WO2024042988A1 - 車両用熱管理装置 - Google Patents
車両用熱管理装置 Download PDFInfo
- Publication number
- WO2024042988A1 WO2024042988A1 PCT/JP2023/027533 JP2023027533W WO2024042988A1 WO 2024042988 A1 WO2024042988 A1 WO 2024042988A1 JP 2023027533 W JP2023027533 W JP 2023027533W WO 2024042988 A1 WO2024042988 A1 WO 2024042988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- rotation speed
- heat exchange
- vehicle
- temperature control
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 45
- 238000001816 cooling Methods 0.000 claims abstract description 33
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 238000010521 absorption reaction Methods 0.000 claims abstract description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 4
- 230000007704 transition Effects 0.000 abstract description 14
- 238000004378 air conditioning Methods 0.000 description 20
- 230000008859 change Effects 0.000 description 13
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/651—Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
- H01M10/6568—Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/66—Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
- H01M10/663—Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
Definitions
- the present invention relates to a vehicle heat management device that performs air conditioning and temperature control of vehicle-mounted equipment using heat radiation from a condenser and heat absorption from an evaporator in a refrigerant circuit.
- a refrigerant circuit comprising a refrigerant circuit and a heat medium circuit in which a heat medium that exchanges heat with the refrigerant of the refrigerant circuit circulates, and utilizes heat radiation of a condenser and heat absorption of an evaporator in the refrigerant circuit, and is included in the refrigerant circuit or the heat medium circuit.
- a vehicle air conditioning system uses heat exchangers to air condition the interior of a vehicle and also adjust the temperature (cooling or heating) of vehicle equipment such as a battery and a driving motor (for example, Patent Document 1).
- Such vehicle air conditioners have various operating modes, such as an operation mode that only air-conditions the vehicle interior, an operation mode that only adjusts the temperature of the on-board equipment, and an operation mode that simultaneously adjusts the air-conditioning of the vehicle interior and the temperature of the on-board equipment. It is possible to execute various driving modes, and the driving mode can be switched as appropriate depending on the driving situation and the operation of the occupant.
- control is performed according to the temperature control request for the air inside the vehicle or onboard equipment, and the temperature of the air conditioning and onboard equipment is controlled at the same time.
- control is performed according to the one with the highest temperature control requirement among the plurality of temperature control targets. That is, for example, when performing air conditioning and battery cooling at the same time, the rotation speed of the compressor is determined or the opening degree of the expansion valve is switched depending on whether priority is given to cooling or battery cooling. Controls such as
- the operation mode changes between an operation mode in which air conditioning and battery cooling are performed independently and an operation mode in which air conditioning and battery cooling are performed simultaneously.
- the number of exchangers may vary. In such a case, when changing the operating mode, it becomes necessary to temporarily limit or stop the operation of the compressor and the pump for circulating the heat medium. For this reason, it is not possible to satisfy temperature control requirements for multiple temperature control targets at the same time, and the temperature of the temperature control targets, especially the blowing air temperature, fluctuates, making it impossible to seamlessly transition the operating mode. There was a problem.
- an object of the present invention is to seamlessly transition driving modes in a vehicle thermal management system and improve comfort before and after the driving mode transition.
- the vehicle heat management device includes a refrigerant circuit including a compressor that compresses refrigerant, and uses heat radiation or absorption of the refrigerant circulating in the refrigerant circuit to control each of a plurality of temperature control targets.
- a thermal management device for a vehicle comprising a plurality of heat exchangers that heat or cool and are provided for each of the temperature control targets, and a control unit that controls the refrigerant circuit, the control unit controlling the heat exchanger a necessary heat exchange amount calculation unit that calculates the required heat exchange amount necessary for heating or cooling the temperature control object for each temperature control object;
- the compressor includes a rotation speed control unit that controls the compressor according to a target rotation speed determined based on a total value of the required heat exchange amount calculated for each temperature control target.
- the vehicle thermal management device of the present invention having such features, it is possible to seamlessly transition the driving mode and improve comfort even before and after the driving mode transition.
- FIG. 1 is an explanatory diagram showing a schematic configuration of a vehicle thermal management device according to an embodiment of the present invention.
- FIG. 1 is a block diagram showing a schematic configuration of a control section of a vehicle thermal management device according to an embodiment of the present invention. It is a flow chart which shows the flow of rotation control of a compressor in a thermal management system for vehicles concerning an embodiment of the present invention.
- FIG. 3 is a diagram showing a transition of an operating mode, a change in a target rotational speed of a compressor, and a change in temperature of an evaporator in the vehicle thermal management device according to an embodiment of the present invention. It is a flowchart which shows the flow of the modification of rotation control of a compressor in a heat management system for vehicles concerning an embodiment of the present invention.
- FIG. 3 is a diagram showing a transition of an operating mode, a change in a target rotational speed of a compressor, and a change in temperature of an evaporator in the vehicle thermal management device according to an embodiment of the present
- FIG. 1 shows a schematic configuration of a vehicle thermal management device 1 according to an embodiment of the present invention.
- the vehicle thermal management device 1 includes an air conditioning unit 10, a refrigerant circuit 20, a first heat medium circuit 30, a second heat medium circuit 40, and a control unit that controls these (see FIG. 2). It is composed of and.
- the vehicle thermal management device 1 includes an air conditioning unit 10 provided in a vehicle interior, a refrigerant circuit 20 that circulates refrigerant compressed by a compressor 21 driven by a battery B, and a refrigerant circuit 20 that circulates refrigerant compressed by a compressor 21 driven by a battery B. It includes a first heat medium circuit 30 that adjusts the temperature, and a second heat medium circuit 40 that adjusts the temperature of the electric motor M.
- the air conditioning unit 10 is provided with an outside air suction port 11a and an inside air suction port 11b for taking outside air or inside air into the air conditioning unit 10, and a suction switching damper 13 for switching opening and closing of each suction port is provided at the suction port. ing.
- a blower 12 is provided on the air downstream side of the suction switching damper 13 for feeding introduced outside air or inside air to the airflow passage 11.
- an evaporator 14 for cooling and dehumidifying the air flowing through the air flow passage 11 is disposed downstream of the blower 12 in the air flow direction.
- a condenser 15 is arranged which heats the air flowing through the channel 11.
- the air conditioning unit 10 includes an air mix damper 17 that is provided between the evaporator 14 and the condenser 15 in the air flow path 11 and adjusts the proportion of air passing through the condenser 15, and an air mix damper 17 that adjusts the proportion of air passing through the condenser 15. It has a heater 16 that is provided on the downstream side and heats the air supplied into the vehicle interior.
