WO2024046077A1 - 一种串联空调冷凝器的独立散热系统的控制方法及系统 - Google Patents

一种串联空调冷凝器的独立散热系统的控制方法及系统 Download PDF

Info

Publication number
WO2024046077A1
WO2024046077A1 PCT/CN2023/112119 CN2023112119W WO2024046077A1 WO 2024046077 A1 WO2024046077 A1 WO 2024046077A1 CN 2023112119 W CN2023112119 W CN 2023112119W WO 2024046077 A1 WO2024046077 A1 WO 2024046077A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
condenser
speed
proportional valve
heat dissipation
Prior art date
Application number
PCT/CN2023/112119
Other languages
English (en)
French (fr)
Inventor
赵艳萍
顾新建
顾香
祝敏杰
王坤
Original Assignee
徐州徐工挖掘机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州徐工挖掘机械有限公司 filed Critical 徐州徐工挖掘机械有限公司
Publication of WO2024046077A1 publication Critical patent/WO2024046077A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/187Arrangements or mounting of liquid-to-air heat-exchangers arranged in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to a control method and system for an independent heat dissipation system of a series air conditioner condenser, and belongs to the technical field of engineering machinery.
  • the heat dissipation system of small and medium-sized engineering machinery mainly relies on the cooling fan directly connected to the engine output shaft to absorb heat.
  • This heat dissipation method has a simple structure and low cost, but the heat dissipation effect is affected by the engine speed and is not controlled.
  • the engine generally has an optimal operating temperature.
  • Traditional heat dissipation methods cannot make the engine and hydraulic system work within the optimal temperature range, which will not only cause power waste but also affect the working efficiency of the excavator.
  • the cooling system For high-power engineering machinery (engine power 250kW ⁇ 600kW), the cooling system generally adopts a hydraulic independent cooling system, using a hydraulic fan pump to drive a hydraulic motor for heat dissipation.
  • the controller adjusts the output of the fan pump proportional valve to control the speed of the cooling fan. Meet the heat dissipation needs under various working conditions.
  • the main controller reads the hydraulic oil temperature value through the hydraulic oil temperature sensor, adopts incremental closed-loop PID control, and dynamically adjusts the fan pump electromagnetic proportional valve (current size and valve opening). (inversely proportional to) the opening.
  • the existing technology has the following shortcomings: when the construction machinery works intermittently for a short period of time or continuously for a long time at low idle speed, the main controller detects that the temperature of the hydraulic oil is low, and the fan does not rotate or is maintained at the minimum operating speed.
  • the air conditioner radiator cannot dissipate heat in time, and the "air conditioning system refrigerant pressure state” will appear. "Fault” alarm appears, and the air conditioner compressor cannot work properly.
  • the purpose of the present invention is to overcome the deficiencies in the prior art and provide a control method and system for an independent heat dissipation system of a series air-conditioning condenser, so as to solve the problem that when the hydraulic oil temperature is low in the independent heat dissipation system of a series air-conditioning condenser, the fan does not work. Turn or maintain at the minimum operating speed, which cannot meet the minimum speed required for heat dissipation of the air conditioner condenser, and the air conditioner cannot cool.
  • the present invention provides a control method for an independent heat dissipation system of a series-connected air conditioning condenser, which includes the following steps:
  • the output fan proportional valve current value is calculated based on the minimum speed
  • the fan pump proportional valve is controlled to adjust the valve core opening according to the output fan proportional valve current value, thereby changing the fan speed.
  • the method for determining the minimum rotation speed required for heat dissipation of the condenser includes:
  • thermodynamic formula Q CM(T I -T O ), where Q is the heat transfer amount of the condenser, C is the specific heat capacity of the condenser, T I is the inlet air temperature of the condenser, and T O is the outlet air temperature of the condenser,
  • the air mass flow rate M can be obtained, and then converted into the air volume flow rate, that is, the air volume V 0 ;
  • the minimum fan speed n 0 required to satisfy the condenser heat dissipation is found based on the air volume, that is, the minimum speed required for the condenser heat dissipation.
  • calculate the output fan proportional valve current value based on the lowest speed including:
  • the fan pump proportional valve current value corresponding to the minimum fan speed that satisfies the condenser heat dissipation in each gear of the engine at low idle speed is used as the output fan proportional valve current value.
  • the method also includes:
  • the independent cooling program is executed to calculate the output fan proportional valve current value.
  • calculate the output fan proportional valve current value according to the independent heat dissipation procedure including:
  • t represents the independent variable hydraulic oil temperature, and the value range is generally between 40°C and 85°C.
  • t 0 , t 1 , t 2 , and t 3 are all fitted hydraulic oil change thresholds, and F(t) represents the dependent variable.
  • the fan pump proportional valve current, a 1 , a 0 , b i , 0 ⁇ i ⁇ n, c 1 , c 0 and n represent the coefficients of the fitted polynomial, which are calculated through software fitting.
