WO2024045218A1 - 监测电路、刷新方法及存储器 - Google Patents

监测电路、刷新方法及存储器 Download PDF

Info

Publication number
WO2024045218A1
WO2024045218A1 PCT/CN2022/118566 CN2022118566W WO2024045218A1 WO 2024045218 A1 WO2024045218 A1 WO 2024045218A1 CN 2022118566 W CN2022118566 W CN 2022118566W WO 2024045218 A1 WO2024045218 A1 WO 2024045218A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring address
monitoring
counter
address
preset value
Prior art date
Application number
PCT/CN2022/118566
Other languages
English (en)
French (fr)
Inventor
周润发
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2024045218A1 publication Critical patent/WO2024045218A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4085Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure relates to the field of semiconductor circuit design, and in particular to a monitoring circuit, a refresh method and a memory.
  • DRAM Dynamic Random Access Memory stores data through a transistor connected to a storage area (1T1C).
  • the transistor is controlled by a word line (WL). When WL is turned on, the The charge is shared with the charge of the bit line (BL) to read data from the target storage area or write data to the target storage area.
  • WL word line
  • BL bit line
  • An embodiment of the present disclosure provides a monitoring circuit, including: a sampling module configured to sample an initial address to obtain a monitoring address, and output the monitoring address.
  • the initial address is an opened word line address in a memory where the monitoring circuit is located. ;
  • the first counting module connected to the sampling module, is configured to, based on the received monitoring address, adjust the counting value of the first counter corresponding to the monitoring address;
  • the processing module connected to the first counting module and the second counting module, is configured as , based on the update signal, compare the count value of the first counter corresponding to each monitoring address in the first counting module and the corresponding first preset value, and based on the comparison result of the count value of the first counter and the first preset value, determine Whether to transmit the monitoring address to the second counting module; compare the count value of the second counter corresponding to each monitoring address in the second counting module and the corresponding second preset value based on the update signal, and based on the count value of the second counter and The comparison result of the second preset value is used to determine whether to
  • the processing module includes: a first processing unit connected to the first counting module and configured to compare the count value of the first counter corresponding to each monitoring address in the first counting module and the first preset value based on the update signal; Among them, if the count value of the first counter is greater than or equal to the first preset value, the monitoring address is retained; if the count value of the first counter is less than the first preset value, the monitoring address is transmitted to the second counting module and the corresponding monitoring address is reset.
  • a first processing unit connected to the first counting module and configured to compare the count value of the first counter corresponding to each monitoring address in the first counting module and the first preset value based on the update signal; Among them, if the count value of the first counter is greater than or equal to the first preset value, the monitoring address is retained; if the count value of the first counter is less than the first preset value, the monitoring address is transmitted to the second counting module and the corresponding monitoring address is reset.
  • the first counter and the first preset value; the second processing unit, connected to the second counting module, is configured to compare the count value of the second counter corresponding to each monitoring address in the second counting module and the second Preset value; among them, if the count value of the second counter is greater than or equal to the second preset value, the monitoring address is retained; if the count value of the second counter is less than the second preset value, the monitoring address is released and the third value corresponding to the monitoring address is reset.
  • the monitoring circuit also includes: a judgment module, connected to the sampling module, configured to judge whether the obtained monitoring address is stored based on the obtained monitoring address and the stored monitoring address. If the monitoring address is stored by the first counting module, then Generate a first control signal, if the monitoring address is stored by the second counting module, generate a second control signal, if the monitoring address is not stored, generate a third control signal;
  • the first counting module includes: a first counting unit, connected The sampling module and the judgment module are configured to, based on the first control signal, add 1 to the count value of the first counter corresponding to the monitoring address or configure the corresponding first counter for the newly added monitoring address based on the third control signal, and add The count value of the first counter is set to 1; the first reference unit, connected to the first counting unit and the judgment module, is configured to configure a first preset value for the monitoring address based on the third control signal, and the configured first preset value The value is stored in the first counting unit, and the first preset value is adjusted based on the update signal; the second
  • setting the count value of the second counter includes: setting the count value of the second counter based on the count value of the first counter corresponding to the monitoring address; or setting the count value of the second counter to 0.
  • the size of the first preset value is positively correlated with the number of first update cycles for which the monitoring address is retained in the first counting module
  • the size of the second preset value is positively correlated with the number of first update cycles for which the monitoring address is retained in the second counting module.
  • the sum of the number of second update cycles or the number of retained first update cycles and second update cycles is positively correlated.
  • the first update cycle and the second update cycle are the intervals between adjacent update signals.
  • the first reference unit includes: a first setting subunit connected to the first counting unit and the judgment module, and is configured to, in response to the third control signal, set the first preset corresponding to the monitoring address based on the first initial value. value; the first adjustment subunit is configured to receive an update signal and adjust the first preset value corresponding to the monitoring address retained in the first counting unit based on the update signal; the second reference unit includes: a second setting subunit The unit is connected to the first counting unit and the second counting unit, and is configured to, based on the second initial value, set a second preset value corresponding to the monitoring address transmitted by the first counting unit; the second adjustment subunit is configured to, Receive the update signal, and adjust the second preset value corresponding to the monitoring address retained in the second counting unit based on the update signal.
  • the second preset value corresponding to the monitoring address includes: based on the update signal, accumulating the fourth initial value to the fourth counter corresponding to the reserved monitoring address in the second counting unit.
  • the first initial value is set to 2 n
  • the second initial value is set to 2 m
  • the third initial value is set to 2 p
  • the fourth initial value is set to 2 q , m, n, p and q are greater than or equal to 1 Positive integer, and m>n, p>q.
  • the sampling module samples based on a preset interval to obtain the monitoring address, where the preset interval is set to sample the monitoring address once every x initial addresses appear, and x is a positive integer.
  • x is a positive integer equal to or less than 16.
  • the update signal includes a refresh signal and a count adjustment signal.
  • the refresh signal is used to instruct the memory to perform a refresh operation.
  • the count adjustment signal is provided within the interval between two adjacent refresh signals.
  • the refresh operation of the memory also includes: refreshing the adjacent rows of the y monitoring addresses with the highest count values corresponding to the first counter among the monitoring addresses retained in the first counting module, and refreshing the monitoring addresses retained in the second counting module.
  • the second counter corresponds to the z adjacent rows of the monitoring addresses with the highest count value, y and z are positive integers greater than or equal to 1; after refreshing, the corresponding rows corresponding to the refreshed adjacent rows in the first counting module and the second counting module are released. Monitor the address, and reset the first counter and the first preset value corresponding to the monitoring address corresponding to the refreshed adjacent row, or the second counter and the second preset value corresponding to the refreshed monitoring address.
  • the first counting unit is also configured to, when each first counter in the first counting unit has a corresponding monitoring address, discard the newly added monitoring address based on the third control signal; the second counting unit is also configured to , when each second counter in the second counting unit has a corresponding monitoring address, discard the monitoring address transmitted by the first counting unit.
  • Step S1 Obtain the monitoring address and detect whether the monitoring address is stored. If the monitoring address has been stored, perform step S2. , if the monitoring address is not stored, execute step S3; Step S2: Add 1 to the count value of the first counter corresponding to the monitoring address, or add 1 to the count value of the second counter corresponding to the monitoring address; Step S3: Use the new The first counter counts the monitoring address, sets the count value of the first counter to 1, and sets the corresponding first preset value for the monitoring address; Step S4: Adjust the first preset corresponding to the retained monitoring address based on the update signal value, and compare the count value of the first counter corresponding to each monitoring address with the first preset value.
  • step S5 If the count value of the first counter is greater than or equal to the first preset value, then execute step S5. If the count value of the first counter is less than the first preset value, then execute step S6; step S5: retain the count value of the first counter corresponding to the monitoring address and the first preset value, and continue to execute step S1; step S6: use a new second counter to count the monitoring address , the count value of the second counter is the same as the count value of the first counter corresponding to the monitoring address, and the corresponding second preset value is set for the monitoring address, and the first counter and the first preset value corresponding to the monitoring address are reset, continue Execute step S1.
  • step S4 also includes: adjusting the second preset value corresponding to the retained monitoring address based on the update signal, and comparing the count value of the second counter corresponding to each monitoring address with the second preset value. If the count value of the second counter The value is greater than or equal to the second preset value, then execute step S7. If the count value of the second counter is less than the second preset value, then execute step S8; step S7, retain the monitoring address and the count of the second counter corresponding to the monitoring address. value and the second preset value, continue to execute step S1; step S8, release the monitoring address, and reset the second counter corresponding to the monitoring address, and continue to execute step S1.
  • setting a corresponding first preset value for the monitoring address includes: obtaining a newly added monitoring address, and setting a first preset value corresponding to the newly added monitoring address based on the first initial value; adjusting the retained monitoring based on the update signal
  • the first preset value corresponding to the address includes: the first preset value corresponding to the monitoring address accumulated and retained based on the third initial value
  • setting the corresponding second preset value for the monitoring address includes: obtaining the monitoring address, and Set the second preset value corresponding to the monitoring address based on the second initial value; adjust the second preset value corresponding to the retained monitoring address based on the update signal, including: accumulating the second preset value corresponding to the retained monitoring address based on the fourth initial value. default value.
  • Another embodiment of the present disclosure also provides a memory that obtains the word line address to be refreshed based on the monitoring circuit provided in the above embodiment.
  • Figure 1 is a schematic structural diagram of a monitoring circuit provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a processing module provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a first counting module and a second counting module provided by an embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of a first reference unit and a second reference unit provided by an embodiment of the present disclosure
  • Figures 5 to 8 are schematic diagrams of the principle of retaining and releasing monitoring addresses by a monitoring circuit provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart corresponding to each step in a refresh method provided by another embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a monitoring circuit that realizes supplementary refreshing of specific rows in a storage area with relatively small power consumption, and monitors word line addresses that are slowly and continuously turned on to ensure the accuracy of data stored in each storage area. While improving performance, it reduces the number of counters that the memory needs to drive, which is more suitable for the actual design of the memory.
  • Figure 1 is a schematic structural diagram of the monitoring circuit provided in this embodiment.
  • Figure 2 is a schematic structural diagram of the processing module provided in this embodiment.
  • Figure 3 is a schematic structural diagram of the first counting module and the second counting module provided in this embodiment.
  • Figure 4 is a schematic structural diagram of the first reference unit and the second reference unit provided in this embodiment.
  • Figures 5 to 8 are schematic diagrams of the principle of retaining and releasing the monitoring address by the monitoring circuit provided in this embodiment. The implementation will be described below in conjunction with the accompanying drawings.
  • the monitoring circuit provided in the example is explained in detail, as follows:
  • the monitoring circuit includes:
  • the sampling module 101 is configured to sample the initial address to obtain the monitoring address, and output the monitoring address.
  • the initial address is the address of the word line that is turned on in the memory where the monitoring circuit is located.
  • the first counting module 110 is connected to the sampling module 101 and is configured to adjust the count value of the first counter corresponding to the monitoring address based on the received monitoring address.
  • the processing module 102 is connected to the first counting module 110 and the second counting module 120, and is configured to compare the count value of the first counter corresponding to each monitoring address in the first counting module 110 with the corresponding first preset based on the update signal. value, and based on the comparison result between the count value of the first counter and the first preset value, determine whether to transmit the monitoring address to the second counting module; compare the second counter corresponding to each monitoring address in the second counting module based on the update signal The count value of the second counter and the corresponding second preset value are compared, and based on the comparison result between the count value of the second counter and the second preset value, it is determined whether to retain the monitoring address, and the second preset value is smaller than the first preset value.
  • the second counting module 120 is connected to the sampling module 101 and the first counting module 110, and is configured to adjust the count value of the second counter corresponding to the monitoring address based on the received monitoring address.
  • the processing module 102 continuously releases the monitoring addresses in the first counting module 110 whose count value is less than the preset value based on the update signal, that is, continuously releases the noise addresses recorded in the first counting module 110, so that the first The counting module 110 can record new monitoring addresses, and avoid wasting counter resources caused by continuous recording of noise addresses, thereby reducing the number of first counters that need to be driven by the monitoring circuit, thereby reducing the power consumption of the monitoring circuit; in addition, the processing module 102 continues to count the addresses released by the first counting module 110 through the second counting module 120, so as to continue to monitor the word line addresses that are slowly and continuously turned on, so as to prevent the word line addresses that are slowly and continuously turned on from being turned on in a short time. The word line addresses that are turned on multiple times are masked to ensure the accuracy of the data stored in each storage area.
  • the first counting module 110 is further configured to configure a first preset value for the monitoring address, and the size of the configured first preset value is positive to the length of time the monitoring address exists in the first counting module 110 Related.
  • the second counting module 120 is further configured to configure a second preset value for the monitoring address, and the size of the configured second preset value is positively correlated with the length of time the monitoring address exists in the second counting module 120 . Specifically, the longer the monitoring address exists in the first counting module 110 or the second counting module 120, the greater the preset value corresponding to the monitoring address. The monitoring address exists in the first counting module 110 or the second counting module 120.
  • the second preset value configured by the second counting module 120 and the monitoring address are in the first counting module 110 and the second counting module 120
  • the sum of the existence durations is positively correlated. Specifically, the longer the monitoring address exists in the first counting module 110 and the second counting module 120, the greater the second preset value corresponding to the monitoring address.
  • the monitoring address in the first counting module The shorter the time exists in 110 and the second counting module 120, the smaller the second preset value corresponding to the monitoring address is.
  • the sampling module 101 samples based on a preset interval to obtain the monitoring address, where the preset interval is set to perform a sampling of the monitoring address every time x initial addresses appear, x is a positive integer, that is, every time x word line addresses are opened in the memory, the sampling module 101 performs a sampling of the monitoring address.
  • x can be a positive integer less than or equal to 16; in a specific example, x can be set to a positive integer less than or equal to 8.
  • x can be set to a positive integer such as 8, 6, 4 or 2. .
  • the processing module 102 includes:
  • the first processing unit 201 is connected to the first counting module 110 and is configured to compare the count value of the first counter corresponding to each monitoring address in the first counting module 110 with the first preset value based on the update signal; wherein, if the If the count value of a counter is greater than or equal to the first preset value, the monitoring address is retained. If the count value of the first counter is less than the first preset value, the monitoring address is transmitted to the second counting module 120 and the first value corresponding to the monitoring address is reset. counter and first preset value.
  • the second processing unit 202 is connected to the second counting module 120 and is configured to compare the count value of the second counter corresponding to each monitoring address in the second counting module 120 with the second preset value based on the update signal; wherein, if the If the count value of the second counter is greater than or equal to the second preset value, the monitoring address is retained. If the count value of the second counter is less than the second preset value, the monitoring address is released, and the second counter and the second preset value corresponding to the monitoring address are reset. .
  • the first processing unit 201 includes: a first processing subunit (not shown), connected to the first counting module, and configured to receive the data corresponding to each monitoring address.
  • the count value of the first counter and the first preset value, and based on the control of the update signal, the count value of the first counter and the first preset value are latched and transmitted to the comparison subunit (not shown);
  • the comparison subunit The unit (not shown) is connected to the first processing subunit (not shown) and is configured to compare the count value of the first counter with the first preset value, and when the count value of the first counter is less than the first preset value , generate and output a release control signal;
  • the second processing subunit (not shown), connected to the comparison subunit (not shown) and the first counting module 110 is configured to, based on the release control signal, the first counting module 110
  • the corresponding monitoring address is transmitted to the second counting module 120, and the first counter and the first preset value corresponding to the monitoring address are reset.
  • first processing unit 201 is only for those skilled in the art to understand the working principle of the first processing unit 201 provided in this embodiment, and does not constitute a limitation on the first processing unit 201;
  • working principle of the second processing unit 202 is similar to the working principle of the above-mentioned first processing unit 201, and will not be described again in this embodiment.
  • the monitoring address is transmitted from the first counting module 110 to the second counting module 120
  • the value of the first counter in the first counting module 110 is inherited through the second counter in the second counting module 120
  • the second counting The module 120 also inherits the duration of the monitoring address in the first counting module 110, and accordingly configures the second preset value to achieve continued monitoring of the monitoring address, thereby monitoring the word line address that is slowly and continuously turned on.
  • the second counting module 120 may also be configured to transmit the monitoring address from the first counting module 110 to the second counting module 120, and the second counter corresponding to the monitoring address transmitted to the second counting module 120 is reset. Counting is started, and at the same time, the second counting module 120 configures a second preset value for the monitoring address based on the length of time the monitoring address exists in the second counting module 120 (the initial value is 0).
  • the monitoring circuit further includes:
  • the judgment module 301 connected to the sampling module 101, is configured to, based on the obtained monitoring address and the stored monitoring address, judge whether the obtained monitoring address is stored, and if the monitoring address is stored by the first counting module 110, generate a first control signal , if the monitoring address is stored by the second counting module 120, a second control signal is generated; if the monitoring address is not stored, a third control signal is generated.
  • the first counting module 110 includes: a first counting unit 302, connected to the sampling module 101 and the judgment module 301, configured as, Based on the first control signal, add 1 to the count value of the first counter corresponding to the monitoring address, or configure a corresponding first counter for the newly added monitoring address based on the third control signal, and set the count value of the first counter to 1;
  • the first reference unit 303 is connected to the first counting unit 302 and the judgment module 301, and is configured to configure a first preset value for the monitoring address based on the third control signal, and the configured first preset value is stored in the first counting In unit 302, the first preset value is adjusted based on the update signal.