- the refrigerant circuit 20 includes an evaporator 14, a condenser 15, a compressor 21, an outdoor heat exchanger 22, and a first heat exchanger that exchanges heat between the refrigerant flowing through the refrigerant circuit 20 and the heat medium flowing through the first heat medium circuit 30.
- the first heat medium circuit 30 adjusts the temperature of the battery B, and includes a first heat medium heat exchanger 23a, a first pump 31 for pumping the heat medium, a heat medium heater 32, a three-way valve 33, and a battery B. , which are connected by heat medium piping 30a to 30d.
- the second heat medium circuit 40 adjusts the temperature of the electric motor M, and circulates through the second heat medium heat exchanger 23b, the second pump 41 for pumping the heat medium, and the second heat medium circuit 40. It has a radiator 42, a three-way valve 43, and a vehicle electric motor M for exchanging heat between the heat medium and the air outside the vehicle interior, and these are connected by heat medium pipes 40a to 40f.
- an outdoor blower 22a is provided near the outdoor heat exchanger 22 and the radiator 42 to circulate air outside the vehicle in the front and back direction when the vehicle is stopped.
- FIG. 2 shows a schematic configuration of the control section 100 of the vehicle thermal management device 1.
- the control unit 100 functions as part of a vehicle control system of a vehicle in which the vehicle thermal management device 1 is mounted.
- the vehicle control system (not shown) includes various sensors and in-vehicle devices necessary for running the vehicle, and multiple in-vehicle ECUs (Electronic Control Units) that control these, and each in-vehicle ECU is connected to a CAN (Controller Area Network). They are communicably connected to each other via an in-vehicle network such as LIN (Local Interconnect Network), and transmit and receive information.
- LIN Local Interconnect Network
- control unit is also connected to various in-vehicle ECUs, sensors, and in-vehicle devices via the in-vehicle network, and cooperates with the various in-vehicle ECUs to control the refrigerant circuit 20, the first heat medium circuit 30, the second heat medium circuit 40, and the like. Controls the air conditioning unit 10.
- the control unit 100 and each in-vehicle ECU include, for example, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), an electric circuit, and a storage element such as a RAM (Random Access Memory) or a ROM (Read Only Memory). It is composed of Further, part or all of the operations executed by the in-vehicle ECU can also be realized by hardware such as an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a GPU (graphics processing unit).
- a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit)
- a storage element such as a RAM (Random Access Memory) or a ROM (Read Only Memory). It is composed of Further, part or all of the operations executed by the in-vehicle ECU can also be realized by hardware such as an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a GPU (graphics processing unit).
- the temperatures of the evaporator 14, condenser 15, compressor 21, first heat medium heat exchanger 23a, and second heat medium heat exchanger 23b are detected.
- evaporator temperature sensor 140, condenser temperature sensor 150, compressor temperature sensor 210, first heat medium heat exchanger temperature sensor 230a, second heat medium heat exchanger temperature sensor 230b, battery temperature sensor BTS, motor temperature A sensor MTS, an operation section 90 that accepts user operations, and the like are connected, and outputs from these sensors and operation sections are input to the control section 100 .
- a compressor 21, an outdoor blower 22a, expansion valves 24a, 24b, 24c, solenoid valves 25a, 25b, a suction switching damper 13, a blower 12, an air mix damper 17, a heater 16, a A first pump 31, a second pump 41, a heat medium heater 32, three-way valves 33, 43, and the like are connected.
- the control unit controls these based on outputs from each sensor, settings input through the operation unit 90, and information from other in-vehicle ECUs. Note that in FIG. 2 and the following description, illustrations and descriptions of sensors and other detectors that are not directly related to this embodiment are omitted.
- the control unit 100 includes a CPU (Central Processing Unit) 101, a ROM 103, a RAM 104, and a storage unit 102.
- the CPU 101 executes various processes based on programs stored in the ROM 103.
- the CPU 101 reads a program stored in the ROM 103 into a memory such as the RAM 104 and executes the program, thereby controlling the refrigerant circuit 20, the first heat medium circuit 30, the second heat medium circuit 40, and the air conditioning unit 10. control.
- the CPU 101 switches and executes a plurality of operation modes, and also functions as the required heat exchange amount calculation section 111 and the rotation speed control section 112 shown in FIG.
- the operation modes executed by the control unit 100 include an operation mode in which the air conditioning (cooling, heating, dehumidification, etc.) in the vehicle interior is performed independently, and an operation mode in which the temperature control (cooling or heating) of in-vehicle devices such as the battery B and the electric motor M is performed independently. This includes an operation mode that performs air conditioning and temperature control of onboard equipment at the same time.
- the required heat exchange amount calculating unit 111 calculates each heat exchanger including the evaporator 14, the condenser 15, the first heat medium heat exchanger 23a, and the second heat medium heat exchanger 23b when executing each of the above-described operation modes.
- the required heat exchange amount Q for each temperature control object (for each heat exchanger) required for heating or cooling the temperature control object is calculated.
- the required heat exchange amount calculation unit 111 calculates the required heat exchange amount Qe required in the evaporator 14 that cools the air supplied to the vehicle interior when executing a cooling mode in which the interior of the vehicle is individually cooled. . Specifically, the required heat exchange amount calculation unit 111 calculates the required heat exchange amount in the evaporator 14 based on the temperature Te of the evaporator 14, the air flow rate Ga passing through the evaporator 14, and the air temperature Tein at the entrance of the evaporator. Calculate the quantity Qe.
- the required heat exchange amount calculation unit 111 calculates the required heat exchange amount Qe in the evaporator 14 and the required heat exchange amount Qe in the first heat medium heat exchanger 23a. Calculate the heat exchange amount Qb.
- the required heat exchange amount calculation unit 111 calculates the required heat exchange amount Qe in the evaporator 14 when heat exchange is performed in the evaporator 14 when executing any of the operation modes.
- the required heat exchange amount Qc in the condenser 15 is determined, and when the heat exchange is performed in the first heat medium heat exchanger 23a, the required heat exchange amount Qb is determined in the first heat medium heat exchanger 23a.
- the required heat exchange amount Qm in the second heat medium heat exchanger 23b is calculated.
- the rotation speed control unit 112 controls the target rotation speed determined based on the total value Qall of the required heat exchange amount Q calculated for each temperature control object.
- the compressor 21 is controlled according to TGNc. That is, for example, when executing the cooling mode in which the interior of the vehicle is individually cooled, the rotation speed control unit 112 controls the compressor based on the required heat exchange amount Qe in the evaporator 14 calculated by the required heat exchange amount calculation unit 111. A target rotational speed TGNc of the compressor 21 is determined, and the compressor 21 is controlled accordingly.
