WO2024043174A1 - 吸音部材 - Google Patents

吸音部材 Download PDF

Info

Publication number
WO2024043174A1
WO2024043174A1 PCT/JP2023/029769 JP2023029769W WO2024043174A1 WO 2024043174 A1 WO2024043174 A1 WO 2024043174A1 JP 2023029769 W JP2023029769 W JP 2023029769W WO 2024043174 A1 WO2024043174 A1 WO 2024043174A1
Authority
WO
WIPO (PCT)
Prior art keywords
test piece
sound
sound absorbing
ventilation chamber
view
Prior art date
Application number
PCT/JP2023/029769
Other languages
English (en)
French (fr)
Inventor
義清 山本
福治 宮里
智 水口
Original Assignee
株式会社山本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山本 filed Critical 株式会社山本
Priority to JP2024506271A priority Critical patent/JP7492800B1/ja
Publication of WO2024043174A1 publication Critical patent/WO2024043174A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Definitions

  • the present invention relates to a sound absorbing member used for soundproof walls on expressways, interior walls of indoor passageways, and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 2022-84524
  • This conventional sound-absorbing member is used for sound-absorbing walls installed on the side of roads, and the interior of the box-shaped panel body consists of a front part with holes such as louvers, a back part, and side parts. It was equipped with sound-absorbing material.
  • the conventional sound absorption technology uses materials such as fibers, foam materials, thin films, etc., and structurally uses heat energy conversion methods such as resonance, vibration, and friction.
  • Conventional technology has attempted to solve this principle by causing the incoming sound to travel linearly from the front side toward the back side.
  • the thickness of the box-shaped panel body was increased.
  • Thin sound-absorbing boards are required when installing on walls and ceilings that do not receive wind loads, such as conference rooms, machine rooms, gymnasiums, stadiums, public passages, and air conditioning equipment.
  • Patent Document 1 It was difficult to achieve thinning with the conventional technology described in Patent Document 1.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-108145
  • This soundproofing member has two porous metal plates placed at an appropriate distance from the face plate of the profile, and achieves a soundproofing effect using the Helmholtz resonance principle and viscous damping principle, making it thin and lightweight.
  • JP2022-84524A Japanese Patent Application Publication No. 2003-108145
  • Patent Documents 1 and 2 are based on the principle that a sound absorption effect is obtained by allowing the incoming sound to proceed linearly from the front side toward the back side, so the thickness of the rear air layer is necessary. Therefore, there was a limit to how thin the device could be.
  • an object of the present invention is to provide a sound absorbing member in which the thickness between the front part and the back part is reduced based on a new diffraction principle rather than the conventional linear principle.
  • the sound absorbing member of the present invention has a front surface on the sound source side having an XY plane, and a rear surface disposed on the front surface with a rear air layer having a thickness in the Z direction interposed therebetween.
  • a plurality of slits communicating with the rear air layer are provided at a predetermined length and a predetermined pitch, and a ventilation chamber for guiding and storing the diffracted waves of sound incident from the slits is provided on the XY plane. It is provided with a predetermined thickness in the Z direction.
  • the ventilation chamber is divided into a plurality of sections in the Y direction and continuous in the X direction, and the slit is linear and intersects the X direction at an angle of 45 degrees to 135 degrees.
  • the ventilation chambers are provided in multiple stages in the Z direction.
  • the front part is made of cardboard, metal material, or synthetic resin material.
  • a sound absorbing material is housed in the ventilation chamber.
  • the present invention has the advantage that it can be made thinner than the conventional linear arrangement.
  • FIG. 1 is a front view of a sound absorbing member showing an embodiment of the present invention.
  • 2 is a sectional view of various sound absorbing members illustrated in FIG. 1.
  • FIG. Various cross-sectional views where the front part is made of cardboard.
  • FIG. 2 is a perspective view of the front section for explaining the diffraction principle of the present invention.
  • FIG. 3 is a front view of the first test piece.
  • FIG. 3 is a cross-sectional view of the first test piece.
  • the front view of the second test piece. Graph of sound absorption coefficient measurement results using the second test piece.
  • Sectional view of the third test piece. Graph of sound absorption coefficient measurement results using the third test piece.
  • Front view of the fourth test piece. Graph of sound absorption coefficient measurement results using the fourth test piece.
  • Graph of sound absorption coefficient measurement results using the fourth test piece. Sectional view of the fifth test piece.
  • FIG. 7 is a front view and a sectional view of a sound absorbing member showing another embodiment of the present invention.
  • FIG. 7 is a front view and a sectional view of a sound absorbing member and its constituent members showing another embodiment of the present invention.
  • FIG. 7 is a front view and a sectional view of a sound absorbing member and its constituent members showing another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the front portion showing another embodiment of the present invention.
  • FIG. 3 is a perspective view of a flat aluminum plate constituting another embodiment of the present invention.
  • FIG. 32 is a perspective view of a front piece formed by bending the aluminum plate of FIG. 31;
  • FIG. 33 is a rear perspective view of the front piece of FIG. 32;
  • FIG. 33 is a perspective view of a sound absorbing member including the front piece shown in FIG. 32;
  • FIG. 35 is an enlarged sectional view of section A in FIG. 34.
  • FIG. 3 is a cross-sectional view of a sound absorbing member whose rear portion is made of a galvanized iron plate.
  • FIG. 3 is a front view of a spandrel-type sound absorbing member.
  • FIG. 39 is a sectional view of the sound absorbing member of FIG.
  • (a) is a front view of the 10th test piece, and (b) is a sectional view.
  • (a) is a front view of the 11th test piece, and (b) is a sectional view.
  • (a) is a front view of the 12th test piece, and (b) is a sectional view.
  • FIG. 1 is a front view of a sound absorbing member 1 used for soundproof walls on expressways, ceiling walls in rooms, etc.
  • Figure 2 is a cross-sectional view of the structure.
  • Figures (a) and (b) are designed to withstand external forces such as wind loads when used outdoors
  • Figure (c) shows structures that can handle external forces such as wind loads when used indoors. It has a cross-sectional structure that is used in places where it is not exposed to heat (soundproofing machine rooms, partitions, etc.).
  • This sound absorbing member 1 has a front part 2 on the sound source side, and a rear part 4 disposed on this front part 2 with a rear air layer 3 interposed therebetween.
  • the "XYZ direction" used in the present invention is defined based on the XY coordinates shown in FIG. 1 and the YZ coordinates shown in FIG. 2. Further, the X direction may be referred to as the "left-right direction,” the Y direction may be referred to as the “up-down direction,” and the Z direction may be referred to as the "thickness direction.”
  • the front part 2 is composed of a plate-shaped member having an XY plane and a predetermined thickness in the Z direction.
  • the rear surface section 4 includes a rear surface plate 4a arranged parallel to the front surface section 2 in the Z direction with a rear air layer 3 in between, and an upper surface plate 4b and a lower surface plate 4c extending from the upper and lower ends of this rear surface plate 4a toward the front surface section. has. The ends of the upper surface plate 4b and the lower surface plate 4c and the upper and lower edges of the front part 2 are connected.
