WO2024043804A1 - Matériau en feuille en alliage de titane et composant de système d'échappement - Google Patents

Matériau en feuille en alliage de titane et composant de système d'échappement Download PDF

Info

Publication number
WO2024043804A1
WO2024043804A1 PCT/RU2023/000248 RU2023000248W WO2024043804A1 WO 2024043804 A1 WO2024043804 A1 WO 2024043804A1 RU 2023000248 W RU2023000248 W RU 2023000248W WO 2024043804 A1 WO2024043804 A1 WO 2024043804A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet material
alloy
titanium
phase
titanium alloy
Prior art date
Application number
PCT/RU2023/000248
Other languages
English (en)
Russian (ru)
Inventor
Михаил Оттович ЛЕДЕР
Анатолий Владимирович ВОЛКОВ
Максим Сергеевич КАЛИЕНКО
Татьяна Александровна ЛАВРОВА
Александр Сергеевич ГРЕБЕНЬЩИКОВ
Елизавета Александровна ПЛАКСИНА
Original Assignee
Публичное Акционерное Общество "Корпорация Всмпо-Ависма"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2022122702A external-priority patent/RU2785110C1/ru
Application filed by Публичное Акционерное Общество "Корпорация Всмпо-Ависма" filed Critical Публичное Акционерное Общество "Корпорация Всмпо-Ависма"
Publication of WO2024043804A1 publication Critical patent/WO2024043804A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials

