WO2023025107A1 - 电池单体、电池以及用电装置 - Google Patents

电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2023025107A1
WO2023025107A1 PCT/CN2022/114036 CN2022114036W WO2023025107A1 WO 2023025107 A1 WO2023025107 A1 WO 2023025107A1 CN 2022114036 W CN2022114036 W CN 2022114036W WO 2023025107 A1 WO2023025107 A1 WO 2023025107A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
battery cell
tab
cell according
electrode
Prior art date
Application number
PCT/CN2022/114036
Other languages
English (en)
French (fr)
Inventor
陈圣旺
郭志君
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2023530876A priority Critical patent/JP2023550165A/ja
Priority to CN202280007864.9A priority patent/CN116529949A/zh
Priority to EP22860453.4A priority patent/EP4266481A1/en
Priority to KR1020237017462A priority patent/KR20230093033A/ko
Publication of WO2023025107A1 publication Critical patent/WO2023025107A1/zh
Priority to US18/360,780 priority patent/US20230369734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery cell, a battery and an electrical device.
  • Battery cells are widely used in electronic equipment, such as mobile phones, laptop computers, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • the present application provides a battery cell, a battery and an electrical device, which can simplify the structure of the battery cell.
  • an embodiment of the present application provides a battery cell, including an electrode assembly, a case, and an electrode terminal.
  • the electrode assembly includes a first tab.
  • the case is used to house the electrode assembly.
  • the electrode terminal is arranged on the casing and is electrically connected to the first tab.
  • the electrode terminal is provided with a first through hole, and the first through hole is used for injecting electrolyte solution into the inner space of the casing.
  • the deformation of the casing during the liquid injection process can be reduced, the structure of the battery cell can be simplified, and the impact of the first through hole on the casing can be reduced. effect on body strength.
  • the electrode terminal is electrically connected to the first tab through at least one first welding portion.
  • the first welding part can reduce the resistance between the electrode terminal and the first tab, and improve the overcurrent capability.
  • the number of the first welding portion is one, and the first welding portion extends along the circumferential direction of the first through hole and surrounds at least part of the first through hole.
  • the first welding portion can increase the strength of the region of the electrode terminal located around the first through hole, and reduce the deformation of the electrode terminal under the impact of the electrolyte.
  • the first welding portion only surrounds a part of the first through hole along the circumferential direction of the first through hole.
  • the outer periphery of the first through hole is not closed by the first welding part, and the gap between the electrode terminal and the component welded to the electrode terminal will not be blocked by the first welding part, and the first through hole will pass through the first through hole. Part of the inflowing electrolyte can pass through the gap, thereby improving the efficiency of electrolyte injection.
  • the angle at which the first welding portion surrounds the first through hole is ⁇ , and 180° ⁇ 360°.
  • is positively correlated with the flow area of the first welded portion.
  • is limited to 180°-360°, so that the first welded portion meets the requirements of the battery cell on overcurrent capability and temperature rise.
  • first welding portions there are multiple first welding portions, and the multiple first welding portions are arranged at intervals along the circumferential direction of the first through hole.
  • the solution of setting multiple first welding parts can reduce the power of single welding and reduce heat generation.
  • the interval angle ⁇ between any two adjacent first welding portions along the circumferential direction of the first through hole is less than 30°.
  • is limited to less than 30°, so as to meet the requirements of the battery cell on overcurrent capability and temperature rise, and reduce the risk of tearing of the first welding part when the battery cell vibrates.
  • each first welding portion extends radially of the first through hole.
  • the first welding portion extends radially along the first through hole, which can reduce the size of the first welding portion along the circumference of the first through hole, so that the electrode terminals can be arranged on the outer periphery of the first through hole More first welding parts, so as to improve the flow capacity and reduce heat generation.
  • the depth of the first welding portion is h; in the radial direction of the first through hole, the minimum distance between the first welding portion and the first through hole is d .
  • d and h satisfy: 0.1 ⁇ h/d ⁇ 0.6.
  • h the greater the power required for welding, the higher the heat generated during the welding process, the greater the thermal stress acting on the area close to the first through hole, and the greater the degree of deformation of the first through hole.
  • the smaller d the more heat is conducted to the area near the first through hole during the soldering process, the greater the thermal stress acting on the area near the first through hole is, and the degree of deformation of the first through hole is also greater. If h/d is too large, the first through hole will be seriously deformed, and it will be difficult for the liquid injection head to cooperate with the first through hole, which will affect the liquid injection efficiency.
  • the above technical solution limits the value of h/d to be less than or equal to 0.6 to reduce the thermal stress acting on the area close to the first through hole, which reduces the deformation of the first through hole and facilitates the connection between the liquid injection head and the first through hole. hole fit.
  • h the lower the flow capacity and strength of the first welded portion are, and the higher the risk of the first welded portion being torn when the battery cell vibrates.
  • the larger d the smaller the area of the electrode terminal that can be used for welding is, and the more limited the flow capacity and strength of the first welding portion are. If h/d is too small, the flow capacity and strength of the first welded portion will be insufficient. In the above technical solution, the value of h/d is limited to be greater than or equal to 0.1, so that the flow capacity and strength of the first welding part meet the requirements.
  • d and h satisfy: 0.2 ⁇ h/d ⁇ 0.5.
  • the electrode assembly is a wound structure, and the electrode assembly has a second through hole at the center of the winding.
