WO2023173656A1 - 电池结构组件、电池及电动交通工具 - Google Patents

电池结构组件、电池及电动交通工具 Download PDF

Info

Publication number
WO2023173656A1
WO2023173656A1 PCT/CN2022/110113 CN2022110113W WO2023173656A1 WO 2023173656 A1 WO2023173656 A1 WO 2023173656A1 CN 2022110113 W CN2022110113 W CN 2022110113W WO 2023173656 A1 WO2023173656 A1 WO 2023173656A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
battery
housing
current collecting
collecting plate
Prior art date
Application number
PCT/CN2022/110113
Other languages
English (en)
French (fr)
Inventor
邓国友
靳勇
慎晓杰
姚煜
殷晓丰
Original Assignee
微宏公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微宏公司 filed Critical 微宏公司
Publication of WO2023173656A1 publication Critical patent/WO2023173656A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery structural component, a battery and an electric vehicle.
  • Lithium-ion batteries have been widely used due to their advantages such as high specific power, long cycle life, good safety performance and no pollution.
  • Lithium-ion batteries can be divided into cylindrical batteries, square case batteries and soft pack batteries according to their appearance. Among them, cylindrical batteries have received more and more attention, and their applications are becoming more and more widespread.
  • Existing cylindrical batteries generally include a casing, a cover, a battery core, etc.
  • the positive connection terminal and the negative connection terminal of the existing cylindrical battery are respectively provided at the opposite ends of the cylindrical battery, which places certain restrictions on the battery grouping technology. , affecting the battery arrangement and battery energy density (since the positive connection terminal and the negative connection terminal are respectively set at the opposite ends of the cylindrical battery, when the batteries are connected in series and parallel to form a group, the batteries must first be placed according to the requirements of the corresponding polarity, not only This increases the risk of incorrect battery placement, increases the number of structural components, complicates wiring design, increases production costs, and reduces battery energy density).
  • the existing cylindrical battery has a long electrical connection path between the current collecting plate and the pole, and a small contact area, resulting in poor thermal conductivity. Therefore, existing cylindrical batteries still need to be structurally improved to solve problems such as the complexity of battery group arrangement and production cost, while also improving the heat dissipation performance and sealing performance of the battery.
  • the purpose of this application is to provide a battery structural component and battery, aiming to solve or at least partially solve the shortcomings of the above background technology.
  • the pole and the shell are fixed by riveting. Compared with the welding fixation method, it not only simplifies the fixation operation , improve production efficiency and reduce production costs.
  • An embodiment of the present application provides a battery structural assembly, including a casing.
  • the battery structural assembly further includes a pole.
  • One end of the pole is provided with a stopper, and the stopper is located in the casing.
  • the pole penetrates the end face of the housing and is fixed with the housing by riveting.
  • the end surface of the housing is provided with a through hole
  • the pole includes a main body and a first end and a second end respectively located at opposite ends of the main body, and the main body is inserted into In the through hole, the first end and the second end respectively extend and protrude from the main body in opposite directions toward the outside of the through hole; the stopper is provided on the pole.
  • the first end and the second end of the pole extend out of the housing.
  • the housing, the first end and the second end are riveted. The part of the housing participating in the riveting is located at the between the first end and the second end.
  • the battery structural component further includes a pressure block, and the pressure block participates in riveting, that is, the pressure block, the pole and the casing are riveted, and the pressure block participates in riveting.
  • the riveted portion is located between the pole and the housing.
  • the pressure block is provided at the first end and/or the second end of the pole.
  • the pressure block has an annular structure, and the pressure block is sleeved on the first end and/or the second end of the pole.
  • a flange is formed on the second end of the pole, and the stopper, the flange and the housing are riveted; the part of the housing participating in the riveting is located at the between the stopper and the flange.
  • the pressure block is disposed on the pole close to the flange, and the pressure block is located between the flange and the housing; or, the pressure block The block is disposed on the pole near the stopper, and the pressing block is located between the stopper and the housing.
  • the battery structural component further includes an insulating sealing ring, the insulating sealing ring is sleeved on the pole, and the insulating sealing ring is used between the pole and the casing. insulation and sealing.
  • the battery structural component further includes a first current collecting plate, the first current collecting plate is located in the housing, and the first current collecting plate is electrically connected to the pole.
  • the first current collecting plate includes a plate body and an electrical connection portion, the electrical connection portion is formed by the plate body extending and protruding toward the pole, and the electrical connection portion is connected to The poles are electrically connected.
  • the pole is provided with a central hole, the electrical connection part is inserted into the central hole, and the electrical connection part is electrically connected to the pole.
  • the side wall of the electrical connection part is in contact with the inner wall of the central hole to realize the electrical connection between the electrical connection part and the pole.
  • the battery structural component further includes a sealing piece, the sealing piece is sealingly connected to the pole, and the sealing piece seals the central hole on the pole.
  • the pole is a positive pole or a negative pole.
  • Another embodiment of the present application also provides a battery, including the battery structural component described above.
  • the battery further includes a first current collecting plate, a second current collecting plate, a battery core and a cover plate, and the first current collecting plate, the second current collecting plate and the
  • the electric cores are all arranged in the casing, the bottom end of the casing is provided with an opening, and the cover plate is arranged at the opening; both sides of the first current collecting plate are respectively connected with the top end of the electric cores. It is electrically connected to the pole, and both sides of the second current collecting plate are electrically connected to the bottom end of the battery core and the cover plate respectively.
  • both sides of the first current collecting plate are respectively in contact with the top end of the battery core and the pole to achieve electrical connection
  • both sides of the second current collecting plate are respectively in contact with the top of the battery core and the pole. It is in contact with the bottom end of the battery core and the housing to achieve electrical connection.
  • the first current collecting plate can be a positive electrode current collecting plate or a negative electrode current collecting plate; the second current collecting plate can also be a positive electrode current collecting plate or a negative electrode current collecting plate.
  • the first current collecting plate is a positive electrode current collecting plate
  • the second current collecting plate is a negative electrode current collecting plate; on the contrary, when the first current collecting plate is a negative electrode current collecting plate, the second current collecting plate The plate is the positive current collecting plate.
  • Another embodiment of the present application also provides an electric vehicle, including the above-mentioned battery.
  • the poles and the casing are fixed by riveting. Compared with the welding fixation method, it not only simplifies the fixing operation, improves production efficiency, but also reduces production costs.
  • Figure 1 is a schematic cross-sectional view of a battery structural component in the first embodiment of the present application.
  • Figure 2 is a schematic cross-sectional view of the pole in Figure 1.
  • FIG. 3 is a schematic three-dimensional structural diagram of the first collecting plate in FIG. 1 .
  • Figure 4 is a schematic cross-sectional view of the battery structural component in the second embodiment of the present application.
  • Figure 5 is a schematic cross-sectional view of the battery structural component in the third embodiment of the present application.
  • Figure 6 is a schematic cross-sectional view of the battery structural component in the fourth embodiment of the present application.
