WO2024042642A1 - Deformation detection system and deformation detection method for elevator guide rail - Google Patents

Deformation detection system and deformation detection method for elevator guide rail Download PDF

Info

Publication number
WO2024042642A1
WO2024042642A1 PCT/JP2022/031901 JP2022031901W WO2024042642A1 WO 2024042642 A1 WO2024042642 A1 WO 2024042642A1 JP 2022031901 W JP2022031901 W JP 2022031901W WO 2024042642 A1 WO2024042642 A1 WO 2024042642A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
guide rail
unit
command
deformation
Prior art date
Application number
PCT/JP2022/031901
Other languages
French (fr)
Japanese (ja)
Inventor
陽太 大森
智史 山▲崎▼
澤田 貴光
平 長谷川
Original Assignee
三菱電機ビルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルソリューションズ株式会社 filed Critical 三菱電機ビルソリューションズ株式会社
Priority to PCT/JP2022/031901 priority Critical patent/WO2024042642A1/en
Publication of WO2024042642A1 publication Critical patent/WO2024042642A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides

Definitions

  • the present disclosure relates to a deformation detection system and deformation detection method for an elevator guide rail.
  • Patent Document 1 discloses an example of an elevator.
  • a diagnostic run is performed when the low-sensor seismometer is activated.
  • the elevator is automatically restored.
  • the guide rails that guide the travel of the car or counterweight may be deformed due to earthquakes.
  • deformation of the guide rail is not detected. Therefore, the elevator may be automatically restored regardless of whether or not the guide rail is deformed.
  • the present disclosure provides a deformation detection system and a deformation detection method that can detect deformation of a guide rail.
  • the deformation detection system for an elevator guide rail includes a command unit that outputs a speed command corresponding to the speed of the elevator to a hoist that causes the elevator to travel along the guide rail in the hoistway of the elevator. a measurement unit that measures an actual speed corresponding to the speed of the elevating body that is caused to travel by the hoisting machine according to a speed command output by the command unit; and a speed command output by the command unit regarding the elevating body and the measurement.
  • the guide rail includes a determining section that determines that the guide rail has deviated from an allowable range, and a detecting section that detects deformation of the guide rail based on the determination result of the determining section.
  • a method for detecting deformation of an elevator guide rail includes a command step of outputting a speed command corresponding to the speed of the elevator to a hoist that causes the elevator to travel along the guide rail in the hoistway of the elevator. a measuring step of measuring an actual speed corresponding to the speed of the elevating body that is caused to travel by the hoisting machine in accordance with the speed command output in the command step; and a speed command output with respect to the elevating body in the command step; a calculation step of calculating a speed deviation of the actual speed measured in the measurement step; and a calculation step of calculating the speed deviation of the elevating body calculated in the calculation step, when the magnitude of the speed deviation of the elevating object exceeds a first threshold value set in advance.
  • the method includes a determining step of determining that the speed deviation of the body has deviated from an allowable range, and a detecting step of detecting deformation of the guide rail based on the determination result in the determining step.
  • deformation of an elevator guide rail is detected.
  • FIG. 1 is a configuration diagram of an elevator system according to Embodiment 1.
  • FIG. 1 is a block diagram showing the configuration of a deformation detection system according to Embodiment 1.
  • 1 is a hardware configuration diagram of main parts of a deformation detection system according to Embodiment 1.
  • FIG. 1 is a configuration diagram of an elevator system 1 according to the first embodiment.
  • the elevator system 1 includes an elevator 2.
  • the elevator 2 is applied, for example, to a building having multiple floors.
  • a hoistway 3 for an elevator 2 is provided.
  • the hoistway 3 is a vertically long space spanning multiple floors.
  • a pit 4 is provided at the bottom of the hoistway 3.
  • a guide rail 5 is provided in the hoistway 3.
  • two sets of two guide rails 5 are arranged.
  • Each guide rail 5 is a device whose longitudinal direction is the vertical direction of the hoistway 3.
  • Each set of guide rails 5 is arranged parallel to each other along the vertical direction in the hoistway 3.
  • Each set of guide rails 5 faces each other.
  • a landing 6 adjacent to the hoistway 3 is provided on each floor of the building.
  • a landing door 7 is provided at the landing 6 of each floor.
  • the landing door 7 is a door that partitions the hoistway 3 and the landing 6.
  • the elevator 2 includes a hoist 8, a main rope 9, a car 10, a counterweight 11, and
  • the hoisting machine 8 is arranged, for example, at the upper or lower part of the hoistway 3.
  • the hoist 8 may be arranged in the machine room.
  • the hoist 8 includes a motor and a sheave.
  • the motor of the hoist 8 is a device that generates driving force.
  • the sheave of the hoist 8 is a device that rotates by the driving force generated by the motor of the hoist 8.
  • a hoisting machine encoder 13 is applied.
  • the hoisting machine encoder 13 is a device that measures the amount of rotation of the motor or sheave of the hoisting machine 8.
  • the main rope 9 is wound around the sheave of the hoist 8.
  • the main rope 9 supports the load of the car 10 on one side of the sheave of the hoist 8.
  • the main rope 9 supports the load of the counterweight 11 on the other side of the sheave of the hoist 8 .
  • the main rope 9 moves as the sheave of the hoist 8 rotates so that either side of the sheave of the hoist 8 is hoisted.
  • the car 10 is a device that transports users of the elevator 2 and the like between a plurality of floors by traveling up and down the hoistway 3.
  • the counterweight 11 is a device that balances the load applied to both sides of the sheave of the hoist 8 with the car 10.
  • the car 10 and the counterweight 11 travel in opposite directions in the vertical direction in the hoistway 3 in conjunction with the movement of the main rope 9 due to the rotation of the sheave of the hoist 8. That is, the rotational speed of the sheave of the hoist 8 corresponds to the running speed of the car 10 and the counterweight 11.
  • Each of the car 10 and the counterweight 11 is an example of an elevating body that travels in the vertical direction on the hoistway 3.
  • the car 10 is arranged between one set of guide rails 5.
  • the counterweight 11 is arranged between the other set of guide rails 5.
  • Guide rails 5 arranged on both sides of the car 10 guide the running of the car 10 in the vertical direction.
  • Guide rails 5 arranged on both sides of the counterweight 11 guide the travel of the counterweight 11 in the vertical direction.
  • the car 10 includes a car door 14.
  • the car door 14 is a door that partitions the inside and outside of the car 10.
  • the car door 14 is a device that opens and closes the landing door 7 of the floor in conjunction with the car 10 when the car 10 stops at that floor.
  • the control panel 12 is a device that controls the operation of the elevator 2.
  • the control panel 12 is arranged, for example, at the upper or lower part of the hoistway 3.
  • Operations of the elevator 2 controlled by the control panel 12 include running of the car 10, opening and closing of the car door 14, and the like.
  • the control panel 12 causes the car 10 to travel between a plurality of floors so as to respond to registered calls.
  • the control panel 12 opens the car door 14 in conjunction with the landing door 7 when the car 10 is stopped at any floor.
  • the control panel 12 maintains the car door 14 and the landing door 7 in a fully open state during a preset door opening time.
  • the control panel 12 interlocks the landing door 7 to close the car door 14 after the door opening time has elapsed since the car door 14 was fully opened.
  • the elevator 2 includes a speed governor 15, a speed governor rope 16, and a speed governor rope tensioning wheel 17.
  • the speed governor 15 is arranged, for example, at the upper or lower part of the hoistway 3. For example, when the machine room of the elevator 2 is provided above the hoistway 3, the speed governor 15 may be arranged in the machine room.
  • the speed governor 15 is a device that suppresses excessive running speed of the car 10.
  • the speed governor 15 has a sheave.
  • the governor rope 16 is wound around the sheave of the governor 15. Both ends of the governor rope 16 are attached to the car 10.
  • the governor rope 16 is wound around a governor rope tensioner 17.
  • the governor rope tensioning wheel 17 is a sheave that applies tension to the governor rope 16.
  • the speed governor rope tensioning wheel 17 is provided in the pit 4, for example.
  • the governor rope 16 moves as the car 10 travels.
  • the sheave of the speed governor 15 and the speed governor rope tension wheel 17 rotate as the speed governor rope 16 moves. That is, the rotational speed of the sheave of the speed governor 15 corresponds to the running speed of the car 10.
  • the governor 15 suppresses the traveling speed of the car 10 by, for example, braking the movement of the governor rope 16 when the rotational speed of the sheave becomes excessive.
  • a governor encoder 18 is applied to the governor 15 in this example.
  • the governor encoder 18 is a device that measures the amount of rotation of the sheave of the governor 15.
  • the elevator 2 is equipped with an earthquake sensor 19.
  • the earthquake sensor 19 is placed in the pit 4, for example.
  • the earthquake sensor 19 is configured to be able to detect earthquakes with shaking greater than a threshold value.
  • the threshold value is expressed by the value of acceleration due to earthquake shaking.
  • the elevator 2 switches the operation mode from normal operation to diagnostic operation, for example.
  • Normal operation is a normal operation mode in which users are transported between multiple floors in response to a call.
  • the diagnostic operation is an operation mode in which automatic diagnosis is performed to determine the presence or absence of abnormality in each device and device of the elevator 2. For example, in the control panel 12 or the like, it is determined whether or not automatic recovery to normal operation is possible based on the result of automatic diagnosis in diagnostic operation.
  • the elevator system 1 includes a remote monitoring device 20.
  • the remote monitoring device 20 is a device used for remotely monitoring the status of the elevator 2, etc.
  • the remote monitoring device 20 is connected to the control panel 12 and the like so that information on the status of the elevator 2 can be collected.
  • the remote monitoring device 20 collects, for example, information input to the control panel 12 and information output from the control panel 12 as information on the state of the elevator 2.
  • Information collected by the remote monitoring device 20 is output to, for example, a central management device 22 through a communication network 21 such as the Internet or a telephone line network.
  • the central management device 22 is a device that collects, stores, or manages information on the status of the elevator 2 and the like.
  • the central management device 22 is located at, for example, an information center.
  • the information center is a base that collects and manages information on the status of the elevator 2.
  • the control panel 12 of the elevator 2 may receive a remote control signal or the like from outside the elevator 2.
  • a control signal for remote control is input to the control panel 12 through, for example, the remote monitoring device 20.
  • a deformation detection system 23 is applied.
  • an earthquake occurs at a location where a building or the like to which the elevator 2 is applied is located, one of the guide rails 5 may be deformed due to the shaking of the earthquake.
  • the deformation detection system 23 detects deformation of the guide rail 5 during a diagnostic operation performed after an earthquake occurs.
  • the deformation detection system 23 may be an external system applied to the elevator 2 or an internal system included in the elevator 2.
  • FIG. 2 is a block diagram showing the configuration of the deformation detection system 23 according to the first embodiment.
  • the deformation detection system 23 includes a command section 24, a calculation section 25, a determination section 26, a detection section 27, and a notification section 28.
  • the command section 24 , the calculation section 25 , the determination section 26 , the detection section 27 , and the notification section 28 are mounted on the control panel 12 .
  • the command unit 24 is a part equipped with a function of outputting a speed command corresponding to the speed of the car 10 to the hoisting machine 8.
  • the speed command corresponding to the speed of the car 10 is a command value for, for example, the vertical traveling speed of the car 10 or the rotational speed of the hoist 8.
  • the hoisting machine 8 uses a motor to generate driving force in accordance with the speed command output by the command unit 24.
  • the sheave of the hoist 8 rotates, and the car 10 and counterweight 11 travel in the vertical direction.
  • the sheave of the speed governor 15 rotates as the car 10 travels.
  • the actual speed corresponding to the speed of the car 10 is measured.
  • the actual speed corresponding to the speed of the car 10 is, for example, the actual vertical traveling speed of the car 10 or the counterweight 11, the actual rotational speed of the sheave of the hoist 8, or the actual speed of the sheave of the speed governor 15. Such as rotation speed.
  • the actual speed corresponding to the speed of the car 10 is measured by the hoist encoder 13 as the rotational speed of the sheave of the hoist 8.
  • the actual speed corresponding to the speed of the car 10 may be measured by the governor encoder 18 as the rotational speed of the sheave of the governor 15.
  • the hoist encoder 13 and the governor encoder 18 are examples of measurement units in the deformation detection system 23.
  • the actual speed measured in the deformation detection system 23 is, for example, a converted value such as the rotational speed of the sheave of the hoist 8 obtained by multiplying the rotational speed of the sheave of the governor 15 measured by the governor encoder 18 by a coefficient. It may be.
  • the calculation unit 25 is a part equipped with a function of calculating the speed command output by the command unit 24 and the speed deviation of the actual speed measured by the deformation detection system 23.
  • the calculation unit 25 calculates the speed deviation, for example, by taking the difference between the measured value of the actual speed and the command value of the speed command. For example, the calculation unit 25 sequentially calculates the speed deviation of the car 10 while the car 10 is traveling in the diagnostic operation.
  • the determination unit 26 is a part equipped with a function of determining that the speed deviation has deviated from the allowable range when the magnitude of the speed deviation calculated by the calculation unit 25 exceeds the first threshold value.
  • the first threshold is a preset threshold for speed.
  • the allowable range is, for example, a range in which the speed deviation from the command value of the speed command is smaller than the first threshold value.
  • the detection unit 27 is a part equipped with a function of detecting deformation of one of the guide rails 5 based on the determination result of the determination unit 26.
  • the portion of the guide rail 5 that guides the car 10 or the counterweight 11 may be slightly tilted in the vertical direction.
  • the inclined portion of the guide rail 5 acts as resistance to the running of the car 10 or the counterweight 11. Therefore, the deformation of the guide rail 5 may cause a difference between the command value of the speed command and the measured value of the actual speed.