  • the heat dissipation system adopts a segmented control strategy, with constant power control at both ends and variable power control in the middle section. According to the relationship curve between the hydraulic oil temperature and the control current at each engine speed, curve fitting is performed through MATLAB tools and based on the least square According to the multiplication principle, the relationship function between the two can be obtained:
  • t represents the independent variable hydraulic oil temperature, and the value range is generally between 40°C and 85°C.
  • F(t) represents the dependent variable fan pump proportional valve current.
  • a and b represent the coefficients of the fitted polynomial, which are fitted by software. calculated.
  • the present invention provides a control system for an independent heat dissipation system of a series air-conditioning condenser, including:
  • the air-conditioning controller is located in the cab and is connected to the main controller through a CAN line. It is used to send the air-conditioning and refrigeration (AC) status to the main controller in real time;
  • the main controller executes the control method as described in the first aspect according to the received AC status of the air conditioner, and outputs the fan pump proportional valve current value;
  • the fan pump proportional valve is used to adjust the valve core opening according to the fan pump proportional valve current value output by the main controller, thereby changing the flow rate of the fan pump.
  • the fan motor speed changes accordingly, thereby controlling the fan speed.
  • control system also includes:
  • the hydraulic oil temperature sensor is installed on the hydraulic oil tank and is electrically connected to the main controller for sending the hydraulic oil temperature to the main controller;
  • the bus throttle knob is connected to the main controller through the CAN line and is used to send the engine throttle position (speed) to the main controller in real time;
  • the control method of the main controller includes the following steps:
  • the air conditioner controller After the key is powered on, the air conditioner controller sends the air conditioner AC status to the main controller;
  • the main controller determines whether air conditioning refrigeration is turned on
  • the main controller calculates the output fan proportional valve current value based on the read hydraulic oil temperature and engine speed;
  • the main controller determines whether the fan speed at this time meets the minimum speed required for heat dissipation of the air-conditioning condenser;
  • the main controller calculates the output fan proportional valve current value based on the read hydraulic oil temperature and engine speed;
  • the main controller calculates the output fan proportional valve current value based on the minimum speed
  • the fan pump proportional valve adjusts the valve core opening according to the current size, thereby changing the flow rate of the fan pump
  • the fan motor speed changes accordingly, thereby controlling the fan speed.
  • Figure 1 shows the minimum fan speed required for condenser heat dissipation.
  • Figure 2 is the relationship curve between current, pressure, flow rate and temperature of the fan pump proportional valve.
  • Figure 3 shows the relationship between fan speed and fan pump proportional valve current.
  • FIG. 4 is a schematic structural diagram of the control system of the present invention.
  • Figure 5 is a control flow chart of the present invention.
  • This embodiment provides a control method for an independent cooling system of a series-connected air conditioner condenser.
  • the existing CAN line is used to send the AC status of the air conditioner to the main controller.
  • the main controller determines that the air conditioner refrigeration is not turned on, or the air conditioner refrigeration is turned on and the fan speed is When it is greater than or equal to the minimum speed required for condenser heat dissipation, the original independent heat dissipation program is executed; when the air conditioning is turned on and the fan speed is less than the minimum speed required for condenser heat dissipation, the main controller calculates and outputs the fan proportional valve current based on the minimum speed. value, the fan pump proportional valve adjusts the valve core opening according to the current, thereby changing the fan speed.
  • the calculated output fan proportional valve current value is calculated according to the preset independent heat dissipation program
  • the output fan proportional valve current value is calculated based on the minimum speed
  • the fan pump proportional valve is controlled to adjust the valve core opening according to the output fan proportional valve current value, thereby changing the Variable fan speed.
  • thermodynamic formula Q CM (T I - T O ), where Q is the heat transfer amount of the condenser, C is the specific heat capacity of the condenser, T I is the inlet air temperature of the condenser, and T O is the outlet air of the condenser.
  • the air mass flow rate M can be obtained, and then converted into the air volume flow rate, that is, the air volume V 0 ; finally, combined with the static pressure-air volume characteristic curve of the cooling fan at different speeds and the resistance curve of the condenser (as shown in Figure 1 , n 0 ⁇ n 1 ⁇ n 2 ), find the minimum fan speed n 0 required to satisfy the condenser heat dissipation according to the air volume.
  • the method for calculating the output fan proportional valve current value includes:
  • the relationship curve between the current, pressure, flow rate and temperature of the fan pump proportional valve can be obtained, as shown in Figure 2. Since the engine speed is proportional to the pump flow rate, the relationship between the hydraulic oil temperature and the fan pump proportional valve current at other engine speeds can be calculated, and the curve can be corrected based on on-site measurements.