  • a protruding rib 4d protruding toward the front surface 2 is formed at the center of the rear plate 4a, and in FIG. A rib 4e that protrudes on the opposite side is formed to provide a rib structure that can cope with wind loads.
  • the one shown in FIG. 6(c) does not have a rib structure because it is used indoors.
  • a plurality of slits 5 communicating with the rear air layer 3 are provided in the front part 2 at a predetermined length and at a predetermined pitch. Further, the front part 2 is provided with a ventilation chamber 6 that guides and accommodates diffracted waves of sound incident through the slit 5. This ventilation chamber 6 has a predetermined thickness in the Z direction on the XY plane. The width of the slit 5 is 0.5 mm or less.
  • FIGS. 3 to 5 Various shapes of the ventilation chamber 6 are shown in FIGS. 3 to 5.
  • FIG. 5A shows a "single-sided corrugated board” in which a corrugated core base paper 8 is bonded to a single liner 7, and the hollow part of the corrugation forms the ventilation chamber 6.
  • FIG. 2B shows a "double-sided corrugated board” in which a liner 7 is bonded to the corrugated top of a single-sided corrugated board, and a corrugated hollow part between the liners 7 forms a ventilation chamber 6.
  • Figures (c) and (d) show "double-sided corrugated board” in which a single-sided corrugated board is bonded to one side of a double-sided corrugated board.
  • the ventilation chamber 6 is divided into a plurality of sections in the Y direction and continuous in the X direction, and in the ones shown in (c) to (e), the ventilation chamber 6 is provided in multiple stages in the Z direction.
  • the front part 2 is made of an aluminum profile.
  • 4(a) has a cross-sectional shape corresponding to FIG. 3(a)
  • FIGS. 4(b) and 4(c) have a cross-sectional shape corresponding to FIG. 3(b)
  • Y A ventilation chamber 6 divided into a plurality of directions is formed.
  • FIG. 4(d) two aluminum plates are arranged parallel to each other with a predetermined interval in the Z direction, and the ventilation chamber 6 has a predetermined thickness in the Z direction on the XY plane. , is not divided into multiple sections in the Y direction.
  • the front part 2 is composed of composite stacked plates.
  • This plate is an aluminum plate, a galvanized iron plate, a SUS material, or a plastic plate.
  • the space between the stacked plates is used as a ventilation chamber 6.
  • front part 2 is exemplified as being made of cardboard, metal material, or synthetic resin material, the present invention is not limited to being made of these materials.
  • a ventilation chamber is provided behind the surface plate to perform sound absorption treatment.
  • the front part 2 of the sound absorbing member shown in FIG. 6 is made of corrugated cardboard having a cross-sectional shape shown in FIG. 3(e).
  • the surface plate of this front part 2 is formed of a liner 7, and the ventilation chamber 6 is divided into a plurality of sections in the Y direction, continuous in the X direction, and provided in multiple stages in the Z direction.
  • a slit 5 is provided in the front part 2 so as to pass through it in the thickness direction.
  • the slits 5 have a predetermined length in the Y direction, and are provided in plurality at a predetermined pitch in the X direction.
  • the slit 5 is provided at an intersection of 90 degrees with the X direction.
  • the ventilation chambers 6 are continuous in the X direction, the slits 5 must not be parallel to the ventilation chambers 6. Therefore, based on 90 degrees, a range of 45 degrees to 135 degrees is optimal. Note that the slit 5 is processed on the same plane and has a width of 0.5 mm or less.
  • the rectilinear wave of sound entering from the slit 5 becomes a diffraction wave and is guided to the ventilation chamber 6.
  • the sound transmission energy is converted into thermal energy through physical energy such as friction and vibration, and the sound is absorbed.
  • Performance can be improved by processing the diffraction waves not only once but also with second and third diffraction waves (multi-stage processing in the Z direction). Thereby, the back air layer can be made thinner, and the sound absorbing member 1 can have a thin structure.
  • the sound absorption coefficient was measured by vertical incidence at the Osaka Institute of Industrial Science and Technology, a local independent corporation, using a "sound absorption coefficient measurement system" of equipment number: A6001, equipment configuration/model number: Brüel & Kj ⁇ r Type 4206. Note that the diameter of the "test piece" used in this sound absorption coefficient measurement system is 100 mm.
  • the measurement method is a two-microphone method (transfer function method).
  • the applicable standards are ISO10534-2 and ASTM E1050.
  • the measurement frequency range is 100 to 1600 Hz.
  • FIGS. 8 and 9 What is shown in FIGS. 8 and 9 is the first test piece used in the "sound absorption coefficient measurement system".
  • FIG. 8 is a front view of the test piece (front part 2)
  • FIG. 9 is a sectional view of the test piece (front part 2).
  • the front part 2 is made of flameproof cardboard, which is "double-sided cardboard”.
  • the thickness of the front part 2 is 3 mm.
  • a "back air layer 3" is formed on the back surface of this test piece.
  • the ventilation chamber 6 formed in the front part 2 is continuous in the X direction and divided into a plurality of sections in the Y direction.
  • the slit 5 intersects the X direction at 90 degrees.
  • the slit width is 0.5 mm.
  • the pitch of the slits 5 is as shown in FIG.
  • FIGS. 10 and 11 are graphs of the normal incidence test measurement results of the first test piece.
  • the vertical axis is the sound absorption coefficient, and the horizontal axis is the frequency.
  • the rear air layer is 30 mm, and the representative frequency is 850 Hz.
  • the rear air layer is 60 mm, and the representative frequency is 600 Hz.
  • FIG. 12 is a front view of the second test piece.
  • the intersection angle of the slit 5 with the X-axis was 60 degrees with respect to the ventilation chamber 6 that was continuous in the X direction.
  • the cross-sectional view is the same as that in FIG. 9, so illustration thereof is omitted.
  • FIG. 13 and 14 are graphs of the normal incidence test measurement results of the second test piece.
  • the rear air layer is 30 mm, and the representative frequency is 600 Hz.
  • the rear air layer is 50 mm, and the representative frequency is 700 Hz.
  • 15 to 17 are from the third test piece.
  • the front view of the third test piece is the same as that shown in FIG. 8, so it is not shown.
  • Its cross-sectional view is shown in FIG. 15, and a general corrugated board of "double-sided corrugated board" shown in FIG. 3(c) is used.
  • the thickness of the front part 2 is 3 mm+1.5 mm.
  • FIG. 16 is a graph of the normal incidence test measurement results with a rear air layer of 15 mm, and the representative frequency is 1200 Hz.
  • FIG. 17 is a graph of the measurement results of a normal incidence test with a rear air layer of 30 mm, and the representative frequency is 600 Hz.
  • FIG. 18 to 20 are from the fourth test piece.
  • the front view of the fourth test piece is shown in FIG. 18, and the pitch of the illustrated slits 5 is different from that shown in FIG.
  • the cross-sectional view is the same as that shown in FIG. 15, so illustration thereof is omitted.
  • FIG. 19 is a graph of the normal incidence test measurement results with a rear air layer of 10 mm, and the representative frequency is 1600 Hz.
  • FIG. 20 is a graph of the measurement results of a normal incidence test with a rear air layer of 30 mm, and the representative frequency is 900 Hz.
  • FIG. 21 to 23 are from the fifth test piece.
