WO2022176114A1 - Braking distance measurement system, elevator, and braking distance measurement method - Google Patents

Braking distance measurement system, elevator, and braking distance measurement method Download PDF

Info

Publication number
WO2022176114A1
WO2022176114A1 PCT/JP2021/006155 JP2021006155W WO2022176114A1 WO 2022176114 A1 WO2022176114 A1 WO 2022176114A1 JP 2021006155 W JP2021006155 W JP 2021006155W WO 2022176114 A1 WO2022176114 A1 WO 2022176114A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
rotation
measurement
speed
boundary
Prior art date
Application number
PCT/JP2021/006155
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 大野
智史 山▲崎▼
陽太 大森
一輝 宮野
和広 國武
平 長谷川
Original Assignee
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to CN202180092492.XA priority Critical patent/CN116783131B/en
Priority to PCT/JP2021/006155 priority patent/WO2022176114A1/en
Priority to JP2023500228A priority patent/JP7264323B2/en
Publication of WO2022176114A1 publication Critical patent/WO2022176114A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present disclosure relates to a braking distance measurement system, an elevator, and a braking distance measurement method.
  • Patent Document 1 discloses an example of an elevator.
  • An elevator comprises a car, a main rope, a drive motor and a braking device.
  • the main rope supports the load of the car.
  • the main rope is wrapped around the drive sheave.
  • a drive motor drives the car through the main ropes by rotation of the drive sheaves.
  • the braking device brakes the running of the car by braking the rotation of the drive sheave.
  • the braking distance of the car is measured when the brake system is operated while the car is running as a brake system inspection.
  • the present disclosure relates to solving such problems.
  • the present disclosure provides a measurement system, an elevator, and a measurement method that can measure braking distances more accurately.
  • a braking distance measurement system includes a car, a main rope that supports the load of the car, a drive sheave around which the main rope is wound, and a rotation of the drive sheave to cause the car to travel through the main rope.
  • a drive motor a braking device for braking the car by braking the rotation of the drive sheave, a detector for detecting whether the position of the car is in a preset region, and a detector for detecting whether the car is in a preset region, and the car travels in the region.
  • an elevator having a protection device that actuates the braking device to stop the car when the detector detects that the boundary of the lower than the first speed, which is preset as a speed at which slippage of the main rope with respect to the drive sheave does not occur after the brake device is actuated by the protection device to stop the car by passing through a travel control unit for causing the car to travel at a second speed so as to return from the stop position where the car stops to the boundary, and when the travel control unit causes the car to travel at the second speed, the car is a rotation measuring unit that measures the amount of rotation of the drive sheave from when the car starts running at the stop position until the car reaches the boundary; and when the running control unit causes the car to run at the second speed.
  • a braking distance calculation unit that calculates a braking distance by the protective device based on the amount of rotation of the drive sheave measured by the rotation measurement unit.
  • An elevator includes a car, a main rope that supports the load of the car, a drive sheave around which the main rope is wound, and a drive that causes the car to travel through the main rope by rotation of the drive sheave.
  • a motor a braking device for braking the traveling of the car by braking the rotation of the drive sheave, a detector for detecting whether the position of the car is in a preset region, and a a protective device for actuating the braking device to stop the car when the detector detects that the boundary of an area has been passed; and allowing the car to pass the boundary at a first preset speed.
  • a travel control unit for causing the car to travel so as to return from a stop position where the car stops to the boundary, and a travel control unit for causing the car to travel at the second speed, the car being at the stop position.
  • a rotation measuring unit that measures the amount of rotation of the drive sheave from when the car starts running until the car reaches the boundary; and when the running control unit causes the car to run at the second speed, the rotation measuring unit.
  • a braking distance calculator that calculates the braking distance by the protection device based on the amount of rotation of the drive sheave measured by the.
  • a method for measuring a braking distance includes a car, a main rope supporting the load of the car, a drive sheave around which the main rope is wound, and the car traveling through the main rope by rotation of the drive sheave.
  • a drive motor a braking device for braking the car by braking the rotation of the drive sheave, a detector for detecting whether the position of the car is in a preset region, and a detector for detecting whether the car is in a preset region, and the car travels in the region.
  • a measuring method for measuring the braking distance by the protective device in an elevator having a protective device that operates the braking device to stop the car when the detector detects that the elevator has passed through the boundary of Passing the car through a boundary at a first preset speed causes a first travel step in which the protective device activates the braking device to stop the car and a slippage of the main rope relative to the drive sheave.
  • the braking distance can be measured more accurately.
  • FIG. 1 is a configuration diagram of an elevator according to Embodiment 1;
  • FIG. 4 is a sequence diagram showing an example of the operation of the elevator according to Embodiment 1;
  • FIG. 4 is a flow chart showing an example of the operation of the elevator according to Embodiment 1;
  • FIG. 5 is a diagram showing an example of braking distance measurement in the elevator according to Embodiment 1;
  • 2 is a hardware configuration diagram of main parts of the elevator according to Embodiment 1.
  • FIG. 1 is a configuration diagram of an elevator 1 according to Embodiment 1. As shown in FIG. 1
  • the elevator 1 is applied, for example, to a building with multiple floors.
  • a hoistway 2 for an elevator 1 is provided.
  • the hoistway 2 is a vertically elongated space that spans a plurality of floors.
  • a plurality of floor boards 3 are provided in the hoistway 2 .
  • Each floor board 3 corresponds to one of the floors.
  • Each floor board 3 is arranged on the corresponding floor.
  • a landing 4 adjacent to the hoistway 2 is provided on each floor.
  • a landing door 5 is provided at the landing 4 of each floor.
  • a landing door 5 is a door of the elevator 1 that partitions the landing 4 and the hoistway 2 .
  • the elevator 1 includes a hoisting machine 6 , a main rope 7 , a car 8 , a counterweight 9 , a braking device 10 and a control panel 11 .
  • the hoist 6 is arranged, for example, above or below the hoistway 2 .
  • the hoist 6 includes a drive motor 12 , a drive sheave 13 and an encoder 14 .
  • the drive motor 12 is a device that generates drive force.
  • the drive sheave 13 is a device that is rotated by the driving force generated by the drive motor 12 .
  • the encoder 14 is a device that outputs pulse signals according to the rotation of the drive sheave 13 .
  • the encoder 14 is, for example, an incremental encoder.
  • the main rope 7 is wound around the drive sheave 13.
  • Main rope 7 supports the load of car 8 on one side of drive sheave 13 .
  • Main rope 7 supports the load of counterweight 9 on the other side of drive sheave 13 .
  • the main rope 7 is moved by the rotation of the drive sheave 13 so as to be wound up on the drive sheave 13 or to be paid out from the drive sheave 13 .
  • the car 8 is a device that transports users of the elevator 1 between multiple floors by running up and down on the hoistway 2 .
  • the car 8 travels vertically in the hoistway 2 in conjunction with the movement of the main rope 7 caused by the rotation of the drive sheave 13 .
  • the car 8 has a car door 15 .
  • a car door 15 is a door of the elevator 1 that separates the inside and outside of the car 8 .
  • the car door 15 is a device that opens and closes the landing door 5 of the floor in conjunction so that the user can get on and off when the car 8 stops on one of the floors.
  • a detector is provided in the car 8 .
  • the detector is a part that moves along the hoistway 2 together with the car 8 and detects the floor board 3 provided on each floor.
  • Each floor slab 3 is arranged such that a detector detects that floor slab 3 while the car 8 is in the door zone of the corresponding floor.
  • the door zone of each floor is a preset area in which the car door 15 and the landing door 5 can be opened and closed on the floor. The detector thereby detects whether or not the car 8 is in the door zone of each floor. It should be noted that in this example the detector does not distinguish between the floorboards 3 from each other.
  • the balance weight 9 is a device that balances the load applied to both sides of the drive sheave 13 with the car 8 .
  • the counterweight 9 travels vertically in the hoistway 2 in the opposite direction to the car 8 in conjunction with the movement of the main rope 7 caused by the rotation of the drive sheave 13 .
  • the brake device 10 is a device that brakes the rotation of the drive sheave 13.
  • the braking device 10 includes a braking body 17 , brake shoes 18 , springs 19 and coils 20 .
  • the braking body 17 is a member having a braking surface such as a brake disc or a brake drum.
  • the braking body 17 is provided coaxially with the drive sheave 13 so as to be rotatable in conjunction with the drive sheave 13 .
  • the brake shoe 18 is a portion that generates a frictional force that brakes the drive sheave 13 by being pressed against the braking surface of the braking body 17 .
  • the spring 19 is a portion that presses the brake shoe 18 against the braking surface of the braking body 17 by elastic force when braking the rotation of the drive sheave 13 .
  • the coil 20 is a portion that separates the brake shoe 18 from the braking surface of the braking body 17 against the elastic force of the spring 19 by the magnetic force generated by the excitation when the drive sheave 13 is released from rotation.
  • the braking device 10 does not block the rotation of the drive sheave 13 while releasing the drive sheave 13 .
  • the brake device 10 moves the brake shoe 18 , which has been separated from the braking surface of the braking body 17 by the magnetic force of the coil 20 , to the braking body 17 by the elastic force of the spring 19 . on the braking surface of the
  • the control panel 11 is a device that controls the operation of the elevator 1.
  • the control panel 11 is arranged, for example, above or below the hoistway 2 .
  • the control panel 11 may be arranged in the machine room.
  • the control panel 11 controls the operation of the elevator 1 based on operation modes such as normal operation and diagnostic operation. Normal operation is a normal operation mode in which users and the like are transported between multiple floors.
  • Diagnosis operation is an operation mode for diagnosing the state of equipment and devices of the elevator 1 . Diagnosis operation includes opening/closing diagnosis for diagnosing whether there is an abnormality in the opening/closing of the car door 15 and the hall door 5 on each floor.
  • the control panel 11 is connected to the hoisting machine 6, the car 8, the detector, the braking device 10, etc., so as to output control signals and obtain information on the state of the elevator 1.
  • the control panel 11 includes a management section 21 , a rotation measurement section 22 , a travel control section 23 and a maintenance processing section 24 .
  • the management unit 21 is a part that manages the operation of the elevator 1 .
  • the management unit 21 manages, for example, a call to run the car 8 on any floor.
  • the rotation measuring section 22 is a section that measures the amount of rotation of the drive sheave 13 .
  • the rotation measurement unit 22 measures the amount of rotation of the drive sheave 13 by counting pulse signals output from the encoder 14 according to the rotation of the drive sheave 13, for example.
  • the running control unit 23 is a part that controls running such as starting and stopping of the car 8, for example.
  • the travel control unit 23 may control the position of the car 8 based on the rotation of the drive sheave 13 measured by the rotation measurement unit 22 .
  • the maintenance processing unit 24 is a part of the control panel 11 that performs processing related to maintenance and inspection of the elevator 1 .
  • a remote monitoring device 25 is applied.
  • the remote monitoring device 25 is a device used for remote monitoring of the state of the elevator 1 .
  • a remote monitoring device 25 is connected to the control panel 11 or the like so as to collect information on the state of the elevator 1 .
  • Information collected by the remote monitoring device 25 is transmitted to the central management device 27 through a communication network 26 such as the Internet or a telephone line.
  • the central management device 27 is a device that collects and manages information on the state of the elevator 1 .
  • the central management device 27 is provided at a base such as an information center, for example.
  • the protective device 28 is applied.
  • the protective device 28 is, for example, an unintended car movement protection (UCMP).
  • the protection device 28 is a device that operates the brake device 10 to stop the car 8 from traveling when the car 8 travels with the car door 15 open and goes out of the door zone.
  • the protection device 28 causes the car 8 to stop after traveling the braking distance.
  • the braking distance is the sum of the free running distance and the deceleration running distance.
  • the idling distance is the electrical and mechanical distance from when the braking device operates to input a control signal to the braking device 10 until the brake shoe 18 is pressed against the braking surface of the braking body 17 to generate a frictional force. It is the distance traveled by the car 8 during the time lag.
  • the deceleration travel distance is the distance traveled while decelerating from when the brake device 10 generates a frictional force for braking the drive sheave 13 until the car 8 stops.
  • the deceleration travel distance includes the slip travel distance.
  • the sliding travel distance is the distance that the car 8 moves due to the main rope 7 slipping on the drive sheave 13 in the deceleration travel distance.
  • the measurement system 29 is applied.
  • the measurement system 29 is a system that measures the braking distance by the protection device 28 .
  • the measurement system 29 includes part or all of the control panel 11 such as the management unit 21 , the rotation measurement unit 22 , the travel control unit 23 and the maintenance processing unit 24 .
  • the measurement system 29 includes a braking distance calculator 30 .
  • the braking distance calculator 30 is mounted as part of the functions of the control panel 11, for example.
  • the braking distance calculation unit 30 is a part that calculates the braking distance based on the measurement result of the rotation measurement unit 22 when the travel control unit 23 causes the car 8 to perform measurement travel.
  • the measurement run is a run pattern that is performed when measuring the braking distance. In this example, the measurement run is performed multiple times.
  • the braking distance calculation unit 30 stores each measurement result of the rotation measurement unit 22 in each measurement run.
  • the braking distance calculator 30 has a storage area that can store the measurement results for the upper limit number of times.
  • the braking distance calculator 30 calculates the braking distance based on the stored measurement results of a plurality of times.
  • the measurement system 29 operates based on a measurement program.
  • the measurement program is installed in the hardware of the measurement system 29 such as the control panel 11, for example.
  • the measurement program is installed in the hardware through a portable storage medium storing the measurement program, for example.
  • the measurement program may be installed in the hardware through the communication network 26, for example.
  • FIG. 2 is a sequence diagram showing an operation example of the elevator 1 according to the first embodiment.
  • the braking distance is measured during the diagnostic operation performed by request from the outside of the elevator 1.
  • the central management device 27 inputs a signal requesting the start of diagnostic operation to the maintenance processing section 24 of the control panel 11 through the communication network 26 and the remote monitoring device 25 .
  • the maintenance processing unit 24 determines whether the conditions for starting diagnostic operation are satisfied.
  • the condition for starting the diagnostic operation includes, for example, a condition that no user is in the car 8 . Whether the condition is established is determined based on, for example, the measurement result of a weighing device provided in the car 8 .
  • the maintenance processing unit 24 starts the diagnostic operation when determining that the conditions for starting the diagnostic operation are satisfied.