  • the second counting module 120 includes: a second counting unit 304, which is connected to the first counting unit 302, the sampling module 101 and the judgment module 301, and is configured to, based on the second control signal, monitor the count value of the second counter corresponding to the address. Add 1, and configure the corresponding second counter for the monitoring address transmitted by the first counting unit, and set the counting value of the second counter; the second reference unit 305, connected to the first counting unit 302 and the second counting unit 304, is configured To configure a second preset value for the monitoring address transmitted by the first counting unit 302, and store the configured second preset value in the second counting unit 304, and adjust the second preset value based on the update signal.
  • a second counting unit 304 which is connected to the first counting unit 302, the sampling module 101 and the judgment module 301, and is configured to, based on the second control signal, monitor the count value of the second counter corresponding to the address. Add 1, and configure the corresponding second counter for the monitoring address transmitted by the first counting unit, and set the counting value of the second counter
  • the value of the first counter in the first counting module 110 can be inherited through the second counter in the second counting module 120, or the value of the first counter in the first counting module 110 can be inherited.
  • the count value of the second counter corresponding to the monitoring address is set to 0, that is, counting is restarted for the monitoring address transmitted by the first counting module to the second counting module 120 .
  • the second counting unit 304 is further configured to configure a corresponding second counter for the monitoring address transmitted by the first counting unit 302, and set a third counter based on the count value of the first counter corresponding to the monitoring address.
  • the count value of the second counter in other embodiments, the second counting unit 302 is configured to configure a corresponding second counter for the monitoring address transmitted by the first counting unit 302, and use the count value of the second counter corresponding to the monitoring address. The value is set to 0.
  • a judgment module 301 can be provided in both the first counting module 110 and the second counting module 120, and the first counting module 110 and the second counting module 120 respectively evaluate the obtained monitoring address and the stored Compare the monitoring address to determine whether the obtained monitoring address is stored.
  • the first preset value can also be set to be stored in the first reference unit, and the second preset value can also be set to be stored in the second reference unit. It should be noted that in the remainder of this embodiment, In the description, the first preset value is set in the first counting unit 302 and the second preset value is set in the second counting unit 304 as an example for detailed description.
  • the capacity of the first counter and the second counter is b, it must be ensured 2b>161, that is, b is at least 8.
  • the capacity of the first counter and the second counter is set to 8 bits; it should be noted that the numerical examples in this example are only for those skilled in the art to understand the second counter.
  • the capacity setting method of the first counter and the second counter does not constitute a limitation on this embodiment.
  • the number of first counters in the first counting unit 302 is limited, and the first counting unit 302 is also configured such that when each first counter in the first counting unit 302 has a corresponding monitoring address, that is, the first counter is All first counters in a counting unit 302 have started counting, and the monitoring addresses stored in the first counting unit 302 are full.
  • the first counting unit 302 is configured to discard the newly added monitoring address based on the second control signal; accordingly Ground, the number of second counters in the second counting unit 304 is limited, and the second counting unit 304 is also configured such that when each second counter in the second counting unit 304 has a corresponding monitoring address, that is, the second counting unit All the second counters in 304 have started counting, and the monitoring address stored in the second counting unit 304 is full.
  • the second counting unit 304 is configured to discard the monitoring address transmitted by the first counting unit 302; in some scenarios, The monitoring address discarded by the second counting unit 304 may be set to the monitoring address with a smaller second counter value.
  • the number of second counters in the second counting unit 304 is greater than the number of first counters in the first counting unit 302.
  • the second counting unit 304 can monitor more For changes in multiple addresses, the monitoring effect on the word line address of the memory that is turned on is better.
  • the size of the set first preset value is positive to the number of first update cycles for which the monitoring address is retained in the first counting module 110
  • the size of the set second preset value is positively correlated with the number of second update cycles for which the monitoring address is retained in the second counting module 120 or the sum of the number of first update cycles and second update cycles that are retained.
  • the first update period and the second update period are the intervals between two adjacent update signals.
  • the first reference unit 303 includes: a first setting sub-unit 401, connected to the first counting unit 302 and the judgment module 301, configured to, in response to the third control signal, based on the first initial value, set Monitor the first preset value corresponding to the address; the first adjustment subunit 402 is configured to receive the update signal, and adjust the first preset value corresponding to the retained monitoring address in the first counting unit 302 based on the update signal, Therefore, the size of the set first preset value is positively correlated with the number of first update cycles in which the monitoring address is retained in the first counting module 110 .
  • the second reference unit 305 includes: a second setting subunit 403, connected to the first counting unit 302 and the second counting unit 304, and configured to, based on the second initial value, set the second setting subunit 403 corresponding to the monitoring address transmitted by the first counting unit.
  • Default value the second adjustment sub-unit 404 is configured to receive an update signal and adjust the second preset value corresponding to the retained monitoring address in the second counting unit 304 based on the update signal, thereby realizing the set second preset value.
  • the size of the set value is positively correlated with the number of second update cycles in which the monitoring address is retained in the second counting module 120 .
  • the second preset value set by the second setting sub-unit 403 for the monitoring address transmitted by the first counting unit 302 is the second initial value, that is, the monitoring address is not retained for a duration in the first counting module 110, Corresponding to the setting method of the second preset value; in other embodiments, the second preset value set by the second setting sub-unit 403 for the monitoring address transmitted by the first counting unit 302 is the second initial value and the cumulative duration value.
  • the accumulated duration value is a parameter related to the number of first update cycles in which the monitoring address is retained in the first counting unit 302, that is, the duration of the retention monitoring address in the first counting module 110 corresponds to the setting of the second preset value. Way.
  • the first preset value is the counting result of the third counter in the first counting unit 302
  • the first adjustment subunit 402 is configured to, based on the update signal, accumulate the third initial value to the first The third counter corresponding to the reserved monitoring address in the counting unit 302.
  • the second preset value is the counting result of the fourth counter in the second counting unit 304.
  • the second adjustment sub-unit 404 is configured to, based on the update signal to accumulate the fourth initial value to the fourth counter corresponding to the reserved monitoring address in the second counting unit 304 .
  • the counting value is the counting result of the first counter, used to represent the number of times the corresponding monitoring address is counted
  • the preset value that is, the first preset value is the counting result of the third counter, used for represents the first recorded reference value of the corresponding monitoring address
  • c represents the first initial value set by the first setting sub-unit 401
  • y represents the step size of each adjustment by the first adjustment sub-unit 402
  • t1 ⁇ t5 represents the existence of the corresponding monitoring address.
  • the preset value corresponding to the monitoring address also gradually increases. That is, only the word line address that is continuously turned on has a greater probability of causing adjacent storage.
  • the counting value is the counting result of the second counter and is used to represent the number of times the corresponding monitoring address is counted.
  • the preset value that is, the second preset value is the counting structure of the fourth counter and is used to represent the corresponding monitoring address.
  • the monitoring address released by the first counter continues to be monitored through the second counter, and a second preset value smaller than the first preset value is set for the corresponding monitoring address, so that monitoring is continuous and
  • the slowly opened word line address ensures the accuracy of data stored in each storage area.
  • the monitoring address corresponding to the first counter and the second counter of the maximum count value stored in the first counting unit 302 can be calculated based on each update signal.
  • the adjacent rows of the monitoring address corresponding to the second counter of the maximum count value stored in the counting unit 304 are supplementally refreshed; it can also be set to supplementary refresh the adjacent rows of the monitoring address of the maximum count value every n update signals; similarly It can also be set to refresh adjacent rows of multiple monitoring addresses in a single supplementary refresh.
  • the first initial value is set to 2 n
  • the second initial value is set to 2 m
  • the third initial value is set to 2 p
  • the fourth initial value is set to 2 q
  • m, n, p and q are greater than or equal to A positive integer of 1, and m>n, p>q; in a specific example, m and n can be set to 2, 3, 4 or 5, p and q can be set to 1, 2, 3 or 4; correspondingly
  • the values of ground, m and n, p and q can be set to the same value or to different values.
  • the judgment module 301 when receiving the monitoring address Address1 sampled by the sampling module 101, the judgment module 301 generates a first control signal, and the first counting unit 302 controls the count value of the first counter corresponding to the monitoring address Address1. +1 (changed from 10 to 11); when the judgment module 301 receives the monitoring address Address6 sampled by the sampling module 101, it generates a second control signal, and the second counting unit 304 controls the count value of the first counter corresponding to the monitoring address Address6 to +1 (from 12 to 13); when the first reference unit 303 and the second reference unit 305 receive the update signal, it means that the recorded monitoring address has existed for one more update period, and the first reference unit 303 adjusts the first counting unit 302 is the first default value configured for the monitoring address.
  • the default value of the monitoring address Address1 changes from 4+4*1 to 4+4*2, and the default value of the monitoring address Address2 changes from 4+4*0. is 4+4*1, the default value of monitoring address Address3 changes from 4+4*5 to 4+4*6, and the default value of monitoring address Address4 changes from 4+4*0 to 4+4*1.
  • the preset value of address Address5 changes from 4+4*2 to 4+4*3.
  • the second reference unit 305 adjusts the second preset value configured for the monitoring address in the second counting unit 304, where the preset value of monitoring address Address6
  • the setting value changes from 2+2*3 to 2+2*4, the default value of monitoring address Address7 changes from 2+2*0 to 2+2*1, and the default value of monitoring address Address8 changes from 2+2*7 becomes 2+2*8, the default value of monitoring address Address9 changes from 2+2*4 to 2+2*5, and the default value of monitoring address Address9 changes from 2+2*5 to 2+2*6.
  • Word line addresses that are continuously turned on are more likely to cause data errors in adjacent storage areas.
  • the processing module 102 compares the count value of each monitoring address with the preset value, and retains the monitoring address whose count value is greater than or equal to the preset value. For the first count unit, transmit the monitoring address whose count value is less than the preset value to the second counting unit. For the second counting unit, release the monitoring address whose count value is less than the preset value.
  • the monitoring address Address5 in the first counting unit 302 Reserved, other monitoring addresses are transferred to the second counting unit, the corresponding first counter and the first preset value are reset, the monitoring address Address 6 in the second counting unit 304 is retained, other monitoring addresses are released, and the corresponding second counter and the first preset value are retained.
  • the two preset values are reset.
  • the count value and existence period corresponding to the monitoring address transmitted to the second counting unit are retained, that is, the count value 11 and existence period 2 corresponding to the monitoring address Address1 are retained to the second counting unit.
  • the second counting unit resets the second preset value to 2+2*2 based on period 2.
  • the count value 5 corresponding to the monitoring address Address2 and the existence period 1 are retained in the second counter unit.
  • the second counting unit The second preset value is reset to 2+2*1 based on period 1.
  • the count value 19 corresponding to the monitoring address Address3 and the existence period 6 are retained in the second counter unit.
  • the second counting unit resets the second preset value based on period 6.
  • Set the value to 2+2*6, the count value 1 and the existence period 1 corresponding to the monitoring address Address4 are retained in the second counter unit, and the second counting unit resets the second preset value to 2+2*1 based on period 1. ;
  • the judgment module 301 receives the monitoring address Address7 sampled by the sampling module 101, since the monitoring address Address7 does not exist in the first counting module 110, the judgment module 301 generates a third control signal.
  • the first counting module 110 adds a new monitoring address. Address7, and sets the count value of the first count value corresponding to the monitoring address Address7 to 1, and the first reference unit 303 sets a default value of 4+4*0 for the monitoring address Address7.
  • the count value and existence period corresponding to the monitoring address transmitted to the second counting unit are reset to 0, that is, the count value 11 and existence period 2 corresponding to the monitoring address Address1 are not retained to the second counting unit.
  • the second counting unit resets the second preset value to 2+2*0 based on period 0.
  • the count value 5 and the existence period 1 corresponding to the monitoring address Address2 are not retained in the second counter unit.
  • the second counting unit The second preset value is reset to 2+2*0 based on period 0.
  • the count value 19 and the existence period 6 corresponding to the monitoring address Address3 are not retained in the second counter unit.
  • the second counting unit resets the second preset value based on period 0. Set the value to 2+2*0.
  • the count value 1 and existence period 1 corresponding to the monitoring address Address4 are not retained in the second counter unit.
  • the second counting unit resets the second preset value to 2+2*0 based on period 0. .
  • the second counting unit Release the monitoring address; in some embodiments, it can be set that the first counting unit first completes the comparison of the detection address based on the update signal, and then releases the monitoring address to the second counting unit, and then the second counting unit based on the updated monitoring address, Compare release based on update signal.
  • the first initial value set for the preset value of the monitoring address stored in the first counting module 110 is 4, the third initial value accumulated based on the update signal is set to 4, and the first initial value set for the preset value stored in the second counting module 110 is set to 4.
  • the second initial value of the preset value of the monitoring address in the counting module 120 is set to 2, and the fourth initial value of the accumulation based on the update signal is set to 2.
  • the preset value of the retained monitoring address is first set.
  • the set value is accumulated, and then the count value is compared with the preset value; in other implementations, after receiving the update signal, it can also be set to first compare the count value with the preset value, and then monitor the remaining
  • the preset value of the address is accumulated to reduce the number of the third counter and the fourth counter that need to be adjusted by the monitoring circuit, thereby reducing the power consumption of the monitoring circuit.
  • the upper figure of Figure 8 shows the monitoring data of the monitoring address when the first counting module 110 and the second counter module 120 exist, and the lower figure shows the monitoring data of the monitoring address when only the second counting module 110 exists;
  • the solid line represents the monitoring address in the first counting module 110
  • the dotted line represents the monitoring address in the second counting module 120.
  • the example in Figure 8 is used to count the monitoring addresses A, B, C, D, E, P, Q, For the statistical times of R and S, refer to the figure below.
  • the count value of monitoring address AB is greater than the first preset value of 1 cycle and is retained, and the count value corresponding to monitoring address A is the largest.
  • monitoring address A The adjacent rows are refreshed, and the count value of the monitoring address DEP is less than 1 cycle.
  • the first preset value is released.
  • the second refresh cycle since the monitoring address B has been retained for 2 cycles, the first value corresponding to the monitoring address B is The default value is the first preset value of 2 cycles.
  • the count value of monitoring address B is still greater than the first preset value of 2 cycles and is retained, and the count value corresponding to monitoring address B is the largest.
  • the adjacent rows of monitoring address B are refreshed.
  • the count value of the newly appearing monitoring address Q is less than the first count value of 1 cycle and is released.
  • the third refresh cycle the count value of the newly appearing monitoring address C is greater than the first count value of 1 cycle and is retained, and the monitoring address C is retained.
  • the corresponding count value is the largest, and the adjacent rows of the monitoring address C are refreshed.
  • the count value of the newly appearing monitoring address R is less than 1 cycle.
  • the first count value is released.
  • the newly appearing monitoring address S is If the count value is greater than the first preset value of 1 cycle, the count value corresponding to the monitoring address S is the largest, and the adjacent rows of the monitoring address S are refreshed.
  • the count value of monitoring address AB in the first counting module 110 is greater than the first preset value of 1 cycle and is retained, and the count value corresponding to monitoring address A is the largest.
  • monitoring address A The adjacent rows are refreshed, and the count value of the monitoring address DEP is less than the first preset value of 1 cycle and is released to the second counting module 120; in the second refresh cycle, since the monitoring address BDEP has been retained for 2 cycles, The first preset value corresponding to the monitoring address B in the first counting module 110 is the first preset value of 2 cycles.
  • the count value of the monitoring address B is still greater than the first preset value of 2 cycles and is retained, and the count corresponding to the monitoring address B is The value is the largest, the adjacent rows of the monitoring address B are refreshed, and the count value of the new monitoring address Q is less than 1 cycle.
  • the first count value is released to the second counting module 120, and the third value corresponding to the monitoring address DEP in the second counting module 120 is
  • the second preset value is the second preset value of 2 cycles.
  • the count value of the monitoring address DE is still greater than the second preset value of 2 cycles and is retained.
  • the count value of the monitoring address P is less than the second preset value of 2 cycles and is released; in the second Within three refresh cycles, since the monitoring address DE has been retained for 3 cycles and the monitoring address Q has been retained for 2 cycles, the count value of the newly appearing monitoring address C in the first counting module 110 is greater than the first count value of 1 cycle.
  • the count value corresponding to the monitoring address C is the largest, the adjacent rows of the monitoring address C are refreshed, and the new counting value of the monitoring address R is less than 1 cycle.
  • the first counting value is released to the second counting module 120, and the second counting In the module 120, the second preset value corresponding to the monitoring address DE is the second preset value of 3 cycles.
  • the count value of the monitoring address DE is still greater than the second preset value of 3 cycles and is retained.
  • the count value of the monitoring address Q is less than 2 cycles.
  • the second preset value is released; in the fourth refresh cycle, since the monitoring address DE has been retained for 4 cycles and the monitoring address R has been retained for 2 cycles, the newly appearing monitoring address S in the first counting module 110 If the count value is greater than the first preset value of 1 cycle, it is retained.
  • the second preset value corresponding to the monitoring address DE is the second preset value of 4 cycles.
  • the count value of the monitoring address D is still greater than the 4th cycle.
  • the second preset value is retained, and the count value corresponding to the monitoring address D is the largest.
  • the adjacent rows of the monitoring address S are refreshed.
  • the count value of the monitoring address E is less than 4 cycles.
  • the second preset value is released, and the second preset value corresponding to the monitoring address R is refreshed.
  • the second preset value is the second color value of 2 cycles, and the count value of the monitoring address R is less than the second preset value of 2 cycles and is released.
  • the second counting module 120 is set up to monitor the word line addresses that are turned on slowly and continuously increasing times, so as to prevent the word line addresses that are turned on slowly and continuously from being covered up by the word line addresses that are turned on multiple times in a short period of time, ensuring that Accuracy of data stored in the storage area.
  • the release of the monitoring address in the second counter is delayed by one refresh cycle compared to the release of the monitoring address in the first counter, that is, the first counting unit and the second counting unit complete the comparison of the monitoring address at the same time based on the update signal.
  • the first counting unit releases the monitoring address to the second counting unit at the same time as the second counting unit releases the monitoring address; in some embodiments, it can be set so that the first counting unit gives priority to completing the comparison of the detection address based on the update signal.
  • the monitoring address is released to the second counting unit, and then the second counting unit performs comparison and release based on the updated monitoring address and the update signal.
  • the release of the monitoring address in the second counter is the same as the release of the monitoring address by the first counter.
  • the release is executed synchronously.
  • the second counting module 120 is used to count the word line addresses that are turned on slowly and continuously. It takes a certain number of cycles for the count value of the corresponding monitoring address to increase to the maximum.
  • the refresh ratio of the first counting module 110 and the second counting module 120 is 3:1; required
