WO2024047950A1 - 鉄鉱石ペレットの製造方法 - Google Patents

鉄鉱石ペレットの製造方法 Download PDF

Info

Publication number
WO2024047950A1
WO2024047950A1 PCT/JP2023/017633 JP2023017633W WO2024047950A1 WO 2024047950 A1 WO2024047950 A1 WO 2024047950A1 JP 2023017633 W JP2023017633 W JP 2023017633W WO 2024047950 A1 WO2024047950 A1 WO 2024047950A1
Authority
WO
WIPO (PCT)
Prior art keywords
ore
less
iron ore
pellets
mass
Prior art date
Application number
PCT/JP2023/017633
Other languages
English (en)
French (fr)
Inventor
直人 中村
隆英 樋口
友司 岩見
健太 竹原
頌平 藤原
謙弥 堀田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024047950A1 publication Critical patent/WO2024047950A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing iron ore pellets.
  • JP-A-04-099132 discloses a method for producing iron ore pellets containing a large amount of crystallization water.
  • raw iron ore containing a large amount of crystallization water is crushed and granulated, and then, after each step of drying, syneresis, and preheating, a firing step is added to produce fired pellets.
  • a firing step is added to produce fired pellets.
  • At least a part of the crystal water in the raw material iron ore is treated with syneresis in advance. This manufacturing method is said to reduce bursting and increase the crushing strength of the preheated pellets, thereby improving product yield.
  • the present disclosure has been made in view of the above circumstances, and its purpose is to provide a method for producing iron ore pellets that achieves both the suppression of bursting and the strength of iron ore pellets.
  • the method for producing iron ore pellets according to the present disclosure to achieve the above object is as follows.
  • [1] Includes a decrystallization water treatment step to obtain dehydrated ore by removing crystallization water from iron ore with an iron content of 63% by mass or less,
  • the iron ore pellets are heated to a temperature of 100° C. or more and 800° C. or less and held for 5 minutes or more and 200 minutes or less.
  • the method for producing iron ore pellets according to the present disclosure may be further as follows.
  • the method for producing iron ore pellets of the present disclosure it is possible to provide a method for producing iron ore pellets that achieves both the suppression of bursting and the strength of iron ore pellets.
  • the iron ore pellets according to this embodiment are so-called green pellets (pre-fired pellets).
  • the method for producing iron ore pellets according to the present embodiment includes a decrystallization water treatment step in which crystallization water is removed from iron ore having an iron content of 63% by mass or less (so-called low-grade ore) to obtain dehydrated ore. .
  • iron ore with an iron content of 63% by mass or less is simply referred to as iron ore.
  • the iron ore is heated to a temperature of 100°C or more and 800°C or less and held for 5 minutes or more and 200 minutes or less.
  • the method for producing iron ore pellets may further include a pulverizing step of pulverizing the dehydrated ore to obtain ore powder.
  • the ore powder is preferably pulverized so that the proportion of particles with a particle size of 10 ⁇ m or less is 10% by mass or more and 70% by mass or less.
  • bursting is a phenomenon in which when iron ore pellets (green pellets) are heated, the water in the green pellets evaporates, causing the green pellets to explode or become powder.
  • the method for producing iron ore pellets according to the present embodiment includes, in addition to the above-mentioned decrystallization water treatment step and crushing step, a granulation step of granulating ore powder to obtain iron ore pellets (green pellets). may be included.
  • the green pellets may then be fired in a firing step to form fired pellets.
  • the iron ore pellets according to the present embodiment (the pellets before firing) may be referred to as green pellets, and the pellets after firing may be referred to as fired pellets.
  • Green pellets and calcined pellets may contain raw materials other than iron ore (eg, bentonite).
  • the type and composition (ore composition) of iron ore that is the raw material for green pellets are not particularly limited.
  • the raw material for green pellets may be made of a single iron ore, or may be a mixture of a plurality of ores in any combination.
  • the content of crystallization water in iron ore (before the decrystallization water process), which is the raw material for green pellets, is not particularly limited.
  • the content of crystal water can be measured as the amount of weight loss (LOI: Loss On Ignition) of iron ore when the iron ore is held at 1000° C. for 30 minutes.
  • LOI Loss On Ignition
  • the decrystallization water treatment step is a step of performing decrystallization water treatment to remove crystallization water from iron ore to obtain dehydrated ore.
  • iron ore is heated to remove crystallization water from the iron ore.
  • the iron ore is heated and held at a decrystallization water treatment temperature of 100° C. or more and 800° C. or less as the above-mentioned decrystallization water treatment.
  • the holding time for holding the iron ore at a temperature within the above temperature range (hereinafter referred to as decrystallization water time) is 5 minutes or more and 200 minutes or less.
  • the decrystallization water time is set to 5 minutes or more and 200 minutes or less.
  • the decrystallization water time is preferably 180 minutes or less. When the decrystallization water time is 180 minutes or less, a decrease in the strength of the green pellets can be appropriately avoided.
  • the decrystallization water treatment temperature and decrystallization water time are important factors for removing crystallization water.
  • the decrystallization water treatment temperature is less than 100°C, crystallization water cannot be sufficiently removed from the iron ore.
