WO2024044980A1 - 箱体、电池及用电装置 - Google Patents

箱体、电池及用电装置 Download PDF

Info

Publication number
WO2024044980A1
WO2024044980A1 PCT/CN2022/115918 CN2022115918W WO2024044980A1 WO 2024044980 A1 WO2024044980 A1 WO 2024044980A1 CN 2022115918 W CN2022115918 W CN 2022115918W WO 2024044980 A1 WO2024044980 A1 WO 2024044980A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcement
battery
frame
partition
reinforcing member
Prior art date
Application number
PCT/CN2022/115918
Other languages
English (en)
French (fr)
Inventor
林新炜
李玲玉
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/115918 priority Critical patent/WO2024044980A1/zh
Publication of WO2024044980A1 publication Critical patent/WO2024044980A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, specifically, to a box, a battery and an electrical device.
  • Embodiments of the present application provide a box, a battery and an electrical device, which can effectively improve the service life and safety of the battery.
  • embodiments of the present application provide a box, including a frame, a partition beam and a reinforcement; the frame forms a storage space; the partition beam is disposed in the frame, and the partition beam is configured to divide the storage space into first storage spaces. space and a second accommodating space, the first accommodating space is used to accommodate battery cells; the reinforcing member is arranged in the second accommodating space, the reinforcing member is arranged between the dividing beam and the frame, and the reinforcing member is used to connect the dividing beam and the frame transfer force between them.
  • a partition beam is provided in the accommodation space of the frame, and the partition beam can divide the accommodation space into a first accommodation space for accommodating battery cells and a second accommodation space for accommodating other components of the battery. This allows the separation beam to limit the displacement of the battery cells or the expansion that occurs during use.
  • the reinforcing member By arranging the reinforcing member in the second accommodation space and disposing the reinforcing member between the frame and the dividing beam, the reinforcing member can provide support for the dividing beam without occupying the space for placing the battery cells, so that when it is accommodated in the When the battery cells in the first accommodation space are displaced or expanded, the force exerted by the battery cells on the separation beam can be transmitted to the frame through the reinforcement, thereby effectively improving the strength of the separation beam under the extrusion of the battery cells.
  • the box using this structure can effectively alleviate the deformation of the separation beam on the one hand, and is conducive to improving the resistance of the separation beam to the displacement or expansion of the battery cells, so as to reduce the damage caused by displacement, collision or expansion deformation of the battery cells. There are risks such as fire and explosion, which can improve the service life and safety of batteries with this kind of box.
  • it can reduce the design requirements of the separation beam to resist the displacement or expansion of the battery cells. In other words, it can reduce the separation beam
  • Its own structural strength can simplify the structural design of the separation beam to reduce the weight and volume of the separation beam, which is conducive to improving the internal space utilization of batteries with this kind of box and achieving lightweight batteries.
  • a cavity is formed inside the reinforcement.
  • the reinforcement can reduce its own weight while transmitting force to the partition beam, thereby achieving lightweighting of the reinforcement, thereby conducive to reducing the size of the box. overall weight.
  • reinforcing ribs are provided in the cavity, and the reinforcing ribs are connected to the cavity wall surface of the cavity.
  • the reinforcement is made using an extrusion molding process.
  • the reinforcement is produced through the extrusion molding process to facilitate the molding of the reinforcement, which is conducive to reducing the difficulty of manufacturing the reinforcement and improving the mechanical properties of the reinforcement so that it can act on the battery cells.
  • the forces on the separation beam are effectively transmitted.
  • the box further includes a bottom plate, the frame is arranged around the bottom plate, and the reinforcing member is fixedly connected to at least one of the frame, the dividing beam and the bottom plate.
  • the box is further provided with a bottom plate, and the frame is arranged around the bottom plate, so that the bottom plate can better support the battery cells accommodated in the first accommodation space.
  • the reinforcement by fixedly connecting the reinforcement to at least one of the frame, the separation beam and the bottom plate, it is beneficial to improve the structural stability of the reinforcement, thereby effectively improving the strength of the reinforcement on the force exerted by the battery cells on the separation beam. delivery effect.
  • both sides of the reinforcement member abut and are fixedly connected to the frame and the partition beam respectively.
  • the connection reliability of the reinforcement between the frame and the partition beam can be effectively improved to reduce the risk of the reinforcement being placed between the frame and the partition beam. There is a risk of falling off during later use.
  • it can effectively improve the support effect of the reinforcement on the separation beam, which is conducive to ensuring the transmission effect of the reinforcement on the force of the battery cell acting on the separation beam, which can further improve the separation beam.
  • the reinforcing member is made of metal
  • the frame has a connecting portion.
  • the connecting portion is used for welding with the reinforcing member.
  • the connecting portion is made of metal.
  • connection portion of the frame by welding the connection portion of the frame to the reinforcement and the reinforcement to each other, it is beneficial to improve the stability and reliability of the connection between the reinforcement and the frame, and to facilitate the reinforcement of the battery cells. body's force is transmitted.
  • the reinforcing member is made of metal
  • the dividing beam has a connecting wall.
  • the connecting wall is used for welding with the reinforcing member, and the connecting wall is made of metal.
  • the partition beam to weld the connecting wall connected to the reinforcement and the reinforcement to each other, it is conducive to improving the stability and reliability of the connection between the reinforcement and the separation beam, and can effectively improve the relationship between the reinforcement and the reinforcement.
  • the support effect of the separation beam is to improve the ability of the separation beam to resist the displacement or expansion of the battery cells.
  • both sides of the reinforcement are welded to the frame and the separation beam respectively, and the reinforcement, the frame and the separation beam are all made of the same metal material.
  • the frame includes a first plate material, the first plate material is used to connect to the reinforcement member, and the first plate material is arranged at an acute angle with the dividing beam.
  • the frame has a first plate connected to the reinforcement.
  • the box forms a constriction area at the position of the first plate, and the dividing beam is connected to the dividing beam.
  • a triangular area is formed between the first plates, which on the one hand helps to save the space occupied by the box, and on the other hand by arranging the reinforcing member between the first plate and the dividing beam, that is, the reinforcing member is arranged between the first plate and the dividing beam.
  • the structural stability between the first plate, the reinforcement and the dividing beam can be improved, and it is conducive to optimizing the size of the reinforcement to reduce the manufacturing cost of the box.
  • the reinforcing member has a prismatic structure, and the first plate and the dividing beam are respectively connected to different prismatic sides of the reinforcing member.
  • the box using this structure facilitates the reinforcing member to connect the battery cells.
  • the force acting on the dividing beam is transmitted to the first plate arranged at an acute angle with the dividing beam.
  • the structural strength of the reinforcing member can be improved to reduce the risk of deformation of the reinforcing member in the process of transmitting the force of the battery cell. , thus ensuring the force transmission effect of the reinforcement to the battery cell.
  • the reinforcing member is a straight triangular prism structure, and the reinforcing member includes a first prism side, a second prism side, and a third prism side connected end to end.
  • the first prism side is used to connect to the first plate, and the second prism side is connected to the first plate.
  • the prism side is used to connect with the dividing beam; wherein, the surface area of the first prism side and the surface area of the second prism side are both larger than the surface area of the third prism side.
  • the reinforcing member into a straight triangular prism structure, and connecting the first prism side and the second prism side with a larger area among the prism sides of the reinforcing member to the first plate and the dividing beam respectively, it is possible to achieve It is beneficial to increase the contact area between the reinforcement, the first plate and the separation beam, thereby improving the structural stability between the first plate, the reinforcement and the separation beam, thereby facilitating the separation beam to absorb the energy generated by the battery cells through the reinforcement.
  • the force is transmitted to the first plate of the frame, which is beneficial to improving the resistance of the partition beam to the displacement or expansion of the battery cells.
  • the reinforcement is configured to be welded to the first plate and the dividing beam respectively to form a first weld and a second weld, the first weld extending along at least part of the outer edge of the first prism side, and the second The weld extends along at least part of the outer edge of the side of the second prism.
  • the first weld seam is formed by welding the reinforcement member and the first plate material to each other, and the first weld seam extends along at least part of the outer edge of the first prism side of the reinforcement member, that is to say, the first weld seam of the reinforcement member is At least part of the outer edge of the first prism side surface and the first plate are welded to each other to form a first weld.
  • This welding structure is beneficial to reducing the welding difficulty between the reinforcement and the first plate, and can ensure that the first plate and the reinforcement are welding strength.
  • the second welding seam extends along at least part of the outer edge of the second prismatic side of the reinforcing member, that is to say, the second prismatic side of the reinforcing member At least part of the outer edge of the welding joint is welded to the partition beam to form a second weld.
  • This welding structure is beneficial to reducing the welding difficulty between the reinforcement and the partition beam, and can ensure the welding strength between the partition beam and the reinforcement.
  • a cavity is formed inside the reinforcing member and runs through both ends of the reinforcing member along a first direction, and the first direction is parallel to the side edges of the reinforcing member.
  • a cavity extending along the first direction is provided inside the reinforcement, that is, the cavity penetrates both ends of the reinforcement along the extension direction of the side edges of the reinforcement. That is to say, the reinforcement is hollowed out.
  • the penetrating surface is different from the surface used by the reinforcement to interconnect with the first plate and the separation beam respectively, thereby ensuring the contact area of the reinforcement with the first plate and the separation beam while reducing the weight of the reinforcement to reduce the size of the box. overall weight.
  • the extension direction of the reinforcement is parallel to the thickness direction of the separation beam, and both ends of the reinforcement are connected to the first plate and the separation beam respectively.
  • the reinforcement is a structure that is arranged perpendicularly to the partition beam.
  • the box using this structure can be improved and strengthened.
  • the supporting effect of the component on the separation beam is so that the reinforcement member can transfer the force of the battery cell acting on the separation beam to the first plate, thereby helping to improve the deformation resistance of the separation beam.
  • a cavity is formed inside the reinforcing member and runs through both ends of the reinforcing member along the thickness direction of the dividing beam.
  • a cavity extending through both ends of the reinforcement along the thickness direction of the dividing beam is provided inside the reinforcement, that is to say, the extension direction of the cavity is consistent with the extension direction of the reinforcement, so that the reinforcement is The cross-section of the cavity is connected to the partition beam.
  • the reinforcement using this structure can on the one hand reduce the weight of the reinforcement to achieve lightweighting of the box. On the other hand, it helps the reinforcement reduce the impact of the battery cells on the partition beam. The force of the body is transmitted to the first plate, and the deformation of the reinforcement can be effectively reduced.
  • the length of the frame is L 1 , satisfying 900mm ⁇ L 1 ⁇ 2800mm.
  • the length of the dividing beam is L 2 , satisfying 500mm ⁇ L 2 ⁇ 1700mm.
  • embodiments of the present application further provide a battery, including a battery cell and the above-mentioned box; the battery cell is accommodated in the first accommodation space.
  • the projection of the reinforcement is at least partially coincident with the projection of the battery cell.
  • the reinforcement is at least partially corresponding to the battery cell in the thickness direction of the partition beam.
  • the battery cell has a rectangular parallelepiped structure, the battery cell has a first surface, the first surface is the largest surface among the outer surfaces of the battery cell, and the first surface is disposed facing the dividing beam.
  • the separation beam by arranging the first surface with the largest area among the outer surfaces of the battery cells facing the separation beam, that is, the surface of the battery cell that expands the most during use is disposed facing the separation beam, so that the separation beam can It has a better restraint effect on the expansion of battery cells to reduce the risk of fire and explosion due to excessive expansion and deformation of battery cells during use.
  • the battery cell includes an electrode assembly of a wound structure, the winding axis of the electrode assembly is perpendicular to the thickness direction of the separator beam, and the size of the electrode assembly in the thickness direction of the separator beam is smaller than that of the electrode assembly perpendicular to the thickness direction of the separator beam. Dimensions in other directions of the winding axis of the electrode assembly.
  • the winding structure is flat, and the thickness direction of the flat area of the electrode assembly is consistent with the thickness direction of the separator beam. Batteries using this structure can better constrain the direction of the largest expansion size of the battery cells through the separator beam. The effect is to reduce the expansion and deformation of the battery cells of the electrode assembly with a rolled structure.
  • the battery cell includes an electrode assembly of a laminate structure, and the stacking direction of the electrode assembly is parallel to the thickness direction of the separation beam.
  • the battery using this structure can play a role in the direction of the largest expansion size of the battery cells through the separation beam.
  • the thickness of the battery cell is L 3 , satisfying 5mm ⁇ L 3 ⁇ 40mm.
  • the length of the battery cell is L 4 , satisfying 400mm ⁇ L 4 ⁇ 2500mm.
  • the battery cell has a cylindrical structure, and the axis direction of the battery cell is perpendicular to the thickness direction of the dividing beam.
  • the battery cells arranged in the battery box have a cylindrical structure, and the axial direction of the battery cells is set to be consistent with the thickness direction of the dividing beam. That is to say, the outer peripheral surface of the battery cells faces Separating beams are provided. Batteries using this structure can have a better restraint effect on the direction in which the battery cells expand the largest through the separating beams.
  • the plurality of battery cells are stacked along the thickness direction of the separation beam.
  • the partition beam can limit the direction in which the expansion size of the multiple battery cells is the largest, and can achieve simultaneous expansion of the battery cells. It limits the expansion of multiple battery cells, thereby mitigating the risk of expansion and deformation of multiple battery cells, which is beneficial to improving the service life and safety of the battery.
