WO2024045786A1 - 一种减少失重秤用螺旋输送物料出料波动方法和系统 - Google Patents

一种减少失重秤用螺旋输送物料出料波动方法和系统 Download PDF

Info

Publication number
WO2024045786A1
WO2024045786A1 PCT/CN2023/101280 CN2023101280W WO2024045786A1 WO 2024045786 A1 WO2024045786 A1 WO 2024045786A1 CN 2023101280 W CN2023101280 W CN 2023101280W WO 2024045786 A1 WO2024045786 A1 WO 2024045786A1
Authority
WO
WIPO (PCT)
Prior art keywords
funnel
spiral
fluctuation
conveyor
limit
Prior art date
Application number
PCT/CN2023/101280
Other languages
English (en)
French (fr)
Inventor
江帆
马金磊
孙文杰
张文海
刘安林
郑朋
张影
梁德丰
解瑞林
孟娜娜
詹小青
姚君
陈涛
Original Assignee
江苏百灵衡器制造有限公司
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏百灵衡器制造有限公司, 中国矿业大学 filed Critical 江苏百灵衡器制造有限公司
Publication of WO2024045786A1 publication Critical patent/WO2024045786A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G13/00Weighing apparatus with automatic feed or discharge for weighing-out batches of material
    • G01G13/16Means for automatically discharging weigh receptacles under control of the weighing mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G33/00Screw or rotary spiral conveyors
    • B65G33/08Screw or rotary spiral conveyors for fluent solid materials
    • B65G33/14Screw or rotary spiral conveyors for fluent solid materials comprising a screw or screws enclosed in a tubular housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/34Devices for discharging articles or materials from conveyor 
    • B65G47/44Arrangements or applications of hoppers or chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G69/00Auxiliary measures taken, or devices used, in connection with loading or unloading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)

