WO2020217352A1 - Slippage detection system for elevator - Google Patents

Slippage detection system for elevator Download PDF

Info

Publication number
WO2020217352A1
WO2020217352A1 PCT/JP2019/017481 JP2019017481W WO2020217352A1 WO 2020217352 A1 WO2020217352 A1 WO 2020217352A1 JP 2019017481 W JP2019017481 W JP 2019017481W WO 2020217352 A1 WO2020217352 A1 WO 2020217352A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
car
detected
slip
detection
Prior art date
Application number
PCT/JP2019/017481
Other languages
French (fr)
Japanese (ja)
Inventor
智史 山崎
力雄 近藤
木村 哲也
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to CN201980095594.XA priority Critical patent/CN113767059B/en
Priority to JP2021515383A priority patent/JP7047972B2/en
Priority to PCT/JP2019/017481 priority patent/WO2020217352A1/en
Publication of WO2020217352A1 publication Critical patent/WO2020217352A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator slip detection system.
  • the elevator system detects slippage of the main rope based on the signal of the pulse encoder output from the reference floor to the detection of the floor board of the predetermined floor.
  • An object of the present invention is to provide a slip detection system capable of detecting slip of a main rope with higher accuracy.
  • the slip detection system of the elevator has a rotation angle detection unit that detects the rotation angle of the hoisting machine that drives the main rope by the rotation of the rope wheel around which the main rope of the elevator is wound, and the rope wheel.
  • the first body to be detected is fixed to the hoistway on which the balance weight provided on the other side of the main rope runs with respect to the car and the balance weight provided on one side of the main rope, and the cage or the balance weight is provided. Detected by the position detection unit whose detection state is switched depending on whether or not it is in the first detection area at the height of the first detected object, and by the position detection unit passing through the first boundary of the first detection area when the car is running.
  • the rotation angle of the hoist detected by the rotation angle detection unit when the state is switched is stored as the first rotation angle, and after the first rotation angle is detected, the position detection unit passes through the first boundary due to the traveling of the car.
  • the difference between the storage unit that stores the rotation angle of the hoist detected by the rotation angle detection unit when the detection state is switched as the second rotation angle and the first rotation angle and the second rotation angle stored by the storage unit.
  • a calculation unit for calculating the amount of slip between the main rope and the rope wheel based on the main rope and the rope wheel is provided.
  • the slip detection system includes a rotation angle detection unit, a first detected body, a position detection unit, a storage unit, and a calculation unit.
  • the main rope of the elevator is wrapped around a sheave.
  • the hoisting machine drives the main rope by the rotation of the sheave.
  • the rotation angle detection unit detects the rotation angle of the hoisting machine.
  • the car is provided on one side of the main rope with respect to the sheave.
  • the counterweight is provided on the other side of the main rope with respect to the sheave.
  • the first detected body is fixed to the hoistway on which the car and the counterweight run.
  • the position detection unit is provided on the car or the counterweight.
  • the position detection unit switches the detection state depending on whether or not it is in the first detection region at the height of the first detected body.
  • the storage unit determines the rotation angle of the hoisting machine detected by the rotation angle detection unit when the detection state is switched by the position detection unit passing through the first boundary of the first detection area due to the traveling of the car.
  • the storage unit determines the rotation angle of the hoisting machine detected by the rotation angle detection unit when the detection state is switched by the position detection unit passing through the first boundary due to the traveling of the car after the first rotation angle is detected. It is stored as the second rotation angle.
  • the calculation unit calculates the amount of slip between the main rope and the sheave based on the difference between the first rotation angle and the second rotation angle stored in the storage unit. As a result, the slip detection system can detect the slip of the main rope with higher accuracy.
  • FIG. It is a block diagram of the slip detection system which concerns on Embodiment 1.
  • FIG. It is a block diagram of the main part of the slip detection system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the slip detection by the slip detection system which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the example of the operation of the slip detection system which concerns on Embodiment 1.
  • It is a flowchart which shows the example of the operation of the slip detection system which concerns on Embodiment 1.
  • It is a figure which shows the hardware configuration of the main part of the slip detection system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the slip detection by the slip detection system which concerns on Embodiment 2.
  • FIG. 1 is a configuration diagram of a slip detection system according to the first embodiment.
  • FIG. 1 shows an elevator 2 equipped with a slip detection system 1.
  • the elevator 2 is provided in a building having a plurality of floors.
  • the bottom floor of the building is the first floor.
  • the top floor of the building is the third floor.
  • the building has a second floor between the first and third floors.
  • the hoistway 3 of the elevator 2 penetrates each of a plurality of floors.
  • the landing 4 of the elevator 2 is provided on each of a plurality of floors.
  • the landing 4 leads to the hoistway 3 by the landing entrance / exit.
  • the landing entrance / exit is an opening connecting the landing 4 and the hoistway 3.
  • the elevator 2 includes a sheave 5, a main rope 6, a hoisting machine 7, a car 8, a counterweight 9, a plurality of landing doors 10, a brake 11, a speed governor 12, and a control panel 13. , Equipped with.
  • the sheave 5 is a sheave provided coaxially with the hoisting machine 7.
  • the main rope 6 is wound around the sheave 5.
  • the hoisting machine 7 is provided, for example, at the upper part or the lower part of the hoistway 3.
  • the hoisting machine 7 is a device that drives the main rope 6 by the rotation of the sheave 5.
  • the car 8 is provided on one side of the main rope 6 with respect to the sheave 5 in the hoistway 3.
  • the counterweight 9 is provided on the other side of the main rope 6 with respect to the sheave 5 in the hoistway 3.
  • the car 8 is a device for transporting a user or the like between a plurality of floors of a building by traveling in a vertical direction on a hoistway 3 following a main rope 6 driven by a hoisting machine 7.
  • the car 8 includes a car door 14.
  • the car door 14 is a device that opens and closes the car 8 so that when the car 8 is stopped on any of a plurality of floors, the user can get on and off the car 8 from the landing 4 on the floor.
  • the counterweight 9 is a device that balances the load of the car 8 on the sheave 5 through the main rope 6.
  • the counterweight 9 follows the main rope 6 driven by the hoisting machine 7 and travels on the hoistway 3 in the opposite direction of the car 8.
  • Each of the plurality of landing doors 10 is provided at each landing entrance / exit on the plurality of floors.
  • the landing door 10 is a device that opens and closes in conjunction with the car door 14 so that the user can get on and off the car 8.
  • the brake 11 is a device that brakes the running of the car 8.
  • the brake 11 is provided on the hoisting machine 7.
  • the speed governor 12 is a device that limits the traveling speed of the car 8.
  • the control panel 13 is provided, for example, at the upper or lower part of the hoistway 3.
  • the control panel 13 is a device that controls the operation of the elevator 2.
  • the operation of the elevator 2 includes, for example, traveling of the car 8, opening and closing of the car door 14, and operation of the brake 11.
  • the remote control device 15 is connected to the control panel 13.
  • the remote control device 15 is a device that outputs an operation command to the control panel 13.
  • the command output by the remote control device 15 includes, for example, a command for performing normal operation, a command for performing diagnostic operation, and the like.
  • the normal operation is the normal operation of the elevator 2 for transporting a user or the like between a plurality of floors of a building.
  • the stop position of the car 8 in normal operation is any position of a plurality of floors. Each of the plurality of floors is an example of the stop floor of the elevator 2.
  • the diagnostic operation is an operation for automatically diagnosing the state of the elevator 2.
  • the stop position of the car 8 in the diagnostic operation may be an arbitrary position in the hoistway 3.
  • the slip detection system 1 of the elevator 2 includes an encoder 16, a measuring device 17, a plurality of floor boards 18, a landing sensor 19, and an information processing device 20.
  • the encoder 16 is a device that detects the rotation angle of the hoisting machine 7.
  • the encoder 16 is an example of a rotation angle detection unit.
  • the encoder 16 is provided on the hoisting machine 7.
  • the scale device 17 is a device for measuring the load weight of the car 8.
  • the weighing device 17 is provided, for example, on the upper part of the car 8.
  • Each of the plurality of floor boards 18 is fixed to the hoistway 3.
  • Each of the plurality of floor boards 18 is an example of the first detected body or the second detected body.
  • Each of the plurality of floor boards 18 is provided below the landing entrance / exit, for example, in each of the plurality of floors of the building.
  • the landing sensor 19 is provided in the car 8.
  • the landing sensor 19 is provided, for example, at the lower part of the car 8.
  • the landing sensor 19 is an example of a position detection unit.
  • the landing sensor 19 is a device that detects that the car 8 is stopped on any of a plurality of floors.
  • the information processing device 20 is a device that processes information related to slip detection.
  • the information processing device 20 is provided, for example, at the upper or lower part of the hoistway 3.
  • the information processing device 20 is connected to the control panel 13.
  • the information processing device 20 includes a storage unit 21, a calculation unit 22, a determination unit 23, and a command unit 24.
  • the storage unit 21 is a part that stores information related to slip detection.
  • the information stored in the storage unit 21 includes the rotation angle of the hoisting machine 7.
  • the storage unit 21 acquires, for example, the rotation angle of the hoisting machine 7 detected by the encoder 16.
  • the calculation unit 22 is a part that calculates information related to slip detection.
  • the information calculated by the calculation unit 22 includes the amount of slip between the main rope 6 and the sheave 5.
  • the calculation unit 22 calculates the slip amount based on, for example, the rotation angle of the hoisting machine 7 stored in the storage unit 21.
  • the determination unit 23 is a unit that determines the slip abnormality detected based on the information calculated by the calculation unit 22.
  • the command unit 24 is a part that outputs an operation command related to slip detection.
  • the command unit 24 causes the elevator 2 to perform an operation related to slip detection by, for example, outputting a command to the control panel 13.
  • FIG. 2 is a block diagram of a main part of the slip detection system according to the first embodiment.
  • a car 8 in a state of being stopped on one of a plurality of floors is shown.
  • the left-right direction of the car 8 is a direction perpendicular to the paper surface.
  • the floor plate 18 is, for example, a metal plate.
  • the floor board 18 is oriented in the horizontal direction in the thickness direction.
  • the floor board 18 is oriented in the thickness direction in the left-right direction of the car 8.
  • the floor board 18 is arranged outside, for example, in the left-right direction from the outer surface of the car 8 so as not to interfere with the car 8 traveling on the hoistway 3.
  • the landing sensor 19 includes, for example, an electromagnetic proximity sensor that detects the proximity of the floor board 18.
  • the landing sensor 19 has a detection state.
  • the detection state of the landing sensor 19 is an ON state or an OFF state.
  • the detection state of the landing sensor 19 is ON when the landing sensor 19 is in the detection area.
  • the detection state of the landing sensor 19 is ON when the landing sensor 19 is not in the detection area.
  • the detection area is the area at the height of the floor board 18.
  • the detection area is, for example, the landing range of the floor on which the floor board 18 is provided.
  • the detection area is, for example, an area between the upper end of the floor board 18 and the lower end of the floor board 18.
  • the boundary of the detection area is a position corresponding to the height of the upper end or the lower end of the floor board 18.
  • the detection state of the landing sensor 19 is switched when the landing sensor 19 passes through the boundary of the detection area.
  • the detection state is switched between an ON state and an OFF state.
  • FIG. 3 is a diagram showing an example of slip detection by the slip detection system according to the first embodiment.
  • the horizontal axis of the graph represents time.
  • the vertical axis of the graph represents the position of the car 8.
  • the remote control device 15 outputs a command for performing diagnostic operation to the control panel 13.
  • the elevator 2 starts the diagnostic operation.
  • the elevator 2 performs a slip detection operation.
  • FIG. 3 shows the movement of the car 8 in the slip detection operation.
  • the control panel 13 notifies the information processing device 20 of the start of the slip detection operation.
  • the remote control device 15 may output a command to start the slip detection operation to the information processing device 20.
  • the command unit 24 of the information processing device 20 outputs a slip detection operation command to the control panel 13.
  • the command unit 24 outputs a command to the control panel 13 to keep the car door 14 closed while the slip detection operation is being performed.
  • the control panel 13 keeps the car door 14 closed during the slip detection operation according to the input command.
  • the control panel 13 causes the car 8 to perform the operation related to the slip detection operation according to, for example, a command input from the command unit 24.
  • the car 8 is stopped on the first floor at the start of the slip detection operation.
  • the slip detection operation the car 8 continuously travels from the first floor to the third floor. After that, the car 8 runs continuously from the 3rd floor to the 1st floor. After that, the car 8 runs from the first floor to the second floor.
  • the first floor is an example of the first stop floor.
  • the floor board 18 on the first floor is an example of the first detected object.
  • the height detection area of the floor board 18 on the first floor is an example of the first detection area.
  • the boundary of the detection area corresponding to the height of the upper end of the floor board 18 on the first floor is an example of the first boundary.
  • the third floor is an example of the second stop floor.
  • the floor board 18 on the third floor is an example of the second detected object.
  • the height detection area of the floor board 18 on the third floor is an example of the second detection area.
  • the boundary of the detection area corresponding to the height of the lower end of the floor board 18 on the third floor is an example of the second boundary.
  • the information processing device 20 detects slippage of the elevator 2 as follows, for example.
  • the car 8 starts running ascending from the 1st floor to the 3rd floor.
  • the landing sensor 19 passes through the boundary of the detection area corresponding to the height of the upper end of the floor board 18 on the first floor.
  • the storage unit 21 stores the rotation angle ⁇ 1 of the hoisting machine 7 detected by the encoder 16 at this time as the first rotation angle.
  • car 8 stops running on the 3rd floor.
  • the car 8 stopped at the d point then starts traveling in which the traveling direction is reversed from ascending to descending at the e point.
  • the position of the car 8 at point d is a position above the boundary of the detection area corresponding to the height of the upper end of the floor board 18 on the first floor.
  • the position of the car 8 at point d is an example of the first inverted position.
  • the car 8 stops running on the first floor.
  • the car 8 stopped at the g point then starts traveling at the h point with the traveling direction reversed from descending to ascending.
  • the position of the car 8 at the point g is a position below the boundary of the detection area corresponding to the height of the upper end of the floor board 18 on the first floor.
  • the position of the car 8 at point g is an example of the second inverted position.
  • the landing sensor 19 passes through the boundary of the detection region corresponding to the height of the upper end of the floor board 18 on the first floor.
  • the storage unit 21 stores the rotation angle ⁇ 2 of the hoisting machine 7 detected by the encoder 16 at this time as the second rotation angle.
  • the calculation unit 22 calculates the amount of slip between the main rope 6 and the sheave 5 based on the difference between the first rotation angle and the second rotation angle. For example, the calculation unit 22 may use the difference between the first rotation angle and the second rotation angle as the amount of slip between the main rope 6 and the sheave 5.
  • the command unit 24 outputs a command for displaying the calculated slip amount to, for example, the control panel 13.
  • the control panel 13 displays, for example, a slip amount on a display device of an elevator 2 (not shown).
  • the display device of the elevator 2 is, for example, a display unit of the control panel 13, a car display panel, a landing display panel, or the like.
  • the command unit 24 may output a command for notifying the slip amount to the remote control device 15.
  • the remote control device 15 notifies, for example, the manager of the elevator 2 in a remote place of the slip amount.
  • the determination unit 23 determines that the slip diagnosis result is abnormal.
  • the determination unit 23 determines that the slip diagnosis result is normal.
  • the threshold value of the slip amount is set in advance as a value larger than the difference in the rotation angle that can be caused by the elongation of the main rope 6 due to the difference in weight between the car 8 and the counterweight 9.
  • the command unit 24 outputs a command for displaying the determined slip diagnosis result to, for example, the control panel 13.
  • the command unit 24 may output a command for notifying the determined slip diagnosis result to, for example, the remote control device 15.
  • FIGS. 4 and 5 are flowcharts showing an example of the operation of the slip detection system according to the first embodiment.
  • FIG. 4 shows an example of the operation of the slip detection system 1 related to the entire slip detection.
  • step S1 the slip detection system 1 calculates the slip amount. After that, the operation of the slip detection system 1 proceeds to step S2.
  • step S2 the command unit 24 outputs a command for displaying the calculated slip amount. After that, the operation of the slip detection system 1 proceeds to step S3.
  • step S3 the determination unit 23 determines whether the calculated slip amount exceeds the threshold value.
  • the determination result is Yes, the operation of the slip detection system 1 proceeds to step S4.
  • the determination result is No, the operation of the slip detection system 1 proceeds to step S5.
  • step S4 the determination unit 23 determines that the slip diagnosis result is abnormal. After that, the operation of the slip detection system 1 proceeds to step S6.
  • step S5 the determination unit 23 determines that the slip diagnosis result is normal. After that, the operation of the slip detection system 1 proceeds to step S6.
  • step S6 the command unit 24 outputs a command for displaying the determined diagnosis result. After that, the operation of the slip detection system 1 ends.
  • FIG. 5 shows an example of the operation of the slip detection system 1 related to the calculation of the slip amount.
  • step S11 the command unit 24 outputs a command to start the running of the car 8 stopped on the first stop floor. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S12.
  • step S12 the storage unit 21 stores, for example, the first rotation angle detected by the encoder 16. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S13.
  • step S13 the command unit 24 outputs a command to stop the car 8 on the second stop floor. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S14.
  • step S14 the command unit 24 outputs a command to the car 8 stopped on the second stop floor to start running with the running direction reversed. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S15.
  • step S15 the command unit 24 outputs a command to stop the car 8 on the first stop floor. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S16.
  • step S16 the command unit 24 outputs a command to the car 8 stopped on the first stop floor to start running with the running direction reversed. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S17.
  • step S17 the storage unit 21 stores, for example, the second rotation angle detected by the encoder 16. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S18.
  • step S18 the command unit 24 outputs a command to stop the car 8. After that, the operation of the slip detection system 1 related to the calculation of the slip amount ends.