  • embodiments of the present application also provide an electrical device, including the above-mentioned battery, and the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of the structure of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of a box provided by some embodiments of the present application.
  • Figure 4 is a partial enlarged view of position A of the box shown in Figure 3;
  • Figure 5 is a schematic structural diagram of the reinforcement member of the box provided by some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of the reinforcement member of the box provided by some embodiments of the present application in other embodiments;
  • Figure 7 is a partial cross-sectional view of a box provided by some embodiments of the present application.
  • Figure 8 is a partial structural schematic diagram of a box provided by some embodiments of the present application.
  • Figure 9 is a schematic structural diagram of the reinforcement member of the box provided by some embodiments of the present application.
  • Figure 10 is a partial cross-sectional view of a box provided by some embodiments of the present application.
  • Icon 1000-vehicle; 100-battery; 10-box; 11-frame; 111-first plate; 112-second plate; 113-third plate; 114-fourth plate; 115-fifth plate; 12-Dividing beam; 13-Reinforcing member; 131-Cavity; 132-Reinforcing rib; 133-First prism side; 134-Second prism side; 135-Third prism side; 136-First end face; 137-No.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-ion batteries or magnesium-ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells or multiple battery modules. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes a casing, an electrode assembly and an electrolyte.
  • the electrode assembly and the electrolyte are both contained in the casing.
  • the electrode assembly may be a rolled structure formed by winding the positive electrode piece, the negative electrode piece and the isolation film, or it may be a laminated structure formed by stacking the positive electrode piece, the negative electrode piece and the isolation film.
  • Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the part of the positive electrode current collector that is not coated with the positive electrode active material layer serves as a positive electrode tab to realize the operation through the positive electrode tab.
  • the electrical energy input or output of the positive pole piece can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the part of the negative electrode current collector that is not coated with the negative electrode active material layer serves as a negative electrode tab to realize the realization of the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon. In order to ensure that large currents can pass through without melting, the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • Batteries have outstanding advantages such as high energy density, low environmental pollution, high power density, long service life, wide adaptability, and small self-discharge coefficient. They are an important part of the development of new energy today.
  • a battery is usually composed of a box and a plurality of battery cells stacked in the box.
  • higher requirements have been put forward for battery endurance, especially in terms of battery energy density and weight.
  • a cross beam is usually provided on one side of multiple battery cells in the stacking direction, so that the multiple battery cells are in contact with the cross beam. But against each other, the cross beams can limit the expansion of the battery cells to a certain extent.
  • the structural strength of the cross beams can be improved by increasing the thickness of the cross beams or setting reinforcement ribs inside the cross beams to reduce the occurrence of cross beams.
  • the risk of deformation can effectively improve the ability of the cross beam to resist the expansion of battery cells, thereby reducing the risk of deformation of battery cells due to expansion during use.
  • the cross beams are prone to deformation, which makes the cross beams less effective in resisting the expansion of the battery cells.
  • the box includes a frame, dividing beams and reinforcements.
  • the frame forms an accommodation space, and a partition beam is provided in the frame.
  • the partition beam is configured to divide the accommodation space into a first accommodation space and a second accommodation space, and the first accommodation space is used to accommodate battery cells.
  • the reinforcing member is disposed in the second accommodation space, the reinforcing member is disposed between the dividing beam and the frame, and the reinforcing member is used to transmit force between the dividing beam and the frame.
  • a partition beam is provided in the accommodation space of the frame.
  • the partition beam can divide the accommodation space into a first accommodation space for accommodating battery cells and a second accommodation space for accommodating other components of the battery.
  • the accommodation space allows the separation beam to limit the displacement of the battery cells or the expansion that occurs during use.
  • the reinforcing member By arranging the reinforcing member in the second accommodation space and disposing the reinforcing member between the frame and the dividing beam, the reinforcing member can provide support for the dividing beam without occupying the space for placing the battery cells, so that when it is accommodated in the When the battery cells in the first accommodation space are displaced or expanded, the force exerted by the battery cells on the separation beam can be transmitted to the frame through the reinforcement, thereby effectively improving the strength of the separation beam under the extrusion of the battery cells.
  • the box using this structure can effectively alleviate the deformation of the separation beam on the one hand, and is conducive to improving the resistance of the separation beam to the displacement or expansion of the battery cells, so as to reduce the damage caused by displacement, collision or expansion deformation of the battery cells. There are risks such as fire and explosion, which can improve the service life and safety of batteries with this kind of box.
  • it can reduce the design requirements of the separation beam to resist the displacement or expansion of the battery cells. In other words, it can reduce the separation beam
  • Its own structural strength can simplify the structural design of the separation beam to reduce the weight and volume of the separation beam, which is conducive to improving the internal space utilization of batteries with this kind of box and achieving lightweight batteries.
  • the box disclosed in the embodiment of the present application can be, but is not limited to, used in electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of a box, a battery, etc. disclosed in this application, which is beneficial to improving the internal space utilization of the battery and achieving lightweight of the battery, thereby effectively improving the endurance of the battery.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the structure of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a box body 10 , a battery cell 20 and a box cover 30 .
  • the battery cell 20 is used to be accommodated in the box body 10 .
  • the box cover 30 is closed on the box body 10 .
  • the box 10 is used to provide assembly space for the battery cells 20, and the battery 100 can adopt a variety of structures. As shown in Figure 2, along the first direction The lids 30 jointly define a sealed space for accommodating the battery cells 20 . In some embodiments, the battery 100 can also have other structures.
  • the battery 100 includes two box covers 30. Along the first direction Regarding both sides of the box 10 in the first direction The open side is such that the box body 10 and the box cover 30 jointly define a sealed space for accommodating the battery cells 20 .
  • the battery 100 formed by the assembly of the box body 10 and the box cover 30 can have various shapes, such as a cylinder, a rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • a plurality of battery cells 20 are stacked and arranged in the box 10 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes. For example, in FIG. 2 , the battery cell 20 has a rectangular parallelepiped structure.
  • Figure 2 is a schematic structural diagram of the box 10 provided in some embodiments of the present application
  • Figure 4 is a schematic diagram of the box 10 shown in Figure 3 Magnified view of part of A.
  • This application provides a box 10 , which includes a frame 11 , a partition beam 12 and a reinforcement 13 .
  • the frame 11 forms an accommodation space
  • the partition beam 12 is provided in the frame 11 .
  • the partition beam 12 is configured to divide the accommodation space into a first accommodation space 14 and a second accommodation space 15 .
  • the first accommodation space 14 is used to accommodate battery cells.
  • Body 20 The reinforcing member 13 is disposed in the second accommodation space 15 and is disposed between the dividing beam 12 and the frame 11 .
  • the reinforcing member 13 is used to transmit force between the dividing beam 12 and the frame 11 .
  • the reinforcement 13 is used to transmit force between the partition beam 12 and the frame 11 , that is, the reinforcement 13 is used to act on the partition beam 12 when the battery cell 20 is displaced or expanded along the thickness direction Y of the partition beam.
  • the extrusion force is transmitted to the frame 11 to support the partition beam 12.
  • the box 10 may also include a bottom plate 16 .
  • the frame 11 is surrounded by the bottom plate 16 .
  • the frame 11 encloses a receiving space.
  • the bottom plate 16 is used to support and place the battery cells 20 . In the first direction
  • the partition beam 12 extends along the second direction Z, and the partition beam 12 is disposed in the accommodation space, so that the partition beam 12 divides the accommodation space of the frame 11 into first rows arranged along the thickness direction Y of the partition beam.
  • the second accommodation space 15 is used to accommodate the battery management system of the battery 100 and other electronic components.
  • the first direction X, the thickness direction Y of the dividing beam and the second direction Z are perpendicular to each other.
  • the separation beam 12 may be connected in various ways. It may be a structure in which both ends of the separation beam 12 in the second direction Z are connected to the frame 11 , or it may be a structure in which the separation beam 12 is connected in the first direction X. One side of the structure is connected to the bottom plate 16.
  • the reinforcement 13 is disposed between the partition beam 12 and the frame 11 .
  • the reinforcement 13 is configured to transmit the expansion force of the battery cells 20 acting on the partition beam 12 to the frame 11 . That is to say, the reinforcement 13 plays the role of
  • the function of supporting the partition beam 12 is such that the reinforcement 13 can transmit the expansion force acting on the partition beam 12 due to expansion of the battery cells 20 during use to the frame 11 .
  • connection structure between the reinforcement 13 and the separation beam 12 can be various.
  • the reinforcement 13 and the separation beam 12 are in contact with each other, so that the reinforcement 13 can directly support the separation beam 12. , so that the expansion force of the battery cells 20 acting on the partition beam 12 can be transmitted to the frame 11 .
  • the reinforcement 13 can also be provided with a gap between the separation beam 12 and the separation beam 12 in the thickness direction Y of the separation beam, that is, the reinforcement 13 and the separation beam 12 are not in contact, so that the separation beam 12 is positioned between the battery cells 20 After being deformed under the action of expansion force, it can abut against the reinforcement 13 , so that the reinforcement 13 can support the partition beam 12 .
  • the structure enclosed by the frame 11 can be of various types, such as a triangular structure, a rectangular structure, a polygonal structure or a special-shaped structure.
  • the frame 11 is a special-shaped structure formed by connecting multiple plates end to end.
  • a partition beam 12 is provided in the accommodation space of the frame 11 .
  • the partition beam 12 can divide the accommodation space into a first accommodation space 14 for accommodating the battery cells 20 and a second accommodation space 15 for accommodating other components of the battery 100 . , so that the separation beam 12 can limit the displacement of the battery cell 20 or the expansion that occurs during use.
  • the reinforcement 13 By disposing the reinforcement 13 in the second accommodation space 15 and disposing the reinforcement 13 between the frame 11 and the partition beam 12 , the reinforcement 13 can provide support for the partition beam 12 and does not occupy the battery cells.
  • the box 10 adopting this structure can effectively alleviate the deformation of the partition beam 12 on the one hand, and is conducive to improving the resistance of the partition beam 12 to the battery cells.
  • the effect of the displacement or expansion of the body 20 is to reduce the risk of fire and explosion of the battery cell 20 due to displacement, collision or expansion and deformation, thereby improving the service life and safety of the battery 100 with such a box 10.
  • the design requirements for the partition beam 12 to resist the displacement or expansion of the battery cells 20 can be reduced, that is to say, the structural strength of the partition beam 12 itself can be reduced, thereby simplifying the structural design of the partition beam 12 to reduce the weight and volume of the partition beam 12 , which is beneficial to improving the internal space utilization rate of the battery 100 with such a box 10 and realizing the lightweight of the battery 100.
  • FIG. 5 is a schematic structural diagram of the reinforcement 13 of the box 10 provided in some embodiments of the present application.
  • a cavity 131 is formed inside the reinforcement 13 .
  • the cavity 131 runs through both ends of the reinforcement 13 along the first direction X.
  • the cavity 131 can also be formed inside the reinforcement 13 , that is, the cavity 131 does not penetrate through the reinforcement 13 .
  • the cavity 131 can also penetrate through the reinforcement 13 along the thickness direction of the partition. both ends.
  • the reinforcement 13 can reduce its own weight while transmitting force to the partition beam 12 , thereby realizing the lightweight of the reinforcement 13 , thereby conducive to reducing the size of the box 10 overall weight.
  • FIG. 6 is a schematic structural diagram of the reinforcement 13 of the box 10 provided in some embodiments of the present application in other embodiments.
  • Reinforcing ribs 132 are provided in the cavity 131 , and the reinforcing ribs 132 are connected to the wall surface of the cavity 131 .
  • the number of reinforcing ribs 132 provided in the cavity 131 may be one or multiple.
  • there are three reinforcing ribs 132 provided in the cavity 131 and one end of the three reinforcing ribs 132 is connected to each other, and the other end is connected to the cavity wall surface of the cavity 131 .
  • the number of reinforcing ribs 132 provided in the cavity 131 may also be one, two, four or five.
  • the reinforcing member 13 is lightened and the structural strength of the reinforcing member 13 is improved, which is beneficial to reducing the use time of the reinforcing member 13 . There is a risk of deformation or damage during the process to ensure the supporting effect of the reinforcement 13 on the partition beam 12.
  • the reinforcing member 13 is made by an extrusion molding process.
  • the specific manufacturing method of the extrusion molding process can be found in related technologies and will not be described again here.
  • the reinforcing member 13 can also be made by stamping, casting or other processes.
  • the production of the reinforcement 13 through the extrusion molding process facilitates the molding of the reinforcement 13 , is conducive to reducing the manufacturing difficulty of the reinforcement 13 , and is conducive to improving the mechanical properties of the reinforcement 13 so as to act on the separation of the battery cells 20 The force on the beam 12 is effectively transmitted.
  • the box 10 also includes a bottom plate 16, a frame 11 is surrounding the bottom plate 16, and the reinforcement 13 is connected with the frame 11, the dividing beam 12 and the bottom plate. At least one of 16 is fixedly connected.
  • the reinforcing member 13 is fixedly connected to at least one of the frame 11 , the dividing beam 12 and the bottom plate 16 , that is, the reinforcing member 13 can be connected to one of the frame 11 , the dividing beam 12 and the bottom plate 16 , or It may be connected to two of the frame 11 , the partition beam 12 and the bottom plate 16 , or it may be connected to all of the frame 11 , the partition beam 12 and the bottom plate 16 .
