応じた方法や用量で使用することができる。例えば、液剤として、静脈内、筋肉内、皮下、皮内若しくは腹腔内への注射によって患者(即ち生体)の患部(例えば悪性腫瘍組織、ウイルス感染組織、炎症組織等)に所望する量だけ投与することができる。あるいは、錠剤等の固体形態のものや軟膏等のゲル状若しくは水性ジェリー状のものを、直接所定の組織(即ち、例えば腫瘍細胞、ウイルス感染細胞、炎症細胞等を含む組織や器官等の患部)に投与することができる。あるいは、錠剤等の固体形態のものは経口投与することができる。経口投与の場合は、消化管内での消化酵素分解を抑止すべくカプセル化や保護(コーティング)材の適用が好ましい。
 あるいは、生体外(インビトロ)において培養している真核細胞に対し、構築物の適当量を、少なくとも1回、目的とする真核細胞の培養液に供給するとよい。1回当たりの供給量および供給回数は、培養する真核細胞の種類、細胞密度(培養開始時の細胞密度)、継代数、培養条件、培地の種類、等の条件によって異なり得るため特に限定されない。例えば、培養液中のキャリアペプチドフラグメント濃度が概ね0.05μM以上100μM以下の範囲内、例えば0.5μM以上50μM以下の範囲内、また例えば1μM以上30μM以下の範囲内となるように1回、2回またはそれ以上の複数回添加することが好ましい。また、構築物添加後のインキュベート時間についても、真核細胞の種類及び各種条件により異なり得るため特に限定されない。例えば、0.5時間以上、1時間以上、4時間以上、8時間以上、20時間以上であり得る。なお、インキュベートの条件についても、真核細胞の種類により異なり得るため、特に限定されるものではないが、例えば、5%CO雰囲気下、37℃下でインキュベートすることができる。
 なお、インビトロにおける導入方法について、一例を後述の試験例において示している。
 構築物の導入効率を評価する方法は、特に限定されない。例えば、該構築物に色素(典型的には蛍光色素化合物)が結合している場合には、顕微鏡観察(例えば蛍光顕微鏡観察)やフローサイトメトリー等を使用して、真核細胞への導入効率を評価することができる。また、上記構築物のペプチド部分を特異的に認識する抗体を用いた免疫化学的手法(例えばウエスタンブロットや免疫細胞染色等)によっても上記構築物の導入効率を評価し得る。
 以上の通り、ここで開示される技術の具体的な態様として、以下の各項に記載のものが挙げられる。
項1:配列番号1に示す以下のアミノ酸配列:KKRTLRKSNRKKRから成り、ここで、上記アミノ酸配列のN末端側から12番目のリジン残基はD体、残りのアミノ酸残基はL体である、キャリアペプチドフラグメント。
項2:項1に記載のキャリアペプチドフラグメントと、上記キャリアペプチドフラグメントのN末端側及び/又はC末端側に結合した外来物質と、を有する構築物。
項3:上記外来物質が、ポリペプチド、核酸、色素および薬剤から成る群から選択される少なくとも1種の有機化合物である、項2に記載の構築物。
項4:上記外来物質が、上記キャリアペプチドフラグメントのC末端側に配置されている、項2または3に記載の構築物。
項5:真核細胞の外部から少なくとも該細胞の細胞質内に目的とする外来物質をインビトロにおいて導入する方法であって、(1)項2~4のいずれか一項に記載の構築物を用意する工程と、(2)上記構築物を、目的とする真核細胞を含む試料中に供給する工程と、
を包含する方法。
項6:上記構築物を導入する対象の真核細胞がヒトまたはヒト以外の哺乳動物の細胞である、項5に記載の方法。
 以下、ここで開示される技術に関するいくつかの試験例を説明する。ここで開示される技術をかかる試験例に示すものに限定することを意図したものではない。
<外来物質導入用構築物の作製>
 表1に示すアミノ酸配列で構成された合成ペプチドを有する構築物を用意した。表1に示すペプチドn(nは1~15の自然数)を有する構築物をサンプルnとして、ユーロフィンジェノミクス株式会社からサンプル1~15を得た。なお、表1に示すアミノ酸配列において、大文字で表記されているアミノ酸残基はL体、小文字で表記されているアミノ酸残基はD体を示している。また、サンプル1~15において、ペプチド1~15のN末端側のアミノ酸残基のα-アミノ基はいずれもアセチル化されたものを準備した。さらに、ペプチド1~15のC末端側のアミノ酸残基に、外来物質として蛍光色素であるFAM(C2112:5(6)-Carboxyfluorescein、分子量376.3、励起波長495nm、蛍光波長520nm)を結合したものを準備した。そして、サンプル1~15をそれぞれジメチルスルホキシド(DMSO)で希釈し、サンプル濃度が2mMのサンプル溶液1~15をそれぞれ調製した。
Figure JPOXMLDOC01-appb-T000001
<フローサイトメトリーによる細胞膜透過性評価>
 真核細胞としてHeLa細胞(ヒト子宮頸がん細胞由来の樹立細胞株)を使用し、サンプル1~15の細胞膜透過性を解析した。例1~15では、上記調製したサンプル溶液1~15をそれぞれ用い、例16では、FAM溶液を用いた。
(例1)
 HeLa細胞を培養培地である10%FBS(fetal bovine serum)含有DMEM(Dulbecco’s modified Eagle’s medium(富士フィルム和光純薬株式会社製、Cat No. 044-29765))で培養した。