  • the detection unit 27 detects deformation of the guide rail 5 based on the determination result by the determination unit 26 as to whether or not the speed deviation deviates from the allowable range.
  • the detecting unit 27 detects the guide rail at the vertical position in the hoistway 3 where the car 10 or the counterweight 11 was traveling at that time. 5 deformation is detected.
  • the detection unit 27 may cause the determination unit 26 to determine that the speed deviation has deviated from the allowable range when the car 10 or the counterweight 11 are traveling at the same vertical position in the hoistway 3.
  • the second threshold is a preset threshold for the number of times. For example, when the second threshold value is set to once, deformation of the guide rail 5 is detected when deviation from the allowable range is determined multiple times.
  • the detection unit 27 determines that these positions are the same position. You may. For example, when the difference between the highest value and the lowest value of multiple positions in the vertical direction is smaller than a preset value, the detection unit 27 determines that these multiple positions match within the error range.
  • the notification unit 28 is a part equipped with a function of notifying the detection result of the detection unit 27.
  • the detection result of the detection unit 27 may include information on the vertical position in the hoistway 3 of the location where the deformation of the guide rail 5 is detected.
  • the notification unit 28 notifies the central management device 22 through, for example, the remote monitoring device 20 and the communication network 21.
  • the notification unit 28 may notify a maintenance terminal owned by a maintenance worker of the elevator 2 through the communication network 21 or the like.
  • the maintenance terminal is, for example, a portable general-purpose information terminal such as a smartphone. Further, the notification unit 28 may notify the management room when the building to which the elevator 2 is applied has a management room or the like.
  • the deformation detection system 23 may be installed in other devices of the control panel 12. Some or all of these functions may be installed in the remote monitoring device 20, the central management device 22, or other devices including a server device outside the information center.
  • FIG. 3 is a diagram showing an example of speed deviation in the elevator 2 according to the first embodiment.
  • the horizontal axis in FIG. 3 represents the passage of time while the car 10 is running.
  • the vertical axis in FIG. 3 represents speed.
  • a thick broken line represents a time change in the command value of the speed command corresponding to the speed of the car 10.
  • a thick solid line represents a change in the measured value of the actual speed corresponding to the speed of the car 10 over time.
  • the command value of the speed command and the measured value of the actual speed match within a permissible range.
  • the speed deviation of the car 10 deviates from an allowable range due to, for example, the inclination of the guide rail 5 due to the deformation.
  • the detection unit 27 detects the deformation of the guide rail 5 based on the determination result of the determination unit 26 that the speed deviation deviates from the allowable range.
  • FIG. 4 is a flowchart illustrating an example of the operation of the deformation detection system 23 according to the first embodiment. The process in FIG. 4 is performed, for example, during diagnostic operation in the elevator 2.
  • step S01 the command unit 24 outputs a speed command to the hoisting machine 8.
  • the speed command is a command value for the rotational speed of the sheave of the hoist 8.
  • step S02 the hoisting machine encoder 13 measures the rotational speed of the sheave of the hoisting machine 8 as the actual speed corresponding to the speed of the car 10. Thereafter, the process of the deformation detection system 23 proceeds to step S03.
  • step S03 the calculation unit 25 calculates the speed deviation between the speed command output by the command unit 24 and the actual speed measured by the hoist encoder 13. Thereafter, the process of the deformation detection system 23 proceeds to step S04.
  • step S04 the determination unit 26 determines whether the speed deviation of the car 10 exceeds the first threshold value.
  • the determining unit 26 determines that the speed deviation of the car 10 has deviated from the allowable range when the speed deviation of the car 10 exceeds the first threshold value.
  • the process of the deformation detection system 23 proceeds to step S01.
  • the process of the deformation detection system 23 proceeds to step S05.
  • step S05 the detection unit 27 acquires information on the current position of the car 10 in the vertical direction of the hoistway 3.
  • the detection unit 27 may acquire information on the position of the car 10 based on, for example, the rotation angle of the sheave of the hoist 8 measured by the hoist encoder 13. Thereafter, the process of the deformation detection system 23 proceeds to step S06.
  • step S06 the detection unit 27 determines whether the number of times the determination unit 26 has determined deviation from the allowable range exceeds the second threshold. If the determination result is NO, the process of the deformation detection system 23 proceeds to step S01. On the other hand, if the determination result is YES, the process of the deformation detection system 23 proceeds to step S07.
  • step S07 the detection unit 27 determines whether the positions of the car 10 obtained each time the determination unit 26 determines deviation from the allowable range match within the error range. If the determination result is NO, the process of the deformation detection system 23 proceeds to step S01. On the other hand, if the determination result is YES, the process of the deformation detection system 23 proceeds to step S08.
  • the detection unit 27 detects that the guide rail 5 is deformed at the position of the car 10 or the counterweight 11 when the determination unit 26 determines the deviation from the allowable range.
  • the detection unit 27 detects that one or both of the guide rail 5 that guides the car 10 or the guide rail 5 that guides the counterweight 11 is deformed.
  • the detection unit 27 does not specify which guide rail 5 of the guide rail 5 that guides the car 10 and the guide rail 5 that guides the counterweight 11 is deformed.
  • the detection unit 27 detects the position of the car 10 when the deviation from the allowable range is determined as the position of a deformed part when the guide rail 5 that guides the car 10 is deformed.
  • the detection unit 27 detects the position of the counterweight 11 when the deviation from the allowable range is determined as the position of a deformed part when the guide rail 5 that guides the balance weight 11 is deformed. Thereafter, the process of the deformation detection system 23 proceeds to step S09.
  • step S09 the notification unit 28 notifies the detection result by the detection unit 27. Thereafter, the processing of the deformation detection system 23 ends.
  • the process in FIG. 4 may be performed during the diagnostic operation in parallel with the running of the car 10 for determining the presence or absence of other abnormalities. At this time, the process in FIG. 4 ends, for example, when normal operation is automatically restored without any other abnormality being determined in the diagnostic operation. Moreover, the process in FIG. 4 may be performed all the time during normal operation.
  • the deformation detection system 23 includes the command section 24, the hoist encoder 13, the calculation section 25, the determination section 26, and the detection section 27.
  • the hoist 8 causes the car 10 and the counterweight 11 to run along the guide rail 5 in the hoistway 3 of the elevator 2.
  • the command unit 24 outputs a speed command corresponding to the speed of the car 10 or the counterweight 11 to the hoisting machine 8.
  • the hoisting machine encoder 13 measures the actual speed corresponding to the speed of the car 10 or the counterweight 11 that the hoisting machine 8 runs according to the speed command output by the command unit 24.
  • the calculation unit 25 calculates a speed deviation between the speed command output by the command unit 24 and the actual speed measured by the hoist encoder 13 for the car 10 or the counterweight 11 .
  • the determination unit 26 determines that the speed deviation has deviated from the allowable range when the magnitude of the speed deviation calculated by the calculation unit 25 exceeds the first threshold value.
  • the detection unit 27 detects deformation of the guide rail 5 based on the determination result of the determination unit 26.
  • the deformation detection method according to the first embodiment includes a command step, a measurement step, a calculation step, a determination step, and a detection step.
  • the command step is a step of outputting a speed command corresponding to the car 10 or the counterweight 11 to the hoisting machine 8.
  • the measurement step is a step of measuring the actual speed corresponding to the speed of the car 10 or the counterweight 11 that is driven by the hoisting machine 8 in accordance with the speed command output in the command step.
  • the calculation step is a step of calculating a speed deviation between the speed command output in the command step and the actual speed measured in the measurement step for the car 10 or the counterweight 11.
  • the determination step is a step of determining that the speed deviation has deviated from the allowable range when the magnitude of the speed deviation calculated in the calculation step exceeds the first threshold value.
  • the detection step is a step of detecting deformation of the guide rail 5 based on the determination result in the determination step.
  • the deformation of the guide rail 5 is detected based on the speed deviation.
  • the elevator 2 can be automatically restored after confirming that there is no deformation of the guide rail 5, so that the elevator 2 can be operated in a better condition after restoration.
  • the number of items to be inspected by maintenance personnel can be reduced. This reduces the workload of maintenance personnel and shortens the time required for recovery.
  • the detection unit 27 detects each time when the number of times the determination unit 26 determines that the speed deviation has deviated from the allowable range exceeds the second threshold, and the determination unit 26 determines that the speed deviation has deviated from the allowable range. Deformation of the guide rail 5 is detected when the positions of the car 10 or the counterweight 11 match within the error range.
  • the deformation of the guide rail 5 is detected after the deviation of the speed deviation from the allowable range is confirmed with reproducibility, so that the accuracy of deformation detection is further improved.
  • the calculation unit 25 calculates the speed deviation between the speed command output by the command unit 24 and the actual speed measured by the hoisting machine encoder 13 for the car 10 or the counterweight 11. Calculate sequentially. While the car 10 or the counterweight 11 is running, the determination unit 26 sequentially determines whether the speed deviation deviates from the allowable range based on whether the magnitude of the speed deviation exceeds a first threshold value. At this time, the detection unit 27 determines that the length of the travel section in which the car 10 or the counterweight 11 traveled while the determination unit 26 continuously determined that the speed deviation deviated from the allowable range is a third threshold value. Deformation of the guide rail 5 may be detected when the distance exceeds . The third threshold is a threshold set in advance for the length of the section in which the car 10 or the counterweight 11 travels.
  • the calculation unit 25 may calculate the magnitude of the amount of change over time in the speed deviation.
  • the magnitude of the time change amount of the speed deviation is calculated as, for example, the time derivative of the speed deviation.
  • the determination unit 26 does not determine that the speed deviation has deviated from the allowable range, regardless of the size of the speed deviation, when the magnitude of the temporal change amount of the speed deviation exceeds the fourth threshold value.
  • the fourth threshold value is a threshold value set in advance for the magnitude of the amount of change over time in the speed deviation of the car 10 or the counterweight 11.
  • the determination unit 26 determines whether the speed deviation deviates from the allowable range regardless of the size of the speed deviation until a preset time has elapsed after the magnitude of the time change amount of the speed deviation exceeds the fourth threshold. It is also possible to maintain a state in which no determination is made.
  • the cars 10 may vibrate due to air currents generated when adjacent cars 10 pass each other, regardless of the deformation of the guide rails 5.
  • control panel 12 may cause the car 10 or the counterweight 11 to travel so that the deformation of the guide rail 5 can be detected more reliably based on the determination result by the determination unit 26. For example, when the determination unit 26 determines that the speed deviation has deviated from the allowable range, the control panel 12 controls the car so that the car 10 or the counterweight 11 passes through the position at that time again at the same speed and in the same direction. 10 or a counterweight 11 may be run. Alternatively, when the determination unit 26 determines that the speed deviation has deviated from the allowable range, the control panel 12 may cause the car to pass through the position of the car 10 or the counterweight 11 again at a different speed or in a different direction. 10 or a counterweight 11 may be run.
  • FIG. 5 is a hardware configuration diagram of the main parts of the deformation detection system 23 according to the first embodiment.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuitry may include at least one dedicated hardware 200 along with or in place of the processor 100a and memory 100b.
  • each function of the deformation detection system 23 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in memory 100b.
  • the processor 100a implements each function of the deformation detection system 23 by reading and executing programs stored in the memory 100b.
  • the processor 100a is also referred to as a CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, microcomputer, or DSP.
  • the memory 100b is configured of a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, and EEPROM.
  • the processing circuit comprises dedicated hardware 200
  • the processing circuit is implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each function of processing in the deformation detection system 23 can be realized by a processing circuit. Alternatively, each function of the deformation detection system 23 can be realized collectively by a processing circuit. Regarding each function of the deformation detection system 23, some parts may be realized by the dedicated hardware 200, and other parts may be realized by software or firmware. In this way, the processing circuit implements each function of the deformation detection system 23 using dedicated hardware 200, software, firmware, or a combination thereof.
  • the deformation detection system and deformation detection method according to the present disclosure can be applied to guide rails of elevators.
  • Elevator system 2. Elevator, 3. Hoistway, 4. Pit, 5. Guide rail, 6. Landing area, 7. Landing door, 8. Hoisting machine, 9. Main rope, 10. Car, 11. Counterweight, 12. Control panel. , 13 Hoist encoder , 14 Car door, 15 Speed governor, 16 Speed governor rope, 17 Speed governor rope tensioner, 18 Speed governor encoder, 19 Earthquake detector, 20 Remote monitoring device, 21 Communication network, 22 Central management device, 23 Deformation detection system, 24 command unit, 25 calculation unit, 26 determination unit, 27 detection unit, 28 notification unit, 100a processor, 100b memory, 200 dedicated hardware