Definitions

  • the invention relates to the field of reducing material fluctuations, and specifically relates to a system and a discharging method for reducing material discharging fluctuations using a screw conveyor for a loss-in-weight scale.
  • Loss-in-weight weighing is an automated control device developed based on static weighing. It is commonly used for ingredients in production processes in metallurgy, chemical and other industries, such as the metering and distribution of powders, granular materials, etc. Loss-in-weight weighing can be used for flow-controlled continuous batching to control a certain material flow rate and add materials of specified quality to downstream devices for continuous production processes.
  • the principle of loss-in-weight weighing is to monitor the overall quality of the weighing bin and screw conveyor in real time, and calculate the amount of delivered materials based on the quality difference.
  • the material discharge will be uneven, that is, the fluctuation will be large, which will lead to instability in the monitoring data of the loss-in-weight weighing device, which will affect the measurement and distribution of materials.
  • material fluctuations also affect the stability of the spray gun's injection of materials into the smelting furnace, affecting industrial production efficiency.
  • the purpose of the present invention is to provide a system and method for reducing discharging fluctuations of screw-conveyed materials for loss-in-weight scales, which can increase the stability of loss-in-weight weighing readings and ensure production efficiency.
  • the present invention adopts the following technical solutions:
  • the present invention provides a system for reducing discharging fluctuations of materials used in a screw conveyor for weight loss scales, which includes a spiral tube provided with spiral blades, and a fluctuation reduction mechanism adapted to the discharge port is provided below the spiral tube.
  • the fluctuation reduction mechanism includes a funnel.
  • the lower edge of the funnel inlet is equipped with several piezoelectric sensors.
  • the piezoelectric sensors are used to monitor the weight loss of the funnel and the materials in the funnel in real time.
  • the outlet of the funnel is equipped with several piezoelectric sensors. It is composed of movable fan blades that are turned outward. The movable fan blades can be opened to make the blocked materials in the funnel fall quickly.
  • the rotation angle of the movable fan blades is controlled by a turning mechanism connected to its upper end.
  • the distance between the turning mechanism and the bottom of the funnel slope is two-thirds of the total length of the slope.
  • the number of the movable fan blades is three.
  • the upper end of the movable fan blade is the center of the circle and can rotate outward by up to 15°.
  • the turning mechanism is electrically connected to the controller.
  • the discharge port of the spiral tube and the feed port of the funnel are connected through a flexible tube.
  • the diameter of the funnel feed port is 600mm.
  • the upper surface of the funnel feed port is 80mm ⁇ 100mm below the spiral tube discharge port. The installation ensures The central axis of the funnel's cone must be vertical.
  • the invention also provides a discharging method for reducing the fluctuation of the material discharging system using a screw conveyor for a loss-in-weight scale, which includes the following steps:
  • Step 1 Determine the spiral conveying capacity of the spiral pipe; the mathematical model of the spiral conveying capacity is as follows:
  • D is the nominal diameter of the spiral blade
  • H is the pitch of the spiral shaft
  • n is the rotation speed of the spiral blade
  • C is the inclination coefficient of the screw conveyor
  • is the unit volume mass of the material
  • Step 2 Obtain the real-time fluctuation amount of material falling within the pitch of a spiral blade based on simulation, and calculate The average amount of material conveyed in a cycle
  • q i is the material amount at time t i
  • t is the time of one pitch rotation cycle of the spiral blade, is the average material quantity within t
  • Step 3 Establish a funnel accumulation model.
  • t b is the moment when materials start to fall in a cycle
  • t e is the moment when materials finish falling in a cycle.
  • the funnel accumulation model is as follows:
  • Step 4 Perform multi-parameter optimization on the angle ( ⁇ ) between the conical slope of the funnel and the vertical line, the diameter of the funnel outlet (d), and the depth of the funnel (h) to form the funnel body in the fluctuation reduction mechanism.
  • step four the optimization steps are as follows:
  • step 1 (1) Determine the optimization objective of the screw conveying capacity; according to step 1, take the screw conveying capacity Q as the optimization objective function;
  • g 1 (x) is the limit of the conveyor power: that is, the power loss requirement of the screw conveyor under load operation, where P m is the rated power of the motor, P is the power of the screw conveyor under load operation conditions, and V is Conveying capacity, L is the conveying distance, S is the tilt height, ⁇ is the operating resistance coefficient, ⁇ is the power reserve coefficient, ⁇ is the friction angle, and eta is the motor transmission efficiency;
  • g 2 (x) is the stiffness limit: that is, the maximum deflection of the screw conveyor should be lower than the allowable value, where f max is the maximum deflection of the screw conveyor, and [f] is the maximum allowable deflection;
  • g 4 (x) is the limit of the torsional strength of the conveyor: where, ⁇ is the ultimate shear stress of the conveyor screw shaft, [ ⁇ ] is the allowable shear stress;
  • g 5 (x) is the conveyor efficiency limit: where, eta is the conveying efficiency of the screw conveyor, [eta] is the minimum conveying efficiency allowed by the screw conveyor;
  • Dm is the optimized nominal diameter of the spiral blade
  • Hm is the optimized pitch of the spiral shaft
  • n m is the optimized rotation speed of the spiral blade
  • P U is the average material amount at the discharge peak of the funnel lower outlet when the material continues to fall steadily
  • P D is the average material amount at the discharge trough of the funnel lower outlet
  • C is the fluctuation performance value, 0 ⁇ C ⁇ 2. The closer C is to 0, the smaller the material fluctuation is, and the closer C is to 2, the greater the fluctuation;
  • e 1 (x) is the limit of the average amount of material
  • e 3 (x) is the limit of the angle between the conical slope of the funnel and the vertical line