  • the maintenance processing unit 24 outputs a restriction request to the management unit 21.
  • a restriction request is, for example, a request to restrict registration of a call.
  • the maintenance processing unit 24 outputs a travel request to the measured floor to the management unit 21 .
  • the floor to be measured is one of the floors set in advance among the plurality of floors.
  • the floor to be measured is, for example, the top floor.
  • the management unit 21 Based on the travel request from the maintenance processing unit 24, the management unit 21 outputs to the travel control unit 23 a control signal for causing the car 8 to travel to the measurement floor.
  • the traveling control unit 23 causes the car 8 to travel to the measured floor based on the control signal input from the management unit 21, and stops the car 8 within the door zone of the measured floor.
  • the maintenance processing unit 24 may perform opening/closing diagnosis on the measured floor.
  • opening/closing diagnosis opening/closing of the car door 15 of the car 8 stopped on the measurement floor and the landing door 5 provided on the measurement floor is performed.
  • the maintenance processing unit 24 outputs a measurement travel request to the travel control unit 23 through the management unit 21 .
  • the measurement travel request is a request to cause the car 8 to perform the measurement travel.
  • the measurement travel request includes the number of times the measurement travel is performed.
  • the braking distance calculation unit 30 clears the memory of the previously measured rotation amount stored in the storage area. In this example, the braking distance calculator 30 resets the value of the storage area that stores the amount of rotation to zero.
  • the travel control unit 23 causes the car 8 to perform multiple measurement travels based on the measurement travel request input from the management unit 21 .
  • the rotation measuring unit 22 measures the amount of rotation of the drive sheave 13 in each measurement run.
  • the braking distance calculation unit 30 stores the amount of rotation measured by the rotation measurement unit 22 in a storage area. After the multiple times of measurement travel, the braking distance calculator 30 calculates the braking distance based on the amount of rotation in the multiple times of measurement travel stored in the storage area.
  • the braking distance calculation unit 30 outputs the calculated braking distance to the maintenance processing unit 24 through the management unit 21, for example, as a measurement result.
  • the maintenance processing unit 24 diagnoses the state of the elevator 1 including the state of the protective device 28 based on the input measurement results.
  • the maintenance processing unit 24 notifies the central management device 27 of the diagnostic results through the remote monitoring device 25 and the communication network 26 .
  • the maintenance processing unit 24 outputs a restriction release request to the management unit 21 when no abnormality is detected in diagnostic operation.
  • a restriction release request is a request to release the restriction of functions such as call registration based on the restriction request.
  • the remote management device inputs a signal requesting the end of diagnostic operation to the management unit 21 through the maintenance processing unit 24 .
  • the management unit 21 outputs a control signal requesting a response to the call to the floor so as to cause the car 8 to travel to any other floor among the floors to be measured.
  • the travel control unit 23 stops the car 8 within the door zone of the floor based on the input request. After that, the operation mode of the elevator 1 returns to normal operation.
  • FIG. 3 is a flow chart showing an example of the operation of the elevator 1 according to Embodiment 1.
  • FIG. 4 is a diagram showing an example of braking distance measurement in the elevator 1 according to the first embodiment.
  • step S1 of FIG. 3 the braking distance calculation unit 30 clears the memory of the rotation amount measured in the past stored in the storage area. After that, the elevator 1 proceeds to the process of step S2.
  • step S2 the traveling control unit 23 causes the car 8 stopped inside the door zone of the measured floor to travel outside the door zone and stop. After that, the elevator 1 proceeds to the process of step S3.
  • step S3 the traveling control unit 23 causes the car 8 stopped outside the door zone to travel into the door zone at a low speed.
  • the low speed is the preset running speed of the car 8 .
  • the low speed is, for example, the traveling speed of the car 8 assumed in the scene where the protective device 28 is activated. Low speed is an example of a first speed. After that, the elevator 1 proceeds to the process of step S4.
  • step S4 the detector detects that the car 8 passes the boundary from the outside to the inside of the door zone due to a change in the detection state of the floor plate 3 or the like.
  • the protection device 28 operates the brake device 10 to brake the running of the car 8 .
  • the car 8 stops at a stop position within the door zone.
  • the processing of steps S3 and S4, in which the car 8 is driven into the door zone at a low speed and stopped at the stop position, is an example of the processing of the first driving step. After that, the elevator 1 proceeds to the process of step S5.
  • step S5 the travel control unit 23 causes the car 8 to travel at a slow speed so as to turn back from the stop position inside the door zone to the boundary from the inside to the outside of the door zone passed in step S4.
  • the slow speed is the traveling speed of the car 8 set in advance.
  • Slow speed is a speed that is slower than slow speed.
  • the slow speed is set as a speed at which the main rope 7 does not slip on the drive sheave 13 .
  • Slow speed is an example of a second speed.
  • the rotation measuring unit 22 measures the amount of rotation of the driving sheave 13 while the car 8 travels from the stop position to the boundary at a slow speed by counting the pulse signals of the encoder 14 .
  • the travel pattern of the car 8 from step S3 to step S5 is an example of measurement travel.
  • the process of step S5 in which the car 8 is caused to travel at a slow speed from the stop position to the boundary is an example of the process of the second travel step.
  • the elevator 1 proceeds to the process of step S6.
  • step S6 the braking distance calculation unit 30 stores the amount of rotation measured by the rotation measurement unit 22 in step S5 in an unused storage area after being cleared in step S1. After that, the elevator 1 proceeds to the process of step S7.
  • step S7 the travel control unit 23 determines whether the car 8 has made the number of measurement travels specified in the measurement travel request from the management unit 21. When the determination result is No, the elevator 1 proceeds to the process of step S2. When the determination result is Yes, the elevator 1 proceeds to the process of step S8.
  • step S8 the braking distance calculation unit 30 calculates the braking distance based on the measurement result of the amount of rotation in each measurement run stored in the storage area.
  • the braking distance calculator 30 converts each rotation amount into a traveling distance of the car 8 using parameters of the elevator 1 such as the diameter of the driving sheave 13 .
  • the braking distance calculator 30 calculates the average traveled distance of the car 8 at slow speed in each time obtained by the conversion as the braking distance by the protective device 28 .
  • the braking distance calculation unit 30 calculates the average value excluding the times of measurement travel in which the amount of rotation is stored as 0.
  • the processing of step S8 for calculating the braking distance based on the measurement result of the amount of rotation stored in the storage area of the braking distance calculator 30 is an example of the calculation process. After that, the elevator 1 finishes the process of measuring the braking distance.
  • FIG. 4 an example of the position change of the car 8 during the measurement run is shown.
  • the car 8 enters from the outside of the door zone of the measurement floor toward the inside of the door zone at a low speed.
  • protection device 28 activates brake device 10 to stop car 8 .
  • the braking distance which is the running distance during this period, is the distance that the car 8 moves due to the rotation of the drive sheave 13 during idling and deceleration, and the distance that the car 8 moves due to the main rope 7 sliding on the drive sheave 13. and including. Therefore, the braking distance by the protection device 28 is longer than the traveling distance obtained by converting the amount of rotation of the drive sheave 13 when the car 8 is traveling in the door zone in the first traveling process.
  • the car 8 travels at slow speed in the direction opposite to the traveling direction in the first traveling process from the stop position in the first traveling process to the boundary of the door zone through which the car 8 passed in the first traveling process.
  • the arrival of the car 8 at the boundary of the door zone is determined based on, for example, a change in the detection state of the floor board 3 by the detector.
  • the car 8 returns to the traveled path after the protective device 28 is activated, so the traveling distance of the car 8 in the second travel process is the braking distance by the protective device 28 .
  • the traveled distance in the second travel step is converted based on the amount of rotation of the drive sheave 13, so that braking without error due to slippage can be achieved. distance can be obtained.
  • the car 8 may travel at a low speed from inside the door zone of the measurement floor toward outside the door zone.
  • the stop position of the car 8 is a position outside the door zone.
  • the car 8 travels at a slow speed so as to turn back from the stop position toward the inside of the door zone.
  • some or all of the functions of the travel control unit 23, the rotation measurement unit 22, and the braking distance calculation unit 30, which perform processing such as the first travel process, the second travel process, and the calculation process in the measurement system 29, It may be mounted on another device of the control panel 11 . Some or all of the functions may be installed in the remote monitoring device 25, for example. Also, part or all of the functions may be introduced into the existing control panel 11 of the elevator 1 or the like.
  • the measurement system 29 may be an external system applied to an existing elevator 1, for example.
  • the encoder 14 may be an absolute encoder or the like.
  • the rotation measurement unit 22 may measure the amount of rotation of the drive sheave 13 using another sensor such as a resolver.
  • the elevator 1 includes the car 8, the main rope 7, the drive sheave 13, the drive motor 12, the brake device 10, the detector, the protection device 28, and a measurement system 29 .
  • Main ropes 7 support the load of car 8 .
  • the drive motor 12 causes the car 8 to run through the main rope 7 by rotating the drive sheave 13 .
  • the brake device 10 brakes the running of the car 8 by braking the rotation of the drive sheave 13 .
  • a detector detects whether the position of the car 8 is in the door zone.
  • the protection device 28 activates the braking device 10 to stop the car 8 when the detector detects that the car 8 has traveled past the boundary of the door zone.
  • the measurement system 29 includes a travel control section 23 , a rotation measurement section 22 and a braking distance calculation section 30 .
  • the travel control unit 23 causes the car 8 to pass through the boundary of the door zone at a low speed, thereby operating the brake device 10 by the protection device 28 and stopping the car 8 . Thereafter, the travel control unit 23 causes the car 8 to travel at slow speed so as to return from the stop position where the car 8 has stopped to the boundary of the door zone.
  • the slow speed is a speed lower than a preset low speed at which the main rope 7 does not slip on the drive sheave 13 .
  • the rotation measuring unit 22 measures the amount of rotation of the drive sheave 13 from when the car 8 starts running at the stop position to when the car 8 reaches the boundary of the door zone when the running control unit 23 causes the car 8 to run at a slow speed. measure.
  • the braking distance calculation unit 30 calculates the braking distance by the protective device 28 based on the amount of rotation of the drive sheave 13 measured by the rotation measurement unit 22 when the traveling control unit 23 causes the car 8 to travel at a slow speed. Further, the braking distance measuring method according to the first embodiment includes a first running process, a second running process, and a calculating process.
  • the first traveling step is a step of causing the car 8 to pass through the boundary of the door zone at a low speed so that the protective device 28 operates the braking device 10 to stop the car 8 .
  • the second traveling step is a step of causing the car 8 to travel at a slow speed so as to return from the stop position where the car 8 stopped in the first traveling step to the boundary of the door zone.
  • the calculation step is a step of calculating the braking distance based on the amount of rotation of the drive sheave 13 measured from when the car 8 starts traveling at the stop position until the car 8 reaches the boundary of the door zone in the second traveling step. be.
  • the car 8 returns to the traveled distance after the protective device 28 is actuated at a very slow speed without slippage, so that a more accurate braking distance is obtained based on the amount of rotation of the drive sheave 13 without errors due to slippage. can be measured. Also, since the braking distance is measured by the car 8 returning from the stop position to the position of the car 8 at which the protective device 28 has been activated, information on the absolute position of the car 8 in the hoistway 2 is not required. In addition, since the operator does not need to manually measure the braking distance using a tape measure or the like, diagnosis of the state of the elevator 1 is made more efficient. In addition, since the braking distance can be measured by at least one set of measurement runs of the outbound and return trips, automatic measurement in diagnostic driving can be performed quickly.
  • the travel control unit 23 causes the car 8 to perform measurement travel a plurality of times.
  • a measured run is a run pattern that includes crossing a door zone boundary at low speed and turning back to the boundary at slow speed.
  • the braking distance calculation unit 30 stores each amount of rotation of the drive sheave 13 measured by the rotation measurement unit 22 in each measurement run. The braking distance calculation unit 30 calculates the braking distance based on the stored rotation amounts in the plurality of measurement runs.
  • the braking distance calculation unit 30 clears the memory of the amount of rotation in the past measurement runs before multiple times of measurement runs.
  • Such a configuration prevents erroneous calculation of the braking distance due to reference to measured values in past measurement runs.
  • the braking distance is measured in the door zone of the measurement floor among the plurality of floors.
  • the travel control unit 23 performs measurement travel after opening/closing diagnosis.
  • the elevator 1 has a management unit 21. After the travel control unit 23 performs measurement travel, the management unit 21 requests the travel control unit 23 to respond to a call to travel the car 8 to another floor among the plurality of floors to be measured.
  • FIG. 5 is a hardware configuration diagram of main parts of the elevator 1 according to the first embodiment.
  • the processing circuitry comprises at least one processor 100a and at least one memory 100b.
  • the processing circuitry may include at least one piece of dedicated hardware 200 in conjunction with, or as an alternative to, processor 100a and memory 100b.
  • each function of the elevator 1 is implemented by software, firmware, or a combination of software and firmware. At least one of software and firmware is written as a program.
  • the program is stored in memory 100b.
  • the processor 100a realizes each function of the elevator 1 by reading and executing the programs stored in the memory 100b.
  • the processor 100a is also called a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP.
  • the memory 100b is composed of, for example, nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, and EEPROM.
  • the processing circuit may be implemented, for example, as a single circuit, multiple circuits, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each function of processing in elevator 1 can be realized by a processing circuit.
  • each function of the elevator 1 can be collectively realized by a processing circuit.
  • a part of each function of the elevator 1 may be realized by the dedicated hardware 200 and the other part may be realized by software or firmware.
  • the processing circuitry implements each function of elevator 1 in dedicated hardware 200, software, firmware, or a combination thereof.
  • the measurement system according to the present disclosure can be applied to elevators. Elevators according to the present disclosure are applicable to buildings having multiple floors.
  • the measurement method according to the present disclosure can be applied to measurement of braking distance in elevators.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