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

Provided are a deformation detection system and a deformation detection method that allow for detection of deformation of a guide rail. In the deformation detection system (23), a command unit (24) outputs a speed command corresponding to the speed of a car (10) to a hoisting machine (8). A hoisting machine encoder (13) measures the actual speed corresponding to the speed of the car (10) being moved by the hoisting machine (8) in accordance with the speed command outputted by the command unit (24). A computation unit (25) calculates the speed deviation between the speed command outputted by the command unit (24) and the actual speed measured by the hoisting machine encoder (13) for the car (10). A determination unit (26) determines that the speed deviation is outside an allowable range when the magnitude of the speed deviation calculated by the computation unit (25) is greater than a first threshold value. A detection unit (27) detects deformation of a guide rail (5) on the basis of the determination result from the determination unit (26).

Description

エレベーターのガイドレールの変形検出システムおよび変形検出方法Elevator guide rail deformation detection system and deformation detection method
 本開示は、エレベーターのガイドレールの変形検出システムおよび変形検出方法に関する。 The present disclosure relates to a deformation detection system and deformation detection method for an elevator guide rail.
 特許文献1は、エレベーターの例を開示する。エレベーターにおいて、低感知器の地震計が動作するときに診断運転が行われる。診断運転においてエレベーターの異常が検出されないときに、エレベーターは自動復旧される。 Patent Document 1 discloses an example of an elevator. In the elevator, a diagnostic run is performed when the low-sensor seismometer is activated. When no abnormality in the elevator is detected during diagnostic operation, the elevator is automatically restored.
日本特開2006-151660号公報Japanese Patent Publication No. 2006-151660
 エレベーターにおいて、地震などによってかごまたは釣合い錘の走行をガイドするガイドレールが変形することがある。しかしながら、特許文献1のエレベーターにおいて、ガイドレールの変形が検出されない。このため、ガイドレールの変形の有無に関わらずにエレベーターが自動復旧される場合がある。 In elevators, the guide rails that guide the travel of the car or counterweight may be deformed due to earthquakes. However, in the elevator of Patent Document 1, deformation of the guide rail is not detected. Therefore, the elevator may be automatically restored regardless of whether or not the guide rail is deformed.
 本開示は、ガイドレールの変形を検出できる変形検出システムおよび変形検出方法を提供する。 The present disclosure provides a deformation detection system and a deformation detection method that can detect deformation of a guide rail.
 本開示に係る、エレベーターのガイドレールの変形検出システムは、エレベーターの昇降路において昇降体をガイドレールに沿って走行させる巻上機に、前記昇降体の速度に対応する速度指令を出力する指令部と、前記指令部が出力する速度指令に従って前記巻上機が走行させる前記昇降体の速度に対応する実速度を計測する計測部と、前記昇降体について前記指令部が出力する速度指令および前記計測部が計測する実速度の速度偏差を算出する演算部と、前記演算部が算出した前記昇降体の速度偏差の大きさが予め設定された第1閾値を超えるときに、前記昇降体の速度偏差が許容範囲から逸脱したと判定する判定部と、前記判定部の判定結果に基づいて、前記ガイドレールの変形を検出する検出部と、を備える。 The deformation detection system for an elevator guide rail according to the present disclosure includes a command unit that outputs a speed command corresponding to the speed of the elevator to a hoist that causes the elevator to travel along the guide rail in the hoistway of the elevator. a measurement unit that measures an actual speed corresponding to the speed of the elevating body that is caused to travel by the hoisting machine according to a speed command output by the command unit; and a speed command output by the command unit regarding the elevating body and the measurement. a calculation unit that calculates a speed deviation of the actual speed measured by the calculation unit; The guide rail includes a determining section that determines that the guide rail has deviated from an allowable range, and a detecting section that detects deformation of the guide rail based on the determination result of the determining section.
 本開示に係る、エレベーターのガイドレールの変形検出方法は、エレベーターの昇降路において昇降体をガイドレールに沿って走行させる巻上機に、前記昇降体の速度に対応する速度指令を出力する指令ステップと、前記指令ステップにおいて出力される速度指令に従って前記巻上機が走行させる前記昇降体の速度に対応する実速度を計測する計測ステップと、前記昇降体について前記指令ステップにおいて出力される速度指令および前記計測ステップにおいて計測される実速度の速度偏差を算出する演算ステップと、前記演算ステップにおいて算出された前記昇降体の速度偏差の大きさが予め設定された第1閾値を超えるときに、前記昇降体の速度偏差が許容範囲から逸脱したと判定する判定ステップと、前記判定ステップにおける判定結果に基づいて、前記ガイドレールの変形を検出する検出ステップと、を備える。 A method for detecting deformation of an elevator guide rail according to the present disclosure includes a command step of outputting a speed command corresponding to the speed of the elevator to a hoist that causes the elevator to travel along the guide rail in the hoistway of the elevator. a measuring step of measuring an actual speed corresponding to the speed of the elevating body that is caused to travel by the hoisting machine in accordance with the speed command output in the command step; and a speed command output with respect to the elevating body in the command step; a calculation step of calculating a speed deviation of the actual speed measured in the measurement step; and a calculation step of calculating the speed deviation of the elevating body calculated in the calculation step, when the magnitude of the speed deviation of the elevating object exceeds a first threshold value set in advance. The method includes a determining step of determining that the speed deviation of the body has deviated from an allowable range, and a detecting step of detecting deformation of the guide rail based on the determination result in the determining step.
 本開示に係る変形検出システムまたは変形検出方法によれば、エレベーターのガイドレールの変形が検出される。 According to the deformation detection system or deformation detection method according to the present disclosure, deformation of an elevator guide rail is detected.
実施の形態1に係るエレベーターシステムの構成図である。1 is a configuration diagram of an elevator system according to Embodiment 1. FIG. 実施の形態1に係る変形検出システムの構成を示すブロック図である。1 is a block diagram showing the configuration of a deformation detection system according to Embodiment 1. FIG. 実施の形態1に係るエレベーターにおける速度偏差の例を示す図である。FIG. 3 is a diagram showing an example of speed deviation in the elevator according to the first embodiment. 実施の形態1に係る変形検出システムの動作の例を示すフローチャートである。3 is a flowchart illustrating an example of the operation of the deformation detection system according to the first embodiment. 実施の形態1に係る変形検出システムの主要部のハードウェア構成図である。1 is a hardware configuration diagram of main parts of a deformation detection system according to Embodiment 1. FIG.
 本開示の対象を実施するための形態について添付の図面を参照しながら説明する。各図において、同一または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。なお、本開示の対象は以下の実施の形態に限定されることなく、本開示の趣旨を逸脱しない範囲において、実施の形態の任意の構成要素の変形、または実施の形態の任意の構成要素の省略が可能である。 Embodiments for carrying out the subject matter of the present disclosure will be described with reference to the accompanying drawings. In each figure, the same or corresponding parts are given the same reference numerals, and overlapping explanations are simplified or omitted as appropriate. Note that the subject of the present disclosure is not limited to the following embodiments, and modifications of any constituent elements of the embodiments or modifications of any constituent elements of the embodiments may be made without departing from the spirit of the present disclosure. Can be omitted.
 実施の形態1.
 図1は、実施の形態1に係るエレベーターシステム1の構成図である。
Embodiment 1.
FIG. 1 is a configuration diagram of an elevator system 1 according to the first embodiment.
 エレベーターシステム1は、エレベーター2を備える。エレベーター2は、例えば複数の階床を有する建物に適用される。建物において、エレベーター2の昇降路3が設けられる。昇降路3は、複数の階床にわたる上下方向に長い空間である。昇降路3の下部において、ピット4が設けられる。昇降路3において、ガイドレール5が設けられる。この例において、2本1組のガイドレール5が2組配置されている。各々のガイドレール5は、昇降路3の上下方向を長手方向とする機器である。各組のガイドレール5は、昇降路3において上下方向に沿って互いに平行に配置される。各組のガイドレール5は、互いに対向する。建物の各々の階床において、昇降路3に隣接する乗場6が設けられる。各々の階床の乗場6において、乗場ドア7が設けられる。乗場ドア7は、昇降路3および乗場6を区画するドアである。エレベーター2は、巻上機8と、主ロープ9と、かご10と、釣合い錘11と、制御盤12と、を備える。 The elevator system 1 includes an elevator 2. The elevator 2 is applied, for example, to a building having multiple floors. In a building, a hoistway 3 for an elevator 2 is provided. The hoistway 3 is a vertically long space spanning multiple floors. A pit 4 is provided at the bottom of the hoistway 3. In the hoistway 3, a guide rail 5 is provided. In this example, two sets of two guide rails 5 are arranged. Each guide rail 5 is a device whose longitudinal direction is the vertical direction of the hoistway 3. Each set of guide rails 5 is arranged parallel to each other along the vertical direction in the hoistway 3. Each set of guide rails 5 faces each other. A landing 6 adjacent to the hoistway 3 is provided on each floor of the building. A landing door 7 is provided at the landing 6 of each floor. The landing door 7 is a door that partitions the hoistway 3 and the landing 6. The elevator 2 includes a hoist 8, a main rope 9, a car 10, a counterweight 11, and a control panel 12.
 巻上機8は、例えば昇降路3の上部または下部などに配置される。例えば昇降路3の上方などにエレベーター2の機械室が設けられる場合に、巻上機8は、機械室に配置されてもよい。巻上機8は、モータおよびシーブを備える。巻上機8のモータは、駆動力を発生させる装置である。巻上機8のシーブは、巻上機8のモータが発生させる駆動力によって回転する機器である。巻上機8において、巻上機エンコーダ13が適用される。巻上機エンコーダ13は、巻上機8のモータまたはシーブの回転量を計測する機器である。 The hoisting machine 8 is arranged, for example, at the upper or lower part of the hoistway 3. For example, when a machine room for the elevator 2 is provided above the hoistway 3, the hoist 8 may be arranged in the machine room. The hoist 8 includes a motor and a sheave. The motor of the hoist 8 is a device that generates driving force. The sheave of the hoist 8 is a device that rotates by the driving force generated by the motor of the hoist 8. In the hoisting machine 8, a hoisting machine encoder 13 is applied. The hoisting machine encoder 13 is a device that measures the amount of rotation of the motor or sheave of the hoisting machine 8.
 主ロープ9は、巻上機8のシーブに巻き掛けられる。主ロープ9は、巻上機8のシーブの一方側においてかご10の荷重を支持する。主ロープ9は、巻上機8のシーブの他方側において釣合い錘11の荷重を支持する。主ロープ9は、巻上機8のシーブの回転によって、巻上機8のシーブのいずれかの側が巻き上げられるように移動する。 The main rope 9 is wound around the sheave of the hoist 8. The main rope 9 supports the load of the car 10 on one side of the sheave of the hoist 8. The main rope 9 supports the load of the counterweight 11 on the other side of the sheave of the hoist 8 . The main rope 9 moves as the sheave of the hoist 8 rotates so that either side of the sheave of the hoist 8 is hoisted.
 かご10は、昇降路3を上下方向に走行することでエレベーター2の利用者などを複数の階床の間で輸送する装置である。釣合い錘11は、巻上機8のシーブの両側にかかる荷重の釣合いをかご10との間でとる装置である。かご10および釣合い錘11は、巻上機8のシーブの回転による主ロープ9の移動に連動して昇降路3を上下方向の互いに反対側に走行する。すなわち、巻上機8のシーブの回転速度は、かご10および釣合い錘11の走行速度に対応する。かご10および釣合い錘11の各々は、昇降路3を上下方向に走行する昇降体の例である。かご10は、一方の組のガイドレール5の間に配置される。釣合い錘11は、他方の組のガイドレール5の間に配置される。かご10の両側に配置されたガイドレール5は、かご10の走行を上下方向にガイドする。釣合い錘11の両側に配置されたガイドレール5は、釣合い錘11の走行を上下方向にガイドする。かご10は、かごドア14を備える。かごドア14は、かご10の内部および外部を区画するドアである。かごドア14は、かご10がいずれかの階床に停止するときに、当該階床の乗場ドア7を連動させて開閉する機器である。 The car 10 is a device that transports users of the elevator 2 and the like between a plurality of floors by traveling up and down the hoistway 3. The counterweight 11 is a device that balances the load applied to both sides of the sheave of the hoist 8 with the car 10. The car 10 and the counterweight 11 travel in opposite directions in the vertical direction in the hoistway 3 in conjunction with the movement of the main rope 9 due to the rotation of the sheave of the hoist 8. That is, the rotational speed of the sheave of the hoist 8 corresponds to the running speed of the car 10 and the counterweight 11. Each of the car 10 and the counterweight 11 is an example of an elevating body that travels in the vertical direction on the hoistway 3. The car 10 is arranged between one set of guide rails 5. The counterweight 11 is arranged between the other set of guide rails 5. Guide rails 5 arranged on both sides of the car 10 guide the running of the car 10 in the vertical direction. Guide rails 5 arranged on both sides of the counterweight 11 guide the travel of the counterweight 11 in the vertical direction. The car 10 includes a car door 14. The car door 14 is a door that partitions the inside and outside of the car 10. The car door 14 is a device that opens and closes the landing door 7 of the floor in conjunction with the car 10 when the car 10 stops at that floor.
 制御盤12は、エレベーター2の動作を制御する装置である。制御盤12は、例えば昇降路3の上部または下部などに配置される。例えば昇降路3の上方などにエレベーター2の機械室が設けられる場合に、制御盤12は、機械室に配置されてもよい。制御盤12が制御するエレベーター2の動作は、かご10の走行およびかごドア14の開閉などを含む。例えば、制御盤12は、登録された呼びに応答させるように、かご10を複数の階床の間で走行させる。制御盤12は、かご10をいずれかの階床に停止させるときに、乗場ドア7を連動させてかごドア14を開く。制御盤12は、予め設定された戸開時間の間、かごドア14および乗場ドア7の全開の状態を維持する。制御盤12は、かごドア14が全開してから戸開時間が経過した後に、乗場ドア7を連動させてかごドア14を閉める。 The control panel 12 is a device that controls the operation of the elevator 2. The control panel 12 is arranged, for example, at the upper or lower part of the hoistway 3. For example, when the machine room of the elevator 2 is provided above the hoistway 3, the control panel 12 may be arranged in the machine room. Operations of the elevator 2 controlled by the control panel 12 include running of the car 10, opening and closing of the car door 14, and the like. For example, the control panel 12 causes the car 10 to travel between a plurality of floors so as to respond to registered calls. The control panel 12 opens the car door 14 in conjunction with the landing door 7 when the car 10 is stopped at any floor. The control panel 12 maintains the car door 14 and the landing door 7 in a fully open state during a preset door opening time. The control panel 12 interlocks the landing door 7 to close the car door 14 after the door opening time has elapsed since the car door 14 was fully opened.