  • the cooling system adopts a segmented control strategy, with constant power control at both ends and variable power control in the middle section. According to the relationship curve between the hydraulic oil temperature and the control current at each gear speed of the engine, the MATLAB tool is used to perform curve fitting. Based on the principle of the least squares method, the relationship function between the two can be obtained.
  • t represents the independent variable hydraulic oil temperature, and the value range is generally 40°C ⁇ 85°C.
  • F(t) represents the dependent variable fan pump proportional valve current, and the value range is generally (200mA ⁇ 650mA).
  • Methods for calculating the output fan proportional valve current value according to the preset independent cooling program include:
  • t represents the independent variable hydraulic oil temperature, and the value range is generally between 40°C and 85°C.
  • t 0 , t 1 , t 2 , and t 3 are all fitted hydraulic oil change thresholds, and F(t) represents the dependent variable.
  • the fan pump proportional valve current, a 1 , a 0 , b i , 0 ⁇ i ⁇ n, c 1 , c 0 and n represent the coefficients of the fitted polynomial, which are calculated through fitting and calculation using software such as matlab.
  • the independent heat dissipation program can also be other heat dissipation programs in the existing technology, such as the existing control method of the independent heat dissipation system.
  • the flow rate of the fan pump is proportional to the fan speed, according to the fan pump power control curve, the relationship between the fan speed and the fan pump proportional valve current at a certain engine speed can be obtained, as shown in Figure 3.
  • the current value of the fan pump proportional valve corresponding to the minimum fan speed required to satisfy the condenser heat dissipation can be stored in the main controller in advance at each gear of the engine in the low idle speed state.
  • This method solves the problem that when the temperature of the hydraulic oil in the independent cooling system of the series-connected air-conditioning condenser is low, the fan does not rotate or is maintained at the minimum operating speed, which cannot meet the minimum speed required for heat dissipation of the air-conditioning condenser, and the air conditioner cannot cool.
  • the present invention uses the existing CAN line to send the AC status of the air conditioner to the main controller, and the main controller makes logical judgments. No new hardware is needed, and the implementation method is simple and reliable.
  • This embodiment provides a control system for an independent cooling system of a series-connected air conditioning condenser, as shown in Figure 4, including: air conditioning controller 1, hydraulic oil temperature sensor 2, bus throttle knob 3, main controller 4, fan pump Proportional valve 5.
  • Air conditioning controller 1 located in the cab, is connected to the main controller through the CAN line and sends the AC status to the main controller 4 in real time;
  • the hydraulic oil temperature sensor 2 is generally installed on the hydraulic oil tank, is electrically connected to the main controller 4, and sends the hydraulic oil temperature signal to the main controller 4;
  • the bus throttle knob 3 is connected to the main controller 4 through the CAN line and sends the engine throttle position (speed) to the main controller 4 in real time;
  • the main controller 4 calculates and outputs the current value of the fan pump proportional valve 5 based on the received AC status of the air conditioner, hydraulic oil temperature, and engine speed;
  • the fan pump proportional valve 5 adjusts the valve core opening according to the current size, thereby changing the flow rate of the fan pump; when the fan pump flow rate changes, the fan motor speed changes accordingly, thereby controlling the fan speed.
  • FIG. 5 shows the control flow chart of the present invention.
  • the control method of this system includes the following steps:
  • the air conditioner After the key is powered on, the air conditioner sends the AC status to the main controller through the CAN line;
  • the main controller determines whether the air conditioning refrigeration is turned on
  • the main controller calculates the output fan proportional valve current value based on the read hydraulic oil temperature and engine speed;
  • the main controller determines whether the fan speed at this time meets the minimum speed required for heat dissipation of the air-conditioning condenser;
  • the main controller will Based on the read hydraulic oil temperature and engine speed, calculate the output fan proportional valve current value
  • the main controller calculates the output fan proportional valve current value based on this minimum speed
  • the fan pump proportional valve adjusts the valve core opening according to the current size, thereby changing the flow rate of the fan pump
  • the controller in this system can execute the control method described in Embodiment 1.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions means to implement a process or multiple flows in a flowchart Functions specified in a block or blocks of a process and/or block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提供一种串联空调冷凝器的独立散热系统的控制方法及系统,解决了串联空调冷凝器的独立散热系统中液压油温度较低时,风扇不转或维持在最小工作转速,无法满足空调冷凝器散热所需的最低转速,空调无法制冷的问题。控制方法,包括:获取空调制冷状态;当空调制冷开启且风扇转速小于冷凝器散热所需的最低转速时,按照最低转速计算输出风扇比例阀电流值;根据所述输出风扇比例阀电流值控制风扇泵比例阀调节阀芯开度,从而改变风扇转速。本发明解决了串联空调冷凝器的独立散热系统中液压油温度较低时,风扇不转或维持在最小工作转速,无法满足空调冷凝器散热所需的最低转速,空调无法制冷的问题;不需新增硬件,实现方式简便可靠。

