WO2024041214A1 - 一种电池盖板组件、电池和电力系统 - Google Patents

一种电池盖板组件、电池和电力系统 Download PDF

Info

Publication number
WO2024041214A1
WO2024041214A1 PCT/CN2023/104949 CN2023104949W WO2024041214A1 WO 2024041214 A1 WO2024041214 A1 WO 2024041214A1 CN 2023104949 W CN2023104949 W CN 2023104949W WO 2024041214 A1 WO2024041214 A1 WO 2024041214A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
hole
cover plate
injection molded
cover assembly
Prior art date
Application number
PCT/CN2023/104949
Other languages
English (en)
French (fr)
Inventor
黄达
姜熙
杨吉祥
胡冠伦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024041214A1 publication Critical patent/WO2024041214A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cover assembly, battery and power system.
  • a cover plate and a pole can be included. Since the injection molding process has the advantages of simple production process and low production cost, the cover plate and the pole are gradually fixedly connected by injection molding. However, in the current battery cover, due to the lack of reasonable structural design between the cover and the poles, problems such as insufficient injection molding and poor torsion resistance of the poles are prone to occur during injection molding, which will affect the safety of the battery. performance and long-term use reliability. Therefore, how to improve the anti-torsion performance of the pole has become an urgent technical problem to be solved.
  • This application provides a battery cover assembly, a battery and a power system that can effectively improve the anti-torsion performance of the pole.
  • this application provides a battery cover assembly, which may include a cover, a pole and an injection molded part.
  • the cover plate has a first plate surface and a second plate surface that is away from the first plate surface.
  • the cover plate also has a through hole penetrating the first plate surface and the second plate surface, and the inner wall of the through hole has a first anti-rotation surface.
  • the pole is inserted through the through hole, and the outer peripheral surface of the pole has a second anti-rotation surface.
  • the injection molded part is used to fixedly connect the cover plate and the pole, and covers at least the first anti-rotation surface and the second anti-rotation surface, so as to effectively position the pole in the circumferential direction and improve the anti-torsion performance of the pole.
  • poles are generally used in pairs, one as a positive pole and the other as a negative pole. Therefore, the number of injection molded parts can be the same as the number of poles.
  • the first anti-rotation surface may be a flat surface, and the angle between the first anti-rotation surface and the inner wall of the through hole may be less than 180° to ensure that the through hole has a sufficiently large cross-sectional area for the pole.
  • the column can be penetrated smoothly.
  • the angle between the first anti-rotation surface and the inner wall of the through hole refers to the junction between the first anti-rotation surface and the inner wall of the through hole, and the angle between the first anti-rotation surface and the tangential surface of the inner wall of the through hole. angle.
  • the angle between the first anti-rotation surface and the inner wall of the through hole can be flexibly set according to actual needs.
  • a chamfer can be provided at at least one end of the through hole.
  • the bonding area between the through hole and the injection molded part can be increased, which can effectively improve the connection stability between the injection molded part and the cover plate.
  • the first plate surface of the cover plate may be provided with a counterbore, and the injection molded part may be located in the counterbore. This can increase the bonding area between the injection molded part and the cover plate, which is beneficial to ensuring the stability of the connection between the injection molded part and the cover plate.
  • a recessed portion can be provided on the side wall of the countersunk hole.
  • a snap connection can be formed between the injection molded part and the countersunk hole, which can effectively improve the connection strength between the injection molded part and the countersunk hole.
  • the first plate surface may also be provided with a boss, the through hole penetrates the boss, and the injection molded part covers the boss. After the injection molded part covers the boss, the bonding area between the injection molded part and the cover plate can be increased, which is beneficial to ensuring the stability of the connection between the injection molded part and the cover plate.
  • the pole When arranging the pole, the pole may include a pole, a first end of the pole having a first pole section, a second end having a second pole section, and a convergence between the first pole section and the second pole section. part, and the injection molded body covers the convergence part. After the injection molded body covers the convergence part, a snap connection can be formed between the injection molded part and the pole, which can effectively improve the axial connection strength between the injection molded part and the countersunk hole pole.
  • the second anti-rotation surface may be located on the outer peripheral surface of the first column segment or on the outer peripheral surface of the convergence part.
  • the pole may further include a base located at the second end of the pole.
  • the sealing ring can be sleeved on the outer periphery of the second column section, and the thickness of the sealing ring is greater than the length of the second column section, thereby increasing the creepage distance between the pole and the cover plate.
  • one side of the sealing ring can be airtightly attached to the surface of the base, and the other side can be airtightly attached to the cover plate, thereby ensuring the airtightness between the pole and the cover plate.
  • the battery cover assembly may further include a spacer ring, and the spacer ring may be located on the second plate surface, thereby improving the electrical insulation of the cover plate. fate.
  • this application also provides a battery.
  • the battery may include a casing, a bare battery core, and any of the above battery cover components.
  • the casing has a groove, the bare battery core is disposed in the groove, and the battery cover assembly The component covers the opening of the groove, and the second plate faces the groove.
  • the connection stability between the poles and the bare cells can be improved, and the reliability of the battery can be ensured.
  • this application also provides a power system, which may include an inverter and the above-mentioned battery.
  • the inverter is connected to the battery and is used to convert alternating current into direct current and provide it to the battery, or to convert the direct current from the battery. converted into alternating current.
  • the power system can be an energy storage system, or a solar or wind power system. This application does not limit the specific type of the power system.
  • Figure 1 is a cross-sectional view of a conventional battery provided by the present application.
  • Figure 2 is a cross-sectional view of a conventional battery cover assembly provided by the present application.
  • Figure 3 is a schematic three-dimensional structural diagram of a battery cover assembly provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the exploded structure of a battery cover assembly provided by an embodiment of the present application.
  • Figure 5 is a partial enlarged view of part A in Figure 4.
  • Figure 6 is a schematic diagram showing the cross section of a through hole provided by an embodiment of the present application.
  • Figure 7 is another schematic diagram showing the cross-section of a through hole provided by an embodiment of the present application.
  • Figure 8 is a schematic cross-sectional structural diagram of a counterbore provided by an embodiment of the present application.
  • Figure 9 is a partial cross-sectional structural diagram of a battery cover assembly provided by an embodiment of the present application.
  • FIG. 10 is a schematic exploded view of another battery cover assembly provided by an embodiment of the present application.
  • FIG 11 is a schematic cross-sectional structural diagram of another battery cover assembly provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the exploded structure of a battery provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a three-dimensional decoupling unit of a battery pack provided by an embodiment of the present application.
  • Figure 14 is a structural block diagram of a power system provided by an embodiment of the present application.
  • the battery cover assembly provided by the embodiment of the present application can be applied to many different types of batteries.
  • a battery 01 is provided in an embodiment of the present application.
  • the battery 01 may include a case 011 , a bare cell 012 and a battery cover assembly 013 .
  • the housing 011 has a groove 0111, and the bare battery core 012 is disposed in the groove 0111.
  • the battery cover assembly 013 includes a cover 0131, a positive pole 0132 and a negative pole 0133.
  • the cover plate 0131 covers the opening of the groove 0111 to ensure the sealing of the groove 0111.
  • One end of the positive electrode post 0132 (the lower end in Figure 1) can be connected to the positive electrode of the bare cell 012, and the other end (the upper end in Figure 1) extends from the cover plate 0131 to facilitate electrical connection with external power equipment.
  • one end of the negative pole 0133 (the lower end in Figure 1) can be connected to the negative pole of the bare cell 012, and the other end (the upper end in the figure) extends from the cover 0131 to facilitate electrical connection with external power equipment.
  • the positive pole 0132 and the negative pole 0133 are fixed by the cover plate 0131.
  • the cover plate 0131 can prevent the positive pole 0132 and the negative pole 0133 from positional deviation to a certain extent. move, thereby ensuring the safety of battery 01.
  • the battery cover assembly 013 may include a cover 0131, a positive pole 0132, a negative pole 0133, a disc 0134 and a disc 0135.
  • the positive pole 0132 is fixedly connected to the cover plate 0131 through the disc 0134.
  • the positive pole 0132 has a cylindrical structure.
  • the negative pole 0133 is fixedly connected to the cover 0131 through the disc 0135.
  • the negative pole 0133 has a cylindrical structure. When the negative pole 0133 is subjected to circumferential torsional force, it is easy to rotate, which will affect the connection between the negative pole 0133 and the bare electrode. reliability of electrical connections between cores. In addition, since the disc 0134 and the disc 0135 are generally made of metal, insulation treatment is required between the disc 0134 and the positive pole 0132 and between the disc 0135 and the negative pole 0133.
  • the poles have poor torsion resistance.
  • the pole and cover plate 0131 need to be fixedly connected through discs, which poses problems such as a large number of parts and complex manufacturing processes.
  • embodiments of the present application provide a battery cover assembly with a simple structure and energy efficiency that improves the anti-twisting performance of the pole.
  • the battery cover assembly 10 may include a cover 11 , a positive pole 12 a , a negative pole 12 b , an injection molded part 13 a and an injection molded part 13 b.