Definitions

  • the invention relates to non-ferrous metallurgy, in particular to the creation of sheet material from low-alloy titanium alloys that have heat resistance and oxidation resistance, as well as structural stability during long-term operating exposures in the temperature range up to 800°C and can be used for the manufacture of products that operate for a long time at high temperatures, in particular components of exhaust systems of vehicle engines.
  • titanium-based alloys are used in the production of engine components such as intake and exhaust valves, housings, turbine impellers, pipes and tanks.
  • engine components particularly exhaust systems, made from low-alloy titanium-based alloys are subject to operating temperatures in the order of 500-800°C. Therefore, the performance properties of materials, such as heat resistance and oxidation resistance, are a priority.
  • the material used must have sufficient technological ductility, because the components are mainly produced by cold forming from rolled sheets and by bending welded pipes. To obtain high plasticity characteristics, it is important to create a structure in the material with a globular morphology of a-phase grains, since the globular microstructure has better molding properties than the needle structure.
  • Creep which is the tendency of a solid material to slowly shift or permanently deform under stress, occurs when a metal is subjected to a constant tensile load at an elevated temperature. High creep resistance allows the material to be used for a long time without distortion of shape and size, while it is important to maintain the level of the original properties of the material.
  • Known flat products and exhaust system components made from oxidation-resistant high-strength titanium alloy, which consists of, wt.%: from 0.06 to 0.5 iron, from 0.02 to 0.12 oxygen, from 0.15 to 0.46 silicon and the rest is titanium and random impurities.
  • the titanium alloy has an average grain size of 15.9 microns or less.
  • Rolled steel has high plastic properties, but has reduced resistance to high temperature oxidation.
  • a known material for the exhaust system is made of a low-alloy titanium alloy, which has excellent resistance to high-temperature oxidation and corrosion and contains, wt.%, A1: 0.30-1.50%, Si: 0.10-1.0% and additionally containing Nb: 0.1-0.5 (US Patent No. 7166367, published 01/23/2007, IPC B32B15/01; C22C14/00, F01N7/16) - prototype.
  • the material from this alloy has high strength and plastic properties at room and elevated temperatures, but has an insufficient level of resistance to high-temperature creep.
  • the problem to be solved by the invention is the creation of sheet material with a globular microstructure from a low-alloy titanium alloy with the possibility of manufacturing a wide range of products from it, including those used in engine components and exhaust systems of vehicles.
  • the technical result achieved by implementing the invention is the production of sheet material from a titanium alloy having a complex of high mechanical and operational properties, including an increased level of creep resistance, oxidation resistance, as well as structural stability during long-term operating exposures in the temperature range up to 800°C and with the possibility of cold forming.
  • the titanium alloy contains components in the following ratios, wt.%:
  • the ratio of Mo, mass. %, to Si, wt. %, is 0.4 - 3.
  • the sheet material contains at least 90 vol.% a-phase in the structure.
  • the total content of the 0-phase and intermetallic particles of titanium silicides is 0.5 -5 vol. %.
  • the average grain size of the a-phase ranges from 5 to 100 ⁇ m.
  • the sheet material is made in the form of rolled sheets up to 6 mm thick. Also, the technical result is achieved by the fact that a component of the vehicle exhaust system is proposed that operates for a long time at high temperatures and is made of titanium alloy sheet material.
  • the titanium alloy material contains alloying elements from various groups of stabilizers: alpha stabilizers: aluminum, oxygen, carbon, nitrogen; beta stabilizers: molybdenum, silicon.
  • Aluminum improves heat resistance and creep resistance, reducing scale formation at high temperatures. temperature.
  • the aluminum content in the alloy is taken to be from 1.5-3.0 wt.%.
  • the maximum aluminum content in the alloy is limited to 3.0 wt.%.
  • Alloying of the alloy with molybdenum in an amount of 0.1 -0.5 wt.%. helps increase strength due to solid solution strengthening and the appearance of p-phase interlayers in the structure, which are interphase boundaries and inhibit the movement of dislocations during deformation, and also prevent the collective growth of a-grains at high temperatures during heat treatment and operation.
  • Molybdenum content is more than 0.5 wt.%. reduces heat resistance, since the temperature of the polymorphic transformation of the alloy decreases and the proportion of the P-phase in the structure increases.
  • the silicon content in the alloy is set in the range from 0.1 to 0.6 wt. %. In this range, silicon forms an intermetallic compound with titanium - a silicide of complex stoichiometric composition (Ti x Si y ).
  • the formation of the required amount of silicides in the alloy increases heat resistance, creep resistance and prevents grain growth at high temperatures.
  • silicon significantly increases the oxidation resistance of the alloy up to a concentration of 0.8 wt%. At higher concentrations, technological plasticity/formability decreases due to the formation of coarse-grained silicides.
  • the maximum hydrogen content in the alloy limited to 0.015 wt.%, avoids embrittlement of the alloy due to the possible formation of titanium hydrides.
  • the iron content in the alloy is limited to 0.2 wt. %, because higher content has a negative effect on creep resistance and short-term heat resistance.
  • the main factor in the stability of the structure during long-term operating exposures at elevated temperatures is the presence of particles that inhibit grain growth. They are both particles (3-phases in the alloy and particles of silicides. The presence of both types of particles in the alloy is very important, which is achieved by close contents of Mo and Si.
  • the preferred ratio (3-isomorphic molybdenum and 0-eutectoid silicon Mo/ Si in weight percent is in the range from 0.4 to 3. This ratio allows for increased oxidation resistance, increased creep resistance and structural stability during long service exposures
  • composition of elements introduced into the alloy in the claimed ratio and individually characterized by a favorable effect on the oxidation resistance of titanium makes it possible to achieve an additive effect in terms of obtaining high values creep resistance of the alloy while providing strength and plastic properties in combination with oxidation resistance in relation to known low-alloy titanium alloys.
  • the globular structure of a-phase grains has higher values of plasticity and formability than the acicular structure. For this reason, to improve the formability of sheet material, a homogeneous globular microstructure with an average a-phase grain size of 5 to 100 ⁇ m is preferred. Obtaining a microstructure with an average a-phase grain size of less than 5 ⁇ m requires a large number of technological operations and, accordingly, high costs; in a microstructure with an average a-phase grain size of more than 100 ⁇ m, the boundaries of large grains become the starting points of destruction during fracture.
  • Measurement of the average diameter of a-phase grains in the structure of a titanium workpiece is carried out in accordance with the methodology of the international standard ASTM E112.
  • the fraction of O-phase particles and silicides is measured using a scanning electron probe microscope (SEM) in backscattered electron mode and processing the resulting images using software for quantitative analysis of the microstructure by elemental contrast.
  • SEM scanning electron probe microscope
  • the preferred content of the a-phase in the material is at least 95 vol.%.
  • the total content of the 0-phase and intermetallic particles of titanium silicides in the material in the range of 0.5-5 vol.% helps to increase the resistance to high-temperature creep.
  • the industrial applicability of the invention is confirmed by an example of its specific implementation.
  • the ingot was subjected to deformation by forging and subsequent rolling to obtain a roll with a thickness of 0.9 mm; the final stages of rolling were performed below the polymorphic transformation temperature of 945 °C, which is necessary for the formation of the globular structure of a-grains.
  • samples were cut out in the as-delivered state.
  • tensile tests were carried out at temperatures of 20°C, 500°C, 700°C; to evaluate the material's stampability criterion, deep drawing tests according to Eriksen were carried out.
  • the values of the tensile mechanical properties of the material in the delivered state (annealed state) are given in Table 2 and the comparative graph presented in Fig. 1. Table 2
  • the average grain size of the a-phase in the longitudinal section determined in accordance with the international standard ASTM E112, is 15 ⁇ m.
  • the proportion of the a-phase was 98 vol.%, and the proportion of the 0-phase and titanium silicide particles was 2 vol.%.
  • the fraction of 0-phase and titanium silicide particles was measured using a scanning electron probe microscope (SEM) in backscattered electron mode and calculating the fraction of phases in an image analysis program.
  • the grain structure of the material with particles of titanium silicides and interlayers of the 0-phase after annealing at 625°C for 1000 hours does not change in comparison with the initial one (Fig. 6), which indicates the stability of the structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention se rapporte à la métallurgie, notamment à un matériau en feuille en alliages de titane, possédant une résistance à la chaleur et une résistance à l'oxydation, ainsi qu'une stabilité structurelle lors de longues durées d'exposition pendant l'exploitation dans une plage de températures allant jusqu'à 800°C, et peut être utilisée pour fabriquer des composants de systèmes d'échappement de moyens de transport. Ce matériau en feuille en alliage de titane pour produire des composants comprend, en % en poids: aluminium: 1,5-3,0; molybdène: 0,1-0,5; silicium: 0,1-0,6; fer: pas plus de 0,2; oxygène: pas plus de 0,15; carbone: pas plus de 0,1; azote: pas plus de 0,03; hydrogène: pas plus de 0,015; le reste se composant de titane. Ce matériau en feuille possède des valeurs élevées de résistance au fluage, de résistance à l'oxydation, et possède également une structure stable lors de longues durées d'exposition pendant l'exploitation dans une plage de températures allant jusqu'à 800°C; ce matériau se prête à la mise en forme à froid.
PCT/RU2023/000248 2022-08-22 2023-08-14 Matériau en feuille en alliage de titane et composant de système d'échappement WO2024043804A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2022122702A RU2785110C1 (ru) 2022-08-22 Листовой материал из титанового сплава и компонент выхлопной системы
RU2022122702 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024043804A1 true WO2024043804A1 (fr) 2024-02-29