  • e 4 (x) is the funnel outlet diameter limit
  • e 5 (x) is the funnel depth limit.
  • ⁇ m is the optimized angle between the conical slope of the funnel and the vertical line
  • h m is the optimized depth of the funnel
  • d m is the optimized outlet diameter of the funnel.
  • the invention also provides an anti-blocking method for reducing fluctuations in the discharging system of screw-conveyed materials for weight loss scales, which includes the following steps:
  • Step 1 Install three evenly distributed piezoelectric sensors on the funnel.
  • the piezoelectric sensors are electrically connected to the controller, and the controller is electrically connected to the buzzer;
  • Step 2 Monitor the funnel for clogging, including the following steps:
  • step (1) (2) Set the quality threshold in the controller to [m]. When the total mass ⁇ (m 1 , m 2 , m 3 ) calculated in step (1) is greater than the quality threshold [m], it is judged that the funnel outlet is blocked. ; Otherwise, if the outlet of the funnel is not blocked, repeat step (1);
  • Step 3 When a blockage occurs, the controller issues a command, the turning mechanism drives the movable fan blades to open, and the buzzer alarms;
  • Step 4 The controller controls the turning mechanism to close the movable fan blades.
  • the controller controls the buzzer to cancel the alarm. Repeat steps 1 and 2.
  • a data processor is used to implement steps one and two, and the data processor includes a calculation module and a comparison module,
  • the calculation module calculates the sum of the real-time monitoring data of the three piezoelectric sensors ⁇ (m 1 , m 2 , m 3 ) according to its internally stored summation formula,
  • the comparison module determines whether ⁇ (m 1 , m 2 , m 3 ) is greater than [m], and when the determination result is "Y", it outputs a plugging instruction.
  • step three and step four are implemented using a motor drive, which includes an execution module and a recovery module.
  • complex module
  • the execution module converts the input of the blocking instruction into an electrical signal to make the motor work, and the motor drives the turning mechanism to work and open the movable fan blade;
  • the recovery module outputs a 5s delayed recovery command at the end of the 5s delayed material blocking command, and converts it into an electrical signal to make the motor work, and the motor drives the turning mechanism to close the movable fan blades.
  • the present invention uses a genetic algorithm to optimize the spiral conveying parameters of the spiral tube to obtain conveying parameters with high conveying performance, which can effectively improve the conveying performance of the spiral tube and improve production efficiency;
  • the present invention reduces the fluctuation of materials by optimizing the structural parameters of the funnel, thereby improving the stability of the materials falling from the funnel.
  • the material falling from the funnel is sprayed into the smelting furnace under the action of the spray gun, thereby also improving the stability of the material falling from the funnel. It improves the stability of the amount of material injected into the smelting furnace by the spray gun and reduces the consumption of smelting energy;
  • the system and method for setting up anti-blocking materials provided by the present invention replace traditional manual monitoring. At the same time, when blockage occurs, it can also automatically deal with the blocking problem, replacing manual dredging, improving safety and production efficiency, and reducing It reduces the working form of workers and saves working time.
  • Figure 1 is a schematic structural diagram of a system for reducing material discharging fluctuations in screw conveying for weight loss scales provided by an embodiment of the present invention
  • Figure 2 is a front view of the fluctuation reduction mechanism provided by the embodiment of the present invention.
  • Figure 3 is a bottom view of the fluctuation reduction mechanism provided by the embodiment of the present invention.
  • Figure 4 is a flow chart of an anti-blocking method for reducing fluctuations in material discharging for screw conveying scales provided by an embodiment of the present invention
  • Figure 5 is a schematic diagram of the movable fan blades opening according to the embodiment of the present invention.
  • Figure 6 is a genetic algorithm optimization flow chart provided by an embodiment of the present invention.
  • Figure 7 is a material fluctuation diagram at the outlet of the funnel provided by the embodiment of the present invention.
  • Figure 8 is a simulation comparison chart between the original fluctuation of the material and the reduced fluctuation provided by the embodiment of the present invention.
  • an embodiment of the present invention provides a system for reducing discharging fluctuations of spiral conveyed materials for weight loss scales, including a spiral tube 1 provided with spiral blades 2, and a discharge port below the spiral tube 1.
  • the fluctuation reduction mechanism 3 includes a funnel 302.
  • a plurality of piezoelectric sensors 301 are provided on the lower edge of the feed opening of the funnel 302.
  • the piezoelectric sensors 301 are used to control the funnel 302.
  • the material in the funnel 302 is monitored for real-time weight loss.
  • the outlet of the funnel 302 is made up of a number of movable fan blades 304 that can be turned outward. The movable fan blades can be opened to make the blocked materials in the funnel fall quickly. .
  • the rotation angle of the movable fan blade 304 is controlled by the turning mechanism 303.
  • the distance between the turning mechanism and the bottom of the funnel slope is two-thirds of the total length of the slope.
  • the lower end of the funnel is evenly divided into three identical movable fan blades 304.
  • the movable fan blades The upper end of 304 is connected to the turning mechanism. Driven by the turning mechanism, the upper end of the movable fan blade is the center of the circle and can rotate outward by up to 15°.
  • the turning mechanism uses a drive motor, which is electrically connected to the controller, as shown in Figure 5.
  • the dotted line position is the open position of the movable fan blades.
  • the discharge port of the spiral tube 1 and the feed port of the funnel 302 are connected through a flexible pipe.
  • the diameter of the funnel feed port is 600mm.
  • the upper surface of the funnel feed port is 80mm ⁇ 100mm below the spiral tube discharge port. The installation ensures that the funnel The central axis of the cone is guaranteed to be vertical.