  • the cover plate 11 has a through hole 11 a and a through hole 11 b.
  • the through hole 11 a and the through hole 11 b both penetrate the first plate surface 111 and the second plate surface 112 of the cover plate 11 , wherein the The first plate surface 111 and the second plate surface 112 are opposite plate surfaces of the cover plate 11 .
  • the positive pole 12a is inserted into the through hole 11a
  • the negative pole 12b is inserted into the through hole 11b.
  • the injection molded part 13a is used to firmly connect the cover plate 11 and the positive pole 12a.
  • the injection molded part 13b is used to firmly connect the cover plate 11 and the negative electrode post 12b.
  • the inner wall of the through hole 11a has a first anti-rotation surface 110a
  • the outer peripheral surface of the positive pole 12a has a second anti-rotation surface 120a
  • the injection molded part 13a at least covers the first anti-rotation surface 110a to circumferentially protect the positive pole 12a.
  • the injection molded part 13a also covers at least the second anti-rotation surface 120a to limit the position of the cover plate 11 in the circumferential direction, preventing the positive pole 12a from rotating relative to the cover plate 11 in the circumferential direction, thereby lifting the positive electrode. Torsion resistance of column 12.
  • the inner wall of the through hole 11b has a first anti-rotation surface 110b
  • the outer peripheral surface of the negative pole 12b has a second anti-rotation surface 120b
  • the injection molded part 13b at least covers the first anti-rotation surface 110b to circumferentially protect the negative pole 12b.
  • the injection molded part 13b also covers at least the second anti-rotation surface 120b to limit the position of the cover plate 11 in the circumferential direction, preventing the negative electrode column 12b from rotating relative to the cover plate 11 in the circumferential direction, thereby lifting the negative electrode. Torsion resistance of column 12.
  • the positive pole 12a and the cover 11 can be fixedly connected through the injection molded part 13a, which can also ensure the electrical insulation between the positive pole 12a and the cover 11, which is beneficial to reducing Quantity of parts used.
  • the first anti-rotation surface 110a and the second anti-rotation surface 120a can effectively prevent the positive pole 12a from rotating in the circumferential direction, thereby improving the structural stability of the battery cover assembly 10.
  • the corresponding negative electrode post 12b and the cover plate 11 can be fixedly connected through the injection molded part 13b, which can also ensure the electrical insulation between the negative electrode post 12b and the cover plate 11, which is beneficial to reducing the number of parts used.
  • the first anti-rotation surface 110b and the second anti-rotation surface 120b can effectively prevent the negative pole 12b from rotating in the circumferential direction, thereby improving the structural stability of the battery cover assembly 10.
  • first anti-rotation surface 110a and the second anti-rotation surface 120a refer to surfaces that do not take the axis center of the positive pole 12a as the rotation center.
  • the torsional force will be transmitted to the injection molded part 13a through the second anti-rotation surface 120a, and then transmitted to the cover plate 11 through the injection molded part 13a.
  • the first anti-rotation surface 110a resists the torsion force, and therefore can prevent the positive pole 12a from rotating.
  • the first anti-rotation surface 110b and the second anti-rotation surface 120b refer to surfaces that do not take the axis of the negative pole 12b as the rotation center.
  • the torsional force will be transmitted to the injection molded part 13b through the second anti-rotation surface 120b, and then transmitted to the cover plate 11 through the injection molded part 13b.
  • the first anti-rotation surface 110b resists the torsion force, and therefore can prevent the negative pole 12b from rotating.
  • the material of the injection molded part 13a and the injection molded part 13b can be polypropylene, polyvinylidene fluoride, polyethylene, polymethyl methacrylate, polyvinyl acetate, etc. Insulating materials such as polymers and their copolymers are used to ensure the electrical insulation between the positive pole 12a, the negative pole 12b and the cover plate 11.
  • the components that need to be connected such as the cover plate 11, the positive pole 12a and the negative pole 12b, can be assembled first, and then the injection molding material is injected into the required position. After the injection molding material is cooled and formed, the injection molded part can be completed. 13a and preparation of injection molded parts b. Among them, the injection molded part a and the injection molded part b can be produced at the same time or sequentially.
  • the cover plate 11 can be made of metal materials such as aluminum, aluminum alloy, or steel, so that the cover plate 11 has good structural strength. During preparation, the cover plate 11 can be formed by stamping, cutting or other processes. Of course, in other examples, the cover plate 11 can also be made of non-metallic materials such as resin. This application does not limit the specific material and preparation process of the cover plate 11 .
  • the structural types of the through holes 11a and 11b may be diverse. It should be noted that the structures of the through hole 11a and the through hole 11b may be substantially the same. Therefore, the structure of the through hole 11a will be described in detail below using the through hole 11a as an example.
  • the cross-sectional shape of the through hole 11 a is generally circular, and the first anti-rotation surface 110 a can be The protruding structure is provided on the inner wall of the through hole 11a.
  • the first anti-rotation surface 110a is a plane, and the angle between the first anti-rotation surface 110a and the inner wall of the through hole 11a is less than 180°.
  • the angle between the first anti-rotation surface 110a and the inner wall of the through hole 11a refers to the junction between the first anti-rotation surface 110a and the inner wall of the through hole 11a.
  • the angle between the first anti-rotation surface 110a and the inner wall of the through hole 11a is less than 180°, which ensures that the through hole 11a has a large enough cross-sectional area for the positive pole 12 to pass through smoothly. It can be understood that during specific implementation, the angle between the first anti-rotation surface 110a and the inner wall of the through hole 11a can be flexibly set according to actual needs, and will not be described again here.
  • the number and position of the first anti-rotation surfaces 110a can also be set flexibly.
  • first anti-rotation surfaces 110 a there are two first anti-rotation surfaces 110 a , and the two first anti-rotation surfaces 110 a are arranged symmetrically with respect to each other. It can be understood that during specific implementation, one, three or more first anti-rotation surfaces 110a may be provided. When multiple first anti-rotation surfaces 110a are provided, the relative positions between the multiple first anti-rotation surfaces 110a can be reasonably set according to actual needs.
  • first anti-rotation surfaces 110a are provided (only one is marked in the figure), and the four first anti-rotation surfaces 110a are connected in sequence along the circumferential direction.
  • the cross-sectional shape of the through hole 11a is a quadrilateral, and each side can be regarded as the first anti-rotation surface 110a.
  • the first anti-rotation surface 110a may also be formed by providing a recessed structure on the inner wall of the through hole 11a.
  • a groove 113 a is opened inside the through hole 11 a, and the first anti-rotation surface 110 a is located on the side wall of the groove 113 a. That is, the side wall of the groove 113a can be used as the first anti-rotation surface 110a.
  • the side walls of the groove 113a can resist the injection molded part 13a to prevent the injection molded part 13a and the positive pole 12a from rotating circumferentially.
  • the number, position and size of the grooves 113a can be flexibly set according to actual needs, and will not be described again here.
  • first anti-rotation surface 110a may also be a folded surface, a curved surface, etc. This application does not limit the specific shape of the first anti-rotation surface 110a.
  • one end of the through hole 11a has a chamfer 114a.
  • the chamfer 114a may be beveled or rounded. This application does not limit the specific shape and size of the chamfer 114a.
  • chamfers 114a may be provided at both ends of the through hole 11a, and the injection molded part 13a covers both chamfers 114a, which will not be described in detail here.
  • the first plate surface 111 of the cover plate 11 has a boss 115a and a boss 115b, one end of the through hole 11a penetrates the surface of the boss 115a, and the injection molding
  • the piece 13a covers the edge of the boss 115a; one end of the through hole 11b penetrates the surface of the boss 115b, and the injection molded part 13b covers the edge of the boss 115b.
  • the structures of the boss 115a and the boss 115b may be substantially the same, and the structures of the injection molded parts 13a and 13b may be substantially the same. Therefore, the boss 115a and the injection molded part 13a will be taken as an example for detailed description below.
  • the outer contour of the boss 115a is roughly rectangular.
  • the relationship between the injection molded part 13a and the cover plate 11 can be lifted.
  • the combined area is beneficial to ensuring the stability of the connection between the injection molded part 13a and the cover plate 11.
  • the space between the injection molded part 13a and the edge of the boss 115a can also play a position limiting role to prevent circumferential rotation between the injection molded part 13a and the cover plate 11.
  • the boss 115a may be formed through a stamping process.
  • the second plate surface 112 can be extruded to form a groove (not shown in the figure), so that the boss 115a structure can be formed on the first plate surface 111 . Since the boss 115a is formed by extrusion, the volume of the groove is approximately equal to the volume of the boss 115a.
  • the outer contour of the boss 115a can also be an elliptical, triangular or other polygonal structure.
  • the outer peripheral surface of the boss 115a is a surface that does not take the axis center of the through hole 11a as the center of rotation.
  • the cover plate 11 is also provided with a countersunk hole 116a, and the injection molded part 13a can be located in the countersunk hole 116a, thereby improving the connection between the injection molded part 13a and the cover plate 11
  • the area is conducive to ensuring the stability of the connection between the injection molded part 13a and the cover plate 11.
  • the space between the injection molded part 13a and the counterbore 116a can also play a position limiting role to prevent circumferential rotation between the injection molded part 13a and the cover plate 11.
  • each countersunk hole 116 a is provided, and the four countersunk holes 116 a are respectively provided at the four corners of the boss 115 a.
  • the counterbore 116a may also be provided on the first plate surface 111, that is, the counterbore 116a may not be provided on the boss 115a.