Family

ID=90013684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2023/000248 WO2024043804A1 (fr) 2022-08-22 2023-08-14 Matériau en feuille en alliage de titane et composant de système d'échappement

Country Status (1)

Country Link
WO (1) WO2024043804A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166367B2 (en) * 2004-03-12 2007-01-23 Kobe Steel, Ltd. Titanium alloy having excellent high-temperature oxidation and corrosion resistance
RU2681089C2 (ru) * 2017-05-12 2019-03-04 Хермит Эдванст Технолоджиз ГмбХ Заготовка из сплава на основе титана для упругих элементов с энергоемкой структурой
WO2020075667A1 (fr) * 2018-10-09 2020-04-16 日本製鉄株式会社 FIL D'ALLIAGE DE TITANE DE TYPE α+β ET PROCÉDÉ DE PRODUCTION DE FIL D'ALLIAGE DE TITANE DE TYPE α+β
RU2776521C1 (ru) * 2021-07-29 2022-07-21 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Сплав на основе титана и изделие, выполненное из него

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166367B2 (en) * 2004-03-12 2007-01-23 Kobe Steel, Ltd. Titanium alloy having excellent high-temperature oxidation and corrosion resistance
RU2681089C2 (ru) * 2017-05-12 2019-03-04 Хермит Эдванст Технолоджиз ГмбХ Заготовка из сплава на основе титана для упругих элементов с энергоемкой структурой
WO2020075667A1 (fr) * 2018-10-09 2020-04-16 日本製鉄株式会社 FIL D'ALLIAGE DE TITANE DE TYPE α+β ET PROCÉDÉ DE PRODUCTION DE FIL D'ALLIAGE DE TITANE DE TYPE α+β
RU2776521C1 (ru) * 2021-07-29 2022-07-21 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Сплав на основе титана и изделие, выполненное из него

Similar Documents

Publication Publication Date Title
US8551265B2 (en) Cobalt-base alloy with high heat resistance and high strength and process for producing the same
JP2014058740A (ja) 高温において良好な耐酸化性と高い強度を有するチタン合金
WO2006014124A1 (fr) Alliage a base de titane
AU2019350496B2 (en) Creep resistant titanium alloys
EP0657558B1 (fr) Superalliage à base de Fe
WO2010093016A1 (fr) Plaque de titane
CN113604706B (zh) 一种低密度低膨胀高熵高温合金及其制备方法
JP2022037155A (ja) 高温チタン合金
JP2019059995A (ja) 耐熱性に優れたオーステナイト系ステンレス鋼板及びその製造方法
JP2019218588A (ja) オーステナイト系ステンレス鋼板およびその製造方法
RU2776521C1 (ru) Сплав на основе титана и изделие, выполненное из него
RU2785110C1 (ru) Листовой материал из титанового сплава и компонент выхлопной системы
WO2024043804A1 (fr) Matériau en feuille en alliage de titane et composant de système d'échappement
JP6741876B2 (ja) 合金板及びガスケット
JP2020132919A (ja) 耐熱合金及びその製造方法
JP2010053419A (ja) 耐クリープ性および高温疲労強度に優れた耐熱部材用チタン合金
RU2781823C1 (ru) Сплав на основе титана и компонент выхлопной системы
WO2023048593A1 (fr) Alliage à base de titane et article fait de celui-ci
JP2020090727A (ja) 耐熱性アルミニウム合金材の製造方法
JP2021080541A (ja) 耐熱合金
Sikka Intermetallic-based high-temperature materials
RU2772153C1 (ru) Стойкие к ползучести титановые сплавы
RU2675063C1 (ru) Высокотемпературный гафнийсодержащий сплав на основе титана
JP2022045612A (ja) チタン合金、その製造方法およびそれを用いたエンジン部品
JP2020090726A (ja) 耐熱性アルミニウム合金材の製造方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857816

Country of ref document: EP

Kind code of ref document: A1