  • Embodiments of the present invention also provide a discharging method for reducing fluctuations in the discharging of screw-conveyed materials for a loss-in-weight scale, which includes the following steps:
  • Step 1 Determine the spiral conveying capacity of the spiral tube 1; the mathematical model of the spiral conveying capacity is as follows:
  • D is the nominal diameter of the spiral blade
  • H is the pitch of the spiral shaft
  • n is the rotation speed of the spiral blade
  • C is the inclination coefficient of the screw conveyor
  • is the unit volume mass of the material
  • Step 2 According to the simulation, the real-time fluctuation of the material falling within the pitch of a spiral blade is obtained, and the average amount of material transportation in a cycle is calculated.
  • q i is the material amount at time ti, t is the time of one pitch rotation cycle of the spiral blade, is the average material quantity within t;
  • Step 3 Establish a funnel accumulation model.
  • t b is the moment when materials start to fall in a cycle
  • t e is the moment when materials finish falling in a cycle.
  • the funnel accumulation model is as follows:
  • Step 4 Perform multi-parameter optimization on the angle ( ⁇ ) between the conical slope of the funnel and the vertical line, the diameter of the funnel outlet (d), and the depth of the funnel (h) to form the funnel body in the fluctuation reduction mechanism.
  • step four the optimization steps are as follows:
  • step 1 (1) Determine the optimization objective of the screw conveying capacity; according to step 1, take the screw conveying capacity Q as the optimization objective function;
  • g 1 (x) is the limit of the conveyor power: that is, the power loss requirement of the screw conveyor under load operation, where P m is the rated power of the motor, P is the power of the screw conveyor under load operation conditions, and V is Conveying capacity, L is the conveying distance, S is the tilt height, ⁇ is the operating resistance coefficient, ⁇ is the power reserve coefficient, ⁇ is the friction angle, and eta is the motor transmission efficiency;
  • g 2 (x) is the stiffness limit: that is, the maximum deflection of the screw conveyor should be lower than the allowable value, where f max is the maximum deflection of the screw conveyor, and [f] is the maximum allowable deflection;
  • g 4 (x) is the limit of the torsional strength of the conveyor: where, ⁇ is the ultimate shear stress of the conveyor screw shaft, [ ⁇ ] is the allowable shear stress;
  • g 5 (x) is the conveyor efficiency limit: where, eta is the conveying efficiency of the screw conveyor, [eta] is the minimum conveying efficiency allowed by the screw conveyor;
  • Dm is the optimized nominal diameter of the spiral blade
  • Hm is the optimized pitch of the spiral shaft
  • n m is the optimized rotation speed of the spiral blade
  • a fluctuation reduction mechanism 3 is provided below the discharge port of the spiral tube 1.
  • the present invention uses genetic optimization algorithms and other optimization algorithms to optimize the structural parameters of the fluctuation reduction, so that the fluctuation reduction mechanism is optimized.
  • the material falling at the outlet of small mechanism 3 has the smallest fluctuation, and the optimization target of funnel fluctuation performance is determined:
  • P U is the average material amount at the discharge peak of the funnel lower outlet when the material continues to fall steadily
  • P D is the average material amount at the discharge trough of the funnel lower outlet
  • C is the fluctuation performance value, 0 ⁇ C ⁇ 2. The closer C is to 0, the smaller the material fluctuation is, and the closer C is to 2, the greater the fluctuation;
  • e 1 (x) is the limit of the average amount of material
  • e 3 (x) is the limit of the angle between the conical slope of the funnel and the vertical line
  • e 4 (x) is the funnel outlet diameter limit
  • e 5 (x) is the funnel depth limit.
  • ⁇ m is the optimized angle between the funnel's tapered slope and the vertical line
  • h m is the optimized depth of the funnel
  • d m is the optimized outlet diameter of the funnel.
  • embodiments of the present invention also provide an anti-clogging method for reducing fluctuations in the discharging system of screw-conveyed materials for a loss-in-weight scale, which includes the following steps:
  • Step 1 Install three evenly distributed piezoelectric sensors on the funnel.
  • the piezoelectric sensors are electrically connected to the controller, and the controller is electrically connected to the buzzer;
  • Step 2 Monitor the funnel for clogging, including the following steps:
  • step (1) (2) Set the quality threshold in the controller to [m]. When the total mass ⁇ (m 1 , m 2 , m 3 ) calculated in step (1) is greater than the quality threshold [m], it is judged that the funnel outlet is blocked. ; Otherwise, if the outlet of the funnel is not blocked, repeat step (1);
  • Step 3 When a blockage occurs, the controller issues a command, the turning mechanism drives the movable fan blades to open, and the buzzer alarms;
  • Step 4 The controller controls the turning mechanism to close the movable fan blades.
  • the controller controls the buzzer to cancel the alarm. Repeat steps 1 and 2.
  • the data processor includes a calculation module and a comparison module
  • the calculation module calculates the sum of the real-time monitoring data of the three piezoelectric sensors ⁇ (m 1 , m 2 , m 3 ) according to its internally stored summation formula,
  • the comparison module determines whether ⁇ (m 1 , m 2 , m 3 ) is greater than [m], and when the determination result is "Y", it outputs a plugging instruction.
  • the motor drive includes an execution module and a recovery module.
  • the execution module converts the input of the blocking instruction into an electrical signal to make the motor work, and the motor drives the turning mechanism to work and open the movable fan blade;
  • the recovery module outputs a 5s delayed recovery command at the end of the 5s delayed material blocking command, and converts it into an electrical signal to make the motor work, and the motor drives the turning mechanism to close the movable fan blades.
  • the simulation software simulates the fluctuation of the material in the spiral tube 1 without going through the fluctuation reducing mechanism 3 and passing through the fluctuation reducing mechanism 3.
  • the figure shows that after passing through the fluctuation reducing mechanism 3 The material's falling volatility is smaller, which further verifies the applicability of the method and system of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Screw Conveyors (AREA)