  • the box 10 is also provided with a bottom plate 16 , and the frame 11 is surrounding the bottom plate 16 , so that the bottom plate 16 can better support the battery cells 20 accommodated in the first accommodation space 14 .
  • the reinforcement 13 by fixedly connecting the reinforcement 13 to at least one of the frame 11 , the partition beam 12 and the bottom plate 16 , it is helpful to improve the structural stability of the reinforcement 13 , thereby effectively improving the effect of the reinforcement 13 on the battery cells 20 Force transmission effect on the dividing beam 12.
  • both sides of the reinforcement 13 are respectively in contact with and fixedly connected to the frame 11 and the partition beam 12 .
  • the reinforcing member 13 can be fixedly connected to the frame 11 and the partition beam 12 in various ways. For example, welding, bonding or bolting, etc.
  • both sides of the reinforcement 13 are welded to the frame 11 and the partition beam 12 respectively.
  • the connection reliability of the reinforcement 13 between the frame 11 and the partition beam 12 can be effectively improved to reduce the risk of the reinforcement 13 There is a risk of falling off during later use.
  • the support effect of the reinforcement 13 on the separation beam 12 can be effectively improved, which is conducive to ensuring the transmission effect of the reinforcement 13 on the force exerted by the battery cell 20 on the separation beam 12. This can further improve the deformation resistance of the partition beam 12 .
  • the reinforcing member 13 is made of metal, and the frame 11 has a connecting portion.
  • the connecting portion is used for welding with the reinforcing member 13 .
  • the connecting portion is made of metal.
  • the frame 11 has a connection part, that is, the area of the frame 11 used for welding to the reinforcement 13 is the connection part.
  • the reinforcing member 13 and the connecting portion may be made of steel, iron, aluminum or copper.
  • the reinforcing member 13 is made of metal, and the partition beam 12 has a connecting wall.
  • the connecting wall is used for welding with the reinforcing member 13 .
  • the connecting wall is made of metal.
  • the partition beam 12 has a connecting wall, that is, the wall surface of the partition beam 12 used for welding with the reinforcement 13 is the connecting wall.
  • the reinforcing member 13 and the connecting wall may be made of steel, iron, aluminum or copper.
  • the partition beam 12 By using the partition beam 12 to weld the connecting wall connected to the reinforcement 13 and the reinforcement 13 to each other, it is beneficial to improve the connection stability and reliability between the reinforcement 13 and the separation beam 12, and can effectively improve the pairing of the reinforcement 13
  • the supporting effect of the dividing beam 12 is to enhance the ability of the dividing beam 12 to resist the displacement or expansion of the battery cells 20 .
  • both sides of the reinforcement 13 are welded to the frame 11 and the separation beam 12 respectively.
  • the reinforcement 13, the frame 11 and the separation beam 12 are all made of the same metal material. .
  • the reinforcing member 13 , the frame 11 and the dividing beam 12 may be made of steel, iron, aluminum or copper.
  • the frame 11 includes a first plate 111 , the first plate 111 is used to connect to the reinforcement 13 , and the first plate 111 is arranged at an acute angle with the partition beam 12 .
  • the frame 11 is a structure formed by a plurality of plates connected end to end in sequence, and the first plate 111 is a plate used by the frame 11 to interconnect with the reinforcement 13 .
  • the frame 11 may include two first plates 111 , the two first plates 111 are arranged oppositely along the second direction Z, and the two first plates 111 are arranged at an acute angle with the dividing beam 12 , and in the thickness direction Y of the dividing beam, a reinforcing member 13 is provided between each first plate 111 and the dividing beam 12, which is conducive to further improving the ability of the dividing beam 12 to resist the expansion of the battery cells 20.
  • the frame 11 may further include two second plates 112 , a third plate 113 , two fourth plates 114 and a fifth plate 115 .
  • Two second plates 112 are arranged oppositely along the second direction Z
  • two fourth plates 114 are arranged oppositely along the second direction Z
  • the third plate 113 and the fifth plate 115 are arranged oppositely along the thickness direction Y of the dividing beam.
  • a first plate 111, a second plate 112, a third plate 113, another second plate 112, another first plate 111, a fourth plate 114, a fifth plate 115 and another fourth plate 114 in sequence. They are connected and enclosed to form a frame 11 .
  • both ends of the dividing beam 12 in the second direction Z are respectively connected to two second plates 112, and the length of the third plate 113 in the second direction Z is greater than the length of the fifth plate 115 in the second direction Z. So that the frame 11 forms a constriction area at the position where the first plate 111 is located.
  • the frame 11 may have multiple structures.
  • the frame 11 may not include two fourth plates 114, and the two first plates 111 are respectively connected to both ends of the fifth plate 115 in the second direction Z, so that the dividing beam 12, the fifth plate 115 and the two The first plates 111 enclose the second accommodation space 15 forming a trapezoidal structure.
  • the frame 11 may not include the fifth plate 115 and the two fourth plates 114 .
  • One end of the two first plates 111 is connected to each other, and the other end is connected to the two second plates 112 respectively, so that the dividing beam 12
  • the second accommodation space 15 is enclosed with two first plates 111 to form a triangular structure.
  • the frame 11 has a first plate 111 connected to the reinforcement 13.
  • the box 10 forms a constriction area at the position of the first plate 111, and the dividing beam A triangular area is formed between 12 and the first plate 111, which on the one hand is beneficial to saving the space occupied by the box 10, and on the other hand by disposing the reinforcing member 13 between the first plate 111 and the dividing beam 12, that is, the reinforcing member 13 It is disposed in the triangular area formed between the first plate 111 and the partition beam 12 , thereby improving the structural stability between the first plate 111 , the reinforcement 13 and the partition beam 12 , and is conducive to optimizing the strength of the reinforcement 13 size to reduce the manufacturing cost of the box 10.
  • the reinforcing member 13 has a prismatic structure, and the first plate 111 and the dividing beam 12 are respectively connected to different prismatic sides of the reinforcing member 13 .
  • the prism side surface is the surface formed between two adjacent ribs in the circumferential direction of the reinforcement 13 .
  • the reinforcing member 13 may be a straight prism structure or an oblique prism structure.
  • the number of side edges of the reinforcing member 13 can also be three, four, five or six.
  • the reinforcing member 13 has a right triangular prism structure.
  • the box 10 By arranging the reinforcing member 13 into a prismatic structure, and connecting the first plate 111 and the dividing beam 12 to different prismatic sides of the reinforcing member 13, the box 10 using this structure facilitates the reinforcing member 13 to connect the battery cells. 20
  • the force acting on the dividing beam 12 is transmitted to the first plate 111 arranged at an acute angle with the dividing beam 12.
  • the structural strength of the reinforcing member 13 can be improved to reduce the force of the reinforcing member 13 in transmitting the battery cell 20. There is a risk of deformation during the process, thereby ensuring the force transmission effect of the reinforcement 13 on the battery cell 20 .
  • Figure 7 is a partial cross-sectional view of the box 10 provided in some embodiments of the present application.
  • the reinforcement 13 has a straight triangular prism structure.
  • the reinforcement 13 includes a first prism side 133, a second prism side 134 and a third prism side 135 connected end to end.
  • the first prism side 133 is used to connect to the first plate 111.
  • the diagonal prism side 134 is used to connect with the dividing beam 12 .
  • the surface area of the first prism side surface 133 and the surface area of the second prism side surface 134 are both larger than the surface area of the third prism side surface 135 .
  • the reinforcement 13 includes a first prism side 133, a second prism side 134 and a third prism side 135 connected end to end, that is, the first prism side 133, the second prism side 134 and the third prism side 135 are enclosed to form a reinforcement.
  • the outer peripheral surface of piece 13 The first prism side 133 is connected to the surface of the first plate 111 facing the second accommodation space 15 , and the second prism side 134 is connected to the surface of the dividing beam 12 facing the second accommodation space 15 .
  • the first prism side surface 133 and the surface of the first plate 111 facing the second accommodation space 15 are attached to each other, and the second prism side surface 134 and the surface of the dividing beam 12 facing the second accommodation space 15 are attached to each other. combine.
  • the reinforcement 13 By arranging the reinforcement 13 into a straight triangular prism structure, and connecting the first prism side 133 and the second prism side 134 with larger areas among the prism sides of the reinforcement 13 to the first plate 111 and the dividing beam 12 respectively, there is It is beneficial to increase the contact area between the reinforcement 13 and the first plate 111 and the separation beam 12, so as to improve the structural stability between the first plate 111, the reinforcement 13 and the separation beam 12, thereby facilitating the separation beam 12 to be strengthened
  • the member 13 transmits the force generated by the battery cell 20 to the first plate 111 of the frame 11 , which is beneficial to improving the resistance effect of the partition beam 12 to the displacement or expansion of the battery cell 20 .
  • the reinforcement 13 is configured to be welded to the first plate 111 and the partition beam 12 respectively and form a first weld and a second weld, the first weld being along at least part of the first prism side 133
  • the second weld extends along at least part of the outer edge of the second prismatic side 134 .
  • the first weld seam extends along at least part of the outer edge of the first prism side surface 133 , that is, at least part of the outer edge of the first prism side surface 133 of the reinforcement 13 and the first plate 111 are welded to each other to form the first weld seam.
  • the second welding seam extends along at least part of the outer edge of the second prismatic side surface 134 , that is, at least part of the outer edge of the second prismatic side surface 134 of the reinforcement 13 and the dividing beam 12 are welded to each other to form a second welding seam.
  • first plate 111 and the first prismatic side 133 of the reinforcement 13 and the partition beam 12 and the second prismatic side 134 of the reinforcement 13 can also be connected by bonding.
  • the reinforcing member 13 and the first plate 111 By welding the reinforcing member 13 and the first plate 111 to each other to form a first weld, and the first welding seam extends along at least part of the outer edge of the first prism side 133 of the reinforcing member 13 , adopting this welding structure is beneficial to reducing the amount of reinforcement.
  • the difficulty of welding between the member 13 and the first plate 111 can be ensured, and the welding strength between the first plate 111 and the reinforcing member 13 can be ensured.
  • a cavity 131 is formed inside the reinforcing member 13 and penetrates both ends of the reinforcing member 13 along the first direction X.
  • the first direction X is parallel to The side edges of the reinforcement 13.
  • a cavity 131 is formed inside the reinforcement 13 and penetrates both ends of the reinforcement 13 along the first direction X. That is, the cavity 131 penetrates both ends of the reinforcement 13 along the extension direction of the side edges of the reinforcement 13 .
  • connection surfaces are different, thereby ensuring the contact area between the reinforcement 13 and the first plate 111 and the partition beam 12 while reducing the weight of the reinforcement 13 to reduce the overall weight of the box 10 .
  • Figure 8 is a partial structural schematic diagram of the box 10 provided in some further embodiments of the present application
  • Figure 9 is a schematic diagram of a box 10 provided in some further embodiments of the present application
  • 10 is a partial cross-sectional view of the box 10 provided in some embodiments of the present application.
  • the extension direction of the reinforcement 13 is parallel to the thickness direction Y of the partition beam, and both ends of the reinforcement 13 are connected to the first plate 111 and the partition beam 12 respectively.
  • the extension direction of the reinforcement 13 is parallel to the thickness direction Y of the partition beam, that is, the reinforcement 13 and the partition beam 12 are perpendicular to each other.
  • the two ends of the reinforcement 13 are respectively formed with a first end surface 136 and a second end surface 137.
  • the first end surface 136 is in contact with the first plate material.
  • the surfaces of 111 facing the second accommodating space 15 are bonded to each other, and the second end surface 137 and the surface of the dividing beam 12 facing the second accommodating space 15 are bonded to each other.
  • the reinforcement 13 with this structure can, on the one hand, increase the contact area between the reinforcement 13 and the first plate 111 and the partition beam 12 to improve the overall structural stability of the box 10. On the other hand, it can facilitate the passage of the partition beam 12.
  • the reinforcement 13 transmits the expansion force generated by the expansion of the battery cell 20 to the first plate 111 .
  • the reinforcement 13 By arranging the extension direction of the reinforcement 13 to be parallel to the thickness direction Y of the partition beam, that is, the reinforcement 13 has a structure that is perpendicular to the partition beam 12.
  • the box 10 using this structure can lift the reinforcement. 13 has a supporting effect on the partition beam 12 so that the reinforcement 13 can transfer the force exerted by the battery cells 20 on the partition beam 12 to the first plate 111 , thereby improving the deformation resistance of the partition beam 12 .
  • a cavity 131 is formed inside the reinforcement 13 and runs through both ends of the reinforcement 13 along the thickness direction Y of the dividing beam.
  • the cavity 131 penetrates both ends of the reinforcement 13 in the thickness direction Y of the dividing beam, that is, the cavity 131 extends along the thickness direction Y of the dividing beam, and the two ends of the cavity 131 penetrate the first end surface respectively. 136 and the second end face 137.
  • the reinforcement 13 with this structure can, on the one hand, reduce the weight of the reinforcement 13 to achieve lightweighting of the box 10, and on the other hand, it is beneficial to the reinforcement 13
  • the force of the battery cell 20 received by the partition beam 12 is transmitted to the first plate 111, and the deformation of the reinforcement 13 can be effectively reduced.
