WO2024046233A1 - 图像传感器像素电路、图像传感器及电子设备 - Google Patents

图像传感器像素电路、图像传感器及电子设备 Download PDF

Info

Publication number
WO2024046233A1
WO2024046233A1 PCT/CN2023/114996 CN2023114996W WO2024046233A1 WO 2024046233 A1 WO2024046233 A1 WO 2024046233A1 CN 2023114996 W CN2023114996 W CN 2023114996W WO 2024046233 A1 WO2024046233 A1 WO 2024046233A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
switch
signal
global shutter
shutter module
Prior art date
Application number
PCT/CN2023/114996
Other languages
English (en)
French (fr)
Inventor
罗轶
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024046233A1 publication Critical patent/WO2024046233A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/532Control of the integration time by controlling global shutters in CMOS SSIS

Definitions

  • the present application belongs to the field of image processing technology, and specifically relates to an image sensor pixel circuit, an image sensor and electronic equipment.
  • CIS complementary metal-oxide semiconductor image sensor
  • rolling shutter In the complementary metal-oxide semiconductor image sensor (CIS), there are two pixel exposure methods: rolling shutter and global shutter.
  • Global shutter pixels are divided into charge domain global shutter and voltage domain global shutter.
  • CIS widely uses rolling shutter, but due to the time difference in exposure between its pixel rows and pixel rows, a jelly/distortion effect will be produced for high-speed moving objects in the output picture, and it is useless in its structure. Due to the independent capacitor of the global signal buffer, the global shutter function cannot be realized. Due to its own structure, the charge domain global shutter will cause high parasitic light sensitivity and easily cause optical crosstalk, so it has higher design requirements. Also due to its own structure, the voltage domain global shutter is difficult to eliminate the noise it contains when buffering and reading voltage signals, resulting in larger reading noise.
  • Embodiments of the present application provide an image sensor pixel circuit, image sensor and electronic device, which can solve the problem that the global shutter function cannot be realized due to the rolling shutter used by CIS in related technologies, and the use of a global shutter can easily cause optical crosstalk or high noise.
  • inventions of the present application provide an image sensor pixel circuit.
  • the image sensor pixel circuit includes: an optical module, a rolling shutter module and a global shutter module; the optical module The block is used to convert light into electric charge; the rolling shutter module is connected to the optical module, used to cache the electric charge, and convert the electric charge into a voltage signal and output it to the signal processing module, and the signal processing module uses For processing the output signal of the image sensor pixel circuit; the global shutter module is connected to the rolling shutter module or the optical module; when the global shutter module is connected to the rolling shutter module, the The global shutter module caches the voltage signal and outputs it to the signal processing module; when the global shutter module is connected to the optical module, the global shutter module caches the charge and outputs the The charge is converted into a voltage signal and output to the signal processing module.
  • embodiments of the present application provide an image sensor, including the image sensor pixel circuit described in the first aspect.
  • embodiments of the present application provide an electronic device, including a signal processing module and the image sensor described in the second aspect.
  • the signal processing module is connected to the image sensor, and the signal processing module is used to process the The output signal of the image sensor.
  • the embodiment of the present application discloses an image sensor pixel circuit, which includes an optical module, a rolling shutter module and a global shutter module.
  • the optical module is used to convert light into charges.
  • the rolling shutter module is connected to the optical module for caching.
  • the charge is converted into a voltage signal and output to the signal processing module.
  • the signal processing module is used to process the output signal of the image sensor pixel circuit.
  • the global shutter module is connected to the rolling shutter module or optical module.
  • the global shutter module is connected to the rolling shutter. When the module is connected, the global shutter module caches the voltage signal and outputs it to the signal processing module; when the global shutter module is connected to the optical module, the global shutter module caches the charge and converts the charge into a voltage signal and outputs it to the signal processing module. module.
  • the global shutter module and the rolling shutter module are connected in series or in parallel, and the rolling shutter signal or the global shutter signal can be output independently, or both signals can be output at the same time.
  • the global shutter module is connected in series in the rolling shutter module.
  • Figure 1 is a structural block diagram of an image sensor pixel circuit provided by an embodiment of the present application.
  • Figure 2 is a structural block diagram of an image sensor pixel circuit provided by an embodiment of the present application.
  • Figure 3 is a circuit schematic of an image sensor pixel circuit provided by an embodiment of the present application. picture
  • Figure 4 is another structural block diagram of an image sensor pixel circuit provided by an embodiment of the present application.
  • Figure 5 is another circuit schematic diagram of an image sensor pixel circuit provided by an embodiment of the present application.
  • Figure 6 is a schematic circuit diagram of an optical module provided by an embodiment of the present application.
  • 30-global shutter module 310-voltage domain global shutter module; 320-charge domain global shutter module.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • the image sensor pixel circuit includes: an optical module 10, a rolling shutter module 20 and a global shutter module 30; the optical module 10 is used to convert light into charges; the rolling shutter module 20 is connected to the optical module 10, Used to cache the charge and convert the charge into a voltage signal and output it to the signal processing module.
  • the signal processing module is used to process the output signal of the image sensor pixel circuit; the global shutter module 30 and the rolling shutter The shutter module 20 or the optical module 10 is connected.
  • the global shutter module 30 When the global shutter module 30 is connected to the rolling shutter module 20, the global shutter module 30 buffers the voltage signal and outputs it to the signal processing module; when the global shutter module 30 is connected to the optical module 10 In the case of , the global shutter module 30 caches the charge, converts the charge into a voltage signal and outputs it to the signal processing module.
  • the image sensor pixel circuit includes an optical module 10, a rolling shutter module 20 and a global shutter module 30.
  • the optical module 10 is used to convert light into charges.
  • the rolling shutter module 20 is connected to the optical module 10.
  • the global shutter module 30 is connected to the rolling shutter module 20 or the optical module 10, and the global shutter module 30 is connected to the rolling shutter module 20 or the optical module 10.