 エレベーター2は、調速機15と、調速機ロープ16と、調速機ロープ張り車17と、を備える。調速機15は、例えば昇降路3の上部または下部などに配置される。例えば昇降路3の上方などにエレベーター2の機械室が設けられる場合に、調速機15は、機械室に配置されてもよい。調速機15は、かご10の過剰な走行速度を抑える機器である。調速機15は、シーブを有する。調速機ロープ16は、調速機15のシーブに巻き掛けられる。調速機ロープ16の両端は、かご10に取り付けられる。調速機ロープ16は、調速機ロープ張り車17に巻き掛けられる。調速機ロープ張り車17は、調速機ロープ16に張力をかけるシーブである。調速機ロープ張り車17は、例えばピット4に設けられる。調速機ロープ16は、かご10の走行に伴って移動する。調速機15のシーブおよび調速機ロープ張り車17は、調速機ロープ16の移動に伴って回転する。すなわち、調速機15のシーブの回転速度は、かご10の走行速度に対応する。調速機15は、例えば、シーブの回転速度が過剰になったときに、例えば調速機ロープ16などの移動を制動することで、かご10の走行速度を抑える。この例の調速機15において、調速機エンコーダ18が適用される。調速機エンコーダ18は、調速機15のシーブの回転量を計測する機器である。 The elevator 2 includes a speed governor 15, a speed governor rope 16, and a speed governor rope tensioning wheel 17. The speed governor 15 is arranged, for example, at the upper or lower part of the hoistway 3. For example, when the machine room of the elevator 2 is provided above the hoistway 3, the speed governor 15 may be arranged in the machine room. The speed governor 15 is a device that suppresses excessive running speed of the car 10. The speed governor 15 has a sheave. The governor rope 16 is wound around the sheave of the governor 15. Both ends of the governor rope 16 are attached to the car 10. The governor rope 16 is wound around a governor rope tensioner 17. The governor rope tensioning wheel 17 is a sheave that applies tension to the governor rope 16. The speed governor rope tensioning wheel 17 is provided in the pit 4, for example. The governor rope 16 moves as the car 10 travels. The sheave of the speed governor 15 and the speed governor rope tension wheel 17 rotate as the speed governor rope 16 moves. That is, the rotational speed of the sheave of the speed governor 15 corresponds to the running speed of the car 10. The governor 15 suppresses the traveling speed of the car 10 by, for example, braking the movement of the governor rope 16 when the rotational speed of the sheave becomes excessive. A governor encoder 18 is applied to the governor 15 in this example. The governor encoder 18 is a device that measures the amount of rotation of the sheave of the governor 15.
 エレベーター2は、地震感知器19を備える。地震感知器19は、例えばピット4などに配置される。地震感知器19は、閾値以上の揺れの地震を感知しうるように構成される。閾値は、地震の揺れによる加速度の値によって表される。地震感知器19が閾値以上の揺れの地震を感知するときに、エレベーター2は、例えば、通常運転から診断運転に運転モードを切り替える。通常運転は、呼びに応じて利用者を複数の階床の間で輸送する通常時の運転モードである。診断運転は、エレベーター2の各機器および装置などの異常の有無を判定する自動診断などを行う運転モードである。例えば制御盤12などにおいて、診断運転における自動診断の結果に基づいて、通常運転への自動復旧の可否が判定される。 The elevator 2 is equipped with an earthquake sensor 19. The earthquake sensor 19 is placed in the pit 4, for example. The earthquake sensor 19 is configured to be able to detect earthquakes with shaking greater than a threshold value. The threshold value is expressed by the value of acceleration due to earthquake shaking. When the earthquake sensor 19 detects an earthquake with shaking greater than a threshold value, the elevator 2 switches the operation mode from normal operation to diagnostic operation, for example. Normal operation is a normal operation mode in which users are transported between multiple floors in response to a call. The diagnostic operation is an operation mode in which automatic diagnosis is performed to determine the presence or absence of abnormality in each device and device of the elevator 2. For example, in the control panel 12 or the like, it is determined whether or not automatic recovery to normal operation is possible based on the result of automatic diagnosis in diagnostic operation.
 エレベーターシステム1は、遠隔監視装置20を備える。遠隔監視装置20は、エレベーター2の状態の遠隔監視などに用いられる装置である。遠隔監視装置20は、エレベーター2の状態の情報を収集しうるように、制御盤12などに接続される。遠隔監視装置20は、例えば制御盤12に入力される情報および制御盤12から出力される情報などをエレベーター2の状態の情報として収集する。遠隔監視装置20が収集した情報は、インターネットまたは電話回線網などの通信網21を通じて、例えば中央管理装置22などに出力される。中央管理装置22は、エレベーター2の状態の情報などの収集、蓄積、または管理などを行う装置である。中央管理装置22は、例えば情報センターなどに配置される。情報センターは、エレベーター2の状態の情報を収集して管理する拠点である。ここで、エレベーター2の制御盤12は、エレベーター2の外部から遠隔制御の制御信号などを受け付けてもよい。遠隔制御の制御信号は、例えば遠隔監視装置20などを通じて制御盤12に入力される。 The elevator system 1 includes a remote monitoring device 20. The remote monitoring device 20 is a device used for remotely monitoring the status of the elevator 2, etc. The remote monitoring device 20 is connected to the control panel 12 and the like so that information on the status of the elevator 2 can be collected. The remote monitoring device 20 collects, for example, information input to the control panel 12 and information output from the control panel 12 as information on the state of the elevator 2. Information collected by the remote monitoring device 20 is output to, for example, a central management device 22 through a communication network 21 such as the Internet or a telephone line network. The central management device 22 is a device that collects, stores, or manages information on the status of the elevator 2 and the like. The central management device 22 is located at, for example, an information center. The information center is a base that collects and manages information on the status of the elevator 2. Here, the control panel 12 of the elevator 2 may receive a remote control signal or the like from outside the elevator 2. A control signal for remote control is input to the control panel 12 through, for example, the remote monitoring device 20.
 エレベーター2において、変形検出システム23が適用される。エレベーター2が適用される建物などが設けられた地点において地震が発生するときに、地震の揺れによっていずれかのガイドレール5に変形が生じることがある。このとき、かご10または釣合い錘11が走行可能な程度には軽微な変形であっても、走行時の揺れなどの変形による影響が生じる場合がある。このため、地震が発生したあとに行われる診断運転などにおいて、変形検出システム23は、ガイドレール5の変形を検出する。変形検出システム23は、エレベーター2に適用される外部システムであってもよいし、エレベーター2に含まれる内部システムであってもよい。 In the elevator 2, a deformation detection system 23 is applied. When an earthquake occurs at a location where a building or the like to which the elevator 2 is applied is located, one of the guide rails 5 may be deformed due to the shaking of the earthquake. At this time, even if the deformation is slight enough to allow the car 10 or the counterweight 11 to travel, the deformation may have an effect such as shaking during travel. Therefore, the deformation detection system 23 detects deformation of the guide rail 5 during a diagnostic operation performed after an earthquake occurs. The deformation detection system 23 may be an external system applied to the elevator 2 or an internal system included in the elevator 2.
 図2は、実施の形態1に係る変形検出システム23の構成を示すブロック図である。 FIG. 2 is a block diagram showing the configuration of the deformation detection system 23 according to the first embodiment.
 変形検出システム23は、指令部24と、演算部25と、判定部26と、検出部27と、報知部28と、を備える。この例において、指令部24、演算部25、判定部26、検出部27、および報知部28は、制御盤12に搭載される。 The deformation detection system 23 includes a command section 24, a calculation section 25, a determination section 26, a detection section 27, and a notification section 28. In this example, the command section 24 , the calculation section 25 , the determination section 26 , the detection section 27 , and the notification section 28 are mounted on the control panel 12 .
 指令部24は、かご10の速度に対応する速度指令を巻上機8に出力する機能を搭載する部分である。かご10の速度に対応する速度指令は、例えばかご10の上下方向の走行速度、または巻上機8の回転速度などに対する指令値である。 The command unit 24 is a part equipped with a function of outputting a speed command corresponding to the speed of the car 10 to the hoisting machine 8. The speed command corresponding to the speed of the car 10 is a command value for, for example, the vertical traveling speed of the car 10 or the rotational speed of the hoist 8.
 巻上機8は、指令部24が出力する速度指令に従ってモータによって駆動力を発生させる。これにより、巻上機8のシーブは回転し、かご10および釣合い錘11は上下方向に走行する。このとき、かご10の走行に伴って調速機15のシーブは回転する。変形検出システム23において、かご10の速度に対応する実速度が計測される。かご10の速度に対応する実速度は、例えば、かご10または釣合い錘11の上下方向の実際の走行速度、巻上機8のシーブの実際の回転速度、または調速機15のシーブの実際の回転速度などである。この例において、かご10の速度に対応する実速度は、巻上機8のシーブの回転速度として巻上機エンコーダ13によって計測される。あるいは、かご10の速度に対応する実速度は、調速機15のシーブの回転速度として調速機エンコーダ18によって計測されてもよい。巻上機エンコーダ13および調速機エンコーダ18は、変形検出システム23における計測部の例である。変形検出システム23において計測される実速度は、例えば調速機エンコーダ18が計測する調速機15のシーブの回転速度に係数を乗じて得られる巻上機8のシーブの回転速度などの換算値であってもよい。 The hoisting machine 8 uses a motor to generate driving force in accordance with the speed command output by the command unit 24. As a result, the sheave of the hoist 8 rotates, and the car 10 and counterweight 11 travel in the vertical direction. At this time, the sheave of the speed governor 15 rotates as the car 10 travels. In the deformation detection system 23, the actual speed corresponding to the speed of the car 10 is measured. The actual speed corresponding to the speed of the car 10 is, for example, the actual vertical traveling speed of the car 10 or the counterweight 11, the actual rotational speed of the sheave of the hoist 8, or the actual speed of the sheave of the speed governor 15. Such as rotation speed. In this example, the actual speed corresponding to the speed of the car 10 is measured by the hoist encoder 13 as the rotational speed of the sheave of the hoist 8. Alternatively, the actual speed corresponding to the speed of the car 10 may be measured by the governor encoder 18 as the rotational speed of the sheave of the governor 15. The hoist encoder 13 and the governor encoder 18 are examples of measurement units in the deformation detection system 23. The actual speed measured in the deformation detection system 23 is, for example, a converted value such as the rotational speed of the sheave of the hoist 8 obtained by multiplying the rotational speed of the sheave of the governor 15 measured by the governor encoder 18 by a coefficient. It may be.
 演算部25は、指令部24が出力する速度指令、および変形検出システム23において計測される実速度の速度偏差を算出する機能を搭載する部分である。演算部25は、例えば、実速度の計測値および速度指令の指令値の差を取ることで、速度偏差を算出する。演算部25は、例えば、診断運転においてかご10が走行している間に、かご10の速度偏差を逐次算出する。 The calculation unit 25 is a part equipped with a function of calculating the speed command output by the command unit 24 and the speed deviation of the actual speed measured by the deformation detection system 23. The calculation unit 25 calculates the speed deviation, for example, by taking the difference between the measured value of the actual speed and the command value of the speed command. For example, the calculation unit 25 sequentially calculates the speed deviation of the car 10 while the car 10 is traveling in the diagnostic operation.
 判定部26は、演算部25が算出した速度偏差の大きさが第1閾値を超えるときに、速度偏差が許容範囲から逸脱したと判定する機能を搭載する部分である。第1閾値は、速度について予め設定された閾値である。許容範囲は、例えば、速度指令の指令値からの速度偏差が第1閾値より小さくなる範囲などである。 The determination unit 26 is a part equipped with a function of determining that the speed deviation has deviated from the allowable range when the magnitude of the speed deviation calculated by the calculation unit 25 exceeds the first threshold value. The first threshold is a preset threshold for speed. The allowable range is, for example, a range in which the speed deviation from the command value of the speed command is smaller than the first threshold value.