  • the length of the frame 11 is L 1 , which satisfies 900mm ⁇ L 1 ⁇ 2800mm.
  • the length of the frame 11 is L 1 , that is, the maximum dimension of the frame 11 in the thickness direction Y of the dividing beam is between 900 mm and 2800 mm.
  • the length of the frame 11 in the thickness direction Y of the dividing beam may be 900mm, 1000mm, 1200mm, 1500mm, 2000mm, 2500mm or 2800mm, etc.
  • the length of the dividing beam 12 is L 2 , which satisfies 500mm ⁇ L 2 ⁇ 1700mm.
  • the dividing beam 12 extends along the second direction Z, and the length of the dividing beam 12 is L 2 , that is, the maximum dimension of the dividing beam 12 in the second direction Z is between 500 mm and 1700 mm.
  • the length of the dividing beam 12 in the second direction Z may be 500mm, 600mm, 800mm, 1000mm, 1200mm, 1500mm or 1700mm, etc.
  • inventions of the present application also provide a battery 100.
  • the battery 100 includes a battery cell 20 and a box 10 of any of the above solutions.
  • the battery cell 20 accommodated in the first accommodation space 14 .
  • the projection of the reinforcement 13 at least partially coincides with the projection of the battery cell 20 .
  • the projection of the reinforcement 13 and the projection of the battery cell 20 at least partially overlap, that is, in the thickness direction Y of the partition beam, at least part of the reinforcement 13 and the battery cell 20 overlap each other.
  • the reinforcement 13 corresponds to at least part of the battery cell 20 in the thickness direction Y of the partition beam. is provided so that the reinforcement 13 can support and strengthen the area of the partition beam 12 against which the battery cell 20 is displaced or expanded, thereby conducive to further improving the effect of the partition beam 12 against the displacement or expansion of the battery cell 20, and facilitating
  • the reinforcement 13 transmits the force exerted by the battery cells 20 on the partition beam 12 to the frame 11 , thereby helping to alleviate the deformation of the partition beam 12 .
  • the battery cell 20 has a rectangular parallelepiped structure.
  • the battery cell 20 has a first surface 21 , and the first surface 21 is the largest surface among the outer surfaces of the battery cell 20 .
  • the first surface 21 is arranged facing the dividing beam 12 .
  • the first surface 21 is the largest surface among the outer surfaces of the battery cell 20 .
  • the first surface 21 faces the partition beam 12 , that is, the thickness direction of the battery cell 20 is the same as the thickness direction Y of the partition beam.
  • the partition beam 12 By arranging the first surface 21 with the largest area among the outer surfaces of the battery cells 20 to face the partition beam 12 , that is, the surface of the battery cell 20 that expands the most during use is arranged to face the partition beam 12 , so that the partition beam 12 can It has a better restraining effect on the expansion of the battery cell 20 to reduce the risk of fire and explosion due to excessive expansion and deformation of the battery cell 20 during use.
  • the battery cell 20 includes an electrode assembly of a wound structure, the winding axis of the electrode assembly is perpendicular to the thickness direction Y of the separation beam, and the size of the electrode assembly in the thickness direction Y of the separation beam is smaller than that of the electrode assembly. Dimensions in other directions perpendicular to the winding axis of the electrode assembly.
  • the electrode assembly of the battery cell 20 is accommodated in the casing of the battery cell 20.
  • the electrode assembly of the rolled structure is the electrode assembly.
  • the electrode assembly is a rolled structure formed by winding the positive electrode plate, the negative electrode plate and the isolation film. .
  • the specific structure of the wound structure electrode assembly can be found in the related art and will not be described again here.
  • the size of the electrode assembly in the thickness direction Y of the separation beam is smaller than the size of the electrode assembly in other directions perpendicular to the winding axis of the electrode assembly, that is, the shape of the electrode assembly of the wound structure is flat, and the flatness of the electrode assembly
  • the thickness direction of the area is consistent with the thickness direction Y of the dividing beam.
  • the battery 100 using this structure can pass through the separation beam.
  • 12 has a better constraint effect on the direction in which the expansion size of the battery cell 20 is the largest, so as to reduce the phenomenon of expansion and deformation of the battery cell 20 of the electrode assembly with a rolled structure.
  • the battery cell 20 includes an electrode assembly of a laminate structure, and the stacking direction of the electrode assembly is parallel to the thickness direction Y of the separation beam.
  • the electrode assembly with a laminated structure is a laminated structure formed by stacking a positive electrode piece, a negative electrode piece and a separator.
  • the specific structure of the stacked electrode assembly can be found in the related art and will not be described again here.
  • the stacking direction of the electrode assembly is parallel to the thickness direction Y of the separation beam. That is to say, the positive electrode piece, the negative electrode piece and the isolation film of the electrode assembly are stacked in sequence along the thickness direction Y of the separation beam.
  • the battery 100 using this structure can use the partition beams 12 to have a greater effect on the direction in which the expansion size of the battery cells 20 is greatest.
  • a good constraint effect is provided to alleviate the phenomenon of expansion and deformation of the battery cells 20 of the electrode assembly with a laminated structure.
  • the thickness of the battery cell 20 is L 3 , which satisfies 5 mm ⁇ L 3 ⁇ 40 mm.
  • the thickness of the battery cell 20 is L 3 , that is, the battery cell 20 has a thickness L 3 .
  • the size of the unit 20 in the thickness direction Y of the dividing beam is between 5 mm and 40 mm.
  • the thickness of the battery cell 20 may be 5 mm, 8 mm, 10 mm, 20 mm, 25 mm, 30 mm or 40 mm, etc.
  • the length of the battery cell 20 along the extension direction of the partition beam 12 is L 4 , which satisfies 400 mm ⁇ L 4 ⁇ 2500 mm.
  • the dividing beam 12 extends along the second direction Z, that is to say, the extending direction of the dividing beam 12 is the second direction Z, and the length of the battery cell 20 is L 4 , that is, the battery cell 20 extends in the second direction Z.
  • the maximum size is between 400mm and 2500mm.
  • the length of the battery cell 20 in the second direction Z may be 400mm, 500mm, 600mm, 700mm, 1000mm, 1500mm, 2000mm or 2500mm, etc.
  • the battery cell 20 may also have a cylindrical structure, and the axis direction of the battery cell 20 is perpendicular to the thickness direction Y of the dividing beam.