  • the decrystallization water treatment temperature is higher than 800° C., the crushability of the iron ore deteriorates and the strength of the green pellets becomes insufficient. Therefore, the decrystallization water treatment temperature is set at 100°C or higher and 800°C or lower. If the decrystallization water treatment temperature is within this range and the decrystallization water time is 5 minutes or more and 200 minutes or less as described above, it is possible to both suppress bursting and increase the strength of the green pellets.
  • the decrystallization water treatment temperature is preferably 200°C or higher and 500°C or lower.
  • the strength of the green pellets can be made sufficiently high. Furthermore, bursting can be better suppressed.
  • the content of crystal water in the dehydrated ore is also not particularly limited.
  • the content of water of crystallization in the dehydrated ore can also be measured as the LOI in the same way as the content of water of crystallization in the iron ore before the decrystallization water step.
  • the content of crystallization water in the dehydrated ore is preferably reduced by 10% by mass or more from the content of crystallization water in the iron ore before the decrystallization water step.
  • the crushing process is a process of crushing dehydrated ore to obtain ore powder.
  • the method of crushing the dehydrated ore in the crushing process and the crushing time required for crushing are not particularly limited.
  • the crushing time is preferably 15 minutes or more and 75 minutes or less.
  • the shape of the ore powder is not particularly limited. It is preferable that the particle size of the ore powder is, for example, 95% by mass or more of particles of 300 ⁇ m or less.
  • the particle size distribution of the ore powder is preferably such that the proportion of particles with a particle diameter of 10 ⁇ m or less is 10% by mass or more and 70% by mass or less.
  • the particle size or particle size distribution of ore powder is an important factor that affects the strength of green pellets. Note that ore powder can be obtained by crushing iron ore. The method of crushing iron ore is not particularly limited.
  • the proportion of fine powder with a particle size of 10 ⁇ m or less has a particularly large effect on the strength of green pellets.
  • the proportion of fine powder with a particle size of 10 ⁇ m or less is less than 10% by mass, green pellets with sufficient strength may not be obtained.
  • the proportion of fine powder with a particle size of 10 ⁇ m or less is preferably 20% by mass or more and 60% by mass or less. Thereby, bursting can be suppressed while obtaining appropriate green pellet strength.
  • the granulation process is a process of granulating ore powder to obtain iron ore pellets (green pellets).
  • the granulation method in the granulation step is not limited.
  • the ore powder may be granulated using a pelletizer.
  • a pelletizer for example, a pan-type granulator (so-called pan pelletizer) may be used.
  • the shape and size (for example, particle size and average particle size) of the iron ore pellets are not particularly limited, and may be set to any value.
  • the size of the green pellet may be determined by, for example, measuring the major axis diameter and the minor axis diameter using a caliper, and evaluating the average value as the particle size of the green pellet.
  • the particle size of the green pellets is preferably 16 mm from 9 mm, which is commonly used in this technical field.
  • the green pellets are then subjected to a firing process and fired to produce fired pellets.
  • the firing temperature in the firing step is, for example, 1200°C to 1350°C.
  • the strength generally required in this technical field (for example, 1.0 kg/pellet or more) ).
  • the strength of the green pellets is preferably 1.0 kg/pellet or more.
  • the particle size distribution of the ore powder used as a raw material is a predetermined distribution, that is, the proportion of particles having a diameter of 10 ⁇ m or less is 10% by mass or more and 70% by mass or less. In this case, the strength of green pellets tends to be higher. Note that the strength of the green pellets can be measured by the method described in Examples described later.
  • bursting can be suppressed if the decrystallization water treatment temperature and decrystallization water time are within the above ranges.
  • bursting can be better suppressed when the particle size distribution of the ore powder used as a raw material is the above-mentioned predetermined distribution.
  • bursting is a phenomenon in which when the green pellets are heated, the moisture in the green pellets evaporates, causing the green pellets to explode or turn into powder.
  • the likelihood of bursting is evaluated based on the percentage of pellets of 5 mm or less that are formed after heat-treating the green pellets at a predetermined temperature (e.g., 300°C) or after firing the green pellets. can do.
  • a predetermined temperature e.g. 300°C
  • the amount of pellet pieces generated in the firing process etc. is 3.0% by mass or less, preferably 1.5% by mass or less, and more preferably 1.0% by mass or less, a decrease in the yield of fired pellets can be suppressed. can. Therefore, if the amount of pellet pieces generated during the firing process or the like is 1.0% by mass or less, it can be evaluated that the green pellets are of good quality with suppressed bursting.
  • Green pellets were produced according to the following procedure and their bursting properties were evaluated.
  • iron ore serving as a raw material for green pellets
  • ores (Ore A, Ore B) having the chemical composition shown in Table 1 were used.
  • "LOI” in Table 1 is shown as the content of crystallization water (mass %) as described above.
  • T.Fe represents the mass % of the iron content (total Fe content) in the iron ore. Note that “T.Fe” is a value determined based on the total iron determination method of iron ore specified in JIS M 8212:2022.
  • Ore A and Ore B used as raw materials for green pellets are both T. It is iron ore (so-called low-grade ore) containing 63% by mass or less of Fe.