  • the front view of the fifth test piece is the same as that shown in FIG. 8, so it is not shown.
  • the cross section is shown in FIG. 21 and corresponds to FIG. 4(a).
  • the cross-sectional shape of the front part 2 is such that a ventilation chamber 6 is formed of a front aluminum plate 2a with a thickness of 0.8 mm and a square corrugated aluminum plate 2b with a thickness of 0.5 mm, and the thickness of the front part 2 is 9 mm.
  • FIG. 22 is a graph of the normal incidence test measurement results with a rear air layer of 30 mm, and the representative frequency is 850 Hz.
  • FIG. 23 is a graph of the normal incidence test measurement results with a rear air layer of 50 mm, and the representative frequency is 600 Hz.
  • Figures 24 to 26 are from the sixth test piece.
  • the front view of the sixth test piece is the same as that shown in FIG. 8, so it is not shown.
  • the cross-sectional view is shown in FIG. 24, and corresponds to FIG. 4(d).
  • the cross-sectional shape of the front part 2 is such that a front aluminum plate 2a with a thickness of 0.8 mm and a rear aluminum plate with a thickness of 0.5 mm are arranged in parallel at a predetermined interval to form a ventilation chamber 6.
  • the thickness is 4 mm.
  • FIG. 25 is a graph of the normal incidence test measurement results with a rear air layer of 30 mm, and the representative frequency is 800 Hz.
  • FIG. 26 is a graph of the normal incidence test measurement results with a rear air layer of 50 mm, and the representative frequency is 500 Hz.
  • FIGS. 27 to 29 What is shown in FIGS. 27 to 29 is a front part 2 used as a sound absorbing member used for soundproofing the inner walls of indoor passageways and the walls of machines' interiors, which are used indoors in places that are not subjected to wind loads.
  • the front part 2 has two flat plates with a thickness of 4 mm arranged in parallel, held by a formwork 9, and a ventilation chamber 6 between the two flat plates.
  • a slit 5 is provided in this front part 2.
  • the front part 2 is made of "double-sided cardboard".
  • the piece 10 shown in FIG. 2B is fitted and fixed into the formwork 9 through the slit 5 as shown in FIG. 1A. That is, the gap between the pieces 10 is the slit 5.
  • the front part 2 is made of cardboard, and the piece 10 shown in FIG. 29 (b) is fixed to the surrounding edge material 11. A plurality of slits 5 are formed in this piece 10.
  • the one shown in FIG. 30 has a sound absorbing material 12 housed in a ventilation chamber 6.
  • the front part 2 has a surface material 13 and a plurality of liners 14, and a ventilation chamber 6 is formed between the surface material 13 and the liner 14 and between the liners 14, and the sound absorbing material 12 is stored in the ventilation chamber 6. ing.
  • a slit 5 is provided in this front part 2 and penetrates in the thickness direction.
  • the surface material 13 a straight board, an asbestos cement board, etc. are used.
  • a transparent plate (polycarbonate), plywood, thin plate material such as cypress or cedar is used.
  • polyester nonwoven fabric, glass wool, open cell plastic (EPDM/urethane), etc. are used.
  • the sound absorbing material 12 may be made of expanded metal.
  • the slit 5 is illustrated as having a linear shape, but it may have a wave shape, an arc shape, or other shapes. It may also be highly decorative by drawing figures etc. with slits.
  • the ventilation chamber should preferably have a planar shape (see FIG. 4(d)) rather than a hole shape.
  • the slits are preferably formed by laser processing, but may be formed by other processing methods.
  • the slits may be formed by a "four-knit structure" shown in "Fig. 60" of "Japanese Patent Application No. 2022-50983" filed by the applicant of the present application.
  • FIG. 31 onwards are other embodiments of the present invention.
  • FIG. 31 What is shown in FIG. 31 is a flat aluminum plate 2c with a thickness of 0.5 mm.
  • the aluminum plate 2c is formed into a rectangular shape having a long side in the X direction and a short side in the Y direction.
  • a plurality of slits 5 passing through the aluminum plate 2c in the thickness direction have a predetermined length in the X direction, and are formed in a straight line at a predetermined pitch in the X direction.
  • the slits 5 are provided in two rows at a predetermined interval in the Y direction.
  • the slit 5 is preferably formed by laser processing, but may be formed by press punching or mechanical processing.
  • the width of the slit 5 in the Y direction is preferably 2 mm or less.
  • the length of the slit 5 in the X direction is approximately 30 to 50 mm, depending on the plate thickness. It is preferable to arrange the slits 5 in the X direction at a pitch of 50 to 70 mm.
  • the aperture ratio of the slit 5 is set to be 5% or less.
  • the upper and lower ends of the rectangular aluminum plate 2c are folded back 180 degrees in the same direction at the positions of the slits 5 to form folded portions 2d.
  • a ventilation chamber 6 having a predetermined thickness in the Z direction is formed between this folded portion 2d and the plane portion 2e between the slits 5.
  • the thickness of the ventilation chamber 6 is preferably equal to or less than the width of the slit 5 or 0.5 to 10 mm.
  • the thickness of the ventilation chamber 6 in the Z direction may not be constant. That is, the folded portion 2d and the flat portion 2e do not need to be parallel.
  • the length may vary from 0.2 mm to 8 mm from the starting point of the folded portion to the end of the folded portion.
  • This folded piece is hereinafter referred to as the "front piece 15.”
  • additional slits 16 can be formed in the folded portion 2d by laser processing. Note that this additional slit 16 is processed in the flat aluminum plate 2c shown in FIG. 31.
  • the additional slit 16 is provided to be inclined in the X direction, but is not limited thereto, and may be perpendicular to or parallel to the X direction.
  • the length of the additional slit 16 is 50 mm or less, and multiple types of additional slits with different lengths and inclination angles can be arranged.
  • the front section 2 is constructed by arranging the front pieces 15 in a plurality of stages closely in the Y direction on the XY plane.
  • a rear surface portion 4 is disposed on this front surface portion 2 with a rear air layer 3 interposed therebetween, thereby configuring the sound absorbing member 1.
  • the plurality of upper and lower front pieces 15 are connected and fixed to a support frame 2f arranged vertically within the rear air layer 3 by fixing rivets 2g.
  • FIG. 35 is an enlarged cross-sectional view of the connecting portion in the slit 5 of the upper and lower front pieces 15, 15 of the front part 2.
  • the incident sound goes straight toward the rear air layer 3 at the slit 5 of the folded part 2d, it is diffracted toward the ventilation chamber 6 side, and the diffraction sound is transmitted from the slit 5 to the ventilation chamber 6 side. Enter room 6.
  • the positions of the slits 5 of the upper and lower front pieces 15 that are in close contact with each other in the Y direction match in the X direction. Further, the gap in the Y direction at the position of the slit 5 of the front piece 15 that is in close contact with the upper and lower sides must not exceed 3 mm. That is, the entrance gap of the incident sound in FIG. 35 is 3 mm or less. Sound entering through this gap is diffracted through the slit 5 and enters the ventilation chamber 6.
  • the ventilation chamber 6 has a structure that does not act as a barrier to the sound diffracted from the slit 5.
  • the ventilation chamber 6 has an inlet from the slit 5 and an outlet communicating with the rear air layer 3 from the folded end, and needs to be an unsealed space. Note that the additional slit 16 also constitutes an outlet communicating with the rear air layer 3.
  • the front section 2 made up of the front piece 15 can be held by an aluminum frame 17.
  • a rear plate 4a is held on this aluminum frame 17 to constitute a rear section 4.