  • some counterbore holes 116a may be provided on the boss 115a, and other counterbore holes 116a may not be provided on the boss 115a.
  • the structure of the counterbore 116a may be various.
  • the counterbore 116a is substantially a circular straight hole, and a recess 1161a is provided on the side wall of the counterbore 116a.
  • the injection molded part 13a can cover the entire counterbore 116a. Since the cross-sectional area of the recessed portion 1161a is larger than the cross-sectional area of other parts of the counterbore 116a, a snap connection can be formed between the injection molded part 13a and the counterbore 116a. The connection strength between the injection molded part 13a and the counterbore 116a is effectively improved.
  • the counterbore 116a can also be a straight hole, a stepped hole, a tapered hole, etc., which will not be described again here.
  • the positive electrode column 12a and the negative electrode column 12b their structural types can also be diverse. It should be noted that the structures of the positive pole 12a and the negative pole 12b may be substantially the same, and the following will take the positive pole 12a as an example for illustrative explanation.
  • the positive electrode column 12a includes a column 121a, and the first end of the column 121a (the upper end in Figure 5) has a first column section 1211a. Both ends (lower end in Figure 5) have second column sections 1212a, and a convergence portion 1213a between the first column section 1211a and the second column section 1212a.
  • the cross-sectional area of the convergence section 1213a is smaller than the first column section 1211a and the second column section 1212a.
  • the injection molded body 13a covers the converging portion 1213a. Therefore, a snap connection can be formed between the injection molded part 13a and the positive pole 12a, which can effectively improve the axial connection strength between the injection molded part 13a and the countersunk hole positive pole 12a.
  • the second anti-rotation surface 120a is located on the outer peripheral surface of the first column section 1211a.
  • the second anti-rotation surface 120a can also be provided on the outer peripheral surface of the convergence portion 1213a, or the second anti-rotation surface 120a can be provided on both the first column section 1211a and the outer peripheral surface of the convergence portion 1213a. .
  • the pole 12a also includes a base 122a, and the base 122a is located on one side of the second column section 1212a of the column 121a.
  • the sealing ring 14a is sleeved on the outer periphery of the second column section 1212a, and one side of the sealing ring 14a is in contact with the surface of the base 122a, and the other side of the sealing ring 14a is in contact with the cover plate 11 , to ensure the airtightness between the positive pole 12a and the cover plate 11.
  • the first end of the positive pole 12a can be inserted into the through hole 11a as an insertion end. Therefore, in practical applications, the cross-sectional shape of the first column section 1211a and the cross-sectional shape of the through hole 11a can be substantially the same, and the cross-sectional area of the first column section 1211a should be smaller than the cross-sectional area of the through hole 11a, so that the positive electrode column 12a It can be inserted into the through hole 11a smoothly.
  • cross-sectional shape of the first column segment 1211a and the cross-sectional shape of the through hole 11a may also be different, which is not limited in this application.
  • the sealing ring 14a When arranging the sealing ring 14a, the sealing ring 14a can be sleeved on the outer periphery of the second column section 1212a, so that the second column section 1212a can play a good positioning role for the sealing ring 14a.
  • the second column segment 1212a is cylindrical
  • the sealing ring 14a is an annular structure
  • the cross-sectional area of the second column segment 1212a is larger than the cross-sectional area of the first column segment 1211a.
  • the sealing ring 14a when setting the sealing ring 14a, due to the large area of the base 122a, the sealing ring 14a can be sleeved from one end of the first column section 1211a.
  • the outer profile of the first column section 1211a may be smaller than the profile of the inner ring of the sealing ring 14a. That is, the cross-sectional area of the first column segment 1211a may be smaller than the cross-sectional area of the second column segment 1212a.
  • the thickness of the sealing ring 14a can be greater than the length of the second column section 1212a to ensure that there is sufficient creepage distance between the positive electrode 12a and the cover plate 11, thereby ensuring the safety of the cover plate assembly 10 and reliability.
  • sealing ring 14b there is also a sealing ring 14b.
  • the shapes and functions of the sealing ring 14b and the sealing ring 14a can be substantially the same, and will not be described in detail here.
  • the battery cover assembly 10 may also include a spacer 15 .
  • the spacer 15 is usually made of plastic material and has a roughly plate-like structure.
  • the spacer 15 can be provided on the second plate surface 112 to ensure the insulation of the second plate surface 112 of the cover plate 11 .
  • the spacer 15 can maintain insulation isolation between the cover 11 and the bare cells or electrolyte in the case.
  • the spacer 15 has a through hole 15a for the positive electrode 12a to penetrate and a through hole 15b for the negative electrode 12b to penetrate.
  • the through hole 15a and the through hole 11a may be arranged coaxially, and the through hole 15a and the through hole 11a may be arranged coaxially.
  • flange 151a at the through hole 15a of the spacer ring 15.
  • the flange 151a is located between the base 122a and the cover plate 11 to achieve a tight seal between the spacer ring 15 and the cover plate 11.
  • Fixed connection there is a ring of flange 151b at the through hole 15b of the spacer ring 15, and the flange 151b is located between the base 122b and the cover plate 11 to achieve a fixed connection between the spacer ring 15 and the cover plate 11.
  • the spacer ring 15 may be an integral structure, thereby reducing the number of components of the battery cover assembly 10 .
  • the spacer ring 15 may also have a split structure.
  • the spacer ring 15 may include two parts that are left and right symmetrical. It can be understood that during specific implementation, the spacer ring 15 can adopt a currently commonly used type, which will not be described in detail here.
  • the battery cover assembly 10 may also include other auxiliary structures.
  • the battery cover assembly 10 may also include an explosion-proof structure 16 .
  • the explosion-proof structure 16 can be disposed between the cover plate 11 and the spacer 15 . When the air pressure inside the battery is too high, the explosion-proof structure 16 can release the pressure to prevent the battery from exploding and other undesirable situations.
  • the cover plate 11 has a through hole 11 c penetrating the first plate surface 111 and the second plate surface 112 .
  • One end of the through hole 11 c (the lower end in FIG. 10 ) is connected to the explosion-proof structure 16 .
  • a protective patch 17 is provided at one end of the through hole 11c (the upper end in the figure).
  • the explosion-proof structure 16 may be a well-known conventional structure such as an explosion-proof membrane or an explosion-proof valve, which will not be described again here.
  • the cover plate 11 also has a liquid injection hole 11d penetrating the first plate surface 111 and the second plate surface 112.
  • the electrolyte can be injected into the battery case through the liquid injection hole 11d. After the liquid injection is completed, the liquid injection hole 11d can be blocked to ensure the airtightness of the battery.
  • the embodiment of the present application also provides a battery 01 .
  • the battery 01 may include a case 011 , a bare cell 012 and a battery cover assembly 10 .
  • the housing 011 has a groove 0111, and the bare battery core 012 and the electrolyte can be placed in the groove 0111.
  • an isolation layer 014 is also provided on the inner wall of the housing 011.
  • the isolation layer 014 is usually made of insulating materials such as nylon to ensure the insulation between the bare battery core 012 and the housing 011.
  • an insulating layer 015 can also be provided on the outer surface of the housing 011 to ensure the insulation between the housing 011 and other external devices or circuits.
  • cover plate 11 and the shell 011 can be fixedly connected by welding, bonding, etc., or they can also be fixedly connected by screws, rivets and other connectors. In this application, the cover plate 11 and the shell 011 can be fixedly connected.
  • the connection method between 011 is not limited.
  • the bare cell 012 refers to an electrochemical cell containing a positive electrode and a negative electrode, and its specific chemical composition and type are not limited in this application.
  • the battery 01 may be a lithium battery, a lead-acid battery, a lithium-sulfur battery, a sodium battery, a magnesium battery, an aluminum battery or a potassium battery.
  • multiple batteries 01 can be packaged to meet the required power supply needs.
  • a battery pack 20 provided by the present application can include multiple batteries (not shown in Figure 13), and the multiple batteries can be connected in series or in parallel to meet the required power supply. Require.
  • this embodiment of the present application also provides a power system 30.
  • the power system 30 may include an inverter 31, a power device 32, and any of the above-mentioned batteries 01.
  • the power device 32 can be connected to the battery 01 through the inverter 31 .
  • the type of electric energy in the battery 01 is generally direct current, and the electric power type of the power equipment 32 may be alternating current.
  • the inverter 31 can be used to achieve conversion between alternating current and direct current.
  • the power equipment 32 may be a wind power generation device or a solar power generation device, or the like.
  • the power system 30 may be a wind power power system or a solar power power system.
  • the power equipment 32 may also be electrical equipment such as a motor. This application does not limit the specific type of the power equipment.
  • the battery 01 can be used in terminals such as mobile phones, vehicles, ships, drones or base stations, and can also be used for power station energy storage or home energy storage. This application does not limit the application scenarios of the battery.
  • the power system 30 may also include a battery management system, and the battery management system may regulate the charging and discharging status of the battery 01 .
  • the battery management system can be set up at the terminal or at the remote end. For example, when battery 01 is used in a vehicle, a battery management system may be installed in the vehicle. Alternatively, the battery management unit can also be set at a location such as a base station.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供了一种电池盖板组件、电池和电力系统,涉及电池技术领域,以解决极柱抗扭转性能差的问题。本申请提供的电池盖板组件可以包括盖板、极柱和注塑件;盖板具有第一板面以及与第一板面相背离的第二板面;另外,盖板还具有贯通第一板面和第二板面的通孔,通孔的内壁具有第一防转面;极柱穿设于通孔,且极柱的外周面具有第二防转面;注塑件用于固定连接盖板和极柱,且至少覆盖第一防转面和第二防转面,以在周向上对极柱进行有效的定位。在本申请提供的电池盖板组件中,在周向上,盖板能够通过注塑件对极柱进行有效的定位,能明显提升极柱的抗扭转性能。