  • the refresh ratio setting of the first counting module 110 and the second counting module 120 in the above example does not constitute a limitation of this embodiment. In other embodiments, the refresh ratio of the first counting module 120 and the second counting module 120 The ratio can be set to 5:1, 7:1 or 10:1.
  • the first preset value and the second preset value also correspond to a maximum value. After the values of the third counter and the fourth counter accumulate to the maximum value, they will not continue to accumulate. When the third counter corresponding to the monitoring address If the count value of the first counter or the second counter is greater than or equal to the maximum value, it proves that the data in the storage area adjacent to the monitoring address is prone to errors and needs to be supplementally refreshed. At this time, there is no need to accumulate the preset value to avoid the third The counter and the fourth counter perform unnecessary numerical updates.
  • the update signal includes a refresh signal and a count adjustment signal.
  • the refresh signal is used to instruct the memory to perform a refresh operation, that is, the original signal of the memory.
  • the count adjustment signal is different from the two adjacent refresh signals.
  • the count adjustment signal is a newly defined signal within the refresh cycle, used to update the monitoring addresses retained in the first counting module 110 and the second counting module 120 based on the count value and the preset value, by refreshing the signal and counting
  • the adjustment signal is used together as an update signal to increase the frequency with which the processing module 102 adjusts the monitoring addresses in the first counting module 110 and the second counting module 120, thereby further reducing the number of counters that the monitoring circuit needs to drive; in addition, by increasing the frequency of the update signal The number increases the frequency of monitoring the enabled word line addresses and prevents the sudden multiple opening of certain enabled word line addresses in a short period of time.
  • the memory can also be used to perform refresh operations of monitoring addresses based on other special refresh commands, such as the refresh command RFM.
  • the number of count adjustment signals can be appropriately adjusted according to the application scenario required by the memory, so that the adaptive adjustment processing module 102 releases the frequency of the monitoring address in the first counting module 110 .
  • the refresh operation of the memory also includes: refreshing the adjacent rows of the y monitoring addresses with the highest count values corresponding to the first counter among the monitoring addresses retained in the first counting module 110, and Refresh the adjacent rows of the z monitoring addresses with the highest count value corresponding to the second counter among the monitoring addresses retained in the second counting module 120.
  • y and z are positive integers greater than or equal to 1.
  • the processing module 102 continuously releases the monitoring addresses in the first counting module 110 whose count value is less than the preset value based on the update signal, that is, continuously releases the noise addresses recorded in the first counting module 110, so that the first The counting module 110 can record new monitoring addresses, and avoid wasting counter resources caused by continuous recording of noise addresses, thereby reducing the number of first counters that need to be driven by the monitoring circuit, thereby reducing the power consumption of the monitoring circuit; in addition, the processing module 102 continues to count the addresses released by the first counting module 110 through the second counting module 120, so as to continue to monitor the word line addresses that are slowly and continuously turned on, so as to prevent the word line addresses that are slowly and continuously turned on from being turned on in a short time. The word line addresses that are turned on multiple times are masked to ensure the accuracy of the data stored in each storage area.
  • Another embodiment of the present disclosure provides a refreshing method, which is applied to the monitoring circuit provided in the above embodiment, to achieve supplementary refreshing of specific rows in the storage area with relatively small power consumption, and to ensure the accuracy of the data stored in each storage area. At the same time, it reduces the number of counters that the memory needs to drive, which is more suitable for the actual design of the memory.
  • FIG. 9 is a schematic flowchart corresponding to each step in the refresh method provided by this embodiment.
  • the refresh method provided by this embodiment will be described in detail below with reference to the accompanying drawings, as follows:
  • refresh methods include:
  • Step S1 Obtain the monitoring address and detect whether the monitoring address is stored; if the monitoring address has been stored, step S2 is executed; if the monitoring address is not stored, step S3 is executed.
  • the monitoring address is the address of the word line that is turned on in the memory. If the monitoring address has been stored, it proves that the address of the word line that is currently turned on has been counted, and the counting needs to continue based on step S2; if the monitoring address has not been stored, then To prove that the currently enabled word line address is not counted, it is necessary to configure the first counter to start counting based on step S3, and configure the corresponding preset value. It should be noted that the count value and the preset value of the first counter are both set to 0 at the initial moment. After the count value and the preset value of the first counter are reset, they are also reset to 0. Therefore, when adding a new monitoring address Finally, the first counter, count value and preset value need to be assigned.
  • step S1 is based on preset interval sampling to obtain the monitoring address, where the preset interval is set to sample the monitoring address every time x initial addresses appear, and x is a positive integer, that is, every time x initial addresses appear, x is a positive integer, that is, every time x initial addresses appear, x
  • the word line address, the sampling module 101 performs a sampling of the monitoring address, and sets the sampling probability to reduce the word line address that needs to be obtained, that is, the power consumption required for refresh is further reduced through sampling detection.
  • x is a positive integer less than or equal to 16; in a specific example, x can be set to a positive integer such as 14, 12, 10, 8, 6, 4 or 2.
  • Step S2 Add 1 to the count value of the first counter corresponding to the monitoring address, or add 1 to the count value of the second counter corresponding to the monitoring address, and then execute step S4.
  • the capacity of the first counter and the second counter is b, it must be ensured that 2b>161, that is b is at least 8.
  • the capacity of the first counter and the second counter is set to 8 bits; it should be noted that the numerical examples in this example are only for those skilled in the art to understand the capacity setting of the first counter. The method does not constitute a limitation on this embodiment.
  • Step S3 Use a new first counter to count the monitoring address, set the count value of the first counter to 1, and set a corresponding first preset value for the monitoring address, and then execute step S4.
  • a newly added monitoring address is obtained, and a default value corresponding to the monitoring address is set based on the first initial value.
  • steps S1 to S3 in an example, with reference to Figure 6 and in combination with Figures 2 to 4, when the judgment module 301 receives the monitoring address Address1 sampled by the sampling module 101, it generates a first control signal, and the first counting unit 302 controls The count value of the first counter corresponding to the monitoring address Address1 is +1 (changed from 10 to 11); when the judgment module 301 receives the monitoring address Address6 sampled by the sampling module 101, it generates a second control signal, and the second counting unit 304 controls the monitoring address.
  • the count value of the first counter corresponding to Address6 is +1 (changed from 12 to 13); when the judgment module 301 receives the monitoring address Address7 sampled by the sampling module 101, since the monitoring address Address7 does not exist in the first counting module 110, the judgment module 301 301 generates a third control signal. At this time, the first counting module 110 adds a new monitoring address Address7 and sets the count value of the first count value corresponding to the monitoring address Address7 to 1.
  • the first reference unit 303 sets a default value for the monitoring address Address7. 4+4*0.
  • Step S4 Adjust the first preset value corresponding to the retained monitoring address based on the update signal, and compare the count value of the first counter corresponding to each monitoring address with the first preset value. If the count value of the first counter is greater than or equal to If the first preset value is the first preset value, step S5 is executed. If the count value of the first counter is less than the first preset value, step S6 is executed.
  • the counting value is the counting result of the first counter, used to represent the number of times the corresponding monitoring address is counted, and the preset value, that is, the first preset value is the third
  • the counting result of the counter is used to represent the first recorded reference value of the corresponding monitoring address, where c represents the first initial value set by the first setting sub-unit 401, and y represents the step size of each adjustment by the first adjustment sub-unit 402, t1 ⁇ t5 represents the number of first update cycles in which the corresponding monitoring address exists; for monitoring addresses whose count value is greater than or equal to the first preset value, that is, word line addresses whose opening times in the memory have reached the preset number, there is a risk of being maliciously attacked.
  • the counting value is the counting result of the second counter, which is used to represent the number of times the corresponding monitoring address is counted.
  • the preset value that is, the second preset value is the counting structure of the fourth counter, which is used to represent the corresponding monitoring address.
  • the second record reference value of The number of cycles; for monitoring addresses whose count value is less than the first preset value, that is, the speed at which the word line address is turned on cannot meet the standard of the first preset value, but it may belong to a word line address whose number of turns on continues and slowly increases. , there is also the risk of being attacked.
  • the monitoring address released by the first counter continues to be monitored through the second counter, and a second preset value smaller than the first preset value is set for the corresponding monitoring address, so that monitoring continues and The slowly opened word line address ensures the accuracy of data stored in each storage area.
  • the first initial value is set to 2 n
  • the second initial value is set to 2 m
  • the third initial value is set to 2 p
  • the fourth initial value is set to 2 q
  • m, n, p and q are greater than or equal to A positive integer of 1, and m>n, p>q; in a specific example, m and n can be set to 2, 3, 4 or 5, p and q can be set to 1, 2, 3 or 4; correspondingly
  • the values of ground, m and n, p and q can be set to the same value or to different values.
  • Step S5 Keep the monitoring address, the count value of the first counter and the first preset value corresponding to the monitoring address, and continue to execute step S1.
  • the third counter corresponding to the retained monitoring address is accumulated based on the third initial value, that is, the retained monitoring address adjusted based on the update signal is obtained, and the third counter corresponding to the corresponding monitoring address is accumulated based on the third initial value.
  • Third counter is accumulated based on the third initial value, that is, the retained monitoring address adjusted based on the update signal is obtained, and the third counter corresponding to the corresponding monitoring address is accumulated based on the third initial value.
  • Step S6 Use a new second counter to count the monitoring address, set a corresponding second preset value for the monitoring address, reset the first counter and preset value corresponding to the monitoring address, and continue to execute step S1.
  • step S4 further includes: adjusting the second preset value corresponding to the reserved monitoring address based on the update signal, and comparing the count value of the second counter corresponding to each monitoring address with the second preset value, if the If the count value of the second counter is greater than or equal to the second preset value, step S7 is executed. If the count value of the second counter is less than the second preset value, step S8 is executed.
  • Step S7 retain the monitoring address, the count value of the second counter and the second preset value corresponding to the monitoring address, and continue to execute step S1.
  • the fourth counter corresponding to the retained monitoring address is accumulated based on the fourth initial value, that is, the retained monitoring address adjusted based on the update signal is obtained, and the fourth counter corresponding to the corresponding monitoring address is accumulated based on the fourth initial value.
  • Fourth counter is accumulated based on the fourth initial value, that is, the retained monitoring address adjusted based on the update signal is obtained, and the fourth counter corresponding to the corresponding monitoring address is accumulated based on the fourth initial value.
  • Step S8 Release the monitoring address, reset the second counter corresponding to the monitoring address, and continue to execute step S1.
  • steps S4 to S8 in an example, refer to Figure 6 and combine with Figures 2 to 4.
  • the first reference unit 303 and the second reference unit 305 receive the update signal, it means that the recorded monitoring address already exists.
  • the first reference unit 303 adjusts the first preset value configured for the monitoring address in the first counting unit 302, where the preset value of the monitoring address Address1 changes from 4+4*1 to 4+4*2.
  • the default value of monitoring address Address2 changes from 4+4*0 to 4+4*1
  • the default value of monitoring address Address3 changes from 4+4*5 to 4+4*6
  • the default value of monitoring address Address4 From 4+4*0 to 4+4*1
  • the default value of the monitoring address Address5 changes from 4+4*2 to 4+4*3.
  • the second reference unit 305 adjusts the monitoring address in the second counting unit 304.
  • the second default value of the configuration, in which the default value of the monitoring address Address6 changes from 2+2*3 to 2+2*4, and the default value of the monitoring address Address7 changes from 2+2*0 to 2+2* 1.
  • monitoring address Address8 changes from 2+2*7 to 2+2*8
  • the default value of monitoring address Address9 changes from 2+2*4 to 2+2*5
  • the default value of monitoring address Address9 The value changes from 2+2*5 to 2+2*6.
  • the word line address that is continuously turned on is more likely to cause data errors in adjacent storage areas.
  • the set value also gradually increases, that is, only adjacent rows of word line addresses that are continuously turned on have a greater probability of being retained for refresh; then the processing module 102 compares the count value of each monitored address with the preset value, and retains For monitoring addresses whose count value is greater than or equal to the preset value, for the first counting unit, the monitoring address whose count value is less than the preset value is transmitted to the second counting unit. For the second counting unit, monitoring addresses whose count value is less than the preset value are released.
  • the monitoring address Address5 in the first counting unit 302 is retained, other monitoring addresses are transferred to the second counting unit, the corresponding first counter and the first preset value are reset, and the monitoring address Address6 in the second counting unit 304 Reserved, other monitoring addresses are released, and the corresponding second counter and second preset value are reset.
  • the corresponding count value and existence period of the monitoring address transmitted to the second counting unit are retained, that is, the monitoring address
  • the count value 11 and existence period 2 corresponding to Address1 are retained in the second counter unit.
  • the second counting unit resets the second preset value to 2+2*2 based on period 2, and monitors the count value 5 and existence period corresponding to Address2. Period 1 is retained in the second counter unit.
  • the second counting unit resets the second preset value to 2+2*1 based on period 1.
  • the count value 19 corresponding to the monitoring address Address3 and the existence period 6 are retained in the second counter.
  • the second counting unit resets the second preset value to 2+2*6 based on period 6, and the count value 1 and existence period 1 corresponding to the monitoring address Address4 are retained in the second counter unit.
  • the second counting unit is based on Cycle 1 resets the second preset value to 2+2*1.
  • the count value and existence period corresponding to the monitoring address transmitted to the second counting unit are reset to 0, that is, the count value 11 and existence period 2 corresponding to the monitoring address Address1 are not retained to the second counting unit.
  • the second counting unit resets the second preset value to 2+2*0 based on period 0.
  • the count value 5 and the existence period 1 corresponding to the monitoring address Address2 are not retained in the second counter unit.
  • the second counting unit The second preset value is reset to 2+2*0 based on period 0.
  • the count value 19 and the existence period 6 corresponding to the monitoring address Address3 are not retained in the second counter unit.
  • the second counting unit resets the second preset value based on period 0. Set the value to 2+2*0.
  • the count value 1 and existence period 1 corresponding to the monitoring address Address4 are not retained in the second counter unit.
  • the second counting unit resets the second preset value to 2+2*0 based on period 0. .
  • the second counting unit Release the monitoring address; in some embodiments, it can be set that the first counting unit first completes the comparison of the detection address based on the update signal, and then releases the monitoring address to the second counting unit, and then the second counting unit based on the updated monitoring address, Compare release based on update signal.
  • the first initial value set for the first preset value is 4, the third initial value accumulated based on the update signal is set to 4, and the second initial value set for the second preset value is 2,
  • the fourth initial value for accumulation based on the update signal is set to 2, and when the update signal is received, the preset value of the reserved monitoring address is accumulated first, and then the count value is compared with the preset value; in other implementations
  • after receiving the update signal it can also be set to first compare the count value with the preset value, and then accumulate the preset value of the retained monitoring address to reduce the third counter and the required adjustment of the monitoring circuit. The number of fourth counters thereby reduces the power consumption of the monitoring circuit.
  • the first preset value and the second preset value also correspond to a maximum value. After the values of the third counter and the fourth counter accumulate to the maximum value, they will not continue to accumulate. When the third counter corresponding to the monitoring address If the count value of the first counter or the second counter is greater than or equal to the maximum value, it proves that the data in the storage area adjacent to the monitoring address is prone to errors and needs to be supplementally refreshed. At this time, there is no need to accumulate the preset value to avoid the third The counter and the fourth counter perform unnecessary numerical updates.
  • the update signal includes a refresh signal and a count adjustment signal.
  • the refresh signal is used to instruct the memory to perform a refresh operation, that is, the original signal of the memory.
  • the count adjustment signal is different from the two adjacent refresh signals.
  • the count adjustment signal is a newly defined signal within the refresh cycle, used to update the reserved monitoring address based on the count value and the preset value, and the refresh signal and the count adjustment signal are jointly used as an update signal to improve the release of the monitoring address frequency, thereby further reducing the number of counters that need to be driven by the monitoring circuit; in addition, by increasing the number of update signals, the monitoring frequency of the enabled word line addresses is increased, preventing certain enabled word line addresses from being monitored in a short period of time. Turned on multiple times suddenly. It should be noted that in addition to the refresh signal, the memory can also be used to perform refresh operations of monitoring addresses based on other special refresh commands, such as the refresh command RFM.
  • the number of count adjustment signals can be appropriately adjusted according to the application scenarios required by the memory, thereby adaptively adjusting the frequency of releasing monitoring addresses.
  • the refresh method provided in this embodiment continuously releases monitoring addresses whose count values are less than the preset value based on the update signal, that is, continuously releases the recorded noise addresses, so that the counting module can record new monitoring addresses, and avoids continuous interruption of noise addresses.
  • the waste of counter resources caused by recording is used to reduce the number of first counters that need to be driven by the monitoring circuit, thereby reducing the power consumption of the monitoring circuit; in addition, by continuing to count the released addresses, it is possible to continue to monitor the slowly and continuously turned on addresses.
  • the word line address prevents the word line address that is slowly and continuously turned on from being covered by the word line address that is turned on multiple times in a short period of time to ensure the accuracy of the data stored in each storage area.
  • Another embodiment of the present disclosure provides a memory. Based on the monitoring circuit provided in the above embodiment, the word line address to be refreshed is obtained, and supplementary refreshing of specific rows in the storage area is achieved with relatively small power consumption, and the monitoring is slow and continuously interrupted.
  • the turned-on word line address ensures the accuracy of the data stored in each storage area and at the same time reduces the number of counters that the memory needs to drive, which is more suitable for the actual design of the memory.
  • the processing module continuously releases the monitoring address in the first counting module whose count value is less than the preset value based on the update signal, that is, continuously releases the noise address recorded in the first counting module, so that the first counting module can detect new The monitoring address is recorded, and by avoiding the waste of counter resources caused by the continuous recording of noise addresses, the number of first counters required to be driven by the monitoring circuit is reduced, thereby reducing the power consumption of the monitoring circuit; in addition, the processing module passes the second The counting module continues to count the addresses released by the first counting module to continue to monitor the word line addresses that are slowly and continuously turned on, to prevent the word line addresses that are slowly and continuously turned on from being covered up by the word line addresses that are turned on multiple times in a short period of time. To ensure the accuracy of data stored in each storage area.
  • the memory may be a memory unit or device based on a semiconductor device or component.
  • the memory device may be a volatile memory such as dynamic random access memory DRAM, synchronous dynamic random access memory SDRAM, double data rate synchronous dynamic random access memory DDR SDRAM, low power double data rate synchronous dynamic random access memory Access memory LPDDR SDRAM, graphics double data rate synchronous dynamic random access memory GDDR SDRAM, double data rate type dual synchronous dynamic random access memory DDR2 SDRAM, double data rate type triple synchronous dynamic random access memory DDR3 SDRAM, double Data rate fourth generation synchronous dynamic random access memory DDR4 SDRAM, thyristor random access memory TRAM, etc.; or it can be a non-volatile memory such as phase change random access memory PRAM, magnetic random access memory MRAM, resistive random access memory Take the memory RRAM etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Dram (AREA)

