WO2024044964A1 - 显示基板及其制作方法、以及显示装置 - Google Patents

显示基板及其制作方法、以及显示装置 Download PDF

Info

Publication number
WO2024044964A1
WO2024044964A1 PCT/CN2022/115829 CN2022115829W WO2024044964A1 WO 2024044964 A1 WO2024044964 A1 WO 2024044964A1 CN 2022115829 W CN2022115829 W CN 2022115829W WO 2024044964 A1 WO2024044964 A1 WO 2024044964A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
base substrate
electrode
light
Prior art date
Application number
PCT/CN2022/115829
Other languages
English (en)
French (fr)
Inventor
柳菲
金鑫
范磊
李良云
任秦博
范春芳
刘莹
张微
郭晓亮
邓雷
史诺
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/115829 priority Critical patent/WO2024044964A1/zh
Priority to CN202280002911.0A priority patent/CN117981496A/zh
Publication of WO2024044964A1 publication Critical patent/WO2024044964A1/zh

Links

Images

Definitions

  • Embodiments of the present disclosure relate to a display substrate, a manufacturing method thereof, and a display device.
  • Isolating some of the material layers used for light emission between adjacent sub-pixels can reduce signal crosstalk, so as to meet the high brightness and low temperature requirements of the display device. Power consumption performance requirements.
  • Embodiments of the present disclosure provide a display substrate and a display device.
  • An embodiment of the present disclosure provides a display substrate, including a base substrate and a plurality of sub-pixels located on the base substrate.
  • the base substrate at least includes a first area; a plurality of sub-pixels are located in the first area on the base substrate, each sub-pixel in at least part of the sub-pixels includes a light-emitting element, the light-emitting element includes a light-emitting functional layer and a light-emitting element along a direction perpendicular to the
  • the direction of the base substrate is located at the first electrode and the second electrode on both sides of the light-emitting functional layer.
  • the first electrode is located between the light-emitting functional layer and the base substrate.
  • the light-emitting functional layer includes a plurality of film layer.
  • the display substrate further includes a defining structure, at least one defining structure is provided between at least two adjacent sub-pixels, and a surface of the defining structure located between the adjacent sub-pixels close to the substrate substrate is on the The first orthographic projection on the base substrate is completely located within the second orthographic projection on the side surface of the defining structure away from the base substrate, along the arrangement direction of the light-emitting areas of the adjacent sub-pixels.
  • the maximum size of the second orthographic projection is greater than the maximum size of the first orthographic projection
  • the defining structure includes an inorganic non-metallic material; in at least part of the first region, the light-emitting functional layer At least one layer is interrupted at the edge of the defining structure, and the second electrodes of adjacent sub-pixels are at least partially continuously arranged.
  • the second electrode is continuously provided at an edge of the defining structure.
  • the second electrode of at least one sub-pixel and the second electrode of a sub-pixel adjacent thereto in the first sub-direction are continuously arranged, and the second electrode of the at least one sub-pixel The second electrode is disconnected from the second electrode of the sub-pixel adjacent to it in the second sub-direction, and the first sub-direction and the second sub-direction intersect; and/or, all of the sub-pixels of at least one sub-pixel are arranged apart from each other.
  • the second electrode and the second electrode of the sub-pixel adjacent to it in the first sub-direction are continuously arranged, and the second electrode of the at least one sub-pixel and the sub-pixel adjacent to it in the second sub-direction
  • the second electrodes are continuously arranged, and the first sub-direction and the second sub-direction intersect.
  • the defining structure surrounds more than 50% of the outline of at least one sub-pixel.
  • the second electrode of at least one sub-pixel and the second electrode of an adjacent sub-pixel are continuously arranged, and the second electrode between the two adjacent sub-pixels is The minimum width of the two electrodes in the direction perpendicular to their arrangement is greater than 1 micron.
  • the orthographic projection of the center connection line of the two adjacent sub-pixels on the plane where the second electrode is located is located within the second electrode.
  • the outline of the at least partially defining structure is the same as the outline of the light-emitting area of the sub-pixel surrounded by the at least partially defining structure
  • the different defining structures are the same as the outline of the light-emitting area surrounded by the different defining structures.
  • the ratio of the spacing between edges of the light-emitting areas of the sub-pixels that are close to each other is 0.9 to 1.1.
  • the cross-sectional shape of the defining structure taken by the plane where the central connection line is located includes a first trapezoid, and the length of the first trapezoid away from the first base of the base substrate is greater than The first trapezoid is close to the length of the second bottom edge of the base substrate, and the plane is perpendicular to the base substrate.
  • an included angle between at least part of at least one side of the first trapezoid and the second base is 110 to 150 degrees.
  • the thickness of the defining structure ranges from 300 to 550 angstroms.
  • the display substrate further includes: a first insulating layer located between the defining structure and the base substrate.
  • the first insulating layer is in surface contact with the side of the defining structure facing the base substrate, and the first insulating layer is located between the first electrode and the Between the substrate substrates, the material of the first insulating layer includes organic materials.
  • the first insulating layer includes a protrusion in contact with a surface of the defining structure, and the first orthographic projection is completely located at an orthographic projection of the protrusion on the base substrate.
  • a distance between an edge of the protrusion and an orthographic projection of an edge of the defining structure away from a side surface of the base substrate on the base substrate is less than 0.5 microns.
  • the surface of the first electrode is in contact with the surface of the first insulating layer, and the first electrode is between a surface on a side away from the base substrate and the base substrate.
  • the distance is less than the distance between the side surface of the defining structure away from the base substrate and the base substrate.
  • the display substrate further includes: a pixel defining pattern located on a side of the first electrode away from the base substrate, and at least the pixel defining pattern located in the first area includes a plurality of A first opening, one sub-pixel corresponds to at least one first opening, the light-emitting element of the sub-pixel is at least partially located in the first opening corresponding to the sub-pixel, and the first opening is configured to expose the first electrode .
  • the pixel defining pattern further includes a second opening, at least a portion of the defining structure is exposed by the second opening.
  • At least one layer of the light-emitting functional layer is disconnected at at least part of an edge of the defining structure exposed by the second opening, and the second electrode is formed on an edge of the defining structure. Continuous setting at this edge.
  • At least one film layer of the light-emitting functional layer includes a charge generation layer
  • the light-emitting functional layer includes a stacked first light-emitting layer, the charge generation layer, and a second light-emitting layer
  • the charge generation layer is located between the first light emitting layer and the second light emitting layer, and the charge generation layer is disconnected at an edge of the defining structure.
  • the plurality of sub-pixels include a plurality of first color sub-pixels, a plurality of second color sub-pixels and a plurality of third color sub-pixels
  • the defining structure includes a plurality of first annular defining structure, the first annular defining structure surrounds at least one sub-pixel among the plurality of first color sub-pixels, the plurality of second color sub-pixels and the plurality of third color sub-pixels.
  • each sub-pixel in at least some of the sub-pixels further includes a pixel circuit
  • the first electrode of the light-emitting element of at least one sub-pixel includes a body electrode and a connection electrode, and is perpendicular to the base substrate.
  • the main body electrode overlaps the light-emitting area of the light-emitting element
  • the connection electrode does not overlap the light-emitting area of the light-emitting element.
  • the pixel circuit is electrically connected to the connection electrode, surrounding the
  • the first annular defining structure of at least one sub-pixel includes a gap, and the first annular defining structure does not overlap the connecting electrode in a direction perpendicular to the base substrate.
  • the display substrate further includes: a second insulating layer located between the defining structure and the base substrate.
  • the base substrate further includes a second area, the first area is located around the second area; the second insulating layer includes at least one annular insulating portion surrounding the second area, and the defining structure further It includes a second annular defining structure in contact with the surface of the annular insulating portion away from the base substrate, the second insulating layer is located on the side of the first insulating layer facing the base substrate, and the third
  • the material of the two insulating layers includes inorganic non-metallic materials, and the material of the second insulating layer is different from the material of the defining structure.
  • the light-emitting functional layer and the second electrode are both located on the second annular defining structure. Broken at the edge.
  • the cross-section of the second annular defining structure includes a second trapezoid, the length of the second trapezoid away from the base of the substrate is greater than the length of the second trapezoid close to the substrate. The length of the bottom edge of the base plate.
  • an orthographic projection of the second annular defining structure on the base substrate is located within an orthographic projection of the annular insulating portion on the base substrate.
  • a ratio of a size of the first trapezoid in a direction perpendicular to the base substrate to a size of the second trapezoid in a direction perpendicular to the base substrate is 0.8 to 1.2
  • the angle between the waist of the first trapezoid and the second bottom is the same as the angle between the waist of the second trapezoid and the bottom of the second trapezoid close to the substrate side.
  • the angle ratio is 0.8 ⁇ 1.2.
  • a display substrate including a base substrate and a plurality of sub-pixels located on the base substrate.
  • the base substrate at least includes a first area; the plurality of sub-pixels are located in the first area on the base substrate, each of at least some of the sub-pixels includes a light-emitting element, and the light-emitting element includes a light-emitting functional layer; A first electrode and a second electrode located on both sides of the light-emitting functional layer in a direction perpendicular to the base substrate, the first electrode is located between the light-emitting functional layer and the base substrate, the light-emitting functional layer
  • the functional layer includes multiple film layers.
  • the display substrate further includes a defining structure, at least one defining structure is provided between at least two adjacent sub-pixels, the plurality of sub-pixels include a first sub-pixel, a second sub-pixel and a third sub-pixel, the second Both the subpixel and the third subpixel are adjacent to the first subpixel, and the defining structure provided between the first subpixel and the second subpixel is in the arrangement direction of the two subpixels.
  • the maximum size is the first size
  • the maximum size of the defining structure provided between the first sub-pixel and the third sub-pixel in the arrangement direction of the two sub-pixels is the second size
  • the first The size is different from the second size.
  • the plurality of sub-pixels are arranged in an array along a first direction and a second direction, and molecular pixels in the plurality of sub-pixels are arranged in an array along a third direction and a fourth direction.
  • One direction is perpendicular to the second direction, the third direction is perpendicular to the fourth direction, and the first direction intersects the third direction; arranged along the first direction or the second direction
  • the maximum size of the defining structure between two adjacent sub-pixels in the arrangement direction of the two sub-pixels is a third size, and between two adjacent sub-pixels arranged along the third direction or the fourth direction
  • the maximum size of the defining structure in the arrangement direction of the two sub-pixels is a fourth size, and the third size is smaller than the fourth size.
  • the plurality of sub-pixels include a plurality of green sub-pixels, a plurality of blue sub-pixels and a plurality of red sub-pixels, and the defining structure provided between two adjacent green sub-pixels is
  • the maximum size of the two green sub-pixels in the arrangement direction is greater than the maximum size of the defining structure provided between other adjacent sub-pixels in the arrangement direction of the adjacent sub-pixels.
  • each sub-pixel in at least some of the sub-pixels further includes a pixel circuit
  • the first electrode of the light-emitting element of at least one sub-pixel includes a body electrode and a connection electrode, and is perpendicular to the base substrate.
  • the main body electrode overlaps the light-emitting area of the light-emitting element, and the connection electrode does not overlap the light-emitting area of the light-emitting element, and the pixel circuit is electrically connected to the connection electrode; the third In at least part of a region, at least one of the light-emitting functional layers is disconnected at the edge of the defining structure, and at least part of the second electrode is continuously arranged at a position overlapping with the connection electrode. .
  • the defining structure does not overlap at least part of the connection electrode in a direction perpendicular to the base substrate.
  • the second electrode in at least some of the sub-pixels includes a planar structure or a mesh structure.
  • Another embodiment of the present disclosure provides a display device, including any of the above display substrates.
  • Another embodiment of the present disclosure provides a method for manufacturing a display substrate, which includes: providing a base substrate; forming an inorganic non-metallic material layer on the base substrate; and placing the inorganic non-metallic material layer away from the base substrate.
  • a shielding structure is formed on one side of The gas etches the defined pattern to form a defined structure; a plurality of sub-pixels are formed in at least a first area of the base substrate.
  • At least one defining structure is provided between at least two adjacent sub-pixels, and each of at least some of the sub-pixels includes a light-emitting element. Forming the light-emitting element includes sequentially forming a stacked arrangement in a direction perpendicular to the base substrate.
  • a first electrode, a light-emitting functional layer and a second electrode the first electrode is located between the second electrode and the base substrate, the light-emitting functional layer includes a plurality of film layers; located between adjacent sub-pixels The first orthographic projection of the side surface of the defining structure close to the base substrate on the base substrate is completely located on the side surface of the defining structure away from the base substrate on the base substrate.
  • the maximum size of the second orthographic projection is greater than the maximum size of the first orthographic projection; at least in part of the first area , at least one of the light-emitting functional layers is disconnected at the edge of the defining structure, and the second electrode is continuously provided at the edge of the defining structure.
  • the cross-sectional shape of the defining pattern taken by the plane where the center line is located includes a rectangle
  • the cross-sectional shape of the defining structure taken by the plane includes a first trapezoid
  • the third The length of the bottom edge of a trapezoid away from the base substrate is greater than the length of the bottom edge of the first trapezoid close to the base substrate, and the plane is perpendicular to the base substrate.
  • the manufacturing method further includes: removing the blocking structure.
  • the manufacturing method before forming the inorganic non-metallic material layer, further includes: forming a first insulating layer on the base substrate, wherein a part of the first region , the inorganic non-metallic material layer is formed on the surface of the first insulating layer; before forming the first insulating layer, the manufacturing method further includes: forming a second insulating layer on the base substrate , wherein in another part of the first region, the inorganic non-metallic material layer is formed on the surface of the second insulating layer, and the first gas is used to etch the inorganic non-metallic material layer to form Defining the pattern includes simultaneously etching the inorganic non-metallic material layer on the first insulating layer and the inorganic non-metallic material layer on the second insulating layer to form the defined pattern; using a second gas to Etching the defined pattern to form the defined structure includes simultaneously etching the defined pattern on the first insulating layer and the defined pattern on the second
  • FIG. 1 is a plan view of a display substrate according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of the sub-pixels and defining structures of the local area A11 shown in FIG. 1 .
  • Figure 3 is a partial cross-sectional structural diagram taken along BB' shown in Figure 2.
  • FIG. 4A is an enlarged view of area C shown in FIG. 3 .
  • Figure 4B is an enlarged view of area C shown in Figure 3 in a different example.
  • FIG. 5 is a partial cross-sectional structural diagram of a display substrate according to another example of an embodiment of the present disclosure.
  • 6 and 7A are partial planar structural diagrams of a display substrate provided according to different examples of embodiments of the present disclosure.
  • FIG. 7B is a schematic plan view of a second electrode covering a defining structure according to an embodiment of the present disclosure.
  • Figure 8 is a partial cross-sectional structural diagram taken along line DD' shown in Figure 2.
  • Figure 9A is a partial cross-sectional structural diagram taken along line EE' shown in Figure 1.
  • FIG. 9B is a partial cross-sectional structural diagram of the first region close to the second region provided according to an example of an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram of a display device according to another embodiment of the present disclosure.
  • 11A to 11E are schematic process flow diagrams of a method for manufacturing a partial region of a display substrate according to an embodiment of the present disclosure.
  • 12A to 12C are schematic process flow diagrams of a method for manufacturing another partial area of a display substrate according to an embodiment of the present disclosure.
  • Characteristics such as “parallel”, “perpendicular” and “identical” used in the embodiments of the present disclosure include “parallel”, “perpendicular”, “identical” and other characteristics in the strict sense, as well as “approximately parallel”, “approximately perpendicular”, “Substantially the same” and the like, including certain errors, mean what is acceptable for a particular value as determined by one of ordinary skill in the art, taking into account the errors in the measurement and associated with the measurement of the particular quantity (e.g., limitations of the measurement system). within the deviation range. For example, “approximately” can mean within one or more standard deviations, or within 10% or 5% of the stated value.
  • the quantity of a component is not specified in the following embodiments of the present disclosure, it means that the component can be one or more, or it can be understood as at least one. "At least one" means one or more, and “plurality” means at least two.
  • the light-emitting functional layer of the light-emitting element can include a multi-layer light-emitting layer arranged in a stack, and a charge generation layer (CGL) is provided between at least two of the multi-layer light-emitting layers.
  • the conductivity of the layer is relatively large.
  • the charge generation layer is a full-surface film layer
  • the charge generation layers of two adjacent light-emitting elements are continuous film layers, which easily causes crosstalk between adjacent sub-pixels, resulting in color shift on the display substrate.
  • the charge generation layer can easily cause crosstalk between sub-pixels of different colors under low brightness, resulting in low-grayscale color casts.
  • Embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device.
  • the display substrate includes: a base substrate and a plurality of sub-pixels located on the base substrate.
  • the base substrate at least includes a first area; a plurality of sub-pixels are located in the first area, and each sub-pixel in at least part of the sub-pixels includes a light-emitting element.
  • the light-emitting element includes a light-emitting functional layer and is located on both sides of the light-emitting functional layer in a direction perpendicular to the base substrate.
  • the first electrode and the second electrode are located between the light-emitting functional layer and the base substrate.
  • the light-emitting functional layer includes a plurality of film layers.
  • the display substrate also includes a defining structure. At least one defining structure is provided between at least two adjacent sub-pixels. The surface of the defining structure between the adjacent sub-pixels close to the substrate substrate is on the first front surface of the substrate substrate. The projection is completely located within the second orthographic projection on the side surface of the defining structure away from the substrate substrate on the substrate substrate. Along the arrangement direction of the light-emitting areas of the adjacent sub-pixels, the maximum size of the second orthographic projection is larger than that of the first orthographic projection.
  • the maximum size, and the defining structure includes inorganic non-metallic materials; in at least part of the first region, at least one of the light-emitting functional layers is disconnected at the edge of the defining structure, and at least part of the second electrode of the adjacent sub-pixel Continuous setting.
  • the defined structure provided in the display substrate provided by the present disclosure realizes the continuous arrangement of the second electrode while isolating at least one layer of the light-emitting functional layer, which can reduce the crosstalk generated between adjacent sub-pixels while avoiding the second electrode due to the second electrode. Brightness uniformity problems caused by large area breakage of electrodes.
  • Embodiments of the present disclosure provide a display substrate, which includes a base substrate and a plurality of sub-pixels located on the base substrate.
  • the base substrate at least includes a first area; a plurality of sub-pixels located in the first area on the base substrate, each sub-pixel in at least part of the sub-pixels includes a light-emitting element, the light-emitting element includes a light-emitting functional layer and a light-emitting element along a line perpendicular to
  • the direction of the base substrate is located at the first electrode and the second electrode on both sides of the light-emitting functional layer.
  • the first electrode is located between the light-emitting functional layer and the base substrate.
  • the light-emitting functional layer includes Multiple film layers.
  • the display substrate further includes a defining structure, at least one defining structure is provided between at least two adjacent sub-pixels, the plurality of sub-pixels include a first sub-pixel, a second sub-pixel and a third sub-pixel, the second Both the subpixel and the third subpixel are adjacent to the first subpixel, and the defining structure provided between the first subpixel and the second subpixel is in the arrangement direction of the two subpixels.
  • the maximum size is the first size
  • the maximum size of the defining structure provided between the first sub-pixel and the third sub-pixel in the arrangement direction of the two sub-pixels is the second size
  • the first The size is different from the second size.
  • Embodiments of the present disclosure can improve the matching of the arrangement relationship between the limiting structure and the sub-pixels and improve the conduction effect of the second electrode by setting the size of the limiting structure provided between different adjacent sub-pixels.
  • Figure 1 is a plan view of a display substrate according to an embodiment of the present disclosure.
  • Figure 2 is a schematic diagram of the sub-pixels and defining structures of the local area A11 shown in Figure 1.
  • Figure 3 is a partial cross-sectional structure taken along BB' shown in Figure 2 Schematic diagram.
  • the display substrate includes a base substrate 01 , and the base substrate 01 includes at least a first area A1 .
  • the display substrate includes a plurality of sub-pixels 10 located on a base substrate 01 , and the plurality of sub-pixels 10 are located in the first area A1 .
  • Each of at least some of the sub-pixels 10 includes a light-emitting element 100
  • the light-emitting element 100 includes a light-emitting functional layer 130 and a first electrode 110 and a second electrode located on both sides of the light-emitting functional layer 130 in a direction perpendicular to the base substrate 01 120.
  • the first electrode 110 is located between the light-emitting functional layer 130 and the base substrate 01.
  • the light-emitting functional layer 130 includes a plurality of film layers.
  • the light-emitting functional layer 130 includes a charge generation layer 133 .
  • the light-emitting element 100 may be an organic light-emitting element.
  • each sub-pixel located in the display area includes a light-emitting element.
  • the display substrate further includes a defining structure 300 .
  • At least one defining structure 300 is provided between at least two adjacent sub-pixels 10 .
  • the defining structure 300 is located close to the adjacent sub-pixels 10 .
  • the first orthographic projection 301 of the side surface of the base substrate 01 on the base substrate 01 is completely located within the second orthographic projection 302 of the side surface of the defining structure 300 away from the base substrate 01 on the base substrate 01 .
  • the maximum size S2 of the second orthographic projection 302 is larger than the maximum size S1 of the first orthographic projection 301.
  • the arrangement direction of the light-emitting areas of the above-mentioned adjacent sub-pixels may be a direction parallel to the center connection line of the sub-pixels 10, such as the V direction, U direction, X direction, or Z direction as shown in FIG. 2 .
  • a defining structure 300 is provided between any adjacent sub-pixels 10 .
  • the defining structure 300 includes inorganic non-metallic materials.
  • the material defining structure 300 may include any one or more of silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON).
  • At least one layer of the light-emitting functional layer 130 is disconnected at the edge of the defining structure 300 , and the second electrode 120 is formed at the edge of the defining structure 300 . Continuous setting.
  • the edge of the defining structure provided in the display substrate provided by the present disclosure isolates at least one layer of the light-emitting functional layer
  • the continuous arrangement of the second electrode located at the edge of the defining structure can reduce the interference between adjacent sub-pixels. While crosstalk, avoid brightness uniformity problems caused by large-area breakage of the second electrode. For example, after the second electrode is cut off in a large area in the display area, the VSS signal voltage drop will increase, causing brightness uniformity problems.
  • the above-mentioned defining structure may refer to a structure used to define the distribution of at least one film layer of the light-emitting functional layer.
  • at least one film layer of the light-emitting functional layer is disconnected at its edge, and the second electrode is continuously provided at the edge. .
  • Adjacent sub-pixels in any embodiment of the present disclosure means that no other sub-pixels 10 are disposed between two sub-pixels 10 .
  • the light-emitting functional layer 130 may include a stacked first light-emitting layer (EML) 131 , a charge generation layer (CGL) 133 , and a second light-emitting layer (EML) 132 .
  • the charge generation layer 133 is located on the first light-emitting layer. between the light-emitting layer 131 and the second light-emitting layer 132.
  • the charge generation layer has strong conductivity, which allows the light-emitting functional layer to have the advantages of long life, low power consumption, and high brightness.
  • the sub-pixel has the light-emitting function. Placing a charge generation layer in the layer can nearly double the luminous brightness.
  • the light-emitting elements 100 of the same sub-pixel 10 can be tandem light-emitting elements, such as Tandem OLED.
  • the charge generation layer 133 may include an N-type charge generation layer and a P-type charge generation layer.
  • the light-emitting functional layer 130 may also include a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (ETL), and an electron injection layer (EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer and the charge generation layer 133 are all common film layers of multiple sub-pixels 10 and can be called common layers.
  • at least one film layer in the light-emitting functional layer 130 that is disconnected at the edge defining the structure 300 may be at least one film layer in the above-mentioned common layer.
  • the common layer and the second electrode may be film layers formed using an open mask.
  • the second light-emitting layer 132 may be located between the first light-emitting layer 131 and the second electrode 120, and the hole injection layer may be located between the first electrode 110 and the first light-emitting layer 131.
  • an electron transport layer may be provided between the charge generation layer 133 and the first light emitting layer 131 .
  • a hole transport layer may be provided between the second light emitting layer 132 and the charge generation layer 133 .
  • an electron transport layer and an electron injection layer may be provided between the second light emitting layer 132 and the second electrode 120 .
  • the first luminescent layer 131 and the second luminescent layer 132 may be luminescent layers that emit light of the same color.
  • the first light-emitting layer 131 in the sub-pixel 10 that emits light of different colors emits light of different colors.
  • the second light-emitting layer 132 in the sub-pixel 10 that emits light of different colors emits light of different colors.
  • the embodiments of the present disclosure are not limited to this.
  • the first luminescent layer 131 and the second luminescent layer 132 may be luminescent layers that emit light of different colors.
  • the light-emitting layer can mix the light emitted by the multi-layer light-emitting layers included in the sub-pixel 10 into white light, and adjust the color of the light emitted by each sub-pixel by providing a color filter layer.
  • the first light emitting layers 131 of adjacent sub-pixels 10 may overlap on the defining structure 300 .
  • the second light-emitting layers 132 of adjacent sub-pixels 10 may overlap on the defining structure 300 . But it is not limited thereto.
  • the first luminescent layers 131 of adjacent sub-pixels 10 can be spaced apart on the defining structure 300, and the second luminescent layers 132 of adjacent sub-pixels 10 can be spaced apart on the defining structure 300; or, define Only the first luminescent layer 131 of one of the adjacent sub-pixels 10 may be disposed on the structure 300 , and only the second luminescent layer 132 of one of the adjacent sub-pixels 10 may be disposed on the defining structure 300 .
  • the light-emitting layers located on the same side of the charge generation layer 133 can be spaced apart from each other, or can overlap or connect at the interval between the two sub-pixels 10 . This is not limited in the embodiment of the present disclosure. .
  • the material of the electron transport layer may include aromatic heterocyclic compounds, such as benzimidazole derivatives, imidazopyridine derivatives, benziimidazophenanthridine derivatives and other imidazole derivatives; pyrimidine derivatives, triazine derivatives, etc. Azine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, and other compounds containing a nitrogen-containing six-membered ring structure (including compounds having a phosphine oxide-based substituent on the heterocyclic ring), etc.
  • aromatic heterocyclic compounds such as benzimidazole derivatives, imidazopyridine derivatives, benziimidazophenanthridine derivatives and other imidazole derivatives; pyrimidine derivatives, triazine derivatives, etc. Azine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, and other compounds containing a nitrogen-containing six-membered ring structure (including compounds having
  • the material of the charge generation layer 133 may be a material containing a phosphorus oxygen group or a material containing a triazine.
  • the ratio of the electron mobility of the material of the charge generation layer 133 to the electron mobility of the electron transport layer is 10 -2 to 10 2 .
  • At least one layer of the light-emitting functional layer 130 may be a charge generation layer 133 .
  • the orthographic projection of the charge generation layer 133 on the first charge generation layer on the base substrate 01 is continuous, and is vertical to the substrate.
  • the orthographic projection of the second charge generation layer on the plane of the base substrate 01 is discontinuous.
  • the charge generation layer 133 may include a portion on the defining structure 300 and a portion not on the defining structure 300 , the two portions being disconnected at an edge of the defining structure 300 .
  • the front projections of the first charge generation layer of the two parts on the base substrate 01 may be connected or overlapped, and the front projection of the first charge generation layer may be continuous.
  • the orthographic projection of the second charge generation layer on the plane perpendicular to the base substrate (the plane where the BB' line and the Y direction is located) of the two parts is discontinuous. of.
  • the light-emitting functional layer 130 includes at least one light-emitting layer