Description

一种电池盖板组件、电池和电力系统
相关申请的交叉引用
本申请要求在2022年08月22日提交中国专利局、申请号为202211007749.X、申请名称为“一种电池盖板组件、电池和电力系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池盖板组件、电池和电力系统。
背景技术
随着清洁能源的不断普及和发展,电池开始广泛的应用在数据中心、基站、手机和车辆等场景中。
在目前的电池盖板组件中,可以包括盖板和极柱。由于注塑工艺有着生产工序简单、生产成本低等优势,盖板和极柱之间开始逐渐采用注塑的方式进行固定连接。但是,在目前的电池盖板中,由于盖板与极柱之间没有合理的结构设计,使得在进行注塑时容易出现注塑不充分、极柱抗扭转性能较差等问题,会影响电池的安全性和长期使用时的可靠性,因此,如何提升极柱的抗扭转性能成为了亟待解决的技术问题。
发明内容
本申请提供了一种能够有效提升极柱的抗扭转性能的电池盖板组件、电池和电力系统。
第一方面,本申请提供了一种电池盖板组件,可以包括盖板、极柱和注塑件。盖板具有第一板面以及与第一板面相背离的第二板面。另外,盖板还具有贯通第一板面和第二板面的通孔,通孔的内壁具有第一防转面。极柱穿设于通孔,且极柱的外周面具有第二防转面。注塑件用于固定连接盖板和极柱,且至少覆盖第一防转面和第二防转面,以在周向上对极柱进行有效的定位,提升极柱的抗扭转性能。
可以理解的是,在实际应用中,极柱一般成对使用,一个作为正极柱,另外一个座位负极柱。因此,注塑件的数量与极柱的数量可以相同。
在一种示例中,第一防转面可以是平面,且第一防转面和通孔的内壁之间的夹角可以小于180°,以保证通孔具有足够大的截面积,以供极柱能够顺利穿设。其中,第一防转面与通孔的内壁之间的夹角指的是,第一防转面与通孔的内壁的交界处,第一防转面与通孔的内壁的切面之间的夹角。当然,在具体实施时,第一防转面与通孔的内壁之间的夹角可以根据实际需求进行灵活设置。
在一种示例中,在通孔的至少一端可以设置倒角,通过设置倒角可以增加通孔与注塑件之间的结合面积,能够有效提升注塑件与盖板之间的连接稳定性。
在一种示例中,盖板的第一板面可以设置沉孔,注塑件还可以位于沉孔内。从而可以提升注塑件与盖板之间的结合面积,有利于保证注塑件与盖板之间的连接稳定性。
其中,在沉孔的侧壁可以设置凹陷部,当注塑件位于凹陷部内后,注塑件与沉孔之间还能形成卡接连接,能有效提升注塑件与沉孔之间的连接强度。
在一种示例中,第一板面还可以设置凸台,通孔贯通凸台,且注塑件覆盖凸台。注塑件覆盖凸台后,能够提升注塑件与盖板之间的结合面积,有利于保证注塑件与盖板之间的连接稳定性。
在对极柱进行设置时,极柱可以包括柱体,柱体的第一端具有第一柱段,第二端具有第二柱段,在第一柱段和第二柱段之间具有收敛部,注塑体覆盖收敛部。注塑体覆盖收敛部后,注塑件与极柱之间还能够形成卡接连接,能有效提升注塑件与沉孔极柱之间在轴向上的连接强度。
在具体设置时,第二防转面可以位于第一柱段的外周面,也可以位于收敛部的外周面。
在一种示例中,极柱还可以包括底座,底座位于柱体的第二端。
在具体设置时,密封圈可以套设在第二柱段的外周,且密封圈的厚度尺寸大于第二柱段的长度尺寸,从而可以提升极柱与盖板之间的爬电距离。
其中,密封圈的一侧可以与底座的表面密闭贴合,另一侧可以与盖板密闭贴合,能够保证极柱与盖板之间的密闭性。
在一种示例中,电池盖板组件还可以包括隔圈,隔圈可以位于第二板面,从而可以提升盖板的电绝 缘性。
第二方面,本申请还提供了一种电池,电池可以包括壳体、裸电芯和上述任一种电池盖板组件,壳体具有凹槽,裸电芯设置在凹槽内,电池盖板组件封盖在凹槽的开口,且第二板面朝向凹槽。在本申请提供的电池中,通过使用上述的电池盖板组件,可以提升极柱与裸电芯之间的连接稳定性,能保证电池的使用可靠性。
第三方面,本申请还提供了一种电力系统,可以包括逆变器和上述的电池,逆变器与电池连接,用于将交流电转化为直流电后提供给电池,或者,将来自电池的直流电转化为交流电。在具体应用时,电力系统可以为储能系统,也可以为太阳能或风能电力系统,本申请对电力系统的具体类型不作限制。
附图说明
图1为本申请提供的一种常规的电池的截面图;
图2为本申请提供的一种常规的电池盖板组件的截面图;
图3为本申请实施例提供的一种电池盖板组件的立体结构示意图;
图4为本申请实施例提供的一种电池盖板组件的分解结构示意图;
图5为图4中A部分的局部放大图;
图6为本申请实施例提供的一种显示通孔的横截面的示意图;
图7为本申请实施例提供的另一种显示通孔的横截面的示意图;
图8为本申请实施例提供的一种沉孔的剖面结构示意图;
图9为本申请实施例提供的一种电池盖板组件的局部剖面结构示意图;
图10为本申请实施例提供的另一种电池盖板组件的分解结构示意图;
图11为本申请实施例提供的另一种电池盖板组件的剖面结构示意图;
图12为本申请实施例提供的一种电池的分解结构示意图;
图13为本申请实施例提供的一种电池包的立体解耦股示意图;
图14为本申请实施例提供的一种电力系统的结构框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的电池盖板组件,下面首先介绍一下其应用场景。
本申请实施例提供的电池盖板组件可以应用到多种不同类型的电池中。
例如,如图1所示,为本申请实施例提供的一种电池01,电池01可以包括壳体011、裸电芯012和电池盖板组件013。具体的,壳体011具有凹槽0111,裸电芯012设置在凹槽0111内。电池盖板组件013包括盖板0131、正极柱0132和负极柱0133。盖板0131封盖在凹槽0111的开口,以保证凹槽0111的密闭性。正极柱0132的一端(图1中的下端)可以与裸电芯012的正极连接,另一端(图1中的上端)伸出于盖板0131,以便于与外部的电力设备进行电连接。相应的,负极柱0133的一端(图1中的下端)可以与裸电芯012的负极连接,另一端(图中的上端)伸出于盖板0131,以便于与外部的电力设备进行电连接。在实际应用中,正极柱0132和负极柱0133通过盖板0131进行固定,正极柱0132和负极柱0133在遭受外力时,盖板0131能够在一定程度上防止正极柱0132和负极柱0133产生位置偏移,从而能够保证电池01的使用安全性。
如图2所示,为目前常用的一种电池盖板组件013的结构示意图。具体来说,电池盖板组件013可以包括盖板0131、正极柱0132、负极柱0133、碟片0134和碟片0135。在实际应用中,正极柱0132通过碟片0134与盖板0131进行固定连接,正极柱0132为圆柱形结构,当正极柱0132遭受周向的扭转力时,容易产生转动,会影响正极柱0132与裸电芯之间的电连接可靠性。相应的,负极柱0133通过碟片0135与盖板0131进行固定连接,负极柱0133为圆柱形结构,当负极柱0133遭受周向的扭转力时,容易产生转动,会影响负极柱0133与裸电芯之间的电连接可靠性。另外,由于碟片0134和碟片0135的材质一般为金属,因此,在碟片0134和正极柱0132之间、碟片0135和负极柱0133之间还需要进行绝缘处理。