  • the global shutter module 30 caches the voltage signal and outputs it to the signal processing module; when the global shutter is connected to the optical module 10, the global shutter module 30 caches the charge and outputs it to the signal processing module.
  • the charge is converted into a voltage signal and output to the signal processing module.
  • the global shutter module 30 and the rolling shutter module 20 are connected in series or in parallel.
  • the rolling shutter signal or the global shutter signal can be output independently, or both signals can be output at the same time.
  • the global shutter module 30 Connected in series after the rolling shutter module 20 the parasitic light sensitivity can be reduced while retaining the function of dual correlation sampling noise reduction.
  • the global shutter module 30 is a voltage domain global shutter module 310 , and the voltage domain global shutter module 310 is connected in series with the rolling shutter module 20 .
  • the image sensor pixel circuit can be formed in series, that is, the voltage domain global shutter module 310 is connected at the back end of the rolling shutter module 20. Since the rolling shutter circuit module outputs a voltage signal, only the voltage signal can be used.
  • the domain global shutter structure is connected in series to reduce parasitic light sensitivity (PLS) and avoid optical crosstalk.
  • the voltage domain global shutter module 310 includes: a first switch, a voltage domain capacitor, a first modulation switch, a first modulation capacitor, a first source follower and a first signal switch;
  • the first end of the switch is connected to the rolling shutter module 20, and the second end of the first switch is connected to the first end of the voltage domain capacitor and the first end of the first modulation capacitor respectively.
  • the second end of the voltage domain capacitor is connected to ground.
  • the second end of a modulation capacitor is respectively connected to the first end of the first modulation switch and the input end of the first source follower, and the second end of the first modulation switch is respectively connected to the power terminal and the first output of the first source follower.
  • the second output terminal of the first source follower is connected to the first terminal of the first signal switch, and the second terminal of the first signal switch is used to output the pixel signal to the signal processing module.
  • the connection method between the voltage domain global shutter module 310 and the rolling shutter module 20 is as follows: the rolling shutter module 20 includes: a first floating diffusion capacitor, a first reset switch, a second source follower and a second signal switch; The first end of the first floating diffusion capacitor is connected to the optical module 10, the first end of the first reset switch and the input end of the second source follower respectively. The second end of the first floating diffusion capacitor is connected to ground. The first reset The second end of the switch is respectively connected to the power terminal and the first output end of the second source follower; the second output end of the second source follower is respectively connected to the first end of the second signal switch and the first end of the first switch. Connected, the second end of the second signal switch is used to output the pixel signal to the signal processing module.
  • the optical module 10 in each pixel circuit can include an optical unit 110, and the rolling shutter can use a traditional 4T-APS (4-Transistor Active Pixel Sensor, 4T active pixel sensor) circuit, consisting of: optical
  • the fourth switch TX switch transistor of the module 10 is responsible for the switch of the charge transfer link between the photodiode (Photodiode, PD) and the first floating diffusion capacitor FD;
  • the first reset switch FD_RST transistor is responsible for and participates in the reset (Reset) of the FD Implementation of the Correlated Double Sampling (CDS) noise reduction function;
  • the second source follower RS_SF is the source follower transistor of the rolling shutter module 20 and is responsible for amplifying and reading out the converted voltage signal in the FD;
  • the second signal switch RS_SEL switching transistor is responsible for transmitting the rolling shutter pixel signal RS_OUT to the outside of the pixel for back-end processing.
  • the rolling shutter pixel signal enters the voltage domain capacitor GS_CAP through the first switch GS_TX switching transistor for buffering and the first modulation switch CAL transistor and the first modulation capacitor.
  • the CAL_CAP capacitor modulates the cache voltage.
  • the first source follower GS_SF is a source follower transistor of the voltage domain global shutter module 310 and is responsible for amplifying and reading out the voltage signal buffered in GS_CAP.
  • the first signal switch GS_SEL switching transistor is responsible for transmitting the global shutter pixel signal GS_OUT to the signal processing module outside the pixel for back-end processing.
  • transistors in the pixel circuit function to turn on or off, and they can all be N-type metal-oxide-semiconductor (NMOS) transistors. To reduce the circuit wiring area of pixels.
  • NMOS N-type metal-oxide-semiconductor
  • Embodiments of the present application can use high-resolution CIS with pixel synthesis.
  • FIG. 6 which is a possible implementation manner, a circuit structure of 4-in-1 pixel synthesis and hybrid pixel synthesis is used. Since the optical module 10 contains four optical units 110, each optical unit 110 includes an independent PD and its corresponding TX switching transistor, each optical unit 110 will be uniformly connected in parallel to the FD of the rolling shutter module 20. In the pixel exposure stage, the PDs in all optical units 110 are exposed to generate charges.
  • the charges in the PDs are transferred to the FD by turning on the TX switch, and the four optical units 110
  • the TX switch may not be turned on, partially turned on, or fully turned on, which is determined according to the actual situation, and is not limited in the embodiments of this application.
  • the embodiment of the present application can allow the pixel signal to output the rolling shutter signal or the global shutter signal separately through RS_SEL or GS_SEL, or it can also turn on RS_SEL and GS_SEL at the same time to output both signals. Since the voltage domain global shutter is connected in series to the rolling shutter circuit, the voltage domain capacitance in the voltage domain global shutter is far away from the PD. It greatly reduces PLS while retaining the CDS noise reduction function, effectively reducing the noise problem of the voltage domain global shutter.
  • the rolling shutter pixel module based on 4T-APS can ensure the reset step of the PD in the optical module 10 at each frame.
  • the global shutter module 30 is a charge domain global shutter module 320 , and the charge domain global shutter module 320 is connected in parallel with the rolling shutter module 20 .
  • the image sensor pixel circuit can be formed in parallel, that is, the charge domain global shutter module 320 and the rolling shutter module 20 are connected in parallel.
  • the charge domain global shutter module 320 includes: a second switch, a charge domain capacitor, a third switch, a second floating diffusion capacitor, a second reset switch, a third source follower, and a third switch.