Abstract

本公开涉及半导体电路设计领域,特别涉及一种监测电路、刷新方法及存储器,监测电路包括:采样模块,对初始地址采样以获取监测地址;第一计数模块,基于接收到的监测地址,调节监测地址对应的第一计数器的计数值;处理模块,基于更新信号比较第一计数模块中每一监测地址对应的第一计数器的计数值和对应的第一预设值,并基于比较结果,判断是否将监测地址传输至第二计数模块;基于更新信号比较第二计数模块中每一监测地址对应的第二计数器的计数值和对应的第二预设值,并基于比较结果,判断是否保留监测地址;第二计数模块,基于接收到的监测地址,调节监测地址对应的第二计数器的计数值,以监测缓慢且持续被开启的字线地址。

Description

监测电路、刷新方法及存储器
交叉引用
本公开要求于2022年08月30日递交的名称为“监测电路、刷新方法及存储器”、申请号为202211058172.5的中国专利申请的优先权,其通过引用被全部并入本公开。
技术领域
本公开涉及半导体电路设计领域,特别涉及一种监测电路、刷新方法及存储器。
背景技术
动态随机存取存储器(Dynamic Random Access Memory,DRAM)通过一个晶体管连接一存储区的结构(1T1C)存储数据,其中晶体管通过字线(word line,WL)控制,WL导通时,存储区内的电荷与位线(bit line,BL)的电荷共享,以将目标存储区中的数据读出,或向目标存储区中写入数据。
字线频繁开启会导致相邻存储区内的电荷丢失,可能导致存储区内存储的数据发生错误;对于上述问题,目前通常基于刷新周期为时间单位,对一个刷新周期内被开启次数最多的字线地址相邻的存储区进行补充刷新,从而避免存储的数据发生错误;然而,采用这种方式进行存储区的补充刷新需要对所有被开启的字线地址进行计数,需要驱动数量庞大的计数器,从而产生较大的功耗,并不利于实际应用;另外,缓慢且持续被开启的字线地址,容易被短时间内被多次开启的字线地址掩盖,无法保证存储区内存储数据的准确性。
如何以较小的功耗完成对存储区的补充刷新,且监测到缓慢且持续被开启的字线地址,以保证各存储区内存储数据的准确性,是当前亟待解决的技术问题。
发明内容
本公开一实施例提供了一种监测电路,包括:采样模块,被配置为,对初始地址采样以获取监测地址,并将监测地址输出,初始地址为监测电路所在存储器中被开启的字线地址;第一计数模块,连接采样模块,被配置为,基于接收到的监测地址,调节监测地址对应的第一计数器的计数值;处理模块,连接第一计数模块和第二计数模块,被配置为,基于更新信号比较第一计数模块中每一监测地址对应的第一计数器的计数值和对应的第一预设值,并基于第一计数器的计数值和第一预设值的比较结果,判断是否将监测地址传输至第二计数模块;基于更新信号比较第二计数模块中每一监测地址对应的第二计数器的计数值和对应的第二预设值,并基于第二计数器的计数值和第二预设值的比较结果,判断是否保留监测地址;第二计数模块,连接采样模块和第一计数模块,被配置为,基于接收到的监测地址,调节监测地址对应的第二计数器的计数值;其中,第二预设值小于第一预设值。
另外,处理模块,包括:第一处理单元,连接第一计数模块,被配置为,基于更新信号比较第一计数模块中每一监测地址对应的第一计数器的计数值和第一预设值;其中,若第一计数器的计数值大于等于第一预设值,保留监测地址,若第一计数器的计数值小于第一预设值,将监测地址传输至第二计数模块,并复位监测地址对应的第一计数器和第一预设值;第二处理单元,连接第二计数模块,被配置为,基于更新信号比较第二计数模块中每一监测地址对应的第二计数器的计数值和第二预设值;其中,若第二计数器的计数值大于等于第二预设值,保留监测地址,若第二计数器的计数值小于第二预设值,释放监测地址,并复位监测地址对应的第二计数器和第二预设值。
另外,监测电路,还包括:判断模块,连接采样模块,被配置为,基于获取的监测地址和存储的监测地址,判断获取的监测地址是否被存储,若监测地址被第一计数模块存储,则生成第一控制信号,若监测地址被第二计数模块存储,则生成第二控制信号,若监测地址未被存储,则生成第三控制信号;第一计数模块,包括:第一计数单元,连接采样模块和判断模块,被配置为,基于第一控制信号,将监测地址对应的第一计数器的计数值加1或者基于第三控制信号,为新增监测地址配置对应的第一计数器,并将第一计数器的计数值置1;第一参考单元,连接第一计数单元和判断模块,被配置为,基于第三控制信号,为监测地址配置第一预设值,且配置的第一预设值存储在第一计数单元中, 并基于更新信号调整第一预设值;第二计数模块,包括:第二计数单元,连接第一计数单元、采样模块和判断模块,被配置为,基于第二控制信号,将监测地址对应的第二计数器的计数值加1,并且为第一计数单元传输的监测地址配置对应的第二计数器,并设置第二计数器的计数值;第二参考单元,连接第一计数单元和第二计数单元,被配置为,为第一计数单元传输的监测地址配置第二预设值,且配置的第二预设值存储在第二计数单元中,并基于更新信号调整第二预设值。
另外,设置第二计数器的计数值包括:基于监测地址对应的第一计数器的计数值设置第二计数器的计数值;或,将第二计数器的计数值置0。
另外,设置的第一预设值的大小与监测地址在第一计数模块中保留的第一更新周期的数量呈正相关,设置的第二预设值的大小与监测地址在第二计数模块中保留的第二更新周期的数量或保留的第一更新周期和第二更新周期的数量和呈正相关,第一更新周期和第二更新周期为相邻更新信号之间的间隔时间。
另外,第一参考单元,包括:第一设置子单元,连接第一计数单元和判断模块,被配置为,响应于第三控制信号,基于第一初始值,设置监测地址对应的第一预设值;第一调整子单元,被配置为,接收更新信号,并基于更新信号调整第一计数单元中保留的监测地址所对应的第一预设值;第二参考单元,包括:第二设置子单元,连接第一计数单元和第二计数单元,被配置为,基于第二初始值,设置第一计数单元传输的监测地址对应的第二预设值;第二调整子单元,被配置为,接收更新信号,并基于更新信号调整第二计数单元中保留的监测地址所对应的第二预设值。
另外,第一预设值为第一计数单元中的第三计数器的计数结果;基于更新信号调整第一计数单元中保留的监测地址所对应的第一预设值包括:基于更新信号,将第三初始值累加至第一计数单元中被保留的监测地址对应的第三计数器;第二预设值为第二计数单元中的第四计数器的计数结果;基于更新信号调整第二计数单元中保留的监测地址所对应的第二预设值包括:基于更新信号,将第四初始值累加至第二计数单元中被保留的监测地址对应的第四计数器。
另外,第一初始值设置为2 n,第二初始值设置为2 m,第三初始值设置为2 p,第四初始值设置为2 q,m、n、p和q为大于等于1的正整数,且m>n,p>q。
另外,采样模块基于预设间隔采样以获取监测地址,其中,预设间隔设置为每出现x个初始地址,进行一次监测地址的采样,x为正整数。
另外,x为小于等于16的正整数。
另外,更新信号包括刷新信号和计数调整信号,刷新信号用于指示存储器进行刷新操作,计数调整信号于相邻两个刷新信号的间隔内提供。
另外,存储器的刷新操作还包括:刷新第一计数模块中保留的监测地址中第一计数器对应的计数值最高的y个监测地址的相邻行,并刷新第二计数模块中保留的监测地址中第二计数器对应的计数值最高的z个监测地址的相邻行,y和z为大于等于1的正整数;刷新后释放第一计数模块和第二计数模块中被刷新的相邻行对应的监测地址,并复位被刷新的相邻行对应的监测地址对应的第一计数器和第一预设值,或被刷新的监测地址对应的第二计数器和第二预设值。
另外,第一计数单元还被配置为,当第一计数单元中每个第一计数器均有对应的监测地址时,基于第三控制信号丢弃新增的监测地址;第二计数单元还被配置为,当第二计数单元中每个第二计数器均有对应的监测地址时,丢弃第一计数单元传输的监测地址。
本公开又一实施例提供了一种刷新方法,应用于上述实施例提供的监测电路,包括:步骤S1:获取监测地址并检测监测地址是否被存储,若监测地址已被存储,则执行步骤S2,若监测地址未被存储,则执行步骤S3;步骤S2:将监测地址对应的第一计数器的计数值加1,或将监测地址对应的第二计数器的计数值加1;步骤S3:采用新的第一计数器计数监测地址,并将第一计数器的计数值置1,并为监测地址设置相应的第一预设值;步骤S4:基于更新信号调整保留的监测地址所对应的第一预设值,并比较每一监测地址对应的第一计数器的计数值和第一预设值,若第一计数器的计数值大于等于第一预设值,则执行步骤S5,若第一计数器的计数值小于第一预设值,则执行步骤S6;步骤S5:保留监测地址对应的第一计数器的计数值和第一预设值,继续执行步骤S1;步骤S6:采用新的第二计 数器计数监测地址,第二计数器的计数值与监测地址对应的第一计数器的计数值相同,并为监测地址设置相应的第二预设值,并复位监测地址对应的第一计数器和第一预设值,继续执行步骤S1。
另外,步骤S4还包括:基于更新信号调整保留的监测地址对应的第二预设值,并比较每一监测地址对应的第二计数器的计数值和第二预设值,若第二计数器的计数值大于等于第二预设值,则执行步骤S7,若第二计数器的计数值小于第二预设值,则执行步骤S8;步骤S7,保留监测地址,以及监测地址对应的第二计数器的计数值和第二预设值,继续执行步骤S1;步骤S8,释放监测地址,并复位监测地址对应的第二计数器,继续执行步骤S1。
另外,为监测地址设置相应的第一预设值,包括:获取新增的监测地址,并基于第一初始值设置新增的监测地址对应的第一预设值;基于更新信号调整保留的监测地址所对应的第一预设值,包括:基于第三初始值累加保留的监测地址所对应的第一预设值;为监测地址设置相应的第二预设值,包括:获取监测地址,并基于第二初始值设置监测地址对应的第二预设值;基于更新信号调整保留的监测地址所对应的第二预设值,包括:基于第四初始值累加保留的监测地址所对应的第二预设值。
本公开又一实施例还提供了一种存储器,基于上述实施例提供的监测电路获取待刷新的字线地址。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制;为了更清楚地说明本公开实施例或传统技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一实施例提供的监测电路的结构示意图;
图2为本公开一实施例提供的处理模块的结构示意图;
图3为本公开一实施例提供的第一计数模块和第二计数模块的结构示意图;
图4为本公开一实施例提供的第一参考单元和第二参考单元的结构示意图;
图5~图8为本公开一实施例提供的监测电路对监测地址进行保留和释放的原理示意图;
图9为本公开另一实施例提供的刷新方法中各步骤对应的流程示意图。
具体实施方式
由背景技术可知,字线频繁开启会导致相邻存储区内的电荷丢失,可能导致存储区内存储的数据发生错误。对于上述问题,目前通常基于刷新周期为时间单位,对一个刷新周期内被开启次数最多的字线地址相邻的存储区进行补充刷新,从而避免存储的数据发生错误;然而,采用这种方式进行存储区的补充刷新需要对所有被开启的字线地址进行计数,需要驱动数量庞大的计数器,从而产生较大的功耗,并不利于实际应用,且缓慢且持续被开启的字线地址,容易被短时间内被多次开启的字线地址掩盖,无法保证存储区内存储数据的准确性。
本公开一实施例提供了一种监测电路,以较小的功耗实现对存储区中特定行的补充刷新,且监测缓慢且持续被开启的字线地址,保证各存储区内存储数据的准确性的同时,降低存储器所需驱动的计数器的数量,更适于存储器的实际设计。
本领域的普通技术人员可以理解,在本公开各实施例中,为了使读者更好地理解本公开而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本公开所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本公开的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合,相互引用。
图1为本实施例提供的监测电路的结构示意图,图2为本实施例提供的处理模块的结构示意图,图3为本实施例提供的第一计数模块和第二计数模块的结构示意图,图4为本实施例提供的第一参考单元和第二参考单元的结构示意图,图5~图8为本实施例提供的监测电路对监测地址进行保留和 释放的原理示意图,以下结合附图对本实施例提供的监测电路进行详细说明,具体如下:
参考图1,监测电路,包括:
采样模块101,被配置为,对初始地址采样以获取监测地址,并将监测地址输出,初始地址为监测电路所在存储器中被开启的字线地址。
第一计数模块110,连接采样模块101,被配置为,基于接收到的监测地址,调节监测地址对应的第一计数器的计数值。
处理模块102,连接第一计数模块110和第二计数模块120,被配置为,基于更新信号比较第一计数模块110中每一监测地址对应的第一计数器的计数值和对应的第一预设值,并基于第一计数器的计数值和第一预设值的比较结果,判断是否将监测地址传输至第二计数模块;基于更新信号比较第二计数模块中每一监测地址对应的第二计数器的计数值和对应的第二预设值,并基于第二计数器的计数值和第二预设值的比较结果,判断是否保留监测地址,第二预设值小于第一预设值。
第二计数模块120,连接采样模块101和第一计数模块110,被配置为,基于接收到的监测地址,调节监测地址对应的第二计数器的计数值。
本实施例提供的监测电路中,处理模块102基于更新信号不断释放第一计数模块110中计数值小于预设值的监测地址,即不断释放第一计数模块110中记录的噪声地址,使得第一计数模块110可以对新的监测地址进行记录,通过避免对于噪声地址的持续记录而造成的计数器资源浪费,以降低监测电路所需驱动的第一计数器的数量,从而降低监测电路的功耗;另外,处理模块102通过第二计数模块120对第一计数模块110释放的地址继续进行计数,以继续监测缓慢且持续被开启的字线地址,避免缓慢且持续被开启的字线地址被短时间内多次开启的字线地址掩盖,以保证各存储区内存储数据的准确性。