  • the slip detection system 1 includes a rotation angle detection unit, a first detected body, a position detection unit, a storage unit 21, and a calculation unit 22.
  • the main rope 6 of the elevator 2 is wound around the sheave 5.
  • the hoisting machine 7 drives the main rope 6 by the rotation of the sheave 5.
  • the rotation angle detection unit detects the rotation angle of the hoisting machine 7.
  • the car 8 is provided on one side of the main rope 6 with respect to the sheave 5.
  • the counterweight 9 is provided on the other side of the main rope 6 with respect to the sheave 5.
  • the first detected body is fixed to the hoistway 3 on which the car 8 and the counterweight 9 travel.
  • the position detection unit is provided in the car 8.
  • the position detection unit switches the detection state depending on whether or not it is in the first detection region at the height of the first detected body.
  • the storage unit 21 sets the rotation angle of the hoisting machine 7 detected by the rotation angle detection unit when the detection state is switched by the position detection unit passing through the first boundary of the first detection region due to the traveling of the car 8. Store as one rotation angle.
  • the storage unit 21 rotates the hoisting machine 7 detected by the rotation angle detection unit when the detection state is switched by the position detection unit passing through the first boundary due to the traveling of the car 8 after the first rotation angle is detected.
  • the angle is stored as the second rotation angle.
  • the calculation unit 22 calculates the amount of slip between the main rope 6 and the sheave 5 based on the difference between the first rotation angle and the second rotation angle stored by the storage unit 21.
  • the first rotation angle and the second rotation angle are rotation angles detected at the boundary of the detection area.
  • the boundary of the detection area has no length in the traveling direction of the car 8. Therefore, the slip detection system 1 can acquire the first rotation angle and the second rotation angle used for slip detection with high accuracy.
  • the position of the position detection unit when the first rotation angle is detected is the same as the position of the position detection unit when the second rotation angle is detected. Therefore, the difference between the first rotation angle and the second rotation angle directly reflects the slip between the main rope 6 and the sheave 5.
  • the slip detection system 1 can detect the slip of the main rope 6 with higher accuracy.
  • the slip detection system 1 calculates the slip amount using a single object to be detected. Therefore, the slip detection system 1 is not affected by the relative difference in the installation state between the plurality of objects to be detected in the calculation of the slip amount.
  • calculation unit 22 is based on the difference between the first rotation angle detected when the elevator 2 is performing the diagnostic operation and the second rotation angle detected when the elevator 2 is performing the diagnostic operation. To calculate the amount of slip.
  • the elevator 2 In the diagnostic operation, the elevator 2 is not used by the user. Therefore, in calculating the slip amount, there is no uncertainty due to the usage status of the user.
  • the slip amount is calculated based on the difference of the second rotation angle detected during the running.
  • the slip amount is calculated under the same conditions as the conditions such as the running speed of the car 8 when detecting the first rotation angle and the conditions such as the running speed of the car 8 when detecting the second rotation angle. Therefore, even when the detection by the position detection unit depends on the traveling speed of the car 8, the error due to the difference in the traveling speed of the car 8 can be suppressed in the calculation of the slip amount.
  • the slip amount is calculated based on the difference in the second rotation angle detected during traveling.
  • the amount of slip is calculated under the condition that the distance traveled by the car 8 continuously is the longest. The longer the mileage of the car 8, the longer the length of the main rope 6 driven by the sheave 5. At this time, the absolute value of the slip amount becomes large. Therefore, the calculation unit 22 can calculate the slip amount with higher accuracy.
  • the calculation unit 22 detects the first rotation angle detected when the car 8 is traveling in either the ascending or descending traveling direction, and is detected when the car 8 is traveling in the traveling direction.
  • the slip amount is calculated based on the difference in the second rotation angle.
  • the slip amount is calculated assuming that the traveling direction of the car 8 when detecting the first rotation angle and the traveling direction of the car 8 when detecting the second rotation angle are the same. Therefore, even when the detection by the position detection unit depends on the traveling direction of the car 8, the error due to the difference in the traveling direction of the car 8 can be suppressed in the calculation of the slip amount.
  • the calculation unit 22 calculates the slip amount based on the difference between the first rotation angle and the second rotation angle detected after the traveling direction of the car 8 is reversed exactly twice after the first rotation angle is detected. To do.
  • the car 8 that does not move in a circular manner requires two or more reversals of the traveling direction in order to pass through the same position of the hoistway 3 in the same traveling direction. Therefore, the slip detection system 1 can minimize the reversal of the traveling direction in order to suppress an error due to a difference in the traveling direction of the car 8 in calculating the slip amount.
  • the slip detection system 1 includes a command unit 24.
  • the command unit 24 outputs a command for keeping the car door 14 of the car 8 closed from the time when the first rotation angle is detected until the second rotation angle is detected.
  • the user or maintenance staff does not get inside the car 8 while the car 8 is running in the slip detection. Therefore, the change in the load weight of the car 8 during the running of the car 8 in the slip detection is prevented.
  • the slip detection system 1 includes a determination unit 23.
  • the determination unit 23 determines as an abnormality when the slip amount calculated by the calculation unit 22 exceeds a preset threshold value.
  • the slip detection system 1 can determine that the decrease in traction is abnormal depending on the amount of slip.
  • the decrease in traction is caused by, for example, wear of the groove of the sheave 5 and adhesion of foreign matter to the main rope 6.
  • the calculation unit 22 slips the amount of slip based on the difference between the first rotation angle and the second rotation angle detected after the traveling direction of the car 8 is reversed between the stop floors after the first rotation angle is detected. May be calculated.
  • at least one of the first rotation angle and the second rotation angle is the rotation angle detected when the car 8 travels from the position between the first floor and the second floor to the position between the second floor and the third floor. You may.
  • the slip detection system 1 can detect local slip of the main rope 6, for example. At this time, the slip detection system 1 can be used to identify a location where slip occurs, for example, in the main rope 6.
  • the rotation angle detection unit may be another device of the encoder 16.
  • the rotation angle detection unit may be a device that detects the rotation angle by, for example, observing the feed amount of the main rope 6.
  • the rotation angle detection unit may be a device that calculates the rotation angle from the current value of the hoisting machine 7.
  • the detected object and the position detecting unit may be other devices of the floor board 18 and the landing sensor 19.
  • the position detection unit may be a device that detects an object to be detected based on, for example, an optical type, a capacitance type, an ultrasonic type, or another principle.
  • the object to be detected may be provided at a position between adjacent floors.
  • the slip detection system 1 can detect the slip amount by running the car 8 between adjacent floors.
  • the position detection unit may be provided on the balance weight 9.
  • a part or all of the information processing device 20 may be provided in hardware integrated with the control panel 13.
  • a part or all of the information processing device 20 may be provided in hardware integrated with the remote control device 15.
  • Some or all of the functions of the information processing device 20 may be realized by, for example, the control panel 13 or the remote control device 15.
  • a machine room may be provided in the building.
  • the hoisting machine 7, the control panel 13, and the information processing device 20 may be provided in the machine room.
  • the elevator 2 may be a 1: 1 roping, 2: 1 roping, or other roping elevator.
  • FIG. 6 is a diagram showing a hardware configuration of a main part of the slip detection system according to the first embodiment.
  • Each function of the slip detection system 1 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 1b and at least one memory 1c.
  • the processing circuit may include at least one dedicated hardware 1a with or as a substitute for the processor 1b and the memory 1c.
  • each function of the slip detection system 1 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 1c. The processor 1b realizes each function of the slip detection system 1 by reading and executing the program stored in the memory 1c.
  • the processor 1b is also referred to as a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • the memory 1c is composed of, for example, a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like.
  • the processing circuit is provided with dedicated hardware 1a, the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each function of the slip detection system 1 can be realized by a processing circuit. Alternatively, each function of the slip detection system 1 can be collectively realized by a processing circuit. For each function of the slip detection system 1, a part may be realized by the dedicated hardware 1a, and the other part may be realized by software or firmware. In this way, the processing circuit realizes each function of the slip detection system 1 by hardware 1a, software, firmware, or a combination thereof.
  • Embodiment 2 In the second embodiment, the differences from the examples disclosed in the first embodiment will be described in detail. As for the features not described in the second embodiment, any of the features of the examples disclosed in the first embodiment may be adopted.
  • FIG. 7 is a diagram showing an example of slip detection by the slip detection system according to the second embodiment.
  • the horizontal axis of the graph represents time.
  • the vertical axis of the graph represents the position of the car 8.
  • the slip detection system 1 detects slip when the elevator 2 is in normal operation.
  • the slip detection system 1 causes the elevator 2 to perform a slip detection operation, for example, when it is determined that the user is not in the car 8.
  • the slip detection system 1 determines whether or not the user is in the car 8 based on, for example, the load weight of the car 8 measured by the weighing device 17.
  • the slip detection system 1 may determine whether or not the user is in the car 8 based on, for example, an image taken by a camera provided in the car 8.
  • the car 8 runs in the same manner as the example shown in the first embodiment.
  • the information processing device 20 detects slippage of the elevator 2 as follows, for example.
  • the storage unit 21 stores the rotation angle ⁇ 1 of the hoisting machine 7 detected by the encoder 16 at this time as the first rotation angle.
  • the landing sensor 19 passes through the boundary of the detection area corresponding to the height of the lower end of the floor board 18 on the second floor.
  • the storage unit 21 stores the rotation angle ⁇ 2 of the hoisting machine 7 detected by the encoder 16 at this time as the second rotation angle.
  • the calculation unit 22 calculates the slip amount based on the difference between the first rotation angle and the second rotation angle.
  • the scale device 17 monitors whether the fluctuation of the loaded weight being measured is within a preset range.
  • the range of fluctuation of the load weight is set to a range smaller than the fluctuation of the load weight when the user gets on and off the car 8, for example.
  • the range of variation in the load weight may be set to a range in which the influence on the amount of slip between the main rope 6 and the sheave 5 can be ignored, for example.
  • the scale device 17 notifies the information processing device 20 of the fluctuation of the load weight. At this time, the information processing device 20 stops calculating the slip amount.
  • the slip detection system 1 includes a scale device 17.
  • the scale device 17 measures the load weight of the car 8.
  • the calculation unit 22 slips when the fluctuation of the load weight measured by the weighing device 17 is within a preset range between the detection of the first rotation angle and the detection of the second rotation angle. Is calculated.
  • the amount of slip between the main rope 6 and the sheave 5 changes depending on the load weight of the car 8.
  • the calculation unit 22 calculates the slip amount when the change in the load weight is small during the operation for calculating the slip amount. This prevents the occurrence of an error in the amount of slippage due to a change in the load weight of the car 8.
  • the first rotation angle and the second rotation angle may be rotation angles detected when the car 8 travels in different sections on the hoistway 3.
  • the slip detection system 1 may stop the operation.
  • the calculation unit 22 can calculate the slip amount by using, for example, the information on the rotation angle that has already been acquired. As a result, the slip detection system 1 can calculate the slip amount on more occasions.
  • Embodiment 3 In the third embodiment, the differences from the examples disclosed in the first embodiment or the second embodiment will be described in detail. As for the features not described in the third embodiment, any of the features of the examples disclosed in the first embodiment or the second embodiment may be adopted.
  • FIG. 8 is a diagram showing an example of slip detection by the slip detection system according to the third embodiment.
  • the horizontal axis of the graph represents time.
  • the vertical axis of the graph represents the position of the car 8.
  • the car 8 runs in the same manner as the example shown in the first embodiment.
  • the information processing device 20 detects slippage of the elevator 2 as follows, for example.
  • the first rotation angle is detected at point b.
  • the storage unit 21 stores the rotation angle ⁇ 3 of the hoisting machine 7 detected by the encoder 16 at this time as the third rotation angle.
  • the calculation unit 22 calculates the slip amount based on the difference between the first rotation angle and the second rotation angle.
  • the calculation unit 22 calculates the reference mileage.
  • the reference mileage is the distance that the car 8 travels on the hoistway 3 in detecting the amount of slippage.
  • the calculation unit 22 calculates the reference mileage based on, for example, the difference between the first rotation angle and the third rotation angle.
  • the calculation unit 22 may calculate the reference mileage based on the difference between the second rotation angle and the third rotation angle.
  • the calculation unit 22 may calculate the reference mileage based on the difference between the average value of the first rotation angle and the second rotation angle and the third rotation angle.
  • the calculation unit 22 calculates the ratio of the slip amount divided by the reference mileage.
  • the determination unit 23 determines that the slip diagnosis result is abnormal.
  • the determination unit 23 determines that the slip diagnosis result is normal.
  • the threshold value of the ratio obtained by dividing the slip amount by the reference mileage is preset as a value larger than the value due to the difference in the rotation angle that can be caused by the elongation of the main rope 6 due to the difference in weight between the car 8 and the counterweight 9. ..
  • the slip detection system 1 includes a determination unit 23.
  • the determination unit 23 determines as an abnormality when the ratio of the slip amount to the reference mileage exceeds a preset threshold value.
  • the reference mileage is the distance that the car 8 travels on the hoistway 3 in detecting the amount of slippage.
  • the calculation unit 22 calculates the ratio by dividing the slip amount by the reference mileage.
  • the difference between the first rotation angle and the second rotation angle depends on the distance traveled by the car 8.
  • the difference between the first rotation angle and the second rotation angle regardless of slippage also becomes large.
  • the diagnosis result is determined by the ratio of the difference between the first rotation angle and the second rotation angle standardized by the reference mileage, it is possible to prevent an erroneous diagnosis of an abnormality.
  • the slip detection system 1 includes a second detected body.
  • the second detected body is fixed above or below the first detected body in the hoistway 3.
  • the position detection unit switches the detection state depending on whether or not it is in the second detection region at the height of the second detected body.
  • the storage unit 21 switches the detection state when the position detection unit passes through the second boundary of the second detection region due to the traveling of the car 8 after the first rotation angle is detected and before the second rotation angle is detected.
  • the rotation angle of the hoisting machine 7 sometimes detected by the rotation angle detection unit is stored as a third rotation angle.
  • the calculation unit 22 calculates the distance between the first boundary and the second boundary as the reference mileage based on the first rotation angle or the second rotation angle and the third rotation angle.
  • the reference mileage is measured by the running of the car 8 in slip detection. Therefore, the calculation unit 22 can easily calculate the ratio of the slip amount standardized by the reference mileage.
  • the reference mileage can be set sufficiently large with respect to the amount of slippage. Therefore, with respect to the reference mileage itself used for standardization, the relative fluctuation due to slippage can be reduced.
  • the reference mileage may be calculated by doubling the distance between the first boundary and the second boundary in consideration of the round trip of the car 8 in the hoistway 3.
  • the information processing device 20 may detect slippage of the elevator 2 as follows, for example.
  • the first rotation angle is detected at point b.
  • the storage unit 21 stores the rotation angle ⁇ 4 of the hoisting machine 7 detected by the encoder 16 at the d point as the fourth rotation angle.
  • the rotation angle ⁇ 4 is, for example, a rotation angle when the increase and decrease of the count of the encoder 16 are reversed.
  • the storage unit 21 stores the rotation angle ⁇ 5 of the hoisting machine 7 detected by the encoder 16 at the g point as the fifth rotation angle.
  • the rotation angle ⁇ 5 is, for example, a rotation angle when the decrease and increase of the count of the encoder 16 are reversed.
  • the calculation unit 22 calculates the slip amount based on the difference between the first rotation angle and the second rotation angle.
  • the calculation unit 22 calculates the reference mileage based on, for example, the difference between the fourth rotation angle and the fifth rotation angle.
  • the calculation unit 22 calculates the ratio of the slip amount divided by the reference mileage.
  • the determination unit 23 determines that the slip diagnosis result is abnormal. When the calculated ratio does not exceed the threshold value, the determination unit 23 determines that the slip diagnosis result is normal.
  • the storage unit 21 determines the rotation angle of the hoisting machine 7 detected by the rotation angle detection unit when the traveling direction of the car 8 is reversed at the first inversion position after the first rotation angle is detected. Store as 4 rotation angles.
  • the storage unit 21 is a hoisting machine 7 detected by the rotation angle detection unit when the traveling direction of the car 8 is reversed at the second inversion position after the fourth rotation angle is detected and before the second rotation angle is detected.
  • the rotation angle of is stored as the fifth rotation angle.
  • the first inversion position is a position on one side of the first boundary.
  • the second inversion position is the position on the other side of the first boundary.
  • the calculation unit 22 calculates the distance between the first reversing position and the second reversing position as a reference traveling distance based on the fourth rotation angle and the fifth rotation angle.
  • the reference mileage is calculated by the position where the traveling direction of the car 8 is reversed. At the inverted position, the car 8 temporarily stops. Therefore, in calculating the reference mileage, there is no error due to the traveling speed of the car 8. As a result, the calculation unit 22 can calculate the ratio of the difference between the first rotation angle and the second rotation angle standardized by the reference mileage with higher accuracy.
  • the slip detection system according to the present invention can be applied to an elevator.
  • 1 slip detection system 2 elevator, 3 hoistway, 4 landing, 5 rope wheel, 6 main rope, 7 hoisting machine, 8 car, 9 balance weight, 10 landing door, 11 brake, 12 speed control device, 13 control panel , 14 car door, 15 remote operation device, 16 encoder, 17 scale device, 18 floor board, 19 landing sensor, 20 information processing device, 21 storage unit, 22 calculation unit, 23 judgment unit, 24 command unit, 1a hardware , 1b processor, 1c memory