- the rotation speed control unit 112 also controls the required heat exchange amount Qe in the evaporator 14 and the required heat exchange amount Qe in the first heat medium heat exchanger 23a, for example, when executing an operation mode in which the vehicle interior is cooled and the battery B is cooled simultaneously.
- the target rotation speed TGNc of the compressor 21 is determined based on the total value Qall with the heat exchange amount Qb.
- the total value Qall of the required heat exchange amount Qx is the maximum value of the required heat exchange amount necessary for executing the relevant driving mode in the vehicle heat management device 1. Further, it is desirable that the rotation speed control unit 112 determines the target rotation speed TGNc so as to slightly exceed the target rotation speed according to the required capacity of the compressor 21 determined from the required heat exchange amount Qall of the heat exchanger.
- the required heat exchange amount calculation unit 111 calculates the required heat exchange amount Qx in the heat exchanger to be operated. Calculate for each target (step S101).
- the rotation speed control unit 112 calculates the total value Qall of the required heat exchange amount Qx for each temperature control target calculated by the required heat exchange amount calculation unit 111 (step S102).
- the rotation speed control unit 112 calculates the target rotation speed TGNc of the compressor 21 based on the total value Qall (step S103), and controls the compressor 21 according to the target rotation speed TGNc (step S104).
- the calculation of the target rotation speed of the compressor 21 and the control according to the calculated target rotation speed TGNc are performed during operation of the vehicle thermal management device 1, for example, according to a predetermined cycle, and also in accordance with the operation mode. This is also done when the transition occurs.
- FIG. 4 shows the target of the compressor 21 in the case where a cooling mode in which the vehicle interior is individually cooled and an operation mode in which the vehicle interior is cooled and the battery B is simultaneously cooled are executed while appropriately transitioning.
- a graph showing changes in the rotational speed TGNc and changes in the temperature of the evaporator 14 is shown.
- the cooling mode is executed when the vehicle thermal management system 1 starts operating, and as the interior of the vehicle gradually approaches the target temperature, the temperature of the evaporator 14 and the target rotation of the compressor 21 increase.
- the target rotational speed TGNc decreases, and when a transition is made to an operation mode in which cooling of the vehicle interior and battery B are performed simultaneously, the target rotational speed TGNc increases significantly. Thereafter, the operation mode in which the vehicle interior is cooled and the battery B is cooled at the same time is changed to the cooling mode again, and the target rotational speed TGNc is significantly reduced.
- the temperature of the evaporator 14 does not change significantly regardless of the change in the target rotational speed TGNc.
- the target rotation speed TGNc is determined only from the rotation speed based on the required heat exchange amount Qe of the evaporator 14. After that, when the mode changes to the cooling mode, the operation mode that simultaneously cools the vehicle interior and cools the battery B, the battery B is cooled at a rotation speed corresponding to the required heat exchange amount Qe in the evaporator 14.
- the target rotation speed TGNc is determined by adding a rotation speed corresponding to the required heat exchange amount Qb in the first heat medium heat exchanger 23a.
- the target rotation speed TGNc is determined only from the rotation speed based on the required heat exchange amount Qe in the evaporator 14. Since the compressor 21 is controlled according to the target rotation speed TGNc determined based on the total value of the required heat exchange amount calculated for each temperature control target, even if the target rotation speed TGNc of the compressor 21 increases or decreases, Even if there is a change in the temperature of the evaporator 14, the temperature of the evaporator 14 does not change suddenly as shown in the upper graph of FIG. can.
- a pressure reducing part that reduces the pressure of the refrigerant or heat medium flowing into the heat exchanger and a flow rate adjustment part that adjusts the flow rate of the refrigerant are provided on the upstream side of the heat exchanger.
- the required heat exchange amount calculation unit 111 calculates the required heat exchange amount Qx in the heat exchanger to be operated. Calculate for each target (step S201).
- the rotation speed control unit 112 calculates the total value Qall of the required heat exchange amount Qx for each temperature control target calculated by the required heat exchange amount calculation unit 111 (step S202).
- the rotation speed control unit 112 calculates the target rotation speed TGNc of the compressor 21 based on the total value Qall (step S203), and compares the previous target rotation speed TGNc0 with the calculated TGNc (step S204).
- ⁇ TGNc which is the difference between the previous target rotation speed TGNc0 and the calculated TGNc, is compared with a predetermined value, for example, 200 rpm (step S205), and if ⁇ TGNc is smaller than 200 rpm, the compressor is adjusted according to the target rotation speed TGNc. 21 (step S206).
- ⁇ TGNc is larger than 200 rpm, the compressor 21 is controlled to increase the rotation speed at, for example, 200 rpm/s as a predetermined rotation speed limit until the target rotation speed TGNc is reached (step S207).
- FIG. 6 shows the target of the compressor 21 when an air-conditioning mode in which the vehicle interior is individually cooled and an operation mode in which the vehicle interior is cooled and the battery B is simultaneously cooled are executed while appropriately transitioning.
- a graph showing changes in the rotational speed TGNc and changes in the temperature of the evaporator 14 is shown.
- the cooling mode is executed when the vehicle thermal management system 1 starts operating, and as the interior of the vehicle gradually approaches the target temperature, the temperature of the evaporator 14 and the target rotation of the compressor 21 increase.
- the target rotational speed TGNc decreases, and when a transition is made to an operation mode in which cooling of the vehicle interior and battery B are performed simultaneously, the target rotational speed TGNc increases significantly. Thereafter, the operation mode in which the vehicle interior is cooled and the battery B is cooled at the same time is changed to the cooling mode again, and the target rotational speed TGNc is significantly reduced.
- the temperature of the evaporator 14 does not change significantly regardless of the change in the target rotational speed TGNc.
- the target rotation speed TGNc is determined only from the rotation speed based on the required heat exchange amount Qe of the evaporator 14.
- the mode changes to the cooling mode the operation mode that simultaneously cools the vehicle interior and cools the battery B
- the battery B is cooled at a rotation speed corresponding to the required heat exchange amount Qe in the evaporator 14.
- the target rotation speed TGNc is determined by adding a rotation speed corresponding to the required heat exchange amount Qb in the first heat medium heat exchanger 23a.
- the target rotation speed TGNc is determined only from the rotation speed based on the required heat exchange amount Qe in the evaporator 14.