在一些实施例中,第一计数模块110还被配置为,为监测地址配置第一预设值,且配置的第一预设值的大小与监测地址在第一计数模块110中存在的时长呈正相关。第二计数模块120还被配置为,为监测地址配置第二预设值,且配置的第二预设值的大小与监测地址在第二计数模块120中存在的时长呈正相关。具体地,监测地址在第一计数模块110或第二计数模块120中存在的时间越长,监测地址对应的预设值越大,监测地址在第一计数模块110或第二计数模块120中存在的时间越短,监测地址对应的预设值越小;在另一些实施例中,第二计数模块120配置的第二预设值与监测地址在第一计数模块110和第二计数模块120中存在的时长总和呈正相关,具体地,监测地址在第一计数模块110和第二计数模块120中存在的时间越长,监测地址对应的第二预设值越大,监测地址在第一计数模块110和第二计数模块120中存在的时间越短,监测地址对应的第二预设值越小。
对于本实施例提供的采样模块101,在一些实施例中,采样模块101基于预设间隔采样以获取监测地址,其中,预设间隔设置为每出现x个初始地址,进行一次监测地址的采样,x为正整数,即存储器每开启x个字线地址,采样模块101进行一次监测地址的采样,通过为采样模块101设置采样概率,以降低采样模块101所需获取的字线地址,即通过抽样检测的方式进一步降低监测电路的功耗。在一些实施例中,x可以为小于等于16的正整数;在一个具体的例子中,x可以设置为小于等于8的正整数,例如,x可以设置为8、6、4或2等正整数。
对于本实施例提供的处理模块102,在一些实施例中,参考图2,处理模块102,包括:
第一处理单元201,连接第一计数模块110,被配置为,基于更新信号比较第一计数模块110中每一监测地址对应的第一计数器的计数值和第一预设值;其中,若第一计数器的计数值大于等于第一预设值,保留监测地址,若第一计数器的计数值小于第一预设值,将监测地址传输至第二计数模块120,并复位监测地址对应的第一计数器和第一预设值。
第二处理单元202,连接第二计数模块120,被配置为,基于更新信号比较第二计数模块120中每一监测地址对应的第二计数器的计数值和第二预设值;其中,若第二计数器的计数值大于等于第二预设值,保留监测地址,若第二计数器的计数值小于第二预设值,释放监测地址,并复位监测地址对应的第二计数器和第二预设值。
具体地,对于第一处理单元201,在一些实施例中,第一处理单元201包括:第一处理子单 元(未图示),连接第一计数模块,被配置为,接收每一监测地址对应的第一计数器的计数值和第一预设值,并基于更新信号的控制,将第一计数器的计数值和第一预设值锁存并传输至比较子单元(未图示);比较子单元(未图示)连接第一处理子单元(未图示),被配置为,比较第一计数器的计数值和第一预设值,且当第一计数器的计数值小于第一预设值,生成并输出释放控制信号;第二处理子单元(未图示),连接比较子单元(未图示)和第一计数模块110,被配置为,基于释放控制信号,将第一计数模块110中相应的监测地址传输至第二计数模块120,并复位监测地址对应的第一计数器和第一预设值。
需要说明的是,上述对于第一处理单元201的结构说明,仅用于本领域技术人员了解本实施例提供的第一处理单元201的工作原理,并不构成对第一处理单元201的限定;另外,对于第二处理单元202的工作原理,与上述第一处理单元201的工作原理类似,本实施例不再赘述。
在本实施例中,若监测地址从第一计数模块110传输至第二计数模块120中,通过第二计数模块120中第二计数器继承第一计数模块110中第一计数器的数值,第二计数模块120同时继承监测地址在第一计数模块110中存在的时长,从而相应配置第二预设值,以实现对监测地址的继续监测,从而监测缓慢且持续被开启的字线地址。
在其他实施例中,第二计数模块120还可以被配置为,监测地址从第一计数模块110传输至第二计数模块120中,传输至第二计数模块120的监测地址对应的第二计数器重新开始计数,同时第二计数模块120基于监测地址在第二计数模块120中存在时长(初始值为0)为监测地址配置第二预设值。
参考图3,在一些实施例中,监测电路,还包括:
判断模块301,连接采样模块101,被配置为,基于获取的监测地址和存储的监测地址,判断获取的监测地址是否被存储,若监测地址被第一计数模块110存储,则生成第一控制信号,若监测地址被第二计数模块120存储,则生成第二控制信号,若监测地址未被存储,则生成第三控制信号。
对于本实施例提供的第一计数模块110和第二计数模块120,在一些实施例中,第一计数模块110包括:第一计数单元302,连接采样模块101和判断模块301,被配置为,基于第一控制信号,将监测地址对应的第一计数器的计数值加1,或者基于第三控制信号,为新增监测地址配置对应的第一计数器,并将第一计数器的计数值置1;第一参考单元303,连接第一计数单元302和判断模块301,被配置为,基于第三控制信号,为监测地址配置第一预设值,且配置的第一预设值存储在第一计数单元302中,并基于更新信号调整第一预设值。第二计数模块120,包括:第二计数单元304,连接第一计数单元302、采样模块101和判断模块301,被配置为,基于第二控制信号,将监测地址对应的第二计数器的计数值加1,并且为第一计数单元传输的监测地址配置对应的第二计数器,并设置第二计数器的计数值;第二参考单元305,连接第一计数单元302和第二计数单元304,被配置为,为第一计数单元302传输的监测地址配置第二预设值,且配置的第二预设值存储在第二计数单元304中,并基于更新信号调整第二预设值。
需要说明的是,若监测地址从第一计数模块110传输至第二计数模块120中,可以通过第二计数模块120中第二计数器继承第一计数模块110中第一计数器的数值,也可以将监测地址对应的第二计数器的计数值置0,即对第一计数模块传输至第二计数模块120中的监测地址重新开始计数。具体地,在一些实施例中,第二计数单元304还被配置为,为第一计数单元302传输的监测地址配置对应的第二计数器,并基于监测地址对应的第一计数器的计数值设置第二计数器的计数值;在另一些实施例中,第二计数单元302被配置为,为第一计数单元302传输的监测地址配置对应的第二计数器,并将监测地址对应的第二计数器的计数值置0。
另外,在其他实施例中,可以在第一计数模块110和第二计数模块120中均设置一个判断模块301,由第一计数模块110和第二计数模块120分别对获取的监测地址和存储的监测地址进行比较,判断获取的监测地址是否被存储。
在其他实施例中,第一预设值同样可以设置为存储在第一参考单元中,第二预设值同样可以设置为存储在第二参考单元中,需要说明的是,在本实施例后续的描述中,将第一预设值设置在第一计数单元302中,将第二预设值设置在第二计数单元304中为例进行详细说明。
需要说明的是,对于第一计数器和第二计数器,第一计数器和第二计数器的容量基于刷新命令的接收间隔时间、采样的预设间隔和存储器中字线开启间隔时间设置;具体地,在DDR4的标准中,正常工作温度下,16G容量的存储器在1X刷新模式下,字线开启间隔时间tRC=45ns,采样的预设间隔tREFC=550ns,刷新命令的接收间隔时间tREFI=7.8us;此时,在存储器的突发传输模式下9*tREFI下存储器可开启的字线地址的数量为9*(tREFI-tREFC)/tRC=161,若第一计数器和第二计数器的容量为b,需保证2b>161,即b最少为8,在这种示例下,第一计数器和第二计数器的容量设置为8比特;需要说明的是,本示例的数值举例,仅用于本领域技术人员理解第一计数器和第二计数器的容量设置方式,并不构成对本实施例的限定。
在实际应用中,第一计数单元302中第一计数器的数量有限,第一计数单元302还被配置为,当第一计数单元302中每个第一计数器均有对应的监测地址时,即第一计数单元302中的所有第一计数器已开始计数,第一计数单元302存储的监测地址已满,此时第一计数单元302被配置为,基于第二控制信号丢弃新增的监测地址;相应地,第二计数单元304中第二计数器的数量有限,第二计数单元304还被配置为,当第二计数单元304中每个第二计数器均有对应的监测地址时,即第二计数单元304中的所有第二计数器已开始计数,第二计数单元304存储的监测地址已满,此时第二计数单元304被配置为,丢弃第一计数单元302传输的监测地址;在一些场景下,第二计数单元304丢弃的监测地址可以设置为第二计数器数值较小的监测地址。
在一些实施例中,第二计数单元304中第二计数器的数量大于第一计数单元302中第一计数器的数量,通过设置计数量大于第一计数单元302的第二计数单元304,以监测更多地址的变化,对存储器被开启的字线地址的监测效果更好。
对于配置的第一预设值和第二预设值,在一些实施例中,设置的第一预设值的大小与监测地址在第一计数模块110中被保留的第一更新周期的数量呈正相关,设置的第二预设值的大小与监测地址在第二计数模块120中被保留的第二更新周期的数量或被保留的第一更新周期和第二更新周期的数量和呈正相关,第一更新周期和第二更新周期为相邻两个更新信号之间的间隔时间。
具体地,参考图4,第一参考单元303包括:第一设置子单元401,连接第一计数单元302和判断模块301,被配置为,响应于第三控制信号,基于第一初始值,设置监测地址对应的第一预设值;第一调整子单元402,被配置为,接收更新信号,并基于更新信号调整第一计数单元302中被保留的监测地址所对应的第一预设值,从而实现设置的第一预设值的大小与监测地址在第一计数模块110中被保留的第一更新周期的数量呈正相关。第二参考单元305包括:第二设置子单元403,连接第一计数单元302和第二计数单元304,被配置为,基于第二初始值,设置第一计数单元传输的监测地址对应的第二预设值;第二调整子单元404,被配置为接收更新信号,并基于更新信号调整第二计数单元304中被保留的监测地址所对应的第二预设值,从而实现设置的第二预设值的大小与监测地址在第二计数模块120中被保留的第二更新周期的数量呈正相关。
在一些实施例中,第二设置子单元403为第一计数单元302传输的监测地址设置的第二预设值为第二初始值,即不保留监测地址在第一计数模块110中保留时长,相应第二预设值的设置方式;在另一些实施例中,第二设置子单元403为第一计数单元302传输的监测地址设置的第二预设值为第二初始值和时长累计值之和,时长累计值为监测地址在第一计数单元302中被保留的第一更新周期的数量的相关参数,即保留监测地址在第一计数模块110中保留时长,相应第二预设值的设置方式。
在一个具体的例子中,第一预设值为第一计数单元302中的第三计数器的计数结果,第一调整子单元402被配置为,基于更新信号,将第三初始值累加至第一计数单元302中被保留的监测地址对应的第三计数器,相应地,第二预设值为第二计数单元304中的第四计数器的计数结果,第二调整子单元404被配置为,基于更新信号,将第四初始值累加至第二计数单元304中被保留的监测地址对应的第四计数器。
参考图5,对于第一计数单元,计数值是第一计数器的计数结果,用于表征相应监测地址被统计的次数,预设值即第一预设值是第三计数器的计数结果,用于表征相应监测地址的第一记录参考值,其中c表征第一设置子单元401设置的第一初始值,y表征第一调整子单元402每次调整的步长,t1~t5表征相应监测地址存在的第一更新周期的数量;对于计数值大于等于第一预设值的监测地址,即存储器中开启次数达到预设次数的字线地址,存在被恶意攻击的风险,需要对相应的监测地址的相 邻行进行补充刷新,其中,相邻行可以为监测地址的+1/-1、+2/-2等相邻的地址行;另外,持续被开启的字线地址更有可能造成相邻存储区的数据错误,本实施例通过设置随着监测地址保留时间的增加,监测地址对应的预设值也逐渐增加,即仅有持续被开启的字线地址,有更大概率造成相邻存储区域的存储数据发生错误,才是更值得关注的地址,应当被保留并对其相邻行进行刷新。对于第二计数单元,计数值是第二计数器的计数结果,用于表征相应监测地址被统计的次数,预设值即第二预设值是第四计数器的计数结构,用于表征相应监测地址的第二记录参考值,其中d表征第二设置子单元403设置的第二初始值,z表征第二调整子单元404每次调整的步长,T6~T12表征相应监测地址存在的第二更新周期的数量;对于计数值小于第一预设值的监测地址,即字线地址被开启的速度达不到第一预设值的标准,但可能属于被开启次数持续且缓慢增长的字线地址,同样存在被攻击的风险,本实施例通过将第一计数器释放的监测地址继续通过第二计数器进行监测,为相应监测地址设置小于第一预设值的第二预设值,从而监测持续且缓慢被开启的字线地址,保证各存储区内存储数据的准确性。
需要说明的是,对于上述提及的补充刷新,补充刷新的方式有多种,可以基于每个更新信号对第一计数单元302中存储的最大计数值的第一计数器对应的监测地址和第二计数单元304中存储的最大计数值的第二计数器对应的监测地址的相邻行进行补充刷新;同样可以设置为每n个更新信号对最大计数值的监测地址的相邻行进行补充刷新;同样还可以设置为单次补充刷新为多个监测地址的相邻行进行刷新。
更具体地,第一初始值设置为2 n,第二初始值设置为2 m,第三初始值设置为2 p,第四初始值设置为2 q,m、n、p和q为大于等于1的正整数,且m>n,p>q;在一个具体的例子中,m和n可以设置为2、3、4或5,p和q可以设置为1、2、3或4;相应地,m和n,p和q的值可以设置为相同值,也可以设置为不同值。