Abstract

一种减少失重秤用螺旋输送物料出料波动方法和系统,该方法包括以下步骤:一、通过遗传算法等其他优化算法对螺旋输送机的输送参数进行优化,保证有较高的输送能力;二、通过遗传算法等其他优化算法对漏斗(302)的结构参数进行优化,降低从漏斗(302)出料口下落的物料量的波动性;三、设置防堵机构,对漏斗(302)内的物料实时监测,并对堵料问题进行处理。该方法及系统可有效地降低输出物料的波动性,并同时保证高的输送物料能力,提升了工艺生产的效率。

Description

一种减少失重秤用螺旋输送物料出料波动方法和系统 技术领域
本发明涉及减小物料波动的领域,具体涉及一种减少失重秤用螺旋输送物料出料波动系统及出料方法。
背景技术
失重称量是一种基于静态称发展起来的自动化控制装置,普遍用于冶金、化工等行业的生产工艺的配料,例如粉料、颗粒料等的计量配送。失重称量可以用于流量控制的连续式配料,控制一定的物料流速向下游装置添加规定质量的物料,用于连续生产过程。
失重称量的原理是对计量仓和螺旋输送机整体的质量进行实时监测,通过质量差计算配送物料的量。而螺旋输送机在输出物料时,会出现出料不均匀的现象,即波动性较大,因此会导致失重称量装置监测数据的不稳定,进而导致对物料计量配送产生影响。同时,由于螺旋输送机出料的不稳定,物料波动问题也影响喷枪将物料喷入到冶炼炉的稳定性,影响工业生产效率。
发明内容
针对上述存在的技术不足,本发明的目的是提供一种减少失重秤用螺旋输送物料出料波动系统及出料方法,其能够增加失重称量读数的稳定性和保证生产效率。
为解决上述技术问题,本发明采用如下技术方案:
本发明提供一种减少失重秤用螺旋输送物料出料波动系统,包括设有螺旋叶片的螺旋管,所述螺旋管的出料口下方设有与其适配的波动减小机构,所述波动减小机构包括漏斗,所述漏斗进料口下边缘设有若干压电传感器,所述压电传感器用于对漏斗以及漏斗内物料进行实时失重称量监测,所述漏斗的出料口由若干能够向外侧翻转的活动扇叶拼合而成,所述活动扇叶能够打开使漏斗内堵塞的物料快速下落。
优选地,所述活动扇叶通过其上端连接的转机机构控制其旋转角度,转机机构与漏斗斜面底部的距离为斜面总长度的三分之二,所述活动扇叶的数目为三个,在转机机构的带动下,以活动扇叶上端为圆心最大可向外侧旋转15°,所述转机机构电性连接控制器。
优选地,所述螺旋管的出料口与漏斗的进料口通过柔性管连通,漏斗进料口的直径为600mm,漏斗进料口上表面在螺旋管出料口下方80mm~100mm处,安装保证漏斗的锥体中轴线保证竖直。
本发明还提供一种减少失重秤用螺旋输送物料出料波动系统的出料方法,包括以下步骤:
步骤一、确定螺旋管的螺旋输送能力;螺旋输送能力的数学模型如下:
其中,D为螺旋叶片的公称直径,H为螺旋轴的螺距,为输送物料颗粒的填充率,n为螺旋叶片的转速,C为螺旋输送机的倾斜系数,ρ为物料的单位容积质量;
步骤二、根据仿真得到物料在一个螺旋叶片螺距内物料下落的实时波动量,求出 一个周期内的物料输送平均量,
qi为ti时刻的物料量,t为螺旋叶片一个螺距旋转周期的时间,为在t内物料量的平均值;
步骤三、建立漏斗堆积模型,tb为一个周期物料开始下落的时刻,te为一个周期内物料落完的时刻,漏斗堆积模型如下:
前一个周期的te-0.1s=下一个周期的tb
步骤四、对漏斗的锥形斜面与竖直线的夹角(α)、漏斗出口直径(d)、漏斗深度(h)进行多参数优化,形成波动减小机构中的漏斗本体。
优选地,步骤四中,优化步骤如下:
(1)确定螺旋输送能力优化目标;根据步骤一,以螺旋输送能力Q为优化目标函数;
(2)确定螺旋输送参数优化的约束条件,假设约束条件函数为gm(x):
g1(x)为输送机功率的限制:即螺旋输送机的负载运行的功率损耗的要求,其中,Pm为电机的额定功率,P为螺旋输送机在负载运行条件下的功率,V为输送量,L为输送距离,S为倾斜高度,μ为运行阻力系数,ξ为功率储备系数,β为摩擦角,η为电动机传动效率;
g2(x)为刚度限制:即螺旋输送机最大挠度应低于许用值,其中,fmax为螺旋输送机的最大挠度,[f]为最大许用挠度;
g3(x)为输送机的转速限制:其中,n为螺旋当前转速,nmin为最低许用转速,nmax为最高许用转速,设定nmin=50r/m,nmax=120r/m;
g4(x)为输送机扭转强度的限制:其中,τ为输送机螺旋轴的极限剪应力,[τ]为许用剪应力;
g5(x)为输送机效率限制:其中,η为螺旋输送机的输送效率,[η]为螺旋输送机允许的最小输送效率;
(3)根据步骤(1)、(2)得到最佳输送方案:
其中,Dm为螺旋叶片的优化公称直径,Hm为螺旋轴的优化螺距,为输送物料颗粒的优化填充率,nm为螺旋叶片的优化转速;
(4)根据步骤(3)得到的输送方案对漏斗进行结构优化,确定漏斗波动性能优化目标:
其中,PU为物料持续稳定下落时,漏斗下料口出料波峰的平均物料量,PD为漏斗下料口出料波谷的平均物料量,为物料持续稳定下落时漏斗下料口出料的平均物料量,C为波动性能值,0≤C≤2,C越接近0物料波动越小,越接近2波动越大;
(5)确定漏斗参数优化的约束条件,假设约束条件函数为em(x):
其中,e1(x)为物料平均量限制;波动性能限制:e2(x):0≤C≤2;e3(x)为漏斗的锥形斜面与竖直线的夹角限制;e4(x)为漏斗出口直径限制;e5(x)漏斗深度限制。
(6)根据步骤(4)、(5)得到漏斗机构最佳参数方案:
其中,αm为漏斗的锥形斜面与竖直线的优化夹角,hm为漏斗优化深度,dm为漏斗优化出口直径。
本发明还提供一种减少失重秤用螺旋输送物料出料波动系统的防堵方法,包括以下步骤:
步骤一、在漏斗上安装三个均布的压电传感器,压电传感器电性连接控制器,控制器电性连接蜂鸣器;
步骤二、对漏斗进行堵料监测,包括以下步骤:
(1)采用三个均布的压电传感器实时监测漏斗以及漏斗内物料的质量,设三个压电传感器的实时监测值分别为m1,m2,m3,则总质量为∑(m1,m2,m3);
(2)在控制器中设定质量阈值为[m],当步骤(1)计算的总质量∑(m1,m2,m3)大于质量阈值[m]时,判断漏斗出料口堵塞;否则漏斗出料口未堵塞,重复步骤(1);
步骤三、当发生堵塞时,控制器发出指令,转机机构带动活动扇叶打开,蜂鸣器报警;
步骤四、控制器控制转机机构工作带动活动扇叶关闭,控制器控制蜂鸣器取消报警,重复步骤一、步骤二。
优选地,采用数据处理器实现步骤一和步骤二,所述数据处理器包括计算模块和比较模块,
所述的计算模块根据其内部存储的求和公式,计算三个压电传感器的实时监测数据之和∑(m1,m2,m3),
所述的比较模块判断∑(m1,m2,m3)是否大于[m],当判断结果为“Y”时,输出堵料指令。
优选地,采用电机驱动实现步骤三和步骤四,所述的电机驱动包括执行模块与恢 复模块,
所述的执行模块在堵料指令的输入下,转化为电信号使电机工作,电机驱动转机机构工作打开活动扇叶;
所述的恢复模块在延迟5s的堵料指令结束时刻输出延迟5s的恢复指令,转化为电信号使电机工作,电机驱动转机机构关闭活动扇叶。
本发明的有益效果在于:
1、本发明通过遗传算法对螺旋管的螺旋输送参数进行优化得到输送性能高的输送参数,能够有效地提高螺旋管的输送性能,提高生产效率;
2、本发明通过对漏斗的结构参数进行优化,使物料的波动降低,从而提高了漏斗下落物料的稳定性,从漏斗下落的物料后面在喷枪的作用下喷入到冶炼炉里,进而也提高了喷枪喷入到冶炼炉里的物料量的稳定性,降低了冶炼能源的消耗;