  • the axial direction of the battery cell 20 is perpendicular to the thickness direction Y of the dividing beam, that is, the extending direction of the battery cell 20 is the first direction X perpendicular to the thickness direction Y of the dividing beam.
  • the battery cell 20 disposed in the box 10 of the battery 100 has a cylindrical structure.
  • the battery 100 adopting this structure can exert a better restraining effect on the direction in which the expansion size of the battery cell 20 is greatest through the dividing beam 12 .
  • FIG. 2 there are a plurality of battery cells 20 , and the plurality of battery cells 20 are stacked along the thickness direction Y of the partition beam.
  • the battery 100 includes two rows of battery cells 20 arranged along the second direction Z, and each row of battery cells 20 includes a plurality of battery cells 20 stacked along the thickness direction Y of the separation beam.
  • the battery 100 may also include only one row of battery cells 20 , or may include three rows of battery cells 20 , four rows of battery cells 20 or five rows of batteries arranged along the second direction Z. Single unit 20 etc.
  • the partition beam 12 can limit the direction in which the expansion size of the plurality of battery cells 20 is the largest, and can achieve simultaneous expansion of the plurality of battery cells 20 .
  • the expansion of the multiple battery cells 20 is limited, thereby mitigating the risk of expansion and deformation of the multiple battery cells 20 of the battery 100 , which is beneficial to improving the service life and safety of the battery 100 .
  • embodiments of the present application also provide an electrical device, including the battery 100 of any of the above solutions, and the battery 100 is used to provide electrical energy for the electrical device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .
  • the present application provides a box 10 .
  • the box 10 includes a frame 11 , a partition beam 12 , a reinforcement 13 and a bottom plate 16 .
  • the frame 11 is arranged around the bottom plate 16 , and a storage space is formed inside the frame 11 .
  • the partition beam 12 is disposed in the frame 11 .
  • the partition beam 12 extends along the second direction Z, and both ends of the partition beam 12 are respectively connected to the frame 11 .
  • the partition beam 12 is configured to divide the accommodation space into parts along the thickness of the partition beam.
  • the first accommodation space 14 and the second accommodation space 15 are arranged in the direction Y.
  • the first accommodation space 14 is used to accommodate the battery cells 20 .
  • the frame 11 has a first plate 111 arranged at an acute angle with the partition beam 12 .
  • the reinforcement 13 is arranged in the second accommodation space 15.
  • the reinforcement 13 has a straight triangular prism structure.
  • the reinforcement 13 includes a first prism side 133, a second prism side 134 and a third prism side 135 connected end to end.
  • the first prism The side surface 133 and the surface of the first plate 111 facing the second accommodation space 15 are welded to each other.
  • the second prism side surface 134 and the surface of the dividing beam 12 facing the second accommodation space 15 are welded to each other.
  • the surface area of the first prism side surface 133 and the second prism side surface are welded to each other.
  • the surface area of 134 is larger than the surface area of the third prism side surface 135 .
  • a cavity 131 is formed inside the reinforcing member 13 and passes through both ends of the reinforcing member 13 along the first direction X, and the first direction X is parallel to the side edges of the reinforcing member 13 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请提供了一种箱体、电池及用电装置,属于电池技术领域。其中,箱体包括框体、分隔梁和加强件。分隔梁设置于框体内,分隔梁被配置为将容纳空间划分为第一容纳空间和第二容纳空间,第一容纳空间用于容纳电池单体。加强件设置于第二容纳空间内,加强件设置于分隔梁和框体之间,加强件用于在分隔梁和框体之间传递力。通过在框体与分隔梁之间设置加强件,以使加强件能够为分隔梁提供支撑作用,使得在容纳于第一容纳空间内的电池单体发生位移或膨胀时,电池单体作用于分隔梁上的力能够通过加强件传递至框体上,从而能够有效提升分隔梁在电池单体的挤压下的抗变形能力,进而能够提升电池的使用寿命和使用安全性。

Description

箱体、电池及用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种箱体、电池及用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。随着新能源汽车的大力推广,对动力电池的需求也日益增长,电池作为新能源汽车核心零部件在续航能力方面有着较高的要求,比如,电池的能量密度和重量等。其中,电池由箱体和层叠设置于箱体内的多个电池单体组成,然而,电池单体在循环使用过程中会发生体积膨胀的现象,从而极容易导致电池单体因膨胀变形而发生起火爆炸等风险,以造成电池的使用寿命较短,且存在较大的安全隐患。
发明内容
本申请实施例提供一种箱体、电池及用电装置,能够有效提升电池的使用寿命和使用安全性。
第一方面,本申请实施例提供一种箱体,包括框体、分隔梁和加强件;框体形成容纳空间;分隔梁设置于框体内,分隔梁被配置为将容纳空间划分为第一容纳空间和第二容纳空间,第一容纳空间用于容纳电池单体;加强件设置于第二容纳空间内,加强件设置于分隔梁和框体之间,加强件用于在分隔梁和框体之间传递力。
在上述技术方案中,框体的容纳空间内设置有分隔梁,分隔梁能够将容纳空间分隔为用于容纳电池单体的第一容纳空间和用于容纳电池的其他部件的第二容纳空间,使得分隔梁能够对电池单体的位移或使用过程中发生的膨胀起到限制作用。通过在第二容纳空间内设置加强件,且将加强件设置于框体与分隔梁之间,以使加强件能够为分隔梁提供支撑作用且不占用放置电池单体的空间,使得在容纳于第一容纳空间内的电池单体发生位移或膨胀时,电池单体作用于分隔梁上的力能够通过加强件传递至框体上,从而能够有效提升分隔梁在电池单体的挤压下的抗变形能力,采用这种结构的箱体一方面能够有效缓解分隔梁发生变形的现象,有利于提升分隔梁抵抗电池单体位移或膨胀的效果,以降低电池单体因位移碰撞或膨胀变形而出现起火爆炸等风险,进而能够提升具有这种箱体的电池的使用寿命和使用安全性,另一方面能够降低分隔梁对抗电池单体位移或膨胀的设计要求,也就是说,能够降低分隔梁自身的结构强度,进而能够简化分隔梁的结构设计,以减少分隔梁的重量和体积,有利于提升具有这种箱体的电池的内部空间使用率和实现电池的轻量化。
在一些实施例中,加强件的内部形成有空腔。
在上述技术方案中,通过在加强件的内部设置空腔,使得加强件在对分隔梁起到力的传递作用的同时能够减轻自身的重量,实现加强件的轻量化,从而有利于减少箱体的整体重量。
在一些实施例中,空腔内设置有加强筋,加强筋连接于空腔的腔壁面。
在上述技术方案中,通过在加强件的内部设置与空腔的腔壁面相互连接的加强筋,从而在实现加强件轻量化的同时有利于提升加强件的结构强度,有利于降低加强件在使用过程中出现变形或损坏的风险,以保证加强件对分隔梁的支撑效果。
在一些实施例中,加强件采用挤出成型的工艺制成。
在上述技术方案中,通过挤出成型的工艺对加强件进行生产制造便于加强件的成型,有利于降低加强件的制造难度,且有利于提升加强件的力学性能,以对电池单体作用在分隔梁上的力进行有效传递。
在一些实施例中,箱体还包括底板,框体围设于底板的周围,加强件与框体、分隔梁和底板中的至少一者固定连接。
在上述技术方案中,箱体还设置有底板,且框体围设于底板的周围,使得底板能够对容纳于第一容纳空间的电池单体起到较好的支撑作用。此外,通过将加强件与框体、分隔梁和底板中的至少一者固定连接,有利于提升加强件的结构稳定性,从而能够有效提升加强件对电池单体作用在分隔梁上的力的传递效果。
在一些实施例中,加强件的两侧分别抵接并固定连接于框体和分隔梁。
在上述技术方案中,通过将加强件的两侧分别与框体和分隔梁固定连接,从而一方面能够有效提升加强件设置于框体与分隔梁之间的连接可靠性,以降低加强件在后期使用过程中出现脱落的风险,另一方面能够有效提升加强件对分隔梁的支撑效果,有利于保证加强件对电池单体作用在分隔梁上的力的传递效果,进而能够进一步提升分隔梁的抗变形能力。
在一些实施例中,加强件为金属材质制成,框体具有连接部,连接部用于与加强件焊接,连接部为金属材质制成。
在上述技术方案中,通过将框体用于与加强件相连的连接部与加强件相互焊接,有利于提升加强件与框体之间的连接稳定性和可靠性,且便于加强件对电池单体的力进行传递。
在一些实施例中,加强件为金属材质制成,分隔梁具有连接壁,连接壁用于与加强件焊接,连接壁为金属材质制成。
在上述技术方案中,通过将分隔梁用于与加强件相连的连接壁与加强件相互焊接,有利于提升加强件与分隔梁之间的连接稳定性和可靠性,且能够有效提高加强件对分隔梁的支撑效果,以提升分隔梁对抗电池单体位移或膨胀的能力。
在一些实施例中,加强件的两侧分别焊接于框体和分隔梁,加强件、框体和分隔梁均为同种金属材质制成。
在上述技术方案中,通过将加强件的两侧分别与框体与分隔梁焊接,有利于进一步提升加强件连接于框体与分隔梁之间的连接牢固性,一方面能够进一步降低加强件在使用过程中出现脱落的风险,另一方面便于加强件将电池单体作用在分隔梁上的力传递至框体上。
在一些实施例中,框体包括第一板材,第一板材用于与加强件相连,第一板材与分隔梁成锐角设置。
在上述技术方案中,框体具有与加强件相连的第一板材,通过将第一板材与分隔梁成锐角设置,以使箱体在第一板材的位置形成缩颈区域,且使得分隔梁与第一板材之间形成三角形区域,从而一方面有利于节省箱体的占用空间,另一方面通过将加强件设置于第一板材与分隔梁之间,即加强件设置于第一板材与分隔梁之间形成的三角形区域内,进而能够提升第一板材、加强件和分隔梁三者之间的结构稳定性,且有利于优化加强件的尺寸大小,以降低箱体的制造成本。
在一些实施例中,加强件为棱柱结构,第一板材与分隔梁分别连接于加强件不同的棱柱侧面上。
在上述技术方案中,通过将加强件设置为棱柱结构,且将第一板材和分隔梁分别连接在加强件不同的棱柱侧面上,采用这种结构的箱体一方面便于加强件将电池单体作用在分隔梁上的力传递至与分隔梁成锐角设置的第一板材上,另一方面能够提升加强件的结构强度,以降低加强件在传递电池单体的力的过程中出现变形的风险,从而能够保证加强件对电池单体的力的传递效果。
在一些实施例中,加强件为直三棱柱结构,加强件包括首尾依次相连的第一棱柱侧面、第二棱柱侧面和第三棱柱侧面,第一棱柱侧面用于与第一板材相连,第二棱柱侧面用于与分隔梁相连;其中,第一棱柱侧面的表面积和第二棱柱侧面的表面积均大于第三棱柱侧面的表面积。
在上述技术方案中,通过将加强件设置为直三棱柱结构,且将加强件的棱柱侧面中面积较大的第一棱柱侧面和第二棱柱侧面分别与第一板材和分隔梁相连,从而有利于增加加强件与第一板材和分隔梁之间的接触面积,以提升第一板材、加强件与分隔梁三者之间的结构稳定性,进而便于分隔梁通过加强件将电池单体产生的力传递至框体的第一板材上,有利于提升分隔梁对电池单体位移或膨胀的抵抗效果。