  • the dimensions of the front piece 15 in the Y direction are 125 mm, 75 mm, 50 mm, 75 mm, and 125 mm from bottom to top.
  • the one shown in FIG. 37 has a front part 2 made up of a front piece 15 held by a rear plate 4a.
  • the rear plate 4a is made of a galvanized iron plate.
  • the structure of this rear plate 4a is substantially the same as that shown in FIG.
  • FIGS. 38 and 39 The one shown in FIGS. 38 and 39 is of a spandrel type, and uses the sound absorbing member 1 of the present invention as a sound absorbing device for a ceiling or wall.
  • a front part 2 composed of a front piece 15 is held in a spandrel type aluminum formwork 18 attached to the ceiling or wall surface.
  • the rear part 4 may be held in this aluminum formwork 18, the rear part 4 may be the ceiling or wall itself.
  • the dimensions of the front piece 15 in the Y direction are 52.5 mm, 100 mm, and 52.5 mm from bottom to top.
  • the distance between the ends of the folded portion 2d of the front piece 15 is 15 mm. This interval allows the ventilation chamber 6 and the rear air layer 3 to communicate with each other.
  • the plurality of upper and lower front pieces 15 are connected and fixed to a support frame 2f arranged vertically within the rear air layer 3 by fixing rivets 2g.
  • Figures 40 to 42 are from the seventh test piece.
  • FIG. 40(a) is a front view of the seventh test piece, and FIG. 40(b) is a sectional view thereof.
  • the seventh test piece had the slits 5 shown in FIG. 39 arranged at intervals of 100 mm in the Y direction at the center of the test piece.
  • the thickness of the aluminum plate is 0.5 mm
  • the length of the slit 5 in the X direction is 35 mm
  • the length of the folded portion 2d in the Y direction is 35 mm and 20 mm. No additional slit 16 is formed in the folded portion 2d.
  • FIG. 41 is a graph of the normal incidence test measurement results with a rear air layer of 20 mm, and the representative frequency is 650 Hz.
  • FIG. 42 is a graph of the normal incidence test measurement results with a rear air layer of 40 mm, and the representative frequency is 450 Hz.
  • Figures 43 to 45 are from the eighth test piece.
  • FIG. 43(a) is a front view of the eighth test piece, and FIG. 43(b) is a sectional view thereof.
  • the eighth test piece had the slits 5 shown in FIG. 36 arranged at intervals of 50 mm in the Y direction at the center of the test piece.
  • the thickness of the aluminum plate is 0.5 mm
  • the length of the slit 5 in the X direction is 35 mm
  • the length of the folded portion 2d in the Y direction is 15 mm and 18 mm. No additional slit 16 is formed in the folded portion 2d.
  • FIG. 44 is a graph of the normal incidence test measurement results with a rear air layer of 20 mm, and the representative frequency is 850 Hz.
  • FIG. 45 is a graph of the normal incidence test measurement results with a rear air layer of 40 mm, and the representative frequency is 550 Hz.
  • Figures 46 to 48 are from the ninth test piece.
  • FIG. 46(a) is a front view of the ninth test piece, and FIG. 46(b) is a sectional view thereof.
  • the ninth test piece is the same as that shown in FIG. 43, but an additional slit 16 is formed in the folded portion 2d.
  • the pitches in the X direction of the additional slits 16 are 20 mm, 25 mm, and 20 mm, and are provided perpendicular to the X direction.
  • FIG. 47 is a graph of the normal incidence test measurement results with a rear air layer of 20 mm, and the representative frequency is 800 Hz.
  • FIG. 48 is a graph of the normal incidence test measurement results with a rear air layer of 40 mm, and the representative frequency is 600 Hz.
  • Figures 49 to 51 are from the 10th test piece.
  • FIG. 49(a) is a front view of the tenth test piece
  • FIG. 49(b) is a cross-sectional view thereof.
  • the tenth test piece has the same shape as the one shown in FIG. 40, but is made of galvanized iron with a thickness of 0.27 mm, and an additional slit 16 is formed in the folded portion 2d.
  • the pitches in the X direction of the additional slits 16 are 20 mm, 25 mm, and 20 mm, and are provided perpendicular to the X direction.
  • FIG. 50 is a graph of the normal incidence test measurement results with a rear air layer of 20 mm, and the representative frequency is 750 Hz.
  • FIG. 51 is a graph of the normal incidence test measurement results with a rear air layer of 40 mm, and the representative frequency is 500 Hz.
  • Figures 52 to 54 are based on the 11th test piece.
  • FIG. 52(a) is a front view of the eleventh test piece, and FIG. 52(b) is a sectional view thereof.
  • the eleventh test piece has the same shape as the one shown in FIG. 46, but is made of galvanized iron with a thickness of 0.27 mm, and an additional slit 16 is formed in the folded portion 2d.
  • the pitches in the X direction of the additional slits 16 are 20 mm, 25 mm, and 20 mm, and are provided perpendicular to the X direction.
  • FIG. 53 is a graph of the normal incidence test measurement results with a rear air layer of 20 mm, and the representative frequency is 750 Hz.
  • FIG. 54 is a graph of the normal incidence test measurement results with a rear air layer of 40 mm, and the representative frequency is 500 Hz.
  • Figures 55 to 57 are from the 12th test piece.
  • FIG. 55(a) is a front view of the twelfth test piece, and FIG. 55(b) is a sectional view thereof.
  • the twelfth test piece has the same shape as that shown in FIG. 52, but is made of stainless steel with a thickness of 0.2 mm.
  • FIG. 56 is a graph of the normal incidence test measurement results with a rear air layer of 20 mm, and the representative frequency is 850 Hz.
  • FIG. 57 is a graph of the measurement results of a normal incidence test with a rear air layer of 40 mm, and the representative frequency is 600 Hz.
  • Figures 58 to 60 are from the 13th test piece.
  • FIG. 58(a) is a front view of the thirteenth test piece
  • FIG. 58(b) is a cross-sectional view thereof.
  • the thirteenth test piece has the same shape as the one shown in FIG. 55, but is made of aluminum with a thickness of 0.5 mm, and has an additional slit 16 provided in the folded portion 2d so as to be inclined in the X direction.
  • FIG. 59 is a graph of the normal incidence test measurement results with a rear air layer of 20 mm, and the representative frequency is 800 Hz.
  • FIG. 60 is a graph of the normal incidence test measurement results with a rear air layer of 40 mm, and the representative frequency is 600 Hz.
  • Figures 61 to 63 are from the 14th test piece.
  • FIG. 61(a) is a front view of the fourteenth test piece, and FIG. 61(b) is a cross-sectional view thereof.
  • the fourteenth test piece has the same shape as the one shown in FIG. 58, except that an additional slit 16 is provided in the folded portion 2d in parallel to the X direction.
  • FIG. 62 is a graph of the normal incidence test measurement results with a rear air layer of 20 mm, and the representative frequency is 900 Hz.
  • FIG. 63 is a graph of the normal incidence test measurement results with a rear air layer of 40 mm, and the representative frequency is 600 Hz.
  • the thickness of the ventilation chamber 6 in the Z direction can be reduced, and as a result, the thickness of the front part 2 can be reduced.
  • the material of the front piece 15 is not limited to metal materials such as galvanized iron plate, stainless steel, and aluminum, but may also be plastic materials such as polycarbonate and PET.
  • the front part 2 is composed of the front piece 15 with a folded structure, the strength is improved despite the thinness.
  • the front part 2 Since the front part 2 has an extremely low aperture ratio, new added value can be added to the surface. For example, radio wave/sound absorbing panels, countermeasures against noise and ETC radio waves under the girders and underground roads, sound absorbing panels inside tunnels, and lighting inside tunnels can be improved.
  • the present invention is not limited to what is shown in each of the above embodiments or what is shown in the test piece.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