  • the battery structural assembly provided by the first embodiment of the present application includes a case 1 and a pole 3.
  • the pole 3 has an inverted T-shaped structure.
  • One end of the pole 3 is provided with a stopper 31.
  • the stopper 31 is formed by protruding radially outward from the side wall of the pole 3 .
  • the stopper 31 is located in the housing 1 .
  • the pole 3 penetrates the end surface of the housing 1 and is riveted to the housing 1 .
  • the pole post 3 and the housing 1 are fixed by riveting. Compared with the welding fixation method, it not only simplifies the operation, improves the production efficiency, but also reduces the production cost.
  • the battery structural component also includes a pressure block 4.
  • the pressure block 4 participates in riveting, that is, the pressure block 4, the pole 3 and the housing 1 are riveted.
  • the pressure block 4 is arranged on the pole. 3, the part of the pressure block 4 that participates in the riveting is located between the pole 3 and the housing 1. During riveting, the pole 3 and the pressure block 4 are fitted together.
  • the pressing block 4 can be an aluminum block. Of course, in other embodiments, the pressing block 4 can also be made of other materials.
  • the end surface of the housing 1 is provided with a through hole 11, and the pole 3 includes a main body 30A and a first end 30B and a second end respectively located at opposite ends of the main body 30A.
  • the main body part 30A is inserted into the through hole 11, and the first end 30B and the second end 30C are respectively extended and protruded from the main body part 30A in opposite directions toward the outside of the through hole 11 (in this embodiment, the first end 30B is The main body part 30A extends downward and protrudes, and the second end 30C extends upward and protrudes from the main body part 30A).
  • the stopper 31 is provided on the first end 30B of the pole 3, and the second end 30C of the pole 3 extends out of the casing 1.
  • the casing 1, the first end 30B and the second end 30C are riveted, and the casing 1 The part involved in riveting is located between the first end 30B and the second end 30C.
  • the pressing block 4 is disposed on the second end 30C of the pole 3 (that is, the pressing block 4 is filled in the upper end of the pole 3 ).
  • the pressing block 4 can also be disposed on the first end 30B of the pole 3 , or on both the first end 30B and the second end 30C of the pole 3 .
  • the pressure block 4 has an annular structure, and the pressure block 4 is sleeved on the second end 30C of the pole 3 .
  • the pressing block 4 can also be sleeved on the first end 30B of the pole 3 , or simultaneously sleeved on the first end 30B and the second end 30C of the pole 3 .
  • a flange 32 is formed on the second end 30C of the pole 3.
  • the flange 32 is formed by protruding radially outward from the side wall of the pole 3.
  • the flange 32 32 is located outside the housing 1.
  • the diameter of the stop 31 is larger than the diameter of the flange 32 .
  • the stopper 31 and the flange 32 are riveted to the housing 1; the part of the housing 1 participating in the riveting is located between the stopper 31 and the flange 32.
  • the pressing block 4 is sleeved on the pole 3 at a position close to the flange 32 , and the pressing block 4 is located between the flange 32 and the housing 1 .
  • the pressing block 4 is fitted with the flange 32 .
  • the pressure block 4 can also be sleeved on the pole 3 at a position close to the stopper 31 , in which case the pressure block 4 is located between the stopper 31 and the housing 1 .
  • the stopper 31 is a structure of the pole 3 itself (that is, the stopper 31 exists before the pole 3 and the housing 1 are riveted), and the flange 32 is It is formed when the pole 3 and the casing 1 are riveted (that is, there is no flange 32 before the pole 3 and the casing 1 are riveted).
  • the pole 3 with an inverted T-shaped structure is first inserted into the through hole 11 on the housing 1 from bottom to top.
  • the pole 3 within, and then mechanically pressurize (such as riveting, etc.) the upper end of the pole 3 to flatten it to form the flange 32; during the process of pressurizing and flattening the upper end of the pole 3 to form the flange 32, the pole will be 3 forms an upsetting effect (that is, the length of the pole 3 is shortened and the diameter is increased), so that the pole 3 and the shell 1 are fixed, thereby achieving the riveting of the pole 3 and the shell 1.
  • the stopper 31 and the flange 32 both play a limiting role.
  • the stopper 31 and the flange 32 cooperate to press the housing 1 tightly to prevent the pole 3 from falling off from the through hole 11 on the housing 1 .
  • the insulating sealing ring 51 is compressed during the formation of the flange 32 of the pole 3, so that the gap between the stopper 31 and the casing 1 is completely filled with the insulating sealing ring. 51 filling, thereby improving the sealing performance of the battery.
  • the battery structural component also includes a first current collecting plate 6.
  • the first current collecting plate 6 is disposed in the housing 1.
  • the first current collecting plate 6 and the pole 3 Contact to achieve electrical connection between the first current collecting plate 6 and the pole 3 .
  • the first current collecting plate 6 includes a plate body 61 and an electrical connection portion 62.
  • the electrical connection portion 62 is formed by the plate body 61 extending and protruding toward the pole 3.
  • the plate body 61 61 is in contact with the end surface of the battery core 8
  • the electrical connection portion 62 is in contact with the pole 3 to realize the electrical connection between the electrical connection portion 62 and the pole 3 .
  • the pole 3 is provided with a central hole 33 , the electrical connection part 62 is inserted into the central hole 33 , and the side walls of the electrical connection part 62 are in contact with the inner wall of the central hole 33 . Contact to achieve electrical connection between the electrical connection portion 62 and the pole post 3 .
  • the cross-section of the electrical connection part 62 is a circular structure, and the electrical connection part 62 is a hollow truncated cone-shaped structure with a tapered diameter along the direction approaching the pole 3 .
  • the contact area between the first current collecting plate 6 and the pole 3 is increased, so that the heat generated inside the battery core 8 can be quickly dissipated from the pole 3, thereby Improve the thermal runaway caused by the high heat generated by the battery core 8 during high-rate charging and discharging.
  • the first current collecting plate 6 can also be a flat disk-shaped structure.
  • the battery structural component also includes an insulating sealing ring 51.
  • the insulating sealing ring 51 is sleeved on the pole 3 and close to the stopper 31.
  • the insulating sealing ring 51 is used for connecting the pole 3 and the stopper 31. Insulation and sealing between housings 1.
  • the insulating sealing ring 51 is at least partially disposed in the through hole 11 , and the insulating sealing ring 51 is located between the outer wall of the pole 3 and the inner wall of the through hole 11 .
  • the insulating sealing ring 51 has an inverted T-shaped structure (of course, in other embodiments, the insulating sealing ring 51 can also have an O-shaped structure), and a part of the insulating sealing ring 51 is located in the through hole 11 (that is, between the outer wall of the pole 3 and the inner wall of the through hole 11), and the other part is located inside the housing 1 and is sandwiched between the stopper 31 and the end surface of the housing 1, so that the insulating sealing ring 51 can achieve a good sealing effect between the pole 3 and the casing 1, and at the same time can isolate the pole 3 and the casing 1 to prevent the pole 3 and the casing 1 from conducting electricity.
  • the stopper 31 will exert a squeezing effect on the insulating sealing ring 51, so that the stopper 31 The insulating sealing ring 51 between 31 and the housing 1 is pressed tightly, thereby further improving the sealing effect.
  • the battery structural assembly also includes an insulating ring 52.
  • the insulating ring 52 is disposed between the pressing block 4 and the end surface of the housing 1.
  • the insulating ring 52 is used to isolate the pressing block 4 and the housing. 1, to prevent the pressure block 4 and the housing 1 from conducting electricity, and at the same time, the insulating ring 52 can also play a certain sealing role.
  • the insulating sealing ring 51 is a small circular ring structure with an open center
  • the insulating ring 52 is a large circular ring structure with an open center
  • the battery structural component further includes an insulating gasket 53 , and the insulating gasket 53 is disposed between the stopper 31 and the end surface of the housing 1 .
  • part of the insulating gasket 53 is located between the stopper 31 and the end surface of the housing 1, and the other part is located between the first current collecting plate 6 and the end surface of the housing 1, thereby preventing extreme damage.