  • the film layers interrupted at the defining structure 300 in the light-emitting functional layer 130 include at least one light-emitting layer and at least one other film layer
  • the area of the orthographic projection of at least one other film layer that is opened on the base substrate 01 is greater than the orthogonal projection area of the at least one luminescent layer that is disconnected on the base substrate 01; or, the area of the orthogonal projection of at least one other layer of film that is disconnected is greater than the area of the orthogonal projection of at least one other layer of the luminescent layer that is disconnected on the base substrate 01; or, the area of the at least one other layer that is disconnected is The area of the portion of the layer that defines the structure 300 is larger than the area of the portion of the disconnected at least one luminescent layer that covers the portion of the structure 300 .
  • the second electrode 120 in the plurality of sub-pixels 10 may be a common electrode shared by the plurality of sub-pixels 10 .
  • the second electrode 120 For the entire film layer.
  • At least one of the plurality of film layers included in the second electrode 120 and the light-emitting functional layer 130 overlaps with the orthographic projection of the defining structure 300 on the base substrate 01 .
  • At least one layer of the plurality of film layers included in the light-emitting functional layer 130 at least partially covers a portion of the side surface of the defining structure 300 .
  • the thickness of the portion where the second electrode 120 and the defining structure 300 overlap in the direction perpendicular to the base substrate 01 is smaller than the thickness of at least the portion where the second electrode 120 and the defining structure 300 do not overlap, and the charge generation layer 133 and the defining structure 300 are not overlapped.
  • the thickness of the portion of the structure 300 that overlaps in the direction perpendicular to the base substrate 01 is smaller than the thickness of at least a portion of the charge generation layer 133 that does not overlap with the defining structure 300 .
  • the thickness of the portion of the second electrode 120 located at the center of the defining structure 300 is greater than the thickness of the portion of the second electrode 200 located at the edge of the defining structure 300, and the thickness of the portion of the charge generation layer 133 located at the center of the defining structure 300 is greater than the thickness of the portion of the charge generation layer 133 located at the edge of the defining structure 300.
  • the thickness of the portion of the edge of structure 300 is greater than the thickness of the edge.
  • the thickness of the middle portion of the charge generation layer 133 located on the defining structure 300 is greater than the thickness of the edge.
  • FIG. 3 schematically shows that all the film layers included in the light-emitting functional layer 130 are disconnected at the edge of the defining structure 300, and the second electrode 120 is not disconnected at the edge of the defining structure 300.
  • the thickness of the defining structure can be set so that part of the film layer on the side of the light-emitting functional layer close to the substrate is disconnected at the edge of the defining structure, and the light-emitting functional layer is far away from the substrate.
  • Part of the film layer on one side of the substrate is not disconnected at the edge of the defining structure.
  • the film layer on the side of the charge generation layer away from the substrate substrate is not disconnected.
  • the charge generation layer and its film layer on the side close to the substrate substrate are not disconnected.
  • the second electrode is not disconnected at the edges defining the structure.
  • the first electrode 110 may be an anode
  • the second electrode 120 may be a cathode.
  • the cathode may be formed from a material with high conductivity and low work function.
  • the cathode may be made of a metallic material.
  • the anode may be formed from a transparent conductive material with a high work function.
  • the first orthographic projection 301 and the second orthographic projection 302 may have the same shape.
  • the distance between the first edge on one side of the first orthographic projection 301 and the second edge closer to the first edge in the second orthographic projection 302 is the same as the distance between the first edge of the first orthographic projection 301 and the second edge of the second orthographic projection 302 .
  • the ratio of the distance between the first edge on the other side of the projection 301 and the second edge closer to the first edge in the second orthographic projection 302 may be 0.7 ⁇ 1.5.
  • the ratio of the distances between the two first edges and the corresponding two second edges may be 0.8 ⁇ 1.3.
  • the ratio of the distances between the two first edges and the corresponding two second edges may be 0.9 ⁇ 1.4.
  • the ratio of the distances between the two first edges and the corresponding two second edges may be 0.95 ⁇ 1.2.
  • the ratio of the distances between the two first edges and the corresponding two second edges may be 1 ⁇ 1.1.
  • the cross-sectional shape of the defining structure 300 cut by the plane where the center line lies includes a first trapezoid 310 , and the length of the first trapezoid 310 away from the first bottom edge 311 of the substrate 01 is greater than the first trapezoid 310 .
  • a trapezoid 310 is close to the length of the second bottom edge 312 of the base substrate 01 , and the plane is perpendicular to the base substrate 01 , such as the VY plane as shown in FIG. 3 . But it is not limited to this, the plane can also be a UY plane, an XY plane, etc.
  • the thickness of definition structure 300 is 300-550 angstroms.
  • the thickness of the definition structure 300 is 320-530 Angstroms.
  • the thickness of the definition structure 300 is 350-400 Angstroms.
  • the thickness of the definition structure 300 is 330-420 Angstroms.
  • the thickness of the definition structure 300 is 360-450 Angstroms.
  • the thickness of the definition structure 300 is 380-500 Angstroms.
  • the thickness of the definition structure 300 is 480-520 Angstroms.
  • the ratio of the thickness of the definition structure 300 to the thickness of the light-emitting functional layer 130 is 0.7 ⁇ 1.5.
  • the ratio of the thickness of the defining structure 300 to the thickness of the light-emitting functional layer 130 is 0.8 ⁇ 1.2.
  • the ratio of the thickness of the defining structure 300 to the thickness of the light-emitting functional layer 130 is 0.9 ⁇ 1.1.
  • the angle between the waist of the first trapezoid 310 and the second bottom edge 312 is 110 to 150 degrees.
  • the angle between the waist of the first trapezoid 310 and the second bottom edge 312 is 115 to 130 degrees.
  • the angle between the waist of the first trapezoid 310 and the second base 312 is 112 to 140 degrees.
  • the angle between the waist of the first trapezoid 310 and the second bottom edge 312 is 120 to 148 degrees.
  • the angle between the waist of the first trapezoid 310 and the second bottom edge 312 is 118 to 135 degrees.
  • the angle between the waist of the first trapezoid 310 and the second bottom edge 312 is 122 to 145 degrees.
  • the angle between the waist of the first trapezoid 310 and the second bottom edge 312 is 135 to 146 degrees.
  • the ratio of the lengths of the two waists of the first trapezoid 310 is 0.9 ⁇ 1.1.
  • the two waists of the first trapezoid 310 have the same length.
  • the first bottom edge 311 is a section line cut by the VY plane on the surface of the limiting structure 300 away from the base substrate 01
  • the second bottom edge 312 is a section line where the limiting structure 200 faces the base substrate.
  • the 01 side surface is a section line cut by the VY plane
  • the waist is a section line taken by the VY plane of the side wall of the limiting structure 300 .
  • the side walls of the limiting structure 300 are inclined side walls, and the inclined side walls are inclined away from the center of the limiting structure.
  • the first trapezoid in the embodiment of the present disclosure includes a standard trapezoid and a rough trapezoid.
  • the waist, first base and second base of the standard trapezoid are all straight sides.
  • the waist, first base and second base of the rough trapezoid are all straight sides.
  • At least one of the edges is a curved edge.
  • the waist of the first trapezoid is a curved edge
  • the curved edge may be bent toward the midpoint of the first base, or may be bent away from the midpoint of the first base.
  • the angle between the waist and the second base may be between the intersection of the waist and the second base, the line connecting the intersection of the waist and the first base, and a straight line parallel to the substrate. angle.
  • the display substrate provided by the present disclosure sets the shape, thickness and side wall inclination angle of the defining structure to achieve continuous arrangement of the second electrode while isolating at least one layer of the light-emitting functional layer, which is beneficial to reducing the cost of adjacent sub-layers. While crosstalk between pixels is eliminated, brightness uniformity problems caused by breakage of the second electrode are avoided.
  • the display substrate further includes: a first insulating layer 200 located between the defining structure 300 and the base substrate 01 .
  • the first insulating layer 200 is in surface contact with the side of the defining structure 300 facing the base substrate 01, and the first insulating layer 200 is located between the first electrode 110 and the base substrate 01.
  • the material of layer 200 includes organic materials.
  • the first insulating layer 200 includes a planarization (PLN) layer.
  • PPN planarization
  • FIG. 4A is an enlarged view of area C shown in FIG. 3 .
  • the first insulating layer 200 includes a protrusion 210 in contact with the surface of the defining structure 300 , and the first orthographic projection of the defining structure 300 is completely located on the substrate substrate 01 within the orthographic projection.
  • Figure 4B is an enlarged view of area C shown in Figure 3 in a different example.
  • the difference between the limiting structure 300 shown in Figure 4B and the limiting structure 300 shown in Figure 4A is that the edges of the limiting structure 300 shown in Figure 4B are rounded.
  • the protrusion 210 included in the first insulating layer 200 is only located under the defining structure 300 , and the protrusion 210 is not provided at other locations, such as the protrusion 210 is not provided at the position of the light-emitting area of the light-emitting element. , such as the protrusion is not provided at the first electrode position of the light-emitting element, or the protrusion is not provided at the pixel defining portion (described later) of the pixel defining pattern.
  • the maximum dimension of the surface of the defining structure 300 close to the base substrate 01 in a direction parallel to the base substrate 01 is smaller than the maximum dimension of the protrusion 210 in this direction.
  • the length of the second bottom edge 312 of the defining structure 300 is smaller than the size of the protrusion 210 in a direction parallel to the second bottom edge 312 .
  • the ratio of the dimensions of the two spaces between the two ends of the second bottom edge 312 and the two ends of the protrusion 210 may be 0.8 ⁇ 1.2, or 0.9 ⁇ 1.1, or 1. .
  • the second bottom edge 312 may be located in the middle area of the protrusion 210 .
  • the edge of the protrusion 210 is flush with the edge of the surface of the defining structure 300 away from the base substrate 01 .
  • a straight line extending in a direction perpendicular to the base substrate 01 passes through the edge of the protrusion 210 and the edge of the side surface of the defining structure 300 away from the base substrate 01 .
  • the second orthographic projection completely coincides with the orthographic projection of the protrusion 210 on the base substrate 01 .
  • the thickness of the protrusions 210 may range from 200 to 550 angstroms.
  • the thickness of protrusion 210 may be less than the thickness of defining structure 300 .
  • the light-emitting functional layer 113 covers the sidewalls of the protrusion 210 .
  • the light-emitting functional layer 113 covers the surface of the protrusion 210 on the side away from the base substrate 01 .
  • the process may be adjusted during the formation of the defining structure 300 so that the thickness of the protrusion 210 is as small as possible.
  • the shape of the cross section of the protrusion 210 taken perpendicular to the VY plane of the base substrate 01 may be a rectangle.
  • the surface of the first electrode 110 is in contact with the surface of the first insulating layer 200 , and the distance between the surface of the first electrode 110 away from the base substrate 01 and the base substrate 01 is less than The distance between the surface of one side of the structure 300 away from the base substrate 01 and the base substrate 01 is defined.
  • the defining structure 300 and the first electrode 110 are both located on the first insulating layer 200 , and the defining structure 300 is spaced apart from the first electrode 110 .
  • the display substrate further includes a pixel defining pattern 400 located on a side of the first electrode 110 away from the base substrate 01 , and at least the pixel defining pattern 400 located in the first area A1 includes a plurality of pixel defining patterns 400 .
  • a first opening 410, one sub-pixel 10 corresponds to at least one first opening 410, the light-emitting element 100 of the sub-pixel 10 is at least partially located in the first opening 410 corresponding to the sub-pixel 10, and the first opening 410 is configured to expose the first opening 410.
  • the first opening 410 exposes a portion of the first electrode 110 .
  • one sub-pixel 10 may correspond to one first opening 410.
  • the first electrode 110 and the second electrode 120 located on both sides of the light-emitting functional layer 130 can drive the first opening.
  • the light-emitting functional layer 130 in step 410 emits light.
  • the above-mentioned light-emitting area may refer to an area where a sub-pixel effectively emits light
  • the shape of the light-emitting area refers to a two-dimensional shape.
  • the shape of the light-emitting area may be the same as the shape of the first opening 410 of the pixel defining pattern 400 .
  • the pixel defining pattern 400 includes a pixel defining portion 401 surrounding the first opening 410 .
  • the material of the pixel defining portion 401 may include polyimide, acrylic, polyethylene terephthalate, or the like.
  • the pixel defining pattern 400 further includes a second opening 420 by which at least a portion of the defining structure 300 is exposed.
  • the defining structure 300 is located in the second opening 420 , such as the defining structure 300 is completely exposed by the second opening 420 .
  • a gap is provided between the defining structure 300 and the pixel defining portion 401 of the pixel defining pattern 400.
  • At least one layer of the light-emitting functional layer 130 is interrupted at at least part of the edge of the defining structure 300 exposed by the second opening 420 , and the second electrode 120 is continuously disposed at the edge.
  • the size of the first opening 410 may be smaller than the size of the second opening 420 .
  • the size of the second opening can be set according to product requirements.
  • the thickness of the defining structure 300 is smaller than the thickness of the pixel defining portion 401 .
  • the protrusion 210 is located within the second opening 420 .
  • the protrusion 210 is completely located within the second opening 420 .
  • a spacer may be provided on the side of the pixel defining portion 401 of the pixel defining pattern 400 away from the base substrate 01 , and the spacer may be configured to support an evaporation mask for producing a light-emitting layer.
  • FIG. 3 to FIG. 4A schematically show that one defining structure 300 is provided between adjacent sub-pixels 10 , but it is not limited thereto. Two or more defining structures may be provided between adjacent sub-pixels 10 . The number of defining structures is set according to the distance between adjacent sub-pixels and the size of the defining structures.
  • a limiting structure 300 is provided between two adjacent sub-pixels 10, and the ratio of the distance between the limiting structure 300 and the light-emitting areas of the two sub-pixels 10 can be 0.8 to 1.1, or 0.9 to 1.
  • spacers and thin film encapsulation layers may be provided on the side of the pixel defining pattern 400 away from the base substrate 01 .
  • a color filter layer may be provided on the side of the pixel defining pattern 400 away from the base substrate 01 .
  • FIG. 5 is a partial cross-sectional structural diagram of a display substrate according to another example of an embodiment of the present disclosure.
  • the difference between the display substrate shown in FIG. 5 and the display substrate shown in FIGS. 3 to 4A is that the second opening 420 shown in FIG. 5 only exposes part of the defining structure 300 , and the part defining the structure 300 is covered by the pixel defining part 401 .
  • the defining structure The edge of the portion of the structure 300 exposed by the second opening 420 is used to disconnect at least one layer of the light-emitting functional layer 130 , and the second electrode 120 is continuously provided at the edge of the defining structure 300 exposed by the second opening 420 .
  • a plurality of defining structures may be disposed between adjacent sub-pixels, and at least one defining structure is exposed by the second opening, for example, a portion of at least one defining structure is covered by the pixel defining portion.
  • the plurality of sub-pixels 10 include a plurality of first color sub-pixels 101 , a plurality of second color sub-pixels 102 and a plurality of third color sub-pixels 103 .
  • first color sub-pixel 101 and the third color sub-pixel 103 emits red light, and the other emits blue light; the second color sub-pixel 102 emits green light.
  • Figure 12 schematically shows that the first color sub-pixel 101 emits red light and is a red sub-pixel; the third color sub-pixel 103 emits blue light and is a blue sub-pixel; the second color sub-pixel 102 emits green light and is a green sub-pixel. pixels.
  • a plurality of first color sub-pixels 101 and a plurality of third color sub-pixels 103 are alternately arranged along both the X direction and the Z direction parallel to the base substrate 01 to form a plurality of first pixel rows and A plurality of first pixel columns
  • a plurality of second color sub-pixels 102 are arranged in arrays along the X direction and the Z direction to form a plurality of second pixel rows and a plurality of second pixel columns
  • a plurality of first pixel rows and a plurality of The second pixel rows are alternately arranged along the Z direction and are staggered from each other in the X direction.
  • the plurality of first pixel columns and the plurality of second pixel columns are alternately arranged along the X direction and are staggered from each other in the Z direction.
  • the defining structure 300 includes a plurality of first annular defining structures 320 surrounding a plurality of first color sub-pixels 101 , a plurality of second color sub-pixels 102 and a plurality of At least one sub-pixel 10 among the third color sub-pixels 103.
  • each of at least one of the first color sub-pixel 101 , the second color sub-pixel 102 and the third color sub-pixel 103 is defined by a first ring-shaped structure 320 around.
  • the sub-pixels 10 arranged along the V direction may share a part of the first annular defining structure 320.
  • the sub-pixels 10 arranged along the U direction may share a part of the first annular defining structure 32 .
  • the two first annular defining structures 320 corresponding to two adjacent sub-pixels 10 arranged along the X direction may be an integrated structure or may be arranged at intervals.
  • the two first annular defining structures 320 corresponding to two adjacent sub-pixels 10 arranged along the Z direction may be an integrated structure or may be arranged at intervals.
  • At least one first annular defining structure 320 may be a closed annular structure.
  • at least one first annular defining structure 320 may be a non-closed annular structure.
  • part of the first annular defining structure 320 may be a closed annular structure, and another part of the first annular defining structure 320 may be a non-closed annular structure.
  • all first annular defining structures 320 may be closed annular structures.
  • all first annular defining structures 320 may be non-closed annular structures.
  • the first annular defining structure 320 having an unclosed annular structure may include at least one notch 321 .
  • the first annular defining structure 320 may include one notch 321, or two notches 321, or three notches 321.
  • the number of notches 321 included in different first annular defining structures 320 may be the same or different.
  • the boundary outline of the light-emitting area of the sub-pixel 10 may include a plurality of straight edges, and/or arc-shaped edges connecting adjacent straight lines, and the boundary outline of the defining structure 300 surrounding the light-emitting area may include straight edges with the light-emitting area.
  • FIG. 6 and 7A are partial planar structural diagrams of a display substrate provided according to different examples of embodiments of the present disclosure.
  • the display substrate shown in FIG. 6 and FIG. 7A is different from the display substrate shown in FIG. 2 in that the shape of the defining structure 300 is different, such as the planar shape, and the width of the defining structure is different.
  • the planar shape and width of the defining structure, and the opening surrounded by the first annular defining structure can be flexibly set according to the size of the light-emitting area of the sub-pixel and the distance between the light-emitting areas of adjacent sub-pixels.
  • the distance between the defining structure 300 shown in FIG. 6 and the light-emitting area of its adjacent sub-pixel 10 is different from the distance between the defining structure 300 shown in FIG. 2 and the light-emitting area of its adjacent sub-pixel 10.
  • the length of the bottom of the first trapezoidal cross-section of the limiting structure 300 shown in FIG. 6 is different from the length of the bottom of the first trapezoidal cross-section of the limiting structure 300 shown in FIG. 2 .
  • the size of the portion of the defining structure 300 shown in FIG. 6 located between adjacent sub-pixels 10 arranged along the X direction or along the Z direction is larger.
  • the at least one first annular defining structure 320 shown in Figure 7A is a closed annular shape.
  • a portion of the first electrode 110 overlaps the notch 321 of the first annular defining structure 320 .
  • a first annular defining structure 320 includes at least two gaps 321 , and each gap 321 overlaps the first electrode 110 of a different sub-pixel 10 .
  • the orthographic projection of part of the first electrode 110 on the base substrate is inserted into the gap of the orthographic projection of the first annular structure 320 on the base substrate.
  • the first annular defining structure 320 does not overlap the connection electrode.
  • the display substrate provided by an example of the present disclosure, by providing a notch in the first annular defining structure for avoiding the first electrode, it is possible to prevent the first annular defining structure from interfering with the position of the first electrode of the light-emitting element.
  • the edge position of the defining structure 300 is only used to disconnect at least part of the film layer of the light-emitting functional layer in the light-emitting element without disconnecting the second electrode of the light-emitting element, and at least one first annular defining structure is 320 is arranged in a closed ring around the sub-pixels 10, which is beneficial to completely disconnecting the charge generation layers in different sub-pixels 10 to avoid crosstalk between adjacent sub-pixels, while also achieving continuity of the second electrode to improve display uniformity. sex.
  • a closed ring structure is adopted while avoiding the first electrode, thereby reducing the crosstalk generated between adjacent sub-pixels. Avoid brightness uniformity problems caused by breakage of the second electrode.
  • the second electrode 120 of at least one sub-pixel 10 is in a first sub-direction (such as one of the row direction and the column direction, such as The second electrodes 120 of adjacent sub-pixels 10 are continuously arranged in one of the third direction and the fourth direction), and the second electrode 120 of the at least one sub-pixel 10 is in a second sub-direction (such as The second electrode 120 of the sub-pixel 10 adjacent to the other of the row direction and the column direction, such as the third direction and the fourth direction, is disconnected, and the first sub-direction and the second sub-pixel directions intersect.
  • a first sub-direction such as one of the row direction and the column direction, such as The second electrodes 120 of adjacent sub-pixels 10 are continuously arranged in one of the third direction and the fourth direction
  • the second electrode 120 of the at least one sub-pixel 10 is in a second sub-direction (such as The second electrode 120 of the sub-pixel 10 adjacent to the other of the row direction and the column direction, such as the third direction and the fourth direction, is disconnected, and
  • the second electrode 120 of at least one sub-pixel 10 and the second electrode 120 of its adjacent sub-pixel 10 in the first sub-direction are The electrodes 120 are continuously arranged, and the second electrode 120 of the at least one sub-pixel 10 and the second electrode 120 of the sub-pixel 10 adjacent to it in the second sub-direction are continuously arranged, and the first sub-direction and The second sub-directions intersect.
  • the second electrode 120 of any sub-pixel 10 can be continuously arranged with the second electrode 120 of the sub-pixel 10 adjacent to it in any direction to improve the The conduction effect of the two electrodes.
  • the second electrode 120 of any sub-pixel 10 may be continuously disposed with the second electrode 120 of the sub-pixel 10 adjacent thereto in at least one direction to at least ensure the conductivity of the second electrode of the sub-pixel.
  • the defining structure 300 surrounds more than 50% of the outline of at least one sub-pixel 10 .
  • the defining structure 300 surrounds more than 55% of the outline of at least one sub-pixel 10 .
  • the defining structure 300 surrounds more than 60% of the outline of at least one sub-pixel 10 .
  • the defining structure 300 surrounds more than 65% of the outline of at least one sub-pixel 10 .
  • the defining structure 300 surrounds more than 70% of the outline of at least one sub-pixel 10 .
  • the defining structure 300 surrounds more than 75% of the outline of at least one sub-pixel 10 .
  • the defining structure 300 surrounds more than 80% of the outline of at least one sub-pixel 10 .
  • the defining structure 300 surrounds more than 85% of the outline of at least one sub-pixel 10 .
  • the defining structure 300 surrounds more than 90% of the outline of at least one sub-pixel 10 .
  • the defining structure 300 surrounds more than 95% of the outline of at least one sub-pixel 10 .
  • the second electrode 120 of at least one sub-pixel 10 and the second electrode 120 of its adjacent sub-pixel 10 are continuously arranged, And the minimum width of the second electrode 120 between the two adjacent sub-pixels 10 in the direction perpendicular to their arrangement is greater than 1 micron.
  • the above minimum width may be greater than 2 microns.
  • the above minimum width may be greater than 3 microns.
  • the minimum width described above may be greater than 4 microns.
  • the above minimum width may be greater than 5 microns.
  • the above minimum width may be greater than 6 microns.
  • the above minimum width may be greater than 7 microns.
  • the minimum width described above may be greater than 8 microns.
  • the above minimum width may be greater than 9 microns.
  • the above minimum width may be greater than 10 microns.
  • the first dimension D1 is greater than 1 micron.
  • D5 is greater than 1 micron.
  • the orthographic projection of the center connection line of the two adjacent sub-pixels 10 on the plane where the second electrode 120 is located is located on the second electrode 120 . within electrode 120.
  • the orthographic projection of the above-mentioned central connection line on the base substrate is located within the orthographic projection of the second electrode 120 on the base substrate, and the second electrode 120 at the location of the above-mentioned central connection line is continuously arranged.
  • the outline of the at least partially defining structure 300 is the same as the outline of the light-emitting area of the sub-pixel 10 surrounded by the at least partially defining structure 300 , and is defined differently.
  • the ratio of the spacing between the structure 300 and the adjacent edges of the light-emitting area of the sub-pixel 10 surrounded by the different defining structures 300 is 0.9 ⁇ 1.1. For example, the spacing is the same.
  • the spacing may be 7 to 10 microns.
  • the spacing may be 8 to 9 microns.
  • the ratio of distances at different positions between the light-emitting area of a sub-pixel surrounded by the same defining structure and the edges of the defining structure that are close to each other is 0.9 to 1.1.
  • the distances at different positions between the light-emitting area of a sub-pixel surrounded by the same defining structure and edges of the defining structure that are close to each other are equal.
  • Figure 8 is a partial cross-sectional structural diagram taken along line DD' shown in Figure 2.
  • each sub-pixel 10 further includes a pixel circuit 140
  • the first electrode 110 of the light-emitting element 100 of at least one sub-pixel 10 includes a body electrode 111 and
  • the connecting electrode 112 has the body electrode 111 overlapping the light-emitting area 001 of the light-emitting element 100 in the direction perpendicular to the base substrate 01 , and the connecting electrode 112 does not overlap the light-emitting area 001 of the light-emitting element 100 .
  • the orthographic projection of the light-emitting area 001 of the light-emitting element 100 on the base substrate 01 is completely located within the orthographic projection of the body electrode 111 on the base substrate 01 .
  • the shape of the body electrode 111 is substantially the same as the shape of the light emitting area 001.
  • the body electrode 111 and the connection electrode 112 in the same first electrode 110 have an integrated structure.
  • the first electrode 110 of the light emitting element 100 of each sub-pixel 10 includes a body electrode 111 and a connection electrode 112.
  • pixel circuit 140 is electrically connected to connection electrode 112 .
  • the first electrode 110 may be connected to one of the source electrode and the drain electrode of the thin film transistor in the pixel circuit 140 through a via hole penetrating a film layer such as the first insulating layer 200 .
  • the pixel circuit may include a plurality of transistors and at least one capacitor.
  • the pixel circuit may include a light emission control transistor.
  • the light emission control transistor includes an active layer 261, a gate electrode 264, a source electrode 262 and a drain electrode 263.
  • the drain electrode 263 is electrically connected to the first electrode 110 of the light emitting element 100.
  • the display substrate also includes gate insulating layers 02 and 03, an interlayer insulating layer 04, a passivation layer 05 and other film layers.
  • the pixel circuit also includes a storage capacitor.
  • a gate insulating layer, an interlayer insulating layer, various film layers in the pixel circuit, data lines, gate lines, power signal lines, reset power signal lines, and reset are provided between the first insulating layer 200 and the base substrate 01 Film layers or structures such as control signal lines and light-emitting control signal lines.
  • the pixel circuit may have an 8T1C (eight transistors and one capacitor) structure, or a 7T1C structure, or a 7T2C structure, or a 6T1C structure, or a 6T2C structure, or a 9T2C structure, which is not limited in the embodiments of the present disclosure.
  • the first annular defining structure 320 surrounding at least one sub-pixel 10 includes a gap 321 that overlaps the connection electrode 112 in a direction perpendicular to the base substrate 01.
  • the notch 321 does not overlap with the body electrode 111 .
  • the base substrate 01 further includes a second area A2, and the first area A1 is located around the second area A2.
  • the first area A1 surrounds at least part of the second area A2.
  • the second area A2 shown in FIG. 1 is located at the top middle position of the base substrate 01.
  • the four sides of the rectangular first area A1 can surround the second area A2, that is, the second area A2 can be surrounded by the first area A2.
  • the second area A2 may not be located at the top middle position of the base substrate 01 shown in FIG. 1 , but may be located at another position.
  • the second area A2 may be located at the upper left corner or the upper right corner of the base substrate 01 .
  • the first area A1 may include a display area
  • the second area A2 may be a display area or a non-display area, such as a hole area.
  • the hole area may be provided with required hardware structures such as photosensitive sensors.
  • the first area A1 may include a display area away from the second area A2 and a non-display area surrounding the second area A2.
  • a first annular defining structure is located in the display area.
  • the shape of the second area A2 may be circular or elliptical. But it is not limited to this, the shape of the second area A2 may be a polygon, such as a quadrilateral, a hexagon, or an octagon.
  • the shape of the first area A1 may be a quadrilateral, such as a rectangle, but is not limited thereto.
  • the shape of the first area A1 may also be a circle or other polygons other than a quadrilateral, such as a hexagon, an octagon, etc.
  • Figure 9A is a partial cross-sectional structural diagram taken along line EE' shown in Figure 1.
  • the display substrate further includes a second insulating layer 500 between the defining structure 300 and the base substrate 01 .
  • the second insulating layer 500 is located on a side of the first insulating layer 200 facing the base substrate 01 .
  • the second insulating layer 500 may be stacked with the first insulating layer 200 .
  • the first insulating layer 200 is not provided in the area shown in FIG. 9A.
  • the area shown in FIG. 9A is a non-display area included in the first area A1.
  • the material of the second insulating layer 500 includes an inorganic non-metallic material, and the material of the second insulating layer 500 is different from the material defining the structure 300 .
  • the material defining structure 300 includes silicon nitride
  • the material of second insulating layer 500 includes silicon oxide.
  • the second insulating layer 500 includes at least one annular insulating portion 510 surrounding the second area A2
  • the defining structure 300 further includes a side away from the annular insulating portion 510 away from the substrate 01