  • a second switch Three-signal switch; the first end of the second switch is connected to the optical module 10 and the rolling shutter module 20 respectively, and the second end of the second switch is connected to the first end of the charge domain capacitor and the first end of the third switch respectively, The second terminal of the charge domain capacitor is connected to ground, and the second terminal of the third switch is respectively connected to the first terminal of the second floating diffusion capacitor, the first terminal of the second reset switch and the input terminal of the third source follower.
  • the second end of the floating diffusion capacitor is connected to ground, the second end of the second reset switch is connected to the power terminal and the first output end of the third source follower respectively, and the second output end of the third source follower is connected to the third signal switch.
  • the first end of the third signal switch is connected to the second end of the third signal switch for outputting the pixel signal to the signal processing module.
  • the connection method between the voltage domain global shutter module 310 and the rolling shutter module 20 is as follows: the rolling shutter module 20 includes: a third floating diffusion capacitor, a third reset switch, a fourth source follower and a fourth signal switch; The first end of the third floating diffusion capacitor is connected to the optical module 10, the first end of the third reset switch, the input end of the fourth source follower and the first end of the second switch respectively. Two ends are connected to ground, the second end of the third reset switch is connected to the power terminal and the first output end of the fourth source follower respectively, the second end of the fourth source follower is connected to the first end of the fourth signal switch, The second end of the fourth signal switch is used to output the pixel signal to the signal processing module.
  • the optical module 10 in each pixel circuit may include an optical unit 110 , and the rolling shutter module 20 circuit still adopts a 4T-APS structure.
  • Charge domain global shutter module 320 due to It is a parallel structure, and its access point is changed to between the third floating diffusion capacitor FD, the third reset switch FD_RST, the fourth source follower RS_SF, and the fourth switch TX transistor. Since this position is the FD charge cache interval and has not been converted into a voltage signal, the charge domain global shutter circuit design can only be used. After passing through the second switch GS_TX switching transistor, the charge is directly buffered to the charge domain capacitor GS_CAP.
  • the charge cached in GS_CAP passes through the third switch GS_TX2 switching transistor to the second floating diffusion capacitor GS_FD of a 4T-APS circuit. It is converted into a voltage signal through the third source follower GS_SF and then passes through the third signal switch GS_SEL switch. The transistor performs GS_OUT signal output.
  • the function of the second reset switch GS_RST is to reset the GS_CAP and GS_FD capacitors and participate in the implementation of the CDS function.
  • Embodiments of the present application can use high-resolution CIS with pixel synthesis.
  • Figure 6 which is a possible implementation manner, a circuit structure of 4-in-1 pixel synthesis and hybrid pixel synthesis is used. Since the optical module 10 contains four optical units 110, each optical unit 110 includes an independent PD and its corresponding TX switching transistor, each optical unit 110 will be uniformly connected in parallel to the FD of the rolling shutter module 20. In the pixel exposure stage, the PDs in all optical units 110 are exposed to generate charges.
  • the charges in the PDs are transferred to the FD by turning on the TX switches, and the TX switches of the four optical units 110 may not be turned on, partially turned on, or all of them Opening is determined according to the actual situation and is not limited by the embodiments of this application.
  • the rolling shutter signal or the global shutter signal can be output individually by allowing the pixel signal to pass through RS_SEL or GS_SEL, or both RS_SEL and GS_SEL can be turned on at the same time to output both signals. Since the charge domain capacitor GS_CAP is far away from PD (the FD and GS_TX switching transistors are separated in the middle), PLS can be greatly reduced. At the same time, the charge storage capacity of GS_CAP can be relatively reduced (equal to the FD capacity), which is conducive to the miniaturization of the global shutter pixel module and the reduction of pixel size.
  • the rolling shutter pixel module based on 4T-APS can ensure the reset step of the PD in the optical module 10 at each frame.
  • the optical module 10 includes at least one optical unit 110.
  • the optical unit 110 includes a photodiode and a fourth switch.
  • the anode of the photodiode is connected to the first end of the fourth switch, and the cathode of the photodiode is connected to the first end of the fourth switch. Grounded, the second end of the fourth switch is connected to at least one of the rolling shutter module 20 and the global shutter module 30 .
  • the optical module 10 may include one optical unit 110 or multiple optical units 110.
  • the optical module 10 includes four optical units 110, and each optical unit 110 includes an independent The PD and its corresponding TX switching transistor, in conjunction with the rolling shutter
  • the TX switching transistor of each optical unit 110 is connected in parallel to the FD of the rolling shutter module 20.
  • the PDs in all optical units 110 are exposed to generate charges.
  • the TX switches of the four optical units 110 may not be opened, partially opened, or fully opened, which is determined according to the actual situation and is not limited in the embodiment of this application.
  • the optical module 10 may also include nine optical units 110. The specific connection relationship is similar to that of the four optical units 110. They are all connected in parallel to the FD of the rolling shutter module 20. Specifically, details will not be described in this embodiment.
  • the image sensor pixel circuit in this application may include a microcontroller.
  • the microcontroller can output control signals to each switching transistor to control its on or off.
  • Embodiments of the present application also provide an image sensor, including the image sensor pixel circuit provided in any of the above embodiments. And can achieve the same technical effect. To avoid repetition, they will not be described again here.
  • An embodiment of the present application also provides an electronic device, including a signal processing module and the image sensor provided in the above embodiment.
  • the signal processing module is connected to the image sensor, and the signal processing module is used to process the output signal of the image sensor. And can achieve the same technical effect, so to avoid repetition, they will not be described again here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of this application is essentially or the part that contributes to the existing technology can be embodied in the form of a software product. It appears that the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) and includes a number of instructions to enable a terminal (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc. ) perform the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请公开一种图像传感器像素电路、图像传感器及电子设备,属于图像处理技术领域。该图像传感器像素电路包括:光学模块、卷帘快门模块和全局快门模块;光学模块用于将光转换成电荷;卷帘快门模块与光学模块连接,用于缓存电荷,并将电荷转换为电压信号输出至信号处理模块,信号处理模块用于处理图像传感器像素电路的输出信号;全局快门模块与卷帘快门模块或光学模块连接;在全局快门模块与卷帘快门模块连接的情况下,全局快门模块将电压信号缓存输出至信号处理模块;在全局快门模块与光学模块连接的情况下,全局快门模块将电荷缓存,并将电荷转换为电压信号输出至信号处理模块。