 検出部27は、判定部26の判定結果に基づいて、いずれかのガイドレール5の変形を検出する機能を搭載する部分である。ガイドレール5の変形が軽微な場合などに、ガイドレール5においてかご10または釣合い錘11をガイドする部分が上下方向に対してわずかに傾くことがある。このとき、ガイドレール5の傾いた部分は、かご10または釣合い錘11の走行の抵抗などとして働く。このため、ガイドレール5の変形によって、速度指令の指令値および実速度の計測値の間に差異が生じうる。これを用いて、検出部27は、速度偏差が許容範囲から逸脱したか否かの判定部26による判定結果に基づいて、ガイドレール5の変形を検出する。検出部27は、例えば、速度偏差が許容範囲から逸脱したと判定部26が判定する場合に、そのときかご10または釣合い錘11が走行していた昇降路3内の上下方向の位置におけるガイドレール5の変形を検出する。あるいは、検出部27は、例えば、かご10または釣合い錘11が昇降路3内の上下方向の同じ位置を走行しているときに速度偏差が許容範囲から逸脱したと判定部26が判定することが第2閾値を超えた回数生じる場合に、その位置におけるガイドレール5の変形を検出する。ここで、第2閾値は、回数について予め設定された閾値である。例えば第2閾値が1回に設定される場合に、許容範囲からの複数回の逸脱が判定されるときにガイドレール5の変形が検出される。また、検出部27は、速度偏差の許容範囲からの逸脱が判定されたときのかご10または釣合い錘11の上下方向の位置が誤差範囲内で一致するときに、これらの位置を同じ位置として判定してもよい。検出部27は、例えば、上下方向における複数の位置の最高値および最低値の差分が予め設定された値より小さい場合に、これらの複数の位置が誤差範囲内で一致すると判定する。 The detection unit 27 is a part equipped with a function of detecting deformation of one of the guide rails 5 based on the determination result of the determination unit 26. When the deformation of the guide rail 5 is slight, the portion of the guide rail 5 that guides the car 10 or the counterweight 11 may be slightly tilted in the vertical direction. At this time, the inclined portion of the guide rail 5 acts as resistance to the running of the car 10 or the counterweight 11. Therefore, the deformation of the guide rail 5 may cause a difference between the command value of the speed command and the measured value of the actual speed. Using this, the detection unit 27 detects deformation of the guide rail 5 based on the determination result by the determination unit 26 as to whether or not the speed deviation deviates from the allowable range. For example, when the determining unit 26 determines that the speed deviation has deviated from the allowable range, the detecting unit 27 detects the guide rail at the vertical position in the hoistway 3 where the car 10 or the counterweight 11 was traveling at that time. 5 deformation is detected. Alternatively, the detection unit 27 may cause the determination unit 26 to determine that the speed deviation has deviated from the allowable range when the car 10 or the counterweight 11 are traveling at the same vertical position in the hoistway 3. When the number of times exceeding the second threshold value occurs, deformation of the guide rail 5 at that position is detected. Here, the second threshold is a preset threshold for the number of times. For example, when the second threshold value is set to once, deformation of the guide rail 5 is detected when deviation from the allowable range is determined multiple times. Furthermore, when the vertical positions of the car 10 or the counterweight 11 match within the error range when it is determined that the speed deviation is out of the allowable range, the detection unit 27 determines that these positions are the same position. You may. For example, when the difference between the highest value and the lowest value of multiple positions in the vertical direction is smaller than a preset value, the detection unit 27 determines that these multiple positions match within the error range.
 報知部28は、検出部27の検出結果を報知する機能を搭載する部分である。検出部27の検出結果は、ガイドレール5の変形が検出された箇所についての昇降路3における上下方向の位置の情報を含んでもよい。報知部28は、例えば、遠隔監視装置20および通信網21などを通じて中央管理装置22に報知を行う。あるいは、報知部28は、エレベーター2の保守員が所持する保守端末などに通信網21などを通じて報知を行ってもよい。保守端末は、例えばスマートフォンなどの可搬な汎用の情報端末などである。また、報知部28は、エレベーター2が適用される建物に管理室などが設けられる場合に、管理室に報知を行ってもよい。 The notification unit 28 is a part equipped with a function of notifying the detection result of the detection unit 27. The detection result of the detection unit 27 may include information on the vertical position in the hoistway 3 of the location where the deformation of the guide rail 5 is detected. The notification unit 28 notifies the central management device 22 through, for example, the remote monitoring device 20 and the communication network 21. Alternatively, the notification unit 28 may notify a maintenance terminal owned by a maintenance worker of the elevator 2 through the communication network 21 or the like. The maintenance terminal is, for example, a portable general-purpose information terminal such as a smartphone. Further, the notification unit 28 may notify the management room when the building to which the elevator 2 is applied has a management room or the like.
 なお、変形検出システム23の演算部25、判定部26、検出部27、および報知部28などの各機能の一部または全部は、制御盤12の他の装置に搭載されていてもよい。これらの機能の一部または全部は、遠隔監視装置20、中央管理装置22、または情報センター外のサーバ装置などを含むその他の装置などに搭載されていてもよい。 Note that some or all of the functions of the deformation detection system 23, such as the calculation section 25, the determination section 26, the detection section 27, and the notification section 28, may be installed in other devices of the control panel 12. Some or all of these functions may be installed in the remote monitoring device 20, the central management device 22, or other devices including a server device outside the information center.
 図3は、実施の形態1に係るエレベーター2における速度偏差の例を示す図である。
 図3の横軸は、かご10が走行している間の時間の経過を表す。図3の縦軸は、速度を表す。図3において、太い破線はかご10の速度に対応する速度指令の指令値の時間変化を表す。図3において、太い実線はかご10の速度に対応する実速度の計測値の時間変化を表す。
FIG. 3 is a diagram showing an example of speed deviation in the elevator 2 according to the first embodiment.
The horizontal axis in FIG. 3 represents the passage of time while the car 10 is running. The vertical axis in FIG. 3 represents speed. In FIG. 3, a thick broken line represents a time change in the command value of the speed command corresponding to the speed of the car 10. In FIG. 3, a thick solid line represents a change in the measured value of the actual speed corresponding to the speed of the car 10 over time.
 図3に示されるように、ガイドレール5の変形がない区間をかご10が走行している間、速度指令の指令値および実速度の計測値は許容範囲内で一致する。ガイドレール5の変形がある区間をかご10が走行するときに、例えば変形によるガイドレール5の傾きなどによって、かご10の速度偏差は許容範囲を逸脱する。このとき、検出部27は、判定部26による速度偏差の許容範囲からの逸脱の判定結果に基づいて、ガイドレール5の変形を検出する。 As shown in FIG. 3, while the car 10 is traveling in a section where the guide rail 5 is not deformed, the command value of the speed command and the measured value of the actual speed match within a permissible range. When the car 10 travels through a section where the guide rail 5 is deformed, the speed deviation of the car 10 deviates from an allowable range due to, for example, the inclination of the guide rail 5 due to the deformation. At this time, the detection unit 27 detects the deformation of the guide rail 5 based on the determination result of the determination unit 26 that the speed deviation deviates from the allowable range.
 図4は、実施の形態1に係る変形検出システム23の動作の例を示すフローチャートである。
 図4における処理は、例えば、エレベーター2における診断運転の際に行われる。
FIG. 4 is a flowchart illustrating an example of the operation of the deformation detection system 23 according to the first embodiment.
The process in FIG. 4 is performed, for example, during diagnostic operation in the elevator 2.
 ステップS01において、指令部24は、巻上機8に速度指令を出力する。この例において、速度指令は、巻上機8のシーブの回転速度の指令値である。その後、変形検出システム23の処理は、ステップS02に進む。 In step S01, the command unit 24 outputs a speed command to the hoisting machine 8. In this example, the speed command is a command value for the rotational speed of the sheave of the hoist 8. Thereafter, the process of the deformation detection system 23 proceeds to step S02.
 ステップS02において、巻上機エンコーダ13は、かご10の速度に対応する実速度として、巻上機8のシーブの回転速度を計測する。その後、変形検出システム23の処理は、ステップS03に進む。 In step S02, the hoisting machine encoder 13 measures the rotational speed of the sheave of the hoisting machine 8 as the actual speed corresponding to the speed of the car 10. Thereafter, the process of the deformation detection system 23 proceeds to step S03.
 ステップS03において、演算部25は、指令部24が出力した速度指令および巻上機エンコーダ13が計測した実速度の速度偏差を算出する。その後、変形検出システム23の処理は、ステップS04に進む。 In step S03, the calculation unit 25 calculates the speed deviation between the speed command output by the command unit 24 and the actual speed measured by the hoist encoder 13. Thereafter, the process of the deformation detection system 23 proceeds to step S04.
 ステップS04において、判定部26は、かご10の速度偏差が第1閾値を超えるかを判定する。判定部26は、かご10の速度偏差が第1閾値を超えるときに、かご10の速度偏差が許容範囲から逸脱したと判定する。かご10の速度偏差が許容範囲から逸脱していないと判定部26が判定するときに、変形検出システム23の処理は、ステップS01に進む。一方、かご10の速度偏差が許容範囲から逸脱したと判定部26が判定するときに、変形検出システム23の処理は、ステップS05に進む。 In step S04, the determination unit 26 determines whether the speed deviation of the car 10 exceeds the first threshold value. The determining unit 26 determines that the speed deviation of the car 10 has deviated from the allowable range when the speed deviation of the car 10 exceeds the first threshold value. When the determination unit 26 determines that the speed deviation of the car 10 does not deviate from the allowable range, the process of the deformation detection system 23 proceeds to step S01. On the other hand, when the determination unit 26 determines that the speed deviation of the car 10 has deviated from the allowable range, the process of the deformation detection system 23 proceeds to step S05.
 ステップS05において、検出部27は、昇降路3の上下方向におけるかご10の現在の位置の情報を取得する。検出部27は、例えば巻上機エンコーダ13が計測する巻上機8のシーブの回転角などに基づいてかご10の位置の情報を取得してもよい。その後、変形検出システム23の処理は、ステップS06に進む。 In step S05, the detection unit 27 acquires information on the current position of the car 10 in the vertical direction of the hoistway 3. The detection unit 27 may acquire information on the position of the car 10 based on, for example, the rotation angle of the sheave of the hoist 8 measured by the hoist encoder 13. Thereafter, the process of the deformation detection system 23 proceeds to step S06.
 ステップS06において、検出部27は、許容範囲からの逸脱を判定部26が判定した回数が第2閾値を超えたかを判定する。判定結果がNOの場合に、変形検出システム23の処理は、ステップS01に進む。一方、判定結果がYESの場合に、変形検出システム23の処理は、ステップS07に進む。 In step S06, the detection unit 27 determines whether the number of times the determination unit 26 has determined deviation from the allowable range exceeds the second threshold. If the determination result is NO, the process of the deformation detection system 23 proceeds to step S01. On the other hand, if the determination result is YES, the process of the deformation detection system 23 proceeds to step S07.
 ステップS07において、検出部27は、許容範囲からの逸脱を判定部26が判定したときの各回で取得したかご10の位置が誤差範囲内で一致するかを判定する。判定結果がNOの場合に、変形検出システム23の処理は、ステップS01に進む。一方、判定結果がYESの場合に、変形検出システム23の処理は、ステップS08に進む。 In step S07, the detection unit 27 determines whether the positions of the car 10 obtained each time the determination unit 26 determines deviation from the allowable range match within the error range. If the determination result is NO, the process of the deformation detection system 23 proceeds to step S01. On the other hand, if the determination result is YES, the process of the deformation detection system 23 proceeds to step S08.
 ステップS08において、検出部27は、許容範囲からの逸脱を判定部26が判定したときのかご10または釣合い錘11の位置において、ガイドレール5に変形が生じていることを検出する。ここで、検出部27は、かご10をガイドするガイドレール5または釣合い錘11をガイドするガイドレール5の一方または両方に変形が生じていることを検出する。この例において、検出部27は、かご10をガイドするガイドレール5および釣合い錘11をガイドするガイドレール5のどちらのガイドレール5に変形が生じているかを特定しない。検出部27は、許容範囲からの逸脱が判定されたときのかご10の位置を、かご10をガイドするガイドレール5が変形している場合の変形箇所の位置として検出する。検出部27は、許容範囲からの逸脱が判定されたときの釣合い錘11の位置を、釣合い錘11をガイドするガイドレール5が変形している場合の変形箇所の位置として検出する。その後、変形検出システム23の処理は、ステップS09に進む。 In step S08, the detection unit 27 detects that the guide rail 5 is deformed at the position of the car 10 or the counterweight 11 when the determination unit 26 determines the deviation from the allowable range. Here, the detection unit 27 detects that one or both of the guide rail 5 that guides the car 10 or the guide rail 5 that guides the counterweight 11 is deformed. In this example, the detection unit 27 does not specify which guide rail 5 of the guide rail 5 that guides the car 10 and the guide rail 5 that guides the counterweight 11 is deformed. The detection unit 27 detects the position of the car 10 when the deviation from the allowable range is determined as the position of a deformed part when the guide rail 5 that guides the car 10 is deformed. The detection unit 27 detects the position of the counterweight 11 when the deviation from the allowable range is determined as the position of a deformed part when the guide rail 5 that guides the balance weight 11 is deformed. Thereafter, the process of the deformation detection system 23 proceeds to step S09.
 ステップS09において、報知部28は、検出部27による検出結果の報知を行う。その後、変形検出システム23の処理は、終了する。 In step S09, the notification unit 28 notifies the detection result by the detection unit 27. Thereafter, the processing of the deformation detection system 23 ends.
 なお、図4における処理は、診断運転の間、他の異常の有無などの判定のためのかご10の走行と並行して行われてもよい。このとき、図4における処理は、例えば、診断運転において他の異常が判定されずに通常運転に自動復旧されるときなどに終了する。また、図4における処理は、通常運転において常時行われていてもよい。 Note that the process in FIG. 4 may be performed during the diagnostic operation in parallel with the running of the car 10 for determining the presence or absence of other abnormalities. At this time, the process in FIG. 4 ends, for example, when normal operation is automatically restored without any other abnormality being determined in the diagnostic operation. Moreover, the process in FIG. 4 may be performed all the time during normal operation.
 以上に説明したように、実施の形態1に係る変形検出システム23は、指令部24と、巻上機エンコーダ13と、演算部25と、判定部26と、検出部27と、を備える。巻上機8は、エレベーター2の昇降路3においてかご10および釣合い錘11をガイドレール5に沿って走行させる。指令部24は、かご10または釣合い錘11の速度に対応する速度指令を巻上機8に出力する。巻上機エンコーダ13は、指令部24が出力する速度指令に従って巻上機8が走行させるかご10または釣合い錘11の速度に対応する実速度を計測する。演算部25は、かご10または釣合い錘11について指令部24が出力する速度指令および巻上機エンコーダ13が計測する実速度の速度偏差を算出する。判定部26は、演算部25が算出した速度偏差の大きさが第1閾値を超えるときに、速度偏差が許容範囲から逸脱したと判定する。検出部27は、判定部26の判定結果に基づいて、ガイドレール5の変形を検出する。
 実施の形態1に係る変形検出方法は、指令ステップと、計測ステップと、演算ステップと、判定ステップと、検出ステップと、を備える。指令ステップは、かご10または釣合い錘11に対応する速度指令を巻上機8に出力するステップである。計測ステップは、指令ステップにおいて出力される速度指令に従って巻上機8が走行させるかご10または釣合い錘11の速度に対応する実速度を計測するステップである。演算ステップは、かご10または釣合い錘11について指令ステップにおいて出力される速度指令および計測ステップにおいて計測される実速度の速度偏差を算出するステップである。判定ステップは、演算ステップにおいて算出された速度偏差の大きさが第1閾値を超えるときに、速度偏差が許容範囲から逸脱したと判定するステップである。検出ステップは、判定ステップにおける判定結果に基づいて、ガイドレール5の変形を検出するステップである。