对于上述提供的第一计数模块110和第二计数模块120,工作原理参考图6;需要说明的是,图6所示的具体数值仅用于本领域技术人员了解本实施例提供的第一计数模块110和第二计数模块120的工作原理,并不构成对本实施例的限定。
参考图6,并结合图2~图4,判断模块301当接收到采样模块101采样的监测地址Address1,生成第一控制信号,第一计数单元302控制监测地址Address1对应的第一计数器的计数值+1(由10变为11);判断模块301当接收到采样模块101采样的监测地址Address6,生成第二控制信号,第二计数单元304控制监测地址Address6对应的第一计数器的计数值+1(由12变为13);当第一参考单元303和第二参考单元305接收到更新信号后,说明已记录的监测地址已经多存在了一个更新周期,第一参考单元303调节第一计数单元302中为监测地址配置的第一预设值,其中,监测地址Address1的预设值由4+4*1变为4+4*2,监测地址Address2的预设值由4+4*0变为4+4*1,监测地址Address3的预设值由4+4*5变为4+4*6,监测地址Address4的预设值由4+4*0变为4+4*1,监测地址Address5的预设值由4+4*2变为4+4*3,第二参考单元305调节第二计数单元304中为监测地址配置的第二预设值,其中,监测地址Address6的预设值由2+2*3变为2+2*4,监测地址Address7的预设值由2+2*0变为2+2*1,监测地址Address8的预设值由2+2*7变为2+2*8,监测地址Address9的预设值由2+2*4变为2+2*5,监测地址Address9的预设值由2+2*5变为2+2*6,持续被开启的字线地址更有可能造成相邻存储区的数据错误,通过设置随着监测地址保留时间的增加,监测地址对应的预设值也逐渐增加,即仅有持续被开启的字线地址的相邻行,才有更大概率被保留刷新;然后处理模块102对每一监测地址的计数值和预设值进行比较,保留计数值大于等于预设值的监测地址,对于第一计数单元,将计数值小于预设值的监测地址传输至第二计数单元中,对于第二计数单元,释放计数值小于预设值的监测地址,进行比较后,第一计数单元302中监测地址Address5保留,其他监测地址被传输至第二计数单元,相应第一计数器和第一预设值被复位,第二计数单元304中监测地址Address6保留,其他监测地址被释放,且相应第二计数器和第二预设值被复位,在本实施例中,传输至第二计数单元的监测地址相应的计数值和存在周期被保留,即监测地址Address1对应的计数值11和存在周期2被保留至第二计数器单元中,第二计数单元基于周期2重新设置第二预设值为2+2*2,监测地址Address2对应的计数值5和存在周期1被保留至第二计数器单元中,第二计数单元基于周期1重新设置第二预设值为2+2*1,监测地址Address3对应的计数值19和存在周期6被保留至第二计数器单元中,第二计数单元基于周期6重新设置第二预设值为2+2*6,监测地址Address4对应的计数值1和存在周期1被保留至第二计数器单元中,第二计数单元基于周期1重新设置第二预设值为2+2*1;判断模块301当接收 到采样模块101采样的监测地址Address7,由于第一计数模块110中并不存在监测地址Address7,判断模块301产生第三控制信号,此时第一计数模块110新增监测地址Address7,并将监测地址Address7对应的第一计数值的计数值置1,第一参考单元303为监测地址Address7设置预设值4+4*0。
在一些实施例中,参考图7,传输至第二计数单元的监测地址相应的计数值和存在周期被重置为0,即监测地址Address1对应的计数值11和存在周期2不保留至第二计数器单元中,第二计数单元基于周期0重新设置第二预设值为2+2*0,监测地址Address2对应的计数值5和存在周期1不保留至第二计数器单元中,第二计数单元基于周期0重新设置第二预设值为2+2*0,监测地址Address3对应的计数值19和存在周期6不保留至第二计数器单元中,第二计数单元基于周期0重新设置第二预设值为2+2*0,监测地址Address4对应的计数值1和存在周期1不保留至第二计数器单元中,第二计数单元基于周期0重新设置第二预设值为2+2*0。
还需要说明的是,在上述示例为第一计数单元和第二计数单元基于更新信号同时完成监测地址的比较后,第一计数单元将监测地址释放到第二计数单元的同时,第二计数单元释放监测地址;在一些实施例中,可以设置为第一计数单元优先基于更新信号完成检测地址的比较后,将监测地址释放到第二计数单元,然后第二计数单元基于更新后的监测地址,基于更新信号进行比较释放。
在上述实现方式中,对于存储在第一计数模块110中的监测地址的预设值设置的第一初始值为4,基于更新信号进行累加的第三初始值设置为4,对于存储在第二计数模块120中的监测地址的预设值设置的第二初始值为2,基于更新信号进行累加的第四初始值设置为2,且当接收当更新信号后,先对保留的监测地址的预设值进行累加,然后进行计数值和预设值的比较;在其他的实现方式中,当接收到更新信号后,还可以设置为先进行计数值和预设值的比较,然后对保留的监测地址的预设值进行累加,以降低监测电路所需调节的第三计数器和第四计数器的数量,从而降低监测电路的功耗。
参考图8,图8上图示例为存在第一计数模块110和第二计数器模块120时,对监测地址监测数据,下图示例为仅存在第二计数模块110时,对监测地址的监测数据;其中,实线表征第一计数模块110中的监测地址,虚线表征第二计数模块120中的监测地址,图8的示例用于统计监测地址A、B、C、D、E、P、Q、R和S的统计次数,参考下图,在第一个刷新周期内监测地址AB的计数值大于1周期第一预设值被保留,且监测地址A对应的计数值最大,此时监测地址A的相邻行被刷新,监测地址DEP的计数值小于1周期第一预设值被释放,在第二个刷新周期内,由于监测地址B已保留了2个周期,监测地址B对应的第一预设值为2周期第一预设值,监测地址B的计数值仍大于2周期第一预设值被保留,且监测地址B对应的计数值最大,监测地址B的相邻行被刷新,新出现的监测地址Q的计数值小于1周期第一计数值被释放,在第三个刷新周期内,新出现的监测地址C的计数值大于1周期第一计数值被保留,且监测地址C对应的计数值最大,监测地址C的相邻行被刷新,新出现的监测地址R的计数值小于1周期第一计数值被释放,在第四个刷新周期内,新出现的监测地址S的计数值大于1周期第一预设值被保留,且监测地址S对应的计数值最大,监测地址S的相邻行被刷新。参考上图,在第一个刷新周期内,第一计数模块110中监测地址AB的计数值大于1周期第一预设值被保留,且监测地址A对应的计数值最大,此时监测地址A的相邻行被刷新,监测地址DEP的计数值小于1周期第一预设值,被释放到第二计数模块120;在第二个刷新周期内,由于监测地址BDEP已保留了2个周期,第一计数模块110中监测地址B对应的第一预设值为2周期第一预设值,监测地址B的计数值仍大于2周期第一预设值被保留,且监测地址B对应的计数值最大,监测地址B的相邻行被刷新,新出现的监测地址Q的计数值小于1周期第一计数值被释放到第二计数模块120,第二计数模块120中监测地址DEP对应的第二预设值为2周期第二预设值,监测地址DE的计数值仍大于2周期第二预设值被保留,监测地址P的计数值小于2周期第二预设值被释放;在第三个刷新周期内,由于监测地址DE已保留了3个周期,监测地址Q已保留了2个周期,第一计数模块110中新出现的监测地址C的计数值大于1周期第一计数值被保留,且监测地址C对应的计数值最大,监测地址C的相邻行被刷新,新出现的监测地址R的计数值小于1周期第一计数值被释放到第二计数模块120,第二计数模块120中,监测地址DE对应的第二预设值为3周期第二预设值,监测地址DE的计数值仍大于3周期第二预设值被保留,监测地址Q的计数值小于2周期第二预设值被释放;在第四个刷新周期内,由于监测地址DE已保留了4个周期,监测地址R已保留了2个周期,第一计数模块110中新出现的监测地址S的计数值大于1周期第一预设值被保留,第二计数模块120中,监测地址DE对应的第二预设值为4周期第二预设值,监测地址D的计数值仍大于4周期第二预设值 被保留,且监测地址D对应的计数值最大,监测地址S的相邻行被刷新,监测地址E的计数值小于4周期第二预设值被释放,监测地址R对应的第二预设值为2周期第二与色值,监测地址R的计数值小于2周期第二预设值被释放。本实施例通过设置第二计数模块120,监测被开启次数缓慢且持续增长的字线地址,以避免缓慢且持续被开启的字线地址被短时间内被多次开启的字线地址掩盖,保证存储区内存储数据的准确性。
对于图8示例,第二计数器中对于监测地址的释放相较于第一计数器对监测地址的释放延时一个刷新周期,即第一计数单元和第二计数单元基于更新信号同时完成监测地址的比较后,第一计数单元将监测地址释放到第二计数单元的同时,第二计数单元释放监测地址的方案;在一些实施例中,可以设置为第一计数单元优先基于更新信号完成检测地址的比较后,将监测地址释放到第二计数单元,然后第二计数单元基于更新后的监测地址,基于更新信号进行比较释放,此时,第二计数器中对于监测地址的释放与第一计数器对监测地址的释放同步执行。基于上述论述可知,第二计数模块120用于统计被开启次数缓慢且持续增长的字线地址,相应监测地址的计数值增长到最大需要经过一定的周期数,在图8的实例中,对第一计数模块110中的监测地址进行3次刷新后才对第二计数模块120中的监测地址进行1次刷新,即第一计数模块110和第二计数模块120的刷新比率为3:1;需要说明的是,上述示例中第一计数模块110和第二计数模块120的刷新比率设置并不构成对本实施例的限定,在其他实施例中,第一计数模块120和第二计数模块120的刷新比率可以设置为5:1、7:1或10:1。
另外,在一些实施例中,第一预设值和第二预设值还对应有最大值,第三计数器和第四计数器的数值累计到最大值后不会继续累加,当监测地址对应的第一计数器或第二计数器的计数值大于等于最大值,则证明该监测地址相邻的存储区的数据容易发生错误,需要进行补充刷新,此时无需再进行预设值的累加,以避免第三计数器和第四计数器进行非必要的数值更新。
对于上述说明中的更新信号,在一些实施例中,更新信号包括刷新信号和计数调整信号,刷新信号用于指示存储器进行刷新操作,即存储器原有信号,计数调整信号于相邻两个刷新信号的间隔内提供,其中计数调整信号为刷新周期内的新定义信号,用于基于计数值和预设值更新第一计数模块110和第二计数模块120中保留的监测地址,通过刷新信号和计数调整信号共同作为更新信号,以提高处理模块102调节第一计数模块110和第二计数模块120中监测地址的频率,从而进一步降低监测电路所需驱动的计数器的数量;另外,通过增加更新信号的数量,提高了对被开启字线地址的监控频率,防止短时间内对某些被开启字线地址的突发性多次开启。需要说明的是,除了刷新信号外,存储器还可以基于其他特殊的刷新命令,例如刷新命令RFM,用于执行监测地址的刷新操作。
另外,对于同一刷新周期内的计数调整信号,可以根据存储器所需的应用场景,适当调整计数调整信号的数量,从而适应性调整处理模块102释放第一计数模块110中监测地址的频率。
对于本实施例提供的监测电路所属的存储器,存储器的刷新操作还包括:刷新第一计数模块110中保留的监测地址中第一计数器对应的计数值最高的y个监测地址的相邻行,并刷新第二计数模块120中保留的监测地址中第二计数器对应的计数值最高的z个监测地址的相邻行,y和z为大于等于1的正整数,刷新后释放第一计数模块110和第二计数模块120中被刷新的监测地址,并复位被刷新的相邻行对应的监测地址对应的第一计数器和第一预设值(第三计数器),或被刷新的相邻行对应的监测地址对应的第二计数器和第二预设值(第四计数器)。
本实施例提供的监测电路中,处理模块102基于更新信号不断释放第一计数模块110中计数值小于预设值的监测地址,即不断释放第一计数模块110中记录的噪声地址,使得第一计数模块110可以对新的监测地址进行记录,通过避免对于噪声地址的持续记录而造成的计数器资源浪费,以降低监测电路所需驱动的第一计数器的数量,从而降低监测电路的功耗;另外,处理模块102通过第二计数模块120对第一计数模块110释放的地址继续进行计数,以继续监测缓慢且持续被开启的字线地址,避免缓慢且持续被开启的字线地址被短时间内多次开启的字线地址掩盖,以保证各存储区内存储数据的准确性。
需要说明的是,上述实施例所提供的监测电路中所揭露的特征,在不冲突的情况下可以任意组合,可以得到新的监测电路实施例。
本公开另一实施例提供一种刷新方法,应用于上述实施例提供的监测电路,以较小的功耗实 现对存储区中特定行的补充刷新,保证各存储区内存储数据的准确性的同时,降低存储器所需驱动的计数器的数量,更适于存储器的实际设计。
图9为本实施例提供的刷新方法中各步骤对应的流程示意图,以下结合附图对本实施例提供的刷新方法进行详细说明,具体如下:
参考图9,刷新方法,包括:
步骤S1,获取监测地址并检测监测地址是否被存储;若监测地址已被存储,则执行步骤S2,若监测地址未被存储,则执行步骤S3。
其中,监测地址为存储器中被开启的字线地址,如果监测地址已被存储,则证明当前被开启的字线地址已进行计数,需基于步骤S2继续进行计数;如果监测地址未被存储,则证明当前被开启的字线地址未进行计数,需基于步骤S3配置第一计数器开始计数,并配置相应的预设值。需要说明的是,第一计数器的计数值以及预设值在初始时刻均设置为0,在第一计数值的计数值和预设值复位后,也被复位为0,因此在新增监测地址后,需要对第一计数器和计数值和预设值进行赋值。
在一些实施例中,步骤S1基于预设间隔采样以获取监测地址,其中,预设间隔设置为每出现x个初始地址,进行一次监测地址的采样,x为正整数,即存储器每开启x个字线地址,采样模块101进行一次监测地址的采样,通过设置采样概率,以降低所需获取的字线地址,即通过抽样检测的方式进一步降低刷新所需的功耗。在一些实施例中,x为小于等于16的正整数;在一个具体的例子中,x可以设置为14、12、10、8、6、4或2等正整数。