Description

图像传感器像素电路、图像传感器及电子设备
交叉引用
本申请要求在2022年08月30日提交中国专利局、申请号为202211048491.8、名称为“图像传感器像素电路、图像传感器及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于图像处理技术领域,具体涉及一种图像传感器像素电路、图像传感器及电子设备。
背景技术
在互补金属氧化半导体图像传感器(Complementary metal-oxide semiconductor Image Sensor,CIS)中,像素曝光方式有两种:卷帘快门与全局快门。全局快门像素分为电荷域全局快门和电压域全局快门。
在相关技术中,CIS广泛采用卷帘快门,但是由于其像素行与像素行之间的曝光存在时间差,因此在输出的图片中对于高速运动物体会产生果冻/扭曲效应,并且其结构中没有用于全局信号缓存的独立电容,导致全局快门功能无法实现。电荷域全局快门由于其自身结构,会导致高寄生光敏感度,容易造成光串扰,因此对设计要求较高。电压域全局快门同样由于自身结构,在缓存读取电压信号时较难消除其包含的噪音,造成读取噪音较大。
发明内容
本申请实施例提供一种图像传感器像素电路、图像传感器及电子设备,能够解决相关技术的CIS采用卷帘快门使得全局快门功能无法实现,而采用全局快门容易造成光串扰或噪音较大的问题。
第一方面,本申请实施例提供了一种图像传感器像素电路,所述图像传感器像素电路包括:光学模块、卷帘快门模块和全局快门模块;所述光学模 块用于将光转换成电荷;所述卷帘快门模块与所述光学模块连接,用于缓存所述电荷,并将所述电荷转换为电压信号输出至信号处理模块,所述信号处理模块用于处理所述图像传感器像素电路的输出信号;所述全局快门模块与所述卷帘快门模块或所述光学模块连接;在所述全局快门模块与所述卷帘快门模块连接的情况下,所述全局快门模块将所述电压信号缓存并输出至所述信号处理模块;在所述全局快门模块与所述光学模块连接的情况下,所述全局快门模块将所述电荷缓存,并将所述电荷转换为电压信号输出至所述信号处理模块。
第二方面,本申请实施例提供了一种图像传感器,包括第一方面所述的图像传感器像素电路。
第三方面,本申请实施例提供了一种电子设备,包括信号处理模块和第二方面所述的图像传感器,所述信号处理模块与所述图像传感器连接,所述信号处理模块用于处理所述图像传感器的输出信号。
在本申请实施例公开了一种图像传感器像素电路,其包括光学模块、卷帘快门模块和全局快门模块,光学模块用于将光转换成电荷,卷帘快门模块与光学模块连接,用于缓存电荷,并将电荷转换为电压信号输出至信号处理模块,信号处理模块用于处理图像传感器像素电路的输出信号,全局快门模块与卷帘快门模块或光学模块连接,在全局快门模块与卷帘快门模块连接的情况下,全局快门模块将电压信号缓存并输出至信号处理模块;在全局快门模块与光学模块连接的情况下,全局快门模块将电荷缓存,并将电荷转换为电压信号输出至信号处理模块。本申请实施例将全局快门模块与卷帘快门模块串联或并联,可以单独输出卷帘快门信号或全局快门信号,也可以同时输出两种信号,在两者串联时,由于全局快门模块串联在卷帘快门模块之后,可以降低寄生光敏感度同时保留双关联采样降噪的功能。
附图说明
图1是本申请的一个实施例提供的图像传感器像素电路的结构框图;
图2是本申请的一个实施例提供的图像传感器像素电路的一种结构框图;
图3是本申请的一个实施例提供的图像传感器像素电路的一种电路示意 图;
图4是本申请的一个实施例提供的图像传感器像素电路的另一种结构框图;
图5是本申请的一个实施例提供的图像传感器像素电路的另一种电路示意图;
图6是本申请的一个实施例提供的光学模块的一种电路示意图。
其中,
10-光学模块;110-光学单元;
20-卷帘快门模块;
30-全局快门模块;310-电压域全局快门模块;320-电荷域全局快门模块。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图1-6,通过具体的实施例及其应用场景对本申请实施例提供的一种图像传感器像素电路、图像传感器及电子设备进行详细地说明。
如图1所示,为本申请实施例提供的图像传感器像素电路。如图1所示,该图像传感器像素电路包括:光学模块10、卷帘快门模块20和全局快门模块30;光学模块10用于将光转换成电荷;卷帘快门模块20与光学模块10连接,用于缓存电荷,并将电荷转换为电压信号输出至信号处理模块,信号处理模块用于处理图像传感器像素电路的输出信号;全局快门模块30与卷帘 快门模块20或光学模块10连接,在全局快门模块30与卷帘快门模块20连接的情况下,全局快门模块30将电压信号缓存并输出至信号处理模块;在全局快门模块30与光学模块10连接的情况下,全局快门模块30将电荷缓存,并将电荷转换为电压信号输出至信号处理模块。