  • the surface-contacting second annular defining structure 330 , the light-emitting functional layer 130 and the second electrode 120 are all disconnected at the edge of the second annular defining structure 330 .
  • FIG. 1 only schematically shows the second annular defining structure 330 and does not show the annular insulating portion 510 . For example, no sub-pixel for displaying an image is provided between the annular insulating portion and the edge of the second area A2.
  • the second annular defining structure 330 is located in the first area A1 and surrounds the second area A2.
  • the number of the second annular defining structures 330 may be three, but is not limited thereto.
  • the number of the second annular defining structures may be one, two, four or more, and may be set according to product requirements.
  • No light-emitting elements are provided in the second area.
  • the light-emitting elements located in the first area can be connected to the second area. separated.
  • the material of the second annular defining structure 330 includes an inorganic non-metallic material, such as silicon nitride.
  • the second annular ring surrounding the second area is made of inorganic materials.
  • the second annular defining structure has no electrical connection with the second electrode, which can prevent impurities generated in the production process from passing through the second annular defining structure at the AA hole position after the second electrode is energized.
  • At least part of the film layer of the light-emitting functional layer 130 may cover the edge of the annular insulating part 510 .
  • at least part of the film layer of the light-emitting functional layer 130 may cover at least part of the edge of the second annular defining structure 330 .
  • the ratio of the thickness of the first annular defining structure 320 to the thickness of the second annular defining structure 330 is 0.8 ⁇ 1.2.
  • the ratio of the thickness of the first annular defining structure 320 to the thickness of the second annular defining structure 330 is 0.9 ⁇ 1.
  • the ratio of the thickness of the first annular defining structure 320 to the thickness of the second annular defining structure 330 is 0.95 ⁇ 1.1.
  • the ratio of the thickness of the first annular defining structure 320 to the thickness of the second annular defining structure 330 is 0.85 ⁇ 1.
  • the orthographic projection of the second annular defining structure 330 on the base substrate 01 is located within the orthographic projection of the annular insulating portion 510 on the base substrate 01 .
  • the orthographic projection of the surface of the second annular defining structure 330 close to the base substrate on the base substrate is completely located on the surface of the second annular defining structure 330 far away from the base substrate. in the orthographic projection on.
  • the cross-section of the second annular defining structure 330 includes a second trapezoid 340 , and the length of the second trapezoid 340 away from the base 341 of the base substrate is greater than the length of the second trapezoid 340 close to the base 341 of the base substrate.
  • the ratio of the size of the first trapezoid 310 in the direction perpendicular to the base substrate 01 to the size of the second trapezoid 340 in the direction perpendicular to the base substrate 01 is 0.8 to 1.2, and the angle between the waist of the first trapezoid 310 and the second bottom side 312 is the same as the angle between the waist of the second trapezoid 340 and the bottom side of the second trapezoid 340 close to the base substrate 01
  • the ratio is 0.8 ⁇ 1.2.
  • the ratio of the angle between the waist and the bottom 342 of the second trapezoid 340 to the angle between the waist and the second bottom 312 of the first trapezoid 310 can be It is 0.9 ⁇ 1.
  • the ratio between the angle between the waist and the bottom side 342 of the second trapezoid 340 and the angle between the waist and the second bottom side 312 of the first trapezoid 310 may be 0.95 ⁇ 1.1.
  • the angle between the waist and the bottom edge 342 of the second trapezoid 340 is 110 to 150 degrees.
  • the angle between the waist and the bottom edge 342 of the second trapezoid 340 is 115 to 130 degrees.
  • the angle between the waist and the bottom edge 342 of the second trapezoid 340 is 112 to 140 degrees.
  • the angle between the waist and the bottom edge 342 of the second trapezoid 340 is 120 to 148 degrees.
  • the angle between the waist and the bottom edge 342 of the second trapezoid 340 is 118 to 135 degrees.
  • the angle between the waist and the bottom edge 342 of the second trapezoid 340 is 122 to 145 degrees.
  • the angle between the waist and the bottom edge 342 of the second trapezoid 340 is 135 to 146 degrees.
  • the second trapezoid in the embodiment of the present disclosure includes a standard trapezoid and a rough trapezoid.
  • the waist and two bases are straight sides, and in the rough trapezoid, at least one of the waist and the two bases is a curved side.
  • the waist of the second trapezoid is a curved edge, the curved edge may be bent toward the midpoint of the base, or may be bent away from the midpoint of the base.
  • the thickness of the annular insulating portion 510 is greater than the thickness of the protrusion 210 .
  • the thickness of the annular insulating portion 510 is greater than the thickness of the second annular defining structure 320 .
  • the step difference between the second electrode 120 on the first annular defining structure 320 and the second electrode 120 outside the first annular defining structure 320 is smaller than the second annular defining structure 330
  • the step difference between the upper second electrode 120 and the second electrode 120 at a position outside the second annular defining structure 330 can realize the continuous arrangement of the second electrode at the edge position of the first annular defining structure and at the same time, the second electrode 120 at the edge position of the second annular defining structure.
  • the second electrode is disconnected.
  • FIG. 9A schematically shows that no second insulating layer 500 is provided between adjacent annular insulating parts 510 , but it is not limited thereto.
  • a second insulating layer with a smaller thickness may also be provided between multiple annular insulating parts 510 .
  • the plurality of annular insulating parts 510 have an integrated structure.
  • the thickness of the second insulating layer 500 at a position that overlaps with the second annular defining structure 320 is greater than the thickness of the second insulating layer 500 at a position that does not overlap with the second annular defining structure 320 .
  • the annular insulating portion 510 is formed at a position overlapping the second annular defining structure 320 .
  • the display substrate provided by the embodiment of the present disclosure can set the parameters such as the thickness of the defining structure at each position to be the same, and at the same time realize the continuous arrangement of the second electrode at the edge position of the first annular defining structure by adjusting the thickness of the annular insulating portion. And the second electrode at the edge position of the second annular defining structure is disconnected.
  • the defining structure between adjacent sub-pixels and the defining structure surrounding the second area are respectively provided in the first insulating layer and the second insulating layer of different materials, which can be implemented using the same step process. While the edge of the defining structure between adjacent sub-pixels does not disconnect the second electrode, the edge of the defining structure surrounding the second area disconnects the second electrode.
  • the maximum dimension of the annular insulating portion 510 is larger than the maximum dimension of the second annular defining structure 330 .
  • the orthographic projection of the second annular defining structure 330 on the base substrate is completely located within the orthographic projection of the annular insulating portion 510 on the base substrate.
  • the cross-section of the annular insulating portion 510 may be a rectangle, and the length of the side of the rectangle parallel to the base substrate is greater than the length of the bottom side of the second trapezoid 340 away from the base substrate.
  • the distance between adjacent annular insulating portions 510 is smaller than the distance between adjacent second annular defining structures 330 .
  • the cross-section of the annular insulating portion 510 may be a trapezoid, such as a straight trapezoid or an inverted trapezoid.
  • embodiments of the present disclosure provide a display substrate, including a base substrate 01 and a plurality of sub-pixels 10 located on the base substrate 01 .
  • the base substrate 01 at least includes a first area A1; a plurality of sub-pixels 10 are located in the first area A1 on the base substrate 01, and each sub-pixel 10 of at least some of the sub-pixels 10 includes a light-emitting element 100, and the light-emitting element 100 includes a light-emitting functional layer.
  • 130 and the first electrode 110 and the second electrode 120 located on both sides of the light-emitting functional layer 130 in the direction perpendicular to the base substrate 01.
  • the first electrode 110 is located between the light-emitting functional layer 130 and the base substrate 01.
  • the light-emitting functional layer 130 Includes multiple film layers.
  • the display substrate further includes a defining structure 300. At least one defining structure 300 is disposed between at least two adjacent sub-pixels 10.
  • the plurality of sub-pixels 10 include first sub-pixels, second sub-pixels and third sub-pixels.
  • the first sub-pixel, the second sub-pixel and the third sub-pixel may be three different color sub-pixels, such as the first color sub-pixel 101, the second color sub-pixel 102 and the third color sub-pixel 103 respectively.
  • the second subpixel 102 and the third subpixel as the third color subpixel 103 are adjacent to the first sub-pixel 101.
  • both the second subpixel 102 and the third subpixel 103 are adjacent to the first subpixel 101 , and the defining structure 300 provided between the first subpixel 101 and the second subpixel 102 is between the two subpixels.
  • the maximum size in the arrangement direction of the two sub-pixels is the first size D1
  • the maximum size of the defining structure 300 provided between the first sub-pixel 101 and the third sub-pixel 103 in the arrangement direction of the two sub-pixels is the second size D2.
  • the first dimension D1 is different from the second dimension D2.
  • the arrangement direction of the first sub-pixel 101 and the second sub-pixel 102 may be the U direction or the V direction
  • the arrangement direction of the first sub-pixel 101 and the third sub-pixel 103 may be the X direction or the Z direction.
  • the above “the second sub-pixel 102 and the third sub-pixel 103 are adjacent to the first sub-pixel 101" may mean that the first sub-pixel and the second sub-pixel are arranged in the direction of the two, and there is no other arrangement between them.
  • Sub-pixels; the first sub-pixel and the third sub-pixel are arranged in the direction in which they are arranged, and no other sub-pixel is set between them.
  • the matching of the arrangement relationship between the defining structure and the sub-pixels can be improved, and the conductive effect of the second electrode can be improved.
  • the first dimension D1 is larger than the second dimension D2.
  • the size relationship between the first size and the second size may change.
  • the plurality of sub-pixels 10 are arranged in an array along the first direction and the second direction, and the molecular pixels 10 in the plurality of sub-pixels 10 are arranged in an array along the third direction and the fourth direction.
  • the first The direction is perpendicular to the second direction
  • the third direction is perpendicular to the fourth direction
  • the first direction intersects the third direction.
  • the embodiment of the present disclosure schematically shows that one of the first direction and the second direction is the U direction, and the other is the V direction; one of the third direction and the fourth direction is the X direction, and the other is the Z direction.
  • the plurality of second color sub-pixels 102 are arranged in an array along the third direction and the fourth direction.
  • the first color sub-pixels 101 and the third color sub-pixels 103 are alternately arranged in the third direction, and are also alternately arranged in the fourth direction, whereby a plurality of first color sub-pixels and a plurality of third color sub-pixels are arranged along the The third and fourth direction arrays are arranged.
  • the maximum size of the defining structure 300 between two adjacent sub-pixels 10 arranged along the first direction or the second direction in the arrangement direction of the two sub-pixels 10 is a third size.
  • D3 the maximum size of the defining structure 300 between two adjacent sub-pixels 10 arranged along the third direction or the fourth direction in the arrangement direction of the two sub-pixels 10 is the fourth size D4, and the third size D3 is smaller than the fourth size. Size D4.
  • the third size D3 may be the size of the defining structure 300 provided between two parallel sides of two adjacent sub-pixels 10 in a direction perpendicular to the side
  • the fourth size D4 may be It is the size of the defining structure 300 provided between two opposite corners of two adjacent sub-pixels in a direction parallel to the line connecting the two corners.
  • the plurality of sub-pixels 10 include a plurality of green sub-pixels 102 , a plurality of blue sub-pixels 103 and a plurality of red sub-pixels 101 .
  • the maximum size of the defining structure 300 in the arrangement direction of the two green sub-pixels 102 is larger than the maximum size of the defining structure 300 disposed between other adjacent sub-pixels 10 in the arrangement direction of the adjacent sub-pixels 10 .
  • the maximum size of the defining structure 300 provided between two adjacent green sub-pixels 102 in the arrangement direction of the two green sub-pixels 102 may be D5, and the defining structure 300 provided between other adjacent sub-pixels 10 may be D5.
  • the maximum size of the adjacent sub-pixels 10 in the arrangement direction may be D3 or D4.
  • the above-mentioned other adjacent sub-pixels 10 may refer to adjacent red sub-pixels and green sub-pixels, adjacent blue sub-pixels and red sub-pixels, or adjacent blue sub-pixels and green sub-pixels.
  • each of at least some of the sub-pixels 10 further includes a pixel circuit 140
  • the first electrode 110 of the light-emitting element 100 of at least one sub-pixel 10 includes a body.
  • the electrode 111 and the connecting electrode 112 overlap with the light-emitting area of the light-emitting element 100 in the direction perpendicular to the base substrate, and the connecting electrode 112 does not overlap with the light-emitting area of the light-emitting element 100.
  • the pixel circuit 140 is connected to The electrodes 112 are electrically connected; in at least part of the first region A1, at least one of the light-emitting functional layers 130 is disconnected at the edge of the defining structure 300, and at least one of the second electrodes 120 overlaps with the connection electrode 112. Partially continuous setting.
  • the first electrode 110 is electrically connected to the pixel circuit 140 through an anode via hole 201 penetrating the first insulation layer 200 , and the second electrode 120 is continuously provided at the position of the anode via hole 201 .
  • the defining structure 300 does not overlap at least a portion of the connection electrode 112 in a direction perpendicular to the base substrate.
  • the defining structure 300 does not overlap the anode via 201 in a direction perpendicular to the base substrate.
  • At least some of the second electrodes 120 in the sub-pixels 10 include a planar structure or a mesh structure.
  • the second electrode 120 is a transparent electrode, as shown in FIG. 7B with a translucent filling pattern.
  • the second electrode 120 may be a planar structure covering multiple sub-pixels 10 , that is, the plurality of sub-pixels 10 share the second electrode 120 of the planar structure.
  • the second electrode 120 is at each position, especially at The edges of the defining structure 300 are all continuous, for example, the cathodes of the entire screen are all continuous.
  • the embodiments of the present disclosure are not limited to this.
  • the second electrode Due to issues with process stability and uniformity, if the second electrode cannot always be continuous in some areas, it is necessary to reserve an overlap of the second electrode to ensure that the network structure is formed in this area.
  • Channel RO For example, the second electrode is continuous at the anode via position to form an overlapping channel RO.
  • the overlapping channel RO includes a portion extending along the U direction and a portion extending along the V direction. At this time, the second electrode can be formed into a mesh structure.
  • the position where the blocking wall (PS) is set on the display panel can also be the position where the second electrode overlapping channel passes.
  • the defining structure does not overlap the retaining wall in a direction perpendicular to the base substrate.
  • the mesh-like overlapping method of the second electrode can be flexibly designed according to the shape of the sub-pixel.
  • at least one gap is reserved around the sub-pixel as a path for the mesh-like overlapping of the second electrode.
  • the size D3 of the defining structure 300 may be 2.2-2.7 microns, such as 2.5 microns.
  • the ratio of the distance between the defining structure 300 and the opening of the pixel defining pattern defining the light-emitting areas of different color sub-pixels 10 is 0.9 ⁇ 1.1, such as 1.
  • the distance between the defining structure 300 and the opening of the pixel defining pattern defining the light-emitting area of the green sub-pixel 102 may be 8 to 10 microns, such as 8.5 microns.
  • the distance between the defining structure 300 and the opening of the pixel defining pattern defining the light-emitting area of the blue sub-pixel 103 may be 8 to 10 microns, such as 8.5 microns.
  • the distance between the defining structure 300 and the opening of the pixel defining pattern defining the light-emitting area of the red sub-pixel 101 may be 8 to 10 microns, such as 8.5 microns.
  • the size D4 of the defining structure 300 may be 10 to 14 microns, such as 12.5 microns.
  • the dimension D5 of the defining structure 300 may be 18-20 microns, such as 19.5 microns.
  • the distance between the light-emitting areas of two adjacent sub-pixels 10 arranged in the U direction or V direction may be 18 to 22 microns, such as 20 microns.
  • the distance between two adjacent openings of the pixel defining pattern arranged in the U direction or V direction may be 20 microns.
  • FIG. 9B is a partial cross-sectional structural diagram of the first region close to the second region provided according to an example of an embodiment of the present disclosure.
  • the base substrate is provided with a buffer layer and a shielding layer 021, an active layer 026 located on the buffer layer and the shielding layer 021, a gate insulating layer 022 located on the active layer 026, and a gate electrode layer 022 located on the active layer 026.
  • the A11 area is an area where the sub-pixel 100 is provided, and the A12 area is an area surrounding the second area and where the second annular defining structure 330 is provided.
  • the annular insulating portion 510 and the second insulating layer 500 may include a gate insulating layer 022 , a gate insulating layer 023 and an interlayer insulating layer 024 .
  • the interlayer insulating layer 024 , the gate insulating layer 022 , and the gate insulating layer 023 are etched in the A11 region to form via holes 041
  • the interlayer insulating layer 024 and the gate insulating layer 023 in the A12 region are etched.
  • the insulating layer 022 and the gate insulating layer 023 are etched to form the spacer 042.
  • the metal layer 031, the flat layer 025 and the flat layer 200 formed in the A12 area are patterned and removed to form a defined structure in the A11 area and the A12 area at the same time.
  • FIG. 10 is a schematic block diagram of a display device according to another embodiment of the present disclosure. As shown in FIG. 10 , an embodiment of the present disclosure provides a display device including any one of the above display substrates.
  • the first annular defining structure realizes the continuous arrangement of the second electrode while isolating at least one layer of the light-emitting functional layer, which can reduce the crosstalk generated between adjacent sub-pixels while avoiding Brightness uniformity problem caused by large-area breakage of the second electrode.
  • the light-emitting element located in the first area can be connected to the second annular defining structure. Areas are separated.
  • the display device further includes a cover located on the light exit side of the display substrate.
  • the display device can be a display device such as an organic light-emitting diode display device, as well as any product or component with a display function such as a television, a digital camera, a mobile phone, a watch, a tablet computer, a notebook computer, a navigator, etc. including the display device. Examples are not limited to this.
  • 11A to 11E are schematic process flow diagrams of a method for manufacturing a partial region of a display substrate according to an embodiment of the present disclosure.
  • the display substrate shown in FIG. 3 in the A11 area shown in FIG. 1 can be formed by using the manufacturing method shown in FIGS. 11A to 11E .
  • 12A to 12C are schematic process flow diagrams of a method for manufacturing another partial area of a display substrate according to an embodiment of the present disclosure.
  • the display substrate shown in FIG. 9A can be formed using the manufacturing method shown in FIGS. 12A to 12C.
  • the manufacturing method of a display substrate includes providing a base substrate 01 and forming an inorganic non-metallic material layer 610 on the base substrate 01 .
  • the manufacturing method before forming the inorganic non-metal material layer 610, the manufacturing method further includes: forming a first insulating layer 200 on the base substrate 01. In a part of the first region, the inorganic non-metal material layer 610 is formed on the surface of the first insulating layer 200 .
  • the manufacturing method before forming the first insulating layer 200, the manufacturing method further includes: forming a second insulating layer 500 (layer shown in FIG. 8) on the base substrate 01. Insulating layer 04). In another part of the first region, the inorganic non-metallic material layer 610 is formed on the surface of the second insulating layer 200 .
  • an inorganic non-metal material layer 610 is deposited on the surfaces of the first insulating layer 200 and the second insulating layer 500 .
  • the thickness of the inorganic non-metal material layer 610 may be 300 ⁇ 550 Angstroms.
  • the thickness of the inorganic non-metal material layer 610 may be 500 Angstroms.
  • the material of the inorganic non-metal material layer 610 may be silicon nitride (SiNx).
  • a shielding structure 700 is formed on a side of the inorganic non-metallic material layer 610 away from the base substrate 01 .
  • a mask layer is coated on the inorganic non-metal material layer 610.
  • the material of the mask layer includes photoresist.
  • the mask layer is patterned to form the blocking structure 700.
  • the shielding structure 700 is used as a mask, and the first gas is used to etch the inorganic non-metallic material layer 610 to form the defined pattern 620 .
  • the first gas includes a mixed gas of carbon tetrafluoride (CF4) and oxygen.
  • CF4 carbon tetrafluoride
  • the first gas will etch the first insulating layer 200 other than the defining pattern 620 to a certain extent to form a recess, such as a loss.
  • the first insulating layer 200 directly below the defining pattern 620 has a protrusion, and the thickness of the first insulating layer 200 at this position is greater than the thickness of the first insulating layer 200 at other positions (where the recessed portion is located).
  • the difference between the thickness of the first insulating layer 200 directly below the defining pattern 620 and the thickness of the first insulating layer 200 at other positions can be minimized by adjusting.
  • the film layer on the display substrate may not be processed using a post-processing process to further reduce the difference in thickness of the first insulating layer directly under the defined pattern and the thickness of the first insulating layer at other locations.
  • the shielding structure 700 is used as a mask, and the second gas is used to etch the defining pattern 620 to form the defining structure 300 .
  • the shielding structure 700 still remains on the defining pattern 620 and is not peeled off.
  • the second gas includes a mixed gas of sulfur hexafluoride (SF6) and oxygen.
  • SF6 can react chemically with silicon nitride to etch the sidewalls of the silicon nitride so that the cross-section defining the structure 300 forms an inverted trapezoidal morphology.
  • the second gas will not etch the second insulating layer 200, and the protrusions 210 formed in the previous etching process of the second insulating layer 200 will not be further etched.
  • the manufacturing method of a display substrate includes forming a plurality of sub-pixels 10 in at least the first area A1 of the base substrate 01 .
  • At least one defining structure 300 is disposed between at least two adjacent sub-pixels 10.
  • Each sub-pixel 10 in at least part of the sub-pixels 10 includes a light-emitting element 100.
  • Forming the light-emitting element 100 includes sequentially forming the light-emitting element 100 in a direction perpendicular to the base substrate 01.
  • a stacked first electrode 110 , a light-emitting functional layer 130 and a second electrode 120 are formed.
  • the first electrode 110 is located between the second electrode 120 and the base substrate 01 .
  • the light-emitting functional layer 130 includes a plurality of film layers.
  • the manufacturing method before forming the first insulating layer 200, the manufacturing method also includes forming other film layers on the base substrate 01, such as a gate insulating layer, a buffer layer, a passivation layer, a multi-layer conductive layer, and the like.
  • the first orthographic projection 301 of the side surface of the defining structure 300 located between adjacent sub-pixels 10 close to the substrate substrate 01 on the substrate substrate 01 is completely located in the defined region.
  • the surface of the side of the structure 300 away from the base substrate 01 is in the second orthographic projection 302 on the base substrate 01.
  • the maximum size S2 of the second orthographic projection 302 is larger than the first The maximum size S1 of the orthographic projection 301.
  • At least one layer of the light-emitting functional layer 130 is disconnected at the edge of the defining structure 300 , and the second electrode 120 is formed at the edge of the defining structure 300 . set continuously.
  • the embodiment of the present disclosure uses a light-shielding structure as a mask, and uses two different gases to perform a two-step etching process on the non-metallic material layer to form a defined structure similar to an undercut structure, while isolating at least one layer of the light-emitting functional layer. , realizing the continuous arrangement of the second electrode can reduce the crosstalk between adjacent sub-pixels and avoid the brightness uniformity problem caused by the large-area breakage of the second electrode.
  • the cross-sectional shape of the defining pattern 620 taken by the plane connecting the centers of adjacent sub-pixels located on both sides of the defining pattern 620 includes a rectangle, and the defining structure 300 is as described above.
  • the cross-sectional shape of the plane includes a first trapezoid, the length of the base of the first trapezoid away from the base substrate 01 is greater than the length of the base of the first trapezoid close to the base substrate 01 , and the above-mentioned plane is perpendicular to the base substrate 01 .
  • the first orthographic projection of the defining structure 300 lies entirely within the orthographic projection of the protrusion 210 on the base substrate 01 .
  • the distance between the edge of the protrusion 210 and the orthographic projection of the edge of the blocking structure 700 on the base substrate is less than 0.5 microns.
  • the distance between the edge of the protrusion 210 and the orthographic projection of the edge of the shielding structure 700 on the base substrate is less than 0.4 microns.
  • the distance between the edge of the protrusion 210 and the orthographic projection of the edge of the shielding structure 700 on the base substrate is less than 0.3 microns.
  • the distance between the edge of the protrusion 210 and the orthographic projection of the edge of the shielding structure 700 on the base substrate is less than 0.2 microns.
  • the distance between the edge of the protrusion 210 and the orthographic projection of the edge of the shielding structure 700 on the base substrate is less than 0.1 micron.
  • the edges of the protrusions 210 are flush with the edges of the blocking structure 700 .
  • the distance between the edge of the protrusion 210 and the orthographic projection of the edge of the defining structure 300 away from the side surface of the base substrate 01 on the base substrate is less than 0.5 microns.
  • the distance between the edge of the protrusion 210 and the orthographic projection of the edge of the defining structure 300 away from the side surface of the base substrate 01 on the base substrate is less than 0.4 microns.
  • the distance between the edge of the protrusion 210 and the orthogonal projection of the edge of the defining structure 300 away from the side surface of the base substrate 01 on the base substrate is less than 0.3 microns.
  • the distance between the edge of the protrusion 210 and the orthogonal projection of the edge of the defining structure 300 away from the side surface of the base substrate 01 on the base substrate is less than 0.2 microns.
  • the distance between the edge of the protrusion 210 and the orthogonal projection of the edge of the defining structure 300 away from the side surface of the base substrate 01 on the base substrate is less than 0.1 micron.
  • the edge of the protrusion 210 is flush with the edge of the surface of the defining structure 300 away from the base substrate 01 .
  • a straight line extending in a direction perpendicular to the base substrate 01 passes through the edge of the protrusion 210 and the edge of the side surface of the defining structure 300 away from the base substrate 01 .
  • the second orthographic projection completely coincides with the orthographic projection of the protrusion 210 on the base substrate 01 .
  • the manufacturing method further includes removing the shielding structure 300 .
  • the first electrode 110 is patterned after forming the defining structure 300 .
  • a conductive layer is formed on the first insulating layer 200 , and the conductive layer is patterned to form the first electrode 110 .
  • a wet etching process is used to pattern the first electrode 110.
  • the conductive layer defining the inclined sidewall of the structure can be completely removed.
  • the pixel defining pattern 400 includes a plurality of first openings 410, one sub-pixel 10 corresponds to at least one first opening 410, and the first opening 410 is configured to expose the first electrode 110.
  • the pixel defining pattern 400 further includes a second opening 420 by which at least a portion of the defining structure 300 is exposed.
  • FIG. 11E schematically shows that the limiting structure 300 is completely exposed by the second opening 420 , but it is not limited thereto.
  • the limiting structure 300 may also be only partially exposed by the second opening 420 as shown in FIG. 5 .
  • at least one layer of the light-emitting functional layer 130 is interrupted at an edge of the defining structure 300 exposed by the second opening 420, and the second electrode 120 is continuously disposed at the edge.
  • using the first gas to etch the inorganic non-metal material layer 610 to form the defined pattern 620 includes etching the inorganic non-metal material layer 610 and the first insulating layer 200 .
  • the inorganic non-metallic material layer 610 on the two insulating layers 500 is etched simultaneously to form the defined pattern 620;
  • using the second gas to etch the defined pattern 620 to form the defined structure 300 includes etching the defined pattern 620 on the first insulating layer 200 and
  • the defining patterns 620 on the second insulating layer 500 are simultaneously etched to form the defining structure 300 .
  • the inorganic layer is patterned to form a second insulating layer 500 .
  • the second insulating layer 500 includes a continuous film layer located away from the second area A2 shown in FIG. 1 and close to the second area A2 shown in FIG. 1 .
  • the annular insulating portion 510 of the second area A2 is shown in FIG. 1 .
  • the annular insulating part 510 may be integrated with the continuous film layer, or the annular insulating part 510 may be spaced apart from the continuous film layer.
  • the first insulating layer and other film layers formed thereon are etched away, so that the subsequent inorganic non-metallic material layer 610 is formed on the annular insulating part 510 .
  • the defining pattern 620 is patterned on the annular insulating portion 510 .
  • the defining pattern 620 shown in FIG. 12B may be formed at the same time as the defining pattern 620 shown in FIG. 11B is formed.
  • the method of forming the limited pattern 620 shown in FIG. 12B is the same as the method of forming the limited pattern 620 shown in FIG. 12B and will not be described again.
  • the defining pattern 620 is etched using a second gas to form a second annular defining structure 330 .
  • SF6 may chemically react with silicon nitride, and the sidewalls of the silicon nitride may be etched so that the cross-section of the second ring-shaped defining structure 330 forms an inverted trapezoidal morphology.
  • the defining structure 300 shown in FIG. 11C such as the first annular defining structure, may be formed at the same time as the second annular defining structure 330 shown in FIG. 12C.
  • the manufacturing method of the display substrate provided by the present disclosure not only forms the defining structure between adjacent pixels, but also forms the defining structure surrounding the second area.
  • the masks forming the defining structures at the two positions are merged and compatible, which is beneficial to reducing the cost of the display substrate.
  • the number of masks thereby reduces the cost of producing display substrates.
  • the defining structure between adjacent sub-pixels and the defining structure surrounding the second area are respectively formed in the first insulating layer and the second insulating layer of different materials, which is beneficial to the realization of Compatibility of manufacturing methods for defining structures that are formed in different positions and play different roles to reduce the number of masks.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板及其制作方法、以及显示装置。显示基板包括衬底基板以及多个子像素。子像素包括发光元件,发光元件包括发光功能层、第一电极和第二电极,第一电极位于发光功能层与衬底基板之间。显示基板还包括限定结构,位于相邻子像素之间的限定结构的靠近衬底基板一侧表面在衬底基板上的第一正投影完全位于限定结构的远离衬底基板一侧表面在衬底基板上的第二正投影内,第二正投影的最大尺寸大于第一正投影的最大尺寸,且限定结构包括无机非金属材料;发光功能层中的至少一层在限定结构的边缘处断开,且相邻子像素的第二电极至少部分连续设置,可以在降低相邻子像素之间产生的串扰的同时,避免亮度均一性问题。