Abstract

Provided is a slippage detection system that makes it possible to detect slippage of a main rope with higher accuracy. The slippage detection system (1) is provided with a rotation angle detection unit (16), a first detected body (18), a position detection unit (19), a storage unit (21), and a calculation unit (22). When a detection state is switched by the position detection unit (19) passing a first boundary of a first detection area as a result of travel of a car (8), the rotation angle of a hoist (7) detected by the rotation angle detection unit (16) is stored by the storage unit (21) as a first rotation angle. When the detection state is switched by the position detection unit (19) passing the first boundary of the first detection area as a result of travel of the car (8) after detection of the first rotation angle, the rotation angle of the hoist (7) detected by the rotation angle detection unit (16) is stored by the storage unit (21) as a second rotation angle. The calculation unit (22) uses the difference between the first rotation angle and the second rotation angle stored in the storage unit (21) as a basis to calculate the amount of slippage between a main rope (6) and a sheave (5).

Description

エレベーターの滑り検出システムElevator slip detection system
 本発明は、エレベーターの滑り検出システムに関する。 The present invention relates to an elevator slip detection system.
 特許文献1にエレベーターシステムの例が記載されている。エレベーターシステムは、基準階床から所定の階床の階床板が検出されるまでの間に出力されたパルスエンコーダーの信号に基づいて主索の滑りを検出する。 An example of an elevator system is described in Patent Document 1. The elevator system detects slippage of the main rope based on the signal of the pulse encoder output from the reference floor to the detection of the floor board of the predetermined floor.
日本特開2014-43291号公報Japanese Patent Application Laid-Open No. 2014-43291
 しかしながら、特許文献1に記載のエレベーターシステムにおいて、かごは、基準階床から走行する。このため、かごの基準の位置について、かごの走行方向における階床板の長さの分の誤差が生じうる。 However, in the elevator system described in Patent Document 1, the car runs from the reference floor. Therefore, there may be an error in the reference position of the car by the length of the floor board in the traveling direction of the car.
 本発明は、このような課題を解決するためになされた。本発明の目的は、より高い精度で主索の滑りを検出できる滑り検出システムを提供することである。 The present invention has been made to solve such a problem. An object of the present invention is to provide a slip detection system capable of detecting slip of a main rope with higher accuracy.
 本発明に係るエレベーターの滑り検出システムは、エレベーターの主索が巻き掛けられている綱車の回転によって主索を駆動する巻上機の回転角を検出する回転角検出部と、綱車に対して主索の一方側に設けられるかごおよび綱車に対して主索の他方側に設けられる釣合い錘が走行する昇降路に固定される第1被検知体と、かごまたは釣合い錘に設けられ、第1被検知体の高さにおける第1検知領域にあるか否かによって検知状態が切り替わる位置検出部と、かごの走行により位置検出部が第1検知領域の第1境界を通過することで検知状態が切り替わるときに回転角検出部が検出する巻上機の回転角を第1回転角として記憶し、第1回転角が検出された後にかごの走行により位置検出部が第1境界を通過することで検知状態が切り替わるときに回転角検出部が検出する巻上機の回転角を第2回転角として記憶する記憶部と、記憶部が記憶した第1回転角および第2回転角の差分に基づいて主索および綱車の間の滑り量を算出する算出部と、を備える。 The slip detection system of the elevator according to the present invention has a rotation angle detection unit that detects the rotation angle of the hoisting machine that drives the main rope by the rotation of the rope wheel around which the main rope of the elevator is wound, and the rope wheel. The first body to be detected is fixed to the hoistway on which the balance weight provided on the other side of the main rope runs with respect to the car and the balance weight provided on one side of the main rope, and the cage or the balance weight is provided. Detected by the position detection unit whose detection state is switched depending on whether or not it is in the first detection area at the height of the first detected object, and by the position detection unit passing through the first boundary of the first detection area when the car is running. The rotation angle of the hoist detected by the rotation angle detection unit when the state is switched is stored as the first rotation angle, and after the first rotation angle is detected, the position detection unit passes through the first boundary due to the traveling of the car. As a result, the difference between the storage unit that stores the rotation angle of the hoist detected by the rotation angle detection unit when the detection state is switched as the second rotation angle and the first rotation angle and the second rotation angle stored by the storage unit. A calculation unit for calculating the amount of slip between the main rope and the rope wheel based on the main rope and the rope wheel is provided.
 本発明によれば、滑り検出システムは、回転角検出部と、第1被検知体と、位置検出部と、記憶部と、算出部と、を備える。エレベーターの主索は、綱車に巻き掛けられている。巻上機は、綱車の回転によって主索を駆動する。回転角検出部は、巻上機の回転角を検出する。かごは、綱車に対して主索の一方側に設けられる。釣合い錘は、綱車に対して主索の他方側に設けられる。第1被検知体は、かごおよび釣合い錘が走行する昇降路に固定される。位置検出部は、かごまたは釣合い錘に設けられる。位置検出部は、第1被検知体の高さにおける第1検知領域にあるか否かによって検知状態が切り替わる。記憶部は、かごの走行により位置検出部が第1検知領域の第1境界を通過することで検知状態が切り替わるときに回転角検出部が検出する巻上機の回転角を、第1回転角として記憶する。記憶部は、第1回転角が検出された後にかごの走行により位置検出部が第1境界を通過することで検知状態が切り替わるときに回転角検出部が検出する巻上機の回転角を、第2回転角として記憶する。算出部は、記憶部が記憶した第1回転角および第2回転角の差分に基づいて、主索および綱車の間の滑り量を算出する。これにより、滑り検出システムは、より高い精度で主索の滑りを検出できる。 According to the present invention, the slip detection system includes a rotation angle detection unit, a first detected body, a position detection unit, a storage unit, and a calculation unit. The main rope of the elevator is wrapped around a sheave. The hoisting machine drives the main rope by the rotation of the sheave. The rotation angle detection unit detects the rotation angle of the hoisting machine. The car is provided on one side of the main rope with respect to the sheave. The counterweight is provided on the other side of the main rope with respect to the sheave. The first detected body is fixed to the hoistway on which the car and the counterweight run. The position detection unit is provided on the car or the counterweight. The position detection unit switches the detection state depending on whether or not it is in the first detection region at the height of the first detected body. The storage unit determines the rotation angle of the hoisting machine detected by the rotation angle detection unit when the detection state is switched by the position detection unit passing through the first boundary of the first detection area due to the traveling of the car. Remember as. The storage unit determines the rotation angle of the hoisting machine detected by the rotation angle detection unit when the detection state is switched by the position detection unit passing through the first boundary due to the traveling of the car after the first rotation angle is detected. It is stored as the second rotation angle. The calculation unit calculates the amount of slip between the main rope and the sheave based on the difference between the first rotation angle and the second rotation angle stored in the storage unit. As a result, the slip detection system can detect the slip of the main rope with higher accuracy.
実施の形態1に係る滑り検出システムの構成図である。It is a block diagram of the slip detection system which concerns on Embodiment 1. FIG. 実施の形態1に係る滑り検出システムの要部の構成図である。It is a block diagram of the main part of the slip detection system which concerns on Embodiment 1. FIG. 実施の形態1に係る滑り検出システムによる滑り検出の例を示す図である。It is a figure which shows the example of the slip detection by the slip detection system which concerns on Embodiment 1. FIG. 実施の形態1に係る滑り検出システムの動作の例を示すフローチャートである。It is a flowchart which shows the example of the operation of the slip detection system which concerns on Embodiment 1. 実施の形態1に係る滑り検出システムの動作の例を示すフローチャートである。It is a flowchart which shows the example of the operation of the slip detection system which concerns on Embodiment 1. 実施の形態1に係る滑り検出システムの主要部のハードウェア構成を示す図である。It is a figure which shows the hardware configuration of the main part of the slip detection system which concerns on Embodiment 1. FIG. 実施の形態2に係る滑り検出システムによる滑り検出の例を示す図である。It is a figure which shows the example of the slip detection by the slip detection system which concerns on Embodiment 2. 実施の形態3に係る滑り検出システムによる滑り検出の例を示す図である。It is a figure which shows the example of the slip detection by the slip detection system which concerns on Embodiment 3.
 本発明を実施するための形態について添付の図面を参照しながら説明する。各図において、同一または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。 The embodiment for carrying out the present invention will be described with reference to the attached drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and duplicate description will be appropriately simplified or omitted.
 実施の形態1.
 図1は、実施の形態1に係る滑り検出システムの構成図である。
Embodiment 1.
FIG. 1 is a configuration diagram of a slip detection system according to the first embodiment.
 図1において、滑り検出システム1を備えるエレベーター2が示される。エレベーター2は、複数の階床を有する建築物に設けられる。この例において、建築物の最下階は1階である。この例において、建築物の最上階は3階である。建築物は、1階および3階の間に2階を有する。建築物において、エレベーター2の昇降路3は、複数の階床の各々を貫く。建築物において、エレベーター2の乗場4は、複数の階床の各々に設けられる。乗場4は、乗場出入口によって昇降路3に通じる。乗場出入口は、乗場4と昇降路3とを繋ぐ開口である。 FIG. 1 shows an elevator 2 equipped with a slip detection system 1. The elevator 2 is provided in a building having a plurality of floors. In this example, the bottom floor of the building is the first floor. In this example, the top floor of the building is the third floor. The building has a second floor between the first and third floors. In a building, the hoistway 3 of the elevator 2 penetrates each of a plurality of floors. In the building, the landing 4 of the elevator 2 is provided on each of a plurality of floors. The landing 4 leads to the hoistway 3 by the landing entrance / exit. The landing entrance / exit is an opening connecting the landing 4 and the hoistway 3.
 エレベーター2は、綱車5と、主索6と、巻上機7と、かご8と、釣合い錘9と、複数の乗場扉10と、ブレーキ11と、調速器12と、制御盤13と、を備える。綱車5は、巻上機7と同軸に設けられるシーブである。主索6は、綱車5に巻き掛けられる。巻上機7は、例えば昇降路3の上部または下部に設けられる。巻上機7は、綱車5の回転によって主索6を駆動する装置である。かご8は、昇降路3において、綱車5に対して主索6の一方側に設けられる。釣合い錘9は、昇降路3において、綱車5に対して主索6の他方側に設けられる。かご8は、巻上機7に駆動される主索6に追従して昇降路3を鉛直方向に走行することで、建築物の複数の階床の間で利用者などを輸送する装置である。かご8は、かご扉14を備える。かご扉14は、かご8が複数の階床のいずれかに停止しているときに、利用者が当該階床の乗場4からかご8に乗降しうるように開閉する装置である。釣合い錘9は、主索6を通じて綱車5にかかるかご8の荷重との釣合いを取る装置である。釣合い錘9は、巻上機7に駆動される主索6に追従して昇降路3をかご8の反対方向に走行する。複数の乗場扉10の各々は、複数の階床の各々の乗場出入口に設けられる。乗場扉10は、利用者がかご8に乗降しうるようにかご扉14に連動して開閉する装置である。ブレーキ11は、かご8の走行を制動する装置である。ブレーキ11は、巻上機7に設けられる。調速器12は、かご8の走行の速度を制限する装置である。制御盤13は、例えば昇降路3の上部または下部に設けられる。制御盤13は、エレベーター2の動作を制御する装置である。エレベーター2の動作は、例えばかご8の走行、かご扉14の開閉、およびブレーキ11の作動などを含む。 The elevator 2 includes a sheave 5, a main rope 6, a hoisting machine 7, a car 8, a counterweight 9, a plurality of landing doors 10, a brake 11, a speed governor 12, and a control panel 13. , Equipped with. The sheave 5 is a sheave provided coaxially with the hoisting machine 7. The main rope 6 is wound around the sheave 5. The hoisting machine 7 is provided, for example, at the upper part or the lower part of the hoistway 3. The hoisting machine 7 is a device that drives the main rope 6 by the rotation of the sheave 5. The car 8 is provided on one side of the main rope 6 with respect to the sheave 5 in the hoistway 3. The counterweight 9 is provided on the other side of the main rope 6 with respect to the sheave 5 in the hoistway 3. The car 8 is a device for transporting a user or the like between a plurality of floors of a building by traveling in a vertical direction on a hoistway 3 following a main rope 6 driven by a hoisting machine 7. The car 8 includes a car door 14. The car door 14 is a device that opens and closes the car 8 so that when the car 8 is stopped on any of a plurality of floors, the user can get on and off the car 8 from the landing 4 on the floor. The counterweight 9 is a device that balances the load of the car 8 on the sheave 5 through the main rope 6. The counterweight 9 follows the main rope 6 driven by the hoisting machine 7 and travels on the hoistway 3 in the opposite direction of the car 8. Each of the plurality of landing doors 10 is provided at each landing entrance / exit on the plurality of floors. The landing door 10 is a device that opens and closes in conjunction with the car door 14 so that the user can get on and off the car 8. The brake 11 is a device that brakes the running of the car 8. The brake 11 is provided on the hoisting machine 7. The speed governor 12 is a device that limits the traveling speed of the car 8. The control panel 13 is provided, for example, at the upper or lower part of the hoistway 3. The control panel 13 is a device that controls the operation of the elevator 2. The operation of the elevator 2 includes, for example, traveling of the car 8, opening and closing of the car door 14, and operation of the brake 11.
 エレベーター2において、遠隔運転装置15は、制御盤13に接続される。遠隔運転装置15は、制御盤13に運転の指令を出力する装置である。遠隔運転装置15が出力する指令は、例えば通常運転を行う指令、および診断運転を行う指令などを含む。ここで、通常運転は、建築物の複数の階床の間で利用者などを輸送するエレベーター2の通常の運転である。通常運転におけるかご8の停止位置は、複数の階床のいずれかの位置である。複数の階床の各々は、エレベーター2の停止階の例である。診断運転は、エレベーター2の状態を自動診断する運転である。診断運転におけるかご8の停止位置は、昇降路3における任意の位置であってもよい。 In the elevator 2, the remote control device 15 is connected to the control panel 13. The remote control device 15 is a device that outputs an operation command to the control panel 13. The command output by the remote control device 15 includes, for example, a command for performing normal operation, a command for performing diagnostic operation, and the like. Here, the normal operation is the normal operation of the elevator 2 for transporting a user or the like between a plurality of floors of a building. The stop position of the car 8 in normal operation is any position of a plurality of floors. Each of the plurality of floors is an example of the stop floor of the elevator 2. The diagnostic operation is an operation for automatically diagnosing the state of the elevator 2. The stop position of the car 8 in the diagnostic operation may be an arbitrary position in the hoistway 3.
 エレベーター2の滑り検出システム1は、エンコーダー16と、はかり装置17と、複数の階床板18と、着床センサー19と、情報処理装置20と、を備える。 The slip detection system 1 of the elevator 2 includes an encoder 16, a measuring device 17, a plurality of floor boards 18, a landing sensor 19, and an information processing device 20.
 エンコーダー16は、巻上機7の回転角を検出する装置である。エンコーダー16は、回転角検出部の例である。エンコーダー16は、巻上機7に設けられる。 The encoder 16 is a device that detects the rotation angle of the hoisting machine 7. The encoder 16 is an example of a rotation angle detection unit. The encoder 16 is provided on the hoisting machine 7.
 はかり装置17は、かご8の積載重量を測定する装置である。はかり装置17は、例えばかご8の上部に設けられる。 The scale device 17 is a device for measuring the load weight of the car 8. The weighing device 17 is provided, for example, on the upper part of the car 8.
 複数の階床板18の各々は、昇降路3に固定される。複数の階床板18の各々は、第1被検知体または第2被検知体の例である。複数の階床板18の各々は、例えば建築物の複数の階床の各々において、乗場出入口の下方に設けられる。 Each of the plurality of floor boards 18 is fixed to the hoistway 3. Each of the plurality of floor boards 18 is an example of the first detected body or the second detected body. Each of the plurality of floor boards 18 is provided below the landing entrance / exit, for example, in each of the plurality of floors of the building.
 着床センサー19は、かご8に設けられる。着床センサー19は、例えばかご8の下部に設けられる。着床センサー19は、位置検出部の例である。着床センサー19は、かご8が複数の階床のいずれかに停止していることを検出する装置である。 The landing sensor 19 is provided in the car 8. The landing sensor 19 is provided, for example, at the lower part of the car 8. The landing sensor 19 is an example of a position detection unit. The landing sensor 19 is a device that detects that the car 8 is stopped on any of a plurality of floors.
 情報処理装置20は、滑りの検出に係る情報を処理する装置である。情報処理装置20は、例えば昇降路3の上部または下部に設けられる。情報処理装置20は、制御盤13に接続される。情報処理装置20は、記憶部21と、算出部22と、判定部23と、指令部24と、を備える。 The information processing device 20 is a device that processes information related to slip detection. The information processing device 20 is provided, for example, at the upper or lower part of the hoistway 3. The information processing device 20 is connected to the control panel 13. The information processing device 20 includes a storage unit 21, a calculation unit 22, a determination unit 23, and a command unit 24.
 記憶部21は、滑りの検出に係る情報を記憶する部分である。記憶部21が記憶する情報は、巻上機7の回転角を含む。記憶部21は、例えばエンコーダー16が検出する巻上機7の回転角を取得する。 The storage unit 21 is a part that stores information related to slip detection. The information stored in the storage unit 21 includes the rotation angle of the hoisting machine 7. The storage unit 21 acquires, for example, the rotation angle of the hoisting machine 7 detected by the encoder 16.
 算出部22は、滑りの検出に係る情報を算出する部分である。算出部22が算出する情報は、主索6および綱車5の間の滑り量を含む。算出部22は、例えば記憶部21が記憶している巻上機7の回転角に基づいて滑り量を算出する。 The calculation unit 22 is a part that calculates information related to slip detection. The information calculated by the calculation unit 22 includes the amount of slip between the main rope 6 and the sheave 5. The calculation unit 22 calculates the slip amount based on, for example, the rotation angle of the hoisting machine 7 stored in the storage unit 21.