  • the pillar 3 and the housing 1 are electrically conductive, and the first collecting plate 6 is prevented from being electrically conductive to the housing 1 .
  • the battery structural assembly also includes a sealing piece 9 (the sealing piece 9 can be an explosion-proof piece).
  • the sealing piece 9 is sealingly connected to the top surface of the pole 3, and the sealing piece 9 seals the pole 3. center hole 33.
  • the battery structural component provided by the second embodiment of the present application is substantially the same as that of the first embodiment, except that the structures of the poles 3 and the first current collecting plate 6 are different.
  • the first current collecting plate 6 is a flat disk-shaped structure
  • the pole 3 is a solid block (that is, the pole 3 is not provided with a central hole 33)
  • the first current collecting plate 6 and The bottom surfaces of the poles 3 are in contact.
  • the battery structural component provided by the third embodiment of the present application is substantially the same as that of the first embodiment, except that the pressure block 4 is not provided on the pole 3 .
  • the battery structural component provided by the fourth embodiment of the present application is roughly the same as that of the first embodiment.
  • the difference lies in that the structures of the pole 3 and the first current collecting plate 6 are different, and there is no pressure on the pole 3.
  • Block 4 Specifically, in this embodiment, the first current collecting plate 6 is a flat disk-shaped structure, the pole 3 is a solid block (that is, the pole 3 is not provided with a central hole 33), and the first current collecting plate 6 and The bottom surfaces of the poles 3 are in contact.
  • the first embodiment of the present application also provides a battery, which is particularly suitable for cylindrical batteries.
  • the battery includes the above-mentioned battery structural components.
  • the battery also includes a battery core 8 and a first current collecting plate 6.
  • the battery core 8 and the first current collecting plate 6 are both arranged in the housing 1.
  • the first current collecting plate 6 Located between the top of the battery core 8 and the pole 3 , both sides of the first current collecting plate 6 are electrically connected to the top of the battery core 8 and the pole 3 respectively.
  • both sides of the first current collecting plate 6 are respectively in contact with the top end of the battery core 8 and the pole 3 to achieve electrical connection.
  • the first current collecting plate 6 includes a plate body 61 and an electrical connection portion 62 .
  • the electrical connection portion 62 extends and protrudes from the plate body 61 toward the pole 3 .
  • the plate body 61 It is in contact with the end surface of the battery core 8; the pole post 3 is provided with a central hole 33, the electrical connection part 62 is inserted into the central hole 33, and the side wall of the electrical connection part 62 is in contact with the inner wall of the central hole 33.
  • the battery also includes a cover plate 2 and a second collecting plate 7.
  • the casing 1 has a cylindrical tank structure. The bottom end of the casing 1 is provided with an opening 12.
  • the cover plate 2 It is fixed at the opening 12, and the cover 2 is electrically connected to the housing 1.
  • the second current collecting plate 7 is arranged in the housing 1.
  • the second current collecting plate 7 is located between the bottom end of the battery core 8 and the cover 2. Both sides of the second current collecting plate 7 are respectively connected with the bottom end of the battery core 8. It is electrically connected to the cover plate 2.
  • both sides of the second current collecting plate 7 are in contact with the bottom end of the battery core 8 and the cover plate 2 respectively to achieve electrical connection.
  • the two ends of the battery core 8 are respectively provided with positive electrode tabs 81 and negative electrode tabs 82
  • the pole 3 is the positive pole
  • the first current collecting plate 6 is the positive current collecting plate
  • the second The current collecting plate 7 is a negative electrode current collecting plate. Both sides of the first current collecting plate 6 are in contact with the positive electrode lug 81 and the pole 3 of the battery core 8 respectively. Both sides of the second current collecting plate 7 are respectively in contact with the positive electrode lug 81 and the pole 3 of the battery core 8
  • the negative electrode tab 82 is in contact with the cover plate 2 .
  • the pole 3 is a negative pole
  • the first current collecting plate 6 is a negative current collecting plate
  • the second current collecting plate 7 is a positive current collecting plate
  • the first current collecting plate 6 is The two sides are in contact with the negative electrode lug 82 and the pole post 3 of the battery core 8 respectively, and the two sides of the second current collecting plate 7 are in contact with the positive electrode lug 81 and the cover plate 2 of the battery core 8 respectively.
  • the casing 1 can be a steel shell (of course it can also be made of other materials).
  • the pole 3 serves as the positive electrical connection terminal of the battery, and the casing 1 and the cover 2 serve as the battery.
  • the negative electrical connection terminal of the battery; when the pole 3 is the negative pole, the housing 1 can be an aluminum shell.
  • the pole 3 serves as the negative electrical connection terminal of the battery, and the shell 1 and the cover 2 serve as the positive electrical connection terminal of the battery. .
  • the end surfaces of the pole 3 and the housing 1 are used as the positive electrical connection terminal and the negative electrical connection terminal respectively (or the pole 3 is used as the negative electrical connection terminal and the end surface of the housing 1 is used as the positive electrical connection terminal).
  • Leading the positive and negative poles of the battery to the same side of the battery for example, in this embodiment, both the positive and negative poles of the battery are led to the top of the battery, compared to arranging the positive electrical connection terminal and the negative electrical connection terminal respectively on the battery.
  • the design of opposite ends is conducive to battery grouping, can facilitate the arrangement of battery cells 8, reduce the number of structural components when batteries are grouped, simplify the BMS wiring design, reduce costs, and at the same time make the battery arrangement more compact, improving Battery energy density.
  • the positive electrode lug 81 and the negative electrode lug 82 of the battery core 8 both adopt a full-lug design.
  • the ears 82 may be secured by welding.
  • an electrolyte solution is also provided in the case 1 so that the battery can be charged and discharged through the electrochemical reaction of the positive and negative electrode sheets of the battery core 8 and the electrolyte solution.
  • the electrolyte solution can be formed from organic solvents such as EC, PC, DEC, EMC and EMC and lithium salts such as LiPF 6 or LiBF 4.
  • the electrolyte solution can be in a liquid, solid or gel state, etc.
  • the The positive and negative electrodes of the battery are led to the same side of the battery, which is conducive to battery grouping, facilitates the arrangement of battery cells 8, reduces the number of structural components when the battery is grouped, simplifies the wiring design of the BMS, reduces costs, and at the same time makes The battery arrangement is more compact, improving the energy density of the battery;
  • the contact area between the first current collecting plate 6 and the pole 3 is increased, so that the heat generated inside the battery core 8 can be quickly discharged from the pole 3 , thereby improving the thermal runaway caused by the large amount of heat generated by the battery core 8 during high-rate charging and discharging;
  • the sealing performance of the insulating sealing ring 51 is good (when the pole 3 and the housing 1 are riveted, the pole 3 will exert a squeezing effect on the insulating sealing ring 51 when it is upset, causing the insulating sealing ring 51 to be compressed. Thereby improving the sealing effect of the insulating sealing ring 51) and being durable, it can prevent the battery from leaking during long-term use and increase the service life of the battery;
  • the insulating ring 52 can be prevented from being cracked or crushed during the upsetting process of the pole 3, thus affecting the sealing of the battery.
  • the insulating ring 52 is easily crushed or cracked.
  • the pressure block 4 since the surface area of the pressure block 4 is larger than the surface area of the flange 23, the contact area with the insulating ring 52 increases; in addition, because the pressure block 4 has a certain elasticity, the pressure block 4 can further buffer the upsetting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供一种电池结构组件,包括壳体(1)和极柱(3),所述极柱(3)的一端设有止挡部(31),所述止挡部(31)位于所述壳体(1)内,所述极柱(3)贯穿所述壳体(1)的端面并与所述壳体(1)通过铆接固定。本申请提供的电池结构组件,极柱(3)与壳体(1)通过铆接固定,相较于焊接的固定方式,不仅简化了固定操作,提高了生产效率,而且降低了生产成本。本申请还提供一种电池及电动交通工具。