- the compressor 21 Since the compressor 21 is controlled according to the target rotation speed TGNc determined based on the total value of the required heat exchange amount calculated for each temperature control target, even if the target rotation speed TGNc of the compressor 21 increases or decreases, Even if there is a change in the temperature of the evaporator 14, the temperature of the evaporator 14 does not change suddenly, as shown in the upper graph of FIG. can.
- the plurality of temperature control targets are the air supplied into the vehicle interior and the battery, and they are both cooled (cooling the vehicle interior and cooling the battery).
- the condenser 15 and the evaporator 14 are arranged in the air conditioning unit 10, and air conditioning is performed by heat exchange between air and refrigerant.
- the present invention is not limited to this. , water), the heat of the refrigerant may be indirectly supplied to the air.
Landscapes
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Algebra (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Air-Conditioning For Vehicles (AREA)
- Secondary Cells (AREA)
Abstract
本発明は、運転モードをシームレスに遷移させ、運転モードの遷移前後においても快適性を向上させることを課題とする。 本発明の車両用熱管理装置は、冷媒を圧縮する圧縮機を含む冷媒回路と、冷媒回路を循環する冷媒の放熱又は吸熱を利用して複数の温調対象をそれぞれ加熱又は冷却し、温調対象毎に設けられる複数の熱交換器と、冷媒回路を制御する制御部と、を備え、制御部は、熱交換器において温調対象を加熱又は冷却するために必要となる必要熱交換量を温調対象毎に算出する必要熱交換量算出部と、複数の温調対象に対して同時に加熱又は冷却を行う場合に、温調対象毎に算出された必要熱交換量の合計値に基づいて決定される目標回転数に従って圧縮機を制御する回転数制御部とを有する。
Description
本発明は、冷媒回路における凝縮器の放熱と蒸発器の吸熱を利用して空調や車載機器の温調を行う車両用熱管理装置に関する。
冷媒回路と、冷媒回路の冷媒と熱交換する熱媒体が循環する熱媒体回路と、を備え、冷媒回路における凝縮器の放熱と蒸発器の吸熱を利用し、冷媒回路又は熱媒体回路に含まれる各熱交換器により、車室内の空調を行うと共にバッテリや走行用モータ等の車載機器の温度調整(冷却又は加熱)を行う車両用空調装置が知られている(例えば、特許文献1)。
このような車両用空調装置では、車室内の空調のみを行う運転モード、車載機器の温度調整のみを行う運転モード、及び、車室内の空調と車載機器の温度調整を同時に行う運転モード等、様々な運転モードを実行することができ、走行状況や乗員の操作に応じて、運転モードを適宜切り替えて実行している。
各運転モードの実行に際して、空調又は車載機器の温調を単独で行う場合には、車室内の空気又は車載機器に対する温調要求に応じた制御を行い、空調と車載機器の温調を同時に行う場合等、温調対象が複数ある場合には、複数の温調対象のうち温調要求の高いものに応じた制御を行っている。すなわち、例えば、冷房とバッテリ冷却とを同時に行う場合には、冷房を優先させるか又はバッテリ冷却を優先させるかに応じて、圧縮機の回転数を決定したり、膨張弁の開度を切り替えたりするなどの制御を行っている。
上述のような車両用空調装置では、例えば、冷房やバッテリ冷却を単独で行う運転モードと冷房とバッテリ冷却とを同時に行う運転モードとの間で運転モードが遷移するなど、温調対象となる熱交換器の数が変動する場合がある。このような場合には、運転モードの遷移に際して、一時的に圧縮機の運転や熱媒体を循環させるためのポンプの動作を制限又は停止する必要が生じてしまう。このため、複数の温調対象に対して同時に温調要求を満たすことができない、温調対象の温度、特に、吹出空気温度に変動が生じてしまい運転モードをシームレスに遷移させることができない、という問題があった。
本発明は、このような問題に対処することを課題としている。すなわち、車両用熱管理装置において、運転モードをシームレスに遷移させ、運転モードの遷移前後においても快適性を向上させること、などが本発明の課題である。
このような課題を解決するために、本発明の一態様は、以下の構成を具備する。
すなわち、本発明の一態様に係る車両用熱管理装置は、冷媒を圧縮する圧縮機を含む冷媒回路と、前記冷媒回路を循環する冷媒の放熱又は吸熱を利用して複数の温調対象をそれぞれ加熱又は冷却し、前記温調対象毎に設けられる複数の熱交換器と、前記冷媒回路を制御する制御部と、を備える車両用熱管理装置であって、前記制御部は、前記熱交換器において前記温調対象を加熱又は冷却するために必要となる必要熱交換量を前記温調対象毎に算出する必要熱交換量算出部と、複数の前記温調対象に対して同時に加熱又は冷却を行う場合に、前記温調対象毎に算出された必要熱交換量の合計値に基づいて決定される目標回転数に従って前記圧縮機を制御する回転数制御部を備える。
すなわち、本発明の一態様に係る車両用熱管理装置は、冷媒を圧縮する圧縮機を含む冷媒回路と、前記冷媒回路を循環する冷媒の放熱又は吸熱を利用して複数の温調対象をそれぞれ加熱又は冷却し、前記温調対象毎に設けられる複数の熱交換器と、前記冷媒回路を制御する制御部と、を備える車両用熱管理装置であって、前記制御部は、前記熱交換器において前記温調対象を加熱又は冷却するために必要となる必要熱交換量を前記温調対象毎に算出する必要熱交換量算出部と、複数の前記温調対象に対して同時に加熱又は冷却を行う場合に、前記温調対象毎に算出された必要熱交換量の合計値に基づいて決定される目標回転数に従って前記圧縮機を制御する回転数制御部を備える。
このような特徴を備えた本発明の車両用熱管理装置によると、運転モードをシームレスに遷移させ、運転モードの遷移前後においても快適性を向上させることができる。