步骤S2,将监测地址对应的第一计数器的计数值加1,或将监测地址对应的第二计数器的计数值加1,之后执行步骤S4。
对于第一计数器和第二计数器,第一计数器和第二计数器的容量基于刷新命令的接收间隔时间、采样的预设间隔和存储器中字线开启间隔时间设置;具体地,在DDR4的标准中,正常工作温度下,16G容量的存储器在1X刷新模式下,字线开启间隔时间tRC=45ns,采样的预设间隔tREFC=550ns,刷新命令的接收间隔时间tREFI=7.8us;此时,在存储器的突发传输模式下9*tREFI下存储器可开启的字线地址的数量为9*(tREFI-tREFC)/tRC=161,若第一计数器和第二计数器的容量为b,需保证2b>161,即b最少为8,在这种示例下,第一计数器和第二计数器的容量设置为8比特;需要说明的是,本示例的数值举例,仅用于本领域技术人员理解第一计数器的容量设置方式,并不构成对本实施例的限定。
步骤S3,采用新的第一计数器计数监测地址,并将第一计数器的计数值置1,并为监测地址设置相应的第一预设值,之后执行步骤S4。
具体地,获取新增的监测地址,并基于第一初始值设置监测地址对应的预设值。
对于步骤S1~S3,在一个例子中,参考图6,并结合图2~图4,判断模块301当接收到采样模块101采样的监测地址Address1,生成第一控制信号,第一计数单元302控制监测地址Address1对应的第一计数器的计数值+1(由10变为11);判断模块301当接收到采样模块101采样的监测地址Address6,生成第二控制信号,第二计数单元304控制监测地址Address6对应的第一计数器的计数值+1(由12变为13);判断模块301当接收到采样模块101采样的监测地址Address7,由于第一计数模块110中并不存在监测地址Address7,判断模块301产生第三控制信号,此时第一计数模块110新增监测地址Address7,并将监测地址Address7对应的第一计数值的计数值置1,第一参考单元303为监测地址Address7设置预设值4+4*0。
步骤S4,基于更新信号调整保留的监测地址所对应的第一预设值,并比较每一监测地址对应的第一计数器的计数值和第一预设值,若第一计数器的计数值大于等于第一预设值,则执行步骤S5,若第一计数器的计数值小于第一预设值,则执行步骤S6。
在一个具体的例子中,参考图5,对于第一计数单元,计数值是第一计数器的计数结果,用于表征相应监测地址被统计的次数,预设值即第一预设值是第三计数器的计数结果,用于表征相应监测地址的第一记录参考值,其中c表征第一设置子单元401设置的第一初始值,y表征第一调整子单元402每次调整的步长,t1~t5表征相应监测地址存在的第一更新周期的数量;对于计数值大于等于 第一预设值的监测地址,即存储器中开启次数达到预设次数的字线地址,存在被恶意攻击的风险,需要对相应的监测地址的相邻行进行补充刷新,其中,相邻行可以为监测地址的+1/-1、+2/-2等相邻的地址行;另外,持续被开启的字线地址更有可能造成相邻存储区的数据错误,本实施例通过设置随着监测地址保留时间的增加,监测地址对应的预设值也逐渐增加,即仅有持续被开启的字线地址,有更大概率造成相邻存储区域的存储数据发生错误,才是更值得关注的地址,应当被保留并对其相邻行进行刷新。对于第二计数单元,计数值是第二计数器的计数结果,用于表征相应监测地址被统计的次数,预设值即第二预设值是第四计数器的计数结构,用于表征相应监测地址的第二记录参考值,其中d表征第二设置子单元403设置的第二初始值,z表征第二调整子单元404每次调整的步长,T6~T12表征相应监测地址存在的第二更新周期的数量;对于计数值小于第一预设值的监测地址,即字线地址被开启的速度达不到第一预设值的标准,但可能属于被开启次数持续且缓慢增长的字线地址,同样存在被攻击的风险,本实施例通过将第一计数器释放的监测地址继续通过第二计数器进行监测,为相应监测地址设置小于第一预设值的第二预设值,从而监测持续且缓慢被开启的字线地址,保证各存储区内存储数据的准确性。
更具体地,第一初始值设置为2 n,第二初始值设置为2 m,第三初始值设置为2 p,第四初始值设置为2 q,m、n、p和q为大于等于1的正整数,且m>n,p>q;在一个具体的例子中,m和n可以设置为2、3、4或5,p和q可以设置为1、2、3或4;相应地,m和n,p和q的值可以设置为相同值,也可以设置为不同值。
步骤S5,保留监测地址,以及监测地址对应的第一计数器的计数值和第一预设值,继续执行步骤S1。
具体地,对于保留的监测地址,基于第三初始值累加保留的监测地址所对应的第三计数器,即获取基于更新信号调整后保留的监测地址,并基于第三初始值累加相应监测地址对应的第三计数器。
步骤S6,采用新的第二计数器计数监测地址,并为监测地址设置相应的第二预设值,并复位监测地址对应的第一计数器和预设值,继续执行步骤S1。
在一些实施例中,步骤S4还包括:基于更新信号调整保留的监测地址对应的第二预设值,并比较每一监测地址对应的第二计数器的计数值和第二预设值,若第二计数器的计数值大于等于第二预设值,则执行步骤S7,若第二计数器的计数值小于第二预设值,则执行步骤S8。
步骤S7,保留监测地址,以及监测地址对应的第二计数器的计数值和第二预设值,继续执行步骤S1。
具体地,对于保留的监测地址,基于第四初始值累加保留的监测地址所对应的第四计数器,即获取基于更新信号调整后保留的监测地址,并基于第四初始值累加相应监测地址对应的第四计数器。
步骤S8,释放监测地址,并复位监测地址对应的第二计数器,继续执行步骤S1。
对于步骤S4~S8,在一个例子中,参考图6,并结合图2~图4,当第一参考单元303和第二参考单元305接收到更新信号后,说明已记录的监测地址已经多存在了一个更新周期,第一参考单元303调节第一计数单元302中为监测地址配置的第一预设值,其中,监测地址Address1的预设值由4+4*1变为4+4*2,监测地址Address2的预设值由4+4*0变为4+4*1,监测地址Address3的预设值由4+4*5变为4+4*6,监测地址Address4的预设值由4+4*0变为4+4*1,监测地址Address5的预设值由4+4*2变为4+4*3,第二参考单元305调节第二计数单元304中为监测地址配置的第二预设值,其中,监测地址Address6的预设值由2+2*3变为2+2*4,监测地址Address7的预设值由2+2*0变为2+2*1,监测地址Address8的预设值由2+2*7变为2+2*8,监测地址Address9的预设值由2+2*4变为2+2*5,监测地址Address9的预设值由2+2*5变为2+2*6,持续被开启的字线地址更有可能造成相邻存储区的数据错误,通过设置随着监测地址保留时间的增加,监测地址对应的预设值也逐渐增加,即仅有持续被开启的字线地址的相邻行,才有更大概率被保留刷新;然后处理模块102对每一监测地址的计数值和预设值进行比较,保留计数值大于等于预设值的监测地址,对于第一计数单元,将计数值小于预设值的监测地址传输至第二计数单元中,对于第二计数单元,释放计数值小于预设值的监测地址,进行比较后,第一计数单元302中监测地址Address5保留,其他监测地址被传输至第二计数单元,相应第一计数器和第一预设值被复位,第二计数单元304中监测地址Address6保留,其他监测地址被释放, 且相应第二计数器和第二预设值被复位,在本实施例中,传输至第二计数单元的监测地址相应的计数值和存在周期被保留,即监测地址Address1对应的计数值11和存在周期2被保留至第二计数器单元中,第二计数单元基于周期2重新设置第二预设值为2+2*2,监测地址Address2对应的计数值5和存在周期1被保留至第二计数器单元中,第二计数单元基于周期1重新设置第二预设值为2+2*1,监测地址Address3对应的计数值19和存在周期6被保留至第二计数器单元中,第二计数单元基于周期6重新设置第二预设值为2+2*6,监测地址Address4对应的计数值1和存在周期1被保留至第二计数器单元中,第二计数单元基于周期1重新设置第二预设值为2+2*1。
在一些实施例中,参考图7,传输至第二计数单元的监测地址相应的计数值和存在周期被重置为0,即监测地址Address1对应的计数值11和存在周期2不保留至第二计数器单元中,第二计数单元基于周期0重新设置第二预设值为2+2*0,监测地址Address2对应的计数值5和存在周期1不保留至第二计数器单元中,第二计数单元基于周期0重新设置第二预设值为2+2*0,监测地址Address3对应的计数值19和存在周期6不保留至第二计数器单元中,第二计数单元基于周期0重新设置第二预设值为2+2*0,监测地址Address4对应的计数值1和存在周期1不保留至第二计数器单元中,第二计数单元基于周期0重新设置第二预设值为2+2*0。
还需要说明的是,在上述示例为第一计数单元和第二计数单元基于更新信号同时完成监测地址的比较后,第一计数单元将监测地址释放到第二计数单元的同时,第二计数单元释放监测地址;在一些实施例中,可以设置为第一计数单元优先基于更新信号完成检测地址的比较后,将监测地址释放到第二计数单元,然后第二计数单元基于更新后的监测地址,基于更新信号进行比较释放。
在上述实现方式中,对于第一预设值设置的第一初始值为4,基于更新信号进行累加的第三初始值设置为4,对于第二预设值设置的第二初始值为2,基于更新信号进行累加的第四初始值设置为2,且当接收当更新信号后,先对保留的监测地址的预设值进行累加,然后进行计数值和预设值的比较;在其他的实现方式中,当接收到更新信号后,还可以设置为先进行计数值和预设值的比较,然后对保留的监测地址的预设值进行累加,以降低监测电路所需调节的第三计数器和第四计数器的数量,从而降低监测电路的功耗。
另外,在一些实施例中,第一预设值和第二预设值还对应有最大值,第三计数器和第四计数器的数值累计到最大值后不会继续累加,当监测地址对应的第一计数器或第二计数器的计数值大于等于最大值,则证明该监测地址相邻的存储区的数据容易发生错误,需要进行补充刷新,此时无需再进行预设值的累加,以避免第三计数器和第四计数器进行非必要的数值更新。
对于上述说明中的更新信号,在一些实施例中,更新信号包括刷新信号和计数调整信号,刷新信号用于指示存储器进行刷新操作,即存储器原有信号,计数调整信号于相邻两个刷新信号的间隔内提供,其中计数调整信号为刷新周期内的新定义信号,用于基于计数值和预设值更新保留的监测地址,通过刷新信号和计数调整信号共同作为更新信号,以提高释放监测地址的频率,从而进一步降低监测电路所需驱动的计数器的数量;另外,通过增加更新信号的数量,提高了对被开启字线地址的监控频率,防止短时间内对某些被开启字线地址的突发性多次开启。需要说明的是,除了刷新信号外,存储器还可以基于其他特殊的刷新命令,例如刷新命令RFM,用于执行监测地址的刷新操作。
另外,对于同一刷新周期内的计数调整信号,可以根据存储器所需的应用场景,适当调整计数调整信号的数量,从而适应性调整释放监测地址的频率。
本实施例提供的刷新方法,基于更新信号不断释放计数值小于预设值的监测地址,即不断释放记录的噪声地址,使得计数模块可以对新的监测地址进行记录,通过避免对于噪声地址的持续记录而造成的计数器资源浪费,以降低监测电路所需驱动的第一计数器的数量,从而降低监测电路的功耗;另外,通过对释放的地址继续进行计数,以继续监测缓慢且持续被开启的字线地址,避免缓慢且持续被开启的字线地址被短时间内多次开启的字线地址掩盖,以保证各存储区内存储数据的准确性。
需要说明的是,上述实施例所提供的刷新方法中所揭露的特征,在不冲突的情况下可以任意组合,可以得到新的刷新方法实施例。
本公开又一实施例提供一种存储器,基于上述实施例提供的监测电路获取待刷新的字线地址,以较小的功耗实现对存储区中特定行的补充刷新,且监测缓慢且持续被开启的字线地址,保证各存储 区内存储数据的准确性的同时,降低存储器所需驱动的计数器的数量,更适于存储器的实际设计。
具体地,对于监测电路,处理模块基于更新信号不断释放第一计数模块中计数值小于预设值的监测地址,即不断释放第一计数模块中记录的噪声地址,使得第一计数模块可以对新的监测地址进行记录,通过避免对于噪声地址的持续记录而造成的计数器资源浪费,以降低监测电路所需驱动的第一计数器的数量,从而降低监测电路的功耗;另外,处理模块通过第二计数模块对第一计数模块释放的地址继续进行计数,以继续监测缓慢且持续被开启的字线地址,避免缓慢且持续被开启的字线地址被短时间内多次开启的字线地址掩盖,以保证各存储区内存储数据的准确性。
在一些实施例中,存储器可以是基于半导体装置或组件的存储单元或装置。例如,存储器装置可以是易失性存储器,例如动态随机存取存储器DRAM、同步动态随机存取存储器SDRAM、双倍数据速率同步动态随机存取存储器DDR SDRAM、低功率双倍数据速率同步动态随机存取存储器LPDDR SDRAM、图形双倍数据速率同步动态随机存取存储器GDDR SDRAM、双倍数据速率类型双同步动态随机存取存储器DDR2 SDRAM、双倍数据速率类型三同步动态随机存取存储器DDR3SDRAM、双倍数据速率第四代同步动态随机存取存储器DDR4 SDRAM、晶闸管随机存取存储器TRAM等;或者可以是非易失性存储器,例如相变随机存取存储器PRAM、磁性随机存取存储器MRAM、电阻式随机存取存储器RRAM等。
本领域的普通技术人员可以理解,上述各实施例是实现本公开的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本公开的精神和范围。