Description

一种串联空调冷凝器的独立散热系统的控制方法及系统 技术领域
本发明涉及一种串联空调冷凝器的独立散热系统的控制方法及系统,属于工程机械技术领域。
背景技术
中小型工程机械的散热系统主要靠与发动机输出轴直联的冷却风扇吸气散热,这种散热方式结构简单、成本低廉,但散热效果受发动机转速高低的影响,且不受控制。发动机一般具有最佳工作温度,传统的散热方式不能使发动机和液压系统工作在最佳温度范围内,既会造成功率浪费,还会影响挖掘机的工作效率。对于大功率工程机械(发动机功率250kW~600kW),冷却系统一般采用液压独立散热系统,采用液压风扇泵驱动液压马达进行散热,通过控制器调节风扇泵比例阀的输出进而控制散热风扇的转速,以满足各种工况下的散热需求。
现有技术中采用液压独立散热系统的工程机械,主控制器通过液压油温传感器读取液压油温值,采用增量式闭环PID控制,动态调节风扇泵电磁比例阀(电流大小与阀开度成反比)的开度。
现有技术存在以下缺点:当工程机械短时间断续工作或长时间连续工作在低怠速工况,主控制器检测到液压油温度较低,风扇不转或维持在最小工作转速。对于串联空调冷凝器的独立散热系统,此时若驾驶员需要开启空调制冷,由于风扇转速小于空调冷凝器正常运转所需的最小转速,空调散热器无法及时散热,会出现“空调系统冷媒压力状态故障”报警,且空调压缩机无法正常工作。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种串联空调冷凝器的独立散热系统的控制方法及系统,解决了串联空调冷凝器的独立散热系统中液压油温度较低时,风扇不转或维持在最小工作转速,无法满足空调冷凝器散热所需的最低转速,空调无法制冷的问题。
为达到上述目的,本发明是采用下述技术方案实现的:
第一方面,本发明提供了一种串联空调冷凝器的独立散热系统的控制方法,包括以下步骤:
获取空调制冷状态;
当空调制冷开启且风扇转速小于冷凝器散热所需的最低转速时,按照最低转速计算输出风扇比例阀电流值;
根据所述输出风扇比例阀电流值控制风扇泵比例阀调节阀芯开度,从而改变风扇转速。
进一步的,所述冷凝器散热所需的最低转速的确定方法包括:
根据热力学公式Q=CM(TI-TO),其中Q为冷凝器换热量,C为冷凝器的比热容,TI为冷凝器的进风温度,TO为冷凝器的出风温度,可得到风质量流量M,再将其换算为风容积流量即风量V0
结合散热风扇在不同转速下的静压-风量特性曲线和冷凝器的阻力曲线,根据风量找到满足冷凝器散热所需要的风扇最小转速n0,即冷凝器散热所需的最低转速。
进一步的,按照最低转速计算输出风扇比例阀电流值,包括:
将发动机在低怠速状态的各档位下,满足冷凝器散热的风扇最低转速对应的风扇泵比例阀电流值作为输出的风扇比例阀电流值。
进一步的,所述方法还包括:
当空调制冷不开启,或空调制冷开启且风扇转速大于等于冷凝器散热所需的最低转速时,按照独立散热程序执行计算输出风扇比例阀电流值。
进一步的,按照独立散热程序执行计算输出风扇比例阀电流值,包括:
获取发动机转速和液压油温;
根据发动机转速选择对应的液压油温度与风扇泵比例阀电流的关系函数,并根据二者的关系函数计算对应的风扇泵比例阀电流,关系函数如下:
其中,t表示自变量液压油温度,取值范围一般在40℃~85℃,t0,t1,t2,t3均为拟合出的液压油变化阈值,F(t)表示因变量风扇泵比例阀电流,a1,a0,bi,0≤i≤n,c1,c0和n代表拟合出来的多项式的系数,通过软件拟合计算得到。
具体的关系函数确定方法包括:
散热系统采用分段控制策略,两端采用定功率控制,中间段采用变功率控制;根据发动机各档位转速下液压油温度与控制电流的关系曲线,通过MATLAB工具进行曲线拟合,基于最小二乘法原理,可得到二者的关系函数:
其中,t表示自变量液压油温度,取值范围一般在40℃~85℃,F(t)表示因变量风扇泵比例阀电流,a和b代表拟合出来的多项式的系数,通过软件拟合计算得到。