  • Table 2 shows information on the ore used for the green pellets (ore properties), and the conditions or evaluation results of the decrystallization water treatment process, crushing process, granulation process, and firing process.
  • the ore composition shown in Table 2 was used, and the experiment No. 1 to 16 green pellets were obtained.
  • Each raw material ore blended in the ore proportion shown in Table 2 was subjected to decrystallization water treatment at the decrystallization water treatment temperature and decrystallization water time shown in Table 2 to obtain dehydrated ore (dehydration step).
  • the decrystallization water treatment was performed in the atmosphere.
  • the LOI of the dehydrated ore is shown in Table 2 as the crystallization water content of the dehydrated ore.
  • the dehydrated ore was crushed in a ball mill for the crushing time shown in Table 2 (batch processing) to obtain ore powder (pulverization step). Then, the proportion of fine powder with a particle size of 10 ⁇ m or less in the ore powder was measured as the proportion (mass %) passing through a sieve with an opening of 10 ⁇ m. Table 2 shows the proportion of fine powder with a particle size of 10 ⁇ m or less in the ore powder as the "-10 ⁇ m proportion" in the pulverization process.
  • Table 3 shows the volume-based cumulative 10% diameter (D10), cumulative 50% diameter (D50: median diameter), and cumulative 90% diameter (D90) as the particle size distribution of ore powder. These cumulative 10% diameter, cumulative 50% diameter, and cumulative 90% diameter were derived based on the volume-based particle size distribution in ore powder, which was measured using laser diffraction particle size measurement (Mastersizer 3000, manufactured by Malvern). Note that the dispersion medium used in measuring the particle size distribution was water. In Table 3, for convenience of viewing, the same "-10 ⁇ m ratio" as shown in Table 2 is listed again.
  • a mixed powder 1.0% by mass of bentonite was added to the ore powder to obtain a mixed powder.
  • bentonite was added as a binder during granulation, it is not essential in this embodiment.
  • This mixed powder was granulated using a pan-type granulator (pelletizer) to obtain green pellets (granulation step).
  • the mixed powder was rolled while adding water so that the granulation water content (amount of water added) was 10% by mass to 10.5% by mass of the weight of the green pellets.
  • the granulation moisture content can be determined by measuring the weight change before and after holding the green pellets at 105° C. for 24 hours. For example, if the weight change rate after holding the green pellets at 105° C. for 24 hours is -10% by weight, the granulation moisture is 10%.
  • the major axis diameter and minor axis diameter were measured using a caliper, and the average value (arithmetic mean) was used.
  • each experiment No. For each green pellet, the particle size of 10 pellets was measured, and the average value (arithmetic mean) was calculated for that experiment No. was adopted as the particle size of green pellets.
  • the strength of the green pellets was measured using an autograph.
  • the strength of the green pellet was measured by deforming the green pellet at a displacement rate of 1 mm/min and obtaining a load-displacement curve.
  • the load corresponding to the first displacement peak position in the load-displacement curve was adopted.
  • Each experiment no. For each green pellet, the intensity of 10 pellets was measured, and the average value (arithmetic mean) was calculated for that experiment No. This was adopted as the strength of green pellets.
  • Bursting property was evaluated by the amount of pellet pieces generated after the firing process. Specifically, the bursting property was evaluated as follows. First, 500 g of green pellets were charged into a vertical furnace (cylindrical shape with a diameter of 60 mm), and air at 300°C was blown upward from below the layer of green pellets at a wind speed of 1.0 m/sec (however, 300 °C/1 atm) for 10 minutes. Next, the green pellets exposed to air at 300°C were heated to 1250°C in an electric furnace different from the above-mentioned furnace, and fired at this temperature for 25 minutes (firing step).
  • the green pellets were taken out from the furnace and sieved through a sieve with an opening of 5 mm, and the proportion (mass %) of the pellet pieces that passed through the sieve was measured to evaluate the bursting property.
  • the passing rate of pellet pieces is shown as "-5 mm rate.”
  • experiment no. 1 to 5, 10 to 14, 17 and 18, and experiment no When comparing green pellets Nos. 8 and 9, it can be seen that the strength of the green pellets tends to be high when D90 is 50 ⁇ m or more and 200 ⁇ m or less.
  • Green pellets No. 15 and 16 have a green pellet strength of less than 1.0 kg/pellet or a pellet piece passing rate (-5 mm rate) of more than 1.0 mass%. That is, experiment no. Green pellets Nos. 6, 7, 15, and 16 do not have both green pellet strength and bursting properties.
  • Figure 1 shows experiment no. The relationship between the strength of green pellets Nos. 1 to 5, 8 to 14, 17 and 18 and the ratio of particle diameters of 10 ⁇ m or less in ore powder (-10 ⁇ m ratio) is shown. Moreover, in FIG. 2, experiment No. It shows the relationship between the passing ratio of pellet pieces of green pellets 1 to 5, 8 to 14, 17 and 18 (-5 mm ratio) and the ratio of particle diameters of 10 ⁇ m or less in ore powder (-10 ⁇ m ratio).
  • the strength of the green pellets is 1.0 kg/pellet or more.
  • the strength of the green pellets becomes higher when the proportion of particles having a particle size of 10 ⁇ m or less in the ore powder is 25% by mass or more and 60% by mass or less.
  • the strength of the green pellet generally becomes convex upward as the proportion of particles with a particle size of 10 ⁇ m or less in the ore powder moves from a small side to a large side.
  • the present disclosure can be applied to a method for producing iron ore pellets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