Provided are a measurement system, an elevator, and a measurement method, whereby it is possible to more accurately measure braking distances. A measurement system (29) for an elevator (1), wherein a travel control unit (23) causes a car (8) to pass through the boundary of a door zone at low speed, so that a protection device (28) activates a brake device (10) to stop the car (8). Then the travel control unit (23) causes the car (8) to travel at a very low speed that does not cause slip of a main rope (7) against a drive sheave (13) so that the car (8) is turned back from the stop position to the boundary. A rotation measurement unit (22) measures the amount of rotation of the drive sheave (13) from the time the car (8) starts traveling at a very low speed at the stop position until the car (8) reaches the boundary. A braking distance calculation unit (30) calculates the braking distance by the protection device (28) on the basis of the amount of rotation of the drive sheave (13) measured by the rotation measurement unit (22) at this time.

Description

制動距離の計測システム、エレベーター、および制動距離の計測方法Braking Distance Measurement Systems, Elevators, and Braking Distance Measurement Methods
 本開示は、制動距離の計測システム、エレベーター、および制動距離の計測方法に関する。 The present disclosure relates to a braking distance measurement system, an elevator, and a braking distance measurement method.
 特許文献1は、エレベーターの例を開示する。エレベーターは、かごと、主ロープと、駆動モータと、ブレーキ装置と、を備える。主ロープは、かごの荷重を支持する。主ロープは、駆動シーブに巻き掛けられる。駆動モータは、駆動シーブの回転によって、主ロープを通じてかごを走行させる。ブレーキ装置は、駆動シーブの回転の制動によって、かごの走行を制動する。エレベーターにおいて、ブレーキ装置の検査として、かごが走行しているときにブレーキ装置を作動させたときのかごの制動距離が計測される。 Patent Document 1 discloses an example of an elevator. An elevator comprises a car, a main rope, a drive motor and a braking device. The main rope supports the load of the car. The main rope is wrapped around the drive sheave. A drive motor drives the car through the main ropes by rotation of the drive sheaves. The braking device brakes the running of the car by braking the rotation of the drive sheave. In an elevator, the braking distance of the car is measured when the brake system is operated while the car is running as a brake system inspection.
国際公開第2017/033238号WO2017/033238
 しかしながら、特許文献1のエレベーターにおいて、ブレーキ装置が作動するときに、駆動シーブに対する主ロープの滑りが生じる可能性がある。このため、計測される制動距離に滑りによる誤差が生じうる。 However, in the elevator of Patent Document 1, slippage of the main rope with respect to the drive sheave may occur when the braking device is activated. Therefore, an error due to slippage may occur in the measured braking distance.
 本開示は、このような課題の解決に係るものである。本開示は、より正確に制動距離を計測できる計測システム、エレベーター、および計測方法を提供する。 The present disclosure relates to solving such problems. The present disclosure provides a measurement system, an elevator, and a measurement method that can measure braking distances more accurately.
 本開示に係る制動距離の計測システムは、かご、前記かごの荷重を支持する主ロープ、前記主ロープが巻き掛けられた駆動シーブ、前記駆動シーブの回転によって、前記主ロープを通じて前記かごを走行させる駆動モータ、前記駆動シーブの回転の制動によって、前記かごの走行を制動するブレーキ装置、前記かごの位置が予め設定された領域にあるかを検出する検出器、および前記かごが走行して前記領域の境界を通過することを前記検出器が検出するときに、前記ブレーキ装置を作動させて前記かごを停止させる保護装置を有するエレベーターに適用され、前記境界を予め設定された第1速度で前記かごに通過させることで、前記保護装置によって前記ブレーキ装置を作動させて前記かごを停止させ、その後に、前記駆動シーブに対する前記主ロープの滑りが生じない速度として予め設定された前記第1速度より遅い第2速度で、前記かごが停止した停止位置から前記境界まで引き返すように前記かごを走行させる走行制御部と、前記走行制御部が前記かごを前記第2速度で走行させるときに、前記かごが前記停止位置で走行を開始してから前記かごが前記境界に至るまでの前記駆動シーブの回転量を計測する回転計測部と、前記走行制御部が前記かごを前記第2速度で走行させるときに前記回転計測部が計測する前記駆動シーブの回転量に基づいて、前記保護装置による制動距離を算出する制動距離算出部と、を備える。 A braking distance measurement system according to the present disclosure includes a car, a main rope that supports the load of the car, a drive sheave around which the main rope is wound, and a rotation of the drive sheave to cause the car to travel through the main rope. a drive motor, a braking device for braking the car by braking the rotation of the drive sheave, a detector for detecting whether the position of the car is in a preset region, and a detector for detecting whether the car is in a preset region, and the car travels in the region. applied to an elevator having a protection device that actuates the braking device to stop the car when the detector detects that the boundary of the lower than the first speed, which is preset as a speed at which slippage of the main rope with respect to the drive sheave does not occur after the brake device is actuated by the protection device to stop the car by passing through a travel control unit for causing the car to travel at a second speed so as to return from the stop position where the car stops to the boundary, and when the travel control unit causes the car to travel at the second speed, the car is a rotation measuring unit that measures the amount of rotation of the drive sheave from when the car starts running at the stop position until the car reaches the boundary; and when the running control unit causes the car to run at the second speed. a braking distance calculation unit that calculates a braking distance by the protective device based on the amount of rotation of the drive sheave measured by the rotation measurement unit.
 本開示に係るエレベーターは、かごと、前記かごの荷重を支持する主ロープと、前記主ロープが巻き掛けられた駆動シーブと、前記駆動シーブの回転によって、前記主ロープを通じて前記かごを走行させる駆動モータと、前記駆動シーブの回転の制動によって、前記かごの走行を制動するブレーキ装置と、前記かごの位置が予め設定された領域にあるかを検出する検出器と、前記かごが走行して前記領域の境界を通過することを前記検出器が検出するときに、前記ブレーキ装置を作動させて前記かごを停止させる保護装置と、前記境界を予め設定された第1速度で前記かごに通過させることで、前記保護装置によって前記ブレーキ装置を作動させて前記かごを停止させ、その後に、前記駆動シーブに対する前記主ロープの滑りが生じない速度として予め設定された前記第1速度より遅い第2速度で、前記かごが停止した停止位置から前記境界まで引き返すように前記かごを走行させる走行制御部と、前記走行制御部が前記かごを前記第2速度で走行させるときに、前記かごが前記停止位置で走行を開始してから前記かごが前記境界に至るまでの前記駆動シーブの回転量を計測する回転計測部と、前記走行制御部が前記かごを前記第2速度で走行させるときに前記回転計測部が計測する前記駆動シーブの回転量に基づいて、前記保護装置による制動距離を算出する制動距離算出部と、を備える。 An elevator according to the present disclosure includes a car, a main rope that supports the load of the car, a drive sheave around which the main rope is wound, and a drive that causes the car to travel through the main rope by rotation of the drive sheave. a motor, a braking device for braking the traveling of the car by braking the rotation of the drive sheave, a detector for detecting whether the position of the car is in a preset region, and a a protective device for actuating the braking device to stop the car when the detector detects that the boundary of an area has been passed; and allowing the car to pass the boundary at a first preset speed. and the protective device actuates the braking device to stop the car, and then at a second speed that is lower than the first speed preset as a speed at which the main rope does not slip on the drive sheave. a travel control unit for causing the car to travel so as to return from a stop position where the car stops to the boundary, and a travel control unit for causing the car to travel at the second speed, the car being at the stop position. a rotation measuring unit that measures the amount of rotation of the drive sheave from when the car starts running until the car reaches the boundary; and when the running control unit causes the car to run at the second speed, the rotation measuring unit. and a braking distance calculator that calculates the braking distance by the protection device based on the amount of rotation of the drive sheave measured by the.
 本開示に係る制動距離の計測方法は、かご、前記かごの荷重を支持する主ロープ、前記主ロープが巻き掛けられた駆動シーブ、前記駆動シーブの回転によって、前記主ロープを通じて前記かごを走行させる駆動モータ、前記駆動シーブの回転の制動によって、前記かごの走行を制動するブレーキ装置、前記かごの位置が予め設定された領域にあるかを検出する検出器、および前記かごが走行して前記領域の境界を通過することを前記検出器が検出するときに、前記ブレーキ装置を作動させて前記かごを停止させる保護装置を有するエレベーターにおいて、前記保護装置による制動距離を計測する計測方法であり、前記境界を予め設定された第1速度で前記かごに通過させることで、前記保護装置によって前記ブレーキ装置を作動させて前記かごを停止させる第1走行工程と、前記駆動シーブに対する前記主ロープの滑りが生じない速度として予め設定された前記第1速度より遅い第2速度で、前記第1走行工程において前記かごが停止した停止位置から前記境界まで引き返すように前記かごを走行させる第2走行工程と、前記第2走行工程において前記かごが前記停止位置で走行を開始してから前記かごが前記境界に至るまでに計測される前記駆動シーブの回転量に基づいて前記制動距離を算出する算出工程と、を備える。 A method for measuring a braking distance according to the present disclosure includes a car, a main rope supporting the load of the car, a drive sheave around which the main rope is wound, and the car traveling through the main rope by rotation of the drive sheave. a drive motor, a braking device for braking the car by braking the rotation of the drive sheave, a detector for detecting whether the position of the car is in a preset region, and a detector for detecting whether the car is in a preset region, and the car travels in the region. A measuring method for measuring the braking distance by the protective device in an elevator having a protective device that operates the braking device to stop the car when the detector detects that the elevator has passed through the boundary of Passing the car through a boundary at a first preset speed causes a first travel step in which the protective device activates the braking device to stop the car and a slippage of the main rope relative to the drive sheave. a second traveling step of causing the car to travel so as to return to the boundary from the stop position where the car stopped in the first traveling step at a second speed that is lower than the first speed preset as a speed that does not occur; a calculating step of calculating the braking distance based on the amount of rotation of the drive sheave measured from when the car starts traveling at the stop position to when the car reaches the boundary in the second traveling step; Prepare.
 本開示に係る計測システム、エレベーター、または計測方法であれば、より正確に制動距離が計測できる。 With the measurement system, elevator, or measurement method according to the present disclosure, the braking distance can be measured more accurately.
実施の形態1に係るエレベーターの構成図である。1 is a configuration diagram of an elevator according to Embodiment 1; FIG. 実施の形態1に係るエレベーターの動作の例を示すシーケンス図である。4 is a sequence diagram showing an example of the operation of the elevator according to Embodiment 1; FIG. 実施の形態1に係るエレベーターの動作の例を示すフローチャートである。4 is a flow chart showing an example of the operation of the elevator according to Embodiment 1; 実施の形態1に係るエレベーターにおける制動距離の計測の例を示す図である。FIG. 5 is a diagram showing an example of braking distance measurement in the elevator according to Embodiment 1; 実施の形態1に係るエレベーターの主要部のハードウェア構成図である。2 is a hardware configuration diagram of main parts of the elevator according to Embodiment 1. FIG.
 本開示の対象を実施するための形態について添付の図面を参照しながら説明する。各図において、同一または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。なお、本開示の対象は以下の実施の形態に限定されることなく、本開示の趣旨を逸脱しない範囲において、実施の形態の任意の構成要素の変形、または実施の形態の任意の構成要素の省略が可能である。 A mode for implementing the subject of the present disclosure will be described with reference to the attached drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals, and overlapping descriptions are appropriately simplified or omitted. It should be noted that the subject of the present disclosure is not limited to the following embodiments, and modifications of any constituent elements of the embodiments, or modifications of any constituent elements of the embodiments, within the scope of the present disclosure. It can be omitted.
 実施の形態1.
 図1は、実施の形態1に係るエレベーター1の構成図である。
Embodiment 1.
FIG. 1 is a configuration diagram of an elevator 1 according to Embodiment 1. As shown in FIG.
 エレベーター1は、例えば複数の階床を有する建物に適用される。建物において、エレベーター1の昇降路2が設けられる。昇降路2は、複数の階床にわたる上下方向に長い空間である。昇降路2において、複数の階床板3が設けられる。各々の階床板3は、いずれかの階床に対応する。各々の階床板3は、対応する階床に配置される。各々の階床において、昇降路2に隣接する乗場4が設けられる。各々の階床の乗場4において、乗場ドア5が設けられる。乗場ドア5は、乗場4および昇降路2を区画するエレベーター1のドアである。エレベーター1は、巻上機6と、主ロープ7と、かご8と、釣合い錘9と、ブレーキ装置10と、制御盤11と、を備える。 The elevator 1 is applied, for example, to a building with multiple floors. In a building, a hoistway 2 for an elevator 1 is provided. The hoistway 2 is a vertically elongated space that spans a plurality of floors. A plurality of floor boards 3 are provided in the hoistway 2 . Each floor board 3 corresponds to one of the floors. Each floor board 3 is arranged on the corresponding floor. A landing 4 adjacent to the hoistway 2 is provided on each floor. At the landing 4 of each floor, a landing door 5 is provided. A landing door 5 is a door of the elevator 1 that partitions the landing 4 and the hoistway 2 . The elevator 1 includes a hoisting machine 6 , a main rope 7 , a car 8 , a counterweight 9 , a braking device 10 and a control panel 11 .
 巻上機6は、例えば昇降路2の上部または下部などに配置される。例えば昇降路2の上方などにエレベーター1の機械室が設けられる場合に、巻上機6は、機械室に配置されてもよい。巻上機6は、駆動モータ12と、駆動シーブ13と、エンコーダ14と、を備える。駆動モータ12は、駆動力を発生させる装置である。駆動シーブ13は、駆動モータ12が発生させる駆動力によって回転する機器である。エンコーダ14は、駆動シーブ13の回転に応じてパルス信号を出力する機器である。エンコーダ14は、例えばインクリメンタルエンコーダなどである。 The hoist 6 is arranged, for example, above or below the hoistway 2 . For example, when the machine room of the elevator 1 is provided above the hoistway 2, the hoist 6 may be arranged in the machine room. The hoist 6 includes a drive motor 12 , a drive sheave 13 and an encoder 14 . The drive motor 12 is a device that generates drive force. The drive sheave 13 is a device that is rotated by the driving force generated by the drive motor 12 . The encoder 14 is a device that outputs pulse signals according to the rotation of the drive sheave 13 . The encoder 14 is, for example, an incremental encoder.
 主ロープ7は、駆動シーブ13に巻き掛けられる。主ロープ7は、駆動シーブ13の一方側においてかご8の荷重を支持する。主ロープ7は、駆動シーブ13の他方側において釣合い錘9の荷重を支持する。主ロープ7は、駆動シーブ13の回転によって、駆動シーブ13に巻き上げられるように、または駆動シーブ13から繰り出されるように移動する。 The main rope 7 is wound around the drive sheave 13. Main rope 7 supports the load of car 8 on one side of drive sheave 13 . Main rope 7 supports the load of counterweight 9 on the other side of drive sheave 13 . The main rope 7 is moved by the rotation of the drive sheave 13 so as to be wound up on the drive sheave 13 or to be paid out from the drive sheave 13 .