As described above, the deformation detection system 23 according to the first embodiment includes the command section 24, the hoist encoder 13, the calculation section 25, the determination section 26, and the detection section 27. The hoist 8 causes the car 10 and the counterweight 11 to run along the guide rail 5 in the hoistway 3 of the elevator 2. The command unit 24 outputs a speed command corresponding to the speed of the car 10 or the counterweight 11 to the hoisting machine 8. The hoisting machine encoder 13 measures the actual speed corresponding to the speed of the car 10 or the counterweight 11 that the hoisting machine 8 runs according to the speed command output by the command unit 24. The calculation unit 25 calculates a speed deviation between the speed command output by the command unit 24 and the actual speed measured by the hoist encoder 13 for the car 10 or the counterweight 11 . The determination unit 26 determines that the speed deviation has deviated from the allowable range when the magnitude of the speed deviation calculated by the calculation unit 25 exceeds the first threshold value. The detection unit 27 detects deformation of the guide rail 5 based on the determination result of the determination unit 26.
The deformation detection method according to the first embodiment includes a command step, a measurement step, a calculation step, a determination step, and a detection step. The command step is a step of outputting a speed command corresponding to the car 10 or the counterweight 11 to the hoisting machine 8. The measurement step is a step of measuring the actual speed corresponding to the speed of the car 10 or the counterweight 11 that is driven by the hoisting machine 8 in accordance with the speed command output in the command step. The calculation step is a step of calculating a speed deviation between the speed command output in the command step and the actual speed measured in the measurement step for the car 10 or the counterweight 11. The determination step is a step of determining that the speed deviation has deviated from the allowable range when the magnitude of the speed deviation calculated in the calculation step exceeds the first threshold value. The detection step is a step of detecting deformation of the guide rail 5 based on the determination result in the determination step.
 このような構成により、ガイドレール5の変形がかご10または釣合い錘11が走行可能な程度に軽微なものである場合などにおいても、速度偏差に基づいてガイドレール5の変形が検出される。これにより、ガイドレール5の変形がないことを確認した上で自動復旧できるようになるので、復旧後のエレベーター2がより良好な状態で運転されるようになる。また、自動復旧後に保守員が人手による点検を行う場合においても、保守員による点検項目が削減できるようになる。このため、保守員の作業負荷が低減、復旧に要する時間の短縮につながる。 With this configuration, even when the deformation of the guide rail 5 is slight enough to allow the car 10 or the counterweight 11 to travel, the deformation of the guide rail 5 is detected based on the speed deviation. As a result, the elevator 2 can be automatically restored after confirming that there is no deformation of the guide rail 5, so that the elevator 2 can be operated in a better condition after restoration. Furthermore, even when maintenance personnel perform manual inspections after automatic restoration, the number of items to be inspected by maintenance personnel can be reduced. This reduces the workload of maintenance personnel and shortens the time required for recovery.
 また、検出部27は、速度偏差が許容範囲から逸脱したと判定部26が判定した回数が第2閾値を超え、かつ、速度偏差が許容範囲から逸脱したと判定部26が判定したときの各回のかご10または釣合い錘11の位置が誤差範囲内で一致するときに、ガイドレール5の変形を検出する。 Further, the detection unit 27 detects each time when the number of times the determination unit 26 determines that the speed deviation has deviated from the allowable range exceeds the second threshold, and the determination unit 26 determines that the speed deviation has deviated from the allowable range. Deformation of the guide rail 5 is detected when the positions of the car 10 or the counterweight 11 match within the error range.
 このような構成により、速度偏差の許容範囲からの逸脱が再現性をもって確認された上でガイドレール5の変形が検出されるので、変形検出の精度がより高められる。 With such a configuration, the deformation of the guide rail 5 is detected after the deviation of the speed deviation from the allowable range is confirmed with reproducibility, so that the accuracy of deformation detection is further improved.
 また、演算部25は、かご10または釣合い錘11が走行している間、かご10または釣合い錘11について指令部24が出力する速度指令および巻上機エンコーダ13が計測する実速度の速度偏差を逐次算出する。判定部26は、かご10または釣合い錘11が走行している間、速度偏差の大きさが第1閾値を超えるか否かに基づいて速度偏差が許容範囲から逸脱しているかを逐次判定する。このとき、検出部27は、速度偏差が許容範囲から逸脱していると判定部26が継続して判定している間にかご10または釣合い錘11が走行した走行区間の長さが第3閾値を超えるときに、ガイドレール5の変形を検出してもよい。第3閾値は、かご10または釣合い錘11が走行する区間の長さについて予め設定された閾値である。 Furthermore, while the car 10 or the counterweight 11 is running, the calculation unit 25 calculates the speed deviation between the speed command output by the command unit 24 and the actual speed measured by the hoisting machine encoder 13 for the car 10 or the counterweight 11. Calculate sequentially. While the car 10 or the counterweight 11 is running, the determination unit 26 sequentially determines whether the speed deviation deviates from the allowable range based on whether the magnitude of the speed deviation exceeds a first threshold value. At this time, the detection unit 27 determines that the length of the travel section in which the car 10 or the counterweight 11 traveled while the determination unit 26 continuously determined that the speed deviation deviated from the allowable range is a third threshold value. Deformation of the guide rail 5 may be detected when the distance exceeds . The third threshold is a threshold set in advance for the length of the section in which the car 10 or the counterweight 11 travels.
 このような構成により、ある程度の長さの区間にわたってガイドレール5が緩やかに変形している場合であっても、速度偏差に基づいてガイドレール5の変形が検出されるようになる。 With such a configuration, even if the guide rail 5 is gently deformed over a certain length section, the deformation of the guide rail 5 can be detected based on the speed deviation.
 また、演算部25は、速度偏差の時間変化量の大きさを算出してもよい。速度偏差の時間変化量の大きさは、例えば速度偏差の時間微分などとして算出される。このとき、判定部26は、速度偏差の時間変化量の大きさが第4閾値を超えるときに、速度偏差の大きさに関わらず速度偏差が許容範囲から逸脱したと判定しない。第4閾値は、かご10または釣合い錘11についての速度偏差の時間変化量の大きさについて予め設定された閾値である。判定部26は、例えば、速度偏差の時間変化量の大きさが第4閾値を超えてから予め設定された時間が経過するまで、速度偏差の大きさに関わらず速度偏差が許容範囲から逸脱したと判定しない状態を保ってもよい。 Additionally, the calculation unit 25 may calculate the magnitude of the amount of change over time in the speed deviation. The magnitude of the time change amount of the speed deviation is calculated as, for example, the time derivative of the speed deviation. At this time, the determination unit 26 does not determine that the speed deviation has deviated from the allowable range, regardless of the size of the speed deviation, when the magnitude of the temporal change amount of the speed deviation exceeds the fourth threshold value. The fourth threshold value is a threshold value set in advance for the magnitude of the amount of change over time in the speed deviation of the car 10 or the counterweight 11. For example, the determination unit 26 determines whether the speed deviation deviates from the allowable range regardless of the size of the speed deviation until a preset time has elapsed after the magnitude of the time change amount of the speed deviation exceeds the fourth threshold. It is also possible to maintain a state in which no determination is made.
 このような構成により、ガイドレール5の変形によらないかご10の振動などによって速度偏差が急激に変化する場合であっても、このときの速度偏差の変化によるガイドレール5の変形の誤検出の発生が抑えられるようになる。例えばエレベーターシステム1が複数のかご10を含む場合に、隣接するかご10がすれ違う際に生じる気流などによって、ガイドレール5の変形によらずにかご10が振動することがある。 With this configuration, even if the speed deviation changes rapidly due to vibrations of the car 10 that are not caused by the deformation of the guide rail 5, erroneous detection of deformation of the guide rail 5 due to the change in speed deviation at this time can be avoided. Occurrence can be suppressed. For example, when the elevator system 1 includes a plurality of cars 10, the cars 10 may vibrate due to air currents generated when adjacent cars 10 pass each other, regardless of the deformation of the guide rails 5.
 また、制御盤12は、判定部26による判定結果に基づいてガイドレール5の変形をより確実に検出しうるように、かご10または釣合い錘11を走行させてもよい。例えば、制御盤12は、速度偏差が許容範囲から逸脱したと判定部26が判定したときに、そのときのかご10または釣合い錘11の位置を、同じ速度かつ同じ方向で再度通過させるようにかご10または釣合い錘11を走行させてもよい。あるいは、制御盤12は、速度偏差が許容範囲から逸脱したと判定部26が判定したときに、そのときのかご10または釣合い錘11の位置を、異なる速度または異なる方向で再度通過させるようにかご10または釣合い錘11を走行させてもよい。 Furthermore, the control panel 12 may cause the car 10 or the counterweight 11 to travel so that the deformation of the guide rail 5 can be detected more reliably based on the determination result by the determination unit 26. For example, when the determination unit 26 determines that the speed deviation has deviated from the allowable range, the control panel 12 controls the car so that the car 10 or the counterweight 11 passes through the position at that time again at the same speed and in the same direction. 10 or a counterweight 11 may be run. Alternatively, when the determination unit 26 determines that the speed deviation has deviated from the allowable range, the control panel 12 may cause the car to pass through the position of the car 10 or the counterweight 11 again at a different speed or in a different direction. 10 or a counterweight 11 may be run.
 続いて、図5を用いて、変形検出システム23のハードウェア構成の例について説明する。
 図5は、実施の形態1に係る変形検出システム23の主要部のハードウェア構成図である。
Next, an example of the hardware configuration of the deformation detection system 23 will be described using FIG. 5.
FIG. 5 is a hardware configuration diagram of the main parts of the deformation detection system 23 according to the first embodiment.
 変形検出システム23における処理の各機能は、処理回路により実現し得る。処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。処理回路は、プロセッサ100aおよびメモリ100bと共に、あるいはそれらの代用として、少なくとも1つの専用ハードウェア200を備えてもよい。 Each function of processing in the deformation detection system 23 can be realized by a processing circuit. The processing circuit includes at least one processor 100a and at least one memory 100b. The processing circuitry may include at least one dedicated hardware 200 along with or in place of the processor 100a and memory 100b.
 処理回路がプロセッサ100aとメモリ100bとを備える場合、変形検出システム23の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。そのプログラムはメモリ100bに格納される。プロセッサ100aは、メモリ100bに記憶されたプログラムを読み出して実行することにより、変形検出システム23の各機能を実現する。 When the processing circuit includes a processor 100a and a memory 100b, each function of the deformation detection system 23 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in memory 100b. The processor 100a implements each function of the deformation detection system 23 by reading and executing programs stored in the memory 100b.
 プロセッサ100aは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ100bは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROMなどの、不揮発性または揮発性の半導体メモリなどにより構成される。 The processor 100a is also referred to as a CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, microcomputer, or DSP. The memory 100b is configured of a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, and EEPROM.
 処理回路が専用ハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。 When the processing circuit comprises dedicated hardware 200, the processing circuit is implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 変形検出システム23における処理の各機能は、それぞれ処理回路で実現することができる。あるいは、変形検出システム23の各機能は、まとめて処理回路で実現することもできる。変形検出システム23の各機能について、一部を専用ハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、専用ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで変形検出システム23の各機能を実現する。 Each function of processing in the deformation detection system 23 can be realized by a processing circuit. Alternatively, each function of the deformation detection system 23 can be realized collectively by a processing circuit. Regarding each function of the deformation detection system 23, some parts may be realized by the dedicated hardware 200, and other parts may be realized by software or firmware. In this way, the processing circuit implements each function of the deformation detection system 23 using dedicated hardware 200, software, firmware, or a combination thereof.
 本開示に係る変形検出システムおよび変形検出方法は、エレベーターのガイドレールに適用できる。 The deformation detection system and deformation detection method according to the present disclosure can be applied to guide rails of elevators.
 1 エレベーターシステム、 2 エレベーター、 3 昇降路、 4 ピット、 5 ガイドレール、 6 乗場、 7 乗場ドア、 8 巻上機、 9 主ロープ、 10 かご、 11 釣合い錘、 12 制御盤、 13 巻上機エンコーダ、 14 かごドア、 15 調速機、 16 調速機ロープ、 17 調速機ロープ張り車、 18 調速機エンコーダ、 19 地震感知器、 20 遠隔監視装置、 21 通信網、 22 中央管理装置、 23 変形検出システム、 24 指令部、 25 演算部、 26 判定部、 27 検出部、 28 報知部、 100a プロセッサ、 100b メモリ、 200 専用ハードウェア 1. Elevator system, 2. Elevator, 3. Hoistway, 4. Pit, 5. Guide rail, 6. Landing area, 7. Landing door, 8. Hoisting machine, 9. Main rope, 10. Car, 11. Counterweight, 12. Control panel. , 13 Hoist encoder , 14 Car door, 15 Speed governor, 16 Speed governor rope, 17 Speed governor rope tensioner, 18 Speed governor encoder, 19 Earthquake detector, 20 Remote monitoring device, 21 Communication network, 22 Central management device, 23 Deformation detection system, 24 command unit, 25 calculation unit, 26 determination unit, 27 detection unit, 28 notification unit, 100a processor, 100b memory, 200 dedicated hardware