バースティングの抑制と鉄鉱石ペレットの強度とを両立する鉄鉱石ペレットの製造方法を提供する。鉄鉱石ペレットの製造方法は、鉄分含有率が63質量%以下の鉄鉱石から結晶水を脱離させて脱水鉱石を得る脱結晶水処理工程を含み、脱結晶水処理工程では、100℃以上800℃以下に鉄鉱石を加熱した状態で5分以上200分以下保持する。

Description

鉄鉱石ペレットの製造方法
 本発明は、鉄鉱石ペレットの製造方法に関する。
 直接還元製鉄法として現在主流のシャフト炉方式の還元では、装入原料として塊鉱石やペレットが使用される。ペレットは、鉱石を粉砕、混合、造粒及び焼成する各工程を経て製造される。この製造過程において、焼成前の鉄鉱石ペレット(いわゆるグリーンペレット)には、造粒工程から焼成工程に供するまでの搬送などの取り扱いによる崩壊や粉化を抑制する程度の強度が求められる。
 グリーンペレットの強度の制御には、粉砕後の鉱石粉の粒度制御が重要であり、微粉の割合が増加するとグリーンペレットの強度が増加することが知られている。また、焼成工程においては、グリーンペレット中の水分が蒸発することにより、グリーンペレットが爆裂や粉化するバースティングという現象が生じ、歩留まりが低下することが知られている。
 例えば、特開平04-099132号公報(特許文献1)には、結晶水を多く含む鉄鉱石のペレット製造方法が開示されている。この製造方法では、結晶水を多く含む原料鉄鉱石を粉砕及び造粒し、続いて乾燥、離水及び予熱の各工程後、更に、焼成工程を追加してなる焼成ペレットの製造に際して、原料鉄鉱石の一部又は全部を粉砕する前に、予め原料鉄鉱石中の結晶水の少なくとも一部を離水処理しておく。この製造方法では、これにより、バースティングの減少と予熱ペレットの圧潰強度増加による製品歩留りの向上とが実現されるとされている。
特開平04-099132号公報
 現在、ペレットの原料鉱石(鉄鉱石)には、結晶水の少ない高品位鉱石が一般的に使用されている。しかし、今後は高品位鉱石の需要増加に伴い、高品位鉱石の安定確保が難しくなることが予測されている。そのため、豪州やインド等で産出される鉄分含有率(全Fe分)が63質量%以下のような低品位鉱石の活用が検討されている。鉄鉱石ペレット(グリーンペレット)中の結晶水が増加すると、上述のようにバースティングしやすくなるため、バースティングを抑制するペレットの製造方法の改善が望まれる。
 特許文献1のペレット製造方法では、適切な処理温度及び時間で鉱石を離水処理しなければ結晶水を適切に低減させることがでないと考えられる。しかし、特許文献1のペレット製造方法では、そのような適切な処理温度や時間が考慮されていなかった。更に、過度な脱結晶水処理は鉱石の粉砕性を悪化させ、粉砕工程で適切な粒度に制御することが困難になり、鉄鉱石ペレットの強度確保が困難になる場合がある。そのため、バースティングの抑制と鉄鉱石ペレットの強度とを両立することができる鉄鉱石ペレットの製造方法の提供が望まれる。
 本開示は、かかる実状に鑑みて為されたものであって、その目的は、バースティングの抑制と鉄鉱石ペレットの強度とを両立する鉄鉱石ペレットの製造方法を提供することにある。
 上記目的を達成するための本開示に係る鉄鉱石ペレットの製造方法は、以下のとおりである。
[1] 鉄分含有率が63質量%以下の鉄鉱石から結晶水を脱離させて脱水鉱石を得る脱結晶水処理工程を含み、
 前記脱結晶水処理工程では、100℃以上800℃以下に前記鉄鉱石を加熱した状態で5分以上200分以下保持する鉄鉱石ペレットの製造方法。
 本開示に係る鉄鉱石ペレットの製造方法は、更に以下のようであってよい。
[2] 前記脱水鉱石を粉砕して鉱石粉を得る粉砕工程を更に含み、
 前記鉱石粉は、篩分けによる粒子径10μm以下の割合が10質量%以上70質量%以下である上記[1]に記載の鉄鉱石ペレットの製造方法。
[3] 前記粒子径10μm以下の割合が25質量%以上60質量%以下である上記[2]に記載の鉄鉱石ペレットの製造方法。
[4] 前記粒子径10μm以下の割合が25質量%以上60質量%以下である上記[2]又は[3]に記載の鉄鉱石ペレットの製造方法。
[5] 前記鉄鉱石の結晶水の含有量は、3.0質量%以上である上記[1]から[4]のいずれか一つに記載の鉄鉱石ペレットの製造方法。
 本開示の鉄鉱石ペレットの製造方法によれば、バースティングの抑制と鉄鉱石ペレットの強度とを両立する鉄鉱石ペレットの製造方法を提供することができる。
グリーンペレットの強度と鉱石粉における粒子径10μm以下の割合との関係を示すグラフである。 グリーンペレットのペレット片の通過割合と鉱石粉における粒子径10μm以下の割合との関係を示すグラフである。
 本開示の実施形態に係る鉄鉱石ペレットの製造方法について説明する。
 まず、本実施形態に係る鉄鉱石ペレットの製造方法の概要を説明する。本実施形態に係る鉄鉱石ペレットは、いわゆる、グリーンペレット(焼成前のペレット)である。本実施形態に係る鉄鉱石ペレットの製造方法は、鉄分含有率が63質量%以下の鉄鉱石(いわゆる、低品位鉱石)から結晶水を脱離させて脱水鉱石を得る脱結晶水処理工程を含む。以下の説明では、鉄分含有率が63質量%以下の鉄鉱石のことを、単に鉄鉱石と称する。
 脱結晶水処理工程では、100℃以上800℃以下に鉄鉱石を加熱した状態で5分以上200分以下保持する。
 鉄鉱石ペレットの製造方法は、更に、脱水鉱石を粉砕して鉱石粉を得る粉砕工程を含んでよい。粉砕工程では、鉱石粉は、粒子径10μm以下の割合が10質量%以上70質量%以下となるように粉砕されるとよい。
 本実施形態に係る鉄鉱石ペレットの製造方法によれば、バースティングの抑制と鉄鉱石ペレットの強度との両立を実現することができる。
 なお、バースティングとは、鉄鉱石ペレット(グリーンペレット)を加熱した際に、グリーンペレット中の水分が蒸発することにより、グリーンペレットが爆裂や粉化する現象のことである。
 以下、本実施形態に係る鉄鉱石ペレットの製造方法について詳述する。