在一些实施例中,加强件被配置为分别与第一板材和分隔梁焊接并形成第一焊缝和第二焊缝,第一焊缝沿第一棱柱侧面的至少部分外边缘延伸,第二焊缝沿第二棱柱侧面的至少部分外边缘延伸。
在上述技术方案中,通过将加强件与第一板材相互焊接并形成第一焊缝,且第一焊缝沿加强件的第一棱柱侧面的至少部分外边缘延伸,也就是说,加强件的第一棱柱侧面的至少部分外边缘与第一板材相互焊接形成第一焊缝,采用这种焊接结构有利于降低加强件与第一板材之间的焊接难度,且能够保证第一板材与加强件之间的焊接强度。同样的,通过将加强件与分隔梁相互焊接并形成第二焊缝,且第二焊缝沿加强件的第二棱柱侧面的至少部分外边缘延伸,也就是说,加强件的第二棱柱侧面的至少部分外边缘与分隔梁相互焊接形成第二焊缝,采用这种焊接结构有利于降低加强件与分隔梁间的焊接难度,且能够保证分隔梁与加强件之间的焊接强度。
在一些实施例中,加强件的内部形成有沿第一方向贯穿加强件的两端的空腔,第一方向平行于加强件的侧棱。
在上述技术方案中,通过在加强件的内部设置沿第一方向延伸的空腔,即空腔沿加强件的侧棱的延伸方向贯穿加强件的两端,也就是说,加强件被空腔贯穿的表面与加强件用于分别与第一板材和分隔梁相互连接的表面不同,从而在保证加强件与第一板材和分隔梁的接触面积的同时能够减轻加强件的重量,以减少箱体的整体重量。
在一些实施例中,加强件的延伸方向平行于分隔梁的厚度方向,且加强件的两端分别连接于第一板材和分隔梁。
在上述技术方案中,通过将加强件的延伸方向设置为与分隔梁的厚度方向相互平行,也就是说,加强件为与分隔梁相互垂直设置的结构,采用这种结构的箱体能够提升加强件对分隔梁的支撑效果,以便于加强件将电池单体作用在分隔梁上的力传递至第一板材上,从而有利于提升分隔梁的抗变形能力。
在一些实施例中,加强件的内部形成有沿分隔梁的厚度方向贯穿加强件的两端的空腔。
在上述技术方案中,通过在加强件的内部设置沿分隔梁的厚度方向延伸贯穿加强件的两端的空腔,也就是说,空腔的延伸方向与加强件的延伸方向一致,使得加强件为空腔的横截面与分隔梁相互连接,采用这种结构的加强件一方面能够降低加强件的自身重量,以实现箱体的轻量化,另一方面有利于加强件将分隔梁受到的电池单体的力传递至第一板材上,且能够有效降低加强件出现变形的现象。
在一些实施例中,沿分隔梁的厚度方向,框体的长度为L 1,满足,900mm≤L 1≤2800mm。
在一些实施例中,分隔梁的长度为L 2,满足,500mm≤L 2≤1700mm。
第二方面,本申请实施例还提供一种电池,包括电池单体和上述的箱体;电池单体容纳于第一容纳空间内。
在一些实施例中,沿分隔梁的厚度方向,加强件的投影与电池单体的投影的至少部分重合。
在上述技术方案中,通过将加强件在分隔梁的厚度方向上的投影设置为与电池单体的投影的至少部分重合,使得加强件在分隔梁的厚度方向上与电池单体的至少部分对应设置,以使加强件能够对分隔梁供电池单体位移或膨胀抵靠的区域进行支撑和加强,从而有利于进一步提升分隔梁对抗电池单体位移或膨胀的效果,且便于加强件将电池单体作用在分隔梁上的力传递至框体上,进而有利于缓解分隔梁出现变形的现象。
在一些实施例中,电池单体为长方体结构,电池单体具有第一表面,第一表面为电池单体的外表面中面积最大的面,第一表面面向分隔梁设置。
在上述技术方案中,通过将电池单体的外表面中面积最大的第一表面面向分隔梁设置,即电池单体在使用过程中膨胀尺寸最大的表面对分隔梁面向设置,从而通过分隔梁能够对电池单体的膨胀起到较好的约束效果,以降低电池单体在使用过程中因膨胀变形过大而出现起火爆炸等风险。
在一些实施例中,电池单体包括卷绕式结构的电极组件,电极组件的卷绕轴线垂直于分隔梁的厚度方向,且电极组件在分隔梁的厚度方向上的尺寸小于电极组件在垂直于电极组件的卷绕轴线的其他方向上的尺寸。
在上述技术方案中,通过将电池单体内部的电极组件的卷绕轴线与分隔梁的厚度方向垂直设置,且电极组件在分隔梁的厚度方向上的尺寸最小,也就是说,卷绕式结构的电极组件为扁平状,且电极组件的扁平区域的厚度方向与分隔梁的厚度方向一致,采用这种结构的电池能够通过分隔梁对电池单体的膨胀尺寸最大的方向起到较好的约束效果,以减少具有卷绕式结构的电极组件的电池单体出现膨胀变形的现象。
在一些实施例中,电池单体包括叠片式结构的电极组件,电极组件的层叠方向平行于分隔梁的厚度方向。
在上述技术方案中,通过将电池单体内部的电极组件的层叠方式设置为与分隔梁的厚度方向一致,采用这种结构的电池能够通过分隔梁对电池单体的膨胀尺寸最大的方向起到较好的约束效果,以缓解具有叠片式结构的电极组件的电池单体出现膨胀变形的现象。
在一些实施例中,沿分隔梁的厚度方向,电池单体的厚度为L 3,满足,5mm≤L 3≤40mm。
在一些实施例中,沿分隔梁的延伸方向,电池单体的长度为L 4,满足,400mm≤L 4≤2500mm。
在一些实施例中,电池单体为圆柱体结构,电池单体的轴线方向垂直于分隔梁的厚度方向。
在上述技术方案中,设置于电池的箱体内的电池单体为圆柱体结构,通过将电池单体的轴线方向设置为与分隔梁的厚度方向一致,也就是说,电池单体的外周面面向分隔梁设置,采用这种结构的电池能够通过分隔梁对电池单体的膨胀尺寸最大的方向起到较好的约束效果。
在一些实施例中,电池单体为多个,且多个电池单体沿分隔梁的厚度方向层叠设置。
在上述技术方案中,通过将设置于箱体内的多个电池单体沿分隔梁的厚度方向层叠设置,使得分隔梁能够对多个电池单体膨胀尺寸最大的方向进行限制,且能够实现同时对多个电池单体的膨胀进行限制的作用,从而能够缓解电池的多个电池单体出现膨胀变形的风险,有利于提升电池的使用寿命和使用安全性。
第三方面,本申请实施例还提供一种用电装置,包括上述的电池,电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构爆炸图;
图3为本申请一些实施例提供的箱体的结构示意图;
图4为图3所示的箱体的A处的局部放大图;
图5为本申请一些实施例提供的箱体的加强件的结构示意图;
图6为本申请一些实施例提供的箱体的加强件在其他实施例中的结构示意图;
图7为本申请一些实施例提供的箱体的局部剖视图;
图8为本申请又一些实施例提供的箱体的局部结构示意图;
图9为本申请又一些实施例提供的箱体的加强件的结构示意图;
图10为本申请又一些实施例提供的箱体的局部剖视图。
图标:1000-车辆;100-电池;10-箱体;11-框体;111-第一板材;112-第二板材;113-第三板材;114-第四板材;115-第五板材;12-分隔梁;13-加强件;131-空腔;132-加强筋;133-第一棱柱侧面;134-第二棱柱侧面;135-第三棱柱侧面;136-第一端面;137-第二端面;14-第一容纳空间;15-第二容纳空间;16-底板;20-电池单体;21-第一表面;30-箱盖;200-控制器;300-马达;X-第一方向;Y-分隔梁的厚度方向;Z-第二方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模块的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括外壳、电极组件和电解液,电极组件和电解液均容纳于外壳内。电极组件可以是由正极极片、负极极片和隔离膜卷绕形成的卷绕式结构,也可以是由正极极片、负极极片和隔离膜层叠形成的叠片式结构。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体的部分作为正极极耳,以通过正极极耳实现正极极片的电能输入或输出。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸 锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体的部分作为负极极耳,以通过负极极耳实现负极极片的电能输入或输出。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池具有能量密度高、环境污染小、功率密度大、使用寿命长、适应范围广、自放电系数小等突出的优点,是现今新能源发展的重要组成部分。电池通常是由箱体和层叠设置于箱体内的多个电池单体组成。但是,随着电池技术的不断发展,对电池的续航能力也提出了更高的要求,特别是在电池的能量密度和重量方面等。
发明人发现,对于一般的电池而言,层叠设置于电池的箱体内的多个电池单体在循环使用过程中会层叠方向发生膨胀现象,从而极容易导致电池单体因膨胀变形而发生起火爆炸等风险,不利于电池的使用安全和使用寿命。为了解决电池单体在循环使用过程中发生膨胀后变形的问题,在现有技术中,通常在多个电池单体在其层叠方向上的一侧设置横梁,以使多个电池单体与横梁相互抵靠,从而通过横梁能够对电池单体的膨胀起到一定的限制作用,同时采用将横梁的厚度增加或在横梁的内部设置加强筋的方式来提升横梁的结构强度,以降低横梁的发生变形的风险,进而能够有效提升横梁抵抗电池单体膨胀的能力,以降低电池单体在使用过程中因膨胀而发生变形的风险。然而,在这种结构的电池中,横梁容易出现变形的风险,使得横梁抵抗电池单体膨胀的效果较差,从而导致电池在使用过程中依旧存在较大的安全隐患,且增加横梁的厚度或在横梁的内部设置加强筋的结构均会导致电池的内部空间被占用,从而会进一步增加电池的重量,不利于提升电池的能量密度和实现电池的轻量化。
基于以上考虑,为了解决电池的使用安全性和内部空间利用率较低的问题,发明人经过深入研究,设计了一种箱体,箱体包括框体、分隔梁和加强件。框体形成容纳空间,分隔梁设置于框体内,分隔梁被配置为将容纳空间划分为第一容纳空间和第二容纳空间,第一容纳空间用于容纳电池单体。加强件设置于第二容纳空间内,加强件设置于分隔梁和框体之间,加强件被用于在分隔梁和框体之间传递力。
在这种结构的箱体中,框体的容纳空间内设置有分隔梁,分隔梁能够将容纳空间分隔为用于容纳电池单体的第一容纳空间和用于容纳电池的其他部件的第二容纳空间,使得分隔梁能够对电池单体的位移或使用过程中发生的膨胀起到限制作用。通过在第二容纳空间内设置加强件,且将加强件设置于框体与分隔梁之间,以使加强件能够为分隔梁提供支撑作用且不占用放置电池单体的空间,使得在容纳于第一容纳空间内的电池单体发生位移或膨胀时,电池单体作用于分隔梁上的力能够通过加强件传递至框体上,从而能够有效提升分隔梁在电池单体的挤压下的抗变形能力,采用这种结构的箱体一方面能够有效缓解分隔梁发生变形的现象,有利于提升分隔梁抵抗电池单体位移或膨胀的效果,以降低电池单体因位移碰撞或膨胀变形而出现起火爆炸等风险,进而能够提升具有这种箱体的电池的使用寿命和使用安全性,另一方面能够降低分隔梁对抗电池单体位移或膨胀的设计要求,也就是说,能够降低分隔梁自身的结构强度,进而能够简化分隔梁的结构设计,以减少分隔梁的重量和体积,有利于提升具有这种箱体的电池的内部空间使用率和实现电池的轻量化。
本申请实施例公开的箱体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的箱体、电池等组成该用电装置的电源系统,这样,有利于提升电池的内部空间利用率和实现电池的轻量化,从而能够有效提升电池的续航能力。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的结构爆炸图。电池100包括箱体10、电池单体20和箱盖30,电池单体20用于容纳于箱体10内,箱盖30盖合于箱体10。
其中,箱体10用于为电池单体20提供装配空间,电池100可以采用多种结构。参见图2所示,沿第一方向X,箱体10为一侧开放的空心结构,箱盖30为板状结构,箱盖30盖合于箱体10的开放侧,以使箱体10与箱盖30共同限定出用于容纳电池单体20的密闭空间。在一些实施例中,电池100还可以为其他结构,比如,电池 100包括两个箱盖30,沿第一方向X,箱体10为两侧开放的空心结构,两个箱盖30分别盖合于箱体10在第一方向X上的两侧,当然,电池100的箱体10和箱盖30也可以均为一侧开放的空心结构,箱盖30的开放侧盖合于箱体10的开放侧,以使箱体10和箱盖30共同限定出用于容纳电池单体20的密闭空间。当然,箱体10和箱盖30装配形成的电池100可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
示例性的,在图2中,多个电池单体20层叠设置于箱体10内。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。示例性的,在图2中,电池单体20为长方体结构。
根据本申请的一些实施例,参照图2,并请进一步参照图3和图4,图3为本申请一些实施例提供的箱体10的结构示意图,图4为图3所示的箱体10的A处的局部放大图。本申请提供了一种箱体10,箱体10包括框体11、分隔梁12和加强件13。框体11形成容纳空间,分隔梁12设置于框体11内,分隔梁12被配置为将容纳空间划分为第一容纳空间14和第二容纳空间15,第一容纳空间14用于容纳电池单体20。加强件13设置于第二容纳空间15内,加强件13设置于分隔梁12和框体11之间,加强件13用于在分隔梁12和框体11之间传递力。
其中,加强件13用于在分隔梁12和框体11之间传递力,即加强件13用于将电池单体20在沿分隔梁的厚度方向Y发生位移或膨胀时作用在分隔梁12上的挤压力传递至框体11上,以实现对分隔梁12的支撑作用。
箱体10还可以包括底板16,框体11围设于底板16的周围,框体11围合形成容纳空间,底板16用于支撑和放置电池单体20。在第一方向X上,框体11的一端连接于底板16,另一端围合形成用于供箱盖30盖合的开口。
在图3中,分隔梁12沿第二方向Z延伸,且分隔梁12设置于容纳空间内,使得分隔梁12将框体11的容纳空间分隔为沿分隔梁的厚度方向Y排布的第一容纳空间14和第二容纳空间15,第二容纳空间15用于容纳电池100的电池管理系统等其他电子元器件。第一方向X、分隔梁的厚度方向Y和第二方向Z两两垂直。
可选地,分隔梁12的连接方式可以是多种,可以是分隔梁12在第二方向Z上的两端均连接于框体11的结构,也可以是分隔梁12在第一方向X上的一侧与底板16相连的结构。
加强件13设置于分隔梁12和框体11之间,加强件13被配置为将电池单体20作用在分隔梁12上的膨胀力传递至框体11,也就是说,加强件13起到将支撑分隔梁12的作用,使得加强件13能够将电池单体20在使用过程中因膨胀而作用在分隔梁12上的膨胀力传递至框体11上。
其中,加强件13与分隔梁12的连接结构可以是多种,比如,在图3中,加强件13与分隔梁12相互抵接,以使加强件13能够直接对分隔梁12起到支撑效果,从而能够将电池单体20作用在分隔梁12上的膨胀力传递至框体11上。当然,在一些实施例中,加强件13也可以与分隔梁12在分隔梁的厚度方向Y上间隙设置,即加强件13与分隔梁12不抵接,使得分隔梁12在电池单体20的膨胀力作用下变形后能够抵靠于加强件13上,从而通过加强件13能够对分隔梁12起到支撑作用。
需要说明的是,框体11围合形成的结构可以是多种,比如,三角形结构、矩形结构、多边形结构或异形结构等。示例性的,在图3中,框体11由多个板材依次首尾连接形成的异形结构。
框体11的容纳空间内设置有分隔梁12,分隔梁12能够将容纳空间分隔为用于容纳电池单体20的第一容纳空间14和用于容纳电池100的其他部件的第二容纳空间15,使得分隔梁12能够对电池单体20的位移或使用过程中发生的膨胀起到限制作用。通过在第二容纳空间15内设置加强件13,且将加强件13设置于框体11与分隔梁12之间,以使加强件13能够为分隔梁12提供支撑作用且不占用放置电池单体20的空间,使得在容纳于第一容纳空间14内的电池单体20发生位移或膨胀时,电池单体20作用于分隔梁12上的力能够通过加强件13传递至框体11上,从而能够有效提升分隔梁12在电池单体20的挤压下的抗变形能力,采用这种结构的箱体10一方面能够有效缓解分隔梁12发生变形的现象,有利于提升分隔梁12抵抗电池单体20位移或膨胀的效果,以降低电池单体20因位移碰撞或膨胀变形而出现起火爆炸等风险,进而能够提升具有这种箱体10的电池100的使用寿命和使用安全性,另一方面能够降低分隔梁12对抗电池单体20位移或膨胀的设计要求,也就是说,能够降低分隔梁12自身的结构强度,进而能够简化分隔梁12的结构设计,以减少分隔梁12的重量和体积,有利于提升具有这种箱体10的电池100的内部空间使用率和实现电池100的轻量化。
在一些实施例中,参照图4,并请进一步参照图5,图5为本申请一些实施例提供的箱体10的加强件13的结构示意图。加强件13的内部形成有空腔131。