以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。
図1は、本発明の一実施形態に係る車両用熱管理装置1の概略構成を示している。
図1に示すように、車両用熱管理装置1は、空調ユニット10、冷媒回路20、第1熱媒体回路30、第2熱媒体回路40、及び、これらを制御する制御部(図2参照)と、を備えて構成される。
図1に示すように、車両用熱管理装置1は、空調ユニット10、冷媒回路20、第1熱媒体回路30、第2熱媒体回路40、及び、これらを制御する制御部(図2参照)と、を備えて構成される。
図1に示すように、車両用熱管理装置1は、車室内に設けられる空調ユニット10と、バッテリBによって駆動される圧縮機21によって圧縮された冷媒を循環させる冷媒回路20と、バッテリBの温度調整を行う第1熱媒体回路30と、電動モータMの温度調整を行う第2熱媒体回路40と、を備えている。
空調ユニット10は、空調ユニット10に外気又は内気を取り込むための外気吸込口11aと内気吸込口11bの各吸込口が形成され、吸込み口に各吸込口の開閉を切換える吸込切換ダンパ13が設けられている。吸込切換ダンパ13の空気下流側には、導入した外気又は内気を空気流通路11に送給するための送風機12が設けられている。
空気流通路11には、送風機12の空気流通方向下流側に、空気流通路11を流通する空気を冷却及び除湿する蒸発器14が配され、蒸発器14の空気流通方向下流側に、空気流通路11を流通する空気を加熱する凝縮器15が配置されている。
空調ユニット10は、空気流通路11において、蒸発器14と凝縮器15との間に設けられ、凝縮器15を通過する空気の割合を調整するエアミックスダンパ17と、凝縮器15の空気流通方向下流側に設けられ、車室内に供給する空気を加熱するヒータ16を有している。
冷媒回路20は、蒸発器14、凝縮器15、圧縮機21、室外熱交換器22、冷媒回路20を流通する冷媒と第1熱媒体回路30を流通する熱媒体とを熱交換させる第1熱媒体熱交換器23a、冷媒回路20を流通する冷媒と第2熱媒体回路40を流通する熱媒体とを熱交換させる第2熱媒体熱交換器23b、膨張弁24a,24b,24c、電磁弁25a,25b、逆止弁26a,26b、及び、アキュムレータ27を有し、これらが冷媒配管20a~20iにより接続されている。
第1熱媒体回路30は、バッテリBの温度調整を行うものであり、第1熱媒体熱交換器23a、熱媒体を圧送する第1ポンプ31、熱媒体加熱ヒータ32、三方弁33、バッテリB、を有し、これらが、熱媒体配管30a~30dにより接続されている。
第2熱媒体回路40は、電動モータMの温度調整を行うものであり、第2熱媒体熱交換器23b、熱媒体を圧送するための第2ポンプ41、第2熱媒体回路40を流通する熱媒体と車室外の空気とを熱交換するためのラジエータ42、三方弁43、車電動モータM、を有し、これらが熱媒体配管40a~40fにより接続されている。
なお、室外熱交換器22及びラジエータ42の近傍には、車両の停止時に車室外の空気を前後方向に流通させるための室外送風機22aが設けられている。
図2に、車両用熱管理装置1の制御部100の概略構成を示す。
制御部100は、車両用熱管理装置1が搭載される車両の車両用制御システムの一部として機能する。車両用制御システム(不図示)は、車両走行に必要な種々のセンサや車載機器類とこれらを制御する複数の車載ECU(Electronic Control Unit)を含み、各車載ECUが、CAN(Controller Area Network)やLIN(Local Interconnect Network)等の車載ネットワークにより相互に通信可能に接続され、情報の送受信を行う。したがって、制御部も各種車載ECUやセンサや車載機器類と車載ネットワークを介して接続され、各種車載ECU等と連携して冷媒回路20、第1熱媒体回路30、第2熱媒体回路40、及び空調ユニット10を制御する。
制御部100は、車両用熱管理装置1が搭載される車両の車両用制御システムの一部として機能する。車両用制御システム(不図示)は、車両走行に必要な種々のセンサや車載機器類とこれらを制御する複数の車載ECU(Electronic Control Unit)を含み、各車載ECUが、CAN(Controller Area Network)やLIN(Local Interconnect Network)等の車載ネットワークにより相互に通信可能に接続され、情報の送受信を行う。したがって、制御部も各種車載ECUやセンサや車載機器類と車載ネットワークを介して接続され、各種車載ECU等と連携して冷媒回路20、第1熱媒体回路30、第2熱媒体回路40、及び空調ユニット10を制御する。
制御部100及び各車載ECUは、例えば、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等のプロセッサや電気回路、RAM(Random Access Memory)やROM(Read Only Memory)等の記憶素子を備えて構成されている。また、車載ECUが実行する動作の一部又は全部を、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)やGPU(Graphics Processing Unit)などのハードウェアにより実現することもできる。
図2に示すように、制御部100の入力側には、蒸発器14、凝縮器15、圧縮機21、第1熱媒体熱交換器23a、第2熱媒体熱交換器23bの温度を夫々検出する蒸発器温度センサ140、凝縮器温度センサ150、圧縮機温度センサ210、第1熱媒体熱交換器温度センサ230a、第2熱媒体熱交換器温度センサ230b、や、バッテリ温度センサBTS、モータ温度センサMTSやユーザの操作を受け付ける操作部90等が接続され、これらの各センサや操作部からの出力が制御部100に入力される。
また、制御部100の出力側には、圧縮機21、室外送風機22a、膨張弁24a,24b,24c、電磁弁25a,25b、吸込切換ダンパ13、送風機12、エアミックスダンパ17、ヒータ16、第1ポンプ31、第2ポンプ41、熱媒体加熱ヒータ32、及び三方弁33,43等が接続されている。制御部は各センサからの出力と操作部90にて入力された設定と、その他の車載ECUからの情報とに基づいてこれらを制御する。
なお、図2及び以下の説明では、本実施形態に直接関係しないセンサやその他検出器については図示及び説明を省略している。
なお、図2及び以下の説明では、本実施形態に直接関係しないセンサやその他検出器については図示及び説明を省略している。
図2に示すように、本実施形態において、制御部100は、CPU(Central Processing Unit)101、ROM103、RAM104、及び記憶部102を備えている。
CPU101は、ROM103に格納されたプログラムに基づいて種々の処理を実行する。本実施形態では、CPU101は、ROM103に格納されたプログラムを例えばRAM104等のメモリに読み込んで実行することにより、冷媒回路20、第1熱媒体回路30、第2熱媒体回路40、及び空調ユニット10を制御する。
CPU101は、ROM103に格納されたプログラムに基づいて種々の処理を実行する。本実施形態では、CPU101は、ROM103に格納されたプログラムを例えばRAM104等のメモリに読み込んで実行することにより、冷媒回路20、第1熱媒体回路30、第2熱媒体回路40、及び空調ユニット10を制御する。