 本実施形態に係る鉄鉱石ペレットの製造方法は、上述の脱結晶水処理工程と粉砕工程とに加えて、更に、鉱石粉を造粒して鉄鉱石ペレット(グリーンペレット)を得る造粒工程を含み得る。グリーンペレットは、その後、焼成工程で焼成されて焼成ペレットとされてよい。以下の説明では、焼成前後のペレットの区別のため、本実施形態に係る鉄鉱石ペレット(焼成前のペレット)を、グリーンペレットと称し、焼成後のペレットを、焼成ペレットと称する場合がある。グリーンペレット及び焼成ペレットは、鉄鉱石以外の原料(例えば、ベントナイト)を含み得る。
 グリーンペレットの原料となる鉄鉱石の種類や配合(鉱石配合)は特に限定されない。グリーンペレットの原料は、単一の鉄鉱石からなるものであってもよいし、複数の鉱石を任意の配合で混合したものであってもよい。
 グリーンペレットの原料となる鉄鉱石(脱結晶水工程前)の結晶水の含有量は、特に限定されない。なお、結晶水の含有量は、鉄鉱石を1000℃で30分間保持した際の、鉄鉱石の重量減少量(LOI:Loss On Ignition)として測定することができる。
 脱結晶水処理工程は、鉄鉱石から結晶水を脱離させて脱水鉱石を得る脱結晶水処理を行う工程である。脱結晶水処理工程では、脱結晶水処理として、鉄鉱石から結晶水を脱離させるために鉄鉱石を加熱する。
 脱結晶水処理工程では、上記の脱結晶水処理として、100℃以上800℃以下の脱結晶水処理温度に鉄鉱石を加熱して保持する。この脱結晶水処理において、鉄鉱石を上記温度範囲の温度で保持する保持時間(以下、脱結晶水時間と称する)は、5分以上200分以下である。脱結晶水時間が5分未満の場合は、鉄鉱石から結晶水を十分に脱離させることができない場合がある。また、脱結晶水時間が200分より長い場合、鉄鉱石の粉砕性が悪化する場合がある。これらの場合、グリーンペレットの強度が低下する場合がある。そのため、脱結晶水時間は5分以上、200分以下とする。
 脱結晶水時間は好ましくは180分以下である。脱結晶水時間が180分以下であると、グリーンペレットの強度低下を適切に回避することができる。
 脱結晶水処理工程において、脱結晶水処理温度及び脱結晶水時間は、結晶水を脱離させるために重要な因子である。脱結晶水処理温度が100℃未満の場合は、鉄鉱石から結晶水を十分に脱離させることができない。また、脱結晶水処理温度が800℃より高い場合、鉄鉱石の粉砕性が悪化し、グリーンペレットの強度が不足する。そのため、脱結晶水処理温度は100℃以上、800℃以下とする。脱結晶水処理温度がこの範囲であり、且つ、脱結晶水時間が上記のごとく5分以上200分以下であれば、バースティングの抑制とグリーンペレットの強度とを両立することができる。
 脱結晶水処理温度は、200℃以上、500℃以下とすることが好ましい。脱結晶水処理温度がこの範囲であると、グリーンペレットの強度を十分高くすることができる。また、バースティングをより良く抑制することができる。
 脱水鉱石の結晶水の含有量も、特に限定されない。脱水鉱石の結晶水の含有量も、脱結晶水工程前の鉄鉱石の結晶水の含有量の場合と同様に、LOIとして測定することができる。脱水鉱石の結晶水の含有量は、脱結晶水工程前の鉄鉱石の結晶水の含有量から10質量%以上減少していることが好ましい。
 粉砕工程は、脱水鉱石を粉砕して鉱石粉を得る工程である。本実施形態において、粉砕工程における脱水鉱石の粉砕方法や粉砕に要する粉砕時間は特に限定されない。バッチ処理で脱水鉱石を粉砕する場合、粉砕時間は、好ましくは、15分以上75分以下である。
 鉱石粉の形状は特に限定されない。鉱石粉の粒子径は、例えば300μm以下の割合が95質量%以上であることが好ましい。
 鉱石粉の粒度分布は、粒子径10μm以下の割合が10質量%以上70質量%以下であるとよい。鉱石粉の粒子径又は粒度分布は、グリーンペレットの強度に影響を与える重要な因子である。なお、鉱石粉は、鉄鉱石を粉砕して得ることができる。鉄鉱石の粉砕方法は特に限定されない。
 鉱石粉の粒度分布において、特に粒子径10μm以下の微粉の割合が、グリーンペレットの強度に与える影響が大きい。鉱石粉の粒度分布において、粒子径10μm以下の微粉の割合が10質量%未満の場合、十分な強度のグリーンペレット得ることができない場合がある。
 鉱石粉の粒度分布において、粒子径10μm以下の微粉の割合が70質量%より多い場合にバースティングを抑制できない場合がある理由は明らかではない。しかし、例えば以下の理由が予測される。すなわち、鉱石粉の粒度分布において微粉の割合が過剰であるとグリーンペレットの構造が緻密になる。そのため、焼成時の加熱によって脱離した結晶水の拡散パス(グリーンペレットの内部からペレット外部へ通じる流路)が少なくなる。これにより、グリーンペレットの内部で気化した水によってグリーンペレットの内部の圧力が高まりやすくなる。そのため、鉱石粉の粒度分布において、粒子径10μm以下の微粉の割合が70質量%より多い場合に、バースティングを抑制できない場合が生じると考えられる。
 鉱石粉の粒度分布において、粒子径10μm以下の微粉の割合は20質量%以上60質量%以下であることが好ましい。これにより、適切なグリーンペレットの強度を得つつ、バースティングを抑制することができる。
 造粒工程は、鉱石粉を造粒して鉄鉱石ペレット(グリーンペレット)を得る工程である。造粒工程における造粒方法は限定されない。造粒工程では、例えば、ペレタイザーを用いて鉱石粉を造粒してもよい。ペレタイザーとしては、例えばパン型造粒機(いわゆる、パンペレタイザー)を用いてよい。
 本実施形態において、鉄鉱石ペレットの形状や大きさ(例えば、粒径や平均粒径)は特に限定されず、任意の値としてよい。グリーンペレットの大きさは、例えば、ノギスを用いて長軸径と短軸径とを測定し、その平均値をグリーンペレットの粒径として評価してよい。グリーンペレットの粒径は、本技術分野において通常用いられる9mmから16mmにすることが好ましい。
 グリーンペレットは、その後、焼成工程に供されて焼成され、焼成ペレットとされる。焼成工程における焼成温度は、例えば1200℃から1350℃である。