Description

电池结构组件、电池及电动交通工具 技术领域
本申请涉及电池技术领域,尤其是涉及一种电池结构组件、电池及电动交通工具。
背景技术
随着电子技术的发展,锂离子电池具有的比功率高、循环寿命长、安全性能好以及无污染等优点使其得到广泛地应用。锂离子电池根据外形可分为圆柱电池、方壳电池和软包电池等,其中圆柱电池受到越来越多的关注,圆柱电池的应用也越来越广泛。
技术问题
现有的圆柱电池一般包括壳体、盖板和电芯等,现有的圆柱电池的正极连接端子和负极连接端子分别设置于圆柱电池的相对两端,从而对电池的成组技术有一定限制,影响电池的排布和电池能量密度(由于正极连接端子和负极连接端子分别设置于圆柱电池的相对两端,在电池串并联成组时,必须先按照相应极性的需求摆放电池,不仅增加了电池摆放错误的风险,而且增加了结构零部件的数量,使布线设计较为复杂,增加了生产成本,降低了电池的能量密度)。而且,现有的圆柱电池集流盘与极柱电连接路径长,接触面积小,从而导热性能差。因此,现有的圆柱电池还需要在结构上进行改进,以解决电池成组的排布复杂性、生产成本等问题,同时改善电池的散热性能和密封性能。
技术解决方案
本申请的目的是提供一种电池结构组件及电池,旨在解决或至少部分解决上述背景技术存在的不足,极柱与壳体通过铆接固定,相较于焊接的固定方式,不仅简化了固定操作,提高了生产效率,而且降低了生产成本。
本申请的一种实施例提供一种电池结构组件,包括壳体,所述电池结构组件还包括极柱,所述极柱的一端设有止挡部,所述止挡部位于所述壳体内,所述极柱贯穿所述壳体的端面并与所述壳体通过铆接固定。
在一种可实现的方式中,所述壳体的端面设有通孔,所述极柱包括主体部及分别位于所述主体部相对两端的第一端和第二端,所述主体部插入于所述通孔内,所述第一端和所述第二端由所述主体部分别以相反的方向向所述通孔外延伸凸出;所述止挡部设置于所述极柱的第一端,所述极柱的第二端伸出至所述壳体外,所述壳体、所述第一端和所述第二端三者铆接,所述壳体参与铆接的部分位于所述第一端和所述第二端之间。
在一种可实现的方式中,所述电池结构组件还包括压块,所述压块参与铆接,即所述压块、所述极柱与所述壳体三者铆接,所述压块参与铆接的部分位于所述极柱与所述壳体之间。
在一种可实现的方式中,所述压块设置于所述极柱的第一端和/或第二端。
在一种可实现的方式中,所述压块为环形结构,所述压块套设于所述极柱的第一端和/或第二端。
在一种可实现的方式中,所述极柱的第二端形成有凸缘,所述止挡部、所述凸缘与所述壳体形成铆接;所述壳体参与铆接的部分位于所述止挡部和所述凸缘之间。
在一种可实现的方式中,所述压块设置于所述极柱上靠近所述凸缘的位置,所述压块位于所述凸缘与所述壳体之间;或者,所述压块设置于所述极柱上靠近所述止挡部的位置,所述压块位于所述止挡部与所述壳体之间。
在一种可实现的方式中,所述电池结构组件还包括绝缘密封圈,所述绝缘密封圈套设于所述极柱上,所述绝缘密封圈用于所述极柱与所述壳体之间的绝缘和密封。
在一种可实现的方式中,所述电池结构组件还包括第一集流盘,所述第一集流盘位于所述壳体内,所述第一集流盘与所述极柱电连接。
在一种可实现的方式中,所述第一集流盘包括盘体和电连接部,所述电连接部由所述盘体朝向所述极柱延伸凸出形成,所述电连接部与所述极柱电连接。
在一种可实现的方式中,所述极柱上设有中心孔,所述电连接部插入在所述中心孔内,所述电连接部与所述极柱电连接。
在一种可实现的方式中,所述电连接部的侧壁与所述中心孔的内壁相接触以实现所述电连接部与所述极柱的电连接。
在一种可实现的方式中,所述电池结构组件还包括密封片,所述密封片与所述极柱密封连接,所述密封片密封所述极柱上的中心孔。
在一种可实现的方式中,所述极柱为正极柱或负极柱。
本申请的另一种实施例还提供一种电池,包括以上所述的电池结构组件。
在一种可实现的方式中,所述电池还包括第一集流盘、第二集流盘、电芯和盖板,所述第一集流盘、所述第二集流盘和所述电芯均设置于所述壳体内,所述壳体的底端设有开口,所述盖板设置在所述开口处;所述第一集流盘的两侧分别与所述电芯的顶端和所述极柱电连接,所述第二集流盘的两侧分别与所述电芯的底端和所述盖板电连接。在一种可实现的方式中,所述第一集流盘的两侧分别与所述电芯的顶端和所述极柱相接触以实现电连接,所述第二集流盘的两侧分别与所述电芯的底端和所述壳体相接触以实现电连接。
在一种可实现的方式中,所述第一集流盘可以为正极集流盘或负极集流盘;所述第二集流盘也可以为正极集流盘或负极集流盘。当所述第一集流盘为正极集流盘时,所述第二集流盘为负极集流盘;相反当所述第一集流盘为负极集流盘时,所述第二集流盘为正极集流盘。
本申请的另一种实施例还提供一种电动交通工具,包括以上所述的电池。
有益效果
本申请提供的电池结构组件,极柱与壳体通过铆接固定,相较于焊接的固定方式,不仅简化了固定操作,提高了生产效率,而且降低了生产成本。
附图说明
图1为本申请第一实施例中电池结构组件的截面示意图。
图2为图1中极柱的截面示意图。
图3为图1中第一集流盘的立体结构示意图。
图4为本申请第二实施例中电池结构组件的截面示意图。
图5为本申请第三实施例中电池结构组件的截面示意图。
图6为本申请第四实施例中电池结构组件的截面示意图。
本发明的实施方式
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请的说明书和权利要求书中所涉及的上、下、左、右、前、后、顶、底等(如果存在)方位词是以附图中的结构位于图中的位置以及结构相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,方位词的使用不应限制本申请请求保护的范围。