3、本发明提供的设置防堵料的系统与方法,代替了传统人工监测,同时当发生堵塞时,也能够自动处理堵料问题,替代了人工手动疏通,提高了安全性与生产效率,减小了劳动工人的劳动形式,节约了劳动时间。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种减少失重秤用螺旋输送物料出料波动系统的结构示意图;
图2为本发明实施例提供的波动减小机构的正视图;
图3为本发明实施例提供的波动减小机构的仰视图;
图4为本发明实施例提供的一种减少失重秤用螺旋输送物料出料波动系统的防堵方法的流程图;
图5为本发明实施例提供的活动扇叶打开的示意图;
图6为本发明实施例提供的遗传算法优化流程图;
图7为本发明实施例提供的漏斗出口处的物料波动图;
图8为本发明实施例提供的的物料原始波动与减小波动后的仿真对比图。
附图标记说明:
1-螺旋管,2-螺旋叶片,3-波动减小机构,301-压电传感器,302-漏斗,303-转机机
构,304-活动扇叶。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1至图8所示,本发明实施例提供一种减少失重秤用螺旋输送物料出料波动系统,包括设有螺旋叶片2的螺旋管1,所述螺旋管1的出料口下方设有与其适配的波动减小机构3,所述波动减小机构3包括漏斗302,所述漏斗302进料口下边缘设有若干压电传感器301,所述压电传感器301用于对漏斗302以及漏斗302内物料进行实时失重称量监测,所述漏斗302的出料口由若干能够向外侧翻转的活动扇叶304拼合而成,所述活动扇叶能够打开使漏斗内堵塞的物料快速下落。
所述活动扇叶304通过转机机构303控制其旋转角度,转机机构与漏斗斜面底部的距离为斜面总长度的三分之二,漏斗下端平均分割为3个相同的活动扇叶304,活动扇叶304的上端与转机机构连接,在转机机构的带动下,以活动扇叶上端为圆心最大可向外侧旋转15°,所述转机机构选用驱动电机,驱动电机电性连接控制器,如图5,虚线位置为活动扇叶打开的位置。
所述螺旋管1的出料口与漏斗302的进料口通过柔性管连通,漏斗进料口的直径为600mm,漏斗进料口上表面在螺旋管出料口下方80mm~100mm处,安装保证漏斗的锥体中轴线保证竖直。
本发明实施例还提供一种减少失重秤用螺旋输送物料出料波动系统的出料方法,包括以下步骤:
步骤一、确定螺旋管1的螺旋输送能力;螺旋输送能力的数学模型如下:
其中,D为螺旋叶片的公称直径,H为螺旋轴的螺距,为输送物料颗粒的填充率,n为螺旋叶片的转速,C为螺旋输送机的倾斜系数,ρ为物料的单位容积质量;
步骤二、根据仿真得到物料在一个螺旋叶片螺距内物料下落的实时波动量,求出一个周期内的物料输送平均量,
qi为ti时刻的物料量,t为螺旋叶片一个螺距旋转周期的时间,为在t内物料量的平均值;
步骤三、建立漏斗堆积模型,tb为一个周期物料开始下落的时刻,te为一个周期内物料落完的时刻,漏斗堆积模型如下:
前一个周期的te-0.1s=下一个周期的tb
步骤四、对漏斗的锥形斜面与竖直线的夹角(α)、漏斗出口直径(d)、漏斗深度(h)进行多参数优化,形成波动减小机构中的漏斗本体。
步骤四中,优化步骤如下:
(1)确定螺旋输送能力优化目标;根据步骤一,以螺旋输送能力Q为优化目标函数;
(2)确定螺旋输送参数优化的约束条件,假设约束条件函数为gm(x):
g1(x)为输送机功率的限制:即螺旋输送机的负载运行的功率损耗的要求,其中,Pm为电机的额定功率,P为螺旋输送机在负载运行条件下的功率,V为输送量,L为输送距离,S为倾斜高度,μ为运行阻力系数,ξ为功率储备系数,β为摩擦角,η为电动机传动效率;
g2(x)为刚度限制:即螺旋输送机最大挠度应低于许用值,其中,fmax为螺旋输送机的最大挠度,[f]为最大许用挠度;
g3(x)为输送机的转速限制:其中,n为螺旋当前转速,nmin为最低许用转速,nmax为最高许用转速,设定nmin=50r/m,nmax=120r/m;
g4(x)为输送机扭转强度的限制:其中,τ为输送机螺旋轴的极限剪应力,[τ]为许用剪应力;
g5(x)为输送机效率限制:其中,η为螺旋输送机的输送效率,[η]为螺旋输送机允许的最小输送效率;
(3)根据步骤(1)、(2)得到最佳输送方案:
其中,Dm为螺旋叶片的优化公称直径,Hm为螺旋轴的优化螺距,为输送物料颗粒的优化填充率,nm为螺旋叶片的优化转速;
(4)根据步骤(3)得到的输送方案为了减小物料的波动性在螺旋管1出料口的下方设置了波动减小机构3,本发明对波动减小的结构参数采用遗传优化算法等其他优化算法进行了优化设计,使得从波动减小机构3的出料口处下落的物料波动最小,确定漏斗波动性能优化目标:
其中,PU为物料持续稳定下落时,漏斗下料口出料波峰的平均物料量,PD为漏斗下料口出料波谷的平均物料量,为物料持续稳定下落时漏斗下料口出料的平均物料量,C为波动性能值,0≤C≤2,C越接近0物料波动越小,越接近2波动越大;
(5)确定漏斗参数优化的约束条件,假设约束条件函数为em(x):
其中,e1(x)为物料平均量限制;波动性能限制:e2(x):0≤C≤2;e3(x)为漏斗的锥形斜面与竖直线的夹角限制;e4(x)为漏斗出口直径限制;e5(x)漏斗深度限制。
(6)根据步骤(4)、(5)得到漏斗机构最佳参数方案:
其中,αm为漏斗的锥形斜面与竖直线的优化夹角,hm为漏斗优化深度,dm为漏斗优化出口直径。
为了解决波动减小机构3在工作时出现堵料的问题,本发明实施例还提供一种减少失重秤用螺旋输送物料出料波动系统的防堵方法,包括以下步骤:
步骤一、在漏斗上安装三个均布的压电传感器,压电传感器电性连接控制器,控制器电性连接蜂鸣器;
步骤二、对漏斗进行堵料监测,包括以下步骤:
(1)采用三个均布的压电传感器实时监测漏斗以及漏斗内物料的质量,设三个压电传感器的实时监测值分别为m1,m2,m3,则总质量为∑(m1,m2,m3);
(2)在控制器中设定质量阈值为[m],当步骤(1)计算的总质量∑(m1,m2,m3)大于质量阈值[m]时,判断漏斗出料口堵塞;否则漏斗出料口未堵塞,重复步骤(1);
步骤三、当发生堵塞时,控制器发出指令,转机机构带动活动扇叶打开,蜂鸣器报警;
步骤四、控制器控制转机机构工作带动活动扇叶关闭,控制器控制蜂鸣器取消报警,重复步骤一、步骤二。
采用数据处理器实现步骤一和步骤二,所述数据处理器包括计算模块和比较模块,
所述的计算模块根据其内部存储的求和公式,计算三个压电传感器的实时监测数据之和∑(m1,m2,m3),
所述的比较模块判断∑(m1,m2,m3)是否大于[m],当判断结果为“Y”时,输出堵料指令。
采用电机驱动实现步骤三和步骤四,所述的电机驱动包括执行模块与恢复模块,
所述的执行模块在堵料指令的输入下,转化为电信号使电机工作,电机驱动转机机构工作打开活动扇叶;
所述的恢复模块在延迟5s的堵料指令结束时刻输出延迟5s的恢复指令,转化为电信号使电机工作,电机驱动转机机构关闭活动扇叶。
如图8所示,通过仿真软件模拟了螺旋管1内的物料不经波动减小机构3和经过波动减小机构3两种情况下物料的波动情况,图示出了经过波动减小机构3的物料的下落波动性更小,更加验证了本发明所述方法与系统的适用性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