第二方面,本发明提供一种串联空调冷凝器的独立散热系统的控制系统,包括:
空调控制器,位于驾驶室内,通过CAN线与主控制器连接,用于将空调制冷(AC)状态实时发送给主控制器;
主控制器,根据接收到的空调AC状态,执行如第一方面所述的控制方法,输出风扇泵比例阀电流值;
风扇泵比例阀,用于根据主控制器输出的风扇泵比例阀电流值调节阀芯开度,从而改变风扇泵的流量,风扇泵流量改变后风扇马达转速随之改变,从而控制风扇的转速。
进一步的,所述控制系统还包括:
液压油温传感器,安装在液压油箱上,与主控制器电连接,用于将液压油温发送给主控制器;
总线油门旋钮,与主控制器通过CAN线连接,用于将发动机油门档位(转速)实时发送给主控制器;
主控制器的控制方法包括以下步骤:
钥匙上电后,空调控制器将空调AC状态发送至主控制器;
主控制器判断空调制冷是否开启;
如果空调制冷未开启,主控制器根据读取的液压油温和发动机转速,计算输出风扇比例阀电流值;
如果空调制冷开启,主控制器判断此时的风扇转速是否满足空调冷凝器散热所需的最低转速;
如果风扇转速大于等于空调冷凝器散热所需的最低转速,主控制器根据读取的液压油温和发动机转速,计算输出风扇比例阀电流值;
如果风扇转速小于空调冷凝器散热所需的最低转速,主控制器按照最低转速,计算输出风扇比例阀电流值;
风扇泵比例阀根据电流大小调节阀芯开度,从而改变风扇泵的流量;
风扇泵流量改变后风扇马达转速随之改变,从而控制风扇的转速。
与现有技术相比,本发明所达到的有益效果:
(1)解决了串联空调冷凝器的独立散热系统中液压油温度较低时,风扇不转或维持在最小工作转速,无法满足空调冷凝器散热所需的最低转速,空调无法制冷的问题。
(2)利用已有的CAN线将空调AC状态发送至主控制器,由主控制器进行逻辑判断,不需新增硬件,实现方式简便可靠。
附图说明
附图1是冷凝器散热所需的风扇最低转速。
附图2是风扇泵比例阀的电流、压力、流量和温度的关系曲线。
附图3是风扇转速和风扇泵比例阀电流的关系。
附图4是本发明的控制系统的结构示意图。
附图5是本发明的控制流程图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例一:
本实施例提供一种串联空调冷凝器的独立散热系统的控制方法,利用已有的CAN线将空调AC状态发送至主控制器,当主控制器判断空调制冷不开启,或空调制冷开启且风扇转速大于等于冷凝器散热所需的最低转速时,按照原独立散热程序执行;当空调制冷开启且风扇转速小于冷凝器散热所需的最低转速时,由主控制器根据最低转速计算输出风扇比例阀电流值,风扇泵比例阀根据电流大小调节阀芯开度,从而改变风扇转速。
具体包括以下步骤:
获取空调AC状态;
根据所述空调AC状态判断空调制冷状态;
当空调制冷不开启,或空调制冷开启且风扇转速大于等于预设的冷凝器散热所需的最低转速时,按照预设的独立散热程序执行计算输出风扇比例阀电流值;
当空调制冷开启且风扇转速小于预设的冷凝器散热所需的最低转速时,根据最低转速计算输出风扇比例阀电流值;
控制风扇泵比例阀根据所述输出风扇比例阀电流值调节阀芯开度,从而改 变风扇转速。
其中,根据热力学公式Q=CM(TI-TO),其中Q为冷凝器换热量,C为冷凝器的比热容,TI为冷凝器的进风温度,TO为冷凝器的出风温度,可得到风质量流量M,再将其换算为风容积流量即风量V0;最后结合散热风扇在不同转速下的静压-风量特性曲线和冷凝器的阻力曲线(如附图1所示,n0<n1<n2),根据风量找到满足冷凝器散热所需要的风扇最小转速n0
具体的,计算输出风扇比例阀电流值的方法包括:
如果空调制冷未开启,获取液压油温和发动机转速,并按照预设的独立散热程序进行计算,根据液压油温和发动机转速,计算输出风扇比例阀电流值;