 判定部23は、算出部22が算出する情報に基づいて検出された滑りの異常を判定する部分である。 The determination unit 23 is a unit that determines the slip abnormality detected based on the information calculated by the calculation unit 22.
 指令部24は、滑りの検出に係る動作の指令を出力する部分である。指令部24は、例えば制御盤13に指令を出力することによって、滑りの検出に係る動作をエレベーター2にさせる。 The command unit 24 is a part that outputs an operation command related to slip detection. The command unit 24 causes the elevator 2 to perform an operation related to slip detection by, for example, outputting a command to the control panel 13.
 図2は、実施の形態1に係る滑り検出システムの要部の構成図である。
 図2において、複数の階床のいずれかに停止している状態のかご8が示される。図2において、かご8の左右方向は、紙面に垂直な方向である。
FIG. 2 is a block diagram of a main part of the slip detection system according to the first embodiment.
In FIG. 2, a car 8 in a state of being stopped on one of a plurality of floors is shown. In FIG. 2, the left-right direction of the car 8 is a direction perpendicular to the paper surface.
 階床板18は、例えば金属板である。この例において、階床板18は、厚さ方向を水平方向に向ける。階床板18は、厚さ方向をかご8の左右方向に向ける。階床板18は、昇降路3を走行するかご8に干渉しないように、例えばかご8の外側面より左右方向の外側に配置される。 The floor plate 18 is, for example, a metal plate. In this example, the floor board 18 is oriented in the horizontal direction in the thickness direction. The floor board 18 is oriented in the thickness direction in the left-right direction of the car 8. The floor board 18 is arranged outside, for example, in the left-right direction from the outer surface of the car 8 so as not to interfere with the car 8 traveling on the hoistway 3.
 着床センサー19は、例えば階床板18の近接を検出する電磁式の近接センサーを備える。着床センサー19は、検知状態を有する。この例において、着床センサー19の検知状態は、ON状態またはOFF状態である。着床センサー19の検知状態は、着床センサー19が検知領域にあるときにON状態となる。着床センサー19の検知状態は、着床センサー19が検知領域にないときにON状態となる。検知領域は、階床板18の高さの領域である。検知領域は、例えば階床板18が設けられる階床の着床範囲である。検知領域は、例えば階床板18の上端から当該階床板18の下端までの間の領域である。このとき、検知領域の境界は、階床板18の上端または下端の高さに対応する位置である。着床センサー19の検知状態は、着床センサー19が検知領域の境界を通過するときに切り替えられる。検知状態は、ON状態およびOFF状態の間で切り替えられる。 The landing sensor 19 includes, for example, an electromagnetic proximity sensor that detects the proximity of the floor board 18. The landing sensor 19 has a detection state. In this example, the detection state of the landing sensor 19 is an ON state or an OFF state. The detection state of the landing sensor 19 is ON when the landing sensor 19 is in the detection area. The detection state of the landing sensor 19 is ON when the landing sensor 19 is not in the detection area. The detection area is the area at the height of the floor board 18. The detection area is, for example, the landing range of the floor on which the floor board 18 is provided. The detection area is, for example, an area between the upper end of the floor board 18 and the lower end of the floor board 18. At this time, the boundary of the detection area is a position corresponding to the height of the upper end or the lower end of the floor board 18. The detection state of the landing sensor 19 is switched when the landing sensor 19 passes through the boundary of the detection area. The detection state is switched between an ON state and an OFF state.
 続いて、図3を用いて、滑り検出システム1の機能を説明する。
 図3は、実施の形態1に係る滑り検出システムによる滑り検出の例を示す図である。
 図3において、グラフの横軸は時間を表す。図3において、グラフの縦軸はかご8の位置を表す。
Subsequently, the function of the slip detection system 1 will be described with reference to FIG.
FIG. 3 is a diagram showing an example of slip detection by the slip detection system according to the first embodiment.
In FIG. 3, the horizontal axis of the graph represents time. In FIG. 3, the vertical axis of the graph represents the position of the car 8.
 遠隔運転装置15は、制御盤13に診断運転を行う指令を出力する。エレベーター2は、診断運転を開始する。診断運転の一部として、エレベーター2は、滑り検出の運転を行う。図3において、滑り検出の運転におけるかご8の動きが示される。例えば、滑り検出の運転を開始するときに、制御盤13は、情報処理装置20に滑り検出の運転の開始を通知する。あるいは、遠隔運転装置15は、滑り検出の運転を開始する指令を情報処理装置20に出力してもよい。 The remote control device 15 outputs a command for performing diagnostic operation to the control panel 13. The elevator 2 starts the diagnostic operation. As part of the diagnostic operation, the elevator 2 performs a slip detection operation. FIG. 3 shows the movement of the car 8 in the slip detection operation. For example, when the slip detection operation is started, the control panel 13 notifies the information processing device 20 of the start of the slip detection operation. Alternatively, the remote control device 15 may output a command to start the slip detection operation to the information processing device 20.
 情報処理装置20の指令部24は、滑り検出の運転の指令を制御盤13に出力する。指令部24は、滑り検出の運転を行っている間、かご扉14を閉じたまま保つ指令を制御盤13に出力する。制御盤13は、入力された指令にしたがって、滑り検出の運転を行っている間かご扉14を閉じたまま保つ。制御盤13は、例えば指令部24から入力される指令に従って、滑り検出の運転に係る動作をかご8にさせる。 The command unit 24 of the information processing device 20 outputs a slip detection operation command to the control panel 13. The command unit 24 outputs a command to the control panel 13 to keep the car door 14 closed while the slip detection operation is being performed. The control panel 13 keeps the car door 14 closed during the slip detection operation according to the input command. The control panel 13 causes the car 8 to perform the operation related to the slip detection operation according to, for example, a command input from the command unit 24.
 この例において、かご8は、滑り検出の運転の開始時に1階に停止している。滑り検出の運転において、かご8は、1階から3階まで連続して走行する。その後、かご8は、3階から1階まで連続して走行する。その後、かご8は、1階から2階まで走行する。ここで、1階は、第1停止階の例である。1階の階床板18は、第1被検知体の例である。1階の階床板18の高さの検知領域は、第1検知領域の例である。1階の階床板18の上端の高さに対応する検知領域の境界は、第1境界の例である。3階は、第2停止階の例である。3階の階床板18は、第2被検知体の例である。3階の階床板18の高さの検知領域は、第2検知領域の例である。3階の階床板18の下端の高さに対応する検知領域の境界は、第2境界の例である。 In this example, the car 8 is stopped on the first floor at the start of the slip detection operation. In the slip detection operation, the car 8 continuously travels from the first floor to the third floor. After that, the car 8 runs continuously from the 3rd floor to the 1st floor. After that, the car 8 runs from the first floor to the second floor. Here, the first floor is an example of the first stop floor. The floor board 18 on the first floor is an example of the first detected object. The height detection area of the floor board 18 on the first floor is an example of the first detection area. The boundary of the detection area corresponding to the height of the upper end of the floor board 18 on the first floor is an example of the first boundary. The third floor is an example of the second stop floor. The floor board 18 on the third floor is an example of the second detected object. The height detection area of the floor board 18 on the third floor is an example of the second detection area. The boundary of the detection area corresponding to the height of the lower end of the floor board 18 on the third floor is an example of the second boundary.
 情報処理装置20は、例えば次のようにエレベーター2の滑り検出を行う。 The information processing device 20 detects slippage of the elevator 2 as follows, for example.
 a点において、かご8は、1階から3階まで上昇する走行を開始する。b点において、着床センサー19は、1階の階床板18の上端の高さに対応する検知領域の境界を通過する。記憶部21は、このときにエンコーダー16が検出する巻上機7の回転角θ1を、第1回転角として記憶する。 At point a, the car 8 starts running ascending from the 1st floor to the 3rd floor. At point b, the landing sensor 19 passes through the boundary of the detection area corresponding to the height of the upper end of the floor board 18 on the first floor. The storage unit 21 stores the rotation angle θ1 of the hoisting machine 7 detected by the encoder 16 at this time as the first rotation angle.
 c点において、かご8は、3階で走行を停止する。d点において停止しているかご8は、その後、e点において上昇から下降に走行方向を反転させた走行を開始する。ここで、d点におけるかご8の位置は、1階の階床板18の上端の高さに対応する検知領域の境界より上方の位置である。d点におけるかご8の位置は、第1反転位置の例である。 At point c, car 8 stops running on the 3rd floor. The car 8 stopped at the d point then starts traveling in which the traveling direction is reversed from ascending to descending at the e point. Here, the position of the car 8 at point d is a position above the boundary of the detection area corresponding to the height of the upper end of the floor board 18 on the first floor. The position of the car 8 at point d is an example of the first inverted position.
 f点において、かご8は、1階で走行を停止する。g点において停止しているかご8は、その後、h点において下降から上昇に走行方向を反転させた走行を開始する。ここで、g点におけるかご8の位置は、1階の階床板18の上端の高さに対応する検知領域の境界より下方の位置である。g点におけるかご8の位置は、第2反転位置の例である。その後、i点において、着床センサー19は、1階の階床板18の上端の高さに対応する検知領域の境界を通過する。記憶部21は、このときにエンコーダー16が検出する巻上機7の回転角θ2を、第2回転角として記憶する。 At point f, the car 8 stops running on the first floor. The car 8 stopped at the g point then starts traveling at the h point with the traveling direction reversed from descending to ascending. Here, the position of the car 8 at the point g is a position below the boundary of the detection area corresponding to the height of the upper end of the floor board 18 on the first floor. The position of the car 8 at point g is an example of the second inverted position. After that, at point i, the landing sensor 19 passes through the boundary of the detection region corresponding to the height of the upper end of the floor board 18 on the first floor. The storage unit 21 stores the rotation angle θ2 of the hoisting machine 7 detected by the encoder 16 at this time as the second rotation angle.
 j点において、かご8は、2階で走行を停止する。 At point j, the car 8 stops running on the second floor.
 その後、算出部22は、第1回転角と第2回転角との差分に基づいて、主索6および綱車5の間の滑り量を算出する。算出部22は、例えば第1回転角と第2回転角との差分を主索6および綱車5の間の滑り量としてもよい。 After that, the calculation unit 22 calculates the amount of slip between the main rope 6 and the sheave 5 based on the difference between the first rotation angle and the second rotation angle. For example, the calculation unit 22 may use the difference between the first rotation angle and the second rotation angle as the amount of slip between the main rope 6 and the sheave 5.
 指令部24は、算出された滑り量を表示する指令を例えば制御盤13に出力する。制御盤13は、例えば図示されないエレベーター2の表示装置に滑り量を表示させる。エレベーター2の表示装置は、例えば制御盤13の表示部、かご表示盤、または乗場表示盤などである。指令部24は、滑り量を通知する指令を遠隔運転装置15に出力してもよい。遠隔運転装置15は、例えば遠隔地にいるエレベーター2の管理者などに滑り量を通知する。 The command unit 24 outputs a command for displaying the calculated slip amount to, for example, the control panel 13. The control panel 13 displays, for example, a slip amount on a display device of an elevator 2 (not shown). The display device of the elevator 2 is, for example, a display unit of the control panel 13, a car display panel, a landing display panel, or the like. The command unit 24 may output a command for notifying the slip amount to the remote control device 15. The remote control device 15 notifies, for example, the manager of the elevator 2 in a remote place of the slip amount.
 算出された滑り量が閾値を超える場合に、判定部23は、滑りの診断結果を異常と判定する。算出された滑り量が閾値を超えない場合に、判定部23は、滑りの診断結果を正常と判定する。ここで、主索6および綱車5の間に滑りがない場合においても、かご8と釣合い錘9の重量の差による主索6の伸びによって、第1回転角と第2回転角との間に差が生じうる。このため、滑り量の閾値は、かご8と釣合い錘9の重量の差による主索6の伸びによって生じうる回転角の差より大きい値として予め設定される。 When the calculated slip amount exceeds the threshold value, the determination unit 23 determines that the slip diagnosis result is abnormal. When the calculated slip amount does not exceed the threshold value, the determination unit 23 determines that the slip diagnosis result is normal. Here, even when there is no slip between the main rope 6 and the sheave 5, the extension of the main rope 6 due to the difference in weight between the car 8 and the counterweight 9 causes the distance between the first rotation angle and the second rotation angle. Can make a difference. Therefore, the threshold value of the slip amount is set in advance as a value larger than the difference in the rotation angle that can be caused by the elongation of the main rope 6 due to the difference in weight between the car 8 and the counterweight 9.
 指令部24は、判定された滑りの診断結果を表示する指令を例えば制御盤13に出力する。指令部24は、判定された滑りの診断結果を通知する指令を例えば遠隔運転装置15に出力してもよい。 The command unit 24 outputs a command for displaying the determined slip diagnosis result to, for example, the control panel 13. The command unit 24 may output a command for notifying the determined slip diagnosis result to, for example, the remote control device 15.
 続いて、図4および図5を用いて、滑り検出システム1の動作の例を説明する。
 図4および図5は、実施の形態1に係る滑り検出システムの動作の例を示すフローチャートである。
Subsequently, an example of the operation of the slip detection system 1 will be described with reference to FIGS. 4 and 5.
4 and 5 are flowcharts showing an example of the operation of the slip detection system according to the first embodiment.
 図4において、滑り検出の全体に係る滑り検出システム1の動作の例が示される。 FIG. 4 shows an example of the operation of the slip detection system 1 related to the entire slip detection.
 ステップS1において、滑り検出システム1は、滑り量を算出する。その後、滑り検出システム1の動作は、ステップS2に進む。 In step S1, the slip detection system 1 calculates the slip amount. After that, the operation of the slip detection system 1 proceeds to step S2.
 ステップS2において、指令部24は、算出された滑り量を表示する指令を出力する。その後、滑り検出システム1の動作は、ステップS3に進む。 In step S2, the command unit 24 outputs a command for displaying the calculated slip amount. After that, the operation of the slip detection system 1 proceeds to step S3.
 ステップS3において、判定部23は、算出された滑り量が閾値を超えるかを判定する。判定結果がYesの場合に、滑り検出システム1の動作は、ステップS4に進む。判定結果がNoの場合に、滑り検出システム1の動作は、ステップS5に進む。 In step S3, the determination unit 23 determines whether the calculated slip amount exceeds the threshold value. When the determination result is Yes, the operation of the slip detection system 1 proceeds to step S4. When the determination result is No, the operation of the slip detection system 1 proceeds to step S5.
 ステップS4において、判定部23は、滑りの診断結果を異常と判定する。その後、滑り検出システム1の動作は、ステップS6に進む。 In step S4, the determination unit 23 determines that the slip diagnosis result is abnormal. After that, the operation of the slip detection system 1 proceeds to step S6.
 ステップS5において、判定部23は、滑りの診断結果を正常と判定する。その後、滑り検出システム1の動作は、ステップS6に進む。 In step S5, the determination unit 23 determines that the slip diagnosis result is normal. After that, the operation of the slip detection system 1 proceeds to step S6.
 ステップS6において、指令部24は、判定された診断結果を表示する指令を出力する。その後、滑り検出システム1の動作は、終了する。 In step S6, the command unit 24 outputs a command for displaying the determined diagnosis result. After that, the operation of the slip detection system 1 ends.
 図5において、滑り量の算出に係る滑り検出システム1の動作の例が示される。 FIG. 5 shows an example of the operation of the slip detection system 1 related to the calculation of the slip amount.
 ステップS11において、指令部24は、第1停止階に停止しているかご8の走行を開始させる指令を出力する。その後、滑り量の算出に係る滑り検出システム1の動作は、ステップS12に進む。 In step S11, the command unit 24 outputs a command to start the running of the car 8 stopped on the first stop floor. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S12.
 ステップS12において、記憶部21は、例えばエンコーダー16に検出された第1回転角を記憶する。その後、滑り量の算出に係る滑り検出システム1の動作は、ステップS13に進む。 In step S12, the storage unit 21 stores, for example, the first rotation angle detected by the encoder 16. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S13.
 ステップS13において、指令部24は、第2停止階にかご8を停止させる指令を出力する。その後、滑り量の算出に係る滑り検出システム1の動作は、ステップS14に進む。 In step S13, the command unit 24 outputs a command to stop the car 8 on the second stop floor. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S14.
 ステップS14において、指令部24は、第2停止階に停止しているかご8に走行方向を反転させた走行を開始させる指令を出力する。その後、滑り量の算出に係る滑り検出システム1の動作は、ステップS15に進む。 In step S14, the command unit 24 outputs a command to the car 8 stopped on the second stop floor to start running with the running direction reversed. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S15.
 ステップS15において、指令部24は、第1停止階にかご8を停止させる指令を出力する。その後、滑り量の算出に係る滑り検出システム1の動作は、ステップS16に進む。 In step S15, the command unit 24 outputs a command to stop the car 8 on the first stop floor. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S16.
 ステップS16において、指令部24は、第1停止階に停止しているかご8に走行方向を反転させた走行を開始させる指令を出力する。その後、滑り量の算出に係る滑り検出システム1の動作は、ステップS17に進む。 In step S16, the command unit 24 outputs a command to the car 8 stopped on the first stop floor to start running with the running direction reversed. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S17.
 ステップS17において、記憶部21は、例えばエンコーダー16に検出された第2回転角を記憶する。その後、滑り量の算出に係る滑り検出システム1の動作は、ステップS18に進む。 In step S17, the storage unit 21 stores, for example, the second rotation angle detected by the encoder 16. After that, the operation of the slip detection system 1 related to the calculation of the slip amount proceeds to step S18.
 ステップS18において、指令部24は、かご8を停止させる指令を出力する。その後、滑り量の算出に係る滑り検出システム1の動作は、終了する。 In step S18, the command unit 24 outputs a command to stop the car 8. After that, the operation of the slip detection system 1 related to the calculation of the slip amount ends.