Description

显示基板及其制作方法、以及显示装置 技术领域
本公开实施例涉及一种显示基板及其制作方法、以及显示装置。
背景技术
随着显示技术的发展,用户对显示装置的性能要求越来越高,将相邻子像素之间的用于发光的部分材料层隔断,可以降低信号串扰,从而尽量满足显示装置高亮度和低功耗的性能需求。
发明内容
本公开实施例提供一种显示基板以及显示装置。
本公开实施例提供一种显示基板,包括衬底基板以及位于衬底基板上的多个子像素。衬底基板至少包括第一区域;多个子像素位于所述衬底基板上的第一区域,至少部分子像素中的每个子像素包括发光元件,所述发光元件包括发光功能层以及沿垂直于所述衬底基板的方向位于所述发光功能层两侧的第一电极和第二电极,所述第一电极位于所述发光功能层与所述衬底基板之间,所述发光功能层包括多个膜层。所述显示基板还包括限定结构,至少两个相邻子像素之间设置有至少一个限定结构,位于相邻子像素之间的所述限定结构的靠近所述衬底基板一侧表面在所述衬底基板上的第一正投影完全位于所述限定结构的远离所述衬底基板一侧表面在所述衬底基板上的第二正投影内,沿该相邻子像素的发光区排列方向,所述第二正投影的最大尺寸大于所述第一正投影的最大尺寸,且所述限定结构包括无机非金属材料;所述第一区域的至少部分区域中,所述发光功能层中的至少一层在所述限定结构的边缘处断开,且相邻子像素的所述第二电极至少部分连续设置。
例如,根据本公开的实施例,所述第二电极在所述限定结构的边缘处连续设置。
例如,根据本公开的实施例,至少一个子像素的所述第二电极和与其在第一子方向相邻的子像素的所述第二电极连续设置,且所述至少一个子像素的所述第二电极和与其在第二子方向相邻的子像素的所述第二电极断开设置,所述 第一子方向和所述第二子方向相交;和/或,至少一个子像素的所述第二电极和与其在第一子方向相邻的子像素的所述第二电极连续设置,且所述至少一个子像素的所述第二电极和与其在第二子方向相邻的子像素的所述第二电极连续设置,所述第一子方向和所述第二子方向相交。
例如,根据本公开的实施例,所述限定结构围绕至少一个子像素的50%以上的轮廓。
例如,根据本公开的实施例,至少一个子像素的所述第二电极和与其相邻的子像素的所述第二电极连续设置,且该相邻设置的两个子像素之间的所述第二电极在垂直于两者排布方向上的最小宽度大于1微米。
例如,根据本公开的实施例,该相邻设置的两个子像素的中心连线在所述第二电极所在平面的正投影位于所述第二电极内。
例如,根据本公开的实施例,至少部分限定结构的轮廓与被所述至少部分限定结构围绕的所述子像素的发光区的轮廓相同,且不同限定结构与被所述不同限定结构围绕的所述子像素的发光区的彼此靠近的边缘之间的间距之比为0.9~1.1。
例如,根据本公开的实施例,所述限定结构被所述中心连线所在平面所截的截面形状包括第一梯形,所述第一梯形远离所述衬底基板的第一底边的长度大于所述第一梯形靠近所述衬底基板的第二底边的长度,所述平面垂直于所述衬底基板。
例如,根据本公开的实施例,所述第一梯形的至少一侧腰的至少部分与所述第二底边之间的夹角为110~150度。
例如,根据本公开的实施例,所述限定结构的厚度为300~550埃。
例如,根据本公开的实施例,显示基板还包括:第一绝缘层,位于所述限定结构与所述衬底基板之间。所述第一区域的所述至少部分区域中,所述第一绝缘层与所述限定结构面向所述衬底基板一侧表面接触,所述第一绝缘层位于所述第一电极与所述衬底基板之间,所述第一绝缘层的材料包括有机材料。
例如,根据本公开的实施例,所述第一绝缘层包括与所述限定结构的表面接触的凸起,所述第一正投影完全位于所述凸起在所述衬底基板上的正投影内。
例如,根据本公开的实施例,所述凸起的边缘与所述限定结构远离所述衬底基板一侧表面的边缘在所述衬底基板上的正投影之间的距离小于0.5微米。
例如,根据本公开的实施例,所述第一电极的表面与所述第一绝缘层的表 面接触,且所述第一电极远离所述衬底基板一侧表面与所述衬底基板之间的距离小于所述限定结构远离所述衬底基板一侧表面与所述衬底基板之间的距离。
例如,根据本公开的实施例,显示基板还包括:像素限定图案,位于所述第一电极远离所述衬底基板的一侧,至少位于所述第一区域的所述像素限定图案包括多个第一开口,一个子像素对应至少一个第一开口,所述子像素的发光元件至少部分位于所述子像素对应的第一开口中,且所述第一开口被配置为暴露所述第一电极。所述像素限定图案还包括第二开口,所述限定结构的至少部分被所述第二开口暴露。
例如,根据本公开的实施例,所述发光功能层的至少一层在所述第二开口暴露的所述限定结构的至少部分边缘处断开,且所述第二电极在所述限定结构的该边缘处连续设置。
例如,根据本公开的实施例,所述发光功能层的至少一层膜层包括电荷产生层,所述发光功能层包括层叠设置的第一发光层、所述电荷产生层以及第二发光层,所述电荷产生层位于所述第一发光层与所述第二发光层之间,且所述电荷产生层在所述限定结构的边缘处断开。
例如,根据本公开的实施例,所述多个子像素包括多个第一颜色子像素、多个第二颜色子像素以及多个第三颜色子像素,所述限定结构包括多个第一环形限定结构,所述第一环形限定结构围绕所述多个第一颜色子像素、所述多个第二颜色子像素和所述多个第三颜色子像素中的至少一个子像素。
例如,根据本公开的实施例,至少部分子像素中的每个子像素还包括像素电路,至少一个子像素的发光元件的第一电极包括主体电极和连接电极,在垂直于所述衬底基板的方向上,所述主体电极与所述发光元件的发光区交叠,且所述连接电极与所述发光元件的发光区没有交叠,所述像素电路与所述连接电极电连接,围绕所述至少一个子像素的所述第一环形限定结构包括缺口,在垂直于所述衬底基板的方向,所述第一环形限定结构与所述连接电极不交叠。
例如,根据本公开的实施例,显示基板,还包括:第二绝缘层,位于所述限定结构与所述衬底基板之间。所述衬底基板还包括第二区域,所述第一区域位于所述第二区域的周边;所述第二绝缘层包括围绕所述第二区域的至少一个环形绝缘部,所述限定结构还包括与所述环形绝缘部远离所述衬底基板一侧表面接触的第二环形限定结构,所述第二绝缘层位于所述第一绝缘层面向所述衬底基板的一侧,所述第二绝缘层的材料包括无机非金属材料,且所述第二绝缘 层的材料与所述限定结构的材料不同,所述发光功能层以及所述第二电极均在所述第二环形限定结构的边缘位置处断开。
例如,根据本公开的实施例,所述第二环形限定结构的截面包括第二梯形,所述第二梯形远离所述衬底基板的底边的长度大于所述第二梯形靠近所述衬底基板的底边的长度。
例如,根据本公开的实施例,所述第二环形限定结构在所述衬底基板上的正投影位于所述环形绝缘部在所述衬底基板上的正投影内。
例如,根据本公开的实施例,所述第一梯形在垂直于所述衬底基板的方向的尺寸与所述第二梯形在垂直于所述衬底基板的方向的尺寸之比为0.8~1.2,且所述第一梯形的腰与所述第二底边之间的夹角与所述第二梯形的腰与所述第二梯形的靠近所述衬底基板一侧底边之间的夹角之比为0.8~1.2。
本公开另一实施例提供一种显示基板,包括衬底基板以及位于所述衬底基板上的多个子像素。所述衬底基板至少包括第一区域;所述多个子像素位于所述衬底基板上的第一区域,至少部分子像素中的每个子像素包括发光元件,所述发光元件包括发光功能层以及沿垂直于所述衬底基板的方向位于所述发光功能层两侧的第一电极和第二电极,所述第一电极位于所述发光功能层与所述衬底基板之间,所述发光功能层包括多个膜层。所述显示基板还包括限定结构,至少两个相邻子像素之间设置有至少一个限定结构,所述多个子像素包括第一子像素、第二子像素以及第三子像素,所述第二子像素和所述第三子像素均与所述第一子像素相邻,所述第一子像素与所述第二子像素之间设置的所述限定结构在该两个子像素的排列方向上的最大尺寸为第一尺寸,所述第一子像素与所述第三子像素之间设置的所述限定结构在该两个子像素的排列方向上的最大尺寸为第二尺寸,所述第一尺寸与所述第二尺寸不同。
例如,根据本公开的实施例,所述多个子像素沿第一方向和第二方向阵列排布,且所述多个子像素中部分子像素沿第三方向和第四方向阵列排布,所述第一方向与所述第二方向垂直,所述第三方向与所述第四方向垂直,所述第一方向与所述第三方向相交;沿所述第一方向或所述第二方向排列的相邻两个子像素之间的所述限定结构在该两个子像素的排列方向上的最大尺寸为第三尺寸,沿所述第三方向或所述第四方向排列的相邻两个子像素之间的所述限定结构在该两个子像素的排列方向上的最大尺寸为第四尺寸,所述第三尺寸小于所述第四尺寸。
例如,根据本公开的实施例,所述多个子像素包括多个绿色子像素、多个蓝色子像素以及多个红色子像素,相邻两个绿色子像素之间设置的所述限定结构在该两个绿色子像素的排列方向上的最大尺寸大于其他相邻子像素之间设置的所述限定结构在该相邻子像素的排列方向上的最大尺寸。
例如,根据本公开的实施例,至少部分子像素中的每个子像素还包括像素电路,至少一个子像素的发光元件的第一电极包括主体电极和连接电极,在垂直于所述衬底基板的方向上,所述主体电极与所述发光元件的发光区交叠,且所述连接电极与所述发光元件的发光区没有交叠,所述像素电路与所述连接电极电连接;所述第一区域的至少部分区域中,所述发光功能层中的至少一层在所述限定结构的边缘处断开,且所述第二电极在与所述连接电极交叠位置处的至少部分连续设置。
例如,根据本公开的实施例,在垂直于所述衬底基板的方向上,所述限定结构与所述连接电极的至少部分没有交叠。
例如,根据本公开的实施例,所述至少部分子像素中的所述第二电极包括面状结构或者网状结构。
本公开另一实施例提供一种显示装置,包括上述任一种显示基板。
本公开另一实施例提供一种显示基板的制作方法,包括:提供衬底基板;在所述衬底基板上形成无机非金属材料层;在所述无机非金属材料层远离所述衬底基板的一侧形成遮挡结构;以所述遮挡结构为掩模,且采用第一气体对所述无机非金属材料层进行刻蚀以形成限定图案;以所述遮挡结构为掩模,且采用第二气体对所述限定图案进行刻蚀以形成限定结构;在所述衬底基板的至少第一区域中形成多个子像素。至少两个相邻子像素之间设置有至少一个限定结构,至少部分子像素中的每个子像素包括发光元件,形成所述发光元件包括在垂直于所述衬底基板的方向上依次形成层叠设置的第一电极、发光功能层以及第二电极,所述第一电极位于所述第二电极与所述衬底基板之间,所述发光功能层包括多个膜层;位于相邻子像素之间的所述限定结构的靠近所述衬底基板一侧表面在所述衬底基板上的第一正投影完全位于所述限定结构的远离所述衬底基板一侧表面在所述衬底基板上的第二正投影内,沿该相邻子像素的发光区排列方向,所述第二正投影的最大尺寸大于所述第一正投影的最大尺寸;所述第一区域的至少部分区域中,所述发光功能层中的至少一层在所述限定结构的边缘处断开,且所述第二电极在所述限定结构的边缘处连续设置。
例如,根据本公开的实施例,所述限定图案被所述中心连线所在平面所截的截面形状包括矩形,所述限定结构被所述平面所截的截面形状包括第一梯形,所述第一梯形远离所述衬底基板的底边的长度大于所述第一梯形靠近所述衬底基板的底边的长度,所述平面垂直于所述衬底基板。
例如,根据本公开的实施例,形成所述限定结构后,所述制作方法还包括:去掉所述遮挡结构。
例如,根据本公开的实施例,在形成所述无机非金属材料层之前,所述制作方法还包括:在所述衬底基板上形成第一绝缘层,其中,所述第一区域的一部分区域中,所述无机非金属材料层形成在所述第一绝缘层的表面上;在形成所述第一绝缘层之前,所述制作方法还包括:在所述衬底基板上形成第二绝缘层,其中,所述第一区域的另一部分区域中,所述无机非金属材料层形成在所述第二绝缘层的表面上,采用第一气体对所述无机非金属材料层进行刻蚀以形成限定图案包括对所述第一绝缘层上的所述无机非金属材料层和所述第二绝缘层上的所述无机非金属材料层同时刻蚀以形成所述限定图案;采用第二气体对所述限定图案进行刻蚀以形成所述限定结构包括对所述第一绝缘层上的所述限定图案和所述第二绝缘层上的所述限定图案同时刻蚀以形成所述限定结构。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开实施例提供的显示基板的平面图。
图2为图1所示局部区域A11的子像素以及限定结构的示意图。
图3为沿图2所示BB’所截的局部截面结构示意图。
图4A为图3所示区域C的放大图。
图4B为不同示例中图3所示区域C的放大图。
图5为根据本公开实施例的另一示例提供的显示基板的部分截面结构示意图。
图6和图7A为根据本公开实施例的不同示例提供的显示基板的局部平面结构示意图。
图7B为根据本公开实施例提供的第二电极覆盖限定结构的平面示意图。
图8为沿图2所示DD’线所截的局部截面结构示意图。
图9A为沿图1所示EE’线所截的局部截面结构示意图。
图9B为根据本公开实施例的一示例提供的第一区域靠近第二区域的部分截面结构示意图。
图10为根据本公开另一实施例提供的显示装置的示意框图。
图11A至图11E为根据本公开实施例提供的显示基板的部分区域的制作方法的示意性工艺流程图。
图12A至图12C为根据本公开实施例提供的显示基板的另一部分区域的制作方法的示意性工艺流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
本公开实施例中使用的“平行”、“垂直”以及“相同”等特征均包括严格意义的“平行”、“垂直”、“相同”等特征,以及“大致平行”、“大致垂直”、“大致相同”等包含一定误差的情况,考虑到测量和与特定量的测量相关的误差(例如,测量系统的限制),表示在本领域的普通技术人员所确定的对于特定值的可接受的偏差范围内。例如,“大致”能够表示在一个或多个标准偏差内,或者在所述值的10%或者5%内。在本公开实施例的下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。“至少一个”指一个或多个,“多个”指至少两个。
在研究中,本申请的发明人发现:发光元件的发光功能层可以包括层叠设置的多层发光层,该多层发光层中的至少两层之间设置有电荷产生层(CGL),电荷产生层的导电率较大,在电荷产生层为整面膜层时,相邻两个发光元件的电荷产生层是连续膜层,容易使得相邻子像素之间产生串扰,导致显示基板出现色偏。如电荷产生层容易导致低亮度下不同颜色子像素之间发生串扰,导致低灰阶色偏。
本公开的实施例提供一种显示基板及其制作方法、以及显示装置。显示基板包括:衬底基板以及位于衬底基板上的多个子像素。衬底基板至少包括第一区域;多个子像素位于第一区域,至少部分子像素中的每个子像素包括发光元件,发光元件包括发光功能层以及沿垂直于衬底基板的方向位于发光功能层两侧的第一电极和第二电极,第一电极位于发光功能层与衬底基板之间,发光功能层包括多个膜层。显示基板还包括限定结构,至少两个相邻子像素之间设置有至少一个限定结构,位于相邻子像素之间的限定结构的靠近衬底基板一侧表面在衬底基板上的第一正投影完全位于限定结构的远离衬底基板一侧表面在衬底基板上的第二正投影内,沿该相邻子像素的发光区排列方向,第二正投影的最大尺寸大于第一正投影的最大尺寸,且限定结构包括无机非金属材料;第一区域的至少部分区域中,发光功能层中的至少一层在限定结构的边缘处断开,且相邻子像素的第二电极的至少部分连续设置。本公开提供的显示基板中设置的限定结构在隔断发光功能层的至少一层的同时,实现第二电极的连续设置,可以在降低相邻子像素之间产生的串扰的同时,避免因第二电极大面积断裂而产生的亮度均一性问题。
本公开的实施例提供一种显示基板,显示基板包括衬底基板以及位于衬底基板上的多个子像素。衬底基板至少包括第一区域;多个子像素,位于所述衬底基板上的第一区域,至少部分子像素中的每个子像素包括发光元件,所述发光元件包括发光功能层以及沿垂直于所述衬底基板的方向位于所述发光功能层两侧的第一电极和第二电极,所述第一电极位于所述发光功能层与所述衬底基板之间,所述发光功能层包括多个膜层。所述显示基板还包括限定结构,至少两个相邻子像素之间设置有至少一个限定结构,所述多个子像素包括第一子像素、第二子像素以及第三子像素,所述第二子像素和所述第三子像素均与所述第一子像素相邻,所述第一子像素与所述第二子像素之间设置的所述限定结构在该两个子像素的排列方向上的最大尺寸为第一尺寸,所述第一子像素与所 述第三子像素之间设置的所述限定结构在该两个子像素的排列方向上的最大尺寸为第二尺寸,所述第一尺寸与所述第二尺寸不同。本公开实施例通过对不同相邻子像素之间设置的限定结构的尺寸设置,可以提高限定结构与子像素排列关系的匹配,提高第二电极的导通效果。
下面结合附图对本公开实施例提供的显示基板及其制作方法、显示装置进行描述。
图1为根据本公开实施例提供的显示基板的平面图,图2为图1所示局部区域A11的子像素以及限定结构的示意图,图3为沿图2所示BB’所截的局部截面结构示意图。如图1至图3所示,显示基板包括衬底基板01,衬底基板01至少包括第一区域A1。
如图1至图3所示,显示基板包括位于衬底基板01上的多个子像素10,多个子像素10位于第一区域A1。至少部分子像素10中的每个子像素10包括发光元件100,发光元件100包括发光功能层130以及沿垂直于衬底基板01的方向位于发光功能层130两侧的第一电极110和第二电极120,第一电极110位于发光功能层130与衬底基板01之间,发光功能层130包括多个膜层。例如发光功能层130包括电荷产生层133。例如,发光元件100可以为有机发光元件。例如,位于显示区域的每个子像素均包括发光元件。
如图1至图3所示,显示基板还包括限定结构300,至少两个相邻子像10素之间设置有至少一个限定结构300,位于相邻子像素10之间的限定结构300的靠近衬底基板01一侧表面在衬底基板01上的第一正投影301完全位于限定结构300的远离衬底基板01一侧表面在衬底基板01上的第二正投影302内,沿该相邻子像素10的发光区排列方向,第二正投影302的最大尺寸S2大于第一正投影301的最大尺寸S1。上述相邻子像素的发光区排列方向可以为平行于子像素10的中心连线的方向,如图2所示V方向,或者U方向,或者X方向,或者Z方向。例如,任意相邻子像素10之间均设置限定结构300。
如图1至图3所示,限定结构300包括无机非金属材料。例如,限定结构300的材料可以包括硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种。
如图1至图3所示,第一区域A1的至少部分区域中,发光功能层130中的至少一层在限定结构300的边缘处断开,且第二电极120在限定结构300的边缘处连续设置。
本公开提供的显示基板中设置的限定结构的边缘在隔断发光功能层的至少一层的同时,位于限定结构边缘位置处的第二电极的连续设置,可以在降低相邻子像素之间产生的串扰的同时,避免因第二电极大面积断裂而产生的亮度均一性问题,如显示区域第二电极大面积隔断后,会导致VSS信号压降增加,产生亮度均一性问题。
上述限定结构可以指用于限定发光功能层的至少一层膜层的分布的结构,例如限定发光功能层的至少一层膜层在其边缘处断开,且第二电极在该边缘处连续设置。
本公开任一实施例中的“相邻子像素”指两个子像素10之间没有设置其他子像素10。
例如,如图3所示,发光功能层130可以包括层叠设置的第一发光层(EML)131、电荷产生层(CGL)133以及第二发光层(EML)132,电荷产生层133位于第一发光层131与第二发光层132之间。电荷产生层具有较强的导电性,可以使得发光功能层具有寿命长、功耗低以及可实现高亮度的优点,例如,相对于没有设置电荷产生层的发光功能层,子像素通过在发光功能层中设置电荷产生层可以将发光亮度提高近一倍。
例如,同一子像素10的发光元件100可以串联式(tandem)发光元件,如Tandem OLED。
例如,电荷产生层133可以包括N型电荷产生层和P型电荷产生层。
例如,各子像素10中,发光功能层130还可以包括空穴注入层(HIL)、空穴传输层(HTL)、电子传输层(ETL)和电子注入层(EIL)。
例如,空穴注入层、空穴传输层、电子传输层、电子注入层以及电荷产生层133均为多个子像素10的共用膜层,可以称为共通层。例如,发光功能层130中在限定结构300的边缘处断开的至少一层膜层可以为上述共通层中的至少一层膜层。通过将上述共通层中的至少一层膜层在位于相邻子像素之间的限定结构300的边缘处断开,可以有利于降低相邻子像素之间产生串扰的几率。例如,上述共通层以及第二电极可以为采用开口掩模(open mask)形成的膜层。
例如,第二发光层132可以位于第一发光层131与第二电极120之间,空穴注入层可以位于第一电极110与第一发光层131之间。例如,电荷产生层133与第一发光层131之间还可以设置电子传输层。例如,第二发光层132与电荷产生层133之间可以设置空穴传输层。例如,第二发光层132与第二电极120 之间可以设置电子传输层和电子注入层。
例如,同一个子像素10中,第一发光层131和第二发光层132可以为发射相同颜色光的发光层。例如,发不同颜色光的子像素10中的第一发光层131发射不同颜色光。例如,发不同颜色光的子像素10中的第二发光层132发射不同颜色光。当然,本公开实施例不限于此,例如,同一子像素10中,第一发光层131和第二发光层132可以为发射不同颜色光的发光层,通过在同一子像素10中设置发射不同颜色光的发光层可以使得子像素10包括的多层发光层发射的光混合为白光,通过设置彩膜层来调节每个子像素出射光的颜色。
例如,如图1至图3所示,相邻子像素10的第一发光层131可以在限定结构300上交叠。例如,相邻子像素10的第二发光层132可以在限定结构300上交叠。但不限于此,例如,相邻子像素10的第一发光层131可以在限定结构300上间隔设置,相邻子像素10的第二发光层132可以在限定结构300上间隔设置;或者,限定结构300上可以仅设置相邻子像素10中的一个子像素10的第一发光层131,限定结构300上可以仅设置相邻子像素10中的一个子像素10的第二发光层132。
例如,相邻子像素10中,位于电荷产生层133同一侧的发光层可以彼此间隔设置,也可以在两个子像素10之间的间隔处交叠或者相接,本公开实施例对此不作限制。
例如,电子传输层的材料可以包括芳族杂环化合物,例如苯并咪唑衍生物、咪唑并吡啶衍生物、苯并咪唑并菲啶衍生物等咪唑衍生物;嘧啶衍生物、三嗪衍生物等嗪衍生物;喹啉衍生物、异喹啉衍生物、菲咯啉衍生物等包含含氮六元环结构的化合物(也包括在杂环上具有氧化膦系的取代基的化合物)等。
例如,电荷产生层133的材料可以是含有磷氧基团的材料,也可以是含有三嗪的材料。
例如,电荷产生层133的材料电子迁移率与电子传输层电子迁移率之比为10 -2~10 2
例如,如图3所示,发光功能层130中至少一层可以为电荷产生层133,电荷产生层133在衬底基板01上的第一电荷产生层正投影是连续的,且在垂直于衬底基板01的平面上的第二电荷产生层正投影不连续。例如,电荷产生层133可以包括位于限定结构300上的部分以及没有位于限定结构300上的部分,这两部分在限定结构300的边缘处断开。例如,这两部分在衬底基板01上 的第一电荷产生层正投影可以相接或者交叠,第一电荷产生层正投影是连续的。例如,这两部分与衬底基板01之间的距离不同,则这两部分在垂直于衬底基板的平面(BB’线与Y方向所在平面)上的第二电荷产生层正投影是不连续的。
例如,如图3所示,发光功能层130包括至少一层发光层,发光功能层130中在限定结构300处断开的膜层中包括至少一层发光层以及至少一层其他膜层;断开的至少一层其他膜层在衬底基板01上的正投影的面积大于断开的至少一层发光层在衬底基板01上的正投影的面积;或者,断开的至少一层其他膜层覆盖限定结构300的部分的面积,大于断开的至少一层发光层覆盖限定结构300的部分的面积。
例如,如图3所示,多个子像素10中的第二电极120可以为多个子像素10共用的公共电极,在上述相邻两个子像素10之间没有设置限定结构300时,第二电极120为整层膜层。
例如,如图3所示,第二电极120以及发光功能层130包括的多个膜层的至少一层与限定结构300在衬底基板01上的正投影有交叠。
例如,发光功能层130包括的多个膜层的至少一层的至少部分覆盖限定结构300的部分侧表面。
例如,第二电极120与限定结构300在垂直于衬底基板01的方向上交叠的部分的厚度小于第二电极120与限定结构300不交叠的至少部分的厚度,电荷产生层133与限定结构300在垂直于衬底基板01的方向上交叠的部分的厚度小于电荷产生层133与限定结构300不交叠的至少部分的厚度。
例如,第二电极120位于限定结构300中心的部分的厚度大于第二电极200位于限定结构300边缘的部分的厚度,电荷产生层133位于限定结构300中心的部分的厚度大于电荷产生层133位于限定结构300边缘的部分的厚度。例如,位于限定结构300上的第二电极120的中间部分的厚度大于边缘的厚度。例如,位于限定结构300上的电荷产生层133的中间部分的厚度大于边缘的厚度。