 培養プレートに接着したHeLa細胞をPBSで洗浄後、0.25%トリプシン/EDTA溶液を添加し、37℃中で3分間インキュベートを行った。該インキュベート後、上記10%FBS含有DMEMを加え、トリプシンを不活性化させた後、150×gで5分間の遠心分離を行い細胞を沈殿させた。遠心分離によって生じた上清を取り除いた後、沈殿(細胞ペレット)に上記10%FBS含有DMEMを加え、凡そ2×10cells/mLの細胞懸濁液を調製した。該細胞懸濁液を市販の6穴(ウェル)プレート(AGCテクノグラス株式会社製)のウェルに1mL加え、細胞を播種した(凡そ2×10cells/ウェル)。また、上記2mMサンプル溶液1を上記10%FBS含有DMEMで希釈し、サンプル1の濃度が20μMのサンプル溶液1を準備した。そして、該ウェルに上記20μMサンプル溶液1を1mL添加した(即ち、ウェル中の培養液のサンプル1の濃度が10μM、DMSO濃度が0.5%となるようにした)。その後、細胞を5%CO条件下で、37℃で20時間インキュベートを行った。
 20時間のインキュベート後、ウェルから培養上清を取り除き、1mLのPBSでウェル中の細胞を2回洗浄した。次に、ウェルに200μLの0.25%トリプシン/EDTA溶液を添加し、37℃中で3分間インキュベートを行った。該インキュベート後、ウェルに400μLの上記10%FBS含有DMEMを添加することでトリプシンを不活性化した後、ウェル中の細胞懸濁液をチューブに移し、細胞を回収した。その後、さらにウェルに600μLのPBSを添加し、ウェルを洗浄した。そして、ウェル中のPBSを上記チューブへと移すことにより、ウェル中に残った細胞を上記チューブへと回収した。このチューブを4℃、210×gの条件で5分間遠心分離を行った。遠心分離後、上清を取り除き、沈殿(細胞ペレット)を1mLのPBSで懸濁(洗浄)し、上記と同じ条件で遠心分離を行った。この操作を2回繰り返した後、上清を取り除き、サンプル1含有培地で培養した細胞(細胞ペレット)を得た。
 上記得られた細胞(細胞ペレット)について、フローサイトメータを用いてサンプル1の細胞膜透過性の解析を行った。フローサイトメータとして、On-Chip Flowcytometer(株式会社オンチップ・バイオテクノロジーズ(On-Chip Biotechnologies Co., LTD.)製)を使用した。
 かかる解析のために、上記得られた細胞ペレットを100μLのOn-Chip T bufferで懸濁し、解析用の細胞懸濁液を用意した。
 上記のフローサイトメータを用いて前方散乱(forward scatter:FSC)および側方散乱(side scatter:SSC)に基づくゲーティングを行い、解析対象とする細胞集団についてのゲートを設定し、かかるゲート内の細胞集団について、蛍光強度を測定した。なお、該細胞集団の細胞数が少なくとも10000個以上となるように解析を行った。蛍光強度の測定には、FAMの蛍光波長を検出可能な上記フローサイトメータの蛍光検出器FL2(最適検出波長543nm付近)を使用した。かかる測定結果について、市販の解析ソフト「FlowJo(登録商標)」(TreeStar社製)を用いて解析を行い、測定対象細胞集団の蛍光強度の中央値(median fluorescece intensity:MFI)を得た。
(例2~15)
 サンプル溶液1を上記調製したサンプル溶液2~15のいずれかに変更した以外は例1と同様に実施した。なお、各例で使用したサンプル(構築物)は表2のとおりである。
(例16)
 サンプル溶液1の代わりにDMSOで希釈したFAM溶液を使用した以外は例1と同様に実施した。なお、かかるFAM溶液の濃度はサンプル溶液1の濃度(即ち、ウェル中の培養液のFAM濃度が10μM、DMSO濃度が0.5%)と同じになるように用いた。
 例1~16について得られた結果を表2および図1に示す。図1は、各例におけるMFIの値を示すグラフである。
Figure JPOXMLDOC01-appb-T000002
 表2および図1に示すように、例1~14では、例15よりもMFIの値が高かった。このことから、配列番号2に示すアミノ酸配列を構成するアミノ酸残基のうち、少なくとも1つがD体アミノ酸残基であることで細胞膜透過率が向上することがわかる。さらに、表2および図1に示すように、例12では、特にMFIの値が高かった。これにより、アミノ酸配列:KKRTLRKSNRKKRのN末端側から12番目のリジン残基のみをD体にすることで、細胞膜透過性が顕著に向上することがわかる。
 以上、ここで開示される技術の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 ここで開示される技術によると、真核細胞(特に細胞壁を有しないヒトやそれ以外の哺乳動物に代表される種々の動物細胞)の外部から細胞質内に目的とする外来物質を導入するために人為的に作製されたキャリアペプチドフラグメント及び該キャリアペプチドフラグメントを有する構築物が提供される。かかる構築物を利用することにより、目的の細胞に目的の外来物質を効果的に導入させ、該外来物質が導入された細胞並びに該外来物質を含む細胞を含む器官等の生体組織を得ることができる。また、キャリアペプチドフラグメントまたは構築物を利用することにより、各種疾患に対する治療薬(例えば、眼科治療等の治療薬、核酸医薬)を提供することができ得る。また、外用薬(例えば、点眼薬)の有効成分または添加物として、ここで開示されるペプチドフラグメントまたは構築物を利用することができ得る。