 かご8は、昇降路2を上下方向に走行することでエレベーター1の利用者などを複数の階床の間で輸送する装置である。かご8は、駆動シーブ13の回転による主ロープ7の移動に連動して昇降路2を上下方向に走行する。かご8は、かごドア15を備える。かごドア15は、かご8の内部および外部を区画するエレベーター1のドアである。かごドア15は、かご8がいずれかの階床に停止するときに、利用者が乗降しうるように当該階床の乗場ドア5を連動させて開閉する機器である。かご8において、検出器が設けられる。検出器は、かご8とともに昇降路2を移動して、各々の階床に設けられた階床板3を検出する部分である。各々の階床板3は、対応する階床のドアゾーンにかご8がいる間に検出器が当該階床板3を検出するように設けられている。ここで、各々の階床のドアゾーンは、当該階床においてかごドア15および乗場ドア5の開閉が可能な予め設定された領域である。これにより、検出器は、かご8が各々の階床のドアゾーンにいるか否かを検出する。なお、この例において、検出器は、各々の階床板3を互いに区別しない。 The car 8 is a device that transports users of the elevator 1 between multiple floors by running up and down on the hoistway 2 . The car 8 travels vertically in the hoistway 2 in conjunction with the movement of the main rope 7 caused by the rotation of the drive sheave 13 . The car 8 has a car door 15 . A car door 15 is a door of the elevator 1 that separates the inside and outside of the car 8 . The car door 15 is a device that opens and closes the landing door 5 of the floor in conjunction so that the user can get on and off when the car 8 stops on one of the floors. In the car 8 a detector is provided. The detector is a part that moves along the hoistway 2 together with the car 8 and detects the floor board 3 provided on each floor. Each floor slab 3 is arranged such that a detector detects that floor slab 3 while the car 8 is in the door zone of the corresponding floor. Here, the door zone of each floor is a preset area in which the car door 15 and the landing door 5 can be opened and closed on the floor. The detector thereby detects whether or not the car 8 is in the door zone of each floor. It should be noted that in this example the detector does not distinguish between the floorboards 3 from each other.
 釣合い錘9は、駆動シーブ13の両側にかかる荷重の釣合いをかご8との間でとる装置である。釣合い錘9は、駆動シーブ13の回転による主ロープ7の移動に連動して昇降路2を上下方向においてかご8の反対方向に走行する。 The balance weight 9 is a device that balances the load applied to both sides of the drive sheave 13 with the car 8 . The counterweight 9 travels vertically in the hoistway 2 in the opposite direction to the car 8 in conjunction with the movement of the main rope 7 caused by the rotation of the drive sheave 13 .
 ブレーキ装置10は、駆動シーブ13の回転を制動する装置である。ブレーキ装置10は、制動体17と、ブレーキシュー18と、バネ19と、コイル20と、を備える。制動体17は、ブレーキディスクまたはブレーキドラムなどの制動面を有する部材である。制動体17は、駆動シーブ13と連動して回転しうるように駆動シーブ13と同軸上に設けられる。ブレーキシュー18は、制動体17の制動面に押し付けられることで駆動シーブ13を制動する摩擦力を生じさせる部分である。バネ19は、駆動シーブ13の回転を制動するときに、弾性力によってブレーキシュー18を制動体17の制動面に押し付ける部分である。コイル20は、駆動シーブ13の回転を解放するときに、励磁により生じた磁力でバネ19の弾性力に抗してブレーキシュー18を制動体17の制動面から離す部分である。ブレーキ装置10は、駆動シーブ13を解放している間、駆動シーブ13の回転を妨げない。ブレーキ装置10は、駆動シーブ13を制動する制御信号が入力されるときに、コイル20の磁力によって制動体17の制動面から離されていたブレーキシュー18を、バネ19の弾性力によって制動体17の制動面に押し付ける。 The brake device 10 is a device that brakes the rotation of the drive sheave 13. The braking device 10 includes a braking body 17 , brake shoes 18 , springs 19 and coils 20 . The braking body 17 is a member having a braking surface such as a brake disc or a brake drum. The braking body 17 is provided coaxially with the drive sheave 13 so as to be rotatable in conjunction with the drive sheave 13 . The brake shoe 18 is a portion that generates a frictional force that brakes the drive sheave 13 by being pressed against the braking surface of the braking body 17 . The spring 19 is a portion that presses the brake shoe 18 against the braking surface of the braking body 17 by elastic force when braking the rotation of the drive sheave 13 . The coil 20 is a portion that separates the brake shoe 18 from the braking surface of the braking body 17 against the elastic force of the spring 19 by the magnetic force generated by the excitation when the drive sheave 13 is released from rotation. The braking device 10 does not block the rotation of the drive sheave 13 while releasing the drive sheave 13 . When a control signal for braking the drive sheave 13 is input, the brake device 10 moves the brake shoe 18 , which has been separated from the braking surface of the braking body 17 by the magnetic force of the coil 20 , to the braking body 17 by the elastic force of the spring 19 . on the braking surface of the
 制御盤11は、エレベーター1の動作を制御する装置である。制御盤11は、例えば昇降路2の上部または下部などに配置される。例えば昇降路2の上方などにエレベーター1の機械室が設けられる場合に、制御盤11は、機械室に配置されてもよい。制御盤11は、例えば通常運転および診断運転などの運転モードに基づいてエレベーター1の動作を制御する。通常運転は、利用者などを複数の階床の間で輸送する通常の運転モードである。診断運転は、エレベーター1の機器および装置などの状態を診断する運転モードである。診断運転は、各々の階床においてかごドア15および乗場ドア5の開閉に異常がないかを診断する開閉診断を含む。制御盤11は、制御信号を出力しうるように、また、エレベーター1の状態の情報を取得しうるように、巻上機6、かご8、検出器、およびブレーキ装置10などに接続される。制御盤11は、管理部21と、回転計測部22と、走行制御部23と、保守処理部24と、を備える。管理部21は、エレベーター1の運行を管理する部分である。管理部21は、例えばいずれかの階床にかご8を走行させる呼びの管理などを行う。回転計測部22は、駆動シーブ13の回転量を計測する部分である。回転計測部22は、例えば駆動シーブ13の回転に応じてエンコーダ14から出力されるパルス信号の計数によって駆動シーブ13の回転量を計測する。走行制御部23は、例えばかご8の発進および停止などの走行の制御を行う部分である。走行制御部23は、回転計測部22が計測する駆動シーブ13の回転に基づいて、かご8の位置の制御などを行ってもよい。保守処理部24は、制御盤11においてエレベーター1の保守点検に関する処理などを行う部分である。 The control panel 11 is a device that controls the operation of the elevator 1. The control panel 11 is arranged, for example, above or below the hoistway 2 . For example, when the machine room of the elevator 1 is provided above the hoistway 2, the control panel 11 may be arranged in the machine room. The control panel 11 controls the operation of the elevator 1 based on operation modes such as normal operation and diagnostic operation. Normal operation is a normal operation mode in which users and the like are transported between multiple floors. Diagnosis operation is an operation mode for diagnosing the state of equipment and devices of the elevator 1 . Diagnosis operation includes opening/closing diagnosis for diagnosing whether there is an abnormality in the opening/closing of the car door 15 and the hall door 5 on each floor. The control panel 11 is connected to the hoisting machine 6, the car 8, the detector, the braking device 10, etc., so as to output control signals and obtain information on the state of the elevator 1. The control panel 11 includes a management section 21 , a rotation measurement section 22 , a travel control section 23 and a maintenance processing section 24 . The management unit 21 is a part that manages the operation of the elevator 1 . The management unit 21 manages, for example, a call to run the car 8 on any floor. The rotation measuring section 22 is a section that measures the amount of rotation of the drive sheave 13 . The rotation measurement unit 22 measures the amount of rotation of the drive sheave 13 by counting pulse signals output from the encoder 14 according to the rotation of the drive sheave 13, for example. The running control unit 23 is a part that controls running such as starting and stopping of the car 8, for example. The travel control unit 23 may control the position of the car 8 based on the rotation of the drive sheave 13 measured by the rotation measurement unit 22 . The maintenance processing unit 24 is a part of the control panel 11 that performs processing related to maintenance and inspection of the elevator 1 .
 エレベーター1において、遠隔監視装置25が適用される。遠隔監視装置25は、エレベーター1の状態の遠隔監視に用いられる装置である。遠隔監視装置25は、エレベーター1の状態の情報を収集しうるように、制御盤11などに接続される。遠隔監視装置25が収集した情報は、例えばインターネットまたは電話回線などの通信網26を通じて、中央管理装置27に送信される。中央管理装置27は、エレベーター1の状態の情報を収集して管理する装置である。中央管理装置27は、例えば情報センターなどの拠点に設けられる。 In the elevator 1, a remote monitoring device 25 is applied. The remote monitoring device 25 is a device used for remote monitoring of the state of the elevator 1 . A remote monitoring device 25 is connected to the control panel 11 or the like so as to collect information on the state of the elevator 1 . Information collected by the remote monitoring device 25 is transmitted to the central management device 27 through a communication network 26 such as the Internet or a telephone line. The central management device 27 is a device that collects and manages information on the state of the elevator 1 . The central management device 27 is provided at a base such as an information center, for example.
 エレベーター1において、保護装置28が適用される。保護装置28は、例えば戸開走行保護装置(UCMP:Unintended Car Movement Protection)である。保護装置28は、かごドア15が開いた状態でかご8が走行してドアゾーンの外部に出るときに、ブレーキ装置10を作動させてかご8の走行を停止させる装置である。保護装置28によって、かご8は制動距離だけ移動した後に停止する。この例において、制動距離は、空走距離および減速走行距離の和である。空走距離は、ブレーキ装置10に制御信号を入力するように制動装置が作動してからブレーキシュー18が制動体17の制動面に押し付けられて摩擦力を発生させるまでの電気的および機械的なタイムラグの間にかご8が走行する距離である。減速走行距離は、ブレーキ装置10によって駆動シーブ13を制動する摩擦力が発生してからかご8が停止するまでに減速しながら走行する距離である。減速走行距離は、滑り走行距離を含む。滑り走行距離は、減速走行距離のうち、駆動シーブ13に対して主ロープ7が滑ることによってかご8が移動する距離である。 In Elevator 1, protective device 28 is applied. The protective device 28 is, for example, an unintended car movement protection (UCMP). The protection device 28 is a device that operates the brake device 10 to stop the car 8 from traveling when the car 8 travels with the car door 15 open and goes out of the door zone. The protection device 28 causes the car 8 to stop after traveling the braking distance. In this example, the braking distance is the sum of the free running distance and the deceleration running distance. The idling distance is the electrical and mechanical distance from when the braking device operates to input a control signal to the braking device 10 until the brake shoe 18 is pressed against the braking surface of the braking body 17 to generate a frictional force. It is the distance traveled by the car 8 during the time lag. The deceleration travel distance is the distance traveled while decelerating from when the brake device 10 generates a frictional force for braking the drive sheave 13 until the car 8 stops. The deceleration travel distance includes the slip travel distance. The sliding travel distance is the distance that the car 8 moves due to the main rope 7 slipping on the drive sheave 13 in the deceleration travel distance.
 エレベーター1において、計測システム29が適用される。計測システム29は、保護装置28による制動距離を計測するシステムである。計測システム29は、管理部21、回転計測部22、走行制御部23、および保守処理部24などの制御盤11の一部または全部を含む。計測システム29は、制動距離算出部30を備える。制動距離算出部30は、例えば制御盤11の機能の一部として搭載される。制動距離算出部30は、走行制御部23が計測走行をかご8に行わせるときの回転計測部22の計測結果に基づいて、制動距離を算出する部分である。ここで、計測走行は、制動距離を計測する際に行われる走行パターンである。この例において、計測走行は、複数回行われる。計測走行について、実施の回数に上限が設けられる。計測走行の上限回数は、例えば3回である。制動距離算出部30は、各回の計測走行における回転計測部22の計測結果の各々を記憶する。制動距離算出部30は、上限回数分の計測結果を記憶できる記憶領域を有する。制動距離算出部30は、記憶している複数回の計測結果に基づいて制動距離を算出する。計測システム29は、計測プログラムに基づいて動作する。計測プログラムは、例えば制御盤11などの計測システム29のハードウェアに導入される。計測プログラムは、例えば計測プログラムが記憶された可搬な記憶媒体を通じて当該ハードウェアに導入される。あるいは、計測プログラムは、例えば通信網26などを通じて当該ハードウェアに導入されてもよい。 In the elevator 1, the measurement system 29 is applied. The measurement system 29 is a system that measures the braking distance by the protection device 28 . The measurement system 29 includes part or all of the control panel 11 such as the management unit 21 , the rotation measurement unit 22 , the travel control unit 23 and the maintenance processing unit 24 . The measurement system 29 includes a braking distance calculator 30 . The braking distance calculator 30 is mounted as part of the functions of the control panel 11, for example. The braking distance calculation unit 30 is a part that calculates the braking distance based on the measurement result of the rotation measurement unit 22 when the travel control unit 23 causes the car 8 to perform measurement travel. Here, the measurement run is a run pattern that is performed when measuring the braking distance. In this example, the measurement run is performed multiple times. An upper limit is set for the number of times measurement runs are performed. The upper limit of the number of measurement runs is, for example, three. The braking distance calculation unit 30 stores each measurement result of the rotation measurement unit 22 in each measurement run. The braking distance calculator 30 has a storage area that can store the measurement results for the upper limit number of times. The braking distance calculator 30 calculates the braking distance based on the stored measurement results of a plurality of times. The measurement system 29 operates based on a measurement program. The measurement program is installed in the hardware of the measurement system 29 such as the control panel 11, for example. The measurement program is installed in the hardware through a portable storage medium storing the measurement program, for example. Alternatively, the measurement program may be installed in the hardware through the communication network 26, for example.
 続いて、図2を用いて、エレベーター1の診断運転の例を説明する。
 図2は、実施の形態1に係るエレベーター1の動作の例を示すシーケンス図である。
Next, an example of diagnostic operation of the elevator 1 will be described with reference to FIG.
FIG. 2 is a sequence diagram showing an operation example of the elevator 1 according to the first embodiment.
 この例において、エレベーター1の外部からの要求によって行われる診断運転において制動距離が計測される。中央管理装置27は、通信網26および遠隔監視装置25を通じて、診断運転の開始を要求する信号を制御盤11の保守処理部24に入力する。 In this example, the braking distance is measured during the diagnostic operation performed by request from the outside of the elevator 1. The central management device 27 inputs a signal requesting the start of diagnostic operation to the maintenance processing section 24 of the control panel 11 through the communication network 26 and the remote monitoring device 25 .
 保守処理部24は、診断運転の開始条件が成立しているかを判定する。診断運転の開始条件は、例えばかご8に利用者が乗車していないことなどの条件を含む。当該条件の成立は、例えばかご8に設けられた秤装置の計測結果などに基づいて判定される。保守処理部24は、診断運転の開始条件が成立すると判定するときに、診断運転を開始する。 The maintenance processing unit 24 determines whether the conditions for starting diagnostic operation are satisfied. The condition for starting the diagnostic operation includes, for example, a condition that no user is in the car 8 . Whether the condition is established is determined based on, for example, the measurement result of a weighing device provided in the car 8 . The maintenance processing unit 24 starts the diagnostic operation when determining that the conditions for starting the diagnostic operation are satisfied.