すなわち、本実施形態において、CPU101は、複数の運転モードを切替えて実行すると共に、図2に示す必要熱交換量算出部111、及び、回転数制御部112として機能する。
制御部100が実行する運転モードには、車室内の空調(冷房、暖房、除湿等)を単独で行う運転モード、バッテリBや電動モータM等の車載機器に対する温調(冷却又は加熱)を単独で行う運転モード、空調と車載機器の温調とを同時に行う運転モードが含まれる。
制御部100が実行する運転モードには、車室内の空調(冷房、暖房、除湿等)を単独で行う運転モード、バッテリBや電動モータM等の車載機器に対する温調(冷却又は加熱)を単独で行う運転モード、空調と車載機器の温調とを同時に行う運転モードが含まれる。
必要熱交換量算出部111は、上記した各運転モードの実行時に、蒸発器14、凝縮器15、第1熱媒体熱交換器23a、及び、第2熱媒体熱交換器23bを含む各熱交換器において、温調対象を加熱又は冷却するために必要となる温調対象毎(熱交換器毎)の必要熱交換量Qをそれぞれ算出する。
必要熱交換量算出部111は、例えば、車室内の冷房を単独で行う冷房モードの実行時には、車室内に供給される空気を冷却する蒸発器14において必要となる必要熱交換量Qeを算出する。具体的には、必要熱交換量算出部111は、蒸発器14の温度Te、蒸発器14を通過する空気の風量Ga、蒸発器入り口の空気温度Teinに基づいて、蒸発器14における必要熱交換量Qeを算出する。
必要熱交換量算出部111は、例えば、車室内の冷房とバッテリBの冷却とを同時に行う運転モードの実行時には、蒸発器14における必要熱交換量Qeと第1熱媒体熱交換器23aにおける必要熱交換量Qbを夫々算出する。
このように、必要熱交換量算出部111は、いずれかの運転モードの実行に際して、蒸発器14において熱交換が行われる場合には蒸発器14における必要熱交換量Qeを、凝縮器15において熱交換が行われる場合には凝縮器15における必要熱交換量Qcを、第1熱媒体熱交換器23aにおいて熱交換が行われる場合には第1熱媒体熱交換器23aにおける必要熱交換量Qbを、第2熱媒体熱交換器23bにおいて熱交換が行われる場合には第2熱媒体熱交換器23bにおける必要熱交換量Qmを夫々算出する。
回転数制御部112は、複数の温調対象に対して同時に加熱又は冷却を行う場合に、温調対象毎に算出された必要熱交換量Qの合計値Qallに基づいて決定される目標回転数TGNcに従って圧縮機21を制御する。
すなわち、回転数制御部112は、例えば、車室内の冷房を単独で行う冷房モードの実行時には、必要熱交換量算出部111において算出された蒸発器14における必要熱交換量Qeに基づいて圧縮機21の目標回転数TGNcを決定し、これに従って圧縮機21を制御する。
すなわち、回転数制御部112は、例えば、車室内の冷房を単独で行う冷房モードの実行時には、必要熱交換量算出部111において算出された蒸発器14における必要熱交換量Qeに基づいて圧縮機21の目標回転数TGNcを決定し、これに従って圧縮機21を制御する。
また、回転数制御部112は、例えば、車室内の冷房とバッテリBの冷却とを同時に行う運転モードの実行時には、蒸発器14における必要熱交換量Qeと第1熱媒体熱交換器23aにおける必要熱交換量Qbとの合計値Qallに基づいて圧縮機21の目標回転数TGNcを決定する。
なお、必要熱交換量Qxの合計値Qallは、車両用熱管理装置1において当該運転モードの実行に必要な必要熱交換量の最大値である。また、回転数制御部112は、熱交換器の必要熱交換量Qallから求められる圧縮機21に対する必要能力に応じた目標回転数をやや上回るように目標回転数TGNcを決定することが望ましい。
続いて、このように構成された車両用熱管理装置1において、圧縮機21の回転数制御について、図3のフローチャートを用いて説明する。
図3に示すように、車両用熱管理装置1では、いずれかの運転モードの実行に際して、必要熱交換量算出部111により、動作対象となる熱交換器における必要熱交換量Qxを、温調対象毎に算出する(ステップS101)。
図3に示すように、車両用熱管理装置1では、いずれかの運転モードの実行に際して、必要熱交換量算出部111により、動作対象となる熱交換器における必要熱交換量Qxを、温調対象毎に算出する(ステップS101)。
続いて、回転数制御部112において、必要熱交換量算出部111において算出された温調対象毎の必要熱交換量Qxの合計値Qallを算出する(ステップS102)。回転数制御部112は、合計値Qallに基づいて圧縮機21の目標回転数TGNcを算出し(ステップS103)、目標回転数TGNcに従って圧縮機21を制御する(ステップS104)。
このような圧縮機21の目標回転数の算出と、算出した目標回転数TGNcに従った制御は、車両用熱管理装置1の動作中において、例えば、予め定めた周期に従って行われる他、運転モードの遷移に際しても行われる。
図4に、一例として、車室内の冷房を単独で行う冷房モードと車室内の冷房とバッテリBの冷却とを同時に行う運転モードとが適宜遷移しながら実行される場合において、圧縮機21の目標回転数TGNcの変化と蒸発器14の温度の変化を表すグラフを示す。
図4の上段のグラフに示すように、車両用熱管理装置1の動作開始時に冷房モードが実行され、徐々に車室内が目標温度に近づくにつれて、蒸発器14の温度及び圧縮機21の目標回転数TGNcが低下していき、車室内の冷房とバッテリBの冷却とを同時に行う運転モードに遷移したときに、目標回転数TGNcが大幅に増加する。その後、車室内の冷房とバッテリBの冷却とを同時に行う運転モードから再び冷房モードに遷移して目標回転数TGNcが大幅に低下する。上記運転モードの遷移を繰り返している。
一方で、目標回転数TGNcの変化に拘らず、蒸発器14の温度に大きな変化が生じない。
一方で、目標回転数TGNcの変化に拘らず、蒸発器14の温度に大きな変化が生じない。
図4の下段の目標回転数TGNcの内訳を示すグラフからわかるように、冷房モードの実行時には、蒸発器14の必要熱交換量Qeに基づく回転数のみから目標回転数TGNcを決定している。その後、冷房モードと車室内の冷房とバッテリBの冷却とを同時に行う運転モードへ遷移したときに、蒸発器14における必要熱交換量Qeに応じた回転数に対して、バッテリBを冷却するための第1熱媒体熱交換器23aにおける必要熱交換量Qbに応じた回転数が追加されたものを目標回転数TGNcとして決定する。そして、再び冷房モードに遷移したときに、蒸発器14における必要熱交換量Qeに基づく回転数のみから目標回転数TGNcが決定される。
このように温調対象毎に算出された必要熱交換量の合計値に基づいて決定される目標回転数TGNcに従って圧縮機21を制御するので、圧縮機21の目標回転数TGNcが増減した場合であっても、図4の上段のグラフに示すように蒸発器14の温度が急激に変化することがなく、運転モードをシームレスに遷移させ、運転モードの遷移前後においても快適性を向上させることができる。
このように温調対象毎に算出された必要熱交換量の合計値に基づいて決定される目標回転数TGNcに従って圧縮機21を制御するので、圧縮機21の目標回転数TGNcが増減した場合であっても、図4の上段のグラフに示すように蒸発器14の温度が急激に変化することがなく、運転モードをシームレスに遷移させ、運転モードの遷移前後においても快適性を向上させることができる。