如图1所示,本申请第一实施例提供的电池结构组件,包括壳体1,和极柱3,极柱3为倒T形结构,极柱3的一端设有止挡部31,止挡部31由极柱3的侧壁沿径向向外凸出形成,止挡部31位于壳体1内,极柱3贯穿壳体1的端面并与壳体1通过铆接固定。
具体地,本实施例中极柱3与壳体1通过铆接固定,相较于焊接固定的方法,不仅简化了操作,提高了生产效率,而且降低了生产成本。
如图1所示,作为一种实施方式,电池结构组件还包括压块4,压块4参与铆接,即压块4、极柱3与壳体1三者铆接,压块4设置于极柱3上,压块4参与铆接的部分位于极柱3与壳体1之间。在铆接时,极柱3和压块4相嵌合。
作为一种实施方式,压块4可以为铝块。当然,在其它实施例中,压块4还可以为其它材料制成。
如图1及图2所示,作为一种实施方式,壳体1的端面设有通孔11,极柱3包括主体部30A及分别位于主体部30A相对两端的第一端30B和第二端30C,主体部30A插入于通孔11内,第一端30B和第二端30C由主体部30A分别以相反的方向向通孔11外延伸凸出(在本实施例中,第一端30B由主体部30A向下延伸凸出,第二端30C由主体部30A向上延伸凸出)。止挡部31设置于极柱3的第一端30B,极柱3的第二端30C伸出至壳体1外,壳体1、第一端30B和第二端30C三者铆接,壳体1参与铆接的部分位于第一端30B和第二端30C之间。
如图1及图2所示,作为一种实施方式,压块4设置于极柱3的第二端30C(即压块4填补在极柱3的上端)。当然,在其它实施例中,压块4也可以设置于极柱3的第一端30B,或者同时设置于极柱3的第一端30B和第二端30C。
如图1及图2所示,作为一种实施方式,压块4为环形结构,压块4套设于极柱3的第二端30C。当然,在其它实施例中,压块4也可以套设于极柱3的第一端30B,或者同时套设于极柱3的第一端30B和第二端30C。
如图1及图2所示,作为一种实施方式,极柱3的第二端30C形成有凸缘32,凸缘32由极柱3的侧壁沿径向向外凸出形成,凸缘32位于壳体1外。在极柱3的径向方向上,止挡部31的直径大于凸缘32的直径。止挡部31、凸缘32与壳体1形成铆接;壳体1参与铆接的部分位于止挡部31和凸缘32之间。压块4套设于极柱3上靠近凸缘32的位置,压块4位于凸缘32与壳体1之间。在铆接时,压块4与凸缘32相嵌合。当然,在其它实施例中,压块4也可以套设于极柱3上靠近止挡部31的位置,此时压块4位于止挡部31与壳体1之间。
具体地,如图1及图2所示,止挡部31为极柱3本身自带的结构(即止挡部31在极柱3和壳体1铆接前就存在),凸缘32为在极柱3和壳体1铆接时形成(即在极柱3和壳体1铆接前不存在凸缘32)。具体地,如图1所示,在本实施例中,当极柱3和壳体1在铆接时,先将倒T形结构的极柱3从下至上插入至壳体1上的通孔11内,然后对极柱3的上端进行机械加压(如旋铆等)压平形成凸缘32;在对极柱3的上端进行加压压平形成凸缘32的过程中,会对极柱3形成镦粗效果(即极柱3的长度缩短,直径增大),使得极柱3和壳体1相固定,从而实现极柱3和壳体1的铆接。其中,止挡部31和凸缘32均起到限位作用,止挡部31和凸缘32相配合将壳体1压紧,以防止极柱3从壳体1上的通孔11内脱落。同时,在极柱3和壳体1铆接时,极柱3在形成凸缘32的过程中,绝缘密封圈51被压缩,使止挡部31与壳体1之间的间隙完全被绝缘密封圈51填充,从而提高电池的密封性能。
如图1及图3所示,作为一种实施方式,电池结构组件还包括第一集流盘6,第一集流盘6设置于壳体1内,第一集流盘6与极柱3相接触以实现第一集流盘6与极柱3的电连接。
如图1及图3所示,作为一种实施方式,第一集流盘6包括盘体61和电连接部62,电连接部62由盘体61朝向极柱3延伸凸出形成,盘体61与电芯8的端面相接触,电连接部62与极柱3相接触以实现电连接部62与极柱3的电连接。
如图1及图3所示,作为一种实施方式,极柱3上设有中心孔33,电连接部62插入在中心孔33内,电连接部62的侧壁与中心孔33的内壁相接触以实现电连接部62与极柱3的电连接。
具体地,在本实施例中,电连接部62的横截面为圆形结构,电连接部62为沿着靠近极柱3的方向呈直径渐缩的中空圆台形结构。通过在第一集流盘6上设置电连接部62,从而增大第一集流盘6与极柱3的接触面积,使电芯8内部产生的热量能够快速地从极柱3导出,从而改善大倍率充放电时因电芯8发热量大导致的热失控。当然,如图4所示,在其它实施例中,第一集流盘6也可以为扁平状的圆盘形结构。
如图1所示,作为一种实施方式,电池结构组件还包括绝缘密封圈51,绝缘密封圈51套设于极柱3上并靠近止挡部31,绝缘密封圈51用于极柱3与壳体1之间的绝缘和密封。
如图1所示,作为一种实施方式,绝缘密封圈51至少部分设置于通孔11内,绝缘密封圈51位于极柱3的外侧壁与通孔11的内壁之间。
具体地,在本实施例中,绝缘密封圈51为倒T形结构(当然,在其它实施例中,绝缘密封圈51也可以为O形等结构),绝缘密封圈51的一部分位于通孔11内(即位于极柱3的外侧壁与通孔11的内壁之间),另一部分位于壳体1的内侧并夹设于止挡部31与壳体1的端面之间,从而使得绝缘密封圈51能够对极柱3与壳体1之间的密封起到良好的密封效果,同时能够隔绝极柱3和壳体1,以防止极柱3和壳体1导电。同时,在极柱3和壳体1铆接时,在对极柱3进行加压使极柱3镦粗的过程中,止挡部31会对绝缘密封圈51形成挤压作用,使得止挡部31与壳体1之间的绝缘密封圈51被压紧,从而进一步提高密封效果。