例如,图3示意性的示出发光功能层130包括的所有膜层均在限定结构300的边缘处断开,第二电极120在限定结构300的边缘处没有断开。但不限于此,其他示例中,可以通过对限定结构的厚度进行设置,使得发光功能层中靠近衬底基板一侧的部分膜层在限定结构的边缘处断开,发光功能层中远离衬底基板一侧的部分膜层在限定结构的边缘处没有断开,如电荷产生层远离衬底 基板一侧的膜层没有断开,电荷产生层及其靠近衬底基板一侧的膜层断开,且第二电极在限定结构的边缘处没有断开。
例如,第一电极110可以为阳极,第二电极120可以为阴极。例如,阴极可由高导电性和低功函数的材料形成,例如,阴极可采用金属材料制成。例如,阳极可由具有高功函数的透明导电材料形成。
例如,如图2所示,第一正投影301和第二正投影302的形状可以相同。例如,沿平行于BB’线的方向,第一正投影301的一侧的第一边缘与第二正投影302中与该第一边缘距离较近的第二边缘之间的距离与第一正投影301的另一侧的第一边缘与第二正投影302中与该第一边缘距离较近的第二边缘之间的距离之比可以为0.7~1.5。例如,上述两个第一边缘和相应的两个第二边缘之间的距离之比可以为0.8~1.3。例如,上述两个第一边缘和相应的两个第二边缘之间的距离之比可以为0.9~1.4。例如,上述两个第一边缘和相应的两个第二边缘之间的距离之比可以为0.95~1.2。例如,上述两个第一边缘和相应的两个第二边缘之间的距离之比可以为1~1.1。
在一些示例中,如图3所示,限定结构300被中心连线所在平面所截的截面形状包括第一梯形310,第一梯形310远离衬底基板01的第一底边311的长度大于第一梯形310靠近衬底基板01的第二底边312的长度,该平面垂直于衬底基板01,如可以为图3所示的VY面。但不限于此,该平面还可以为UY面、XY面等。
在一些示例中,如图3所示,限定结构300的厚度为300~550埃。例如,限定结构300的厚度为320~530埃。例如,限定结构300的厚度为350~400埃。例如,限定结构300的厚度为330~420埃。例如,限定结构300的厚度为360~450埃。例如,限定结构300的厚度为380~500埃。例如,限定结构300的厚度为480~520埃。
例如,如图3所示,沿垂直于衬底基板01的方向,限定结构300的厚度与发光功能层130的厚度之比为0.7~1.5。例如,限定结构300的厚度与发光功能层130的厚度之比为0.8~1.2。例如,限定结构300的厚度与发光功能层130的厚度之比为0.9~1.1。
在一些示例中,如图3所示,第一梯形310的腰与第二底边312之间的夹角为110~150度。例如,第一梯形310的腰与第二底边312之间的夹角为115~130度。例如,第一梯形310的腰与第二底边312之间的夹角为112~140 度。例如,第一梯形310的腰与第二底边312之间的夹角为120~148度。例如,第一梯形310的腰与第二底边312之间的夹角为118~135度。例如,第一梯形310的腰与第二底边312之间的夹角为122~145度。例如,第一梯形310的腰与第二底边312之间的夹角为135~146度。
例如,第一梯形310的两个腰的长度之比为0.9~1.1。例如,第一梯形310的两个腰的长度相同。
例如,如图3所示,上述第一底边311为限定结构300远离衬底基板01一侧的表面被VY面所截的截线,上述第二底边312为限定结构200面向衬底基板01一侧的表面被VY面所截的截线,上述腰为限定结构300的侧壁被VY面所截的截线。例如,限定结构300的侧壁为倾斜侧壁,该倾斜侧壁向远离该限定结构中心一侧倾斜。
本公开实施例中的第一梯形包括标准梯形和大致梯形,标准梯形中的腰、第一底边以及第二底边均为直边,大致梯形中的腰、第一底边以及第二底边中的至少之一为曲线边。例如,第一梯形中的腰为曲线边时,该曲线边可以朝向第一底边的中点的方向弯曲,也可以向远离第一底边的中点的方向弯曲。在第一梯形为大致梯形时,上述腰与第二底边之间的夹角可以为腰与第二底边交点和腰与第一底边交点连线与平行于衬底基板的直线之间的夹角。
本公开提供的显示基板通过对限定结构的形状、厚度以及侧壁倾斜角度进行设置,以在隔断发光功能层的至少一层的同时,实现第二电极的连续设置,有利于在降低相邻子像素之间产生的串扰的同时,避免因第二电极的断裂而产生的亮度均一性问题。
在一些示例中,如图3所示,显示基板还包括:第一绝缘层200,位于限定结构300与衬底基板01之间。第一区域A1的至少部分区域中,第一绝缘层200与限定结构300面向衬底基板01一侧表面接触,第一绝缘层200位于第一电极110与衬底基板01之间,第一绝缘层200的材料包括有机材料。
例如,如图3所示,第一绝缘层200包括平坦(PLN,Planarization)层。
图4A为图3所示区域C的放大图。在一些示例中,如图3和图4A所示,第一绝缘层200包括与限定结构300的表面接触的凸起210,限定结构300第一正投影完全位于凸起210在衬底基板01上的正投影内。
图4B为不同示例中图3所示区域C的放大图。图4B所示限定结构300与图4A所示限定结构300不同之处在于图4B所示限定结构300的边缘为圆 角。
例如,如图3和图4A所示,第一绝缘层200包括的凸起210仅位于限定结构300下方,其他位置处没有设置凸起210,如发光元件的发光区位置处没有设置该凸起,如发光元件的第一电极位置处没有设置该凸起,如像素限定图案的像素限定部(后续描述)位置处没有设置该凸起。
例如,如图3和图4A所示,限定结构300靠近衬底基板01一侧表面在平行于衬底基板01的方向上的最大尺寸小于凸起210在该方向上的最大尺寸。例如,限定结构300的第二底边312的长度小于凸起210在平行于该第二底边312的方向上的尺寸。
例如,如图3和图4A所示,第二底边312的两端与凸起210的两端之间的两个间隔的尺寸之比可以为0.8~1.2,或者0.9~1.1,或者为1。例如,第二底边312可以位于凸起210中间区域。
在一些示例中,如图3和图4A所示,凸起210的边缘与限定结构300远离衬底基板01一侧表面的边缘齐平。例如,沿垂直于衬底基板01的方向延伸的直线经过凸起210的边缘以及限定结构300的远离衬底基板01一侧表面的边缘。例如,第二正投影与凸起210在衬底基板01上的正投影完全重合。
例如,如图3和图4A所示,凸起210的厚度可以为200~550埃。例如,凸起210的厚度可以小于限定结构300的厚度。
例如,如图3和图4A所示,发光功能层113覆盖凸起210的侧壁。例如,发光功能层113覆盖凸起210远离衬底基板01一侧的表面。
例如,可以在形成限定结构300的过程中对工艺进行调控以使得凸起210的厚度尽量小。
例如,如图3和图4A所示,凸起210被垂直于衬底基板01的VY面所截的截面的形状可以为矩形。
在一些示例中,如图3所示,第一电极110的表面与第一绝缘层200的表面接触,且第一电极110远离衬底基板01一侧表面与衬底基板01之间的距离小于限定结构300远离衬底基板01一侧表面与衬底基板01之间的距离。
例如,如图3所示,限定结构300和第一电极110均位于第一绝缘层200上,且限定结构300与第一电极110间隔设置。
在一些示例中,如图1至图3所示,显示基板还包括像素限定图案400,位于第一电极110远离衬底基板01的一侧,至少位于第一区域A1的像素限定 图案400包括多个第一开口410,一个子像素10对应至少一个第一开口410,子像素10的发光元件100至少部分位于子像素10对应的第一开口410中,且第一开口410被配置为暴露第一电极110。例如,第一开口410暴露第一电极110的一部分。例如,一个子像素10可以对应一个第一开口410。
例如,如图3所示,当发光功能层130形成在像素限定图案400的第一开口410中时,位于发光功能层130两侧的第一电极110和第二电极120能够驱动的第一开口410中的发光功能层130进行发光。例如,上述发光区可以指子像素有效发光的区域,发光区的形状指二维形状,例如发光区的形状可以与像素限定图案400的第一开口410的形状相同。
例如,如图3所示,像素限定图案400包括围绕第一开口410的像素限定部401,像素限定部401的材料可以包括聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等。
在一些示例中,如图3所示,像素限定图案400还包括第二开口420,限定结构300的至少部分被第二开口420暴露。例如,限定结构300位于第二开口420中,如限定结构300完全被第二开口420暴露。例如,限定结构300与像素限定图案400的像素限定部401之间设置有间隔。
在一些示例中,如图3所示,发光功能层130的至少一层在第二开口420暴露的限定结构300的至少部分边缘处断开,且第二电极120在该边缘处连续设置。
例如,如图3所示,沿V方向,第一开口410的尺寸可以小于第二开口420的尺寸。但不限于此,可以根据产品需要对第二开口的尺寸进行设置。
例如,如图3所示,沿垂直于衬底基板01的方向,限定结构300厚度小于像素限定部401的厚度。
例如,如图3和图4A所示,凸起210的至少部分位于第二开口420内。例如,凸起210完全位于第二开口420内。
例如,像素限定图案400的像素限定部401远离衬底基板01的一侧还可以设置隔垫物,隔垫物被配置为支撑制作发光层的蒸镀掩模板。
例如,图3至图4A示意性的示出相邻子像素10之间设置有一个限定结构300,但不限于此,相邻子像素10之间可以设置两个或者更多个限定结构,可以根据相邻子像素之间的距离以及限定结构的尺寸设置限定结构的数量。
例如,相邻两个子像素10之间设置有一个限定结构300,限定结构300与 两个子像素10的发光区之间的距离之比可以为0.8~1.1,或者0.9~1。
例如,在像素限定图案400远离衬底基板01一侧可以设置隔垫物以及薄膜封装层。例如,在像素限定图案400远离衬底基板01一侧还可以设置彩膜层。
图5为根据本公开实施例的另一示例提供的显示基板的部分截面结构示意图。图5所示显示基板与图3至图4A所示显示基板的不同之处在于图5所示第二开口420仅暴露部分限定结构300,限定结构300的部分被像素限定部401覆盖,限定结构300被第二开口420暴露的部分的边缘用于断开发光功能层130的至少一层,且第二电极120在限定结构300的被第二开口420暴露的边缘处连续设置。
例如,相邻子像素之间可以设置多个限定结构,至少一个限定结构被第二开口暴露,如至少一个限定结构的部分被像素限定部覆盖。
在一些示例中,如图2所示,多个子像素10包括多个第一颜色子像素101、多个第二颜色子像素102以及多个第三颜色子像素103。例如,第一颜色子像素101和第三颜色子像素103之一发红光,另一个发蓝光;第二颜色子像素102发绿光。图12示意性的示出第一颜色子像素101发红光,为红色子像素;第三颜色子像素103发蓝光,为蓝色子像素;第二颜色子像素102发绿光,为绿色子像素。
例如,如图2所示,多个第一颜色子像素101和多个第三颜色子像素103沿平行于衬底基板01的X方向和Z方向均交替设置以形成多个第一像素行和多个第一像素列,多个第二颜色子像素102沿X方向和Z方向均阵列排布以形成多个第二像素行和多个第二像素列,多个第一像素行和多个第二像素行沿Z方向交替设置且在X方向上彼此错开,多个第一像素列和多个第二像素列沿X方向交替设置且在Z方向上彼此错开。
在一些示例中,如图2所示,限定结构300包括多个第一环形限定结构320,第一环形限定结构320围绕多个第一颜色子像素101、多个第二颜色子像素102和多个第三颜色子像素103中的至少一个子像素10。
例如,如图2所示,第一颜色子像素101、第二颜色子像素102以及第三颜色子像素103中的至少一种颜色子像素10中的每个子像素10被第一环形限定结构320围绕。
例如,如图2所示,沿V方向排列的子像素10可以共用第一环形限定结 构320的一部分。例如,沿U方向排列的子像素10可以共用第一环形限定结构32的一部分。
例如,如图2所示,沿X方向排列的相邻两个子像素10对应的两个第一环形限定结构320可以为一体化的结构,也可以间隔设置。例如,沿Z方向排列的相邻两个子像素10对应的两个第一环形限定结构320可以为一体化的结构,也可以间隔设置。
例如,至少一个第一环形限定结构320可以为闭合环形结构。例如,至少一个第一环形限定结构320可以为非闭合环形结构。例如,部分第一环形限定结构320可以为闭合环形结构,另一部分第一环形限定结构320可以为非闭合环形结构。例如,所有第一环形限定结构320可以均为闭合环形结构。例如,所有第一环形限定结构320可以均为非闭合环形结构。
例如,具有非闭合环形结构的第一环形限定结构320可以包括至少一个缺口321。例如,第一环形限定结构320可以包括一个缺口321,或者两个缺口321,或者三个缺口321。例如,不同第一环形限定结构320包括的缺口321的数量可以相同,也可以不同。
例如,如图2所示,限定结构300的至少部分边界和与其紧邻的子像素10的发光区的边界轮廓大致相同。例如,子像素10的发光区的边界轮廓可以包括多条直边,和/或,连接相邻直线的弧形边,围绕该发光区的限定结构300的边界轮廓中可以包括与发光区的直边对应的直边轮廓,和/或,与弧形边对应的弧边轮廓。
图6和图7A为根据本公开实施例的不同示例提供的显示基板的局部平面结构示意图。图6和图7A所示显示基板与图2所示显示基板的不同之处在于限定结构300的形状不同,如平面形状不同,如限定结构的宽度不同。可以根据子像素的发光区的尺寸以及相邻子像素的发光区之间的距离对限定结构的平面形状、宽度、第一环形限定结构围绕的开口进行灵活设置。
例如,图6所示限定结构300和与其相邻子像素10的发光区之间的距离不同于图2所述限定结构和与其相邻子像素10的发光区之间的距离。例如,图6所示限定结构300的第一梯形截面上底的长度不同于图2所示限定结构300的第一梯形截面上底的长度。
例如,图6所示限定结构300中位于沿X方向或者沿Z方向排列的相邻子像素10之间的部分的尺寸较大。例如,图7A所示至少一个第一环形限定结 构320为闭合环形。
例如,如图2和图6所示,在垂直于衬底基板01的方向,第一电极110的部分与第一环形限定结构320的缺口321交叠。例如,一个第一环形限定结构320包括至少两个缺口321,且每个缺口321与不同子像素10的第一电极110交叠。
例如,第一电极110的部分在衬底基板上的正投影插入第一环形结构320在衬底基板上的正投影的缺口内。例如,在垂直于所述衬底基板的方向,所述第一环形限定结构320与所述连接电极不交叠。
本公开一示例提供的显示基板中,通过在第一环形限定结构中设置用于避让第一电极的缺口,可以防止第一环形限定结构对发光元件的第一电极的位置发生干涉。
例如,如图7A所示,限定结构300边缘位置处仅用于断开发光元件中发光功能层的至少部分膜层,而没有断开发光元件的第二电极,将至少一个第一环形限定结构320设置为围绕子像素10的封闭环形,有利于将不同子像素10中的电荷产生层完全断开而避免相邻子像素之间发生串扰的同时,实现第二电极的连续性以提高显示均一性。
本公开提供的显示基板中,通过对第一环形限定结构的位置以及尺寸进行设置,在避让第一电极的同时,采用闭合环形结构,进而在降低相邻子像素之间产生的串扰的同时,避免第二电极的断裂而产生的亮度均一性问题。
在一些示例中,如图2、图3、图6和图7B所示,至少一个子像素10的所述第二电极120和与其在第一子方向(如行方向和列方向之一,如第三方向和第四方向之一)相邻的子像素10的所述第二电极120连续设置,且所述至少一个子像素10的所述第二电极120和与其在第二子方向(如行方向和列方向的另一个,如第三方向和第四方向的另一个)相邻的子像素10的所述第二电极120断开设置,所述第一子方向和所述第二子方向相交。
在一些示例中,如图2、图3、图6和图7B所示,至少一个子像素10的所述第二电极120和与其在第一子方向相邻的子像素10的所述第二电极120连续设置,且所述至少一个子像素10的所述第二电极120和与其在第二子方向相邻的子像素10的所述第二电极120连续设置,所述第一子方向和所述第二子方向相交。
例如,如图2、图3、图6和图7B所示,任一个子像素10的第二电极120 可以和与其在任一方向相邻的子像素10的第二电极120均连续设置以提高第二电极的导通效果。例如,任一子像素10的第二电极120可以在和与其在至少一个方向相邻的子像素10的第二电极120连续设置,以至少保证子像素的第二电极的导通性。
在一些示例中,如图2、图3、图6和图7B所示,所述限定结构300围绕至少一个子像素10的50%以上的轮廓。
例如,限定结构300围绕至少一个子像素10的55%以上的轮廓。例如,限定结构300围绕至少一个子像素10的60%以上的轮廓。例如,限定结构300围绕至少一个子像素10的65%以上的轮廓。例如,限定结构300围绕至少一个子像素10的70%以上的轮廓。例如,限定结构300围绕至少一个子像素10的75%以上的轮廓。例如,限定结构300围绕至少一个子像素10的80%以上的轮廓。例如,限定结构300围绕至少一个子像素10的85%以上的轮廓。例如,限定结构300围绕至少一个子像素10的90%以上的轮廓。例如,限定结构300围绕至少一个子像素10的95%以上的轮廓。
在一些示例中,如图2、图3、图6和图7B所示,至少一个子像素10的所述第二电极120和与其相邻的子像素10的所述第二电极120连续设置,且该相邻设置的两个子像素10之间的所述第二电极120在垂直于两者排布方向上的最小宽度大于1微米。例如,上述最小宽度可以大于2微米。例如,上述最小宽度可以大于3微米。例如,上述最小宽度可以大于4微米。例如,上述最小宽度可以大于5微米。例如,上述最小宽度可以大于6微米。例如,上述最小宽度可以大于7微米。例如,上述最小宽度可以大于8微米。例如,上述最小宽度可以大于9微米。例如,上述最小宽度可以大于10微米。
例如,如图6所示,第一尺寸D1大于1微米。例如,如图6所示,D5大于1微米。
在一些示例中,如图2、图3、图6和图7B所示,该相邻设置的两个子像素10的中心连线在所述第二电极120所在平面的正投影位于所述第二电极120内。
例如,上述中心连线在衬底基板上的正投影位于第二电极120在衬底基板上的正投影内,上述中心连线所在位置处的第二电极120连续设置。
在一些示例中,如图2、图6和图7B所示,至少部分限定结构300的轮廓与被所述至少部分限定结构300围绕的所述子像素10的发光区的轮廓相同, 且不同限定结构300与被所述不同限定结构300围绕的所述子像素10的发光区的彼此靠近的边缘之间的间距之比为0.9~1.1。例如,该间距相同。
例如,该间距可以为7~10微米。例如,该间距可以为8~9微米。
例如,同一限定结构围绕的子像素的发光区与该限定结构的彼此靠近的边缘之间的不同位置处距离之比为0.9~1.1。例如,同一限定结构围绕的子像素的发光区与该限定结构的彼此靠近的边缘之间的不同位置处距离相等。
图8为沿图2所示DD’线所截的局部截面结构示意图。在一些示例中,如图2和图8所示,至少部分子像素10中的每个子像素10还包括像素电路140,至少一个子像素10的发光元件100的第一电极110包括主体电极111和连接电极112,在垂直于衬底基板01的方向上,主体电极111与发光元件100的发光区001交叠,且连接电极112与发光元件100的发光区001没有交叠。例如,发光元件100的发光区001在衬底基板01上的正投影完全位于主体电极111在衬底基板01上的正投影内。例如,主体电极111的形状与发光区001的形状基本相同。例如,同一个第一电极110中的主体电极111与连接电极112为一体化设置的结构。例如,每个子像素10的发光元件100的第一电极110包括主体电极111和连接电极112。
在一些示例中,如图2和图8所示,像素电路140与连接电极112电连接。例如,第一电极110可以通过贯穿第一绝缘层200等膜层的过孔与像素电路140中的薄膜晶体管的源极和漏极之一连接。
例如,如图8所示,像素电路可以包括多个晶体管以及至少一个电容。例如,像素电路可以包括发光控制晶体管,如发光控制晶体管包括有源层261、栅极264、源极262和漏极263,漏极263与发光元件100的第一电极110电连接。例如,显示基板还包括栅极绝缘层02和03、层间绝缘层04以及钝化层05等膜层。例如,像素电路还包括存储电容。例如,第一绝缘层200与衬底基板01之间设置有栅极绝缘层、层间绝缘层、像素电路中的各膜层、数据线、栅线、电源信号线、复位电源信号线、复位控制信号线、发光控制信号线等膜层或者结构。
例如,像素电路可以为8T1C(即八个晶体管和一个电容)结构,或者7T1C结构、或者7T2C结构、或者6T1C结构、或者6T2C结构或者9T2C结构,本公开实施例对此不作限定。
在一些示例中,如图2和图8所示,围绕至少一个子像素10的第一环形 限定结构320包括缺口321,在垂直于衬底基板01的方向,缺口321与连接电极112交叠。例如,在垂直于衬底基板01的方向,缺口321与主体电极111没有交叠。
在一些示例中,如图1所示,衬底基板01还包括第二区域A2,第一区域A1位于第二区域A2的周边。例如,第一区域A1围绕第二区域A2的至少部分。例如,图1示出的第二区域A2位于衬底基板01的顶部正中间位置,例如呈矩形的第一区域A1的四侧可以均围绕第二区域A2,即第二区域A2可以被第一区域A1包围。例如,该第二区域A2也可以不位于图1所示衬底基板01的顶部正中间位置处,而是位于其他位置。例如,第二区域A2可以位于衬底基板01的左上角位置或右上角位置处。例如,第一区域A1可以包括显示区,第二区域A2可以为显示区,也可以为非显示区,如孔区,例如孔区可以设置感光传感器等所需硬件结构。例如,第一区域A1可以包括远离第二区域A2的显示区域以及围绕第二区域A2的非显示区域。例如,第一环形限定结构位于显示区域。
例如,第二区域A2的形状可以为圆形或者椭圆形。但不限于此,第二区域A2的形状可以为多边形,如四边形、六边形或者八边形等。例如,第一区域A1的形状可以为四边形,如矩形,但不限于此,第一区域的A1的形状也可以为圆形、除四边形外的其他多边形,如六边形、八边形等。
图9A为沿图1所示EE’线所截的局部截面结构示意图。在一些示例中,如图1、图8和图9A所示,显示基板还包括第二绝缘层500,位于限定结构300与衬底基板01之间。
在一些示例中,如图1、图8和图9A所示,第二绝缘层500位于第一绝缘层200面向衬底基板01的一侧。例如,在图9A所示区域以外的区域,第二绝缘层500可以与第一绝缘层200层叠设置。例如,图9A所示区域没有设置第一绝缘层200。例如,图9A所示区域为第一区域A1包括的非显示区域。
在一些示例中,如图1、图8和图9A所示,第二绝缘层500的材料包括无机非金属材料,且第二绝缘层500的材料与限定结构300的材料不同。例如,限定结构300的材料包括氮化硅,第二绝缘层500的材料包括氧化硅。
在一些示例中,如图1和图9A所示,第二绝缘层500包括围绕第二区域A2的至少一个环形绝缘部510,限定结构300还包括与环形绝缘部510远离衬底基板01一侧表面接触的第二环形限定结构330,发光功能层130以及第 二电极120均在第二环形限定结构330的边缘位置处断开。图1仅示意性的示出第二环形限定结构330,没有示出环形绝缘部510。例如,环形绝缘部与第二区域A2的边缘之间没有设置用于显示图像的子像素。
例如,如图1所示,第二环形限定结构330位于第一区域A1,且围绕第二区域A2。例如,第二环形限定结构330的数量可以为三个,但不限于此,第二环形限定结构的数量可以为一个、两个、四个或者更多个,可以根据产品需求进行设置。
第二区域不设置发光元件,通过在第二区域的周围设置用于断开发光功能层和第二电极的至少一圈第二环形限定结构,可以将位于第一区域的发光元件与第二区域分隔开。
例如,第二环形限定结构330的材料包括无机非金属材料,如氮化硅。
相对于一般显示基板中设置围绕孔区的金属材料制作的隔离柱,且该隔离柱与发光元件的第二电极电连接的设计,本公开提供的显示基板中,围绕第二区域的第二环形限定结构采用无机材料,该第二环形限定结构与第二电极没有电连接关系,可以避免第二电极通电后,孔区(AA hole)位置因生产工艺过程中产生的杂质通过第二环形限定结构影响第二电极的信号而导致孔区周围显示区出现黑斑(grow dark spot,GDS)的问题。