なお、例えば、蒸発器14の冷媒流通方向上流側に設けられた膨張弁24bや、第1熱媒体熱交換器23aの冷媒流通方向上流側に設けられた膨張弁24cのように、熱交換器の上流側に、熱交換器に流入する冷媒又は熱媒体を減圧させる減圧部や冷媒の流量を調整する流量調整部を設け、減圧部又は流量調整部により冷媒を減圧させたり冷媒の流通量を調整したりすることで熱交換器における熱交換量を調整することができる。
(変形例)
以下、上述した本実施形態に係る車両用熱管理装置1において、圧縮機21の回転数制御の変形例について、図5のフローチャートを用いて説明する。
図5に示すように、車両用熱管理装置1では、いずれかの運転モードの実行に際して、必要熱交換量算出部111により、動作対象となる熱交換器における必要熱交換量Qxを、温調対象毎に算出する(ステップS201)。
以下、上述した本実施形態に係る車両用熱管理装置1において、圧縮機21の回転数制御の変形例について、図5のフローチャートを用いて説明する。
図5に示すように、車両用熱管理装置1では、いずれかの運転モードの実行に際して、必要熱交換量算出部111により、動作対象となる熱交換器における必要熱交換量Qxを、温調対象毎に算出する(ステップS201)。
続いて、回転数制御部112において、必要熱交換量算出部111において算出された温調対象毎の必要熱交換量Qxの合計値Qallを算出する(ステップS202)。回転数制御部112は、合計値Qallに基づいて圧縮機21の目標回転数TGNcを算出し(ステップS203)、前回の目標回転数TGNc0と算出したTGNcとを比較する(ステップS204)。
前回の目標回転数TGNc0と算出したTGNcとの差であるΔTGNcと予め定めた値、例えば200rpmとを比較し(ステップS205)、ΔTGNcが200rpmよりも小さい場合には、目標回転数TGNcに従って圧縮機21を制御する(ステップS206)。ΔTGNcが200rpmよりも大きい場合には、目標回転数TGNcに到達するまで、例えば、予め定めた制限回転数として200rpm/sで回転数を増加させるように圧縮機21を制御する(ステップS207)。
図6に、一例として、車室内の冷房を単独で行う冷房モードと車室内の冷房とバッテリBの冷却とを同時に行う運転モードとが適宜遷移しながら実行される場合において、圧縮機21の目標回転数TGNcの変化と蒸発器14の温度の変化を表すグラフを示す。
図6の上段のグラフに示すように、車両用熱管理装置1の動作開始時に冷房モードが実行され、徐々に車室内が目標温度に近づくにつれて、蒸発器14の温度及び圧縮機21の目標回転数TGNcが低下していき、車室内の冷房とバッテリBの冷却とを同時に行う運転モードに遷移したときに、目標回転数TGNcが大幅に増加する。その後、車室内の冷房とバッテリBの冷却とを同時に行う運転モードから再び冷房モードに遷移して目標回転数TGNcが大幅に低下する。上記運転モードの遷移を繰り返している。
一方で、目標回転数TGNcの変化に拘らず、蒸発器14の温度に大きな変化が生じない。
一方で、目標回転数TGNcの変化に拘らず、蒸発器14の温度に大きな変化が生じない。
図6の下段の目標回転数TGNcの内訳を示すグラフからわかるように、冷房モードの実行時には、蒸発器14の必要熱交換量Qeに基づく回転数のみから目標回転数TGNcを決定している。その後、冷房モードと車室内の冷房とバッテリBの冷却とを同時に行う運転モードへ遷移したときに、蒸発器14における必要熱交換量Qeに応じた回転数に対して、バッテリBを冷却するための第1熱媒体熱交換器23aにおける必要熱交換量Qbに応じた回転数が追加されたものを目標回転数TGNcとして決定する。そして、再び冷房モードに遷移したときに、蒸発器14における必要熱交換量Qeに基づく回転数のみから目標回転数TGNcが決定される。
このように温調対象毎に算出された必要熱交換量の合計値に基づいて決定される目標回転数TGNcに従って圧縮機21を制御するので、圧縮機21の目標回転数TGNcが増減した場合であっても、図6の上段のグラフに示すように蒸発器14の温度が急激に変化することがなく、運転モードをシームレスに遷移させ、運転モードの遷移前後においても快適性を向上させることができる。
特に、本変形例では、目標回転数の増加に際して、急激に新たに算出された目標回転数TGNcに従った制御を行うのではなく、目標回転数TGNcに到達するまでに、例えば、予め定めた制限回転数として200rpm/s程度で徐々に回転数を増加させていく。このようにすることで、蒸発器14の温度が急激に変動することがなく、ひいては吹き出し温度に大きな変化を生じさせないため、運転モードの遷移前後においても快適性を向上させること
上述した実施形態及びその変形例では、複数の温調対象を車室内に供給される空気及びバッテリとし、これらを共に冷却(車室内の冷房、バッテリの冷却)する例について説明したが、これに限らず、温調対象を加熱(車室内の暖房、バッテリ等の車載機器の加熱)したり、他の車載機器等の温調対象をさらに増加させたりすることもできる。
また、上述した実施形態及び変形例では、空調ユニット10に凝縮器15と蒸発器14を配置し、空気と冷媒の熱交換により空調を行うようにしたが、これに限らず、熱媒体(例えば、水)を介して、間接的に冷媒の熱を空気へ供給するようにしても良い。
また、上述した実施形態及び変形例では、空調ユニット10に凝縮器15と蒸発器14を配置し、空気と冷媒の熱交換により空調を行うようにしたが、これに限らず、熱媒体(例えば、水)を介して、間接的に冷媒の熱を空気へ供給するようにしても良い。
以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。
1:車両用熱管理装置、10:空調ユニット、11:空気流通路、11a:外気吸込口
11b:内気吸込口、12:送風機、13:吸込切換ダンパ、14:蒸発器、15:凝縮器
16:ヒータ、17:エアミックスダンパ、20:冷媒回路、20a~20i:冷媒配管
21:圧縮機、22:室外熱交換器、22a:室外送風機
24a,24b,24c:膨張弁、25a,25b:電磁弁、26a,26b:逆止弁
27:アキュムレータ、30a~30d,40a~40f:熱媒体配管
32:熱媒体加熱ヒータ、33,43:三方弁、42:ラジエータ、90:操作部
100:制御部、102:記憶部、111:必要熱交換量算出部、112:回転数制御部
11b:内気吸込口、12:送風機、13:吸込切換ダンパ、14:蒸発器、15:凝縮器
16:ヒータ、17:エアミックスダンパ、20:冷媒回路、20a~20i:冷媒配管
21:圧縮機、22:室外熱交換器、22a:室外送風機
24a,24b,24c:膨張弁、25a,25b:電磁弁、26a,26b:逆止弁
27:アキュムレータ、30a~30d,40a~40f:熱媒体配管
32:熱媒体加熱ヒータ、33,43:三方弁、42:ラジエータ、90:操作部
100:制御部、102:記憶部、111:必要熱交換量算出部、112:回転数制御部
Claims (4)
- 冷媒を圧縮する圧縮機を含む冷媒回路と、
前記冷媒回路を循環する冷媒の放熱又は吸熱を利用して複数の温調対象をそれぞれ加熱又は冷却し、前記温調対象毎に設けられる複数の熱交換器と、