如图1所示,作为一种实施方式,电池结构组件还包括绝缘环52,绝缘环52设置于压块4与壳体1的端面之间,绝缘环52用于隔绝压块4和壳体1,以防止压块4和壳体1导电,同时绝缘环52还可以起到一定的密封作用。
具体地,在本实施例中,绝缘密封圈51为中心开口的小圆环结构,绝缘环52为中心开口的大圆环结构。
如图1所示,作为一种实施方式,电池结构组件还包括绝缘垫片53,绝缘垫片53设置于止挡部31与壳体1的端面之间。
具体地,在本实施例中,绝缘垫片53的一部分位于止挡部31与壳体1的端面之间,另一部分位于第一集流盘6与壳体1的端面之间,从而防止极柱3和壳体1导电,以及防止第一集流盘6与壳体1导电。
如图1所示,作为一种实施方式,电池结构组件还包括密封片9(密封片9可以为防爆片),密封片9与极柱3的顶面密封连接,密封片9密封极柱3上的中心孔33。
如图4所示,本申请第二实施例提供的电池结构组件与第一实施例大致相同,不同点在于极柱3和第一集流盘6的结构不同。具体地,在本实施例中,第一集流盘6为扁平状的圆盘形结构,极柱3为实心块(即极柱3上未设置中心孔33),第一集流盘6与极柱3的底面相接触。
如图5所示,本申请第三实施例提供的电池结构组件与第一实施例大致相同,不同点在于极柱3上未设置压块4。
如图6所示,本申请第四实施例提供的电池结构组件与第一实施例大致相同,不同点在于极柱3和第一集流盘6的结构不同,且极柱3上未设置压块4。具体地,在本实施例中,第一集流盘6为扁平状的圆盘形结构,极柱3为实心块(即极柱3上未设置中心孔33),第一集流盘6与极柱3的底面相接触。
如图1所示,本申请第一实施例还提供一种电池,尤其适用于圆柱电池,该电池包括以上所述的电池结构组件。
如图1所示,作为一种实施方式,电池还包括电芯8和第一集流盘6,电芯8和第一集流盘6均设置于壳体1内,第一集流盘6位于电芯8的顶端与极柱3之间,第一集流盘6的两侧分别与电芯8的顶端和极柱3电连接。
如图1所示,作为一种实施方式,第一集流盘6的两侧分别与电芯8的顶端和极柱3相接触以实现电连接。
如图1及图3所示,作为一种实施方式,第一集流盘6包括盘体61和电连接部62,电连接部62由盘体61朝向极柱3延伸凸出,盘体61与电芯8的端面相接触;极柱3上设有中心孔33,电连接部62插入在中心孔33内,电连接部62的侧壁与中心孔33的内壁相接触。
如图1所示,作为一种实施方式,电池还包括盖板2和第二集流盘7,壳体1为圆柱形槽体结构,壳体1的底端设有开口12,盖板2固定在开口12处,且盖板2与壳体1电性连接。第二集流盘7设置于壳体1内,第二集流盘7位于电芯8的底端与盖板2之间,第二集流盘7的两侧分别与电芯8的底端和盖板2电连接。
如图1所示,作为一种实施方式,第二集流盘7的两侧分别与电芯8的底端和盖板2相接触以实现电连接。
如图1所示,作为一种实施方式,电芯8的两端分别设有正极耳81和负极耳82,极柱3为正极柱,第一集流盘6为正极集流盘,第二集流盘7为负极集流盘,第一集流盘6的两侧分别与电芯8的正极耳81和极柱3相接触,第二集流盘7的两侧分别与电芯8的负极耳82和盖板2相接触。当然,在其它实施例中,也可以是:极柱3为负极柱,第一集流盘6为负极集流盘,第二集流盘7为正极集流盘,第一集流盘6的两侧分别与电芯8的负极耳82和极柱3相接触,第二集流盘7的两侧分别与电芯8的正极耳81和盖板2相接触。
具体地,当极柱3为正极柱时,壳体1可以为钢壳(当然也可以为其它材料),此时极柱3作为电池的正极电连接端子,壳体1及盖板2作为电池的负极电连接端子;当极柱3为负极柱时,壳体1可以为铝壳,此时极柱3作为电池的负极电连接端子,壳体1及盖板2作为电池的正极电连接端子。本实施例通过将极柱3和壳体1的端面分别作为正极电连接端子和负极电连接端子(或将极柱3作为负极电连接端子,壳体1的端面作为正极电连接端子),从而将电池的正负极引出至电池的同一侧(例如,本实施例将电池的正负极均引出至电池的顶端),相较于将正极电连接端子和负极电连接端子分别设置于电池的相对两端的设计,有利于电池的成组,能够方便电芯8的排布,减少电池成组时结构零部件的数量,简化BMS的布线设计,降低成本,同时使电池的排列更加紧凑,提高电池的能量密度。
如图1所示,作为一种实施方式,电芯8的正极耳81和负极耳82均采用全极耳的设计,第一集流盘6与正极耳81以及第二集流盘7与负极耳82可以通过焊接固定。
作为一种实施方式,壳体1内还设有电解质溶液,以使电池能够通过电芯8的正极片和负极片以及电解质溶液的电化学反应进行充放电。电解质溶液可以由诸如EC、PC、DEC、EMC和EMC的有机溶剂以及诸如LiPF 6或LiBF 4的锂盐形成,电解质溶液可以呈液态、固态或凝胶态等。
本申请实施例提供的电池结构组件及电池的优点在于:
1、通过极柱3与壳体1铆接,不仅简化了操作,提高了生产效率,而且降低了生产成本;
2、通过将极柱3和壳体1的端面分别作为正极电连接端子和负极电连接端子(或将极柱3作为负极电连接端子,壳体1的端面作为正极电连接端子),从而将电池的正负极引出至电池的同一侧,有利于电池的成组,能够方便电芯8的排布,减少电池成组时结构零部件的数量,简化BMS的布线设计,降低成本,同时使电池的排列更加紧凑,提高电池的能量密度;
3、通过在第一集流盘6上设置电连接部62,从而增大第一集流盘6与极柱3的接触面积,使电芯8内部产生的热量能够快速地从极柱3导出,从而改善大倍率充放电时因电芯8发热量大导致的热失控;
4、绝缘密封圈51的密封性能好(在极柱3和壳体1铆接时,极柱3在被镦粗时会对绝缘密封圈51形成挤压作用,使得绝缘密封圈51被压紧,从而提高绝缘密封圈51的密封效果),长久耐用,能够防止电池在长期使用中出现漏液的问题,增加电池的使用寿命;