概括来说,在目前的电池盖板组件013中,极柱的抗扭转性较差。另外,极柱与盖板0131之间需要通过碟片进行固定连接,存在零部件数量多,制作工艺复杂等问题。
为此,本申请实施例提供了一种结构简单、能效提升极柱的抗扭转性能的电池盖板组件。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步 地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”和“该”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”是指一个、两个或两个以上。
在本说明书中描述的参考“一个实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施方式中”、“在另外的实施方式中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图3所示,在本申请提供的一种示例中,电池盖板组件10可以包括盖板11、正极柱12a、负极柱12b、注塑件13a和注塑件13b。具体来说,如图4所示,盖板11具有通孔11a和通孔11b,通孔11a和通孔11b均贯通盖板11的第一板面111和第二板面112,其中,第一板面111和第二板面112为盖板11的相背离的板面。正极柱12a穿设于通孔11a,负极柱12b穿设于通孔11b。注塑件13a用于固定连接盖板11和正极柱12a。注塑件13b用于固定连接盖板11和负极柱12b。其中,通孔11a的内壁具有第一防转面110a,正极柱12a的外周面具有第二防转面120a,注塑件13a至少覆盖第一防转面110a,以在周向上对正极柱12a进行位置限位,另外,注塑件13a还至少覆盖第二防转面120a,从在周向上对盖板11进行位置限位,防止正极柱12a相对于盖板11产生周向上的转动,从而提升正极柱12的抗扭转性能。另外,通孔11b的内壁具有第一防转面110b,负极柱12b的外周面具有第二防转面120b,注塑件13b至少覆盖第一防转面110b,以在周向上对负极柱12b进行位置限位,另外,注塑件13b还至少覆盖第二防转面120b,从在周向上对盖板11进行位置限位,防止负极柱12b相对于盖板11产生周向上的转动,从而提升负极柱12的抗扭转性能。
在本申请提供的电池盖板组件10中,正极柱12a与盖板11之间可以通过注塑件13a进行固定连接,还能够保证正极柱12a与盖板11之间的电绝缘性,有利于减少零部件的使用数量。另外,通过第一防转面110a和第二防转面120a,能够有效的防止正极柱12a产生周向上的旋转,能够提升电池盖板组件10的结构稳定性。相应的负极柱12b与盖板11之间可以通过注塑件13b进行固定连接,还能够保证负极柱12b与盖板11之间的电绝缘性,有利于减少零部件的使用数量。另外,通过第一防转面110b和第二防转面120b,能够有效的防止负极柱12b产生周向上的旋转,能够提升电池盖板组件10的结构稳定性。
需要说明的是,第一防转面110a和第二防转面120a指的是不以正极柱12a的轴心为旋转中心的面。当正极柱12a受外界的扭转力而产生以轴心为旋转中心的转动趋势时,该扭转力会通过第二防转面120a传递至注塑件13a,并通过注塑件13a传递至盖板11的第一防转面110a,第一防转面110a对该扭转力形成抵挡,因此,能够防止正极柱12a产生旋转运动。相应的,第一防转面110b和第二防转面120b指的是不以负极柱12b的轴心为旋转中心的面。当负极柱12b受外界的扭转力而产生以轴心为旋转中心的转动趋势时,该扭转力会通过第二防转面120b传递至注塑件13b,并通过注塑件13b传递至盖板11的第一防转面110b,第一防转面110b对该扭转力形成抵挡,因此,能够防止负极柱12b产生旋转运动。
对于注塑件13a和注塑件13b,在具体应用时,注塑件13a和注塑件13b的材质可以是聚丙烯、聚偏二氟乙烯、聚乙烯、聚甲基丙烯酸甲酯、聚乙酸乙烯酯等聚合物及其共聚物等绝缘材料,从而保证正极柱12a、负极柱12b与盖板11之间的电绝缘性。
在进行制备时,可以先将需要连接的部件,如盖板11、正极柱12a和负极柱12b等进行装配,然后将注塑材料注入所需的位置,待注塑材料冷却成型后便可完成注塑件13a和注塑件b的制备。其中,注塑件a和注塑件b可以同时制作,也可以依次制作。
可以理解的是,在实际应用中,可以根据实际需求来选择合适的注塑材料和工艺,本申请对此不作限定。
对于盖板11,在具体应用时,盖板11可以由铝、铝合金或钢等金属材料制成,从而使得盖板11具有良好的结构强度。在进行制备时,盖板11可以采用冲压、裁剪等工艺制作成型。当然,在其他的示例中,盖板11也可以由树脂等非金属材质制成,本申请对盖板11的具体材质和制备工艺不作限制。
在具体实施时,通孔11a和通孔11b的结构类型可以是多样的。需要说明的是,通孔11a和通孔11b的结构可以大致相同,因此,下面将以通孔11a为例对其结构进行详细说明。
如图5所示,在本申请提供的一种示例中,通孔11a的截面形状大致为圆形,第一防转面110a可以是 在通孔11a的内壁设置凸起结构形成的。
具体的,第一防转面110a为平面,且第一防转面110a和通孔11a的内壁之间的夹角小于180°。其中,第一防转面110a与通孔11a的内壁之间的夹角指的是,第一防转面110a与通孔11a的内壁的交界处,第一防转面110a与通孔11a的内壁的切面之间的夹角。第一防转面110a和通孔11a的内壁之间的夹角小于180°,能够保证通孔11a具有足够大的截面积,以供正极柱12能够顺利穿设。可以理解的是,在具体实施时,第一防转面110a与通孔11a的内壁之间的夹角可以根据实际需求进行灵活设置,在此不作赘述。
另外,第一防转面110a的设置数量和位置也可以进行灵活设置。
例如,如图5所示,在本申请提供的示例中,第一防转面110a设有两个,且两个第一防转面110a相向对称设置。可以理解的是,在具体实施时,第一防转面110a也可以设置一个、三个或者更多个。当第一防转面110a设置多个时,多个第一防转面110a之间的相对位置可以根据实际需求进行合理设置。
例如,如图6所示,在本申请提供的一种示例中,第一防转面110a设置四个(图中仅标示出一个),且四个第一防转面110a沿周向依次连接。或者,也可以理解为,通孔11a的截面形状为四边形,且每个边均可以看作第一防转面110a。
另外,在一些示例中,第一防转面110a也可以是在通孔11a的内壁设置凹陷结构形成的。
例如,如图7所示,在本申请提供的另一种示例中,在通孔11a的内部开设有凹槽113a,第一防转面110a位于凹槽113a的侧壁。即凹槽113a的侧壁可以作为第一防转面110a进行使用。当注塑件13a随正极柱12a产生周向转动的趋势时,凹槽113a的侧壁能够对注塑件13a进行抵挡,以防止注塑件13a和正极柱12a产生周向转动。