Claims (5)

  1.  エレベーターの昇降路において昇降体をガイドレールに沿って走行させる巻上機に、前記昇降体の速度に対応する速度指令を出力する指令部と、
     前記指令部が出力する速度指令に従って前記巻上機が走行させる前記昇降体の速度に対応する実速度を計測する計測部と、
     前記昇降体について前記指令部が出力する速度指令および前記計測部が計測する実速度の速度偏差を算出する演算部と、
     前記演算部が算出した前記昇降体の速度偏差の大きさが予め設定された第1閾値を超えるときに、前記昇降体の速度偏差が許容範囲から逸脱したと判定する判定部と、
     前記判定部の判定結果に基づいて、前記ガイドレールの変形を検出する検出部と、
     を備える、エレベーターのガイドレールの変形検出システム。
    a command unit that outputs a speed command corresponding to the speed of the elevating body to a hoisting machine that causes the elevating body to travel along a guide rail in an elevator hoistway;
    a measurement unit that measures an actual speed corresponding to the speed of the elevating body that is caused to travel by the hoisting machine according to a speed command output by the command unit;
    a calculation unit that calculates a speed deviation between the speed command output by the command unit and the actual speed measured by the measurement unit for the elevating body;
    a determination unit that determines that the speed deviation of the elevating body has deviated from an allowable range when the magnitude of the speed deviation of the elevating body calculated by the calculation unit exceeds a first threshold value set in advance;
    a detection unit that detects deformation of the guide rail based on a determination result of the determination unit;
    Elevator guide rail deformation detection system.
  2.  前記検出部は、前記昇降体の速度偏差が許容範囲から逸脱したと前記判定部が判定した回数が予め設定された第2閾値を超え、かつ、前記昇降体の速度偏差が許容範囲から逸脱したと前記判定部が判定したときの各回の前記昇降体の位置が予め設定された誤差範囲内で一致するときに、前記ガイドレールの変形を検出する、
     請求項1に記載のエレベーターのガイドレールの変形検出システム。
    The detection unit is configured such that the number of times the determination unit determines that the speed deviation of the elevating body has deviated from a permissible range exceeds a preset second threshold, and the speed deviation of the elevating body has deviated from the permissible range. detecting deformation of the guide rail when the position of the elevating body each time as determined by the determining unit matches within a preset error range;
    The elevator guide rail deformation detection system according to claim 1.
  3.  前記演算部は、前記昇降体が走行している間、前記指令部が出力する速度指令および前記計測部が計測する実速度の速度偏差を算出し、
     前記判定部は、前記昇降体が走行している間、前記昇降体の速度偏差の大きさが前記第1閾値を超えるか否かに基づいて前記昇降体の速度偏差が許容範囲から逸脱しているかを判定し、
     前記検出部は、前記昇降体の速度偏差が許容範囲から逸脱していると前記判定部が継続して判定している間に前記昇降体が走行した走行区間の長さが予め設定された第3閾値を超えるときに、前記ガイドレールの変形を検出する、
     請求項1に記載のエレベーターのガイドレールの変形検出システム。
    The calculation unit calculates a speed deviation between the speed command output by the command unit and the actual speed measured by the measurement unit while the elevating body is traveling;
    The determination unit determines whether the speed deviation of the elevating object deviates from an allowable range based on whether the magnitude of the speed deviation of the elevating object exceeds the first threshold while the elevating object is traveling. Determine whether there is
    The detecting section is configured to detect a preset length of a running section in which the elevating object traveled while the determining section continuously determines that the speed deviation of the elevating object deviates from an allowable range. 3 detecting deformation of the guide rail when a threshold value is exceeded;
    The elevator guide rail deformation detection system according to claim 1.
  4.  前記判定部は、前記演算部が算出した前記昇降体の速度偏差の時間変化量の大きさが予め設定された第4閾値を超えるときに、前記昇降体の速度偏差の大きさに関わらず前記昇降体の速度偏差が許容範囲から逸脱したと判定しない、
     請求項1から請求項3のいずれか一項に記載のエレベーターのガイドレールの変形検出システム。
    The determination unit is configured to determine whether or not the determination unit determines whether or not the elevating body changes in speed regardless of the magnitude of the speed deviation of the elevating body when the magnitude of the time change amount of the speed deviation of the elevating body calculated by the calculation unit exceeds a preset fourth threshold value. Does not determine that the speed deviation of the elevating object deviates from the permissible range.
    The deformation detection system for an elevator guide rail according to any one of claims 1 to 3.
  5.  エレベーターの昇降路において昇降体をガイドレールに沿って走行させる巻上機に、前記昇降体の速度に対応する速度指令を出力する指令ステップと、
     前記指令ステップにおいて出力される速度指令に従って前記巻上機が走行させる前記昇降体の速度に対応する実速度を計測する計測ステップと、
     前記昇降体について前記指令ステップにおいて出力される速度指令および前記計測ステップにおいて計測される実速度の速度偏差を算出する演算ステップと、
     前記演算ステップにおいて算出された前記昇降体の速度偏差の大きさが予め設定された第1閾値を超えるときに、前記昇降体の速度偏差が許容範囲から逸脱したと判定する判定ステップと、
     前記判定ステップにおける判定結果に基づいて、前記ガイドレールの変形を検出する検出ステップと、
     を備える、エレベーターのガイドレールの変形検出方法。
    a command step of outputting a speed command corresponding to the speed of the elevating body to a hoisting machine that causes the elevating body to travel along a guide rail in the hoistway of the elevator;
    a measuring step of measuring an actual speed corresponding to the speed of the elevating body that is caused to travel by the hoisting machine according to the speed command output in the command step;
    a calculation step of calculating a speed deviation between the speed command output in the command step and the actual speed measured in the measurement step for the elevating body;
    a determination step of determining that the speed deviation of the elevating object has deviated from an allowable range when the magnitude of the speed deviation of the elevating object calculated in the calculation step exceeds a first preset threshold;
    a detection step of detecting deformation of the guide rail based on the determination result in the determination step;
    A method for detecting deformation of an elevator guide rail, comprising:
PCT/JP2022/031901 2022-08-24 2022-08-24 Deformation detection system and deformation detection method for elevator guide rail WO2024042642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031901 WO2024042642A1 (en) 2022-08-24 2022-08-24 Deformation detection system and deformation detection method for elevator guide rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031901 WO2024042642A1 (en) 2022-08-24 2022-08-24 Deformation detection system and deformation detection method for elevator guide rail