本発明は、従来の直進型原理ではなく、新たな回析原理に基づき、前面部と背面部間の厚みを薄くした吸音部材を提供することを目的とする。 本発明の吸音部材(1)は、X―Y平面を有する音源側の前面部(2)と、該前面部(2)にZ方向の厚みを有する背後空気層(3)を介して配置された後面部(4)とを有し、前記前面部(2)には、前記背後空気層(3)に連通するスリット(5)が、所定長さ、所定ピッチで複数設けられ、かつ、該スリット(5)から入射する音の回析波を誘導収納する通気室(6)が、X―Y面上でZ方向に所定厚みを有して設けられている。

Description

吸音部材
 本発明は、高速道路の防音壁や、屋内通路内壁等に使用される吸音部材に関する。
 従来の吸音部材として、例えば特開2022-84524号公報(特許文献1)に記載のものがある。この従来の吸音部材は、道路脇に設置される吸音壁に用いられるものであり、ルーバー等の穴が形成された前面部と、背面部と側面部によって構成される箱状のパネル体の内部に吸音材を備えているものであった。
 前記従来の吸音技術は材料的には繊維、発泡材、薄膜等を用い、構造的には共鳴、振動、摩擦等の熱エネルギー転換方式である。そして、従来の技術はこの原理を、前面部から背面部側に向かって進入音を直線的に進ませて解決を図ってきた。
 したがって、従来のものは、箱状のパネル本体の厚みが厚くなるものであった。設置場所として、会議室、機械室、体育館、競技場、公共通路、空調設備等の風荷重を受けない壁面及び天井に設ける場合は、薄型吸音板が要望される。
 しかし従来の特許文献1記載の技術では薄型化が達成し難かった。
 一方、薄型化を図ったものとして、特開2003-108145号公報(特許文献2)に記載のものがある。この防音部材は、形材の面板部から適長間隔をおいて2枚の多孔金属板を配置し、ヘルムホルツ共鳴原理と粘性減衰原理とにより防音効果を発揮して、薄型軽量化を図ったものであった。
 しかし、特許文献2記載のものは、形材の厚みが大変厚いものであったので、薄型化には限界があった。また、多孔金属板と面板部との間の空気層を厚いものにしないと十分な防音効果を発揮しないというものであった。
特開2022-84524号公報 特開2003-108145号公報
 前記特許文献1や2に記載のものは、前面部から背面部側に向かって進入音を直線的に進ませて吸音効果を得るという原理のものであったので、背後空気層の厚みが必要となるものであり、薄型化には限界があった。
 そこで、本発明は、従来の直進型原理ではなく、新たな回析原理に基づき、前面部と背面部間の厚みを薄くした吸音部材を提供することを目的とする。
 前記目的を達成するため、本発明は、次の手段を講じた。すなわち、本件発明の吸音部材は、X―Y平面を有する音源側の前面部と、該前面部にZ方向の厚みを有する背後空気層を介して配置された後面部とを有し、前記前面部には、前記背後空気層に連通するスリットが、所定長さ、所定ピッチで複数設けられ、かつ、該スリットから入射する音の回析波を誘導収納する通気室が、X―Y面上でZ方向に所定厚みを有して設けられたものである。
 前記通気室は、Y方向に複数に区分され、X方向に連続しており、前記スリットは直線状であり、X方向に対して45度から135度で交差しているのが好ましい。
 前記通気室は、Z方向に複数段設けられているのが好ましい。
 前記前面部は、段ボール、金属材、又は、合成樹脂材のいずれかにより形成されているのが好ましい。
前記通気室に、吸音材が収納されているのが好ましい。
 本発明は、音の回析原理を用いることにより、従来の直線的配置のものに比べて、薄型にすることができるという効果を奏する。
本発明の実施の形態を示す吸音部材の正面図。 図1に例示される各種の吸音部材の断面図。 前面部が段ボールで構成された各種断面図。 前面部がアルミ型材で構成された各種断面図。 前面部が複合重ね板で構成された各種断面図。 本発明の回析原理の説明用の前面部の斜視図。 回析原理の説明図。 第1テストピースの正面図。 第1テストピースの断面図。 第1テストピースによる吸音率測定結果のグラフ。 第1テストピースによる吸音率測定結果のグラフ。 第2テストピースの正面図。 第2テストピースによる吸音率測定結果のグラフ。 第2テストピースによる吸音率測定結果のグラフ。 第3テストピースの断面図。 第3テストピースによる吸音率測定結果のグラフ。 第3テストピースによる吸音率測定結果のグラフ。 第4テストピースの正面図。 第4テストピースによる吸音率測定結果のグラフ。 第4テストピースによる吸音率測定結果のグラフ。 第5テストピースの断面図。 第5テストピースによる吸音率測定結果のグラフ。 第5テストピースによる吸音率測定結果のグラフ。 第6テストピースの断面図。 第6テストピースによる吸音率測定結果のグラフ。 第6テストピースによる吸音率測定結果のグラフ。 本発明の他の実施の形態を示す吸音部材の正面図と断面図。 本発明の他の実施の形態を示す吸音部材とその構成部材の正面図と断面図。 本発明の他の実施の形態を示す吸音部材とその構成部材の正面図と断面図。 本発明の他の実施の形態を示す前面部の断面図。 本発明の他の実施の形態を構成する平板状のアルミ板の斜視図。 図31のアルミ板を折り曲げ加工して形成される前面ピースの斜視図。 図32の前面ピースの背面側斜視図。 図32に示す前面ピースを備えた吸音部材の斜視図。 図34のA部の拡大断面図。 アルミ枠を備えた吸音部材の断面図。 後面部を亜鉛鉄板で構成した吸音部材の断面図。 スパンドレル式の吸音部材の正面図。 図38の吸音部材の断面図。 (a)は第7テストピースの正面図で、(b)は断面図。 第7テストピースによる吸音率測定結果のグラフ。 第7テストピースによる吸音率測定結果のグラフ。 (a)は第8テストピースの正面図で、(b)は断面図。 第8テストピースによる吸音率測定結果のグラフ。 第8テストピースによる吸音率測定結果のグラフ。 (a)は第9テストピースの正面図で、(b)は断面図。 第9テストピースによる吸音率測定結果のグラフ。 第9テストピースによる吸音率測定結果のグラフ。 (a)は第10テストピースの正面図で、(b)は断面図。 第10テストピースによる吸音率測定結果のグラフ。 第10テストピースによる吸音率測定結果のグラフ。 (a)は第11テストピースの正面図で、(b)は断面図。 第11テストピースによる吸音率測定結果のグラフ。 第11テストピースによる吸音率測定結果のグラフ。 (a)は第12テストピースの正面図で、(b)は断面図。 第12テストピースによる吸音率測定結果のグラフ。 第12テストピースによる吸音率測定結果のグラフ。 (a)は第13テストピースの正面図で、(b)は断面図。 第13テストピースによる吸音率測定結果のグラフ。 第13テストピースによる吸音率測定結果のグラフ。 (a)は第14テストピースの正面図で、(b)は断面図。 第14テストピースによる吸音率測定結果のグラフ。 第14テストピースによる吸音率測定結果のグラフ。
 以下、本発明の実施の形態を図面に基づき説明する。
 図1は、高速道路の防音壁や室内の天井壁等に用いられる吸音部材1の正面図である。
 図2は、その断面図であり、同図(a)(b)は、屋外使用で風荷重等の外力に対応できる構造とされており、同図(c)は、屋内使用で風荷重等を受けない場所(機械室防音又は間仕切り等)で使用される断面構造とされている。
 この吸音部材1は、音源側の前面部2と、この前面部2に背後空気層3を介して配置された後面部4とを有する。
 なお、図1に記載したX-Y座標、図2に記載したY-Z座標に基づき、本発明に使用する、「X-Y-Z方向」を定義する。また、X方向を「左右方向」、Y方向を「上下方向」、及び、Z方向を「厚み方向」ということもある。
 前面部2は、X-Y平面を有しZ方向に所定厚みの板状部材で構成されている。後面部4は、前面部2とZ方向に背後空気層3を介して平行に配置された後面板4aと、この後面板4aの上下端から前面部に向かって伸びる上面板4b及び下面板4cを有する。上面板4bと下面板4cの端部と前面部2の上下端縁が結合されている。
 図2(a)に示すように、後面板4aの中央部に、前面部2側に突出する凸条リブ4dが形成され、同図(b)では、後面板4aの上下部に前面部2側とは反対側に突出するリブ4eが形成されて、風荷重に対応できるリブ構造とされている。同図(c)に示すものは、屋内使用なのでリブ構造は採用されていない。
 前記前面部2には、前記背後空気層3に連通するスリット5が、所定長さ、所定ピッチで複数設けられている。また前面部2には、スリット5から入射する音の回析波を誘導収納する通気室6が設けられている。この通気室6は、X―Y面上でZ方向に所定厚みを有する。スリット5の幅は、0.5mm以下とされている。
 図3~図5に、通気室6の各種形状が示されている。
 図3に示すものは、前面部2を段ボールで構成したものである。同図(a)は、1枚のライナ7に波型に成形した中芯原紙8を貼り合わせた「片面段ボール」であり、波型の中空部が通気室6を形成している。同図(b)は片面段ボールの段頂にライナ7を貼り合わせた「両面段ボール」であり、ライナ7、7間の波型の中空部が通気室6を形成している。同図(c)及び(d)は両面段ボールの片側に片面段ボールを貼り合わせた「複両面段ボール」である。(c)と(d)の相違は、片面段ボールの波型ピッチの大小である。同図(e)は、複両面段ボールの片側に片面段ボールを貼り合わせた「複々両面段ボール」である。
 前記通気室6は、Y方向に複数に区分され、X方向に連続しており、(c)~(e)に示すものでは、通気室6は、Z方向に複数段設けられている。
 図4に示すものは、前面部2をアルミ型材で構成したものである。図4(a)に示すものは、図3(a)に相当する断面形状を有し、図4(b)、(c)は、図3(b)に相当する断面形状を有し、Y方向に複数に区分された通気室6が形成されている。図4(d)は、2枚のアルミ板をZ方向に所定間隔を有して平行配置したものであり、通気室6は、X-Y面上でZ方向に所定厚みを有するものとされ、Y方向に複数に区分されていない。