  1. 一种减少失重秤用螺旋输送物料出料波动系统,包括设有螺旋叶片的螺旋管,其特征在于,所述螺旋管的出料口下方设有与其适配的波动减小机构,所述波动减小机构包括漏斗,所述漏斗的进料口下边缘设有若干压电传感器,所述压电传感器用于对漏斗以及漏斗内物料进行实时失重称量监测,所述漏斗的出料口由若干能够向外侧翻转的活动扇叶拼合而成,所述活动扇叶能够打开使漏斗内堵塞的物料快速下落。
  2. 如权利要求1所述的一种减少失重秤用螺旋输送物料出料波动系统,其特征在于,所述活动扇叶通过其上端连接的转机机构控制其旋转角度,转机机构与漏斗斜面底部的距离为斜面总长度的三分之二,所述活动扇叶的数目为三个,在转机机构的带动下,以活动扇叶上端为圆心最大可向外侧旋转15°,所述转机机构电性连接控制器。
  3. 如权利要求1所述的一种减少失重秤用螺旋输送物料出料波动系统,其特征在于,所述螺旋管的出料口与漏斗的进料口通过柔性管连通,漏斗进料口的直径为600mm,漏斗进料口上表面在螺旋管出料口下方80mm~100mm处,安装保证漏斗的锥体中轴线保证竖直。
  4. 一种如权利要求2所述的减少失重秤用螺旋输送物料出料波动系统的出料方法,其特征在于,包括以下步骤:
    步骤一、确定螺旋管的螺旋输送能力;螺旋输送能力的数学模型如下:
    其中,D为螺旋叶片的公称直径,H为螺旋轴的螺距,为输送物料颗粒的填充率,n为螺旋叶片的转速,C为螺旋输送机的倾斜系数,ρ为物料的单位容积质量;
    步骤二、根据仿真得到物料在一个螺旋叶片螺距内物料下落的实时波动量,求出一个周期内的物料输送平均量,
    qi为ti时刻的物料量,t为螺旋叶片一个螺距旋转周期的时间,为在t内物料量的平均值;
    步骤三、建立漏斗堆积模型,tb为一个周期物料开始下落的时刻,te为一个周期内物料落完的时刻,漏斗堆积模型如下:
    前一个周期的te-0.1s=下一个周期的tb
    步骤四、对漏斗的锥形斜面与竖直线的夹角(α)、漏斗出口直径(d)、漏斗深度(h)进行多参数优化,形成波动减小机构中的漏斗本体。
  5. 如权利要求4所述的一种减少失重秤用螺旋输送物料出料波动系统的出料方法,其特征在于,步骤四中,优化步骤如下:
    (1)确定螺旋输送能力优化目标;根据步骤一,以螺旋输送能力Q为优化目标函数;
    (2)确定螺旋输送参数优化的约束条件,假设约束条件函数为gm(x):
    g1(x)为输送机功率的限制:即螺旋输送机的负载运行的功率损耗的要求,其中,Pm为电机的额定功率,P为螺旋输送机在负载运行条件下的功率,V为输送量,L为输送距离,S为倾斜高度,μ为运行阻力系数,ξ为功率储备系数,β为摩擦角,η为电动机传动效率;
    g2(x)为刚度限制:即螺旋输送机最大挠度应低于许用值,其中,fmax为螺旋输送机的最大挠度,[f]为最大许用挠度;
    g3(x)为输送机的转速限制:其中,n为螺旋当前转速,nmin为最低许用转速,nmax为最高许用转速,设定nmin=50r/m,nmax=120r/m;
    g4(x)为输送机扭转强度的限制:其中,τ为输送机螺旋轴的极限剪应力,[τ]为许用剪应力;
    g5(x)为输送机效率限制:其中,η为螺旋输送机的输送效率,[η]为螺旋输送机允许的最小输送效率;
    (3)根据步骤(1)、(2)得到最佳输送方案:
    其中,Dm为螺旋叶片的优化公称直径,Hm为螺旋轴的优化螺距,为输送物料颗粒的优化填充率,nm为螺旋叶片的优化转速;
    (4)根据步骤(3)得到的输送方案对漏斗进行结构优化,确定漏斗波动性能优化目标:
    其中,PU为物料持续稳定下落时,漏斗下料口出料波峰的平均物料量,PD为漏斗下料口出料波谷的平均物料量,为物料持续稳定下落时漏斗下料口出料的平均物料量,C为波动性能值,0≤C≤2,C越接近0物料波动越小,越接近2波动越大;
    (5)确定漏斗参数优化的约束条件,假设约束条件函数为em(x):
    其中,e1(x)为物料平均量限制;波动性能限制:e2(x):0≤C≤2;e3(x)为漏斗的锥形斜面与竖直线的夹角限制;e4(x)为漏斗出口直径限制;e5(x)漏斗深度限制。
    (6)根据步骤(4)、(5)得到漏斗机构最佳参数方案:
    其中,αm为漏斗的锥形斜面与竖直线的优化夹角,hm为漏斗优化深度,dm为漏斗优化出口直径。
  6. 一种如权利要求2所述的减少失重秤用螺旋输送物料出料波动系统的防堵方法,其特征在于,包括以下步骤:
    步骤一、在漏斗上安装三个均布的压电传感器,压电传感器电性连接控制器,控制器电性连接蜂鸣器;
    步骤二、对漏斗进行堵料监测,包括以下步骤:
    (1)采用三个均布的压电传感器实时监测漏斗以及漏斗内物料的质量,设三个压电传感器的实时监测值分别为m1,m2,m3,则总质量为∑(m1,m2,m3);
    (2)在控制器中设定质量阈值为[m],当步骤(1)计算的总质量∑(m1,m2,m3)大于质量阈值[m]时,判断漏斗出料口堵塞;否则漏斗出料口未堵塞,重复步骤(1);
    步骤三、当发生堵塞时,控制器发出指令,转机机构带动活动扇叶打开,蜂鸣器报警;
    步骤四、控制器控制转机机构工作带动活动扇叶关闭,控制器控制蜂鸣器取消报警,重复步骤一、步骤二。
  7. 如权利要求5所述的一种减少失重秤用螺旋输送物料出料波动系统的防堵方法,其特征在于,采用数据处理器实现步骤一和步骤二,所述数据处理器包括计算模块和比较模块,
    所述的计算模块根据其内部存储的求和公式,计算三个压电传感器的实时监测数据之和∑(m1,m2,m3),
    所述的比较模块判断∑(m1,m2,m3)是否大于[m],当判断结果为“Y”时,输出堵料指令。
  8. 如权利要求5所述的一种减少失重秤用螺旋输送物料出料波动系统的防堵方法,其特征在于,采用电机驱动实现步骤三和步骤四,所述的电机驱动包括执行模块与恢复模块,
    所述的执行模块在堵料指令的输入下,转化为电信号使电机工作,电机驱动转机机构工作打开活动扇叶;
    所述的恢复模块在延迟5s的堵料指令结束时刻输出延迟5s的恢复指令,转化为电信号使电机工作,电机驱动转机机构关闭活动扇叶。
PCT/CN2023/101280 2022-09-02 2023-06-20 一种减少失重秤用螺旋输送物料出料波动方法和系统 WO2024045786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211072114.8A CN115468638A (zh) 2022-09-02 2022-09-02 一种减少失重秤用螺旋输送物料出料波动方法和系统
CN202211072114.8 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024045786A1 true WO2024045786A1 (zh) 2024-03-07