 本実施形態に係る鉄鉱石ペレットの製造方法では、脱結晶水処理温度及び脱結晶水時間が上述の範囲である場合、本技術分野において一般的に求められる強度(例えば、1.0kg/pellet以上)を備える。グリーンペレットの強度は、好ましくは1.0kg/pellet以上であるとよい。本実施形態に係る鉄鉱石ペレットの製造方法では、更に、原料とする鉱石粉の粒度分布が所定の分布である場合、すなわち、粒子径10μm以下の割合が10質量%以上70質量%以下である場合、グリーンペレットの強度がより高まる傾向にある。なお、グリーンペレットの強度は後述する実施例に記載した方法で測定することができる。
 また、本実施形態に係る鉄鉱石ペレットの製造方法では、脱結晶水処理温度及び脱結晶水時間が上述の範囲であれば、バースティングを抑制することができる。本実施形態に係る鉄鉱石ペレットの製造方法では、更に原料とする鉱石粉の粒度分布が上記所定の分布である場合、より良くバースティングを抑制することができる。
 さて、バースティングとは、上述のごとく、グリーンペレットを加熱した際に、グリーンペレット中の水分が蒸発することにより、グリーンペレットが爆裂や粉化する現象のことである。バースティングの起こりやすさ、すなわちバースティング性は、例えば、所定の温度(例えば、300℃)でグリーンペレットを加熱処理した後又はグリーンペレットの焼成後に生じた5mm以下のペレットの割合に基づいて評価することができる。詳述すると、焼成工程又は所定の温度でグリーンペレットを加熱処理した際(以下、焼成工程等と記載する)においてバースティングが生じた場合、グリーンペレットが爆裂又は粉化して、細かな(例えば5mm以下の)ペレット片が生じる。そのため、焼成工程等におけるペレット片の発生量が多ければバースティングが起こりすく(バースティング性が高く)、バースティングの抑制の観点からは良好ではないと評価することができる。逆に、焼成工程等におけるペレット片の発生量が少なければ、バースティングが起こりにくく(バースティング性が低く)、バースティングの抑制の観点からは良好であると評価することができる。
 焼成工程等におけるペレット片の発生量は、3.0質量%以下、好ましくは1.5質量%以下、更に好ましくは1.0質量%以下であれば焼成ペレットの歩留低下を抑制することができる。したがって、焼成工程等におけるペレット片の発生量が1.0質量%以下であれば、バースティングの抑制された良質なグリーンペレットであると評価することができる。
 以下の手順でグリーンペレットを製造し、バースティング性を評価した。
 グリーンペレットの原料となる鉄鉱石(原料鉱石)として、表1に示す化学組成の鉱石(Ore A、Ore B)を用いた。なお、表1中の「LOI」は、上述のごとく、結晶水の含有量(質量%)として示している。また、表1中、「T.Fe」は、鉄鉱石中の鉄分含有率(全Fe分)の質量%を表す。なお、「T.Fe」は、JIS M 8212:2022に規定される鉄鉱石の全鉄定量方法に基づいて定量された値である。表1に示すように、グリーンペレットの原料とするOre A及びOre Bはいずれも、T.Feが63質量%以下の鉄鉱石(いわゆる、低品位鉱石)である。
Figure JPOXMLDOC01-appb-T000001
 表2には、グリーンペレットに用いた鉱石に係る情報(鉱石性状)や、脱結晶水処理工程、粉砕工程、造粒工程及び焼成工程の条件又は評価結果を示している。以下では、表2に示す鉱石の配合とし、後述する脱結晶水処理工程、粉砕工程、造粒工程及び焼成工程を経て、実験No.1から16のグリーンペレットを得た。
Figure JPOXMLDOC01-appb-T000002
 表2に示す鉱石配合の割合で配合された各原料鉱石に、表2に示す脱結晶水処理温度及び脱結晶水時間で脱結晶水処理をして脱水鉱石を得た(脱水工程)。脱結晶水処理は、大気中で行った。脱水鉱石の結晶水含有量として、脱水鉱石のLOIを表2に示している。
 次に、脱水鉱石をボールミルにて表2に示す粉砕時間で粉砕(バッチ処理)し、鉱石粉を得た(粉砕工程)。そして、鉱石粉における粒子径10μm以下の微粉の割合を、篩分けによる目開き10μmの篩の通過割合(質量%)として測定した。表2には、鉱石粉における粒子径10μm以下の微粉の割合を、粉砕工程における「-10μm割合」として示している。
 表3には、鉱石粉の粒度分布として、体積基準の累積10%径(D10)、累積50%径(D50:メジアン径)及び累積90%径(D90)を示している。これら累積10%径、累積50%径及び累積90%径は、レーザー回折式粒度測定(Malvern社製、Mastersizer 3000)を用いて測定した、鉱石粉における体積基準の粒度分布に基づいて導いた。なお、粒度分布の測定時の分散媒は水である。表3には、閲覧の便宜のため、表2に示したのと同じ、「-10μm割合」を再掲している。
Figure JPOXMLDOC01-appb-T000003
 次に、鉱石粉にベントナイトを1.0質量%添加して混合粉を得た。なお、ベントナイトは、造粒時のバインダとして添加したが、本実施形態において必須ではない。この混合粉をパン型造粒機(ペレタイザー)にて造粒し、グリーンペレットを得た(造粒工程)。造粒時には、造粒水分(加水量)がグリーンペレットの重量の10質量%から10.5質量%となるように混合粉に加水しながらこれを転動させた。なお、造粒水分は、グリーンペレットを105℃で24時間保持した前後の重量変化を測定して求めることができる。例えば、グリーンペレットを105℃で24時間保持した後の重量変化割合がマイナス10重量%である場合、造粒水分は10%である。
 グリーンペレットの粒径は、ノギスを用いて長軸径と短軸径とを測定し、その平均値(相加平均)を用いた。なお、各実験No.のグリーンペレットごとに、それぞれ10個のペレットの粒径を計測し、それらの平均値(相加平均)をその実験No.のグリーンペレットの粒径として採用した。
 グリーンペレットの強度は、オートグラフを用いて測定した。グリーンペレットの強度の測定は、変位速度を1mm/minとしてグリーンペレットを変形させて荷重‐変位曲線を求めて行った。グリーンペレットの強度としては、荷重‐変位曲線における1つ目の変位のピーク位置に対応する荷重を採用した。各実験No.のグリーンペレットごとに、それぞれ10個のペレットの強度を計測し、それらの平均値(相加平均)をその実験No.のグリーンペレットの強度として採用した。