通过发动机额定转速下风扇泵功率控制曲线,可得到风扇泵比例阀的电流、压力、流量和温度的关系曲线,如附图2所示。由于发动机转速和泵流量成正比,可推算出其他档位发动机转速下液压油温度与风扇泵比例阀电流的关系,可结合现场实测对该曲线进行修正。散热系统采用分段控制策略,两端采用定功率控制,中间段采用变功率控制。根据发动机各档位转速下液压油温度与控制电流的关系曲线,通过MATLAB工具进行曲线拟合,基于最小二乘法原理,可得到二者的关系函数
其中t表示自变量液压油温度,取值范围一般在40℃~85℃,F(t)表示因变量风扇泵比例阀电流,取值范围一般在(200mA~650mA)。当多项式的阶数过小时,函数不能很好地反映原曲线样本点的分布情况;当阶数过高时,会出现过拟合的情况,可结合实际情况选择合适的阶数。
按照预设的独立散热程序进行计算输出风扇比例阀电流值的方法包括:
获取发动机转速和液压油温;
根据发动机转速选择对应的液压油温度与风扇泵比例阀电流的关系函数,并根据二者的关系函数计算对应的风扇泵比例阀电流,关系函数如下:
其中,t表示自变量液压油温度,取值范围一般在40℃~85℃,t0,t1,t2,t3均为拟合出的液压油变化阈值,F(t)表示因变量风扇泵比例阀电流,a1,a0,bi,0≤i≤n,c1,c0和n代表拟合出来的多项式的系数,通过如matlab等软件拟合计算得到。
独立散热程序也可以是现有技术中的其他散热程序,比如现有的独立散热系统的控制方法。
如果风扇转速小于空调冷凝器散热所需的最低转速,按照此最低转速,计算输出风扇泵比例阀电流值。
因风扇泵的流量跟风扇转速成正比,根据风扇泵功率控制曲线,可得到发动机某一转速下风扇转速和风扇泵比例阀电流的关系,如附图3所示。可将发动机在低怠速状态的各档位下,满足冷凝器散热的风扇最低转速对应的风扇泵比例阀电流值预先存入主控制器。
本方法解决了串联空调冷凝器的独立散热系统中液压油温度较低时,风扇不转或维持在最小工作转速,无法满足空调冷凝器散热所需的最低转速,空调无法制冷的问题。
本发明利用已有的CAN线将空调AC状态发送至主控制器,由主控制器进行逻辑判断,不需新增硬件,实现方式简便可靠。
实施例二:
本实施例提供一种串联空调冷凝器的独立散热系统的控制系统,如附图4所示,包括:空调控制器1、液压油温传感器2、总线油门旋钮3、主控制器4、风扇泵比例阀5。
空调控制器1,位于驾驶室内,通过CAN线与主控制器连接,将AC状态实时发送给主控制器4;
液压油温传感器2,一般安装在液压油箱上,与主控制器4电连接,将液压油温信号发送给主控制器4;
总线油门旋钮3,与主控制器4通过CAN线连接,将发动机油门档位(转速)实时发送给主控制器4;
主控制器4,根据接收到的空调AC状态,液压油温,发动机转速,计算输出风扇泵比例阀5电流值;
风扇泵比例阀5根据电流大小调节阀芯开度,从而改变风扇泵的流量;风扇泵流量改变后风扇马达转速随之改变,从而控制风扇的转速。
图5所示为本发明的控制流程图,本系统的控制方法包括以下步骤:
(1)钥匙上电后,空调通过CAN线将AC状态发送至主控制器;
(2)主控制器判断空调制冷是否开启;
(3)如果空调制冷未开启,主控制器根据读取的液压油温和发动机转速,计算输出风扇比例阀电流值;
(4)如果空调制冷开启,主控制器判断此时的风扇转速是否满足空调冷凝器散热所需的最低转速;
(5)如果风扇转速大于等于空调冷凝器散热所需的最低转速,主控制器根 据读取的液压油温和发动机转速,计算输出风扇比例阀电流值;
(6)如果风扇转速小于空调冷凝器散热所需的最低转速,主控制器按照此最低转速,计算输出风扇比例阀电流值;
(7)风扇泵比例阀根据电流大小调节阀芯开度,从而改变风扇泵的流量;
(8)风扇泵流量改变后风扇马达转速随之改变,从而控制风扇的转速。
本系统中的控制器可以执行如实施例一所述的控制方法。
说明书中未公开部分为现有技术。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流 程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