在具体设置时,凹槽113a的数量、位置和大小可以根据实际需求进行灵活设置,在此不作赘述。
可以理解的是,在其他的示例中,第一防转面110a也可以是折面、曲面等本申请对第一防转面110a的具体形状不作限制。
另外,如图5所示,在本申请提供的一种示例中,通孔11a的一端均具有倒角114a。通过设置倒角114a可以增加通孔11a与注塑件13a之间的结合面积,能够有效提升注塑件13a与盖板11之间的连接稳定性。其中,倒角114a具体可以是斜也可以圆角等,本申请对倒角114a的具体形状和大小不作限制。
当然,在其他的示例中,也可以仅在通孔11a的两端均设置倒角114a,且注塑件13a均覆盖两个倒角114a,在此不作过多赘述。
另外,如图4所示,在本申请提供的一种示例中,盖板11的第一板面111具有凸台115a和凸台115b,通孔11a的一端贯穿凸台115a的表面,并且注塑件13a覆盖到凸台115a的边缘;通孔11b的一端贯穿凸台115b的表面,并且注塑件13b覆盖到凸台115b的边缘。
其中,凸台115a和凸台115b的结构可以大致相同,注塑件13a和注塑件13b的结构可以大致相同。因此,下面将以凸台115a和注塑件13a为例进行具体说明。
如图5所示,具体来说,在本申请提供的示例中,凸台115a的外轮廓大致为矩形,当注塑件13a覆盖凸台115a的边缘后,能够提升注塑件13a与盖板11之间的结合面积,有利于保证注塑件13a与盖板11之间的连接稳定性。另外,注塑件13a与凸台115a的边缘之间还能够起到限位的作用,能防止注塑件13a与盖板11之间产生周向旋转。
在进行制作时,凸台115a可以是通过冲压工艺进行成型的。例如,在进行冲压时,可以对第二板面112进行挤压形成凹槽(图中未示出),从而可以在第一板面111成型出凸台115a结构。其中,由于凸台115a是通过挤压形成的,因此,凹槽的体积约等于凸台115a的体积。
可以理解的是,在其他的示例中,凸台115a的外轮廓也可以是椭圆形、三角形等多边形结构。或者,可以理解的是,凸台115a的外周面为不以通孔11a的轴心为旋转中心的面。
另外,如图5所示,在本申请提供的示例中,盖板11还设有沉孔116a,注塑件13a可以位于沉孔116a内,从而可以提升注塑件13a与盖板11之间的结合面积,有利于保证注塑件13a与盖板11之间的连接稳定性。另外,注塑件13a与沉孔116a之间还能够起到限位的作用,能防止注塑件13a与盖板11之间产生周向旋转。
如图5所示,示例性的,沉孔116a设有四个,四个沉孔116a分别设置在凸台115a的四个边角处。
当然,在其他的示例中,沉孔116a也可以设置在第一板面111,即沉孔116a可以不设置在凸台115a上。或者,在一些示例中,一些沉孔116a可以设置在凸台115a上,另一些沉孔116a可以不设置在凸台115a上。
在具体设置时,沉孔116a的结构可以是多样。
例如,如图8所示,在本申请提供的一种示例中,沉孔116a大致为圆形的直孔,并且,在沉孔116a的侧壁设有凹陷部1161a。其中,注塑件13a可以布满整个沉孔116a,由于凹陷部1161a的截面积大于沉孔116a的其他部分的截面积,因此,注塑件13a与沉孔116a之间还能够形成卡接连接,能有效提升注塑件13a与沉孔116a之间的连接强度。
当然,在其他的示例中,沉孔116a也可以直通孔、阶梯孔或锥形孔等,在此不作赘述。
另外,在对正极柱12a和负极柱12b进行设置时,其结构类型也可以是多样的。需要说明的是,正极柱12a和负极柱12b的结构可以大致相同,下面将以正极柱12a为例进行示例性说明。
如图5和图9所示,在本申请提供的一种示例中,正极柱12a包括柱体121a,柱体121a的第一端(如图5中的上端)具有第一柱段1211a,第二端(如图5中的下端)具有第二柱段1212a,在第一柱段1211a和第二柱段1212a之间具有收敛部1213a,收敛部1213a的截面面积小于第一柱段1211a和第二柱段1212a的截面面积。注塑体13a覆盖收敛部1213a,因此,注塑件13a与正极柱12a之间还能够形成卡接连接,能有效提升注塑件13a与沉孔正极柱12a之间在轴向上的连接强度。
在本申请提供的示例中,第二防转面120a位于第一柱段1211a的外周面上。
当然,在其他的示例中,第二防转面120a也可以设置在收敛部1213a的外周面上,或者,在第一柱段1211a和收敛部1213a的外周面上均设置第二防转面120a。
另外,如图5和图9所示,在本申请提供的示例中,极柱12a还包括底座122a,底座122a位于柱体121a的第二柱段1212a的一侧。
如图9所示,密封圈14a套设在第二柱段1212a的外周,并且,密封圈14a的一侧与底座122a的表面贴合,密封圈14a的另一侧与盖板11相贴合,以保证正极柱12a和盖板11之间的密闭性。
在对盖板11和正极柱12a进行装配时,正极柱12a的第一端可以作为插入端穿设于通孔11a。因此,在实际应用中,第一柱段1211a的截面形状与通孔11a的截面形状可以大致相同,并且,第一柱段1211a的截面面积应小于通孔11a的截面面积,以使正极柱12a能够顺利的穿设于通孔11a。
当然,在其他的示例中,第一柱段1211a的截面形状与通孔11a的截面形状也可以不相同,本申请对此不作限定。
在对密封圈14a进行设置时,密封圈14a可以套设在第二柱段1212a的外周,从而使得第二柱段1212a能够对密封圈14a起到良好的定位作用。
在本申请提供的示例中,第二柱段1212a为圆柱形,密封圈14a为圆环形结构,并且第二柱段1212a的截面面积大于第一柱段1211a的截面面积。具体来说,在对密封圈14a进行设置时,由于底座122a的面积较大,因此,密封圈14a可以从第一柱段1211a的一端进行套设,为了避免第一柱段1211a对密封圈14a形成阻挡,第一柱段1211a的外轮廓可以小于密封圈14a的内圈的轮廓。即第一柱段1211a的截面面积可以小于第二柱段1212a的截面面积。
另外,在具体实施时,密封圈14a的厚度尺寸可以大于第二柱段1212a的长度尺寸,以保证正电极12a盖板11之间具有足够的爬电距离,从而保证盖板组件10的安全性和可靠性。
需要说明的是,如图10所示,还具有密封圈14b,密封圈14b与密封圈14a的形状和功能可以大致相同,在此不作过多赘述。
另外,如图10和图11所示,在本申请提供的另一示例中,电池盖板组件10还可以包括隔圈15。隔圈15通常采用塑料材料制作,并大致为板状结构。隔圈15可以设置在第二板面112,以保证盖板11的第二板面112的绝缘性。当电池盖板组件10封盖电池壳体的开口时,隔圈15能够使盖板11与壳体内的裸电芯或电解液之间保持绝缘隔离。