Claims (6)

  1.  配列番号1に示す以下のアミノ酸配列:
      KKRTLRKSNRKKR
    から成り、ここで、前記アミノ酸配列のN末端側から12番目のリジン残基はD体、残りのアミノ酸残基はL体である、キャリアペプチドフラグメント。
  2.  請求項1に記載のキャリアペプチドフラグメントと、
     前記キャリアペプチドフラグメントのN末端側及び/又はC末端側に結合した外来物質と、
    を有する構築物。
  3.  前記外来物質が、ポリペプチド、核酸、色素および薬剤から成る群から選択される少なくとも1種の有機化合物である、請求項2に記載の構築物。
  4.  前記外来物質が、前記キャリアペプチドフラグメントのC末端側に配置されている、請求項2に記載の構築物。
  5.  真核細胞の外部から少なくとも該細胞の細胞質内に目的とする外来物質をインビトロにおいて導入する方法であって、
    (1)請求項2~4のいずれか一項に記載の構築物を用意する工程と、
    (2)前記構築物を、目的とする真核細胞を含む試料中に供給する工程と、
    を包含する方法。
  6.  前記構築物を導入する対象の真核細胞がヒトまたはヒト以外の哺乳動物の細胞である、請求項5に記載の方法。
PCT/JP2023/024103 2022-08-30 2023-06-29 キャリアペプチドフラグメント及びその利用 WO2024048050A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022137043 2022-08-30
JP2022-137043 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024048050A1 true WO2024048050A1 (ja) 2024-03-07