在本申请实施例中,图像传感器像素电路包括光学模块10、卷帘快门模块20和全局快门模块30,光学模块10用于将光转换成电荷,卷帘快门模块20与光学模块10连接,用于缓存电荷,并将电荷转换为电压信号输出至信号处理模块,信号处理模块用于处理图像传感器像素电路的输出信号,全局快门模块30与卷帘快门模块20或光学模块10连接,在全局快门模块30与卷帘快门模块20连接的情况下,全局快门模块30将电压信号缓存并输出至信号处理模块;在全局快门与光学模块10连接的情况下,全局快门模块30将电荷缓存,并将电荷转换为电压信号输出至信号处理模块。本申请实施例将全局快门模块30与卷帘快门模块20串联或并联,可以单独输出卷帘快门信号或全局快门信号,也可以同时输出两种信号,在两者串联时,由于全局快门模块30串联在卷帘快门模块20之后,可以降低寄生光敏感度同时保留双关联采样降噪的功能。
如图2所示,在本申请的一个可能的实施方式中,全局快门模块30为电压域全局快门模块310,电压域全局快门模块310与卷帘快门模块20串联连接。
也就是说,可以采用串联的方式形成图像传感器像素电路,即在卷帘快门模块20的后端链接电压域全局快门模块310,由于卷帘快门电路模块输出的为电压信号,因此只能采用电压域全局快门结构进行串联,以降低寄生光敏感度(Parasitic Light Sensitivity,PLS),避免光串扰。
在本申请的一个可能的实施方式中,电压域全局快门模块310包括:第一开关、电压域电容、第一调制开关、第一调制电容、第一源跟随器和第一信号开关;第一开关的第一端与卷帘快门模块20连接,第一开关的第二端分别与电压域电容的第一端和第一调制电容的第一端连接,电压域电容的第二端接地,第一调制电容的第二端分别与第一调制开关的第一端和第一源跟随器的输入端连接,第一调制开关的第二端分别与电源端子和第一源跟随器的第一输出端连接,第一源跟随器的第二输出端与第一信号开关的第一端连接,第一信号开关的第二端用于输出像素信号至信号处理模块。
相应的,电压域全局快门模块310与卷帘快门模块20的连接方式如下:卷帘快门模块20包括:第一浮动扩散电容、第一重置开关、第二源跟随器和第二信号开关;第一浮动扩散电容的第一端分别与光学模块10、第一重置开关的第一端和第二源跟随器的输入端连接,第一浮动扩散电容的第二端接地,第一重置开关的第二端分别与电源端子和第二源跟随器的第一输出端连接;第二源跟随器的第二输出端分别与第二信号开关的第一端和第一开关的第一端连接,第二信号开关的第二端用于输出像素信号至信号处理模块。
如图3所示,每个像素电路中的光学模块10可以包括一个光学单元110,卷帘快门可以采用传统4T-APS(4-Transistor Active Pixel Sensor,4T有源像素传感器)电路,由:光学模块10的第四开关TX开关晶体管负责光电二极管(Photodiode,PD)与第一浮动扩散电容FD之间的电荷转移链接的开关;第一重置开关FD_RST晶体管负责FD的重置(Reset)并参与双关联采样(Correlated Double Sampling,CDS)降噪功能的实现;第二源跟随器RS_SF为卷帘快门模块20的源跟随器晶体管,负责将FD内已经被转换好的电压信号放大读取出来;第二信号开关RS_SEL开关晶体管负责将卷帘快门像素信号RS_OUT传输至像素外进行后端处理。在RS_SF和RS_SEL之间为电压域全局快门模块310的接入点,卷帘快门像素信号通过第一开关GS_TX开关晶体管进入至电压域电容GS_CAP进行缓存并且第一调制开关CAL晶体管以及第一调制电容CAL_CAP电容可对缓存电压进行调制。第一源跟随器GS_SF为电压域全局快门模块310的源跟随器晶体管,负责将GS_CAP内缓存的电压信号放大读取出来。第一信号开关GS_SEL开关晶体管负责将全局快门像素信号GS_OUT传输至像素外的信号处理模块进行后端处理。值得说明的是,本申请实施例提供的像素电路内所有的晶体管的作用为导通或关断的作用,均可以为N型氧化物半导体(N-type metal-oxide-semiconductor,NMOS)晶体管,以减少像素的电路布线面积。
本申请实施例可以采用像素合成的高分辨率的CIS,如图6所示,为一种可能的实施方式,采用4合1像素合成混合像素的电路结构。由于光学模块10中包含有4个光学单元110,每个光学单元110均包含有独立的PD以及其对应的TX开关晶体管,每个光学单元110将统一并联至卷帘快门模块20的FD,在像素曝光阶段,所有光学单元110中的PD均曝光产生电荷,在读取阶段,通过打开TX开关转移PD内的电荷至FD,且4个光学单元110 的TX开关可不打开,部分打开,或者全部打开,根据实际情况确定,本申请实施例不做限定。
本申请实施例可以让像素信号通过RS_SEL或GS_SEL单独输出卷帘快门信号或者全局快门信号,也可以同时打开RS_SEL和GS_SEL输出两种信号。由于电压域全局快门被串联至卷帘快门电路之后,电压域全局快门中的电压域电容远离PD。大大的降低了PLS的同时保留了CDS降噪功能,有效的降低了电压域全局快门的噪声问题。以4T-APS为基础的卷帘快门像素模块可以保证实现了光学模块10中PD在每一帧的重置步骤。
如图4所示,在本申请的一个可能的实施方式中,全局快门模块30为电荷域全局快门模块320,电荷域全局快门模块320与卷帘快门模块20并联连接。
也就是说,可以采用并联的方式形成图像传感器像素电路,即电荷域全局快门模块320与卷帘快门模块20并联连接。