 以上に説明したように、滑り検出システム1は、回転角検出部と、第1被検知体と、位置検出部と、記憶部21と、算出部22と、を備える。エレベーター2の主索6は、綱車5に巻き掛けられている。巻上機7は、綱車5の回転によって主索6を駆動する。回転角検出部は、巻上機7の回転角を検出する。かご8は、綱車5に対して主索6の一方側に設けられる。釣合い錘9は、綱車5に対して主索6の他方側に設けられる。第1被検知体は、かご8および釣合い錘9が走行する昇降路3に固定される。位置検出部は、かご8に設けられる。位置検出部は、第1被検知体の高さにおける第1検知領域にあるか否かによって検知状態が切り替わる。記憶部21は、かご8の走行により位置検出部が第1検知領域の第1境界を通過することで検知状態が切り替わるときに回転角検出部が検出する巻上機7の回転角を、第1回転角として記憶する。記憶部21は、第1回転角が検出された後にかご8の走行により位置検出部が第1境界を通過することで検知状態が切り替わるときに回転角検出部が検出する巻上機7の回転角を、第2回転角として記憶する。算出部22は、記憶部21が記憶した第1回転角および第2回転角の差分に基づいて、主索6および綱車5の間の滑り量を算出する。 As described above, the slip detection system 1 includes a rotation angle detection unit, a first detected body, a position detection unit, a storage unit 21, and a calculation unit 22. The main rope 6 of the elevator 2 is wound around the sheave 5. The hoisting machine 7 drives the main rope 6 by the rotation of the sheave 5. The rotation angle detection unit detects the rotation angle of the hoisting machine 7. The car 8 is provided on one side of the main rope 6 with respect to the sheave 5. The counterweight 9 is provided on the other side of the main rope 6 with respect to the sheave 5. The first detected body is fixed to the hoistway 3 on which the car 8 and the counterweight 9 travel. The position detection unit is provided in the car 8. The position detection unit switches the detection state depending on whether or not it is in the first detection region at the height of the first detected body. The storage unit 21 sets the rotation angle of the hoisting machine 7 detected by the rotation angle detection unit when the detection state is switched by the position detection unit passing through the first boundary of the first detection region due to the traveling of the car 8. Store as one rotation angle. The storage unit 21 rotates the hoisting machine 7 detected by the rotation angle detection unit when the detection state is switched by the position detection unit passing through the first boundary due to the traveling of the car 8 after the first rotation angle is detected. The angle is stored as the second rotation angle. The calculation unit 22 calculates the amount of slip between the main rope 6 and the sheave 5 based on the difference between the first rotation angle and the second rotation angle stored by the storage unit 21.
 第1回転角および第2回転角は、検知領域の境界において検出される回転角である。検知領域の境界は、かご8の走行方向に長さを持たない。このため、滑り検出システム1は、滑り検出に用いる第1回転角および第2回転角を高い精度で取得できる。第1回転角が検出されるときの位置検出部の位置は、第2回転角が検出されるときの位置検出部の位置と同一である。このため、第1回転角および第2回転角の差分は、主索6および綱車5の間の滑りを直接反映する。これにより、滑り検出システム1は、より高い精度で主索6の滑りを検出できる。また、滑り検出システム1は、単一の被検知体を用いて滑り量を算出する。このため、滑り検出システム1は、滑り量の算出において、複数の被検知体の間の相対的な設置状態の差異の影響を受けない。 The first rotation angle and the second rotation angle are rotation angles detected at the boundary of the detection area. The boundary of the detection area has no length in the traveling direction of the car 8. Therefore, the slip detection system 1 can acquire the first rotation angle and the second rotation angle used for slip detection with high accuracy. The position of the position detection unit when the first rotation angle is detected is the same as the position of the position detection unit when the second rotation angle is detected. Therefore, the difference between the first rotation angle and the second rotation angle directly reflects the slip between the main rope 6 and the sheave 5. As a result, the slip detection system 1 can detect the slip of the main rope 6 with higher accuracy. Further, the slip detection system 1 calculates the slip amount using a single object to be detected. Therefore, the slip detection system 1 is not affected by the relative difference in the installation state between the plurality of objects to be detected in the calculation of the slip amount.
 また、算出部22は、エレベーター2が診断運転を行っているときに検出された第1回転角、およびエレベーター2が当該診断運転を行っているときに検出された第2回転角の差分に基づいて滑り量を算出する。 Further, the calculation unit 22 is based on the difference between the first rotation angle detected when the elevator 2 is performing the diagnostic operation and the second rotation angle detected when the elevator 2 is performing the diagnostic operation. To calculate the amount of slip.
 診断運転において、エレベーター2は、利用者に利用されない。このため、滑り量の算出において、利用者の利用状況による不確定性が生じない。 In the diagnostic operation, the elevator 2 is not used by the user. Therefore, in calculating the slip amount, there is no uncertainty due to the usage status of the user.
 また、算出部22は、かご8が第1停止階から第2停止階まで連続して走行するときに検出された第1回転角、およびかご8が第1停止階から第2停止階まで連続して走行するときに検出された第2回転角の差分に基づいて滑り量を算出する。 Further, in the calculation unit 22, the first rotation angle detected when the car 8 continuously travels from the first stop floor to the second stop floor, and the car 8 continuously runs from the first stop floor to the second stop floor. The slip amount is calculated based on the difference of the second rotation angle detected during the running.
 滑り量は、第1回転角を検出するときのかご8の走行速度などの条件と、第2回転角を検出するときのかご8の走行速度などの条件とを同一の条件として算出される。このため、位置検出部による検知がかご8の走行速度に依存する場合においても、滑り量の算出において、かご8の走行速度の違いによる誤差が抑えられる。 The slip amount is calculated under the same conditions as the conditions such as the running speed of the car 8 when detecting the first rotation angle and the conditions such as the running speed of the car 8 when detecting the second rotation angle. Therefore, even when the detection by the position detection unit depends on the traveling speed of the car 8, the error due to the difference in the traveling speed of the car 8 can be suppressed in the calculation of the slip amount.
 また、算出部22は、かご8が最下階ならびに最上階の間を連続して走行するときに検出された第1回転角、およびかご8が最下階ならびに最上階の間を連続して走行するときに検出された第2回転角の差分に基づいて滑り量を算出する。 Further, in the calculation unit 22, the first rotation angle detected when the car 8 continuously travels between the lowest floor and the top floor, and the car 8 continuously runs between the lowest floor and the top floor. The slip amount is calculated based on the difference in the second rotation angle detected during traveling.
 滑り量は、かご8が連続して走行する距離が最長の条件において算出される。かご8の走行距離が長いほど、綱車5に駆動される主索6の長さは長くなる。このとき、滑り量の絶対値は大きくなる。このため、算出部22は、より高い精度で滑り量を算出できる。 The amount of slip is calculated under the condition that the distance traveled by the car 8 continuously is the longest. The longer the mileage of the car 8, the longer the length of the main rope 6 driven by the sheave 5. At this time, the absolute value of the slip amount becomes large. Therefore, the calculation unit 22 can calculate the slip amount with higher accuracy.
 また、算出部22は、かご8が上昇または下降のいずれかの走行方向に走行しているときに検出された第1回転角、およびかご8が当該走行方向に走行しているときに検出された第2回転角の差分に基づいて滑り量を算出する。 Further, the calculation unit 22 detects the first rotation angle detected when the car 8 is traveling in either the ascending or descending traveling direction, and is detected when the car 8 is traveling in the traveling direction. The slip amount is calculated based on the difference in the second rotation angle.
 滑り量は、第1回転角を検出するときのかご8の走行方向と、第2回転角を検出するときのかご8の走行方向とを同一として算出される。このため、位置検出部による検知がかご8の走行方向に依存する場合においても、滑り量の算出において、かご8の走行方向の違いによる誤差が抑えられる。 The slip amount is calculated assuming that the traveling direction of the car 8 when detecting the first rotation angle and the traveling direction of the car 8 when detecting the second rotation angle are the same. Therefore, even when the detection by the position detection unit depends on the traveling direction of the car 8, the error due to the difference in the traveling direction of the car 8 can be suppressed in the calculation of the slip amount.
 また、算出部22は、第1回転角、および第1回転角が検出されてからかご8の走行方向がちょうど2回反転した後に検出された第2回転角の差分に基づいて滑り量を算出する。 Further, the calculation unit 22 calculates the slip amount based on the difference between the first rotation angle and the second rotation angle detected after the traveling direction of the car 8 is reversed exactly twice after the first rotation angle is detected. To do.
 循環移動しないかご8は、昇降路3の同一の位置を同一の走行方向で通過するために2回以上の走行方向の反転を必要とする。このため、滑り検出システム1は、滑り量の算出においてかご8の走行方向の違いによる誤差が抑えるための走行方向の反転を最低限にできる。 The car 8 that does not move in a circular manner requires two or more reversals of the traveling direction in order to pass through the same position of the hoistway 3 in the same traveling direction. Therefore, the slip detection system 1 can minimize the reversal of the traveling direction in order to suppress an error due to a difference in the traveling direction of the car 8 in calculating the slip amount.
 また、滑り検出システム1は、指令部24を備える。指令部24は、第1回転角が検出されてから第2回転角が検出されるまでの間、かご8のかご扉14を閉じたままに保つ指令を出力する。 Further, the slip detection system 1 includes a command unit 24. The command unit 24 outputs a command for keeping the car door 14 of the car 8 closed from the time when the first rotation angle is detected until the second rotation angle is detected.
 滑り検出におけるかご8の走行の間に、かご8の内部に利用者または保守員などが乗り込まない。このため、滑り検出におけるかご8の走行の間のかご8の積載重量の変化が防止される。 The user or maintenance staff does not get inside the car 8 while the car 8 is running in the slip detection. Therefore, the change in the load weight of the car 8 during the running of the car 8 in the slip detection is prevented.
 また、滑り検出システム1は、判定部23を備える。判定部23は、算出部22が算出した滑り量が予め設定された閾値を超える場合に異常として判定する。 Further, the slip detection system 1 includes a determination unit 23. The determination unit 23 determines as an abnormality when the slip amount calculated by the calculation unit 22 exceeds a preset threshold value.
 滑り検出システム1は、滑り量によって、トラクションの低下を異常として判定できる。ここで、トラクションの低下は、例えば綱車5の溝の磨耗、および主索6への異物の付着などによって生じる。 The slip detection system 1 can determine that the decrease in traction is abnormal depending on the amount of slip. Here, the decrease in traction is caused by, for example, wear of the groove of the sheave 5 and adhesion of foreign matter to the main rope 6.
 なお、算出部22は、第1回転角、および第1回転角が検出されてからかご8の走行方向が停止階の間において反転した後に検出された第2回転角の差分に基づいて滑り量を算出してもよい。例えば、第1回転角または第2回転角の少なくとも一方は、1階および2階の間の位置から2階および3階の間の位置までかご8が走行するときに検出される回転角であってもよい。 The calculation unit 22 slips the amount of slip based on the difference between the first rotation angle and the second rotation angle detected after the traveling direction of the car 8 is reversed between the stop floors after the first rotation angle is detected. May be calculated. For example, at least one of the first rotation angle and the second rotation angle is the rotation angle detected when the car 8 travels from the position between the first floor and the second floor to the position between the second floor and the third floor. You may.
 これにより、かご8の走行距離を階床の高さによらずに設定できる。このため、滑り検出システム1は、例えば主索6の局所的な滑りを検出できる。このとき、滑り検出システム1は、例えば主索6において滑りが発生する箇所の特定に利用できる。 This allows the mileage of the car 8 to be set regardless of the height of the floor. Therefore, the slip detection system 1 can detect local slip of the main rope 6, for example. At this time, the slip detection system 1 can be used to identify a location where slip occurs, for example, in the main rope 6.
 また、回転角検出部は、エンコーダー16の他の装置であってもよい。回転角検出部は、例えば主索6の送り量を観測することによって回転角を検出する装置であってもよい。回転角検出部は、巻上機7の電流値から回転角を算出する装置であってもよい。 Further, the rotation angle detection unit may be another device of the encoder 16. The rotation angle detection unit may be a device that detects the rotation angle by, for example, observing the feed amount of the main rope 6. The rotation angle detection unit may be a device that calculates the rotation angle from the current value of the hoisting machine 7.
 また、被検知体および位置検出部は、階床板18および着床センサー19の他の装置であってもよい。位置検出部は、例えば光学式、静電容量式、超音波式、またはその他の原理に基づいて被検知体を検知する装置であってもよい。被検知体は、隣接する階床の間の位置に設けられてもよい。このとき、滑り検出システム1は、かご8を隣接する階床の間で走行させることによって滑り量を検出できる。また、位置検出部は、釣合い錘9に設けられてもよい。 Further, the detected object and the position detecting unit may be other devices of the floor board 18 and the landing sensor 19. The position detection unit may be a device that detects an object to be detected based on, for example, an optical type, a capacitance type, an ultrasonic type, or another principle. The object to be detected may be provided at a position between adjacent floors. At this time, the slip detection system 1 can detect the slip amount by running the car 8 between adjacent floors. Further, the position detection unit may be provided on the balance weight 9.
 また、情報処理装置20の一部または全部は、制御盤13と一体のハードウェアに設けられてもよい。情報処理装置20の一部または全部は、遠隔運転装置15と一体のハードウェアに設けられてもよい。情報処理装置20の一部または全部の機能は、例えば制御盤13または遠隔運転装置15によって実現されてもよい。 Further, a part or all of the information processing device 20 may be provided in hardware integrated with the control panel 13. A part or all of the information processing device 20 may be provided in hardware integrated with the remote control device 15. Some or all of the functions of the information processing device 20 may be realized by, for example, the control panel 13 or the remote control device 15.
 また、エレベーター2において、建築物に機械室が設けられていてもよい。このとき、例えば巻上機7、制御盤13、および情報処理装置20は、機械室に設けられていてもよい。また、エレベーター2は、1:1ローピング、2:1ローピング、またはその他のローピングのエレベーターであってもよい。 Further, in the elevator 2, a machine room may be provided in the building. At this time, for example, the hoisting machine 7, the control panel 13, and the information processing device 20 may be provided in the machine room. Further, the elevator 2 may be a 1: 1 roping, 2: 1 roping, or other roping elevator.
 続いて、図6を用いて滑り検出システム1のハードウェア構成の例について説明する。
 図6は、実施の形態1に係る滑り検出システムの主要部のハードウェア構成を示す図である。
Subsequently, an example of the hardware configuration of the slip detection system 1 will be described with reference to FIG.
FIG. 6 is a diagram showing a hardware configuration of a main part of the slip detection system according to the first embodiment.
 滑り検出システム1の各機能は、処理回路により実現し得る。処理回路は、少なくとも1つのプロセッサ1bと少なくとも1つのメモリ1cとを備える。処理回路は、プロセッサ1bおよびメモリ1cと共に、あるいはそれらの代用として、少なくとも1つの専用のハードウェア1aを備えてもよい。 Each function of the slip detection system 1 can be realized by a processing circuit. The processing circuit includes at least one processor 1b and at least one memory 1c. The processing circuit may include at least one dedicated hardware 1a with or as a substitute for the processor 1b and the memory 1c.
 処理回路がプロセッサ1bとメモリ1cとを備える場合、滑り検出システム1の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。そのプログラムはメモリ1cに格納される。プロセッサ1bは、メモリ1cに記憶されたプログラムを読み出して実行することにより、滑り検出システム1の各機能を実現する。 When the processing circuit includes the processor 1b and the memory 1c, each function of the slip detection system 1 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 1c. The processor 1b realizes each function of the slip detection system 1 by reading and executing the program stored in the memory 1c.
 プロセッサ1bは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ1cは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等により構成される。 The processor 1b is also referred to as a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, and a DSP. The memory 1c is composed of, for example, a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like.
 処理回路が専用のハードウェア1aを備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。 When the processing circuit is provided with dedicated hardware 1a, the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 滑り検出システム1の各機能は、それぞれ処理回路で実現することができる。あるいは、滑り検出システム1の各機能は、まとめて処理回路で実現することもできる。滑り検出システム1の各機能について、一部を専用のハードウェア1aで実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、ハードウェア1a、ソフトウェア、ファームウェア、またはこれらの組み合わせで滑り検出システム1の各機能を実現する。 Each function of the slip detection system 1 can be realized by a processing circuit. Alternatively, each function of the slip detection system 1 can be collectively realized by a processing circuit. For each function of the slip detection system 1, a part may be realized by the dedicated hardware 1a, and the other part may be realized by software or firmware. In this way, the processing circuit realizes each function of the slip detection system 1 by hardware 1a, software, firmware, or a combination thereof.
 実施の形態2.
 実施の形態2では、実施の形態1で開示された例と相違する点について詳しく説明する。実施の形態2で説明しない特徴については、実施の形態1で開示された例のいずれの特徴が採用されてもよい。
Embodiment 2.
In the second embodiment, the differences from the examples disclosed in the first embodiment will be described in detail. As for the features not described in the second embodiment, any of the features of the examples disclosed in the first embodiment may be adopted.
 図7は、実施の形態2に係る滑り検出システムによる滑り検出の例を示す図である。
 図7において、グラフの横軸は時間を表す。図7において、グラフの縦軸はかご8の位置を表す。
FIG. 7 is a diagram showing an example of slip detection by the slip detection system according to the second embodiment.
In FIG. 7, the horizontal axis of the graph represents time. In FIG. 7, the vertical axis of the graph represents the position of the car 8.
 この例において、滑り検出システム1は、エレベーター2が通常運転を行っているときに滑り検出を行う。滑り検出システム1は、例えば利用者がかご8に乗車していないと判定するときに、エレベーター2に滑り検出の運転を行わせる。このとき、滑り検出システム1は、例えばはかり装置17が測定するかご8の積載重量に基づいて、利用者がかご8に乗車しているかの判定を行う。あるいは、滑り検出システム1は、例えばかご8に設けられるカメラが撮影する画像に基づいて、利用者がかご8に乗車しているかの判定を行ってもよい。 In this example, the slip detection system 1 detects slip when the elevator 2 is in normal operation. The slip detection system 1 causes the elevator 2 to perform a slip detection operation, for example, when it is determined that the user is not in the car 8. At this time, the slip detection system 1 determines whether or not the user is in the car 8 based on, for example, the load weight of the car 8 measured by the weighing device 17. Alternatively, the slip detection system 1 may determine whether or not the user is in the car 8 based on, for example, an image taken by a camera provided in the car 8.