 図5に示すものは、前面部2を複合重ね板で構成したものである。この板は、アルミ、亜鉛鉄板、SUS材、又は、プラスチック板である。重ね板間の空間が通気室6とされている。
 なお、前面部2は、段ボール、金属材、又は、合成樹脂材で構成されたものを例示したが、本発明は、これらの部材で構成されたものに限定されない。
 図6、図7を用いて、音の回析現象を説明する。
 音は、隙間がせまい時は、表面板の後ろに大きく回折する。この回折波を構造的に誘導収納し音エネルギーを熱転換させる。つまり、表面板の背後に通気室を設け吸音処理を行う。
 図6に示す吸音部材の前面部2は、図3(e)に示す断面形状を有する段ボールで形成されている。この前面部2の表面板はライナ7で形成され、通気室6は、Y方向に複数に区分され、X方向に連続しており、Z方向に複数段設けられている。
 前面部2にスリット5が厚み方向に貫通して設けられている。スリット5は、Y方向に所定の長さを有し、X方向に所定のピッチで複数設けられている。スリット5は、X方向と90度の交差で設けられている。通気室6が、X方向に連続する場合、スリット5は、通気室6と平行にならないことが条件である。ゆえに90度を基本に45度から135度が最適となる。尚、スリット5は同一平面上での加工であり幅0.5mm以下とする。
 図7に示すように、スリット5から進入する音の直進波は、回析波となって通気室6に導かれる。回折波を誘導受け入れる通気室6において、音の伝達エネルギーは摩擦・振動等の物理的エネルギーを経て熱エネルギーに変換され、吸音される。回折波は、1回だけでなく第2回折波、第3回折波処理(Z方向多段処理)することで性能UPできる。これにより、背後空気層を薄くでき、吸音部材1の薄型構造が可能となる。
 音の原理では隙間が狭いと回折現象が発生しその回折は低周波になるほど増加する。この原理を利用し音を通気室6に導入し、通気室6で音のエネルギー変換を行う。一部直進する音もあるが3層構造以上では大きい影響は無い。通気室6に侵入した音は、通気室6の長さに変化(20mm~200mm程度)を持たせているので吸音率の周波数領域が広がる。低周波数でも吸音部材1の厚さを低減できる。
 図8~図26に示すものは、垂直入射試験測定結果に関するものである。
 この測定試験は、地方独立法人大阪産業技術研究所において、装置番号:A6001,装置構成・型番:ブリュエル・ケアー Type4206の「吸音率測定システム」により、垂直入射による吸音率測定を行った。なお、この吸音率測定システムに使用される「テストピース」の直径は100mmである。測定手法は、2マイクロホン法(伝達関数法)である。適用規格は、ISO10534-2及びASTME1050である。測定周波数範囲は、100から1600Hzである。
 図8、図9に示すものは、前記「吸音率測定システム」に使用した第1テストピースである。図8がテストピース(前面部2)の正面図で、図9がテストピース(前面部2)の断面図である。この第1テストピースは、前面部2が「両面段ボール」の防炎段ボールで構成されている。前面部2の厚みは3mmである。この試験装置では、このテストピースの背面に「背後空気層3」が形成されている。
 前面部2に形成された通気室6は、X方向に連続し、Y方向に複数に区分されている。スリット5は、X方向に対して90度で交差している。スリット幅は、0.5mmである。スリット5のピッチは、図8に示すとおりである。
 図10、図11は、前記第1テストピースの垂直入射試験測定結果のグラフである。縦軸が吸音率で、横軸が周波数である。図10は、背後空気層を30mmとしたものであり、代表周波数は850Hzである。図11は、背後空気層を60mmとしたもので、代表周波数は600Hzである。
 図12は、第2テストピースの正面図である。この第2テストピースは、X方向に連続する通気室6に対し、スリット5のX軸との交差角を60度としたものである。その断面図は、図9と同じであるので図示省略する。
 図13、図14は、第2テストピースの垂直入射試験測定結果のグラフである。図13は、背後空気層を30mmとしたものであり、代表周波数は600Hzである。図14は、背後空気層を50mmとしたもので、代表周波数は700Hzである。
 図15~図17は、第3テストピースによるものである。第3テストピースの正面図は、図8に示すものと同じであるので、図示省略する。その断面図は、図15に示すものであり、図3(c)に示す「複両面段ボール」の一般段ボールが用いられている。前面部2の厚みは、3mm+1.5mmである。
 図16は、背後空気層を15mmとした垂直入射試験測定結果のグラフであり、代表周波数は1200Hzである。図17は、背後空気層を30mmとした垂直入射試験測定結果のグラフであり、代表周波数は600Hzである。
 図18~図20は、第4テストピースによるものである。第4テストピースの正面図は、図18に示すものであり、図示するスリット5のピッチが図8に示すものと異とされている。その断面図は、図15に示すものと同じであるので、図示省略する。
 図19は、背後空気層を10mmとした垂直入射試験測定結果のグラフであり、代表周波数は1600Hzである。図20は、背後空気層を30mmとした垂直入射試験測定結果のグラフであり、代表周波数は900Hzである。
 図21~図23は、第5テストピースによるものである。第5テストピースの正面図は、図8に示すものと同じであるので、図示省略する。その断面は、図21に示すものであり、図4(a)に相当するものである。前面部2の断面形状は、厚み0.8mmの前面アルミ板2aと、厚み0.5mmのアルミ角波板2bで通気室6を形成したものであり、前面部2の厚みは9mmである。
 図22は、背後空気層を30mmとした垂直入射試験測定結果のグラフであり、代表周波数は850Hzである。図23は、背後空気層を50mmとした垂直入射試験測定結果のグラフであり、代表周波数は600Hzである。
 図24~図26は、第6テストピースによるものである。第6テストピースの正面図は、図8に示すものと同じであるので、図示省略する。その断面図は、図24に示すものであり、図4(d)に相当するものである。前面部2の断面形状は、厚み0.8mmの前面アルミ板2aと、厚み0.5mmの後面アルミ板を所定空間隔てて平行配置して通気室6を形成したものであり、前面部2の厚みは4mmである。
 図25は、背後空気層を30mmとした垂直入射試験測定結果のグラフであり、代表周波数は800Hzである。図26は、背後空気層を50mmとした垂直入射試験測定結果のグラフであり、代表周波数は500Hzである。
 上記実験結果より、吸音部材1の厚みを薄くできることが分かる。
 図27~図29に示すものは、屋内使用で風荷重を受けない場所で使用する、屋内通路内壁や機械室内壁防音等に使用される吸音部材に使用される前面部2である。
 図27において、前面部2は、2枚の平板を4mm厚さで平行配置され、型枠9で保持され、2枚の平板間が通気室6とされている。この前面部2にスリット5が設けられている。
 図28に示すものは、前面部2が「両面段ボール」で構成されている。同図(b)に示すピース10を同図(a)に示すようにスリット5を介して型枠9にはめ込み固定する。すなわち、ピース10とピース10の隙間がスリット5とされている。
 図29に示すものは、前面部2が段ボールで構成され、同図(b)に示すピース10が回り縁材11に固定される。このピース10に複数のスリット5が形成されている。
 図30に示すものは、通気室6に吸音材12を収納したものである。前面部2は、表面材13と複数のライナ14とを有し、表面材13とライナ14間、及びライナ14とライナ14間が通気室6とされ、通気室6に吸音材12が収納されている。この前面部2に厚み方向に貫通するスリット5が設けられている。
 表面材13としてストレート板、石綿セメント板等が用いられる。ライナ14として、透明板(ポリカ)、合板、檜・杉等の薄板材などが用いられる。吸音材12として、ポリエステル不織布、グラスウール、連続気泡プラスチック(EPDM・ウレタン)等が用いられる。吸音材12としてエキスパンドメタルであってもよい。
 上記実施の形態において、スリット5は、直線状のものが例示されているが、波型や円弧状、その他の形状であってもよい。スリットで図形等を描いて、装飾性を高めたものであってもよい。装飾性を高めるには、通気室は、孔状ではなく面状(図4(d)参照)のものが良い。スリットは、レーザー加工により形成するのが適しているが、他の加工法により形成されるものであってもよい。本願出願人に係る「特願2022-50983号」の「図60」等に示す「四ツ目編み構造体」によりスリットを形成するものであってもよい。
 図31以降に示すものは、本発明の他の実施の形態である。
 図31に示すものは、厚みが0.5mmの平板状のアルミ板2cである。アルミ板2cはX方向の長辺とY方向の短辺を有する矩形状に形成されている。このアルミ板2cに、厚み方向に貫通するスリット5がX方向に所定長さを有し、且つ、X方向に所定ピッチで複数個が一直線上に形成されている。このスリット5は、Y方向に所定間隔を有して2列設けられている。スリット5は、レーザー加工により形成されるのが好ましいがプレス打ち抜き加工や機械加工であってもよい。
 スリット5のY方向幅は2mm以下が望ましい。スリット5のX方向長さは板厚にもよるが30~50mm程度である。スリット5をX方向に50~70mmピッチで配置するのが良い。スリット5の開孔率は5%以下とされている。
 図32に示すように、矩形状のアルミ板2cは、上下端部が前記スリット5の位置で、同じ方向に180度折り返し加工されて、折り返し部2dが形成される。この折り返し部2dと、スリット5間の平面部2eとの間に、Z方向に所定厚みの通気室6が形成される。通気室6の厚みは、前記スリット5の幅、又は、0.5~10mm以下とするのがよい。通気室6のZ方向の厚みは、一定でなくてもよい。すなわち、折り返し部2dと平面部2eは平行でなくても良い。折り返し起点から折り返し部端部に至って0.2mm~8mmに拡開状に変化するものであってもよい。