 診断運転において、保守処理部24は、制限要求を管理部21に出力する。制限要求は、例えば呼びの登録などを制限する要求である。その後、保守処理部24は、計測階床への走行要求を管理部21に出力する。計測階床は、複数の階床のいずれかのうちで予め設定された階床である。計測階床は、例えば最上階などである。 In diagnostic operation, the maintenance processing unit 24 outputs a restriction request to the management unit 21. A restriction request is, for example, a request to restrict registration of a call. After that, the maintenance processing unit 24 outputs a travel request to the measured floor to the management unit 21 . The floor to be measured is one of the floors set in advance among the plurality of floors. The floor to be measured is, for example, the top floor.
 管理部21は、保守処理部24からの走行要求に基づいて、かご8を計測階床に走行させる制御信号を走行制御部23に出力する。走行制御部23は、管理部21から入力された制御信号に基づいて、かご8を計測階床まで走行させて、計測階床のドアゾーンの内にかご8を停止させる。 Based on the travel request from the maintenance processing unit 24, the management unit 21 outputs to the travel control unit 23 a control signal for causing the car 8 to travel to the measurement floor. The traveling control unit 23 causes the car 8 to travel to the measured floor based on the control signal input from the management unit 21, and stops the car 8 within the door zone of the measured floor.
 このとき、保守処理部24は、計測階床において開閉診断を行ってもよい。開閉診断において、計測階床に停止しているかご8のかごドア15、および計測階床に設けられた乗場ドア5の開閉が行われる。 At this time, the maintenance processing unit 24 may perform opening/closing diagnosis on the measured floor. In the opening/closing diagnosis, opening/closing of the car door 15 of the car 8 stopped on the measurement floor and the landing door 5 provided on the measurement floor is performed.
 その後、保守処理部24は、管理部21を通じて計測走行要求を走行制御部23に出力する。計測走行要求は、計測走行をかご8に実施させる要求である。計測走行要求は、計測走行が行われる回数を含む。 After that, the maintenance processing unit 24 outputs a measurement travel request to the travel control unit 23 through the management unit 21 . The measurement travel request is a request to cause the car 8 to perform the measurement travel. The measurement travel request includes the number of times the measurement travel is performed.
 このとき、制動距離算出部30は、記憶領域に記憶している過去に計測された回転量の記憶をクリアする。この例において、制動距離算出部30は、回転量を記憶する記憶領域の値を0にリセットする。 At this time, the braking distance calculation unit 30 clears the memory of the previously measured rotation amount stored in the storage area. In this example, the braking distance calculator 30 resets the value of the storage area that stores the amount of rotation to zero.
 走行制御部23は、管理部21から入力された計測走行要求に基づいて、複数回の計測走行をかご8に行わせる。この間に、回転計測部22は、各回の計測走行における駆動シーブ13の回転量を計測する。制動距離算出部30は、回転計測部22が計測する回転量を記憶領域に記憶する。複数回の計測走行の後に、制動距離算出部30は、記憶領域に記憶している複数回の計測走行における回転量に基づいて、制動距離を算出する。制動距離算出部30は、算出した制動距離を、例えば管理部21を通じて保守処理部24に計測結果として出力する。 The travel control unit 23 causes the car 8 to perform multiple measurement travels based on the measurement travel request input from the management unit 21 . During this time, the rotation measuring unit 22 measures the amount of rotation of the drive sheave 13 in each measurement run. The braking distance calculation unit 30 stores the amount of rotation measured by the rotation measurement unit 22 in a storage area. After the multiple times of measurement travel, the braking distance calculator 30 calculates the braking distance based on the amount of rotation in the multiple times of measurement travel stored in the storage area. The braking distance calculation unit 30 outputs the calculated braking distance to the maintenance processing unit 24 through the management unit 21, for example, as a measurement result.
 保守処理部24は、入力された計測結果に基づいて、保護装置28の状態などを含むエレベーター1の状態を診断する。保守処理部24は、診断結果を遠隔監視装置25および通信網26を通じて中央管理装置27に通知する。 The maintenance processing unit 24 diagnoses the state of the elevator 1 including the state of the protective device 28 based on the input measurement results. The maintenance processing unit 24 notifies the central management device 27 of the diagnostic results through the remote monitoring device 25 and the communication network 26 .
 保守処理部24は、診断運転において異常が検出されない場合に、制限解除要求を管理部21に出力する。制限解除要求は、制限要求による呼びの登録などの機能の制限を解除する要求である。 The maintenance processing unit 24 outputs a restriction release request to the management unit 21 when no abnormality is detected in diagnostic operation. A restriction release request is a request to release the restriction of functions such as call registration based on the restriction request.
 その後、遠隔管理装置は、保守処理部24を通じて、診断運転の終了を要求する信号を管理部21に入力する。管理部21は、かご8を計測階床の他のいずれかの階床に走行させるように、当該階床への呼びへの応答の要求を制御信号に出力する。走行制御部23は、入力された要求に基づいて、当該階床のドアゾーンの内にかご8を停止させる。その後、エレベーター1の運転モードは、通常運転に復帰する。 After that, the remote management device inputs a signal requesting the end of diagnostic operation to the management unit 21 through the maintenance processing unit 24 . The management unit 21 outputs a control signal requesting a response to the call to the floor so as to cause the car 8 to travel to any other floor among the floors to be measured. The travel control unit 23 stops the car 8 within the door zone of the floor based on the input request. After that, the operation mode of the elevator 1 returns to normal operation.
 続いて、図3および図4を用いて、保護装置28による制動距離の計測の例を説明する。
 図3は、実施の形態1に係るエレベーター1の動作の例を示すフローチャートである。
 図4は、実施の形態1に係るエレベーター1における制動距離の計測の例を示す図である。
Next, an example of braking distance measurement by the protective device 28 will be described with reference to FIGS. 3 and 4. FIG.
3 is a flow chart showing an example of the operation of the elevator 1 according to Embodiment 1. FIG.
FIG. 4 is a diagram showing an example of braking distance measurement in the elevator 1 according to the first embodiment.
 図3のステップS1において、制動距離算出部30は、記憶領域に記憶している過去に計測された回転量の記憶をクリアする。その後、エレベーター1は、ステップS2の処理に進む。 In step S1 of FIG. 3, the braking distance calculation unit 30 clears the memory of the rotation amount measured in the past stored in the storage area. After that, the elevator 1 proceeds to the process of step S2.
 ステップS2において、走行制御部23は、計測階床のドアゾーンの内に停止しているかご8を、当該ドアゾーンの外まで走行させて停止させる。その後、エレベーター1は、ステップS3の処理に進む。 In step S2, the traveling control unit 23 causes the car 8 stopped inside the door zone of the measured floor to travel outside the door zone and stop. After that, the elevator 1 proceeds to the process of step S3.
 ステップS3において、走行制御部23は、ドアゾーンの外に停止しているかご8を走行させ、当該ドアゾーンの内に向けて低速で進入させる。ここで、低速は、予め設定されたかご8の走行速度である。低速は、例えば、保護装置28が作動する場面において想定されるかご8の走行速度などである。低速は、第1速度の例である。その後、エレベーター1は、ステップS4の処理に進む。 In step S3, the traveling control unit 23 causes the car 8 stopped outside the door zone to travel into the door zone at a low speed. Here, the low speed is the preset running speed of the car 8 . The low speed is, for example, the traveling speed of the car 8 assumed in the scene where the protective device 28 is activated. Low speed is an example of a first speed. After that, the elevator 1 proceeds to the process of step S4.
 ステップS4において、検出器は、階床板3の検出状態の変化などによって、かご8がドアゾーンの外から内への境界を通過することを検出する。このとき、保護装置28は、ブレーキ装置10を作動させてかご8の走行を制動する。かご8は、ドアゾーンの内の停止位置において停止する。ドアゾーンの内に向けてかご8を低速で走行させ、停止位置において停止させるステップS3およびステップS4の処理は、第1走行工程の処理の例である。その後、エレベーター1は、ステップS5の処理に進む。 In step S4, the detector detects that the car 8 passes the boundary from the outside to the inside of the door zone due to a change in the detection state of the floor plate 3 or the like. At this time, the protection device 28 operates the brake device 10 to brake the running of the car 8 . The car 8 stops at a stop position within the door zone. The processing of steps S3 and S4, in which the car 8 is driven into the door zone at a low speed and stopped at the stop position, is an example of the processing of the first driving step. After that, the elevator 1 proceeds to the process of step S5.
 ステップS5において、走行制御部23は、ドアゾーンの内の停止位置から、ステップS4において通過した当該ドアゾーンの内から外への境界まで引き返すように、かご8を微速で走行させる。ここで、微速は、予め設定されたかご8の走行速度である。微速は、低速より遅い速度である。微速は、駆動シーブ13に対する主ロープ7の滑りが生じない速度として設定される。微速は、第2速度の例である。このとき、回転計測部22は、停止位置から当該境界までかご8が微速で走行する間の駆動シーブ13の回転量を、エンコーダ14のパルス信号の計数によって計測する。ステップS3からステップS5までにおけるかご8の走行パターンは、計測走行の例である。停止位置から当該境界までかご8を微速で走行させるステップS5の処理は、第2走行工程の処理の例である。その後、エレベーター1は、ステップS6の処理に進む。 In step S5, the travel control unit 23 causes the car 8 to travel at a slow speed so as to turn back from the stop position inside the door zone to the boundary from the inside to the outside of the door zone passed in step S4. Here, the slow speed is the traveling speed of the car 8 set in advance. Slow speed is a speed that is slower than slow speed. The slow speed is set as a speed at which the main rope 7 does not slip on the drive sheave 13 . Slow speed is an example of a second speed. At this time, the rotation measuring unit 22 measures the amount of rotation of the driving sheave 13 while the car 8 travels from the stop position to the boundary at a slow speed by counting the pulse signals of the encoder 14 . The travel pattern of the car 8 from step S3 to step S5 is an example of measurement travel. The process of step S5 in which the car 8 is caused to travel at a slow speed from the stop position to the boundary is an example of the process of the second travel step. After that, the elevator 1 proceeds to the process of step S6.
 ステップS6において、制動距離算出部30は、ステップS5で回転計測部22が計測した回転量を、ステップS1でクリアされた後から未使用の記憶領域に記憶する。その後、エレベーター1は、ステップS7の処理に進む。 In step S6, the braking distance calculation unit 30 stores the amount of rotation measured by the rotation measurement unit 22 in step S5 in an unused storage area after being cleared in step S1. After that, the elevator 1 proceeds to the process of step S7.
 ステップS7において、走行制御部23は、管理部21からの計測走行要求において指定された回数の計測走行をかご8に行わせたかを判定する。判定結果がNoの場合に、エレベーター1は、ステップS2の処理に進む。判定結果がYesの場合に、エレベーター1は、ステップS8の処理に進む。 In step S7, the travel control unit 23 determines whether the car 8 has made the number of measurement travels specified in the measurement travel request from the management unit 21. When the determination result is No, the elevator 1 proceeds to the process of step S2. When the determination result is Yes, the elevator 1 proceeds to the process of step S8.
 ステップS8において、制動距離算出部30は、記憶領域に記憶している各回の計測走行における回転量の計測結果に基づいて、制動距離を算出する。制動距離算出部30は、例えば、駆動シーブ13の径などのエレベーター1のパラメーターを用いて、各々の回転量をかご8の走行距離に換算する。制動距離算出部30は、換算によって得られた各回におけるかご8の微速での走行距離の平均値を、保護装置28による制動距離として算出する。このとき、制動距離算出部30は、回転量が0として記憶されている回の計測走行を除いて平均値を算出する。制動距離算出部30の記憶領域に記憶された回転量の計測結果に基づいて制動距離を算出するステップS8の処理は、算出工程の処理の例である。その後、エレベーター1は、制動距離の計測の処理を終了する。 In step S8, the braking distance calculation unit 30 calculates the braking distance based on the measurement result of the amount of rotation in each measurement run stored in the storage area. The braking distance calculator 30 converts each rotation amount into a traveling distance of the car 8 using parameters of the elevator 1 such as the diameter of the driving sheave 13 . The braking distance calculator 30 calculates the average traveled distance of the car 8 at slow speed in each time obtained by the conversion as the braking distance by the protective device 28 . At this time, the braking distance calculation unit 30 calculates the average value excluding the times of measurement travel in which the amount of rotation is stored as 0. The processing of step S8 for calculating the braking distance based on the measurement result of the amount of rotation stored in the storage area of the braking distance calculator 30 is an example of the calculation process. After that, the elevator 1 finishes the process of measuring the braking distance.
 図4において、計測走行の間のかご8の位置の変化の例が示される。 In FIG. 4 an example of the position change of the car 8 during the measurement run is shown.
 第1走行工程において、かご8は、計測階床のドアゾーンの外から低速でドアゾーンの内に向けて進入する。かご8がドアゾーンの境界を通過するときに、保護装置28はブレーキ装置10を作動させてかご8を停止させる。この間の走行距離である制動距離は、空走中および減速中の駆動シーブ13の回転によってかご8が移動する距離と、駆動シーブ13に対して主ロープ7が滑ることによってかご8が移動する距離と、を含む。このため、保護装置28による制動距離は、第1走行工程においてドアゾーンの内をかご8が走行しているときの駆動シーブ13の回転量を換算した走行距離より長い。 In the first traveling process, the car 8 enters from the outside of the door zone of the measurement floor toward the inside of the door zone at a low speed. When car 8 passes the boundary of the door zone, protection device 28 activates brake device 10 to stop car 8 . The braking distance, which is the running distance during this period, is the distance that the car 8 moves due to the rotation of the drive sheave 13 during idling and deceleration, and the distance that the car 8 moves due to the main rope 7 sliding on the drive sheave 13. and including. Therefore, the braking distance by the protection device 28 is longer than the traveling distance obtained by converting the amount of rotation of the drive sheave 13 when the car 8 is traveling in the door zone in the first traveling process.
 第2走行工程において、かご8は、第1走行工程の停止位置から第1走行工程でかご8が通過したドアゾーンの境界まで、第1走行工程における走行方向と反対方向に微速で走行する。ここで、かご8が当該ドアゾーンの境界に到着したことは、例えば検出器による階床板3の検出状態の変化などに基づいて判定される。第2走行工程において、かご8は保護装置28が作動した後に走行した行程を引き返すので、第2走行工程におけるかご8の走行距離は、保護装置28による制動距離となる。微速での走行において主ロープ7および駆動シーブ13の間に滑りは生じないので、第2走行工程における走行距離を駆動シーブ13の回転量に基づいて換算することで、滑りによる誤差を含まない制動距離が得られるようになる。 In the second traveling process, the car 8 travels at slow speed in the direction opposite to the traveling direction in the first traveling process from the stop position in the first traveling process to the boundary of the door zone through which the car 8 passed in the first traveling process. Here, the arrival of the car 8 at the boundary of the door zone is determined based on, for example, a change in the detection state of the floor board 3 by the detector. In the second travel process, the car 8 returns to the traveled path after the protective device 28 is activated, so the traveling distance of the car 8 in the second travel process is the braking distance by the protective device 28 . Since no slippage occurs between the main rope 7 and the drive sheave 13 during running at a slow speed, the traveled distance in the second travel step is converted based on the amount of rotation of the drive sheave 13, so that braking without error due to slippage can be achieved. distance can be obtained.