例如,发光功能层130的至少部分膜层可以覆盖环形绝缘部510的边缘。例如,发光功能层130的至少部分膜层可以覆盖第二环形限定结构330的至少部分边缘。
例如,如图3、图7A以及图9A所示,第一环形限定结构320的厚度与第二环形限定结构330的厚度之比为0.8~1.2。例如,第一环形限定结构320的厚度与第二环形限定结构330的厚度之比为0.9~1。例如,第一环形限定结构320的厚度与第二环形限定结构330的厚度之比为0.95~1.1。例如,第一环形限定结构320的厚度与第二环形限定结构330的厚度之比为0.85~1。
在一些示例中,如图1和图9A所示,第二环形限定结构330在衬底基板01上的正投影位于环形绝缘部510在衬底基板01上的正投影内。
例如,如图9A所示,第二环形限定结构330靠近衬底基板一侧的表面在衬底基板上的正投影完全位于第二环形限定结构330远离衬底基板一侧的表面在衬底基板上的正投影内。
在一些示例中,如图9A所示,第二环形限定结构330的截面包括第二梯 形340,第二梯形340远离衬底基板的底边341的长度大于第二梯形340靠近衬底基板的底边342的长度。
在一些示例中,如图3、图7A以及图9A所示,第一梯形310在垂直于衬底基板01的方向的尺寸与第二梯形340在垂直于衬底基板01的方向的尺寸之比为0.8~1.2,且第一梯形310的腰与第二底边312之间的夹角与第二梯形340的腰与第二梯形340的靠近衬底基板01一侧底边之间的夹角之比为0.8~1.2。
例如,如图3、图7A以及图9A所示,第二梯形340的腰与底边342之间的夹角与第一梯形310的腰与第二底边312之间的夹角之比可以为0.9~1。例如,第二梯形340的腰与底边342之间的夹角与第一梯形310的腰与第二底边312之间的夹角之比可以为0.95~1.1。
例如,如图9A所示,第二梯形340的腰与底边342之间的夹角为110~150度。例如,第二梯形340的腰与底边342之间的夹角为115~130度。例如,第二梯形340的腰与底边342之间的夹角为112~140度。例如,第二梯形340的腰与底边342之间的夹角为120~148度。例如,第二梯形340的腰与底边342之间的夹角为118~135度。例如,第二梯形340的腰与底边342之间的夹角为122~145度。例如,第二梯形340的腰与底边342之间的夹角为135~146度。
本公开实施例中的第二梯形包括标准梯形和大致梯形,标准梯形中的腰、两条底边均为直边,大致梯形中的腰、两条底边中的至少之一为曲线边。例如,第二梯形中的腰为曲线边时,该曲线边可以朝向底边的中点的方向弯曲,也可以向远离底边的中点的方向弯曲。
例如,如图4A和图9A所示,环形绝缘部510的厚度大于凸起210的厚度。例如,环形绝缘部510的厚度大于第二环形限定结构320的厚度。
例如,如图2、图3以及图9A所示,第一环形限定结构320上第二电极120与第一环形限定结构320以外位置的第二电极120之间的段差小于第二环形限定结构330上第二电极120与第二环形限定结构330以外位置的第二电极120之间的段差,可以实现第一环形限定结构边缘位置处第二电极连续设置的同时,第二环形限定结构边缘位置处第二电极断开。
例如,图9A示意性的示出相邻环形绝缘部510之间没有设置第二绝缘层500,但不限于此,多个环形绝缘部510之间也可以设置具有较小厚度的第二绝缘层,多个环形绝缘部510为一体化设置的结构。例如,图9A所示区域中,与第二环形限定结构320交叠位置处的第二绝缘层500的厚度大于与第二环形 限定结构320没有交叠位置处的第二绝缘层500的厚度以使得与第二环形限定结构320交叠位置形成环形绝缘部510。
本公开实施例提供的显示基板,可以将各位置处的限定结构的厚度等参数设置的相同的同时,通过调整环形绝缘部的厚度实现第一环形限定结构边缘位置处的第二电极连续设置,且第二环形限定结构边缘位置处的第二电极断开设置。
本公开提供的显示基板中,将位于相邻子像素之间的限定结构与围绕第二区域的限定结构分别设置在材料不同的第一绝缘层和第二绝缘层中,可以采用同一步工艺实现相邻子像素之间限定结构边缘不断开第二电极的同时,围绕第二区域的限定结构边缘断开第二电极。
例如,如图1和图9A所示,沿第二区域A2的中心指向边缘的方向,环形绝缘部510的最大尺寸大于第二环形限定结构330的最大尺寸。
例如,如图9A所示,第二环形限定结构330在衬底基板上的正投影完全位于环形绝缘部510在衬底基板上的正投影内。
例如,如图9A所示,环形绝缘部510的截面可以为矩形,矩形的平行于衬底基板的边的长度大于第二梯形340的远离衬底基板一侧底边的长度。例如,相邻环形绝缘部510之间的距离小于相邻第二环形限定结构330之间的距离。当然,本公开实施例不限于此,环形绝缘部510的截面可以为梯形,如梯形可以为正梯形,或者倒梯形。
如图1至图8所示,本公开实施例提供一种显示基板,包括衬底基板01以及位于衬底基板01上的多个子像素10。衬底基板01至少包括第一区域A1;多个子像素10位于衬底基板01上的第一区域A1,至少部分子像素10中的每个子像素10包括发光元件100,发光元件100包括发光功能层130以及沿垂直于衬底基板01的方向位于发光功能层130两侧的第一电极110和第二电极120,第一电极110位于发光功能层130与衬底基板01之间,发光功能层130包括多个膜层。显示基板还包括限定结构300,至少两个相邻子像素10之间设置有至少一个限定结构300,多个子像素10包括第一子像素、第二子像素以及第三子像素。例如,第一子像素、第二子像素以及第三子像素可以为三种不同颜色子像素,如分别为第一颜色子像素101、第二颜色子像素102以及第三颜色子像素103。以第一子像素为第一颜色子像素101,第二子像素为第二颜色子像素102,第三子像素为第三颜色子像素103为例,则第二子像素102和第 三子像素103均与第一子像素101相邻。
如图6所示,第二子像素102和第三子像素103均与第一子像素101相邻,第一子像素101与第二子像素102之间设置的限定结构300在该两个子像素的排列方向上的最大尺寸为第一尺寸D1,第一子像素101与第三子像素103之间设置的限定结构300在该两个子像素的排列方向上的最大尺寸为第二尺寸D2,第一尺寸D1与第二尺寸D2不同。例如,第一子像素101与第二子像素102的排列方向可以为U方向或者V方向,第一子像素101与第三子像素103的排列方向可以为X方向或者Z方向。上述“第二子像素102和第三子像素103均与第一子像素101相邻”可以指第一子像素与第二子像素在这两者的排列方向上,两者之间没有设置其他子像素;第一子像素与第三子像素在这两者的排列方向上,两者之间没有设置其他子像素。
通过对不同相邻子像素之间设置的限定结构的尺寸设置,可以提高限定结构与子像素排列关系的匹配,提高第二电极的导通效果。
例如,如图6所示,第一尺寸D1大于第二尺寸D2。当然,根据第一子像素、第二子像素以及第三子像素选取不同颜色子像素,第一尺寸与第二尺寸的大小关系可能会变化。
在一些示例中,如图6所示,多个子像素10沿第一方向和第二方向阵列排布,且多个子像素10中部分子像素10沿第三方向和第四方向阵列排布,第一方向与第二方向垂直,第三方向与第四方向垂直,第一方向与第三方向相交。例如,本公开实施例示意性的示出第一方向和第二方向之一为U方向,另一个为V方向;第三方向和第四方向之一为X方向,另一个为Z方向。例如,多个第二颜色子像素102沿第三方向和第四方向阵列排布。例如,第一颜色子像素101和第三颜色子像素103在第三方向上交替排列,且在第四方向上也交替排列,由此多个第一颜色子像素和多个第三颜色子像素沿第三方向和第四方向阵列排布。
在一些示例中,如图6所示,沿第一方向或第二方向排列的相邻两个子像素10之间的限定结构300在该两个子像素10的排列方向上的最大尺寸为第三尺寸D3,沿第三方向或第四方向排列的相邻两个子像素10之间的限定结构300在该两个子像素10的排列方向上的最大尺寸为第四尺寸D4,第三尺寸D3小于第四尺寸D4。
例如,如图6所示,第三尺寸D3可以为相邻两个子像素10的彼此平行的 两条边之间设置的限定结构300在垂直于该边的方向上的尺寸,第四尺寸D4可以为相邻两个子像素的彼此相对的两个角之间设置的限定结构300在平行于两个角连线的方向上的尺寸。
在一些示例中,如图6所示,多个子像素10包括多个绿色子像素102、多个蓝色子像素103以及多个红色子像素101,相邻两个绿色子像素102之间设置的限定结构300在该两个绿色子像素102的排列方向上的最大尺寸大于其他相邻子像素10之间设置的限定结构300在该相邻子像素10的排列方向上的最大尺寸。
例如,相邻两个绿色子像素102之间设置的限定结构300在该两个绿色子像素102的排列方向上的最大尺寸可以为D5,其他相邻子像素10之间设置的限定结构300在该相邻子像素10的排列方向上的最大尺寸可以为D3或者D4。例如,上述其他相邻子像素10可以指相邻的红色子像素和绿色子像素、相邻的蓝色子像素和红色子像素、或者相邻的蓝色子像素和绿色子像素。
在一些示例中,如图2、图6和图8所示,至少部分子像素10中的每个子像素10还包括像素电路140,至少一个子像素10的发光元件100的第一电极110包括主体电极111和连接电极112,在垂直于衬底基板的方向上,主体电极111与发光元件100的发光区交叠,且连接电极112与发光元件100的发光区没有交叠,像素电路140与连接电极112电连接;第一区域A1的至少部分区域中,发光功能层130中的至少一层在限定结构300的边缘处断开,且第二电极120在与连接电极112交叠位置处的至少部分连续设置。
例如,如图6和图8所示,第一电极110通过贯穿第一绝缘层200的阳极过孔201与像素电路140电连接,第二电极120在该阳极过孔201位置处连续设置。
在一些示例中,如图2、图6和图8所示,在垂直于衬底基板的方向上,限定结构300与连接电极112的至少部分没有交叠。例如,在垂直于衬底基板的方向上,限定结构300与阳极过孔201没有交叠。
在一些示例中,如图2和图6所示,至少部分子像素10中的第二电极120包括面状结构或者网状结构。
图7B为根据本公开实施例提供的第二电极覆盖限定结构的平面示意图。例如,第二电极120为透明电极,图7B以半透明填充图案示意。例如,如图7B所示,第二电极120可以为覆盖多个子像素10的面状结构,即多个子像素 10共用面状结构的第二电极120,第二电极120在各位置处,尤其在限定结构300的边缘处均是连续的,如全屏阴极全部连续。当然,本公开实施例不限于此,由于工艺稳定性和均一性的问题,如果部分区域无法做到第二电极始终连续,需预留能保证该区域形成网状结构的第二电极的搭接通道RO。例如,第二电极在阳极过孔位置处连续,以形成搭接通道RO。例如,搭接通道RO包括沿U方向延伸的部分和沿V方向延伸的部分,此时第二电极可以形成为网状结构。
例如,显示面板上设置挡墙(PS)位置也可以为第二电极搭接通道经过的位置。例如,在垂直于衬底基板的方向上,限定结构与挡墙不交叠。
例如,第二电极的网状搭接方式可根据子像素的形状灵活设计,如子像素周围至少预留1个缺口以作为网状搭接第二电极的通路。
例如,如图6所示,限定结构300的尺寸D3可以为2.2~2.7微米,如2.5微米。
例如,如图6所示,限定结构300到像素限定图案限定不同颜色子像素10的发光区的开口之间的距离之比为0.9~1.1,如1。例如,限定结构300到像素限定图案限定绿色子像素102的发光区的开口之间的距离可以为8~10微米,如8.5微米。例如,限定结构300到像素限定图案限定蓝色子像素103的发光区的开口之间的距离可以为8~10微米,如8.5微米。例如,限定结构300到像素限定图案限定红色子像素101的发光区的开口之间的距离可以为8~10微米,如8.5微米。
例如,如图6所示,限定结构300的尺寸D4可以为10~14微米,如12.5微米。例如,限定结构300的尺寸D5可以为18~20微米,如19.5微米。
例如,如图6所示,在U方向或者V方向上排列的相邻两个子像素10的发光区之间的间隔可以为18~22微米,如20微米。例如,在U方向或者V方向上排列的像素限定图案的相邻两个开口之间的距离可以为20微米。
图9B为根据本公开实施例的一示例提供的第一区域靠近第二区域的部分截面结构示意图。如图9B所示,衬底基板上设置有缓冲层和遮挡层021、位于缓冲层和遮挡层021上的有源层026、位于与有源层026上的栅极绝缘层022、位于栅极绝缘层022上的金属层028、位于金属层028上的栅极绝缘层023、位于栅极绝缘层023上的金属层027、位于金属层027上的层间绝缘层024、位于层间绝缘层024上的金属层031、位于金属层031上的平坦层025、位于 平坦层025上的平坦层200。A11区域为设置有子像素100的区域,A12区域为围绕第二区域且设置有第二环形限定结构330的区域。
例如,如图8至图9B所示,环形绝缘部510以及第二绝缘层500可以包括栅极绝缘层022、栅极绝缘层023以及层间绝缘层024。
例如,如图9B所示,在A11区域对层间绝缘层024、栅极绝缘层022、栅极绝缘层023进行刻蚀形成过孔041的同时,对A12区域的间绝缘层024、栅极绝缘层022、栅极绝缘层023进行刻蚀形成间隔042,此后形成在A12区域的金属层031、平坦层025以及平坦层200均被图案化去掉,以在A11区域和A12区域同时形成限定结构300,从而使得在形成相邻像素之间的限定结构的同时,形成围绕第二区域的限定结构,将形成两个位置处的限定结构的掩模合并兼容,有利于降低掩模数量,进而降低生产显示基板的成本。
图10为根据本公开另一实施例提供的显示装置的示意框图。如图10所示,本公开实施例提供改的一种显示装置包括上述任一种显示基板。
在本公开提供的显示装置中,第一环形限定结构在隔断发光功能层的至少一层的同时,实现第二电极的连续设置,可以在降低相邻子像素之间产生的串扰的同时,避免因第二电极大面积断裂而产生的亮度均一性问题。
在本公开提供的显示装置中,通过在第二区域的周围设置用于断开发光功能层和第二电极的至少一圈第二环形限定结构,可以将位于第一区域的发光元件与第二区域分隔开。
例如,该显示装置还包括位于显示基板出光侧的盖板。
例如,该显示装置可以为有机发光二极管显示装置等显示器件以及包括该显示装置的电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件,本实施例不限于此。
图11A至图11E为根据本公开实施例提供的显示基板的部分区域的制作方法的示意性工艺流程图。采用图11A至图11E所示的制作方法可以形成图1所示A11区域中的图3所示的显示基板。图12A至图12C为根据本公开实施例提供的显示基板的另一部分区域的制作方法的示意性工艺流程图。采用图12A至图12C所示的制作方法可以形成图9A所示的显示基板。
如图11A所示,显示基板的制作方法包括提供衬底基板01;在衬底基板01上形成无机非金属材料层610。
在一些示例中,如图11A所示,在形成无机非金属材料层610之前,制作 方法还包括:在衬底基板01上形成第一绝缘层200。第一区域的一部分区域中,无机非金属材料层610形成在第一绝缘层200的表面上。
在一些示例中,如图12A、图8以及图9A所示,在形成第一绝缘层200之前,制作方法还包括:在衬底基板01上形成第二绝缘层500(如图8所示层间绝缘层04)。第一区域的另一部分区域中,无机非金属材料层610形成在第二绝缘层200的表面上。
例如,如图11A和图12A所示,在第一绝缘层200和第二绝缘层500表面上沉积一层无机非金属材料层610。例如,无机非金属材料层610的厚度可以为300~550埃。例如,无机非金属材料层610的厚度可以为500埃。例如,无机非金属材料层610的材料可以为氮化硅(SiNx)。
在一些示例中,如图11A和图11B所示,在无机非金属材料层610远离衬底基板01的一侧形成遮挡结构700。例如,在无机非金属材料层610上涂覆掩模层。例如,掩模层的材料包括光刻胶。例如,对掩模层图案化形成遮挡结构700。
在一些示例中,如图11A和图11B所示,以遮挡结构700为掩模,且采用第一气体对无机非金属材料层610进行刻蚀以形成限定图案620。
例如,第一气体包括四氟化碳(CF4)和氧气混合气体。例如,采用第一气体刻蚀无机非金属材料层610形成限定图案620的过程中,第一气体会对限定图案620以外的第一绝缘层200进行一定程度的刻蚀而形成凹陷部,如loss,由此,限定图案620正下方的第一绝缘层200具有凸起,该位置处的第一绝缘层200的厚度大于其他位置处(凹陷部所在位置处)的第一绝缘层200的厚度。
例如,在后处理过程中,可以通过调控之间以尽量减少限定图案620正下方的第一绝缘层200的厚度与其他位置处的第一绝缘层200的厚度的差异。例如,也可以不采用后处理工艺处理显示基板上的膜层,以进一步降低限定图案正下方的第一绝缘层的厚度与其他位置处的第一绝缘层的厚度的差异。
在一些示例中,如图11A至图11C所示,以遮挡结构700为掩模,且采用第二气体对限定图案620进行刻蚀以形成限定结构300。
例如,在形成限定图案620后,遮挡结构700仍保留在限定图案620上,不被剥离。
例如,第二气体包括六氟化硫(SF6)和氧气的混合气体。例如,SF6可与氮化硅发生化学反应,对氮化硅的侧壁进行刻蚀以使得限定结构300的截面形 成倒梯形形貌。例如,第二气体不会对第二绝缘层200进行刻蚀,第二绝缘层200在上一步刻蚀工艺中形成的凸起210不会被进一步刻蚀。
如图1至图3、图11A至图11E所示,显示基板的制作方法包括在衬底基板01的至少第一区域A1中形成多个子像素10。至少两个相邻子像素10之间设置有至少一个限定结构300,至少部分子像素10中的每个子像素10包括发光元件100,形成发光元件100包括在垂直于衬底基板01的方向上依次形成层叠设置的第一电极110、发光功能层130以及第二电极120,第一电极110位于第二电极120与衬底基板01之间,发光功能层130包括多个膜层。
例如,形成第一绝缘层200之前,制作方法还包括在衬底基板01上形成其他膜层,栅极绝缘层、缓冲层、钝化层、多层导电层等膜层。
在一些示例中,如图3和图11C所示,位于相邻子像素10之间的限定结构300的靠近衬底基板01一侧表面在衬底基板01上的第一正投影301完全位于限定结构300的远离衬底基板01一侧表面在衬底基板01上的第二正投影302内,沿该相邻子像素10的发光区排列方向,第二正投影302的最大尺寸S2大于第一正投影301的最大尺寸S1。
在一些示例中,如图3所示,第一区域的至少部分区域中,发光功能层130中的至少一层在限定结构300的边缘处断开,且第二电极120在限定结构300的边缘处连续设置。
本公开实施例采用遮光结构为掩模,对非金属材料层采用两种不同气体进行两步刻蚀工艺以形成具有类似于底切结构的限定结构,在隔断发光功能层的至少一层的同时,实现第二电极的连续设置,可以在降低相邻子像素之间产生的串扰的同时,避免因第二电极大面积断裂而产生的亮度均一性问题。
在一些示例中,如图11B和图11C所示,限定图案620被分别位于限定图案620两侧且相邻的子像素的中心连线所在平面所截的截面形状包括矩形,限定结构300被上述平面所截的截面形状包括第一梯形,第一梯形远离衬底基板01的底边的长度大于第一梯形靠近衬底基板01的底边的长度,上述平面垂直于衬底基板01。
例如,限定结构300的第一正投影完全位于凸起210在衬底基板01上的正投影内。
例如,如图11C所示,凸起210的边缘与遮挡结构700的边缘在所述衬底基板上的正投影之间的距离小于0.5微米。例如,凸起210的边缘与遮挡结构 700的边缘在所述衬底基板上的正投影之间的距离小于0.4微米。例如,凸起210的边缘与遮挡结构700的边缘在所述衬底基板上的正投影之间的距离小于0.3微米。例如,凸起210的边缘与遮挡结构700的边缘在所述衬底基板上的正投影之间的距离小于0.2微米。例如,凸起210的边缘与遮挡结构700的边缘在所述衬底基板上的正投影之间的距离小于0.1微米。
例如,如图11C所示,凸起210的边缘与遮挡结构700的边缘齐平。
例如,如图11C所示,凸起210的边缘与限定结构300远离衬底基板01一侧表面的边缘在所述衬底基板上的正投影之间的距离小于0.5微米。例如,凸起210的边缘与限定结构300远离衬底基板01一侧表面的边缘在所述衬底基板上的正投影之间的距离小于0.4微米。例如,凸起210的边缘与限定结构300远离衬底基板01一侧表面的边缘在所述衬底基板上的正投影之间的距离小于0.3微米。例如,凸起210的边缘与限定结构300远离衬底基板01一侧表面的边缘在所述衬底基板上的正投影之间的距离小于0.2微米。例如,凸起210的边缘与限定结构300远离衬底基板01一侧表面的边缘在所述衬底基板上的正投影之间的距离小于0.1微米。
例如,如图11C所示,凸起210的边缘与限定结构300远离衬底基板01一侧表面的边缘齐平。例如,沿垂直于衬底基板01的方向延伸的直线经过凸起210的边缘以及限定结构300的远离衬底基板01一侧表面的边缘。例如,第二正投影与凸起210在衬底基板01上的正投影完全重合。
在一些示例中,如图11D所示,形成限定结构300后,制作方法还包括去掉遮挡结构300。
在一些示例中,如图11D所示,第一电极110在形成限定结构300后图案化形成。
例如,如图11C所示,在去掉遮挡结构300以后,在第一绝缘层200上形成导电层,并对导电层图案化形成第一电极110。例如,采用湿刻工艺图案化形成第一电极110,在采用湿刻工艺的过程中,可以完全去除限定结构倾斜侧壁处的导电层。
例如,如图11E所示,在形成第一电极110后,在第一电极110上形成有机材料层,并对该有机材料层图案化形成像素限定图案400。例如,像素限定图案400包括多个第一开口410,一个子像素10对应至少一个第一开口410,第一开口410被配置为暴露第一电极110。
例如,如图11E所示,像素限定图案400还包括第二开口420,限定结构300的至少部分被第二开口420暴露。图11E示意性的示出限定结构300完全被第二开口420暴露,但不限于此,限定结构300也可以如图5所示,仅被第二开口420暴露一部分。例如,发光功能层130的至少一层在限定结构300的被第二开口420暴露的边缘处断开,且第二电极120在该边缘处连续设置。
在一些示例中,如图11A至图12C所示,采用第一气体对无机非金属材料层610进行刻蚀以形成限定图案620包括对第一绝缘层200上的无机非金属材料层610和第二绝缘层500上的无机非金属材料层610同时刻蚀以形成限定图案620;采用第二气体对限定图案620进行刻蚀以形成限定结构300包括对第一绝缘层200上的限定图案620和第二绝缘层500上的限定图案620同时刻蚀以形成限定结构300。
例如,如图12A所示,在形成无机层后,对该无机层图案化形成第二绝缘层500,该第二绝缘层500包括位于远离图1所示第二区域A2的连续膜层以及靠近图1所示第二区域A2的环形绝缘部510。例如,环形绝缘部510可以与上述连续膜层为一体化设置的结构,或者环形绝缘部510可以与上述连续膜层间隔设置。
例如,如图12B所示,在形成环形绝缘部510后,将形成在其上的第一绝缘层等膜层刻蚀掉,以使得后续的无机非金属材料层610形成在环形绝缘部510的表面。例如,在环形绝缘部510上图案化形成限定图案620。
例如,可以在形成图11B所示限定图案620的同时形成图12B所示的限定图案620。形成图12B所示的限定图案620的方法与形成图12B所示的限定图案620的方法相同,在此不再赘述。
图12B至图12C省略了图11B至图11C所示的遮挡结构700。
例如,如图12C所示,在形成限定图案620后,采用第二气体对限定图案620进行刻蚀以形成第二环形限定结构330。例如,例如,SF6可与氮化硅发生化学反应,对氮化硅的侧壁进行刻蚀以使得第二环形限定结构330的截面形成倒梯形形貌。
例如,可以在形成图11C所示限定结构300,如第一环形限定结构,的同时形成图12C所示的第二环形限定结构330。
本公开提供的显示基板的制作方法,在形成相邻像素之间的限定结构的同时,形成围绕第二区域的限定结构,将形成两个位置处的限定结构的掩模合并 兼容,有利于降低掩模数量,进而降低生产显示基板的成本。
本公开提供的显示基板的制作方法中,将位于相邻子像素之间的限定结构与围绕第二区域的限定结构分别形成在材料不同的第一绝缘层和第二绝缘层中,有利于实现形成不同位置而起到不同作用的限定结构的制作方法的兼容,以降低掩模数量。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (34)