前記冷媒回路を制御する制御部と、を備える車両用熱管理装置であって、
前記制御部は、
前記熱交換器において前記温調対象を加熱又は冷却するために必要となる必要熱交換量を前記温調対象毎に算出する必要熱交換量算出部と、
複数の前記温調対象に対して同時に加熱又は冷却を行う場合に、前記温調対象毎に算出された必要熱交換量の合計値に基づいて決定される目標回転数に従って前記圧縮機を制御する回転数制御部と、を備えた車両用熱管理装置。 - 複数の前記熱交換器の上流側に、前記熱交換器に流入する冷媒又は熱媒体の流量を調整する流量調整部がそれぞれ設けられ、
前記流量調整部により、前記熱交換器における熱交換量を調整する請求項1記載の車両用熱管理装置。 - 複数の前記熱交換器の上流側に、前記熱交換器に流入する冷媒又は熱媒体を減圧させる減圧部がそれぞれ設けられ、
前記減圧部により、前記熱交換器における熱交換量を調整する請求項1記載の車両用熱管理装置。 - 前記制御部は、同時に加熱又は冷却を行う前記温調対象の数が変動した場合に、
前記温調対象毎に算出された必要熱交換量の合計値によって決定される目標回転数に達するまで、予め定めた制限回転数に従って前記圧縮機を制御する、請求項1記載の車両用熱管理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-133540 | 2022-08-24 | ||
JP2022133540A JP2024030575A (ja) | 2022-08-24 | 2022-08-24 | 車両用熱管理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024042988A1 true WO2024042988A1 (ja) | 2024-02-29 |
Family
ID=90013291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/027533 WO2024042988A1 (ja) | 2022-08-24 | 2023-07-27 | 車両用熱管理装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024030575A (ja) |
WO (1) | WO2024042988A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016097744A (ja) * | 2014-11-19 | 2016-05-30 | 株式会社デンソー | 熱管理装置 |
JP2017161121A (ja) * | 2016-03-08 | 2017-09-14 | 株式会社デンソー | 冷凍サイクル装置 |
CN109050200A (zh) * | 2018-08-22 | 2018-12-21 | 吉林大学 | 一种汽车热泵空调的控制方法 |
KR20210005351A (ko) * | 2019-07-03 | 2021-01-14 | 현대자동차주식회사 | 차량의 열관리장치 제어시스템 및 제어방법 |
JP2021076302A (ja) * | 2019-11-11 | 2021-05-20 | 株式会社デンソー | 冷凍サイクル装置 |
-
2022
- 2022-08-24 JP JP2022133540A patent/JP2024030575A/ja active Pending
-
2023
- 2023-07-27 WO PCT/JP2023/027533 patent/WO2024042988A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016097744A (ja) * | 2014-11-19 | 2016-05-30 | 株式会社デンソー | 熱管理装置 |
JP2017161121A (ja) * | 2016-03-08 | 2017-09-14 | 株式会社デンソー | 冷凍サイクル装置 |
CN109050200A (zh) * | 2018-08-22 | 2018-12-21 | 吉林大学 | 一种汽车热泵空调的控制方法 |
KR20210005351A (ko) * | 2019-07-03 | 2021-01-14 | 현대자동차주식회사 | 차량의 열관리장치 제어시스템 및 제어방법 |
JP2021076302A (ja) * | 2019-11-11 | 2021-05-20 | 株式会社デンソー | 冷凍サイクル装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2024030575A (ja) | 2024-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10889163B2 (en) | Heat pump system | |
JP7230642B2 (ja) | 冷凍サイクル装置 | |
US10427497B2 (en) | Air conditioner for vehicle | |
US20110167850A1 (en) | Air conditioner for vehicle | |
JP6992659B2 (ja) | 車両用熱管理装置 | |
CN109715422B (zh) | 车用空调装置 | |
WO2020110509A1 (ja) | 車両用空気調和装置 | |
CN110549816A (zh) | 暖通空调模块、车辆用的热泵系统及操作热泵系统的方法 | |
US9522589B2 (en) | Vehicular heat pump system and control method | |
CN110062708B (zh) | 车用空调装置 | |
CN109890635B (zh) | 车用空调装置 | |
JP2020069929A (ja) | 車両用空気調和装置 | |
JP2018131023A (ja) | 圧力低下抑制装置 | |
WO2024042988A1 (ja) | 車両用熱管理装置 | |
WO2020021840A1 (ja) | 車両用空調装置 | |
WO2022064946A1 (ja) | 車両用空調装置 | |
JP6544287B2 (ja) | 空調装置 | |
WO2024018839A1 (ja) | 車両用空調装置 | |
JP2016008792A (ja) | ヒートポンプサイクル装置 | |
JP7494139B2 (ja) | 車両用空調装置 | |
WO2023002993A1 (ja) | 車両用空調装置 | |
WO2022137925A1 (ja) | 車両用空調装置 | |
JP6957954B2 (ja) | 車両用空調装置 | |
US20220234422A1 (en) | Vehicle cooling system | |
WO2023139767A1 (ja) | 車両用空調装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23857104 Country of ref document: EP Kind code of ref document: A1 |