  1. 一种串联空调冷凝器的独立散热系统的控制方法,其特征在于,包括以下步骤:
    获取空调制冷状态;
    当空调制冷开启且风扇转速小于冷凝器散热所需的最低转速时,按照最低转速计算输出风扇比例阀电流值;
    根据所述输出风扇比例阀电流值控制风扇泵比例阀调节阀芯开度,从而改变风扇转速。
  2. 根据权利要求1所述的串联空调冷凝器的独立散热系统的控制方法,其特征在于,所述冷凝器散热所需的最低转速的确定方法包括:
    根据热力学公式Q=CM(TI-TO),其中Q为冷凝器换热量,C为冷凝器的比热容,TI为冷凝器的进风温度,TO为冷凝器的出风温度,可得到风质量流量M,再将其换算为风容积流量即风量V0
    结合散热风扇在不同转速下的静压-风量特性曲线和冷凝器的阻力曲线,根据风量找到满足冷凝器散热所需要的风扇最小转速n0,即冷凝器散热所需的最低转速。
  3. 根据权利要求1所述的串联空调冷凝器的独立散热系统的控制方法,其特征在于,按照最低转速计算输出风扇比例阀电流值,包括:
    将发动机在低怠速状态的各档位下,满足冷凝器散热的风扇最低转速对应的风扇泵比例阀电流值作为输出的风扇比例阀电流值。
  4. 根据权利要求1所述的串联空调冷凝器的独立散热系统的控制方法,其特征在于,所述方法还包括:
    当空调制冷不开启,或空调制冷开启且风扇转速大于等于冷凝器散热所需的最低转速时,按照独立散热程序执行计算输出风扇比例阀电流值。
  5. 根据权利要求4所述的串联空调冷凝器的独立散热系统的控制方法,其特征在于,按照独立散热程序执行计算输出风扇比例阀电流值,包括:
    获取发动机转速和液压油温;
    根据发动机转速选择对应的液压油温度与风扇泵比例阀电流的关系函数,并根据二者的关系函数计算对应的风扇泵比例阀电流,关系函数如下:
    其中,t表示自变量液压油温度,t0,t1,t2,t3均为拟合出的液压油变化阈值,F(t)表示因变量风扇泵比例阀电流,a1,a0,bi,0≤i≤n,c1,c0和n代表拟合出来的多项式的系数,通过软件拟合计算得到。
  6. 一种串联空调冷凝器的独立散热系统的控制系统,其特征在于,包括:
    空调控制器,位于驾驶室内,通过CAN线与主控制器连接,用于将空调制冷状态实时发送给主控制器;
    主控制器,根据接收到的空调制冷状态,执行如权利要求1-5任一项所述的控制方法,输出风扇泵比例阀电流值;
    风扇泵比例阀,用于根据主控制器输出的风扇泵比例阀电流值调节阀芯开度,从而改变风扇泵的流量,风扇泵流量改变后风扇马达转速随之改变,从而控制风扇的转速。
  7. 根据权利要求6所述的串联空调冷凝器的独立散热系统的控制系统,其特征在于,所述控制系统还包括:
    液压油温传感器,安装在液压油箱上,与主控制器电连接,用于将液压油温发送给主控制器;
    总线油门旋钮,与主控制器通过CAN线连接,用于将发动机油门档位即转速实时发送给主控制器;
    主控制器的控制方法包括以下步骤:
    钥匙上电后,空调控制器将空调制冷状态发送至主控制器;
    主控制器判断空调制冷是否开启;
    如果空调制冷未开启,主控制器根据读取的液压油温和发动机转速,计算输出风扇比例阀电流值;
    如果空调制冷开启,主控制器判断此时的风扇转速是否满足空调冷凝器散热所需的最低转速;
    如果风扇转速大于等于空调冷凝器散热所需的最低转速,主控制器根据读取的液压油温和发动机转速,计算输出风扇比例阀电流值;
    如果风扇转速小于空调冷凝器散热所需的最低转速,主控制器按照最低转速,计算输出风扇比例阀电流值;
    风扇泵比例阀根据电流大小调节阀芯开度,从而改变风扇泵的流量;
    风扇泵流量改变后风扇马达转速随之改变,从而控制风扇的转速。
PCT/CN2023/112119 2022-08-29 2023-08-10 一种串联空调冷凝器的独立散热系统的控制方法及系统 WO2024046077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211039336.X 2022-08-29
CN202211039336.XA CN115306530B (zh) 2022-08-29 2022-08-29 一种串联空调冷凝器的独立散热系统的控制方法及系统