Family

ID=84370981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101280 WO2024045786A1 (zh) 2022-09-02 2023-06-20 一种减少失重秤用螺旋输送物料出料波动方法和系统

Country Status (2)

Country Link
CN (1) CN115468638A (zh)
WO (1) WO2024045786A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115468638A (zh) * 2022-09-02 2022-12-13 中国矿业大学 一种减少失重秤用螺旋输送物料出料波动方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2295721Y (zh) * 1997-05-20 1998-10-28 交通部第三航务工程勘察设计院 双翻板三通漏斗
CN2929669Y (zh) * 2006-01-05 2007-08-01 向红跃 一种连续自动计量失重秤
JP2012240788A (ja) * 2011-05-19 2012-12-10 Kawata Mfg Co Ltd 供給機
CN205204140U (zh) * 2015-12-10 2016-05-04 卓达新材料科技集团有限公司 一种带软管、可调整进料口大小的进料漏斗装置
CN214826860U (zh) * 2021-06-08 2021-11-23 浙江友谊新材料有限公司 一种合金渣料预热定量一体进料装置
CN115468638A (zh) * 2022-09-02 2022-12-13 中国矿业大学 一种减少失重秤用螺旋输送物料出料波动方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2295721Y (zh) * 1997-05-20 1998-10-28 交通部第三航务工程勘察设计院 双翻板三通漏斗
CN2929669Y (zh) * 2006-01-05 2007-08-01 向红跃 一种连续自动计量失重秤
JP2012240788A (ja) * 2011-05-19 2012-12-10 Kawata Mfg Co Ltd 供給機
CN205204140U (zh) * 2015-12-10 2016-05-04 卓达新材料科技集团有限公司 一种带软管、可调整进料口大小的进料漏斗装置
CN214826860U (zh) * 2021-06-08 2021-11-23 浙江友谊新材料有限公司 一种合金渣料预热定量一体进料装置
CN115468638A (zh) * 2022-09-02 2022-12-13 中国矿业大学 一种减少失重秤用螺旋输送物料出料波动方法和系统

Also Published As

Publication number Publication date
CN115468638A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2024045786A1 (zh) 一种减少失重秤用螺旋输送物料出料波动方法和系统
KR930009386B1 (ko) 고로의 장입제어방법
CN103043229A (zh) 粉状物料精密包装秤
CN110697448A (zh) 一种基于机器学习的螺杆式物料配料机控制器
CN112264180A (zh) 一种选煤厂重介质密度分选自动加介的系统及工作方法
Zhao et al. Structure optimization design of screw conveyor based on EDEM
CN201709369U (zh) 膨化机调质器水份与温度在线检测和实时控制装置
CN1037541A (zh) 高炉煤气降温控制方法
CN114455215B (zh) 一种泥浆调理剂精准添加系统
CN216511465U (zh) 一种负压真空称重系统
CN115318193B (zh) 一种铝电解槽用氟化铝与氧化铝混配装置及其实现方法
CN207841753U (zh) 一种新型高精度输送机
CN207275734U (zh) 多粒料自动称量输送系统
CN208150514U (zh) 一种节能型超长距离自动气力输送系统
CN108002062A (zh) 基于神经网络的螺杆失重式物料下料方法
CN208727663U (zh) 一种智能射气式给料机
CN108267203B (zh) 轻质物料计量设备及其控制方法和装置
CN211871757U (zh) 一种带撮合装置的半干污泥输送系统
CN203306739U (zh) 出口防堵塞新型输煤仓式泵
CN215893753U (zh) 一种双称量仓的失重秤
CN213658219U (zh) 一种用于构建可控气固两相流场的试验装置
CN217263420U (zh) 电石粉末加料装置
CN110950515A (zh) 一种带撮合装置的半干污泥输送系统
JPH0696122B2 (ja) 竪型ミルの制御方法及びその装置
CN220601546U (zh) 一种烟化炉的给煤装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858825

Country of ref document: EP

Kind code of ref document: A1