其中,隔圈15具有用于供正电极12a穿设的通孔15a以及用于供负电极12b穿设的通孔15b。通孔15a与通孔11a可以同轴设置,通孔15a与通孔11a可以同轴设置。
另外,如图11所示,在隔圈15的通孔15a处,具有一圈凸缘151a,凸缘151a位于底座122a和盖板11之间,以实现隔圈15与盖板11之间的固定连接。另外,在隔圈15的通孔15b处,具有一圈凸缘151b,凸缘151b位于底座122b和盖板11之间,以实现隔圈15与盖板11之间的固定连接。
在具体实施时,隔圈15可以是一体结构,从而可以降低电池盖板组件10的组件数量。当然,在另外的实施方式中,隔圈15也可以是分体结构。例如,隔圈15可以包括左右对称的两个部分。可以理解的是,在具体实施时,隔圈15可以采用目前较为常用的类型,在此不作赘述。
另外,在电池盖板组件10中还可以包括其他的辅助结构。
例如,如图10所示,在本申请提供的一种示例中,电池盖板组件10还可以包括防爆结构16。防爆结构16可以设置于盖板11和隔圈15之间。当电池内部的气压过高时,防爆结构16可以实现泄压,以防止电池出现爆炸等不良情况。
在图10中,盖板11具有贯穿第一板面111和第二板面112的通孔11c,通孔11c的一端(如图10中的下端)与防爆结构16连通。另外,为了防止异物掉落在通孔11c内,影响防爆结构16的正常功能,在通孔11c的一端(如图中的上端)设有保护贴片17。
在具体设置时,防爆结构16可以是防爆膜或防爆阀等熟知的常规结构,在此不作赘述。
另外,盖板11还具有贯穿第一板面111和第二板面112的注液孔11d,在实际应用中,可以通过注液孔11d向电池壳体内注入电解液。注液完成后可以对注液孔11d进行封堵,以保证电池的密闭性。
另外,如图12所示,本申请实施例还提供了一种电池01,电池01可以包括壳体011、裸电芯012和电池盖板组件10。具体的,壳体011具有凹槽0111,裸电芯012和电解液可以设置在凹槽0111内。另外,在壳体011的内壁还设有隔离层014,隔离层014的材质通常为尼龙等绝缘材料,以保证裸电芯012与壳体011之间的绝缘性。另外,在壳体011的外表面还可以设置绝缘层015,以保证壳体011与外部的其他器件或线路之间的绝缘性。
在具体设置时,盖板11与壳体011之间可以采用焊接、粘接等方式进行固定连接,或者,也可以通过螺钉或铆钉等连接件进行固定连接,本申请对盖板11和壳体011之间的连接方式不作限定。
需要说明的是,裸电芯012指的是含有正极和负极的电化学电芯,其具体化学成分和类型本申请不作限制。或者,电池01可以是锂电池、铅酸电池、锂硫电池、钠电池、镁电池、铝电池或钾电池等类型。
另外,在具体应用时,多个电池01可以打包使用,以满足所需的供电需求。
例如,如图13所示,在本申请提供的一种电池包20中,可以包括多个电池(图13中未标示出),多个电池可以进行串联或并联设置,以满足所需的供电要求。
另外,如图14所示,本申请实施例还提供了一种电力系统30,电力系统30可以包括逆变器31、电力设备32和上述任一种电池01。电力设备32可以通过逆变器31与电池01连接。其中,电池01中电能的类型一般为直流电,电力设备32的用电类型可以是交流电。逆变器31可用于实现交流电和直流电之间的转换。
在具体应用时,电力设备32可以是风力发电装置或太阳能发电装置等。或者,可以理解的是,电力系统30可以是风能电力系统或太阳能电力系统。
另外,在一些实施方式中,电力设备32还可以是电机等用电设备,本申请对电力设备的具体类型不作限制。
或者,电池01可以应用在手机、车辆、船舶、无人机或基站等终端,也用于电站储能或家庭储能等,本申请对电池的应用场景不作限制。
另外,在电力系统30中还可以包括电池管理系统,电池管理系统可以对电池01的充放电状态进行调控等。电池管理系统可以设置在终端,也可以设置在远端。例如,当电池01应用在车辆中时,电池管理系统可以安装在车辆中。或者,也可以将电池管理单元设置在基站等位置。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种电池盖板组件,其特征在于,包括:
    盖板,具有第一板面以及与所述第一板面相背离的第二板面;
    所述盖板具有贯通所述第一板面和所述第二板面的通孔,所述通孔的内壁具有第一防转面;
    极柱,穿设于所述通孔,所述极柱的外周面具有第二防转面;
    注塑件,固定连接所述盖板和所述极柱,且至少覆盖所述第一防转面和所述第二防转面。
  2. 根据权利要求1所述的电池盖板组件,其特征在于,所述第一防转面为平面,且所述第一防转面和所述通孔的内壁之间的夹角小于180°。
  3. 根据权利要求1或2所述的电池盖板组件,其特征在于,所述通孔的至少一端具有倒角。
  4. 根据权利要求1至3中任一项所述的电池盖板组件,其特征在于,所述第一板面具有沉孔,所述注塑件还位于所述沉孔内。
  5. 根据权利要求4所述的电池盖板组件,其特征在于,所述沉孔的侧壁具有凹陷部。
  6. 根据权利要求1至5中任一项所述的电池盖板组件,其特征在于,所述第一板面具有凸台,所述通孔贯通所述凸台,且所述注塑件覆盖所述凸台。
  7. 根据权利要求1至6中任一项所述的电池盖板组件,其特征在于,所述极柱包括柱体,所述柱体的第一端具有第一柱段,第二端具有第二柱段,在所述第一柱段和所述第二柱段之间具有收敛部,所述注塑体覆盖所述收敛部。
  8. 根据权利要求7所述的电池盖板组件,其特征在于,所述第二防转面位于所述第一柱段的外周面上。
  9. 根据权利要求8所述的电池盖板组件,其特征在于,所述极柱还包括底座,所述底座位于所述柱体的第二端。
  10. 根据权利要求9所述的电池盖板组件,其特征在于,还包括密封圈,所述密封圈套设在所述第二柱段的外周,且所述密封圈的厚度尺寸大于所述第二柱段的长度尺寸。
  11. 根据权利要求1至10中任一项所述的电池盖板组件,其特征在于,还包括隔圈,所述隔圈位于所述第二板面。
  12. 一种电池,其特征在于,包括壳体和裸电芯,所述壳体具有凹槽,所述裸电芯设置在所述凹槽内;
    还包括如权利要求1至11中任一项所述的电池盖板组件,所述电池盖板组件封盖在所述凹槽的开口,且所述第二板面朝向所述凹槽。
  13. 一种电力系统,其特征在于,包括逆变器和如权利要求12所述的电池,所述逆变器与所述电池连接,用于将交流电转化为直流电后提供给所述电池,或者,将来自所述电池的直流电转化为交流电。
PCT/CN2023/104949 2022-08-22 2023-06-30 一种电池盖板组件、电池和电力系统 WO2024041214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211007749.X 2022-08-22
CN202211007749.XA CN117673589A (zh) 2022-08-22 2022-08-22 一种电池盖板组件、电池和电力系统