 この例において、かご8は、実施の形態1に示した例と同様に走行する。情報処理装置20は、例えば次のようにエレベーター2の滑り検出を行う。 In this example, the car 8 runs in the same manner as the example shown in the first embodiment. The information processing device 20 detects slippage of the elevator 2 as follows, for example.
 かご8が1階から3階の間を上昇する間に、k点において、着床センサー19は、2階の階床板18の下端の高さに対応する検知領域の境界を通過する。記憶部21は、このときにエンコーダー16が検出する巻上機7の回転角φ1を、第1回転角として記憶する。 While the car 8 rises between the first floor and the third floor, at point k, the landing sensor 19 passes through the boundary of the detection area corresponding to the height of the lower end of the floor board 18 on the second floor. The storage unit 21 stores the rotation angle φ1 of the hoisting machine 7 detected by the encoder 16 at this time as the first rotation angle.
 その後、かご8が2階に停止するときに、l点において、着床センサー19は、2階の階床板18の下端の高さに対応する検知領域の境界を通過する。記憶部21は、このときにエンコーダー16が検出する巻上機7の回転角φ2を、第2回転角として記憶する。 After that, when the car 8 stops on the second floor, at point l, the landing sensor 19 passes through the boundary of the detection area corresponding to the height of the lower end of the floor board 18 on the second floor. The storage unit 21 stores the rotation angle φ2 of the hoisting machine 7 detected by the encoder 16 at this time as the second rotation angle.
 その後、算出部22は、第1回転角および第2回転角の差分に基づいて滑り量を算出する。 After that, the calculation unit 22 calculates the slip amount based on the difference between the first rotation angle and the second rotation angle.
 第1回転角が検出されてから第2回転角が検出されるまでの間に、はかり装置17は、測定している積載重量の変動が予め設定された範囲内であるかを監視する。積載重量の変動の範囲は、例えば利用者がかご8に乗降したときの積載重量の変動より小さい範囲に設定される。あるいは、積載重量の変動の範囲は、例えば主索6および綱車5との間の滑り量に与える影響が無視できる範囲に設定されてもよい。はかり装置17は、積載重量の変動が予め設定された範囲を超えるときに、当該積載重量の変動を情報処理装置20に通知する。このとき、情報処理装置20は、滑り量の算出を中止する。 From the detection of the first rotation angle to the detection of the second rotation angle, the scale device 17 monitors whether the fluctuation of the loaded weight being measured is within a preset range. The range of fluctuation of the load weight is set to a range smaller than the fluctuation of the load weight when the user gets on and off the car 8, for example. Alternatively, the range of variation in the load weight may be set to a range in which the influence on the amount of slip between the main rope 6 and the sheave 5 can be ignored, for example. When the fluctuation of the load weight exceeds a preset range, the scale device 17 notifies the information processing device 20 of the fluctuation of the load weight. At this time, the information processing device 20 stops calculating the slip amount.
 以上に説明したように、実施の形態2に係る滑り検出システム1は、はかり装置17を備える。はかり装置17は、かご8の積載重量を測定する。算出部22は、第1回転角が検出されてから第2回転角が検出されるまでの間にはかり装置17が測定する積載重量の変動が予め設定された範囲内であるときに、滑り量を算出する。 As described above, the slip detection system 1 according to the second embodiment includes a scale device 17. The scale device 17 measures the load weight of the car 8. The calculation unit 22 slips when the fluctuation of the load weight measured by the weighing device 17 is within a preset range between the detection of the first rotation angle and the detection of the second rotation angle. Is calculated.
 かご8の積載重量によって、主索6および綱車5との間の滑り量は変化する。算出部22は、滑り量の算出のための運転の途中において積載重量の変化が小さいときに、滑り量を算出する。これにより、かご8の積載重量の変化による滑り量の誤差の発生が防止される。 The amount of slip between the main rope 6 and the sheave 5 changes depending on the load weight of the car 8. The calculation unit 22 calculates the slip amount when the change in the load weight is small during the operation for calculating the slip amount. This prevents the occurrence of an error in the amount of slippage due to a change in the load weight of the car 8.
 第1回転角および第2回転角は、昇降路3においてかご8が異なる区間を走行するときに検出された回転角であってもよい。例えば滑り量の算出のための運転の途中に乗場呼びの操作がされた場合に、滑り検出システム1は、当該運転を中止してもよい。このとき、算出部22は、例えば既に取得されていた回転角の情報を用いて滑り量を算出できる。これにより、滑り検出システム1は、より多くの機会に滑り量を算出できる。 The first rotation angle and the second rotation angle may be rotation angles detected when the car 8 travels in different sections on the hoistway 3. For example, when the landing call operation is performed during the operation for calculating the slip amount, the slip detection system 1 may stop the operation. At this time, the calculation unit 22 can calculate the slip amount by using, for example, the information on the rotation angle that has already been acquired. As a result, the slip detection system 1 can calculate the slip amount on more occasions.
 実施の形態3.
 実施の形態3では、実施の形態1または実施の形態2で開示された例と相違する点について詳しく説明する。実施の形態3で説明しない特徴については、実施の形態1または実施の形態2で開示された例のいずれの特徴が採用されてもよい。
Embodiment 3.
In the third embodiment, the differences from the examples disclosed in the first embodiment or the second embodiment will be described in detail. As for the features not described in the third embodiment, any of the features of the examples disclosed in the first embodiment or the second embodiment may be adopted.
 図8は、実施の形態3に係る滑り検出システムによる滑り検出の例を示す図である。
 図8において、グラフの横軸は時間を表す。図8において、グラフの縦軸はかご8の位置を表す。
FIG. 8 is a diagram showing an example of slip detection by the slip detection system according to the third embodiment.
In FIG. 8, the horizontal axis of the graph represents time. In FIG. 8, the vertical axis of the graph represents the position of the car 8.
 この例において、かご8は、実施の形態1に示した例と同様に走行する。情報処理装置20は、例えば次のようにエレベーター2の滑り検出を行う。 In this example, the car 8 runs in the same manner as the example shown in the first embodiment. The information processing device 20 detects slippage of the elevator 2 as follows, for example.
 第1回転角は、b点において検出される。 The first rotation angle is detected at point b.
 その後、かご8が1階から3階の間を上昇する間に、m点において、着床センサー19は、3階の階床板18の下端の高さに対応する検知領域の境界を通過する。記憶部21は、このときにエンコーダー16が検出する巻上機7の回転角θ3を、第3回転角として記憶する。 After that, while the car 8 ascends between the first floor and the third floor, at the m point, the landing sensor 19 passes through the boundary of the detection area corresponding to the height of the lower end of the floor board 18 on the third floor. The storage unit 21 stores the rotation angle θ3 of the hoisting machine 7 detected by the encoder 16 at this time as the third rotation angle.
 その後、第2回転角は、i点において検出される。 After that, the second rotation angle is detected at point i.
 その後、算出部22は、第1回転角および第2回転角の差分に基づいて滑り量を算出する。算出部22は、基準走行距離を算出する。基準走行距離は、滑り量の検出においてかご8が昇降路3を走行する距離である。算出部22は、例えば第1回転角と第3回転角との差分に基づいて基準走行距離を算出する。あるいは、算出部22は、第2回転角と第3回転角との差分に基づいて基準走行距離を算出してもよい。あるいは、算出部22は、第1回転角および第2回転角の平均値と第3回転角との差分に基づいて基準走行距離を算出してもよい。算出部22は、滑り量を基準走行距離で除した比率を算出する。 After that, the calculation unit 22 calculates the slip amount based on the difference between the first rotation angle and the second rotation angle. The calculation unit 22 calculates the reference mileage. The reference mileage is the distance that the car 8 travels on the hoistway 3 in detecting the amount of slippage. The calculation unit 22 calculates the reference mileage based on, for example, the difference between the first rotation angle and the third rotation angle. Alternatively, the calculation unit 22 may calculate the reference mileage based on the difference between the second rotation angle and the third rotation angle. Alternatively, the calculation unit 22 may calculate the reference mileage based on the difference between the average value of the first rotation angle and the second rotation angle and the third rotation angle. The calculation unit 22 calculates the ratio of the slip amount divided by the reference mileage.
 算出された比率が閾値を超える場合に、判定部23は、滑りの診断結果を異常と判定する。算出された比率が閾値を超えない場合に、判定部23は、滑りの診断結果を正常と判定する。ここで、滑り量を基準走行距離で除した比率の閾値は、かご8と釣合い錘9の重量の差による主索6の伸びによって生じうる回転角の差による値より大きい値として予め設定される。 When the calculated ratio exceeds the threshold value, the determination unit 23 determines that the slip diagnosis result is abnormal. When the calculated ratio does not exceed the threshold value, the determination unit 23 determines that the slip diagnosis result is normal. Here, the threshold value of the ratio obtained by dividing the slip amount by the reference mileage is preset as a value larger than the value due to the difference in the rotation angle that can be caused by the elongation of the main rope 6 due to the difference in weight between the car 8 and the counterweight 9. ..
 以上に説明したように、実施の形態3に係る滑り検出システム1は、判定部23を備える。判定部23は、基準走行距離に対する滑り量の比率が予め設定された閾値を超える場合に異常として判定する。基準走行距離は、滑り量の検出においてかご8が昇降路3を走行する距離である。算出部22は、滑り量を基準走行距離で除して比率を算出する。 As described above, the slip detection system 1 according to the third embodiment includes a determination unit 23. The determination unit 23 determines as an abnormality when the ratio of the slip amount to the reference mileage exceeds a preset threshold value. The reference mileage is the distance that the car 8 travels on the hoistway 3 in detecting the amount of slippage. The calculation unit 22 calculates the ratio by dividing the slip amount by the reference mileage.
 第1回転角および第2回転角の差分は、かご8が走行する距離に依存する。ここで、かご8の走行距離が長い場合に、滑りによらない第1回転角および第2回転角の差分も大きくなる。この場合においても、第1回転角および第2回転角の差分を基準走行距離で規格化した比率によって診断結果が判定されるので、誤って異常と診断されることが抑制される。 The difference between the first rotation angle and the second rotation angle depends on the distance traveled by the car 8. Here, when the mileage of the car 8 is long, the difference between the first rotation angle and the second rotation angle regardless of slippage also becomes large. Even in this case, since the diagnosis result is determined by the ratio of the difference between the first rotation angle and the second rotation angle standardized by the reference mileage, it is possible to prevent an erroneous diagnosis of an abnormality.
 また、滑り検出システム1は、第2被検知体を備える。第2被検知体は、昇降路3において第1被検知体の上方または下方に固定される。位置検出部は、第2被検知体の高さにおける第2検知領域にあるか否かによって検知状態が切り替わる。記憶部21は、第1回転角が検出されてから第2回転角が検出される前にかご8の走行により位置検出部が第2検知領域の第2境界を通過することで検知状態が切り替わるときに回転角検出部が検出する巻上機7の回転角を、第3回転角として記憶する。算出部22は、第1回転角または第2回転角および第3回転角に基づいて第1境界および第2境界の間の距離を基準走行距離として算出する。 Further, the slip detection system 1 includes a second detected body. The second detected body is fixed above or below the first detected body in the hoistway 3. The position detection unit switches the detection state depending on whether or not it is in the second detection region at the height of the second detected body. The storage unit 21 switches the detection state when the position detection unit passes through the second boundary of the second detection region due to the traveling of the car 8 after the first rotation angle is detected and before the second rotation angle is detected. The rotation angle of the hoisting machine 7 sometimes detected by the rotation angle detection unit is stored as a third rotation angle. The calculation unit 22 calculates the distance between the first boundary and the second boundary as the reference mileage based on the first rotation angle or the second rotation angle and the third rotation angle.
 基準走行距離は、滑り検出におけるかご8の走行によって測定される。このため、算出部22は、基準走行距離で規格化された滑り量の比率を容易に算出できる。なお、基準走行距離は滑り量に対して十分大きく取ることができる。このため、規格化に用いられる基準走行距離そのものについて、滑りによる相対的な変動は、小さくすることができる。ここで、昇降路3におけるかご8の往復を考慮して、基準走行距離は、第1境界および第2境界の間の距離を2倍することによって算出されてもよい。 The reference mileage is measured by the running of the car 8 in slip detection. Therefore, the calculation unit 22 can easily calculate the ratio of the slip amount standardized by the reference mileage. The reference mileage can be set sufficiently large with respect to the amount of slippage. Therefore, with respect to the reference mileage itself used for standardization, the relative fluctuation due to slippage can be reduced. Here, the reference mileage may be calculated by doubling the distance between the first boundary and the second boundary in consideration of the round trip of the car 8 in the hoistway 3.
 なお、情報処理装置20は、例えば次のようにエレベーター2の滑り検出を行ってもよい。 Note that the information processing device 20 may detect slippage of the elevator 2 as follows, for example.
 第1回転角は、b点において検出される。 The first rotation angle is detected at point b.
 その後、かご8は、d点において走行方向を反転させる。記憶部21は、d点においてエンコーダー16が検出する巻上機7の回転角θ4を、第4回転角として記憶する。ここで、回転角θ4は、例えばエンコーダー16のカウントの上昇および下降が反転するときの回転角である。 After that, the car 8 reverses the traveling direction at the d point. The storage unit 21 stores the rotation angle θ4 of the hoisting machine 7 detected by the encoder 16 at the d point as the fourth rotation angle. Here, the rotation angle θ4 is, for example, a rotation angle when the increase and decrease of the count of the encoder 16 are reversed.
 その後、かご8は、g点において走行方向をふたたび反転させる。記憶部21は、g点においてエンコーダー16が検出する巻上機7の回転角θ5を、第5回転角として記憶する。ここで、回転角θ5は、例えばエンコーダー16のカウントの下降および上昇が反転するときの回転角である。 After that, the car 8 reverses the traveling direction again at the g point. The storage unit 21 stores the rotation angle θ5 of the hoisting machine 7 detected by the encoder 16 at the g point as the fifth rotation angle. Here, the rotation angle θ5 is, for example, a rotation angle when the decrease and increase of the count of the encoder 16 are reversed.
 その後、第2回転角は、i点において検出される。 After that, the second rotation angle is detected at point i.
 その後、算出部22は、第1回転角および第2回転角の差分に基づいて滑り量を算出する。算出部22は、例えば第4回転角と第5回転角との差分に基づいて基準走行距離を算出する。算出部22は、滑り量を基準走行距離で除した比率を算出する。 After that, the calculation unit 22 calculates the slip amount based on the difference between the first rotation angle and the second rotation angle. The calculation unit 22 calculates the reference mileage based on, for example, the difference between the fourth rotation angle and the fifth rotation angle. The calculation unit 22 calculates the ratio of the slip amount divided by the reference mileage.
 算出された比率が閾値を超える場合に、判定部23は、滑りの診断結果を異常と判定する。算出された比率が閾値を超えない場合に、判定部23は、滑りの診断結果を正常と判定する。 When the calculated ratio exceeds the threshold value, the determination unit 23 determines that the slip diagnosis result is abnormal. When the calculated ratio does not exceed the threshold value, the determination unit 23 determines that the slip diagnosis result is normal.
 以上のように、記憶部21は、第1回転角が検出された後に第1反転位置においてかご8の走行方向が反転するときに回転角検出部が検出する巻上機7の回転角を第4回転角として記憶する。記憶部21は、第4回転角が検出されてから第2回転角が検出される前に第2反転位置においてかご8の走行方向が反転するときに回転角検出部が検出する巻上機7の回転角を第5回転角として記憶する。第1反転位置は、第1境界の一方側の位置である。第2反転位置は、第1境界の他方側の位置である。算出部22は、第4回転角および第5回転角に基づいて第1反転位置および第2反転位置の間の距離を基準走行距離として算出する。 As described above, the storage unit 21 determines the rotation angle of the hoisting machine 7 detected by the rotation angle detection unit when the traveling direction of the car 8 is reversed at the first inversion position after the first rotation angle is detected. Store as 4 rotation angles. The storage unit 21 is a hoisting machine 7 detected by the rotation angle detection unit when the traveling direction of the car 8 is reversed at the second inversion position after the fourth rotation angle is detected and before the second rotation angle is detected. The rotation angle of is stored as the fifth rotation angle. The first inversion position is a position on one side of the first boundary. The second inversion position is the position on the other side of the first boundary. The calculation unit 22 calculates the distance between the first reversing position and the second reversing position as a reference traveling distance based on the fourth rotation angle and the fifth rotation angle.
 基準走行距離は、かご8の走行方向が反転される位置によって算出される。反転位置において、かご8は一旦停止する。このため、基準走行距離の算出において、かご8の走行速度による誤差が生じない。これにより、算出部22は、第1回転角および第2回転角の差分を基準走行距離で規格化した比率を、より高い精度で算出できる。 The reference mileage is calculated by the position where the traveling direction of the car 8 is reversed. At the inverted position, the car 8 temporarily stops. Therefore, in calculating the reference mileage, there is no error due to the traveling speed of the car 8. As a result, the calculation unit 22 can calculate the ratio of the difference between the first rotation angle and the second rotation angle standardized by the reference mileage with higher accuracy.
 本発明に係る滑り検出システムは、エレベーターに適用できる。 The slip detection system according to the present invention can be applied to an elevator.
 1 滑り検出システム、 2 エレベーター、 3 昇降路、 4 乗場、 5 綱車、 6 主索、 7 巻上機、 8 かご、 9 釣合い錘、 10 乗場扉、 11 ブレーキ、 12 調速器、 13 制御盤、 14 かご扉、 15 遠隔運転装置、 16 エンコーダー、 17 はかり装置、 18 階床板、 19 着床センサー、 20 情報処理装置、 21 記憶部、 22 算出部、 23 判定部、 24 指令部、 1a ハードウェア、 1b プロセッサ、 1c メモリ 1 slip detection system, 2 elevator, 3 hoistway, 4 landing, 5 rope wheel, 6 main rope, 7 hoisting machine, 8 car, 9 balance weight, 10 landing door, 11 brake, 12 speed control device, 13 control panel , 14 car door, 15 remote operation device, 16 encoder, 17 scale device, 18 floor board, 19 landing sensor, 20 information processing device, 21 storage unit, 22 calculation unit, 23 judgment unit, 24 command unit, 1a hardware , 1b processor, 1c memory