  1. 一种显示基板,包括:
    衬底基板,至少包括第一区域;
    多个子像素,位于所述衬底基板上的第一区域,至少部分子像素中的每个子像素包括发光元件,所述发光元件包括发光功能层以及沿垂直于所述衬底基板的方向位于所述发光功能层两侧的第一电极和第二电极,所述第一电极位于所述发光功能层与所述衬底基板之间,所述发光功能层包括多个膜层,
    其中,所述显示基板还包括限定结构,至少两个相邻子像素之间设置有至少一个限定结构,位于相邻子像素之间的所述限定结构的靠近所述衬底基板一侧表面在所述衬底基板上的第一正投影完全位于所述限定结构的远离所述衬底基板一侧表面在所述衬底基板上的第二正投影内,沿该相邻子像素的发光区排列方向,所述第二正投影的最大尺寸大于所述第一正投影的最大尺寸,且所述限定结构包括无机非金属材料;
    所述第一区域的至少部分区域中,所述发光功能层中的至少一层在所述限定结构的边缘处断开,且相邻子像素的所述第二电极至少部分连续设置。
  2. 根据权利要求1所述的显示基板,其中,所述第二电极在所述限定结构的边缘处连续设置。
  3. 根据权利要求1或2所述的显示基板,其中,至少一个子像素的所述第二电极和与其在第一子方向相邻的子像素的所述第二电极连续设置,且所述至少一个子像素的所述第二电极和与其在第二子方向相邻的子像素的所述第二电极断开设置,所述第一子方向和所述第二子方向相交;和/或,
    至少一个子像素的所述第二电极和与其在第一子方向相邻的子像素的所述第二电极连续设置,且所述至少一个子像素的所述第二电极和与其在第二子方向相邻的子像素的所述第二电极连续设置,所述第一子方向和所述第二子方向相交。
  4. 根据权利要求1-3任一项所述的显示基板,其中,所述限定结构围绕至少一个子像素的50%以上的轮廓。
  5. 根据权利要求1-4任一项所述的显示基板,其中,至少一个子像素的所述第二电极和与其相邻的子像素的所述第二电极连续设置,且该相邻设置的两个子像素之间的所述第二电极在垂直于两者排布方向上的最小宽度大于1微 米。
  6. 根据权利要求5所述的显示基板,其中,该相邻设置的两个子像素的中心连线在所述第二电极所在平面的正投影位于所述第二电极内。
  7. 根据权利要求1-6任一项所述的显示基板,其中,至少部分限定结构的轮廓与被所述至少部分限定结构围绕的所述子像素的发光区的轮廓相同,且不同限定结构与被所述不同限定结构围绕的所述子像素的发光区的彼此靠近的边缘之间的间距之比为0.9~1.1。
  8. 根据权利要求1-7任一项所述的显示基板,其中,所述限定结构被所述中心连线所在平面所截的截面形状包括第一梯形,所述第一梯形远离所述衬底基板的第一底边的长度大于所述第一梯形靠近所述衬底基板的第二底边的长度,所述平面垂直于所述衬底基板。
  9. 根据权利要求8所述的显示基板,其中,所述第一梯形的至少一侧腰的至少部分与所述第二底边之间的夹角为110~150度。
  10. 根据权利要求1-9任一项所述的显示基板,其中,所述限定结构的厚度为300~550埃。
  11. 根据权利要求1-10任一项所述的显示基板,还包括:
    第一绝缘层,位于所述限定结构与所述衬底基板之间,
    其中,所述第一区域的所述至少部分区域中,所述第一绝缘层与所述限定结构面向所述衬底基板一侧表面接触,所述第一绝缘层位于所述第一电极与所述衬底基板之间,所述第一绝缘层的材料包括有机材料。
  12. 根据权利要求11所述的显示基板,其中,所述第一绝缘层包括与所述限定结构的表面接触的凸起,所述第一正投影完全位于所述凸起在所述衬底基板上的正投影内。
  13. 根据权利要求12所述的显示基板,其中,所述凸起的边缘与所述限定结构远离所述衬底基板一侧表面的边缘在所述衬底基板上的正投影之间的距离小于0.5微米。
  14. 根据权利要求12或13所述的显示基板,其中,所述第一电极的表面与所述第一绝缘层的表面接触,且所述第一电极远离所述衬底基板一侧表面与所述衬底基板之间的距离小于所述限定结构远离所述衬底基板一侧表面与所述衬底基板之间的距离。
  15. 根据权利要求1-14任一项所述的显示基板,还包括:
    像素限定图案,位于所述第一电极远离所述衬底基板的一侧,至少位于所述第一区域的所述像素限定图案包括多个第一开口,一个子像素对应至少一个第一开口,所述子像素的发光元件至少部分位于所述子像素对应的第一开口中,且所述第一开口被配置为暴露所述第一电极,
    其中,所述像素限定图案还包括第二开口,所述限定结构的至少部分被所述第二开口暴露。
  16. 根据权利要求15所述的显示基板,其中,所述发光功能层的至少一层在所述第二开口暴露的所述限定结构的至少部分边缘处断开,且所述第二电极在所述限定结构的该边缘处连续设置。
  17. 根据权利要求1-16任一项所述的显示基板,其中,所述发光功能层的至少一层膜层包括电荷产生层,所述发光功能层包括层叠设置的第一发光层、所述电荷产生层以及第二发光层,所述电荷产生层位于所述第一发光层与所述第二发光层之间,且所述电荷产生层在所述限定结构的边缘处断开。
  18. 根据权利要求1-17任一项所述的显示基板,其中,所述多个子像素包括多个第一颜色子像素、多个第二颜色子像素以及多个第三颜色子像素,
    所述限定结构包括多个第一环形限定结构,所述第一环形限定结构围绕所述多个第一颜色子像素、所述多个第二颜色子像素和所述多个第三颜色子像素中的至少一个子像素。
  19. 根据权利要求18所述的显示基板,其中,至少部分子像素中的每个子像素还包括像素电路,至少一个子像素的发光元件的第一电极包括主体电极和连接电极,在垂直于所述衬底基板的方向上,所述主体电极与所述发光元件的发光区交叠,且所述连接电极与所述发光元件的发光区没有交叠,
    所述像素电路与所述连接电极电连接,围绕所述至少一个子像素的所述第一环形限定结构包括缺口,在垂直于所述衬底基板的方向,所述第一环形限定结构与所述连接电极不交叠。
  20. 根据权利要求11所述的显示基板,还包括:
    第二绝缘层,位于所述限定结构与所述衬底基板之间,
    其中,所述衬底基板还包括第二区域,所述第一区域位于所述第二区域的周边;
    所述第二绝缘层包括围绕所述第二区域的至少一个环形绝缘部,所述限定结构还包括与所述环形绝缘部远离所述衬底基板一侧表面接触的第二环形限 定结构,所述第二绝缘层位于所述第一绝缘层面向所述衬底基板的一侧,所述第二绝缘层的材料包括无机非金属材料,且所述第二绝缘层的材料与所述限定结构的材料不同,所述发光功能层以及所述第二电极均在所述第二环形限定结构的边缘位置处断开。
  21. 根据权利要求20所述的显示基板,其中,所述第二环形限定结构的截面包括第二梯形,所述第二梯形远离所述衬底基板的底边的长度大于所述第二梯形靠近所述衬底基板的底边的长度。
  22. 根据权利要求20或21所述的显示基板,其中,所述第二环形限定结构在所述衬底基板上的正投影位于所述环形绝缘部在所述衬底基板上的正投影内。
  23. 根据权利要求21所述的显示基板,其中,所述限定结构被所述中心连线所在平面所截的截面形状包括第一梯形,所述第一梯形远离所述衬底基板的第一底边的长度大于所述第一梯形靠近所述衬底基板的第二底边的长度,所述平面垂直于所述衬底基板;
    所述第一梯形在垂直于所述衬底基板的方向的尺寸与所述第二梯形在垂直于所述衬底基板的方向的尺寸之比为0.8~1.2,且所述第一梯形的腰与所述第二底边之间的夹角与所述第二梯形的腰与所述第二梯形的靠近所述衬底基板一侧底边之间的夹角之比为0.8~1.2。
  24. 一种显示基板,包括:
    衬底基板,至少包括第一区域;
    多个子像素,位于所述衬底基板上的第一区域,至少部分子像素中的每个子像素包括发光元件,所述发光元件包括发光功能层以及沿垂直于所述衬底基板的方向位于所述发光功能层两侧的第一电极和第二电极,所述第一电极位于所述发光功能层与所述衬底基板之间,所述发光功能层包括多个膜层,
    其中,所述显示基板还包括限定结构,至少两个相邻子像素之间设置有至少一个限定结构,所述多个子像素包括第一子像素、第二子像素以及第三子像素,所述第二子像素和所述第三子像素均与所述第一子像素相邻,所述第一子像素与所述第二子像素之间设置的所述限定结构在该两个子像素的排列方向上的最大尺寸为第一尺寸,所述第一子像素与所述第三子像素之间设置的所述限定结构在该两个子像素的排列方向上的最大尺寸为第二尺寸,所述第一尺寸与所述第二尺寸不同。
  25. 根据权利要求24所述的显示基板,其中,所述多个子像素沿第一方向和第二方向阵列排布,且所述多个子像素中部分子像素沿第三方向和第四方向阵列排布,所述第一方向与所述第二方向垂直,所述第三方向与所述第四方向垂直,所述第一方向与所述第三方向相交;
    沿所述第一方向或所述第二方向排列的相邻两个子像素之间的所述限定结构在该两个子像素的排列方向上的最大尺寸为第三尺寸,沿所述第三方向或所述第四方向排列的相邻两个子像素之间的所述限定结构在该两个子像素的排列方向上的最大尺寸为第四尺寸,所述第三尺寸小于所述第四尺寸。
  26. 根据权利要求24或25所述的显示基板,其中,所述多个子像素包括多个绿色子像素、多个蓝色子像素以及多个红色子像素,相邻两个绿色子像素之间设置的所述限定结构在该两个绿色子像素的排列方向上的最大尺寸大于其他相邻子像素之间设置的所述限定结构在该相邻子像素的排列方向上的最大尺寸。
  27. 根据权利要求24-26任一项所述的显示基板,其中,至少部分子像素中的每个子像素还包括像素电路,至少一个子像素的发光元件的第一电极包括主体电极和连接电极,在垂直于所述衬底基板的方向上,所述主体电极与所述发光元件的发光区交叠,且所述连接电极与所述发光元件的发光区没有交叠,所述像素电路与所述连接电极电连接;
    所述第一区域的至少部分区域中,所述发光功能层中的至少一层在所述限定结构的边缘处断开,且所述第二电极在与所述连接电极交叠位置处的至少部分连续设置。
  28. 根据权利要求27所述的显示基板,其中,在垂直于所述衬底基板的方向上,所述限定结构与所述连接电极的至少部分没有交叠。
  29. 根据权利要求24-28任一项所述的显示基板,其中,所述至少部分子像素中的所述第二电极包括面状结构或者网状结构。
  30. 一种显示装置,包括权利要求1-29任一项所述的显示基板。
  31. 一种显示基板的制作方法,包括:
    提供衬底基板;
    在所述衬底基板上形成无机非金属材料层;
    在所述无机非金属材料层远离所述衬底基板的一侧形成遮挡结构;
    以所述遮挡结构为掩模,且采用第一气体对所述无机非金属材料层进行刻 蚀以形成限定图案;
    以所述遮挡结构为掩模,且采用第二气体对所述限定图案进行刻蚀以形成限定结构;
    在所述衬底基板的至少第一区域中形成多个子像素,
    其中,至少两个相邻子像素之间设置有至少一个限定结构,至少部分子像素中的每个子像素包括发光元件,形成所述发光元件包括在垂直于所述衬底基板的方向上依次形成层叠设置的第一电极、发光功能层以及第二电极,所述第一电极位于所述第二电极与所述衬底基板之间,所述发光功能层包括多个膜层;
    位于相邻子像素之间的所述限定结构的靠近所述衬底基板一侧表面在所述衬底基板上的第一正投影完全位于所述限定结构的远离所述衬底基板一侧表面在所述衬底基板上的第二正投影内,沿该相邻子像素的发光区排列方向,所述第二正投影的最大尺寸大于所述第一正投影的最大尺寸;
    所述第一区域的至少部分区域中,所述发光功能层中的至少一层在所述限定结构的边缘处断开,且相邻子像素的所述第二电极至少部分连续设置。
  32. 根据权利要求31所述的制作方法,其中,所述限定图案被所述中心连线所在平面所截的截面形状包括矩形,
    所述限定结构被所述平面所截的截面形状包括第一梯形,所述第一梯形远离所述衬底基板的底边的长度大于所述第一梯形靠近所述衬底基板的底边的长度,所述平面垂直于所述衬底基板。
  33. 根据权利要求31或32所述的制作方法,其中,形成所述限定结构后,所述制作方法还包括:去掉所述遮挡结构。
  34. 根据权利要求31-33任一项所述的制作方法,其中,在形成所述无机非金属材料层之前,所述制作方法还包括:在所述衬底基板上形成第一绝缘层,其中,所述第一区域的一部分区域中,所述无机非金属材料层形成在所述第一绝缘层的表面上;
    在形成所述第一绝缘层之前,所述制作方法还包括:在所述衬底基板上形成第二绝缘层,其中,所述第一区域的另一部分区域中,所述无机非金属材料层形成在所述第二绝缘层的表面上,
    采用第一气体对所述无机非金属材料层进行刻蚀以形成限定图案包括对所述第一绝缘层上的所述无机非金属材料层和所述第二绝缘层上的所述无机非金属材料层同时刻蚀以形成所述限定图案;
    采用第二气体对所述限定图案进行刻蚀以形成所述限定结构包括对所述第一绝缘层上的所述限定图案和所述第二绝缘层上的所述限定图案同时刻蚀以形成所述限定结构。
PCT/CN2022/115829 2022-08-30 2022-08-30 显示基板及其制作方法、以及显示装置 WO2024044964A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/115829 WO2024044964A1 (zh) 2022-08-30 2022-08-30 显示基板及其制作方法、以及显示装置
CN202280002911.0A CN117981496A (zh) 2022-08-30 2022-08-30 显示基板及其制作方法、以及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115829 WO2024044964A1 (zh) 2022-08-30 2022-08-30 显示基板及其制作方法、以及显示装置