Claims (17)

  1. 一种监测电路,包括:
    采样模块,被配置为,对初始地址采样以获取监测地址,并将所述监测地址输出,所述初始地址为所述监测电路所在存储器中被开启的字线地址;
    第一计数模块,连接所述采样模块,被配置为,基于接收到的所述监测地址,调节所述监测地址对应的第一计数器的计数值;
    处理模块,连接所述第一计数模块和第二计数模块,被配置为,基于更新信号比较所述第一计数模块中每一监测地址对应的所述第一计数器的计数值和对应的第一预设值,并基于所述第一计数器的计数值和所述第一预设值的比较结果,判断是否将所述监测地址传输至第二计数模块;基于更新信号比较所述第二计数模块中每一监测地址对应的所述第二计数器的计数值和对应的第二预设值,并基于所述第二计数器的计数值和所述第二预设值的比较结果,判断是否保留所述监测地址;
    所述第二计数模块,连接所述采样模块和所述第一计数模块,被配置为,基于接收到的所述监测地址,调节所述监测地址对应的第二计数器的计数值;
    其中,所述第二预设值小于所述第一预设值。
  2. 根据权利要求1所述的监测电路,其中,所述处理模块,包括:
    第一处理单元,连接所述第一计数模块,被配置为,基于更新信号比较所述第一计数模块中每一监测地址对应的第一计数器的计数值和所述第一预设值;其中,若所述第一计数器的计数值大于等于所述第一预设值,保留所述监测地址,若所述第一计数器的计数值小于所述第一预设值,将所述监测地址传输至所述第二计数模块,并复位所述监测地址对应的所述第一计数器和所述第一预设值;
    第二处理单元,连接所述第二计数模块,被配置为,基于更新信号比较所述第二计数模块中每一监测地址对应的第二计数器的计数值和所述第二预设值;其中,若所述第二计数器的计数值大于等于所述第二预设值,保留所述监测地址,若所述第二计数器的计数值小于所述第二预设值,释放所述监测地址,并复位所述监测地址对应的所述第二计数器和所述第二预设值。
  3. 根据权利要求1所述的监测电路,其中,还包括:
    判断模块,连接所述采样模块,被配置为,基于获取的所述监测地址和存储的监测地址,判断获取的所述监测地址是否被存储,若所述监测地址被所述第一计数模块存储,则生成第一控制信号,若所述监测地址被所述第二计数模块存储,则生成第二控制信号,若所述监测地址未被存储,则生成第三控制信号;
    所述第一计数模块,包括:
    第一计数单元,连接所述采样模块和所述判断模块,被配置为,基于所述第一控制信号,将所述监测地址对应的第一计数器的计数值加1或者基于所述第三控制信号,为所述监测地址配置对应的第一计数器,并将所述第一计数器的计数值置1;
    第一参考单元,连接所述第一计数单元和所述判断模块,被配置为,基于所述第三控制信号,为所述监测地址配置所述第一预设值,且配置的所述预设值存储在所述第一计数单元中,并基于所述更新信号调整所述第一预设值;
    所述第二计数模块,包括:
    第二计数单元,连接所述第一计数单元、所述采样模块和所述判断模块,被配置为,基于所述第二控制信号,将所述监测地址对应的第二计数器的计数值加1,并且为所述第一计数单元传输的所述监测地址配置对应的第二计数器,并设置所述第二计数器的计数值;
    第二参考单元,连接所述第一计数单元和所述第二计数单元,被配置为,为所述第一计数单元传输的所述监测地址配置所述第二预设值,且配置的所述第二预设值存储在所述第二计数单元中,并基于所述更新信号调整所述第二预设值。
  4. 根据权利要求3所述的监测电路,其中,设置所述第二计数器的计数值包括:
    基于所述监测地址对应的第一计数器的计数值设置所述第二计数器的计数值;
    或,将所述监测地址对应的所述第二计数器的计数值置0。
  5. 根据权利要求3所述的监测电路,其中,设置的所述第一预设值的大小与所述监测地址在所述第一计数模块中被保留的第一更新周期的数量呈正相关;设置的所述第二预设值的大小与所述监测地址在所述第二计数模块中被保留的第二更新周期的数量或与所述监测地址被保留的所述第一更新周期和所述第二更新周期的数量和呈正相关;其中,所述第一更新周期和所述第二更新周期为相邻所述更新信号之间的间隔时间。
  6. 根据权利要求5所述的监测电路,其中,包括:
    所述第一参考单元,包括:
    第一设置子单元,连接所述第一计数单元和所述判断模块,被配置为,响应于所述第三控制信号,基于第一初始值,设置所述监测地址对应的所述第一预设值;
    第一调整子单元,被配置为,接收所述更新信号,并基于所述更新信号调整所述第一计数单元中保留的所述监测地址所对应的所述第一预设值;
    所述第二参考单元,包括:
    第二设置子单元,连接所述第一计数单元和所述第二计数单元,被配置为,基于第二初始值,设置所述第一计数单元传输的所述监测地址对应的所述第二预设值;
    第二调整子单元,被配置为,接收所述更新信号,并基于所述更新信号调整所述第二计数单元中保留的所述监测地址所对应的所述第二预设值。
  7. 根据权利要求6所述的监测电路,其中,包括:
    所述第一预设值为所述第一计数单元中的第三计数器的计数结果;
    所述基于所述更新信号调整所述第一计数单元中保留的所述监测地址所对应的所述第一预设值包括:基于所述更新信号,将第三初始值累加至被所述第一计数单元中保留的所述监测地址对应的所述第三计数器;
    所述第二预设值为所述第二计数单元中的第四计数器的计数结果;
    所述基于所述更新信号调整所述第二计数单元中保留的所述监测地址所对应的所述第二预设值包括:基于所述更新信号,将第四初始值累加至被所述第二计数单元中保留的所述监测地址对应的所述第四计数器。
  8. 根据权利要求7所述的监测电路,其中,所述第一初始值设置为2 n,所述第二初始值设置为2 m,所述第三初始值设置为2 p,所述第四初始值设置为2 q,m、n、p和q为大于等于1的正整数,且m>n,p>q。
  9. 根据权利要求1所述的监测电路,其中,所述采样模块基于预设间隔采样以获取所述监测地址,其中,所述预设间隔设置为每出现x个初始地址,进行一次所述监测地址的采样,所述x为正整数。
  10. 根据权利要求9所述的监测电路,其中,所述x为小于等于16的正整数。
  11. 根据权利要求1所述的监测电路,其中,包括:所述更新信号包括刷新信号和计数调整信号,所述刷新信号用于指示所述存储器进行刷新操作,所述计数调整信号于相邻两个所述刷新信号的间隔内提供。
  12. 根据权利要求1所述的监测电路,其中,包括:
    所述存储器的刷新操作还包括:刷新所述第一计数模块中保留的所述监测地址中所述第一计数器对应的计数值最高的y个所述监测地址的相邻行,并刷新所述第二计数模块中保留的所述监测地址中所述第二计数器对应的计数值最高的z个所述监测地址的相邻行,y和z为大于等于1的正整数;
    刷新后释放所述第一计数模块和所述第二计数模块中被刷新的所述相邻行对应的所述监测地址,并复位被刷新的所述相邻行对应的所述监测地址对应的所述第一计数器和所述第一预设值,或被刷新的所述监测地址对应的所述第二计数器和所述第二预设值。
  13. 根据权利要求3所述的监测电路,其中,包括:
    所述第一计数单元还被配置为,当第一计数单元中每个所述第一计数器均有对应的所述监测地址时,基于所述第三控制信号丢弃新增的所述监测地址;
    所述第二计数单元还被配置为,当第二计数单元中每个所述第二计数器均有对应的所述监测地址时,丢弃所述第一计数单元传输的所述监测地址。
  14. 一种刷新方法,应用于权利要求1~13任一项所述的监测电路,包括:
    步骤S1:获取监测地址并检测所述监测地址是否被存储,若所述监测地址已被存储,则执行步骤S2,若所述监测地址未被存储,则执行步骤S3;
    步骤S2:将所述监测地址对应的第一计数器的计数值加1,或将所述监测地址对应的第二计数器的计数值加1;
    步骤S3:采用新的第一计数器计数所述监测地址,并将所述第一计数器的计数值置1,并为所述监测地址设置相应的第一预设值;
    步骤S4:基于更新信号调整保留的所述监测地址所对应的所述第一预设值,并比较每一监测地址对应的所述第一计数器的计数值和所述第一预设值,若所述第一计数器的计数值大于等于所述第一预设值,则执行步骤S5,若所述第一计数器的计数值小于所述第一预设值,则执行步骤S6;
    步骤S5:保留所述监测地址,以及所述监测地址对应的第一计数器的计数值和所述第一预设值,继续执行步骤S1;
    步骤S6:采用新的第二计数器计数所述监测地址,所述第二计数器的计数值与所述监测地址对应的所述第一计数器的计数值相同,并为所述监测地址设置相应的第二预设值,并复位所述监测地址对应的所述第一计数器和所述第一预设值,继续执行步骤S1。
  15. 根据权利要求14所述的刷新方法,其中,包括:
    步骤S4还包括:基于更新信号调整保留的所述监测地址对应的所述第二预设值,并比较每一监测地址对应的所述第二计数器的计数值和所述第二预设值,若所述第二计数器的计数值大于等于所述第二预设值,则执行步骤S7,若所述第二计数器的计数值小于所述第二预设值,则执行步骤S8;
    步骤S7,保留所述监测地址,以及所述监测地址对应的第二计数器的计数值和所述第二预设值,继续执行步骤S1;
    步骤S8,释放所述监测地址,并复位所述监测地址对应的所述第二计数器,继续执行步骤S1。
  16. 根据权利要求14所述的刷新方法,其中,包括:
    所述为所述监测地址设置相应的第一预设值,包括:获取新增的监测地址,并基于第一初始值设置新增的所述监测地址对应的第一预设值;
    所述基于更新信号调整保留的监测地址所对应的第一预设值,包括:基于第三初始值累加保留的所述监测地址所对应的所述第一预设值;
    所述为所述监测地址设置相应的第二预设值,包括:获取所述监测地址,并基于第二初始值设置所述监测地址对应的第二预设值;
    所述基于更新信号调整保留的监测地址所对应的第二预设值,包括:基于第四初始值累加保留的所述监测地址所对应的第二预设值。
  17. 一种存储器,基于权利要求1~13任一项所述的监测电路获取待刷新的字线地址。
PCT/CN2022/118566 2022-08-30 2022-09-13 监测电路、刷新方法及存储器 WO2024045218A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211058172.5 2022-08-30
CN202211058172.5A CN117672293A (zh) 2022-08-30 2022-08-30 监测电路、刷新方法及存储器

Publications (1)

Publication Number Publication Date
WO2024045218A1 true WO2024045218A1 (zh) 2024-03-07

Family

ID=90068731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118566 WO2024045218A1 (zh) 2022-08-30 2022-09-13 监测电路、刷新方法及存储器

Country Status (2)

Country Link
CN (1) CN117672293A (zh)
WO (1) WO2024045218A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369820A (zh) * 2015-10-21 2018-08-03 伊文萨思公司 Dram相邻行干扰缓解
CN112767982A (zh) * 2016-10-31 2021-05-07 爱思开海力士有限公司 地址计数电路、存储器件及其操作方法
CN113342615A (zh) * 2021-06-29 2021-09-03 海光信息技术股份有限公司 命令监控方法、装置、控制器、系统、设备和存储介质
CN114420181A (zh) * 2022-01-14 2022-04-29 长鑫存储技术有限公司 刷新电路和存储器
US20220165347A1 (en) * 2020-11-23 2022-05-26 Micron Technology, Inc. Apparatuses and methods for tracking word line accesses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369820A (zh) * 2015-10-21 2018-08-03 伊文萨思公司 Dram相邻行干扰缓解
CN112767982A (zh) * 2016-10-31 2021-05-07 爱思开海力士有限公司 地址计数电路、存储器件及其操作方法
US20220165347A1 (en) * 2020-11-23 2022-05-26 Micron Technology, Inc. Apparatuses and methods for tracking word line accesses
CN113342615A (zh) * 2021-06-29 2021-09-03 海光信息技术股份有限公司 命令监控方法、装置、控制器、系统、设备和存储介质
CN114420181A (zh) * 2022-01-14 2022-04-29 长鑫存储技术有限公司 刷新电路和存储器

Also Published As

Publication number Publication date
CN117672293A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US9754655B2 (en) Controlling a refresh mode of a dynamic random access memory (DRAM) die
KR101798802B1 (ko) 온더플라이 메모리 디바이스 리프레시 명령들
US10268382B2 (en) Processor memory architecture
JP6055884B2 (ja) マイクロコンピュータ及びデータ処理システム
US7496777B2 (en) Power throttling in a memory system
WO2018188085A1 (zh) 内存刷新技术及计算机系统
KR20070027620A (ko) 휘발성 메모리들을 위해 지시된 뱅크 리프레시를 제공하는방법 및 시스템
JP2009009702A (ja) 半導体記憶装置
WO2018188083A1 (zh) 内存刷新技术及计算机系统
US11216386B2 (en) Techniques for setting a 2-level auto-close timer to access a memory device
WO2017142665A1 (en) Data transfer for multi-loaded source synchrous signal groups
WO2011012032A1 (zh) Dram运行频率调整系统及方法
WO2024045218A1 (zh) 监测电路、刷新方法及存储器
WO2024045260A1 (zh) 监测电路、刷新方法及存储器
WO2018128769A1 (en) Systems, methods, and computer programs for providing row tamper protection in a multi-bank memory cell array
WO2020237682A1 (zh) 一种内容可寻址存储装置、方法及相关设备
US20240071458A1 (en) Monitoring circuit, refresh method and memory
EP2851802A1 (en) Memory scheduling method and memory controller
WO2024045219A1 (zh) 监测电路、刷新方法及存储器
US20020112117A1 (en) Apparatus and method for controlling bank refresh
CN108574870A (zh) 一种多通道信号源的显示方法、装置及设备
US20240104209A1 (en) Memory device for performing target refresh operation and operating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957037

Country of ref document: EP

Kind code of ref document: A1