在本申请的一个可能的实施方式中,电荷域全局快门模块320包括:第二开关、电荷域电容、第三开关、第二浮动扩散电容、第二重置开关、第三源跟随器和第三信号开关;第二开关的第一端分别与光学模块10和卷帘快门模块20连接,第二开关的第二端分别与电荷域电容的第一端和第三开关的第一端连接,电荷域电容的第二端接地,第三开关的第二端分别与第二浮动扩散电容的第一端、第二重置开关的第一端和第三源跟随器的输入端连接,第二浮动扩散电容的第二端接地,第二重置开关的第二端分别与电源端子和第三源跟随器的第一输出端连接,第三源跟随器的第二输出端与第三信号开关的第一端连接,第三信号开关的第二端用于输出像素信号至信号处理模块。
相应的,电压域全局快门模块310与卷帘快门模块20的连接方式如下:卷帘快门模块20包括:第三浮动扩散电容、第三重置开关、第四源跟随器和第四信号开关;第三浮动扩散电容的第一端分别与光学模块10、第三重置开关的第一端、第四源跟随器的输入端和第二开关的第一端连接,第三浮动扩散电容的第二端接地,第三重置开关的第二端分别与电源端子和第四源跟随器的第一输出端连接,第四源跟随器的第二端与第四信号开关的第一端连接,第四信号开关的第二端用于输出像素信号至信号处理模块。
如图5所示,每个像素电路中的光学模块10可以包括一个光学单元110,卷帘快门模块20电路仍然采用4T-APS结构。电荷域全局快门模块320由于 是并行结构,其接入点改变为第三浮动扩散电容FD,第三重置开关FD_RST,第四源跟随器RS_SF,与第四开关TX晶体管之间。由于该位置为FD电荷缓存区间,尚未转变成电压信号,因此只能采用电荷域全局快门电路设计。在通过第二开关GS_TX开关晶体管后,电荷直接缓存至电荷域电容GS_CAP。读取时,缓存在GS_CAP的电荷通过第三开关GS_TX2开关晶体管至一个4T-APS电路的第二浮动扩散电容GS_FD处,通过第三源跟随器GS_SF转换成电压信号后通过第三信号开关GS_SEL开关晶体管进行GS_OUT信号输出。同FD_RST一样,第二重置开关GS_RST的功能为重置GS_CAP与GS_FD电容并参与CDS功能的实现。
本申请实施例可以采用像素合成的高分辨率的CIS,如图6所示,为一种可能的实施方式,采用4合1像素合成混合像素的电路结构。由于光学模块10中包含有4个光学单元110,每个光学单元110均包含有独立的PD以及其对应的TX开关晶体管,每个光学单元110将统一并联至卷帘快门模块20的FD,在像素曝光阶段,所有光学单元110中的PD均曝光产生电荷,在读取阶段,通过打开TX开关转移PD内的电荷至FD,且4个光学单元110的TX开关可不打开,部分打开,或者全部打开,根据实际情况确定,本申请实施例不做限定。
本申请实施例可以通过让像素信号通过RS_SEL或GS_SEL单独输出卷帘快门信号或者全局快门信号,也可以同时打开RS_SEL和GS_SEL输出两种信号。由于电荷域电容GS_CAP与PD距离较远(中间相隔FD与GS_TX开关晶体管),可以大幅降低PLS。同时,GS_CAP的电荷存储容量可以相对减小(等于FD容量),有利于全局快门像素模块的小型化,降低像素尺寸。以4T-APS为基础的卷帘快门像素模块可以保证实现了光学模块10中PD在每一帧的重置步骤。
在本申请的一个可能的实施方式中,光学模块10包括至少一个光学单元110,光学单元110包括光电二极管和第四开关,光电二极管的正极与第四开关的第一端连接,光电二极管的负极接地,第四开关的第二端与卷帘快门模块20和全局快门模块30中的至少一者连接。
也就是说,光学模块10可以包括一个光学单元110,也可以包括多个光学单元110,例如,如图6所示,光学模块10包括4个光学单元110,每个光学单元110均包含有独立的PD以及其对应的TX开关晶体管,在与卷帘快 门模块20连接时,每个光学单元110的TX开关晶体管均并联连接至卷帘快门模块20的FD,在像素曝光阶段,所有光学单元110中的PD均曝光产生电荷,在读取阶段,通过打开TX开关转移PD内的电荷至FD,且4个光学单元110的TX开关可不打开,部分打开,或者全部打开,根据实际情况确定,本申请实施例不做限定。光学模块10也可以包括9个光学单元110,具体的连接关系与4个光学单元110的相似,均是并联后连接至卷帘快门模块20的FD,具体地本实施例中不做详细赘述。
值得说明的是,本申请中的图像传感器像素电路可以包括微控制器。
可以通过微控制器输出控制信号至各个开关晶体管,以控制其导通或关断。
本申请实施例还提供了图像传感器,包括上述任一实施例提供的图像传感器像素电路。且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种电子设备,包括信号处理模块和上述实施例提供的图像传感器,信号处理模块与图像传感器连接,信号处理模块用于处理图像传感器的输出信号。且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体 现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (10)