 この折り返し形成されたものを、以下、「前面ピース15」という。
 図33に示すように、折り返し部2dにレーザー加工による追加スリット16を形成することができる。なお、この追加スリット16は、図31に示す平板状のアルミ板2cにおいて加工される。追加スリット16は、X方向に傾斜して設けられているが、これに限定されず、X方向に直交し、又は、平行であってもよい。追加スリット16の長さは50mm以下とされ、長さや傾斜角度の異なる複数種類を配置することが出来る。
 図34に示すように、前記前面ピース15を、X-Y平面上においてY方向に複数段密着状に配置して前面部2を構成する。この前面部2に背後空気層3を介して後面部4を配置して、吸音部材1を構成する。
 上下複数の前面ピース15は、背後空気層3内において上下方向に配置された支持枠2fに、固定リベット2gにより連結固定されている。
 図35は、前面部2の上下の前面ピース15,15のスリット5における接続部の拡大断面図である。同図に示すように、折り返し部2dのスリット5において、入射音は、背後空気層3に向かって直進するとき、通気室6側に向かって回析して、回析音はスリット5から通気室6に進入する。
 Y方向に密着した上下のそれぞれの前面ピース15のスリット5の位置が、X方向において一致している。そして、上下に密着した前面ピース15のスリット5の位置におけるY方向の隙間が3mmを超えないことである。すなわち、図35における入射音の進入隙間が3mm以下である。この隙間から進入した音は、スリット5から回析して通気室6に進入する。
 通気室6は、スリット5から回析した音の障壁とならない構造とされている。
 通気室6は、スリット5からの入口と折り返し端から背後空気層3に連通する出口を有し、密閉されていない空間であることが必要である。なお、追加スリット16も背後空気層3に連通する出口を構成する。
 図36に示すように、前面ピース15で構成される前面部2を、アルミ枠17で保持することができる。このアルミ枠17に後面板4aが保持されて後面部4が構成されている。前面ピース15のY方向寸法は、下から上方に向かって125mm、75mm、50mm、75mm、125mmとされている。
 図37に示すものは、前面ピース15で構成される前面部2を、後面板4aで保持したものである。後面板4aは、亜鉛鉄板から構成されている。この後面板4aの構造は、図2に示すものと略同じである。
 図38及び図39に示すものは、スパンドレル式のものであり、天井や壁の吸音装置として本発明の吸音部材1を用いたものである。天井や壁面に取り付けられたスパンドレル式アルミ型枠18に、前面ピース15で構成される前面部2が保持されている。このアルミ型枠18に後面部4を保持してもよいが、天井や壁自身を後面部4とすることができる。前面ピース15のY方向寸法は、下から上方に向かって52.5mm、100mm、52.5mmとされている。前面ピース15の折り返し部2dの端部間の間隔は15mmとされている。この間隔により、通気室6と背後空気層3が連通している。
 上下複数の前面ピース15は、背後空気層3内において上下方向に配置された支持枠2fに、固定リベット2gにより連結固定されている。
 図40~図42は、第7テストピースによるものである。
 図40(a)は、第7テストピースの正面図であり、同図(b)はその断面図である。
 第7テストピースは、図39に示すY方向間隔100mmのスリット5を、テストピースのセンターに配置したものである。アルミ板の厚みは0.5mmで、スリット5のX方向長さは35mm、折り返し部2dのY方向長さは、35mmと20mmである。折り返し部2dに追加スリット16は形成されていない。
 図41は、背後空気層を20mmとした垂直入射試験測定結果のグラフであり、代表周波数は650Hzである。図42は、背後空気層を40mmとした垂直入射試験測定結果のグラフであり、代表周波数は450Hzである。
 上記実験結果より、吸音部材1の厚みを薄くできることが分かる。
 図43~図45は、第8テストピースによるものである。
 図43(a)は、第8テストピースの正面図であり、同図(b)はその断面図である。
 第8テストピースは、図36に示すY方向間隔50mmのスリット5を、テストピースのセンターに配置したものである。アルミ板の厚みは0.5mmで、スリット5のX方向長さは35mm、折り返し部2dのY方向長さは、15mmと18mmである。折り返し部2dに追加スリット16は形成されていない。
 図44は、背後空気層を20mmとした垂直入射試験測定結果のグラフであり、代表周波数は850Hzである。図45は、背後空気層を40mmとした垂直入射試験測定結果のグラフであり、代表周波数は550Hzである。
 図46~図48は、第9テストピースによるものである。
 図46(a)は、第9テストピースの正面図であり、同図(b)はその断面図である。
 第9テストピースは、図43に示すものと同じであるが、折り返し部2dに追加スリット16が形成されている。追加スリット16のX方向ピッチは、20mm、25mm、20mmとされ、X方向に直交して設けられている。
 図47は、背後空気層を20mmとした垂直入射試験測定結果のグラフであり、代表周波数は800Hzである。図48は、背後空気層を40mmとした垂直入射試験測定結果のグラフであり、代表周波数は600Hzである。
 図49~図51は、第10テストピースによるものである。
 図49(a)は、第10テストピースの正面図であり、同図(b)はその断面図である。
 第10テストピースは、図40に示すものと同じ形状であるが、厚み0.27mmのトタンから構成され、折り返し部2dに追加スリット16が形成されている。追加スリット16のX方向ピッチは、20mm、25mm、20mmとされ、X方向に直交して設けられている。
 図50は、背後空気層を20mmとした垂直入射試験測定結果のグラフであり、代表周波数は750Hzである。図51は、背後空気層を40mmとした垂直入射試験測定結果のグラフであり、代表周波数は500Hzである。
 図52~図54は、第11テストピースによるものである。
 図52(a)は、第11テストピースの正面図であり、同図(b)はその断面図である。
 第11テストピースは、図46に示すものと同じ形状であるが、厚み0.27mmのトタンから構成され、折り返し部2dに追加スリット16が形成されている。追加スリット16のX方向ピッチは、20mm、25mm、20mmとされ、X方向に直交して設けられている。
 図53は、背後空気層を20mmとした垂直入射試験測定結果のグラフであり、代表周波数は750Hzである。図54は、背後空気層を40mmとした垂直入射試験測定結果のグラフであり、代表周波数は500Hzである。
 図55~図57は、第12テストピースによるものである。
 図55(a)は、第12テストピースの正面図であり、同図(b)はその断面図である。
 第12テストピースは、図52に示すものと同じ形状であるが、厚み0.2mmのステンレスから構成されている。
 図56は、背後空気層を20mmとした垂直入射試験測定結果のグラフであり、代表周波数は850Hzである。図57は、背後空気層を40mmとした垂直入射試験測定結果のグラフであり、代表周波数は600Hzである。
 図58~図60は、第13テストピースによるものである。
 図58(a)は、第13テストピースの正面図であり、同図(b)はその断面図である。
 第13テストピースは、図55に示すものと同じ形状であるが、厚み0.5mmのアルミから構成され、折り返し部2dに追加スリット16がX方向に傾斜して設けられている。
 図59は、背後空気層を20mmとした垂直入射試験測定結果のグラフであり、代表周波数は800Hzである。図60は、背後空気層を40mmとした垂直入射試験測定結果のグラフであり、代表周波数は600Hzである。
 図61~図63は、第14テストピースによるものである。
 図61(a)は、第14テストピースの正面図であり、同図(b)はその断面図である。
 第14テストピースは、図58に示すものと同じ形状であるが、折り返し部2dに追加スリット16がX方向に平行して設けられている点が異なる。
 図62は、背後空気層を20mmとした垂直入射試験測定結果のグラフであり、代表周波数は900Hzである。図63は、背後空気層を40mmとした垂直入射試験測定結果のグラフであり、代表周波数は600Hzである。
 上記実施の形態によれば、通気室6を折り返し部によって形成するので、通気室6のZ方向の厚みを薄くすることができ、結果として前面部2の厚みを薄くすることができる。
 前面ピース15の材質は、亜鉛鉄板、ステンレス、アルミ等の金属材に限らず、ポリカーボネート、PET等のプラスチック材であってもよい。
 前面部2を折り返し構造の前面ピース15で構成するので、薄型にかかわらず強度が向上する。
 前面部2は開口率が極めて低いので、表面に新規の付加価値を付けることができる。例えば、電波・音波吸収パネル、桁下・地下道路の騒音・ETC電波対策、トンネル内吸音板、トンネル内照明を上げることができる。
 本発明は、上記各実施の形態に示されたもの、又は、テストピースに示されたものに限定されない。
 本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
 1  吸音部材
 2  前面部
 2a 前面アルミ板
 2b アルミ角波板
 2c アルミ板
 2d 折り返し部
 2e 平面部
 2f 支持枠
 2g 固定リベット
 3  背後空気層
 4  後面部
 4a 後面板
 4b 上面板
 4c 下面板
 4d リブ
 4e リブ
 5  スリット
 6  通気室
 7  ライナ
 8  中芯原紙
 9  型枠
 10 ピース
 11 回り縁材
 12 吸音材
 13 表面材
 14 ライナ
 15 前面ピース
 16 追加スリット
 17 アルミ枠
 18 スパンドレル式アルミ型枠