 バースティング性は、焼成工程後のペレット片の発生量によって評価した。具体的には、以下のようにしてバースティング性を評価した。まず、縦型の炉(直径60mmの円筒形状)に500gのグリーンペレットを装入し、300℃の空気を、グリーンペレットの層の下から上方に向けて風速1.0m/sec(ただし、300℃/1気圧換算)で10分間通気させた。次に、この300℃の空気に曝した後のグリーンペレットを、上記の炉とは別の電気炉で1250℃に加熱し、この温度で25分間焼成した(焼成工程)。その後、炉からグリーンペレットを取り出して目開き5mmの篩で篩い、その篩を通過したペレット片の通過割合(質量%)を測定してバースティング性の評価とした。表2では、ペレット片の通過割合を「-5mm割合」として示している。
 表2に示されるように、脱結晶水処理温度が100℃以上800℃以下、且つ、脱結晶水時間が5分以上200分以下である実験No.1から5、8から14、17及び18のグリーンペレットは、その強度が1.0kg/pellet以上であった。また、これら実験No.のグリーンペレットは、バースティング性の指標であるペレット片の通過割合(-5mm割合)がいずれも3.0質量%以下、具体的には1.5質量%以下であった。すなわち、本実施形態に係るこれら実験No.のグリーンペレットは、グリーンペレットの強度とバースティング性とを両立している。
 なお、これら実験No.1から5、8から14、17及び18のグリーンペレットの製造過程では、脱結晶水処理工程において、脱水鉱石の結晶水の含有量(脱水鉱石のLOI)が、脱結晶水工程前の鉄鉱石(原料鉱石)の結晶水の含有量(原料鉱石のLOI)から14質量%以上減少している。グリーンペレットの強度とバースティング性とを両立していない実験No.6や15と比較すると、脱水鉱石の結晶水の含有量は、脱結晶水工程前の鉄鉱石の結晶水の含有量から10質量%以上減少していることが好ましいと考えられる。
 これら実験No.1から5、8から14、17及び18のグリーンペレットで示されるように、脱結晶水工程前の鉄鉱石の結晶水の含有量が4.9質量%以上であってもグリーンペレットの強度とバースティング性とを両立が可能であることから、脱結晶水工程前の鉄鉱石の結晶水の含有量が4.9質量%よりも少ない場合、例えば3.0質量%以上であっても、脱結晶水処理温度が100℃以上800℃以下、且つ、脱結晶水時間が5分以上200分以下であれば、当然にグリーンペレットの強度とバースティング性とを両立が可能であると考えられる。なお、従来直接還元製鉄法で使用されていた高品位鉱石では、結晶水の含有量は1.0質量%前後又はこれ以下である場合がほとんどである。また、高炉向けの鉄鉱石ペレットでは、多くても(最大でも)結晶水の含有量が3.0質量%弱の鉄鉱石が用いられているに過ぎない。
 また、これら実験No.1から5、8から14、17及び18のグリーンペレットのうち、特に鉱石粉における粒子径10μm以下の割合(-10μm割合)が10質量%以上70質量%以下である実験No.1から5、10から14、17及び18のグリーンペレットは、バースティング性の指標であるペレット片の通過割合(-5mm割合)がいずれも1.0質量%以下であり、特に良好であった。また、また、これら実験No.のグリーンペレットは鉱石粉における粒子径10μm以下の割合(-10μm割合)が10質量%以上70質量%以下ではない実験No.8、9のグリーンペレットと比べて、グリーンペレットの強度が高い点でも良好である。
 また、実験No.1から5、10から14、17及び18のグリーンペレットと、実験No.8、9のグリーンペレットとを比べた場合、D90が50μm以上200μm以下であれば、グリーンペレットの強度が高くなりやすいことがわかる。
 なお、脱結晶水処理温度が100℃以上800℃以下ではない実験No.6、7や、脱結晶水時間が5分以上200分以下ではない実験No.15、16のグリーンペレットは、グリーンペレットの強度が1.0kg/pellet未満又はペレット片の通過割合(-5mm割合)が1.0質量%超である。すなわち、実験No.6、7、15及び16のグリーンペレットでは、グリーンペレットの強度とバースティング性とを両立していない。
 図1には、実験No.1から5、8から14、17及び18のグリーンペレットの強度と鉱石粉における粒子径10μm以下の割合(-10μm割合)との関係を示している。また、図2には、実験No.1から5、8から14、17及び18のグリーンペレットのペレット片の通過割合(-5mm割合)と鉱石粉における粒子径10μm以下の割合(-10μm割合)との関係を示している。
 図1に示すグラフによれば、鉱石粉における粒子径10μm以下の割合(-10μm割合)が10質量%以上70質量%以下であると、グリーンペレットの強度が1.0kg/pellet以上であることがわかる。特に鉱石粉における粒子径10μm以下の割合が25質量%以上60質量%以下であると、特にグリーンペレットの強度がより高くなることがわかる。図1中において実線で示すように、鉱石粉における粒子径10μm以下の割合が小さい側から大きい側に移るにつれて、グリーンペレットの強度は概ね上に凸になる。
 図2に示すグラフによれば、鉱石粉における粒子径10μm以下の割合(-10μm割合)が10質量%以上70質量%以下であると、ペレット片の通過割合(-5mm割合)が1質量%以下であることがわかる。図2中において破線で示すように、鉱石粉における粒子径10μm以下の割合が小さい側から大きい側に移るにつれて、ペレット片の通過割合は概ね下に凸になる。
 図1、図2のグラフを対比して考察すると、全体的には、鉱石粉における粒子径10μm以下の割合(-10μm割合)が25質量%以上60質量%以下である場合に、ペレットの強度が特に高く、且つ、ペレット片の通過割合も安定して低くなってバースティング性が良く抑制されていることから、特に好ましいといえる。
 以上のようにして、鉄鉱石ペレットの製造方法を提供することができる。
 なお、本明細書において開示された実施形態は例示であって、本開示の実施形態はこれに限定されず、本開示の目的を逸脱しない範囲内で適宜改変することが可能である。
 本開示は、鉄鉱石ペレットの製造方法に適用できる。