  1. 一种图像传感器像素电路,包括:光学模块、卷帘快门模块和全局快门模块;
    所述光学模块用于将光转换成电荷;
    所述卷帘快门模块与所述光学模块连接,用于缓存所述电荷,并将所述电荷转换为电压信号输出至信号处理模块,所述信号处理模块用于处理所述图像传感器像素电路的输出信号;
    所述全局快门模块与所述卷帘快门模块或所述光学模块连接;
    在所述全局快门模块与所述卷帘快门模块连接的情况下,所述全局快门模块将所述电压信号缓存并输出至所述信号处理模块;
    在所述全局快门模块与所述光学模块连接的情况下,所述全局快门模块将所述电荷缓存,并将所述电荷转换为电压信号输出至所述信号处理模块。
  2. 根据权利要求1所述的电路,其中,所述全局快门模块为电压域全局快门模块,所述电压域全局快门模块与所述卷帘快门模块串联连接。
  3. 根据权利要求2所述的电路,其中,所述电压域全局快门模块包括:第一开关、电压域电容、第一调制开关、第一调制电容、第一源跟随器和第一信号开关;
    所述第一开关的第一端与所述卷帘快门模块连接,所述第一开关的第二端分别与所述电压域电容的第一端和第一调制电容的第一端连接,所述电压域电容的第二端接地,所述第一调制电容的第二端分别与所述第一调制开关的第一端和所述第一源跟随器的输入端连接,所述第一调制开关的第二端分别与电源端子和所述第一源跟随器的第一输出端连接,所述第一源跟随器的第二输出端与所述第一信号开关的第一端连接,所述第一信号开关的第二端用于输出像素信号至所述信号处理模块。
  4. 根据权利要求3所述的电路,其中,所述卷帘快门模块包括:第 一浮动扩散电容、第一重置开关、第二源跟随器和第二信号开关;
    所述第一浮动扩散电容的第一端分别与所述光学模块、所述第一重置开关的第一端和所述第二源跟随器的输入端连接,所述第一浮动扩散电容的第二端接地,所述第一重置开关的第二端分别与所述电源端子和所述第二源跟随器的第一输出端连接;所述第二源跟随器的第二输出端分别与所述第二信号开关的第一端和所述第一开关的第一端连接,所述第二信号开关的第二端用于输出像素信号至所述信号处理模块。
  5. 根据权利要求1所述的电路,其中,所述全局快门模块为电荷域全局快门模块,所述电荷域全局快门模块与所述卷帘快门模块并联连接。
  6. 根据权利要求5所述的电路,其中,所述电荷域全局快门模块包括:第二开关、电荷域电容、第三开关、第二浮动扩散电容、第二重置开关、第三源跟随器和第三信号开关;
    所述第二开关的第一端分别与所述光学模块和所述卷帘快门模块连接,所述第二开关的第二端分别与所述电荷域电容的第一端和所述第三开关的第一端连接,所述电荷域电容的第二端接地,所述第三开关的第二端分别与所述第二浮动扩散电容的第一端、所述第二重置开关的第一端和所述第三源跟随器的输入端连接,所述第二浮动扩散电容的第二端接地,所述第二重置开关的第二端分别与电源端子和所述第三源跟随器的第一输出端连接,所述第三源跟随器的第二输出端与所述第三信号开关的第一端连接,所述第三信号开关的第二端用于输出像素信号至所述信号处理模块。
  7. 根据权利要求6所述的电路,其中,所述卷帘快门模块包括:第三浮动扩散电容、第三重置开关、第四源跟随器和第四信号开关;
    所述第三浮动扩散电容的第一端分别与所述光学模块、所述第三重置开关的第一端、所述第四源跟随器的输入端和所述第二开关的第一端连接,所述第三浮动扩散电容的第二端接地,所述第三重置开关的第二端分别与所述电源端子和所述第四源跟随器的第一输出端连接,所述第四源跟随器 的第二端与所述第四信号开关的第一端连接,所述第四信号开关的第二端用于输出像素信号至所述信号处理模块。
  8. 根据权利要求1所述的电路,其中,所述光学模块包括至少一个光学单元,所述光学单元包括光电二极管和第四开关,所述光电二极管的正极与所述第四开关的第一端连接,所述光电二极管的负极接地,所述第四开关的第二端与所述卷帘快门模块和所述全局快门模块中的至少一者连接。
  9. 一种图像传感器,包括权利要求1-8任一项所述的图像传感器像素电路。
  10. 一种电子设备,包括信号处理模块和如权利要求9所述的图像传感器,所述信号处理模块与所述图像传感器连接,所述信号处理模块用于处理所述图像传感器的输出信号。
PCT/CN2023/114996 2022-08-30 2023-08-25 图像传感器像素电路、图像传感器及电子设备 WO2024046233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211048491.8A CN115396615A (zh) 2022-08-30 2022-08-30 图像传感器像素电路、图像传感器及电子设备
CN202211048491.8 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024046233A1 true WO2024046233A1 (zh) 2024-03-07