5、通过设置压块4,可以防止极柱3在镦粗过程中,绝缘环52被压裂或压破,从而影响电池的密封性。在镦粗过程中,由于形成的凸缘32与绝缘环52之间的接触面积小,容易压破或压裂绝缘环52。而增加压块4后,由于压块4的表面积大于凸缘23的表面积,使其与绝缘环52的接触面积增大;此外,由于压块4具有一定的弹性,压块4能够进一步缓冲镦粗过程中对绝缘环52的压力。因此,通过设置压块4,增加了与绝缘环52的接触面积,且起到了缓冲的作用,大大减小了镦粗过程中绝缘环52受到的压力,从而提高电池的密封性能。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种电池结构组件,包括壳体(1),其特征在于,所述电池结构组件还包括极柱(3),所述极柱(3)的一端设有止挡部(31),所述止挡部(31)位于所述壳体(1)内,所述极柱(3)贯穿所述壳体(1)的端面并与所述壳体(1)通过铆接固定。
  2. 如权利要求1所述的电池结构组件,其特征在于,所述壳体(1)的端面设有通孔(11),所述极柱(3)包括主体部(30A)及分别位于所述主体部(30A)相对两端的第一端(30B)和第二端(30C),所述主体部(30A)插入于所述通孔(11)内,所述第一端(30B)和所述第二端(30C)由所述主体部(30A)分别以相反的方向向所述通孔(11)外延伸凸出;所述止挡部(31)设置于所述极柱(3)的第一端(30B),所述极柱(3)的第二端(30C)伸出至所述壳体(1)外,所述壳体(1)、所述第一端(30B)和所述第二端(30C)三者铆接;所述壳体(1)参与铆接的部分位于所述第一端(30B)和所述第二端(30C)之间。
  3. 如权利要求2所述的电池结构组件,其特征在于,所述电池结构组件还包括压块(4),所述压块(4)参与铆接,所述压块(4)设置于所述极柱(3)的第一端(30B)和/或第二端(30C)。
  4. 如权利要求3所述的电池结构组件,其特征在于,所述压块(4)为环形结构,所述压块(4)套设于所述极柱(3)的第一端(30B)和/或第二端(30C)。
  5. 如权利要求3所述的电池结构组件,其特征在于,所述极柱(3)的第二端(30C)形成有凸缘(32),所述止挡部(31)、所述凸缘(32)与所述壳体(1)形成铆接;所述壳体(1)参与铆接的部分位于所述止挡部(31)和所述凸缘(32)之间。
  6. 如权利要求5所述的电池结构组件,其特征在于,所述压块(4)设置于所述极柱(3)上靠近所述凸缘(32)的位置,所述压块(4)位于所述凸缘(32)与所述壳体(1)之间;或者,所述压块(4)设置于所述极柱(3)上靠近所述止挡部(31)的位置,所述压块(4)位于所述止挡部(31)与所述壳体(1)之间。
  7. 如权利要求1所述的电池结构组件,其特征在于,所述电池结构组件还包括绝缘密封圈(51),所述绝缘密封圈(51)套设于所述极柱(3)上,所述绝缘密封圈(51)用于所述极柱(3)与所述壳体(1)之间的绝缘和密封。
  8. 如权利要求1所述的电池结构组件,其特征在于,所述电池结构组件还包括第一集流盘(6),所述第一集流盘(6)位于所述壳体(1)内,所述第一集流盘(6)与所述极柱(3)电连接。
  9. 如权利要求8所述的电池结构组件,其特征在于,所述第一集流盘(6)包括盘体(61)和电连接部(62),所述电连接部(62)由所述盘体(61)朝向所述极柱(3)延伸凸出形成,所述电连接部(62)与所述极柱(3)电连接。
  10. 如权利要求9所述的电池结构组件,其特征在于,所述极柱(3)上设有中心孔(33),所述电连接部(62)插入在所述中心孔(33)内,所述电连接部(62)与所述极柱(3)电连接。
  11. 如权利要求10所述的电池结构组件,其特征在于,所述电连接部(62)的侧壁与所述中心孔(33)的内壁相接触以实现所述电连接部(62)与所述极柱(3)的电连接。
  12. 如权利要求10所述的电池结构组件,其特征在于,所述电池结构组件还包括密封片(9),所述密封片(9)与所述极柱(3)密封连接,所述密封片(9)密封所述极柱(3)上的中心孔(33)。
  13. 如权利要求1-12中任一项所述的电池结构组件,其特征在于,所述极柱(3)为正极柱或负极柱。
  14. 一种电池,其特征在于,包括如权利要求1-13中任一项所述的电池结构组件。
  15. 如权利要求14所述的电池,其特征在于,所述电池还包括第一集流盘(6)、第二集流盘(7)、电芯(8)和盖板(2),所述第一集流盘(6)、所述第二集流盘(7)和所述电芯(8)均设置于所述壳体(1)内,所述壳体(1)的底端设有开口(12),所述盖板(2)设置在所述开口(12)处;所述第一集流盘(6)的两侧分别与所述电芯(8)的顶端和所述极柱(3)电连接,所述第二集流盘(7)的两侧分别与所述电芯(8)的底端和所述盖板(2)电连接。
  16. 一种电动交通工具,其特征在于,包括如权利要求14或15中任一项所述的电池。
PCT/CN2022/110113 2022-03-16 2022-08-03 电池结构组件、电池及电动交通工具 WO2023173656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220579690.0 2022-03-16
CN202220579690.0U CN217387315U (zh) 2022-03-16 2022-03-16 电池结构组件、电池及电动交通工具