 なお、第1走行工程において、かご8は、計測階床のドアゾーンの内から低速でドアゾーンの外に向けて走行してもよい。このとき、かご8の停止位置は、当該ドアゾーンの外の位置である。この場合に、第2走行工程において、かご8は、停止位置から当該ドアゾーンの内に向けて引き返すように微速で走行する。 In addition, in the first traveling process, the car 8 may travel at a low speed from inside the door zone of the measurement floor toward outside the door zone. At this time, the stop position of the car 8 is a position outside the door zone. In this case, in the second travel step, the car 8 travels at a slow speed so as to turn back from the stop position toward the inside of the door zone.
 また、計測システム29において第1走行工程、第2走行工程、および算出工程などの処理を行う走行制御部23、回転計測部22、および制動距離算出部30などの機能の一部または全部は、制御盤11の他の装置に搭載されていてもよい。当該機能の一部または全部は、例えば遠隔監視装置25に搭載されていてもよい。また、当該機能の一部または全部は、既存のエレベーター1の制御盤11などに導入されるものであってもよい。計測システム29は、例えば既存のエレベーター1に適用される外部システムであってもよい。 In addition, some or all of the functions of the travel control unit 23, the rotation measurement unit 22, and the braking distance calculation unit 30, which perform processing such as the first travel process, the second travel process, and the calculation process in the measurement system 29, It may be mounted on another device of the control panel 11 . Some or all of the functions may be installed in the remote monitoring device 25, for example. Also, part or all of the functions may be introduced into the existing control panel 11 of the elevator 1 or the like. The measurement system 29 may be an external system applied to an existing elevator 1, for example.
 また、エンコーダ14は、アブソリュートエンコーダなどであってもよい。回転計測部22は、例えばレゾルバなどの他のセンサによって駆動シーブ13の回転量を計測してもよい。 Also, the encoder 14 may be an absolute encoder or the like. The rotation measurement unit 22 may measure the amount of rotation of the drive sheave 13 using another sensor such as a resolver.
 以上に説明したように、実施の形態1に係るエレベーター1は、かご8と、主ロープ7と、駆動シーブ13と、駆動モータ12と、ブレーキ装置10と、検出器と、保護装置28と、計測システム29と、を備える。主ロープ7は、かご8の荷重を支持する。駆動シーブ13において、主ロープ7が巻き掛けられる。駆動モータ12は、駆動シーブ13の回転によって、主ロープ7を通じてかご8を走行させる。ブレーキ装置10は、駆動シーブ13の回転の制動によって、かご8の走行を制動する。検出器は、かご8の位置がドアゾーンにあるかを検出する。保護装置28は、かご8が走行してドアゾーンの境界を通過することを検出器が検出するときに、ブレーキ装置10を作動させてかご8を停止させる。計測システム29は、走行制御部23と、回転計測部22と、制動距離算出部30と、を備える。走行制御部23は、ドアゾーンの境界を低速でかご8に通過させることで、保護装置28によってブレーキ装置10を作動させてかご8を停止させる。その後、走行制御部23は、かご8が停止した停止位置からドアゾーンの境界まで引き返すようにかご8を微速で走行させる。ここで、微速は、駆動シーブ13に対する主ロープ7の滑りが生じない速度として予め設定された低速より遅い速度である。回転計測部22は、走行制御部23がかご8を微速で走行させるときに、かご8が停止位置で走行を開始してからかご8がドアゾーンの境界に至るまでの駆動シーブ13の回転量を計測する。制動距離算出部30は、走行制御部23がかご8を微速で走行させるときに回転計測部22が計測する駆動シーブ13の回転量に基づいて、保護装置28による制動距離を算出する。
 また、実施の形態1に係る制動距離の計測方法は、第1走行工程と、第2走行工程と、算出工程と、を備える。第1走行工程は、ドアゾーンの境界を低速でかご8に通過させることで、保護装置28によってブレーキ装置10を作動させてかご8を停止させる工程である。第2走行工程は、第1走行工程においてかご8が停止した停止位置からドアゾーンの境界まで引き返すようにかご8を微速で走行させる工程である。算出工程は、第2走行工程においてかご8が停止位置で走行を開始してからかご8がドアゾーンの境界に至るまでに計測される駆動シーブ13の回転量に基づいて制動距離を算出する工程である。
As described above, the elevator 1 according to Embodiment 1 includes the car 8, the main rope 7, the drive sheave 13, the drive motor 12, the brake device 10, the detector, the protection device 28, and a measurement system 29 . Main ropes 7 support the load of car 8 . On the drive sheave 13 the main rope 7 is wound. The drive motor 12 causes the car 8 to run through the main rope 7 by rotating the drive sheave 13 . The brake device 10 brakes the running of the car 8 by braking the rotation of the drive sheave 13 . A detector detects whether the position of the car 8 is in the door zone. The protection device 28 activates the braking device 10 to stop the car 8 when the detector detects that the car 8 has traveled past the boundary of the door zone. The measurement system 29 includes a travel control section 23 , a rotation measurement section 22 and a braking distance calculation section 30 . The travel control unit 23 causes the car 8 to pass through the boundary of the door zone at a low speed, thereby operating the brake device 10 by the protection device 28 and stopping the car 8 . Thereafter, the travel control unit 23 causes the car 8 to travel at slow speed so as to return from the stop position where the car 8 has stopped to the boundary of the door zone. Here, the slow speed is a speed lower than a preset low speed at which the main rope 7 does not slip on the drive sheave 13 . The rotation measuring unit 22 measures the amount of rotation of the drive sheave 13 from when the car 8 starts running at the stop position to when the car 8 reaches the boundary of the door zone when the running control unit 23 causes the car 8 to run at a slow speed. measure. The braking distance calculation unit 30 calculates the braking distance by the protective device 28 based on the amount of rotation of the drive sheave 13 measured by the rotation measurement unit 22 when the traveling control unit 23 causes the car 8 to travel at a slow speed.
Further, the braking distance measuring method according to the first embodiment includes a first running process, a second running process, and a calculating process. The first traveling step is a step of causing the car 8 to pass through the boundary of the door zone at a low speed so that the protective device 28 operates the braking device 10 to stop the car 8 . The second traveling step is a step of causing the car 8 to travel at a slow speed so as to return from the stop position where the car 8 stopped in the first traveling step to the boundary of the door zone. The calculation step is a step of calculating the braking distance based on the amount of rotation of the drive sheave 13 measured from when the car 8 starts traveling at the stop position until the car 8 reaches the boundary of the door zone in the second traveling step. be.
 このような構成により、かご8は保護装置28が作動した後に走行した行程を滑りの生じない微速で引き返すので、駆動シーブ13の回転量に基づいて滑りによる誤差を含まない、より正確な制動距離が計測できるようになる。また、制動距離は、保護装置28が作動したかご8の位置までかご8が停止位置から引き返すことで計測されるので、昇降路2におけるかご8の絶対位置の情報が必要とされない。また、巻き尺などによって作業員が制動距離を手作業で計測する必要がなくなるので、エレベーター1における状態の診断が効率化する。また、往路および復路の最低1セットの計測走行によって制動距離の計測ができるようになるので、診断運転における自動計測を迅速に行いうる。 With such a configuration, the car 8 returns to the traveled distance after the protective device 28 is actuated at a very slow speed without slippage, so that a more accurate braking distance is obtained based on the amount of rotation of the drive sheave 13 without errors due to slippage. can be measured. Also, since the braking distance is measured by the car 8 returning from the stop position to the position of the car 8 at which the protective device 28 has been activated, information on the absolute position of the car 8 in the hoistway 2 is not required. In addition, since the operator does not need to manually measure the braking distance using a tape measure or the like, diagnosis of the state of the elevator 1 is made more efficient. In addition, since the braking distance can be measured by at least one set of measurement runs of the outbound and return trips, automatic measurement in diagnostic driving can be performed quickly.
 また、走行制御部23は、計測走行をかご8に複数回実施させる。計測走行は、低速でのドアゾーンの境界の通過および微速での当該境界までの引き返しを含む走行パターンである。制動距離算出部30は、各回の計測走行において回転計測部22が計測する駆動シーブ13の回転量の各々を記憶する。制動距離算出部30は、記憶している複数回の計測走行における回転量に基づいて制動距離を算出する。 In addition, the travel control unit 23 causes the car 8 to perform measurement travel a plurality of times. A measured run is a run pattern that includes crossing a door zone boundary at low speed and turning back to the boundary at slow speed. The braking distance calculation unit 30 stores each amount of rotation of the drive sheave 13 measured by the rotation measurement unit 22 in each measurement run. The braking distance calculation unit 30 calculates the braking distance based on the stored rotation amounts in the plurality of measurement runs.
 このような構成により、制動距離の計測における偶然誤差などが低減される。このため、制動距離の計測がより正確になる。 Such a configuration reduces accidental errors in braking distance measurement. Therefore, the measurement of the braking distance becomes more accurate.
 また、制動距離算出部30は、複数回の計測走行の前に、過去の計測走行における回転量の記憶をクリアする。 In addition, the braking distance calculation unit 30 clears the memory of the amount of rotation in the past measurement runs before multiple times of measurement runs.
 このような構成により、過去の計測走行における計測値が参照されることによる誤った制動距離の算出が防がれる。 Such a configuration prevents erroneous calculation of the braking distance due to reference to measured values in past measurement runs.
 また、エレベーター1のドアの開閉診断を含む診断運転において、複数の階床のうちの計測階床のドアゾーンにおいて制動距離が計測される。走行制御部23は、計測走行を開閉診断の後に行う。 Also, in the diagnostic operation including the opening/closing diagnosis of the door of the elevator 1, the braking distance is measured in the door zone of the measurement floor among the plurality of floors. The travel control unit 23 performs measurement travel after opening/closing diagnosis.
 このような構成により、ドアゾーンの内外を移動する計測走行でかご8の停止位置がずれることなどによる開閉診断への影響が抑えられる。このため、診断運転におけるエレベーター1の状態の診断がより正確に行われるようになる。 With this configuration, it is possible to suppress the influence on the open/close diagnosis due to the shift of the stop position of the car 8 during the measurement traveling inside and outside the door zone. Therefore, the diagnosis of the state of the elevator 1 in the diagnostic operation can be performed more accurately.
 また、エレベーター1は、管理部21を備える。管理部21は、走行制御部23による計測走行の後に、複数の階床のうち計測階床の他の階床にかご8を走行させる呼びへの応答を走行制御部23に要求する。 In addition, the elevator 1 has a management unit 21. After the travel control unit 23 performs measurement travel, the management unit 21 requests the travel control unit 23 to respond to a call to travel the car 8 to another floor among the plurality of floors to be measured.
 このような構成により、ドアゾーンの内外を移動する計測走行の後に、他の階床への着床によってかご8の停止位置のずれが修正される。このため、計測走行の実施によるその後の走行への影響が抑えられる。 With such a configuration, after the measurement travel that moves inside and outside the door zone, the deviation of the stop position of the car 8 is corrected by landing on another floor. Therefore, the effect of the measurement travel on subsequent travel can be suppressed.
 続いて、図5を用いて、エレベーター1のハードウェア構成の例について説明する。
 図5は、実施の形態1に係るエレベーター1の主要部のハードウェア構成図である。
Next, an example of the hardware configuration of the elevator 1 will be explained using FIG.
FIG. 5 is a hardware configuration diagram of main parts of the elevator 1 according to the first embodiment.
 エレベーター1における処理の各機能は、処理回路により実現し得る。処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。処理回路は、プロセッサ100aおよびメモリ100bと共に、あるいはそれらの代用として、少なくとも1つの専用ハードウェア200を備えてもよい。 Each function of processing in elevator 1 can be realized by a processing circuit. The processing circuitry comprises at least one processor 100a and at least one memory 100b. The processing circuitry may include at least one piece of dedicated hardware 200 in conjunction with, or as an alternative to, processor 100a and memory 100b.
 処理回路がプロセッサ100aとメモリ100bとを備える場合、エレベーター1の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。そのプログラムはメモリ100bに格納される。プロセッサ100aは、メモリ100bに記憶されたプログラムを読み出して実行することにより、エレベーター1の各機能を実現する。 When the processing circuit includes the processor 100a and the memory 100b, each function of the elevator 1 is implemented by software, firmware, or a combination of software and firmware. At least one of software and firmware is written as a program. The program is stored in memory 100b. The processor 100a realizes each function of the elevator 1 by reading and executing the programs stored in the memory 100b.
 プロセッサ100aは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ100bは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROMなどの、不揮発性または揮発性の半導体メモリなどにより構成される。 The processor 100a is also called a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP. The memory 100b is composed of, for example, nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, and EEPROM.
 処理回路が専用ハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。 When the processing circuit comprises dedicated hardware 200, the processing circuit may be implemented, for example, as a single circuit, multiple circuits, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 エレベーター1における処理の各機能は、それぞれ処理回路で実現することができる。あるいは、エレベーター1の各機能は、まとめて処理回路で実現することもできる。エレベーター1の各機能について、一部を専用ハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、専用ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせでエレベーター1の各機能を実現する。 Each function of processing in elevator 1 can be realized by a processing circuit. Alternatively, each function of the elevator 1 can be collectively realized by a processing circuit. A part of each function of the elevator 1 may be realized by the dedicated hardware 200 and the other part may be realized by software or firmware. Thus, the processing circuitry implements each function of elevator 1 in dedicated hardware 200, software, firmware, or a combination thereof.
 本開示に係る計測システムは、エレベーターに適用できる。本開示に係るエレベーターは、複数の階床を有する建物に適用できる。本開示に係る計測方法は、エレベーターにおける制動距離の計測に適用できる。 The measurement system according to the present disclosure can be applied to elevators. Elevators according to the present disclosure are applicable to buildings having multiple floors. The measurement method according to the present disclosure can be applied to measurement of braking distance in elevators.
 1 エレベーター、 2 昇降路、 3 階床板、 4 乗場、 5 乗場ドア、 6 巻上機、 7 主ロープ、 8 かご、 9 釣合い錘、 10 ブレーキ装置、 11 制御盤、 12 駆動モータ、 13 駆動シーブ、 14 エンコーダ、 15 かごドア、 16 検知器、 17 制動体、 18 ブレーキシュー、 19 バネ、 20 コイル、 21 管理部、 22 回転計測部、 23 走行制御部、 24 保守処理部、 25 遠隔監視装置、 26 通信網、 27 中央管理装置、 28 保護装置、 29 計測システム、 30 制動距離算出部、 100a プロセッサ、 100b メモリ、 200 専用ハードウェア 1 elevator, 2 hoistway, 3 floor board, 4 landing, 5 landing door, 6 hoisting machine, 7 main rope, 8 car, 9 counterweight, 10 brake device, 11 control panel, 12 drive motor, 13 drive sheave, 14 encoder, 15 car door, 16 detector, 17 braking body, 18 brake shoe, 19 spring, 20 coil, 21 management unit, 22 rotation measurement unit, 23 traveling control unit, 24 maintenance processing unit, 25 remote monitoring device, 26 Communication network, 27 central control device, 28 protection device, 29 measurement system, 30 braking distance calculation unit, 100a processor, 100b memory, 200 dedicated hardware