Claims (13)

  1.  エレベーターの主索が巻き掛けられている綱車の回転によって前記主索を駆動する巻上機の回転角を検出する回転角検出部と、
     前記綱車に対して前記主索の一方側に設けられるかごおよび前記綱車に対して前記主索の他方側に設けられる釣合い錘が走行する昇降路に固定される第1被検知体と、
     前記かごまたは前記釣合い錘に設けられ、前記第1被検知体の高さにおける第1検知領域にあるか否かによって検知状態が切り替わる位置検出部と、
     前記かごの走行により前記位置検出部が前記第1検知領域の第1境界を通過することで前記検知状態が切り替わるときに前記回転角検出部が検出する前記巻上機の回転角を第1回転角として記憶し、前記第1回転角が検出された後に前記かごの走行により前記位置検出部が前記第1境界を通過することで前記検知状態が切り替わるときに前記回転角検出部が検出する前記巻上機の回転角を第2回転角として記憶する記憶部と、
     前記記憶部が記憶した前記第1回転角および前記第2回転角の差分に基づいて前記主索および前記綱車の間の滑り量を算出する算出部と、
     を備えるエレベーターの滑り検出システム。
    A rotation angle detection unit that detects the rotation angle of the hoist that drives the main rope by the rotation of the sheave around which the main rope of the elevator is wound.
    A car provided on one side of the main rope with respect to the sheave and a first detected body fixed to a hoistway on which a balance weight provided on the other side of the main rope with respect to the sheave travels.
    A position detection unit provided on the car or the counterweight and whose detection state is switched depending on whether or not it is in the first detection region at the height of the first detected body.
    When the position detection unit passes the first boundary of the first detection region due to the traveling of the car and the detection state is switched, the rotation angle detection unit detects the rotation angle of the hoisting machine for the first rotation. It is stored as an angle, and after the first rotation angle is detected, the rotation angle detection unit detects when the detection state is switched by the position detection unit passing through the first boundary due to the running of the car. A storage unit that stores the rotation angle of the hoist as the second rotation angle,
    A calculation unit that calculates the amount of slip between the main rope and the sheave based on the difference between the first rotation angle and the second rotation angle stored by the storage unit.
    Elevator slip detection system equipped with.
  2.  前記算出部は、前記エレベーターが診断運転を行っているときに検出された前記第1回転角、および前記エレベーターが当該診断運転を行っているときに検出された前記第2回転角の差分に基づいて前記滑り量を算出する
     請求項1に記載のエレベーターの滑り検出システム。
    The calculation unit is based on the difference between the first rotation angle detected when the elevator is performing the diagnostic operation and the second rotation angle detected when the elevator is performing the diagnostic operation. The slip detection system for an elevator according to claim 1, wherein the slip amount is calculated.
  3.  前記算出部は、前記かごが第1停止階から第2停止階まで連続して走行するときに検出された前記第1回転角、および前記かごが前記第1停止階から前記第2停止階まで連続して走行するときに検出された前記第2回転角の差分に基づいて前記滑り量を算出する
     請求項1または請求項2に記載のエレベーターの滑り検出システム。
    The calculation unit includes the first rotation angle detected when the car travels continuously from the first stop floor to the second stop floor, and the car from the first stop floor to the second stop floor. The slip detection system for an elevator according to claim 1 or 2, wherein the slip amount is calculated based on the difference between the second rotation angles detected during continuous traveling.
  4.  前記算出部は、前記かごが最下階ならびに最上階の間を連続して走行するときに検出された前記第1回転角、および前記かごが前記最下階ならびに前記最上階の間を連続して走行するときに検出された前記第2回転角の差分に基づいて前記滑り量を算出する
     請求項3に記載のエレベーターの滑り検出システム。
    In the calculation unit, the first rotation angle detected when the car travels continuously between the lowest floor and the top floor, and the car continuously runs between the lowest floor and the top floor. The slip detection system for an elevator according to claim 3, wherein the slip amount is calculated based on the difference between the second rotation angles detected during traveling.
  5.  前記算出部は、前記第1回転角、および前記第1回転角が検出されてから前記かごの走行方向が停止階の間において反転した後に検出された前記第2回転角の差分に基づいて前記滑り量を算出する
     請求項1または請求項2に記載のエレベーターの滑り検出システム。
    The calculation unit is based on the difference between the first rotation angle and the second rotation angle detected after the traveling direction of the car is reversed between the stop floors after the first rotation angle is detected. The slip detection system for an elevator according to claim 1 or 2, which calculates the amount of slip.
  6.  前記算出部は、前記かごが上昇または下降のいずれかの走行方向に走行しているときに検出された前記第1回転角、および前記かごが当該走行方向に走行しているときに検出された前記第2回転角の差分に基づいて前記滑り量を算出する
     請求項1から請求項5のいずれか一項に記載のエレベーターの滑り検出システム。
    The calculation unit detects the first rotation angle detected when the car is traveling in either the ascending or descending traveling direction, and is detected when the car is traveling in the traveling direction. The slip detection system for an elevator according to any one of claims 1 to 5, which calculates the slip amount based on the difference in the second rotation angle.
  7.  前記算出部は、前記第1回転角、および前記第1回転角が検出されてから前記かごの走行方向がちょうど2回反転した後に検出された前記第2回転角の差分に基づいて前記滑り量を算出する
     請求項6に記載のエレベーターの滑り検出システム。
    The calculation unit is based on the difference between the first rotation angle and the second rotation angle detected after the traveling direction of the car is reversed exactly twice after the first rotation angle is detected. The slip detection system for an elevator according to claim 6.
  8.  前記かごの積載重量を測定するはかり装置
     を備え、
     前記算出部は、前記第1回転角が検出されてから前記第2回転角が検出されるまでの間に前記はかり装置が測定する積載重量の変動が予め設定された範囲内であるときに、前記滑り量を算出する
     請求項1から請求項7のいずれか一項に記載のエレベーターの滑り検出システム。
    Equipped with a weighing device to measure the load weight of the car
    When the fluctuation of the load weight measured by the weighing device is within a preset range between the detection of the first rotation angle and the detection of the second rotation angle, the calculation unit may perform the calculation unit. The slip detection system for an elevator according to any one of claims 1 to 7, which calculates the slip amount.
  9.  前記第1回転角が検出されてから前記第2回転角が検出されるまでの間、前記かごのかご扉を閉じたままに保つ指令を出力する指令部
     を備える請求項1から請求項8のいずれか一項に記載のエレベーターの滑り検出システム。
    Claims 1 to 8 include a command unit that outputs a command for keeping the car door of the car closed between the time when the first rotation angle is detected and the time when the second rotation angle is detected. Elevator slip detection system according to any one item.
  10.  前記算出部が算出した前記滑り量が予め設定された閾値を超える場合に異常として判定する判定部
     を備える請求項1から請求項9のいずれか一項に記載のエレベーターの滑り検出システム。
    The slip detection system for an elevator according to any one of claims 1 to 9, further comprising a determination unit that determines as an abnormality when the slip amount calculated by the calculation unit exceeds a preset threshold value.
  11.  前記滑り量の検出において前記かごが前記昇降路を走行する距離である基準走行距離に対する前記滑り量の比率が予め設定された閾値を超える場合に異常として判定する判定部
     を備え、
     前記算出部は、前記滑り量を前記基準走行距離で除して前記比率を算出する
     請求項1から請求項9のいずれか一項に記載のエレベーターの滑り検出システム。
    A determination unit for determining an abnormality when the ratio of the slip amount to the reference mileage, which is the distance traveled by the car on the hoistway, exceeds a preset threshold value in detecting the slip amount.
    The slip detection system for an elevator according to any one of claims 1 to 9, wherein the calculation unit calculates the ratio by dividing the slip amount by the reference mileage.
  12.  前記昇降路において前記第1被検知体の上方または下方に固定される第2被検知体
     を備え、
     前記位置検出部は、前記第2被検知体の高さにおける第2検知領域にあるか否かによって前記検知状態が切り替わり、
     前記記憶部は、前記第1回転角が検出されてから前記第2回転角が検出される前に前記かごの走行により前記位置検出部が前記第2検知領域の第2境界を通過することで前記検知状態が切り替わるときに前記回転角検出部が検出する前記巻上機の回転角を、第3回転角として記憶し、
     前記算出部は、前記第1回転角または前記第2回転角および前記第3回転角に基づいて前記第1境界および前記第2境界の間の距離を前記基準走行距離として算出する
     請求項11に記載のエレベーターの滑り検出システム。
    A second body to be detected is provided above or below the first body to be detected in the hoistway.
    The position detection unit switches its detection state depending on whether or not it is in the second detection region at the height of the second detection object.
    In the storage unit, the position detection unit passes through the second boundary of the second detection region due to the traveling of the car after the first rotation angle is detected and before the second rotation angle is detected. The rotation angle of the hoisting machine detected by the rotation angle detection unit when the detection state is switched is stored as a third rotation angle.
    According to claim 11, the calculation unit calculates the distance between the first boundary and the second boundary as the reference mileage based on the first rotation angle or the second rotation angle and the third rotation angle. Elevator slip detection system described.
  13.  前記記憶部は、前記第1回転角が検出された後に前記第1境界の一方側の第1反転位置において前記かごの走行方向が反転するときに前記回転角検出部が検出する前記巻上機の回転角を第4回転角として記憶し、前記第4回転角が検出されてから前記第2回転角が検出される前に前記第1境界の他方側の第2反転位置において前記かごの走行方向が反転するときに前記回転角検出部が検出する前記巻上機の回転角を第5回転角として記憶し、
     前記算出部は、前記第4回転角および前記第5回転角に基づいて前記第1反転位置および前記第2反転位置の間の距離を前記基準走行距離として算出する
     請求項11に記載のエレベーターの滑り検出システム。
    The storage unit is the hoisting machine detected by the rotation angle detection unit when the traveling direction of the car is reversed at the first inversion position on one side of the first boundary after the first rotation angle is detected. The rotation angle of the car is stored as the fourth rotation angle, and the car travels at the second inversion position on the other side of the first boundary after the fourth rotation angle is detected and before the second rotation angle is detected. The rotation angle of the hoisting machine detected by the rotation angle detection unit when the direction is reversed is stored as the fifth rotation angle.
    The elevator according to claim 11, wherein the calculation unit calculates the distance between the first reversal position and the second reversal position as the reference mileage based on the fourth rotation angle and the fifth rotation angle. Slip detection system.
PCT/JP2019/017481 2019-04-24 2019-04-24 Slippage detection system for elevator WO2020217352A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980095594.XA CN113767059B (en) 2019-04-24 2019-04-24 Slip detection system for elevator
JP2021515383A JP7047972B2 (en) 2019-04-24 2019-04-24 Elevator slip detection system
PCT/JP2019/017481 WO2020217352A1 (en) 2019-04-24 2019-04-24 Slippage detection system for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017481 WO2020217352A1 (en) 2019-04-24 2019-04-24 Slippage detection system for elevator