Publications (1)

Publication Number Publication Date
WO2024041214A1 true WO2024041214A1 (zh) 2024-02-29

Family

ID=90012414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104949 WO2024041214A1 (zh) 2022-08-22 2023-06-30 一种电池盖板组件、电池和电力系统

Country Status (2)

Country Link
CN (1) CN117673589A (zh)
WO (1) WO2024041214A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148686A (zh) * 2019-05-10 2019-08-20 欣旺达电动汽车电池有限公司 一种动力电池顶盖及二次电池
CN210778796U (zh) * 2019-08-20 2020-06-16 比亚迪股份有限公司 电池及其盖板组件和极柱端子
CN113328179A (zh) * 2021-05-31 2021-08-31 凯博能源科技有限公司 电池盖板组件的制作方法及电池盖板组件
CN215911558U (zh) * 2021-08-31 2022-02-25 蜂巢能源科技有限公司 电池盖及具有其的电池模组
CN217009353U (zh) * 2022-03-29 2022-07-19 蜂巢能源科技股份有限公司 圆柱电池的壳体和圆柱电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148686A (zh) * 2019-05-10 2019-08-20 欣旺达电动汽车电池有限公司 一种动力电池顶盖及二次电池
CN210778796U (zh) * 2019-08-20 2020-06-16 比亚迪股份有限公司 电池及其盖板组件和极柱端子
CN113328179A (zh) * 2021-05-31 2021-08-31 凯博能源科技有限公司 电池盖板组件的制作方法及电池盖板组件
CN215911558U (zh) * 2021-08-31 2022-02-25 蜂巢能源科技有限公司 电池盖及具有其的电池模组
CN217009353U (zh) * 2022-03-29 2022-07-19 蜂巢能源科技股份有限公司 圆柱电池的壳体和圆柱电池

Also Published As

Publication number Publication date
CN117673589A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US11165088B2 (en) Button battery and manufacturing method therefor
JP4790732B2 (ja) 金属ケーシングを有する高容量リチウムイオン二次電池
JP5538114B2 (ja) 二次電池
CN214254576U (zh) 端盖组件、电池单体、电池及用电装置
CN214477678U (zh) 盖板、电池单体、电池及用电设备
WO2022228091A1 (zh) 锂电池及其制备方法
CN111509150B (zh) 一种锂离子电池的电芯结构
WO2024041214A1 (zh) 一种电池盖板组件、电池和电力系统
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2023173656A1 (zh) 电池结构组件、电池及电动交通工具
CN217444511U (zh) 方形铝壳磷酸铁锂电池及其电池盖板
WO2023137723A1 (zh) 电池单体、电池、用电设备、电池单体的制造设备及方法
WO2022047697A1 (zh) 电化学装置及电子装置
CN219106344U (zh) 电池单体以及电池
CN218769798U (zh) 一种电池顶盖及电池
US20240014520A1 (en) Cylindrical Battery and Battery Module
US20240097285A1 (en) Current collector Component and Cylindrical Battery
CN220984668U (zh) 电池及用电设备
CN220628156U (zh) 圆柱电池
CN218215488U (zh) 端盖组件、电池单体、电池及用电设备
CN218569177U (zh) 一种电芯及电芯模组
CN221150159U (zh) 电池壳体及电池
CN219717024U (zh) 圆柱电池及包含其的电池组
CN218602480U (zh) 集流构件、电池单体、电池及用电装置
CN220209114U (zh) 一种电池及电池装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856304

Country of ref document: EP

Kind code of ref document: A1