Claims (7)

  1.  X―Y平面を有する音源側の前面部と、該前面部にZ方向の厚みを有する背後空気層を介して配置された後面部とを有し、
     前記前面部には、前記背後空気層に連通するスリットが、所定長さ、所定ピッチで複数設けられ、かつ、該スリットから入射する音の回析波を誘導収納する通気室が、X―Y面上でZ方向に所定厚みを有して設けられた吸音部材。
  2.  前記通気室は、Y方向に複数に区分され、X方向に連続しており、
     前記スリットは直線状であり、X方向に対して45度から135度で交差している請求項1記載の吸音部材。
  3.  前記通気室は、Z方向に複数段設けられている請求項2記載の吸音部材。
  4.  前記前面部は、段ボール、金属材、又は、合成樹脂材のいずれかにより形成されている請求項2又は3記載の吸音部材。
  5.  前記通気室に、吸音材が収納されている請求項4記載の吸音部材。
  6.  前記通気室は、Y方向に複数に区分され、X方向に連続しており、
     前記スリットは直線状であり、X方向に対して平行である請求項1記載の吸音部材。
  7.  前記スリットは、X―Y平面を有する平板のY方向上下端部からY方向に所定距離の位置に、X方向所定長さで且つ所定ピッチで一直線上に複数形成され、
     前記スリット位置において前記平板のY方向端部を180度折り返し形成して前面ピースが形成され、
     前記前面ピースをY方向に複数段密着状に配置して前記前面部が構成され、
     前記前面ピースの折り返し部が前記通気室を構成する請求項6記載の吸音部材。
PCT/JP2023/029769 2022-08-21 2023-08-17 吸音部材 WO2024043174A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024506271A JP7492800B1 (ja) 2022-08-21 2023-08-17 吸音部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022131424 2022-08-21
JP2022-131424 2022-08-21

Publications (1)

Publication Number Publication Date
WO2024043174A1 true WO2024043174A1 (ja) 2024-02-29

Family

ID=90013217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029769 WO2024043174A1 (ja) 2022-08-21 2023-08-17 吸音部材

Country Status (2)

Country Link
JP (1) JP7492800B1 (ja)
WO (1) WO2024043174A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107125A (en) * 1978-02-08 1979-08-22 Yoshino Gypsum Co Perforated sound absorbing plate
JP2013140248A (ja) * 2012-01-04 2013-07-18 Mitsubishi Heavy Ind Ltd 音響装置及びガスタービン燃焼器
JP2014514502A (ja) * 2011-05-05 2014-06-19 スカニア シーブイ アクチボラグ 音を減衰させる装置およびかかる装置を含む自動車
KR20150005200A (ko) * 2013-07-05 2015-01-14 성원타공 주식회사 마감용 흡음패널
KR101907975B1 (ko) * 2017-05-26 2018-10-15 (재)한국건설생활환경시험연구원 음향 확산패널

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7544398B2 (ja) 2020-10-30 2024-09-03 国立研究開発法人宇宙航空研究開発機構 圧力変動吸収構造体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107125A (en) * 1978-02-08 1979-08-22 Yoshino Gypsum Co Perforated sound absorbing plate
JP2014514502A (ja) * 2011-05-05 2014-06-19 スカニア シーブイ アクチボラグ 音を減衰させる装置およびかかる装置を含む自動車
JP2013140248A (ja) * 2012-01-04 2013-07-18 Mitsubishi Heavy Ind Ltd 音響装置及びガスタービン燃焼器
KR20150005200A (ko) * 2013-07-05 2015-01-14 성원타공 주식회사 마감용 흡음패널
KR101907975B1 (ko) * 2017-05-26 2018-10-15 (재)한국건설생활환경시험연구원 음향 확산패널

Also Published As

Publication number Publication date
JPWO2024043174A1 (ja) 2024-02-29
JP7492800B1 (ja) 2024-05-30

Similar Documents

Publication Publication Date Title
JPWO2018051780A1 (ja) 防音構造、及び防音システム
JP2007100394A (ja) 吸音パネル
JP2007101959A (ja) 防音パネルおよび防音壁
GB2499063A (en) Building panel with elastomer-modified bituminous strips
JP6791620B2 (ja) 吸音構造
WO2024043174A1 (ja) 吸音部材
EP0965701A1 (en) Sound insulating panel
JP3072238B2 (ja) 吸音カーテンおよび吸音カーテン構造体ならびに吸音パネル
JP2022103118A (ja) 遮音補強材
JP7467942B2 (ja) 建物の遮音構造
JP6663659B2 (ja) 吸音構造を構成する有孔吸音ボードの貫通孔の寸法設定方法
JP7512555B2 (ja) 音低減構造及び音低減方法
JP7306757B2 (ja) 吸音板ユニット及びそれを用いた吸音装置
JPS649421B2 (ja)
KR20220071338A (ko) 조립식 방음부스
KR102618356B1 (ko) 학습 환경 및 업무 환경의 개선을 위한 건축용 패널
JP2004116118A (ja) 構造用パネル
KR200359829Y1 (ko) 방음 패널
JP3582711B2 (ja) 真空防音断熱材
JP2022129182A (ja) ルーバー材及び吸音構造
CN214941904U (zh) 一种拼装式隔音装饰墙
JP2015010450A (ja) 防音断熱パネル構造、防音断熱パネル及び防音断熱構造体
CN214061954U (zh) 一种双层隔音房
JP3247638U (ja) 吸音構造体
EP0885334A1 (en) Sound deadening panels

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2024506271

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857286

Country of ref document: EP

Kind code of ref document: A1