Claims (8)

  1.  かご、
     前記かごの荷重を支持する主ロープ、
     前記主ロープが巻き掛けられた駆動シーブ、
     前記駆動シーブの回転によって、前記主ロープを通じて前記かごを走行させる駆動モータ、
     前記駆動シーブの回転の制動によって、前記かごの走行を制動するブレーキ装置、
     前記かごの位置が予め設定された領域にあるかを検出する検出器、および
     前記かごが走行して前記領域の境界を通過することを前記検出器が検出するときに、前記ブレーキ装置を作動させて前記かごを停止させる保護装置
     を有するエレベーターに適用され、
     前記境界を予め設定された第1速度で前記かごに通過させることで、前記保護装置によって前記ブレーキ装置を作動させて前記かごを停止させ、その後に、前記駆動シーブに対する前記主ロープの滑りが生じない速度として予め設定された前記第1速度より遅い第2速度で、前記かごが停止した停止位置から前記境界まで引き返すように前記かごを走行させる走行制御部と、
     前記走行制御部が前記かごを前記第2速度で走行させるときに、前記かごが前記停止位置で走行を開始してから前記かごが前記境界に至るまでの前記駆動シーブの回転量を計測する回転計測部と、
     前記走行制御部が前記かごを前記第2速度で走行させるときに前記回転計測部が計測する前記駆動シーブの回転量に基づいて、前記保護装置による制動距離を算出する制動距離算出部と、
     を備える制動距離の計測システム。
    basket,
    a main rope supporting the load of said car;
    a driving sheave around which the main rope is wound;
    a drive motor that causes the car to travel through the main rope by rotation of the drive sheave;
    a braking device that brakes the running of the car by braking the rotation of the drive sheave;
    a detector for detecting whether the position of the car is within a preset area; and activating the braking device when the detector detects that the car travels past the boundary of the area. Applied to an elevator having a protective device that stops the car by
    Passing the car through the boundary at a first preset speed causes the protective device to actuate the braking device to stop the car, followed by slippage of the main rope relative to the drive sheave. a traveling control unit that causes the car to travel back to the boundary from a stop position where the car stops at a second speed that is lower than the first speed that is preset as a non-loading speed;
    Rotation for measuring the amount of rotation of the drive sheave from when the car starts running at the stop position to when the car reaches the boundary when the running control unit causes the car to run at the second speed. a measuring unit;
    a braking distance calculation unit that calculates the braking distance by the protection device based on the amount of rotation of the drive sheave measured by the rotation measurement unit when the travel control unit causes the car to travel at the second speed;
    braking distance measurement system.
  2.  前記走行制御部は、前記第1速度での前記境界の通過および前記第2速度での前記境界までの引き返しを各々が含む複数回の計測走行を前記かごに実施させ、
     前記制動距離算出部は、前記複数回の計測走行の各々において前記回転計測部が計測する前記駆動シーブの回転量の各々を記憶し、記憶している前記複数回の計測走行における回転量に基づいて前記制動距離を算出する
     請求項1に記載の制動距離の計測システム。
    The travel control unit causes the car to perform a plurality of measurement travels each including passing through the boundary at the first speed and returning to the boundary at the second speed,
    The braking distance calculation unit stores each amount of rotation of the drive sheave measured by the rotation measurement unit in each of the plurality of measurement runs, and based on the stored rotation amount in the plurality of measurement runs. The braking distance measuring system according to claim 1, wherein the braking distance is calculated by
  3.  前記制動距離算出部は、前記複数回の計測走行の前に、過去の計測走行における回転量の記憶をクリアする
     請求項2に記載の制動距離の計測システム。
    3. The braking distance measurement system according to claim 2, wherein the braking distance calculation unit clears the memory of the rotation amount in past measurement runs before the plurality of measurement runs.
  4.  複数の階床の少なくともいずれかでのドアの開閉診断を含む診断運転において、前記複数の階床のうちの計測階床に対して予め設定されたドアゾーンを前記領域として前記制動距離が計測される場合に、
     前記走行制御部は、前記第1速度での前記境界の通過および前記第2速度での前記境界までの引き返しを含む計測走行を、前記開閉診断の後に行う
     請求項1に記載の制動距離の計測システム。
    In diagnostic operation including door opening/closing diagnosis on at least one of a plurality of floors, the braking distance is measured using a door zone preset for a measurement floor among the plurality of floors as the region. In case,
    2. The braking distance measurement according to claim 1, wherein the traveling control unit performs measurement traveling including passing through the boundary at the first speed and turning back to the boundary at the second speed after the opening/closing diagnosis. system.
  5.  かごと、
     前記かごの荷重を支持する主ロープと、
     前記主ロープが巻き掛けられた駆動シーブと、
     前記駆動シーブの回転によって、前記主ロープを通じて前記かごを走行させる駆動モータと、
     前記駆動シーブの回転の制動によって、前記かごの走行を制動するブレーキ装置と、
     前記かごの位置が予め設定された領域にあるかを検出する検出器と、
     前記かごが走行して前記領域の境界を通過することを前記検出器が検出するときに、前記ブレーキ装置を作動させて前記かごを停止させる保護装置と、
     前記境界を予め設定された第1速度で前記かごに通過させることで、前記保護装置によって前記ブレーキ装置を作動させて前記かごを停止させ、その後に、前記駆動シーブに対する前記主ロープの滑りが生じない速度として予め設定された前記第1速度より遅い第2速度で、前記かごが停止した停止位置から前記境界まで引き返すように前記かごを走行させる走行制御部と、
     前記走行制御部が前記かごを前記第2速度で走行させるときに、前記かごが前記停止位置で走行を開始してから前記かごが前記境界に至るまでの前記駆動シーブの回転量を計測する回転計測部と、
     前記走行制御部が前記かごを前記第2速度で走行させるときに前記回転計測部が計測する前記駆動シーブの回転量に基づいて、前記保護装置による制動距離を算出する制動距離算出部と、
     を備えるエレベーター。
    basket,
    a main rope supporting the load of the car;
    a driving sheave around which the main rope is wound;
    a drive motor that causes the car to travel through the main rope by rotation of the drive sheave;
    a braking device that brakes the running of the car by braking the rotation of the drive sheave;
    a detector for detecting whether the position of the car is in a preset area;
    a protection device that activates the braking device to stop the car when the detector detects that the car travels past the boundary of the area;
    Passing the car through the boundary at a first preset speed causes the protective device to actuate the braking device to stop the car, followed by slippage of the main rope relative to the drive sheave. a traveling control unit that causes the car to travel back to the boundary from a stop position where the car stops at a second speed that is lower than the first speed that is preset as a non-loading speed;
    Rotation for measuring the amount of rotation of the drive sheave from when the car starts running at the stop position to when the car reaches the boundary when the running control unit causes the car to run at the second speed. a measuring unit;
    a braking distance calculation unit that calculates the braking distance by the protection device based on the amount of rotation of the drive sheave measured by the rotation measurement unit when the travel control unit causes the car to travel at the second speed;
    Elevator with.
  6.  複数の階床の少なくともいずれかでのドアの開閉診断を含む診断運転において、前記複数の階床のうちの計測階床に対して予め設定されたドアゾーンを前記領域として前記制動距離が計測される場合に、
     前記走行制御部は、前記第1速度での前記境界の通過および前記第2速度での前記境界までの引き返しを含む計測走行を、前記開閉診断の後に行う
     請求項5に記載のエレベーター。
    In diagnostic operation including door opening/closing diagnosis on at least one of a plurality of floors, the braking distance is measured using a door zone preset for a measurement floor among the plurality of floors as the region. In case,
    6. The elevator according to claim 5, wherein the travel control unit performs measurement travel including passing through the boundary at the first speed and turning back to the boundary at the second speed after the opening/closing diagnosis.
  7.  複数の階床のうちの計測階床に対して予め設定されたドアゾーンを前記領域として前記制動距離が計測される場合に、
     前記走行制御部による前記第1速度での前記境界の通過および前記第2速度での前記境界までの引き返しを含む計測走行の後に、前記複数の階床のうち前記計測階床の他の階床に前記かごを走行させる呼びへの応答を前記走行制御部に要求する管理部
     を備える請求項5に記載のエレベーター。
    When the braking distance is measured using a door zone set in advance for the measurement floor among the plurality of floors as the region,
    After measurement travel including passage through the boundary at the first speed and turning back to the boundary at the second speed by the travel control unit, other floors of the measured floor among the plurality of floors 6. The elevator according to claim 5, further comprising a management unit that requests the travel control unit to respond to a call to run the car during the period.
  8.  かご、
     前記かごの荷重を支持する主ロープ、
     前記主ロープが巻き掛けられた駆動シーブ、
     前記駆動シーブの回転によって、前記主ロープを通じて前記かごを走行させる駆動モータ、
     前記駆動シーブの回転の制動によって、前記かごの走行を制動するブレーキ装置、
     前記かごの位置が予め設定された領域にあるかを検出する検出器、および
     前記かごが走行して前記領域の境界を通過することを前記検出器が検出するときに、前記ブレーキ装置を作動させて前記かごを停止させる保護装置
     を有するエレベーターにおいて、前記保護装置による制動距離を計測する計測方法であり、
     前記境界を予め設定された第1速度で前記かごに通過させることで、前記保護装置によって前記ブレーキ装置を作動させて前記かごを停止させる第1走行工程と、
     前記駆動シーブに対する前記主ロープの滑りが生じない速度として予め設定された前記第1速度より遅い第2速度で、前記第1走行工程において前記かごが停止した停止位置から前記境界まで引き返すように前記かごを走行させる第2走行工程と、
     前記第2走行工程において前記かごが前記停止位置で走行を開始してから前記かごが前記境界に至るまでに計測される前記駆動シーブの回転量に基づいて前記制動距離を算出する算出工程と、
     を備える制動距離の計測方法。
    basket,
    a main rope supporting the load of said car;
    a driving sheave around which the main rope is wound;
    a drive motor that causes the car to travel through the main rope by rotation of the drive sheave;
    a braking device that brakes the running of the car by braking the rotation of the drive sheave;
    a detector for detecting whether the position of the car is within a preset area; and activating the braking device when the detector detects that the car travels past the boundary of the area. A measuring method for measuring a braking distance by the protective device in an elevator having a protective device that stops the car by
    a first traveling step of causing the car to pass through the boundary at a preset first speed to operate the brake device by the protective device to stop the car;
    At a second speed that is lower than the first speed preset as a speed at which the main rope does not slip on the drive sheave, the car is returned from the stop position where the car stops in the first traveling step to the boundary. a second traveling step of traveling the car;
    a calculating step of calculating the braking distance based on the amount of rotation of the drive sheave measured from when the car starts traveling at the stop position to when the car reaches the boundary in the second traveling step;
    A braking distance measurement method comprising:
PCT/JP2021/006155 2021-02-18 2021-02-18 Braking distance measurement system, elevator, and braking distance measurement method WO2022176114A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180092492.XA CN116783131B (en) 2021-02-18 2021-02-18 Brake distance measuring system, elevator, and brake distance measuring method
PCT/JP2021/006155 WO2022176114A1 (en) 2021-02-18 2021-02-18 Braking distance measurement system, elevator, and braking distance measurement method
JP2023500228A JP7264323B2 (en) 2021-02-18 2021-02-18 Braking Distance Measurement Systems, Elevators, and Braking Distance Measurement Methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006155 WO2022176114A1 (en) 2021-02-18 2021-02-18 Braking distance measurement system, elevator, and braking distance measurement method