Publications (1)

Publication Number Publication Date
WO2023173656A1 true WO2023173656A1 (zh) 2023-09-21

Family

ID=83102542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110113 WO2023173656A1 (zh) 2022-03-16 2022-08-03 电池结构组件、电池及电动交通工具

Country Status (2)

Country Link
CN (1) CN217387315U (zh)
WO (1) WO2023173656A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115692956B (zh) * 2022-11-07 2024-01-23 厦门海辰储能科技股份有限公司 电池、储能装置及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209133626U (zh) * 2018-11-06 2019-07-19 苏州安靠电源有限公司 高倍率电池
CN213401445U (zh) * 2020-11-26 2021-06-08 江西远东电池有限公司 一种新型全极耳结构圆柱电池
CN113346168A (zh) * 2021-05-21 2021-09-03 湖北亿纬动力有限公司 一种新型结构的圆柱型电池
CN215578675U (zh) * 2021-05-21 2022-01-18 湖北亿纬动力有限公司 正极柱和正极集流盘的装配结构、电池、电池模组及电池包
CN113991186A (zh) * 2021-10-29 2022-01-28 蜂巢能源科技(无锡)有限公司 一种电池装配方法及锂电池
CN215988973U (zh) * 2021-07-28 2022-03-08 东莞锂微电子科技有限公司 一种扣式电池的结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209133626U (zh) * 2018-11-06 2019-07-19 苏州安靠电源有限公司 高倍率电池
CN213401445U (zh) * 2020-11-26 2021-06-08 江西远东电池有限公司 一种新型全极耳结构圆柱电池
CN113346168A (zh) * 2021-05-21 2021-09-03 湖北亿纬动力有限公司 一种新型结构的圆柱型电池
CN215578675U (zh) * 2021-05-21 2022-01-18 湖北亿纬动力有限公司 正极柱和正极集流盘的装配结构、电池、电池模组及电池包
CN215988973U (zh) * 2021-07-28 2022-03-08 东莞锂微电子科技有限公司 一种扣式电池的结构
CN113991186A (zh) * 2021-10-29 2022-01-28 蜂巢能源科技(无锡)有限公司 一种电池装配方法及锂电池

Also Published As

Publication number Publication date
CN217387315U (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
JP4790732B2 (ja) 金属ケーシングを有する高容量リチウムイオン二次電池
CN102347512B (zh) 大容量锂离子电池
CN206961931U (zh) 一种圆柱形电池结构
WO2023025107A1 (zh) 电池单体、电池以及用电装置
WO2022228091A1 (zh) 锂电池及其制备方法
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
CN102694197B (zh) 环型锂离子电池
WO2023173656A1 (zh) 电池结构组件、电池及电动交通工具
WO2023226190A1 (zh) 电池组件、电池及电动交通工具
CN201387915Y (zh) 一种改进的聚合物锂离子电池结构
WO2024021868A1 (zh) 电芯结构和电池
JP4356209B2 (ja) 高出力用途向け電池
CN219106343U (zh) 一种无极耳电池结构
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2023065173A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050282A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023173655A1 (zh) 电池结构组件、电池及电动交通工具
WO2023065186A1 (zh) 电池单体、电池、用电设备、电池单体的制备方法及装置
CN213425035U (zh) 无极耳电池
CN201408807Y (zh) 双极耳卷绕式密封阀控式铅酸蓄电池
WO2023173652A1 (zh) 电池组件及制备方法、电池和电动交通工具
CN220324659U (zh) 用于电池的集流盘、电池、电池模组及用电设备
CN210628398U (zh) 一种防止短路的电芯连接结构
CN218005175U (zh) 一种电池及电池模组
CN219086102U (zh) 螺纹式密封的高倍率圆柱电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931678

Country of ref document: EP

Kind code of ref document: A1