Claims (5)

  1.  鉄分含有率が63質量%以下の鉄鉱石から結晶水を脱離させて脱水鉱石を得る脱結晶水処理工程を含み、
     前記脱結晶水処理工程では、100℃以上800℃以下に前記鉄鉱石を加熱した状態で5分以上200分以下保持する鉄鉱石ペレットの製造方法。
  2.  前記脱水鉱石を粉砕して鉱石粉を得る粉砕工程を更に含み、
     前記鉱石粉は、篩分けによる粒子径10μm以下の割合が10質量%以上70質量%以下である請求項1に記載の鉄鉱石ペレットの製造方法。
  3.  前記粒子径10μm以下の割合が25質量%以上60質量%以下である請求項2に記載の鉄鉱石ペレットの製造方法。
  4.  前記鉱石粉は、体積基準の粒度分布における累積90%径が50μm以上200μm以下である請求項2又は3に記載の鉄鉱石ペレットの製造方法。
  5.  前記鉄鉱石の結晶水の含有量は、3.0質量%以上である請求項1から4の何れか一項に記載の鉄鉱石ペレットの製造方法。
PCT/JP2023/017633 2022-09-01 2023-05-10 鉄鉱石ペレットの製造方法 WO2024047950A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022139568 2022-09-01
JP2022-139568 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024047950A1 true WO2024047950A1 (ja) 2024-03-07

Family

ID=90099243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017633 WO2024047950A1 (ja) 2022-09-01 2023-05-10 鉄鉱石ペレットの製造方法

Country Status (1)

Country Link
WO (1) WO2024047950A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499132A (ja) * 1990-08-07 1992-03-31 Kobe Steel Ltd 結晶水を多く含む鉄鉱石のペレット製造方法
JP2010163656A (ja) * 2009-01-15 2010-07-29 Kobe Steel Ltd 鉄鉱石ペレットの製造方法
JP2017031444A (ja) * 2015-07-29 2017-02-09 株式会社神戸製鋼所 焼結ペレットの製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499132A (ja) * 1990-08-07 1992-03-31 Kobe Steel Ltd 結晶水を多く含む鉄鉱石のペレット製造方法
JP2010163656A (ja) * 2009-01-15 2010-07-29 Kobe Steel Ltd 鉄鉱石ペレットの製造方法
JP2017031444A (ja) * 2015-07-29 2017-02-09 株式会社神戸製鋼所 焼結ペレットの製造装置

Similar Documents

Publication Publication Date Title
EP0916742B1 (en) Method of producing iron oxide pellets with low bentonite content
JPH10182150A (ja) Itoの原料粉と焼結体およびそれらの製造方法
CN107739820B (zh) 磁铁矿粉球团矿及其生产方法
AU2015297792B2 (en) Method for smelting nickel oxide ore
Pal et al. Development of pellet-sinter composite agglomerate for blast furnace
JP3173336B2 (ja) 高強度ロックウール及びその製造方法
CA1246343A (en) Agglomerated ores and a producing method therefor
KR20140108659A (ko) 철 및 몰리브덴 함유 펠렛
WO2013129604A1 (ja) 還元鉄塊成物の製造方法
WO2024047950A1 (ja) 鉄鉱石ペレットの製造方法
JP5423645B2 (ja) 還元鉄の製造方法
CA1149617A (en) Porous iron ore pellets and process for manufacturing same
US10323297B2 (en) Method for producing pellet and method for smelting nickel oxide ore
CA2423166C (en) Method for making reduced iron
JP6326074B2 (ja) 炭材内装鉱およびその製造方法
WO2024047951A1 (ja) 鉄鉱石ペレットの製造方法
CN114836616B (zh) 铁矿粉球团矿及其制备方法
WO2024057693A1 (ja) 鉄鉱石ペレットの製造方法
JP2009030116A (ja) 高炉用鉱石原料の製造方法
JP2007100198A (ja) ロータリーキルンダストの造粒方法
JP2016176130A (ja) 鉄鉱石焼成ペレット製造用生ペレットおよび鉄鉱石焼成ペレットの製造方法
WO2024057694A1 (ja) 還元鉄の製造方法
JP7366832B2 (ja) 鉄鉱石ペレットの製造方法
RU2625362C2 (ru) Способ получения агломерата восстановленного железа
WO2022208985A1 (ja) 焼結鉱の製造方法および粉化抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859721

Country of ref document: EP

Kind code of ref document: A1