Publications (1)

Publication Number Publication Date
WO2022176114A1 true WO2022176114A1 (en) 2022-08-25

Family

ID=82930358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006155 WO2022176114A1 (en) 2021-02-18 2021-02-18 Braking distance measurement system, elevator, and braking distance measurement method

Country Status (3)

Country Link
JP (1) JP7264323B2 (en)
CN (1) CN116783131B (en)
WO (1) WO2022176114A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068626A (en) * 2000-07-19 2002-03-08 Otis Elevator Co Diagnosing method of elevator
JP2010280481A (en) * 2009-06-05 2010-12-16 Mitsubishi Electric Corp Control device for elevator
WO2017033238A1 (en) * 2015-08-21 2017-03-02 三菱電機株式会社 Elevator apparatus
JP2018135197A (en) * 2017-02-23 2018-08-30 三菱電機ビルテクノサービス株式会社 Measurement method of dynamic torque
WO2019167212A1 (en) * 2018-03-01 2019-09-06 三菱電機株式会社 Elevator brake performance evaluation apparatus
WO2020217352A1 (en) * 2019-04-24 2020-10-29 三菱電機ビルテクノサービス株式会社 Slippage detection system for elevator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115902A1 (en) * 2004-05-28 2005-12-08 Mitsubishi Denki Kabushiki Kaisha Elevator rope slip detector and elevator system
CN107555276A (en) * 2017-10-19 2018-01-09 余志林 A kind of elevator brake method for testing performance and device
CN208166263U (en) * 2018-04-25 2018-11-30 大连华齐泰精密仪器有限公司 Elevator brake device for detecting performance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068626A (en) * 2000-07-19 2002-03-08 Otis Elevator Co Diagnosing method of elevator
JP2010280481A (en) * 2009-06-05 2010-12-16 Mitsubishi Electric Corp Control device for elevator
WO2017033238A1 (en) * 2015-08-21 2017-03-02 三菱電機株式会社 Elevator apparatus
JP2018135197A (en) * 2017-02-23 2018-08-30 三菱電機ビルテクノサービス株式会社 Measurement method of dynamic torque
WO2019167212A1 (en) * 2018-03-01 2019-09-06 三菱電機株式会社 Elevator brake performance evaluation apparatus
WO2020217352A1 (en) * 2019-04-24 2020-10-29 三菱電機ビルテクノサービス株式会社 Slippage detection system for elevator

Also Published As

Publication number Publication date
JPWO2022176114A1 (en) 2022-08-25
CN116783131B (en) 2024-02-20
JP7264323B2 (en) 2023-04-25
CN116783131A (en) 2023-09-19

Similar Documents

Publication Publication Date Title
JP2009539725A (en) Guaranteed separation in an elevator hoistway with multiple cars
JP2002068626A (en) Diagnosing method of elevator
JP6218706B2 (en) Elevator control device and elevator control method
JP2011042480A (en) Elevator device
CN112384462B (en) Elevator diagnosis system
JP6683184B2 (en) elevator
KR20170089885A (en) System and method for monitoring elevator brake capability
JP5947094B2 (en) elevator
CN105793183B (en) Lift appliance and its control method
JP4566587B2 (en) Elevator control device
US10486935B2 (en) Elevator diagnosing device
WO2022176114A1 (en) Braking distance measurement system, elevator, and braking distance measurement method
JP3744271B2 (en) Elevator position detection device
CN219098454U (en) Rotary rope brake device
JP7047972B2 (en) Elevator slip detection system
JP5535441B2 (en) Elevator control operation device
JP2020070128A (en) Elevator control system
JP2019099325A (en) Elevator
WO2024042642A1 (en) Deformation detection system and deformation detection method for elevator guide rail
JP7538093B2 (en) Test method and device for elevator standby brake
JP6409659B2 (en) Elevator device and its control device
JP2011213433A (en) Control device of elevator
JP7347666B2 (en) Elevator abnormality detection device
WO2022195823A1 (en) Elevator monitoring device
JP7035805B2 (en) Elevator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500228

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092492.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926549

Country of ref document: EP

Kind code of ref document: A1