Publications (1)

Publication Number Publication Date
WO2024046077A1 true WO2024046077A1 (zh) 2024-03-07

Family

ID=83865673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112119 WO2024046077A1 (zh) 2022-08-29 2023-08-10 一种串联空调冷凝器的独立散热系统的控制方法及系统

Country Status (2)

Country Link
CN (1) CN115306530B (zh)
WO (1) WO2024046077A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115306530B (zh) * 2022-08-29 2024-03-01 徐州徐工挖掘机械有限公司 一种串联空调冷凝器的独立散热系统的控制方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106289A (ja) * 2005-10-14 2007-04-26 Komatsu Ltd 建設機械の冷却装置
CN101010497A (zh) * 2005-04-07 2007-08-01 日立建机株式会社 工程机械的冷却装置
CN103590886A (zh) * 2013-10-24 2014-02-19 广西柳工机械股份有限公司 一种装载机发动机用散热控制方法
CN103747971A (zh) * 2012-07-02 2014-04-23 株式会社小松制作所 建筑机械及冷却风扇的控制方法
CN105317789A (zh) * 2015-11-27 2016-02-10 中联重科股份有限公司渭南分公司 液压独立散热控制方法、装置和系统
CN105625497A (zh) * 2014-11-20 2016-06-01 斗山工程机械(中国)有限公司 一种液压油风扇转速的控制方法、装置及挖掘机
CN105987817A (zh) * 2015-02-13 2016-10-05 广州汽车集团股份有限公司 乘用车冷却模块的匹配方法
CN115306530A (zh) * 2022-08-29 2022-11-08 徐州徐工挖掘机械有限公司 一种串联空调冷凝器的独立散热系统的控制方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745202B2 (ja) * 2006-11-17 2011-08-10 株式会社小松製作所 冷却ファン駆動制御装置
CN102322329B (zh) * 2011-08-17 2013-04-03 上海三一重机有限公司 一种工程机械用发动机冷却风扇的智能控制方法
CN103823493B (zh) * 2014-03-10 2016-03-02 广州大华德盛热管理科技有限公司 液力驱动风扇热管理系统控制装置的控制方法
JP2019173731A (ja) * 2018-03-29 2019-10-10 株式会社Kcm 作業車両
CN112682156A (zh) * 2020-11-09 2021-04-20 北奔重型汽车集团有限公司 一种电控液力驱动风扇冷却控制系统及控制方法
CN113047939A (zh) * 2021-03-05 2021-06-29 徐州徐工矿业机械有限公司 一种基于多变量因素发动机可调风扇转速控制装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010497A (zh) * 2005-04-07 2007-08-01 日立建机株式会社 工程机械的冷却装置
JP2007106289A (ja) * 2005-10-14 2007-04-26 Komatsu Ltd 建設機械の冷却装置
CN103747971A (zh) * 2012-07-02 2014-04-23 株式会社小松制作所 建筑机械及冷却风扇的控制方法
CN103590886A (zh) * 2013-10-24 2014-02-19 广西柳工机械股份有限公司 一种装载机发动机用散热控制方法
CN105625497A (zh) * 2014-11-20 2016-06-01 斗山工程机械(中国)有限公司 一种液压油风扇转速的控制方法、装置及挖掘机
CN105987817A (zh) * 2015-02-13 2016-10-05 广州汽车集团股份有限公司 乘用车冷却模块的匹配方法
CN105317789A (zh) * 2015-11-27 2016-02-10 中联重科股份有限公司渭南分公司 液压独立散热控制方法、装置和系统
CN115306530A (zh) * 2022-08-29 2022-11-08 徐州徐工挖掘机械有限公司 一种串联空调冷凝器的独立散热系统的控制方法及系统

Also Published As

Publication number Publication date
CN115306530A (zh) 2022-11-08
CN115306530B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2024046077A1 (zh) 一种串联空调冷凝器的独立散热系统的控制方法及系统
CN106837509B (zh) 一种风扇转速控制方法及系统
CN107166642A (zh) 一种变频空调室外直流风机控制方法
CN109681313A (zh) 一种柴油机用冷却风扇转速的控制方法和装置
CN102654130B (zh) 一种对计算机进行温度控制的方法和计算机
CN106196786A (zh) 调节空调室外机电子膨胀阀的方法
CN110822676B (zh) 控制方法、控制装置、空调器和计算机可读存储介质
CN102322329A (zh) 一种工程机械用发动机冷却风扇的智能控制方法
JP2011021855A (ja) 冷凍機の台数制御方法
CN107288735A (zh) 一种建立汽车电子风扇转速控制函数的方法
CN113928081A (zh) 一种根据环境温度调整空调散热能力的模块及方法
CN212132815U (zh) 一种智能冷站控制系统
CN112797601A (zh) 外风机控制方法和空调系统
CN104713208A (zh) 离心式冷水机组输出能量的高效节能调节系统和方法
CN115680680A (zh) 一种用于盾构机的智能散热系统、方法、设备及介质
CN110567102A (zh) 一种基于定温差调节的风机盘管控制方法及系统
CN112406462B (zh) 一种基于发动机运行效率的冷却风扇控制方法及系统
CN107139713B (zh) 基于可变角度液压风扇的智能散热系统及控制方案
CN109114776A (zh) 一种中央空调伺服水泵循环节能控制系统
CN104265439A (zh) 一种工程机械冷却系统
CN111497597B (zh) 一种纯电动挖机的散热系统及控制方法
CN110351987B (zh) 散热器、控制器、光伏用电设备和散热方法
JP2013060923A (ja) エンジンの制御装置
CN110913656A (zh) 机器人电柜的散热系统及散热方法
CN112797602B (zh) 双风机转速控制方法、装置及空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859112

Country of ref document: EP

Kind code of ref document: A1