Publications (1)

Publication Number Publication Date
WO2024042642A1 true WO2024042642A1 (en) 2024-02-29

Family

ID=90012835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031901 WO2024042642A1 (en) 2022-08-24 2022-08-24 Deformation detection system and deformation detection method for elevator guide rail

Country Status (1)

Country Link
WO (1) WO2024042642A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202391A (en) * 2009-03-05 2010-09-16 Toshiba Elevator Co Ltd Control device of elevator
JP2016222420A (en) * 2015-06-01 2016-12-28 株式会社明電舎 Diagnostic system for elevator
JP2017165526A (en) * 2016-03-15 2017-09-21 株式会社日立ビルシステム Riding comfort diagnosis device of elevator and riding comfort diagnosis method of elevator
WO2019030888A1 (en) * 2017-08-10 2019-02-14 三菱電機株式会社 Break detection device
WO2020026439A1 (en) * 2018-08-03 2020-02-06 三菱電機株式会社 Soundness diagnostic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202391A (en) * 2009-03-05 2010-09-16 Toshiba Elevator Co Ltd Control device of elevator
JP2016222420A (en) * 2015-06-01 2016-12-28 株式会社明電舎 Diagnostic system for elevator
JP2017165526A (en) * 2016-03-15 2017-09-21 株式会社日立ビルシステム Riding comfort diagnosis device of elevator and riding comfort diagnosis method of elevator
WO2019030888A1 (en) * 2017-08-10 2019-02-14 三菱電機株式会社 Break detection device
WO2020026439A1 (en) * 2018-08-03 2020-02-06 三菱電機株式会社 Soundness diagnostic device

Similar Documents

Publication Publication Date Title
JP6987255B2 (en) Elevator diagnostic system
JP4994633B2 (en) Elevator automatic inspection device
JP6997680B2 (en) Elevator abnormality monitoring system and elevator abnormality monitoring method
JP6304443B2 (en) Elevator diagnostic equipment
KR102511001B1 (en) Elevator system and inspection terminal
JP5535441B2 (en) Elevator control operation device
WO2021144932A1 (en) Elevator determination device
WO2024042642A1 (en) Deformation detection system and deformation detection method for elevator guide rail
CN108349693B (en) Elevator and operation method thereof
JP4844410B2 (en) Hook detection device for elevator ropes
KR20190007471A (en) Control device and control method of elevator
WO2020115883A1 (en) Monitor device to prevent elevator passenger entrapment
JP7047972B2 (en) Elevator slip detection system
KR102562729B1 (en) elevator device
JP4952366B2 (en) Clearance management measuring device and method for elevator balancing weight and governor rope tensioned vehicle
JP2002003118A (en) Elevator device
JP6741366B2 (en) Soundness diagnostic device
CN112399958B (en) Health diagnostic device
JP2020121884A (en) Monitoring method of hoisting rope and elevator system
EP3381853B1 (en) Elevator overtravel testing systems and methods
JP7410777B2 (en) Elevator parking facility
WO2022176114A1 (en) Braking distance measurement system, elevator, and braking distance measurement method
JP3313021B2 (en) Elevator control device
JP7261190B2 (en) Elevator diagnostic device, diagnostic method for elevator load detector, and elevator system
JP6648864B1 (en) Elevator equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956470

Country of ref document: EP

Kind code of ref document: A1