示例性的,空腔131沿第一方向X贯穿加强件13的两端。当然,在其他实施例中,空腔131也可以形成于加强件13的内部,即空腔131没有贯穿加强件13,同样的,空腔131还可以沿分隔件的厚度方向贯穿加强件13的两端。
通过在加强件13的内部设置空腔131,使得加强件13在对分隔梁12起到力的传递作用的同时能够减轻自身的重量,实现加强件13的轻量化,从而有利于减少箱体10的整体重量。
在一些实施例中,请参照图6,图6为本申请一些实施例提供的箱体10的加强件13在其他实施例中的结构示意图。空腔131内设置有加强筋132,加强筋132连接于空腔131的腔壁面。
其中,设置于空腔131内的加强筋132可以是一个,也可以是多个。示例性的,在图6中,设置于空腔131内的加强筋132为三个,且三个加强筋132的一端相互连接,另一端均连接于空腔131的腔壁面。当然,在其他实施例中,设置于空腔131内的加强筋132也可以为一个、两个、四个或五个等。
通过在加强件13的内部设置与空腔131的腔壁面相互连接的加强筋132,从而在实现加强件13轻量化的同时有利于提升加强件13的结构强度,有利于降低加强件13在使用过程中出现变形或损坏的风险,以保证加强件13对分隔梁12的支撑效果。
根据本申请的一些实施例,加强件13采用挤出成型的工艺制成。挤出成型工艺的具有制造方式可以参见相关技术,在此不再赘述。
需要说明的是,在其他实施例中,加强件13也可以采用冲压、铸造等工艺制成。
通过挤出成型的工艺对加强件13进行生产制造便于加强件13的成型,有利于降低加强件13的制造难度,且有利于提升加强件13的力学性能,以对电池单体20作用在分隔梁12上的力进行有效传递。
根据本申请的一些实施例,请参见图3和图4所示,箱体10还包括底板16,框体11围设于底板16的周围,加强件13与框体11、分隔梁12和底板16中的至少一者固定连接。
其中,加强件13与框体11、分隔梁12和底板16中的至少一者固定连接,即加强件13可以是与框体11、分隔梁12和底板16三者中的一者连接、也可以是与框体11、分隔梁12和底板16三者中的两者连接,还可以是与框体11、分隔梁12和底板16均连接。
箱体10还设置有底板16,且框体11围设于底板16的周围,使得底板16能够对容纳于第一容纳空间14的电池单体20起到较好的支撑作用。此外,通过将加强件13与框体11、分隔梁12和底板16中的至少一者固定连接,有利于提升加强件13的结构稳定性,从而能够有效提升加强件13对电池单体20作用在分隔梁12上的力的传递效果。
根据本申请的一些实施例,参见图4所示,加强件13的两侧分别抵接并固定连接于框体11和分隔梁12。
可选地,加强件13固定连接于框体11和分隔梁12的方式可以是多种。比如,焊接、粘接或螺栓螺接等。示例性的,在本申请实施例中,加强件13的两侧分别焊接于框体11和分隔梁12。
通过将加强件13的两侧分别与框体11和分隔梁12固定连接,从而一方面能够有效提升加强件13设置于框体11与分隔梁12之间的连接可靠性,以降低加强件13在后期使用过程中出现脱落的风险,另一方面能够有效提升加强件13对分隔梁12的支撑效果,有利于保证加强件13对电池单体20作用在分隔梁12上的力的传递效果,进而能够进一步提升分隔梁12的抗变形能力。
在一些实施例中,加强件13为金属材质制成,框体11具有连接部,连接部用于与加强件13焊接,连接部为金属材质制成。
其中,框体11具有连接部,即框体11用于与加强件13相互焊接的区域为连接部。
示例性的,加强件13和连接部的材质可以是钢、铁、铝或铜等。
通过将框体11用于与加强件13相连的连接部与加强件13相互焊接,有利于提升加强件13与框体11之间的连接稳定性和可靠性,且便于加强件13对电池单体20的力进行传递。
在一些实施例中,加强件13为金属材质制成,分隔梁12具有连接壁,连接壁用于与加强件13焊接,连接壁为金属材质制成。
其中,分隔梁12具有连接壁,即分隔梁12用于与加强件13相互焊接的壁面为连接壁。
示例性的,加强件13和连接壁的材质可以是钢、铁、铝或铜等。
通过将分隔梁12用于与加强件13相连的连接壁与加强件13相互焊接,有利于提升加强件13与分隔梁12之间的连接稳定性和可靠性,且能够有效提高加强件13对分隔梁12的支撑效果,以提升分隔梁12对抗电池单体20位移或膨胀的能力。
根据本申请的一些实施例,参见图4所示,加强件13的两侧分别焊接于框体11和分隔梁12,加强件13、框体11和分隔梁12均为同种金属材质制成。
示例性的,加强件13、框体11和分隔梁12的材质可以是均为钢、铁、铝或铜等。
通过将加强件13的两侧分别与框体11与分隔梁12焊接,有利于进一步提升加强件13连接于框体11与分隔梁12之间的连接牢固性,一方面能够进一步降低加强件13在使用过程中出现脱落的风险,另一方面便于加强件13将电池单体20作用在分隔梁12上的力传递至框体11上。
根据本申请的一些实施例,请参见图3和图4,框体11包括第一板材111,第一板材111用于与加强件13相连,第一板材111与分隔梁12成锐角设置。
其中,框体11由多个板材依次首尾连接围合而成的结构,第一板材111为框体11用于与加强件13相互连接的板材。
示例性的,在图3中,框体11可以包括两个第一板材111,两个第一板材111沿第二方向Z相对设置,且两个第一板材111均与分隔梁12成锐角设置,且在分隔梁的厚度方向Y上,每个第一板材111均与分隔梁12之间设置有一个加强件13,从而有利于进一步提升分隔梁12对抗电池单体20膨胀的能力。
在一些实施例中,参见图3所示,框体11还可以包括两个第二板材112、第三板材113、两个第四板材114和第五板材115。两个第二板材112沿第二方向Z相对设置,两个第四板材114沿第二方向Z相对设置,第三板材113和第五板材115沿分隔梁的厚度方向Y相对设置。一个第一板材111、一个第二板材112、第三板材113、另一个第二板材112、另一个第一板材111、一个第四板材114、第五板材115和另一个第四板材114依次首尾连接围合形成框体11。其中,分隔梁12在第二方向Z上的两端分别连接于两个第二板材112,第三板材113在第二方向Z上的长度大于第五板材115在第二方向Z上的长度,以使框体11在第一板材111所在的位置形成缩颈区域。
当然,在其他实施例中,框体11的结构还可以是多种。比如,框体11也可以不包括两个第四板材114,两个第一板材111分别连接于第五板材115在第二方向Z上的两端,使得分隔梁12、第五板材115和两个第一板材111围合形成梯形结构的第二容纳空间15。同样的,框体11还可以不包括第五板材115和两个第四板材114,两个第一板材111的一端相互连接,另一端分别连接于两个第二板材112,以使分隔梁12和两个第一板材111围合形成三角形结构的第二容纳空间15。
框体11具有与加强件13相连的第一板材111,通过将第一板材111与分隔梁12成锐角设置,以使箱体10在第一板材111的位置形成缩颈区域,且使得分隔梁12与第一板材111之间形成三角形区域,从而一方面有利于节省箱体10的占用空间,另一方面通过将加强件13设置于第一板材111与分隔梁12之间,即加强件13设置于第一板材111与分隔梁12之间形成的三角形区域内,进而能够提升第一板材111、加强件13和分隔梁12三者之间的结构稳定性,且有利于优化加强件13的尺寸大小,以降低箱体10的制造成本。
根据本申请的一些实施例,参见图4所示,加强件13为棱柱结构,第一板材111与分隔梁12分别连接于加强件13不同的棱柱侧面上。
其中,棱柱侧面为在加强件13的周向上,相邻的两个棱之间形成的表面。
可选地,加强件13可以是直棱柱结构,也可以是斜棱柱结构。当然,加强件13的侧棱也可以是三个、四个、五个或六个等。示例性的,在图4中,加强件13为直三棱柱结构。
通过将加强件13设置为棱柱结构,且将第一板材111和分隔梁12分别连接在加强件13不同的棱柱侧面上,采用这种结构的箱体10一方面便于加强件13将电池单体20作用在分隔梁12上的力传递至与分隔梁12成锐角设置的第一板材111上,另一方面能够提升加强件13的结构强度,以降低加强件13在传递电池单体20的力的过程中出现变形的风险,从而能够保证加强件13对电池单体20的力的传递效果。
在一些实施例中,参照图4和图5,并请进一步参照图7,图7为本申请一些实施例提供的箱体10的局部剖视图。加强件13为直三棱柱结构,加强件13包括首尾依次相连的第一棱柱侧面133、第二棱柱侧面134和第三棱柱侧面135,第一棱柱侧面133用于与第一板材111相连,第二棱柱侧面134用于与分隔梁12相连。其中,第一棱柱侧面133的表面积和第二棱柱侧面134的表面积均大于第三棱柱侧面135的表面积。
其中,加强件13包括首尾依次相连的第一棱柱侧面133、第二棱柱侧面134和第三棱柱侧面135,即第一棱柱侧面133、第二棱柱侧面134和第三棱柱侧面135围合形成加强件13的外周面。第一棱柱侧面133与第一板材111面向第二容纳空间15的表面相连,第二棱柱侧面134与分隔梁12面向第二容纳空间15的表面相连。
示例性的,在图7中,第一棱柱侧面133与第一板材111面向第二容纳空间15的表面相互贴合,第二棱柱侧面134与分隔梁12面向第二容纳空间15的表面相互贴合。
通过将加强件13设置为直三棱柱结构,且将加强件13的棱柱侧面中面积较大的第一棱柱侧面133和第二棱柱侧面134分别与第一板材111和分隔梁12相连,从而有利于增加加强件13与第一板材111和分隔梁12之间的接触面积,以提升第一板材111、加强件13与分隔梁12三者之间的结构稳定性,进而便于分隔梁12通过加强 件13将电池单体20产生的力传递至框体11的第一板材111上,有利于提升分隔梁12对电池单体20位移或膨胀的抵抗效果。
根据本申请的一些实施例,加强件13被配置为分别与第一板材111和分隔梁12焊接并形成第一焊缝和第二焊缝,第一焊缝沿第一棱柱侧面133的至少部分外边缘延伸,第二焊缝沿第二棱柱侧面134的至少部分外边缘延伸。
其中,第一焊缝沿第一棱柱侧面133的至少部分外边缘延伸,即加强件13的第一棱柱侧面133的至少部分外边缘与第一板材111相互焊接形成第一焊缝。
第二焊缝沿第二棱柱侧面134的至少部分外边缘延伸,即加强件13的第二棱柱侧面134的至少部分外边缘与分隔梁12相互焊接形成第二焊缝。
需要说明的是,在其他实施例中,第一板材111与加强件13的第一棱柱侧面133以及分隔梁12与加强件13的第二棱柱侧面134也可以采用粘接的方式相连。
通过将加强件13与第一板材111相互焊接并形成第一焊缝,且第一焊缝沿加强件13的第一棱柱侧面133的至少部分外边缘延伸,采用这种焊接结构有利于降低加强件13与第一板材111之间的焊接难度,且能够保证第一板材111与加强件13之间的焊接强度。同样的,通过将加强件13与分隔梁12相互焊接并形成第二焊缝,且第二焊缝沿加强件13的第二棱柱侧面134的至少部分外边缘延伸,采用这种焊接结构有利于降低加强件13与分隔梁12间的焊接难度,且能够保证分隔梁12与加强件13之间的焊接强度。
在加强件13为棱柱结构的实施例中,参见图4和图5所示,加强件13的内部形成有沿第一方向X贯穿加强件13的两端的空腔131,第一方向X平行于加强件13的侧棱。
其中,加强件13的内部形成有沿第一方向X贯穿加强件13的两端的空腔131,即空腔131沿加强件13的侧棱的延伸方向贯穿加强件13的两端。
通过在加强件13的内部设置沿第一方向X延伸的空腔131,也就是说,加强件13被空腔131贯穿的表面与加强件13用于分别与第一板材111和分隔梁12相互连接的表面不同,从而在保证加强件13与第一板材111和分隔梁12的接触面积的同时能够减轻加强件13的重量,以减少箱体10的整体重量。
根据本申请的一些实施例,请参照图8、图9和图10,图8为本申请又一些实施例提供的箱体10的局部结构示意图,图9为本申请又一些实施例提供的箱体10的加强件13的结构示意图,图10为本申请又一些实施例提供的箱体10的局部剖视图。加强件13的延伸方向平行于分隔梁的厚度方向Y,且加强件13的两端分别连接于第一板材111和分隔梁12。
其中,加强件13的延伸方向平行于分隔梁的厚度方向Y,即加强件13与分隔梁12相互垂直。
在一些实施例中,参见图9和图10所示,沿分隔梁的厚度方向Y,加强件13的两端分别形成有第一端面136和第二端面137,第一端面136与第一板材111面向第二容纳空间15的表面相互贴合,第二端面137与分隔梁12面向第二容纳空间15的表面相互贴合。采用这种结构的加强件13一方面能够增加加强件13与第一板材111和分隔梁12之间的接触面积,以提升箱体10的整体结构稳定性,另一方面有利于分隔梁12通过加强件13将电池单体20膨胀产生的膨胀力传递至第一板材111上。
通过将加强件13的延伸方向设置为与分隔梁的厚度方向Y相互平行,也就是说,加强件13为与分隔梁12相互垂直设置的结构,采用这种结构的箱体10能够提升加强件13对分隔梁12的支撑效果,以便于加强件13将电池单体20作用在分隔梁12上的力传递至第一板材111上,从而有利于提升分隔梁12的抗变形能力。
在一些实施例中,请参见图9和图10所示,加强件13的内部形成有沿分隔梁的厚度方向Y贯穿加强件13的两端的空腔131。
在上述描述中,空腔131在分隔梁的厚度方向Y上分别贯穿加强件13的两端,即空腔131沿分隔梁的厚度方向Y延伸,且空腔131的两端分别贯穿第一端面136和第二端面137。
通过在加强件13的内部设置沿分隔梁的厚度方向Y延伸贯穿加强件13的两端的空腔131,也就是说,空腔131的延伸方向与加强件13的延伸方向一致,使得加强件13为空腔131的横截面与分隔梁12相互连接,采用这种结构的加强件13一方面能够降低加强件13的自身重量,以实现箱体10的轻量化,另一方面有利于加强件13将分隔梁12受到的电池单体20的力传递至第一板材111上,且能够有效降低加强件13出现变形的现象。
根据本申请的一些实施例,参见图3所示,沿分隔梁的厚度方向Y,框体11的长度为L 1,满足,900mm≤L 1≤2800mm。
其中,框体11的长度为L 1,即框体11在分隔梁的厚度方向Y上的最大尺寸在900mm到2800mm之间。
示例性的,框体11在分隔梁的厚度方向Y上的长度可以为900mm、1000mm、1200mm、1500mm、2000mm、2500mm或2800mm等。
根据本申请的一些实施例,请继续参见图3所示,分隔梁12的长度为L 2,满足,500mm≤L 2≤1700mm。
其中,分隔梁12沿第二方向Z延伸,分隔梁12的长度为L 2,即分隔梁12在第二方向Z上的最大尺寸在500mm到1700mm之间。
示例性的,分隔梁12在第二方向Z上的长度可以为500mm、600mm、800mm、1000mm、1200mm、1500mm或1700mm等。
根据本申请的一些实施例,参见图2和图3所示,本申请实施例还提供了一种电池100,电池100包括电池单体20和以上任一方案的箱体10,电池单体20容纳于第一容纳空间14内。
在一些实施例中,沿分隔梁的厚度方向Y,加强件13的投影与电池单体20的投影的至少部分重合。
其中,加强件13的投影与电池单体20的投影的至少部分重合,即在分隔梁的厚度方向Y上,加强件13与电池单体20的至少部分相互重叠。
通过将加强件13在分隔梁的厚度方向Y上的投影设置为与电池单体20的投影的至少部分重合,使得加强件13在分隔梁的厚度方向Y上与电池单体20的至少部分对应设置,以使加强件13能够对分隔梁12供电池单体20位移或膨胀抵靠的区域进行支撑和加强,从而有利于进一步提升分隔梁12对抗电池单体20位移或膨胀的效果,且便于加强件13将电池单体20作用在分隔梁12上的力传递至框体11上,进而有利于缓解分隔梁12出现变形的现象。
根据本申请的一些实施例,参见图2所示,电池单体20为长方体结构,电池单体20具有第一表面21,第一表面21为电池单体20的外表面中面积最大的面,第一表面21面向分隔梁12设置。
其中,第一表面21为电池单体20的外表面中面积最大的面,第一表面21面向分隔梁12设置,即电池单体20的厚度方向与分隔梁的厚度方向Y相同。
通过将电池单体20的外表面中面积最大的第一表面21面向分隔梁12设置,即电池单体20在使用过程中膨胀尺寸最大的表面对分隔梁12面向设置,从而通过分隔梁12能够对电池单体20的膨胀起到较好的约束效果,以降低电池单体20在使用过程中因膨胀变形过大而出现起火爆炸等风险。