Family

ID=84124661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114996 WO2024046233A1 (zh) 2022-08-30 2023-08-25 图像传感器像素电路、图像传感器及电子设备

Country Status (2)

Country Link
CN (1) CN115396615A (zh)
WO (1) WO2024046233A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115396615A (zh) * 2022-08-30 2022-11-25 维沃移动通信有限公司 图像传感器像素电路、图像传感器及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006991A (ja) * 2016-06-30 2018-01-11 株式会社ニコン 撮像素子およびカメラ
CN110771157A (zh) * 2017-03-31 2020-02-07 普里露尼库斯股份有限公司 固态摄像装置、固态摄像装置的驱动方法、以及电子机器
CN111491119A (zh) * 2020-04-22 2020-08-04 上海微阱电子科技有限公司 一种支持全局曝光和卷帘曝光的像元结构
CN112868101A (zh) * 2018-08-03 2021-05-28 Ams传感器比利时有限公司 像素单元和像素单元的操作方法
CN115396615A (zh) * 2022-08-30 2022-11-25 维沃移动通信有限公司 图像传感器像素电路、图像传感器及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006991A (ja) * 2016-06-30 2018-01-11 株式会社ニコン 撮像素子およびカメラ
CN110771157A (zh) * 2017-03-31 2020-02-07 普里露尼库斯股份有限公司 固态摄像装置、固态摄像装置的驱动方法、以及电子机器
CN112868101A (zh) * 2018-08-03 2021-05-28 Ams传感器比利时有限公司 像素单元和像素单元的操作方法
CN111491119A (zh) * 2020-04-22 2020-08-04 上海微阱电子科技有限公司 一种支持全局曝光和卷帘曝光的像元结构
CN115396615A (zh) * 2022-08-30 2022-11-25 维沃移动通信有限公司 图像传感器像素电路、图像传感器及电子设备

Also Published As

Publication number Publication date
CN115396615A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US10608101B2 (en) Detection circuit for photo sensor with stacked substrates
JP4955079B2 (ja) インターリーブされたイメージ出力を持つイメージ・センサ
US6215113B1 (en) CMOS active pixel sensor
TW548962B (en) X-Y address type solid-state image pickup device
WO2024046233A1 (zh) 图像传感器像素电路、图像传感器及电子设备
KR101900273B1 (ko) 시모스 이미지 센서
US20130256510A1 (en) Imaging device with floating diffusion switch
CN104092962A (zh) 具有补充电容性耦合节点的图像传感器和其操作方法
CN112004037B (zh) 图像传感器像素结构
TW200524413A (en) CMOS imaging system with low fixed pattern noise
US9160958B2 (en) Method of reading out an image sensor with transfer gate boost
WO2023025229A1 (zh) 图像传感器、控制方法、控制装置、电子设备和存储介质
WO2020061883A1 (zh) 像素单元和图像传感器
WO2024046196A1 (zh) 图像传感器及电子设备
CN112399113B (zh) 一种实现像素内相关双采样的高速全局曝光像素结构
WO2024046304A1 (zh) 信号处理装置及电子设备
WO2024067511A1 (zh) 感光像素结构、图像传感器和电子设备
KR20130018899A (ko) 단일 파이프라인 스테레오 이미지 캡처
CN112004038B (zh) 图像传感器像素结构
US8638376B2 (en) Image sensor for reducing kick-back noise and image pick-up device having the same
WO2024140724A1 (zh) 图像传感器、摄像头模组及电子设备
TW201041382A (en) Image sensor and low noise pixel readout circuit with high conversion gain
CN212677264U (zh) 一种电源噪声抑制电路及图像传感器
WO2022141822A1 (zh) 一种像素电路及全局cmos图像传感器
Jaklin et al. Global shutter CMOS vision sensors and event cameras for on‐chip dynamic information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859265

Country of ref document: EP

Kind code of ref document: A1