Publications (1)

Publication Number Publication Date
WO2020217352A1 true WO2020217352A1 (en) 2020-10-29

Family

ID=72941162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017481 WO2020217352A1 (en) 2019-04-24 2019-04-24 Slippage detection system for elevator

Country Status (3)

Country Link
JP (1) JP7047972B2 (en)
CN (1) CN113767059B (en)
WO (1) WO2020217352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022176114A1 (en) * 2021-02-18 2022-08-25

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616362A (en) * 1992-07-01 1994-01-25 Hitachi Building Syst Eng & Service Co Ltd Slip quantity measuring device for main cable
WO2010024048A1 (en) * 2008-09-01 2010-03-04 三菱電機株式会社 Elevator device
JP2010089869A (en) * 2008-10-06 2010-04-22 Mitsubishi Electric Corp Rope slipping detection device of elevator and elevator device using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127180A (en) * 2006-11-24 2008-06-05 Hitachi Ltd Elevator system
JP4774427B2 (en) * 2008-06-30 2011-09-14 株式会社日立製作所 Elevator position detection device and elevator
JP2012180132A (en) * 2009-06-29 2012-09-20 Mitsubishi Electric Corp Elevator equipment
JP6265057B2 (en) * 2014-06-17 2018-01-24 三菱電機株式会社 Elevator system
CN105173943B (en) * 2015-08-10 2017-04-12 沈阳市蓝光自动化技术有限公司 Elevator inspection system
JP6576558B2 (en) * 2016-07-20 2019-09-18 三菱電機株式会社 Elevator control device and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616362A (en) * 1992-07-01 1994-01-25 Hitachi Building Syst Eng & Service Co Ltd Slip quantity measuring device for main cable
WO2010024048A1 (en) * 2008-09-01 2010-03-04 三菱電機株式会社 Elevator device
JP2010089869A (en) * 2008-10-06 2010-04-22 Mitsubishi Electric Corp Rope slipping detection device of elevator and elevator device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022176114A1 (en) * 2021-02-18 2022-08-25
WO2022176114A1 (en) * 2021-02-18 2022-08-25 三菱電機ビルテクノサービス株式会社 Braking distance measurement system, elevator, and braking distance measurement method
JP7264323B2 (en) 2021-02-18 2023-04-25 三菱電機ビルソリューションズ株式会社 Braking Distance Measurement Systems, Elevators, and Braking Distance Measurement Methods
CN116783131A (en) * 2021-02-18 2023-09-19 三菱电机楼宇解决方案株式会社 Brake distance measuring system, elevator, and brake distance measuring method
CN116783131B (en) * 2021-02-18 2024-02-20 三菱电机楼宇解决方案株式会社 Brake distance measuring system, elevator, and brake distance measuring method

Also Published As

Publication number Publication date
JPWO2020217352A1 (en) 2021-10-14
CN113767059B (en) 2023-11-10
JP7047972B2 (en) 2022-04-05
CN113767059A (en) 2021-12-07

Similar Documents

Publication Publication Date Title
JP5050362B2 (en) elevator
JP6987255B2 (en) Elevator diagnostic system
EP3102522A2 (en) Brake operation management in elevators
JP5326474B2 (en) Elevator rope slip detection device and elevator device using the same
TWI377168B (en) Automatic inspecting device for an elevator and automatic inspecting method for an elevator
CN109071150A (en) Elevator device
JP5947094B2 (en) elevator
JP6304443B2 (en) Elevator diagnostic equipment
CN111252638B (en) Device and method for monitoring an elevator system
CN109153537A (en) Lift appliance
JP7047972B2 (en) Elevator slip detection system
WO2020053925A1 (en) Elevator abnormality detection device
JP2008156127A (en) Elevator
JP6741366B2 (en) Soundness diagnostic device
WO2024042642A1 (en) Deformation detection system and deformation detection method for elevator guide rail
JP7264323B2 (en) Braking Distance Measurement Systems, Elevators, and Braking Distance Measurement Methods
JP7347666B2 (en) Elevator abnormality detection device
JP6409659B2 (en) Elevator device and its control device
JP2009208928A (en) Clearance measuring device
JP7035805B2 (en) Elevator device
WO2023247036A1 (en) Method and arrangement for monitoring elevator suspension rope condition
JP2012096871A (en) Elevator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926090

Country of ref document: EP

Kind code of ref document: A1