在一些实施例中,电池单体20包括卷绕式结构的电极组件,电极组件的卷绕轴线垂直于分隔梁的厚度方向Y,且电极组件在分隔梁的厚度方向Y上的尺寸小于电极组件在垂直于电极组件的卷绕轴线的其他方向上的尺寸。
其中,电池单体20的电极组件容纳于电池单体20的外壳内,卷绕式结构的电极组件即为电极组件是由正极极片、负极极片和隔离膜卷绕形成的卷绕式结构。卷绕式结构的电极组件的具体结构可参见相关技术,在此不再赘述。
电极组件在分隔梁的厚度方向Y上的尺寸小于电极组件在垂直于电极组件的卷绕轴线的其他方向上的尺寸,即卷绕式结构的电极组件的形状为扁平状,且电极组件的扁平区域的厚度方向与分隔梁的厚度方向Y一致。
通过将电池单体20内部的电极组件的卷绕轴线与分隔梁的厚度方向Y垂直设置,且电极组件在分隔梁的厚度方向Y上的尺寸最小,采用这种结构的电池100能够通过分隔梁12对电池单体20的膨胀尺寸最大的方向起到较好的约束效果,以减少具有卷绕式结构的电极组件的电池单体20出现膨胀变形的现象。
在一些实施例中,电池单体20包括叠片式结构的电极组件,电极组件的层叠方向平行于分隔梁的厚度方向Y。
其中,叠片式结构的电极组件即为电极组件是由正极极片、负极极片和隔离膜层叠形成的叠片式结构。叠片式结构的电极组件的具体结构可参见相关技术,在此不再赘述。
电极组件的层叠方向平行于分隔梁的厚度方向Y,也就是说,电极组件的正极极片、负极极片和隔离膜沿分隔梁的厚度方向Y依次层叠设置。
通过将电池单体20内部的电极组件的层叠方式设置为与分隔梁的厚度方向Y一致,采用这种结构的电池100能够通过分隔梁12对电池单体20的膨胀尺寸最大的方向起到较好的约束效果,以缓解具有叠片式结构的电极组件的电池单体20出现膨胀变形的现象。
在电池单体20为长方体结构的实施例中,沿分隔梁的厚度方向Y,电池单体20的厚度为L 3,满足,5mm≤L 3≤40mm。
其中,由于电池单体20的第一表面21面向分隔梁12设置,也就是说,电池单体20的厚度方向与分隔梁的厚度方向Y一致,电池单体20的厚度为L 3,即电池单体20在分隔梁的厚度方向Y上的尺寸在5mm到40mm之间。
示例性的,在分隔梁的厚度方向Y上,电池单体20的厚度可以为5mm、8mm、10mm、20mm、25mm、30mm 或40mm等。
在一些实施例中,沿分隔梁12的延伸方向,电池单体20的长度为L 4,满足,400mm≤L 4≤2500mm。
其中,由于分隔梁12沿第二方向Z延伸,也就是说,分隔梁12的延伸方向即为第二方向Z,电池单体20的长度为L 4,即电池单体20在第二方向Z上的最大尺寸在400mm到2500mm之间。
示例性的,电池单体20在第二方向Z上的长度可以为400mm、500mm、600mm、700mm、1000mm、1500mm、2000mm或2500mm等。
根据本申请的一些实施例,电池单体20还可以为圆柱体结构,电池单体20的轴线方向垂直于分隔梁的厚度方向Y。
其中,电池单体20的轴线方向垂直于分隔梁的厚度方向Y,即电池单体20的延伸方向为垂直于分隔梁的厚度方向Y的第一方向X。
设置于电池100的箱体10内的电池单体20为圆柱体结构,通过将电池单体20的轴线方向设置为与分隔梁的厚度方向Y一致,也就是说,电池单体20的外周面面向分隔梁12设置,采用这种结构的电池100能够通过分隔梁12对电池单体20的膨胀尺寸最大的方向起到较好的约束效果。
根据本申请的一些实施例,参见图2所示,电池单体20为多个,且多个电池单体20沿分隔梁的厚度方向Y层叠设置。
示例性的,电池100包括沿第二方向Z排布的两排电池单体20,每排电池单体20包括沿分隔梁的厚度方向Y层叠设置的多个电池单体20。当然,在其他实施例中,电池100也可以只包括一排电池单体20,还可以是包括沿第二方向Z排布的三排电池单体20、四排电池单体20或五排电池单体20等。
通过将设置于箱体10内的多个电池单体20沿分隔梁的厚度方向Y层叠设置,使得分隔梁12能够对多个电池单体20膨胀尺寸最大的方向进行限制,且能够实现同时对多个电池单体20的膨胀进行限制的作用,从而能够缓解电池100的多个电池单体20出现膨胀变形的风险,有利于提升电池100的使用寿命和使用安全性。
根据本申请的一些实施例,本申请实施例还提供了一种用电装置,包括以上任一方案的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池100的设备或系统。
根据本申请的一些实施例,参见图2至图5以及图7所示,本申请提供了一种箱体10,箱体10包括框体11、分隔梁12、加强件13和底板16。框体11围设于底板16的周围,框体11的内部形成有容纳空间。分隔梁12设置于框体11内,分隔梁12沿第二方向Z延伸,且分隔梁12的两端分别连接于框体11,分隔梁12被配置为将容纳空间划分为沿分隔梁的厚度方向Y排布的第一容纳空间14和第二容纳空间15,第一容纳空间14用于容纳电池单体20,框体11具有与分隔梁12成锐角设置的第一板材111。加强件13设置于第二容纳空间15内,加强件13为直三棱柱结构,加强件13包括首尾依次相连的第一棱柱侧面133、第二棱柱侧面134和第三棱柱侧面135,第一棱柱侧面133与第一板材111面向第二容纳空间15的表面相互焊接,第二棱柱侧面134与分隔梁12面向第二容纳空间15的表面相互焊接,第一棱柱侧面133的表面积和第二棱柱侧面134的表面积均大于第三棱柱侧面135的表面积。其中,加强件13的内部形成有沿第一方向X贯穿加强件13的两端的空腔131,第一方向X平行于加强件13的侧棱。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种箱体,包括:
    框体,形成容纳空间;
    分隔梁,设置于所述框体内,所述分隔梁被配置为将所述容纳空间划分为第一容纳空间和第二容纳空间,所述第一容纳空间用于容纳电池单体;以及
    加强件,设置于所述第二容纳空间内,所述加强件设置于所述分隔梁和所述框体之间,所述加强件用于在所述分隔梁和所述框体之间传递力。
  2. 根据权利要求1所述的箱体,其中,所述加强件的内部形成有空腔。
  3. 根据权利要求2所述的箱体,其中,所述空腔内设置有加强筋,所述加强筋连接于所述空腔的腔壁面。
  4. 根据权利要求1-3任一项所述的箱体,其中,所述加强件采用挤出成型的工艺制成。
  5. 根据权利要求1-4任一项所述的箱体,其中,所述箱体还包括底板,所述框体围设于所述底板的周围,所述加强件与所述框体、所述分隔梁和所述底板中的至少一者固定连接。
  6. 根据权利要求1-5任一项所述的箱体,其中,所述加强件的两侧分别抵接并固定连接于所述框体和所述分隔梁。
  7. 根据权利要求6所述的箱体,其中,所述加强件为金属材质制成,所述框体具有连接部,所述连接部用于与所述加强件焊接,所述连接部为金属材质制成。
  8. 根据权利要求6所述的箱体,其中,所述加强件为金属材质制成,所述分隔梁具有连接壁,所述连接壁用于与所述加强件焊接,所述连接壁为金属材质制成。
  9. 根据权利要求6-8任一项所述的箱体,其中,所述加强件的两侧分别焊接于所述框体和所述分隔梁,所述加强件、所述框体和所述分隔梁均为同种金属材质制成。
  10. 根据权利要求1-9任一项所述的箱体,其中,所述框体包括第一板材,所述第一板材用于与所述加强件相连,所述第一板材与所述分隔梁成锐角设置。
  11. 根据权利要求10所述的箱体,其中,所述加强件为棱柱结构,所述第一板材与所述分隔梁分别连接于所述加强件不同的棱柱侧面上。
  12. 根据权利要求11所述的箱体,其中,所述加强件为直三棱柱结构,所述加强件包括首尾依次相连的第一棱柱侧面、第二棱柱侧面和第三棱柱侧面,所述第一棱柱侧面用于与所述第一板材相连,所述第二棱柱侧面用于与所述分隔梁相连;
    其中,所述第一棱柱侧面的表面积和所述第二棱柱侧面的表面积均大于所述第三棱柱侧面的表面积。
  13. 根据权利要求12所述的箱体,其中,所述加强件被配置为分别与所述第一板材和所述分隔梁焊接并形成第一焊缝和第二焊缝,所述第一焊缝沿所述第一棱柱侧面的至少部分外边缘延伸,所述第二焊缝沿所述第二棱柱侧面的至少部分外边缘延伸。
  14. 根据权利要求11-13任一项所述的箱体,其中,所述加强件的内部形成有沿第一方向贯穿所述加强件的两端的空腔,所述第一方向平行于所述加强件的侧棱。
  15. 根据权利要求10所述的箱体,其中,所述加强件的延伸方向平行于所述分隔梁的厚度方向,且所述加强件的两端分别连接于所述第一板材和所述分隔梁。
  16. 根据权利要求15所述的箱体,其中,所述加强件的内部形成有沿所述分隔梁的厚度方向贯穿所述加强件的两端的空腔。
  17. 根据权利要求1-16任一项所述的箱体,其中,沿所述分隔梁的厚度方向,所述框体的长度为L 1,满足,900mm≤L 1≤2800mm。
  18. 根据权利要求1-17任一项所述的箱体,其中,所述分隔梁的长度为L 2,满足,500mm≤L 2≤1700mm。
  19. 一种电池,包括:
    如权利要求1-18任一项所述的箱体;以及
    电池单体,容纳于所述第一容纳空间内。
  20. 根据权利要求19所述的电池,其中,沿所述分隔梁的厚度方向,所述加强件的投影与所述电池单体的投影的至少部分重合。
  21. 根据权利要求19或20所述的电池,其中,所述电池单体为长方体结构,所述电池单体具有第一表面,所述第一表面为所述电池单体的外表面中面积最大的面,所述第一表面面向所述分隔梁设置。
  22. 根据权利要求19-21任一项所述的电池,其中,所述电池单体包括卷绕式结构的电极组件,所述电极组件的卷绕轴线垂直于所述分隔梁的厚度方向,且所述电极组件在所述分隔梁的厚度方向上的尺寸小于所述电极组件在垂直于所述电极组件的卷绕轴线的其他方向上的尺寸。
  23. 根据权利要求19-21任一项所述的电池,其中,所述电池单体包括叠片式结构的电极组件,所述电极组件的层叠方向平行于所述分隔梁的厚度方向。
  24. 根据权利要求21-23任一项所述的电池,其中,沿所述分隔梁的厚度方向,所述电池单体的厚度为L 3,满足,5mm≤L 3≤40mm。
  25. 根据权利要求21-24任一项所述的电池,其中,沿所述分隔梁的延伸方向,所述电池单体的长度为L 4,满足,400mm≤L 4≤2500mm。
  26. 根据权利要求19或20所述的电池,其中,所述电池单体为圆柱体结构,所述电池单体的轴线方向垂直于所述分隔梁的厚度方向。
  27. 根据权利要求19-26任一项所述的电池,其中,所述电池单体为多个,且多个所述电池单体沿所述分隔梁的厚度方向层叠设置。
  28. 一种用电装置,包括如权利要求19-27任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/115918 2022-08-30 2022-08-30 箱体、电池及用电装置 WO2024044980A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115918 WO2024044980A1 (zh) 2022-08-30 2022-08-30 箱体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115918 WO2024044980A1 (zh) 2022-08-30 2022-08-30 箱体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024044980A1 true WO2024044980A1 (zh) 2024-03-07

Family

ID=90100186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115918 WO2024044980A1 (zh) 2022-08-30 2022-08-30 箱体、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024044980A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209658262U (zh) * 2019-03-19 2019-11-19 宁波吉利汽车研究开发有限公司 一种电池包
CN216389566U (zh) * 2021-08-09 2022-04-26 长城汽车股份有限公司 一种电池包下箱体及具有其的电池包和汽车
CN216450704U (zh) * 2021-12-13 2022-05-06 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电设备
CN216928800U (zh) * 2022-01-29 2022-07-08 欣旺达电动汽车电池有限公司 箱体及电池包

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209658262U (zh) * 2019-03-19 2019-11-19 宁波吉利汽车研究开发有限公司 一种电池包
CN216389566U (zh) * 2021-08-09 2022-04-26 长城汽车股份有限公司 一种电池包下箱体及具有其的电池包和汽车
CN216450704U (zh) * 2021-12-13 2022-05-06 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电设备
CN216928800U (zh) * 2022-01-29 2022-07-08 欣旺达电动汽车电池有限公司 箱体及电池包

Similar Documents

Publication Publication Date Title
JP7428811B2 (ja) 電池セル、電池及び電力消費装置
EP4362171A1 (en) Battery cooling structure, battery, and power consuming device
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
WO2023134479A1 (zh) 电池和用电设备
WO2022199152A1 (zh) 电极组件、电池单体、电池以及用电设备
WO2023004833A1 (zh) 电池单体、电池、用电装置及制备电池单体的方法和设备
US20230411761A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2024036752A1 (zh) 电极组件、电池单体、电池及用电装置
US20220246993A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2024044980A1 (zh) 箱体、电池及用电装置
WO2022170492A1 (zh) 电池、用电装置、制备电池的方法和设备
EP4163992A1 (en) Battery cell, battery, electric device, and method and device for manufacturing battery cell
WO2024065205A1 (zh) 电池单体、电池及用电装置
CN218414824U (zh) 箱体、电池及用电装置
WO2023230880A1 (zh) 电池单体、电池以及用电装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024031254A1 (zh) 电极组件、电池单体、电池及用电装置
WO2024036487A1 (zh) 电池及用电装置
CN220895734U (zh) 电池单体、电池、用电设备及储能装置
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置
EP4060783A1 (en) Electrode assembly, battery cell, battery, and electrode assembly manufacturing method and device
WO2024044883A1 (zh) 电极组件、电池单体、电池及用电装置
WO2024109411A1 (zh) 电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956812

Country of ref document: EP

Kind code of ref document: A1