Publications (1)

Publication Number Publication Date
WO2024044964A1 true WO2024044964A1 (zh) 2024-03-07

Family

ID=90100136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115829 WO2024044964A1 (zh) 2022-08-30 2022-08-30 显示基板及其制作方法、以及显示装置

Country Status (2)

Country Link
CN (1) CN117981496A (zh)
WO (1) WO2024044964A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666347A (zh) * 2018-04-26 2018-10-16 上海天马微电子有限公司 显示面板及其制造方法、显示装置
US20220157917A1 (en) * 2020-11-17 2022-05-19 Samsung Display Co., Ltd. Display device
CN114628448A (zh) * 2021-11-30 2022-06-14 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
CN114628405A (zh) * 2021-11-30 2022-06-14 京东方科技集团股份有限公司 显示基板及其制作方法、以及显示装置
CN114628451A (zh) * 2021-11-30 2022-06-14 京东方科技集团股份有限公司 显示基板和显示装置
CN114628449A (zh) * 2021-11-30 2022-06-14 京东方科技集团股份有限公司 显示基板及其制作方法、以及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666347A (zh) * 2018-04-26 2018-10-16 上海天马微电子有限公司 显示面板及其制造方法、显示装置
US20220157917A1 (en) * 2020-11-17 2022-05-19 Samsung Display Co., Ltd. Display device
CN114628448A (zh) * 2021-11-30 2022-06-14 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
CN114628405A (zh) * 2021-11-30 2022-06-14 京东方科技集团股份有限公司 显示基板及其制作方法、以及显示装置
CN114628451A (zh) * 2021-11-30 2022-06-14 京东方科技集团股份有限公司 显示基板和显示装置
CN114628449A (zh) * 2021-11-30 2022-06-14 京东方科技集团股份有限公司 显示基板及其制作方法、以及显示装置

Also Published As

Publication number Publication date
CN117981496A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
US11716877B2 (en) Organic light-emitting display device and method of manufacturing the same
WO2023098301A1 (zh) 显示基板和显示装置
WO2023098089A1 (zh) 显示基板及其制作方法和显示装置
KR20020023657A (ko) 픽셀화 유기 전자발광 장치 제조 방법 및 픽셀화 능동매트릭스 유기 전자발광 장치 제조 방법
WO2022247119A1 (zh) 显示面板及显示装置
WO2021227710A1 (zh) 显示面板、其制备方法和显示装置
WO2020228429A1 (zh) 显示基板、显示面板和显示装置
US20230189606A1 (en) Display panel and method of manufacturing the same
WO2021035545A1 (zh) 显示基板、显示面板及显示基板的制备方法
WO2021184306A1 (zh) 显示基板以及显示装置
WO2023098293A1 (zh) 显示基板及其制作方法和显示装置
WO2023010603A1 (zh) 显示面板及电子设备
WO2021184305A1 (zh) 显示基板以及显示装置
US20240099079A1 (en) Display apparatus, and display panel and manufacturing method therefor
US20230165098A1 (en) Display substrate, manufacturing method thereof and three-dimensional display apparatus
US20240155879A1 (en) Display panel, manufacturing method, and mobile terminal
WO2021217296A1 (zh) 显示基板以及显示装置
WO2024103788A1 (zh) 显示面板及显示装置
CN115513273B (zh) 显示基板以及显示装置
WO2024044964A1 (zh) 显示基板及其制作方法、以及显示装置
CN113178524B (zh) 显示面板及显示面板制作方法、显示装置
US20210257428A1 (en) Display substrate and manufacturing method thereof, and display device
CN114005860A (zh) 显示基板及其制备方法、显示装置
WO2023097529A1 (zh) 显示基板及其制作方法、显示装置
WO2024108381A1 (zh) 显示基板以及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002911.0

Country of ref document: CN