Family

ID=90099457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024103 WO2024048050A1 (ja) 2022-08-30 2023-06-29 キャリアペプチドフラグメント及びその利用

Country Status (1)

Country Link
WO (1) WO2024048050A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013700A1 (ja) * 2009-07-29 2011-02-03 東亞合成株式会社 キャリアペプチドフラグメント及びその利用
JP2022047613A (ja) * 2020-09-14 2022-03-25 東亞合成株式会社 キャリアペプチドフラグメントおよびその利用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013700A1 (ja) * 2009-07-29 2011-02-03 東亞合成株式会社 キャリアペプチドフラグメント及びその利用
JP2022047613A (ja) * 2020-09-14 2022-03-25 東亞合成株式会社 キャリアペプチドフラグメントおよびその利用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAJJAR KRISTINA, ERAZO-OLIVERAS ALFREDO, BROCK DAKOTA J., WANG TING-YI, PELLOIS JEAN-PHILIPPE: "An l- to d-Amino Acid Conversion in an Endosomolytic Analog of the Cell-penetrating Peptide TAT Influences Proteolytic Stability, Endocytic Uptake, and Endosomal Escape", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 292, no. 3, 1 January 2017 (2017-01-01), US , pages 847 - 861, XP093145576, ISSN: 0021-9258, DOI: 10.1074/jbc.M116.759837 *
VAN DEN BRAND DIRK; VEELKEN CORNELIA; MASSUGER LEON; BROCK ROLAND: "Penetration in 3D tumor spheroids and explants: Adding a further dimension to the structure-activity relationship of cell-penetrating peptides", BIOCHIMICA ET BIOPHYSICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 1860, no. 6, 14 March 2018 (2018-03-14), AMSTERDAM, NL , pages 1342 - 1349, XP085383441, ISSN: 0005-2736, DOI: 10.1016/j.bbamem.2018.03.007 *

Similar Documents

Publication Publication Date Title
JP7041853B1 (ja) キャリアペプチドフラグメントおよびその利用
US8603967B2 (en) Carrier peptide fragment and use thereof
JP4573143B2 (ja) 人工ペプチド及びその利用
US8673845B2 (en) Carrier peptide fragment and use thereof
JP6156698B2 (ja) 抗腫瘍ペプチド及びその利用
US11927589B2 (en) Carrier peptide fragment for nucleolar localization and use thereof
US20130323776A1 (en) Carrier peptide fragment and use thereof
US20230280333A1 (en) Foreign substance introduction construct and use thereof
JPWO2008081812A1 (ja) 抗腫瘍ペプチド及びその利用
US20220008547A1 (en) Carrier Peptide Fragment and use Thereof
US20090012000A1 (en) Anti-Viral Peptide and Use Thereof
WO2024048050A1 (ja) キャリアペプチドフラグメント及びその利用
WO2024053630A1 (ja) キャリアペプチドフラグメント及びその利用
WO2023248846A1 (ja) キャリアペプチドフラグメント及びその利用
WO2024004599A1 (ja) キャリアペプチドフラグメント及びその利用
WO2024018865A1 (ja) キャリアペプチドフラグメント及びその利用
WO2023204138A1 (ja) 外来物質導入用構築物およびその利用
WO2024084932A1 (ja) キャリアペプチドフラグメント及びその利用
WO2022230484A1 (ja) ペプチドフラグメントおよびその利用
US8138146B2 (en) Antiviral peptide and antiviral agent
WO2022085547A1 (ja) キャリアペプチドフラグメントおよびその利用
EP4001302B1 (en) Carrier peptide fragment and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859820

Country of ref document: EP

Kind code of ref document: A1