  • the first through hole communicates with the second through hole, so that the electrolyte injected through the first through hole can flow into the second through hole.
  • the electrolyte solution in the liquid injection process, can flow into the second through hole through the first through hole, and the electrolyte solution flowing into the second through hole can infiltrate the electrode assembly from the inside, improving the wetting efficiency of the electrode assembly.
  • the projection of the first through hole at least partially overlaps with the projection of the second through hole.
  • the first through hole and the second through hole are opposite along the axial direction of the first through hole, and part of the electrolyte passing through the first through hole can enter the second through hole without changing the flow direction, thereby improving the electrode assembly. the infiltration efficiency.
  • the projection of the second through hole is larger than the projection of the first through hole.
  • the second through hole has a larger cross-sectional area, so that the second through hole can accommodate more electrolyte, which helps to improve the infiltration of electrolyte from the inside. Efficiency of the electrode assembly.
  • the projection of the first through hole is located within the projection of the second through hole.
  • the above technical solution can avoid the solid part of the electrode assembly from the first through hole, reduce the electrolyte directly impacting the electrode assembly, and reduce the risk of deformation of the electrode assembly.
  • the diameter of the first through hole is D 1
  • the diameter of the second through hole is D 2
  • D 1 and D 2 satisfy: 65% ⁇ D 1 /D 2 ⁇ 95%.
  • D 1 the higher the efficiency of electrolyte injection is, the shorter the electrolyte filling time is, the less the amount of electrolyte that can infiltrate into the electrode assembly during the injection process, and the less the total amount of electrolyte injection .
  • the smaller D 2 is, the smaller the area of the wall of the second through hole is, and the lower the efficiency of electrolyte infiltration from the inside of the electrode assembly is. If D 1 /D 2 is too large, the injection amount of the electrolyte will be too small, which will affect the cycle life of the battery cell. In the above technical solution, the value of D 1 /D 2 is limited to be less than or equal to 95%, so that the injection amount of the electrolyte solution meets the requirements.
  • the above technical solution limits the value of D 1 /D 2 to be greater than or equal to 65%, so as to improve the liquid injection efficiency and reduce the energy density loss of the battery cell caused by the second through hole.
  • D 2 >D 1 +0.2mm.
  • the electrode assembly When assembling the battery cell, due to assembly errors, the electrode assembly may be shifted, causing the first through hole to be opposed to the solid part of the electrode assembly, which will cause the electrode assembly to be impacted by the electrolyte.
  • the above technical solution makes D 2 ⁇ D 1 +0.2mm, so as to provide a margin for offset for the electrode assembly, reduce the risk that the solid part of the electrode assembly is opposed to the first through hole, reduce the electrolyte that directly impacts the electrode assembly, and reduce the electrode assembly. Risk of deformation.
  • the battery cell further includes a current collecting member for electrically connecting the electrode terminal and the first tab.
  • the current collecting member includes a third through hole at least partially disposed between the first through hole and the second through hole.
  • the current collecting member avoids the electrolyte flowing in through the first through hole, and reduces the resistance of the current collecting member to the electrolyte in the liquid injection process, so that the electrolyte can flow smoothly. Pass through the third through hole and flow into the second through hole, improving the wetting efficiency of the electrode assembly.
  • the projection of the third through hole is smaller than the projection of the second through hole.
  • the second through hole has a larger cross-sectional area, so that the electrolyte passing through the third through hole can quickly flow into the second through hole, which helps Improve the efficiency of the electrolyte infiltrating the electrode assembly from the inside.
  • the projection of the third through hole is larger than the projection of the first through hole.
  • the third through hole has a larger cross-sectional area, which can reduce the risk of the current collecting member blocking the first through hole, so that the electrolyte can pass through the third through hole smoothly.
  • the through hole enters the second through hole to improve the efficiency of the electrolyte infiltrating the electrode assembly from the inside.
  • the projection of the first through hole is located within the projection of the third through hole.
  • the above technical solution can not only reduce the risk of the current collecting member blocking the first through hole, so that the electrolyte can flow into the casing smoothly, but also reduce the impact on the current collecting member, and reduce the risk of cracking at the connection between the current collecting member and the electrode terminal. risk.
  • the projection of the third through hole is located within the projection of the second through hole.
  • the above technical solution can reduce the shielding of the third through hole by the solid part of the electrode assembly, so that the electrolyte can flow smoothly into the second through hole.
  • the first through hole, the second through hole and the third through hole are arranged coaxially.
  • arranging the three through holes coaxially can make the electrolyte flow in more smoothly, and reduce the impact of the electrolyte on the current collecting member and the electrode assembly.
  • the electrode terminal includes a sealing plate and a terminal body, the terminal body is provided with a first through hole, and the sealing plate is connected to the terminal body and used to seal the first through hole.
  • the sealing plate is connected to the terminal body, so as to reduce the risk of electrolyte leakage through the first through hole and improve the sealing performance.
  • the terminal body includes a concave portion and a connecting portion located on a side of the concave portion facing the electrode assembly, the first through hole passes through the connecting portion, and the connecting portion is electrically connected to the first tab through at least one first welding portion. At least part of the sealing plate is housed in the recess.
  • the thickness of the connecting portion can be reduced, thereby reducing the welding power required for welding, reducing the risk of other components being burned, and improving safety.
  • the concave part can also provide a receiving space for the sealing plate, thereby reducing the size of the sealing plate protruding from the main body of the terminal, reducing the space occupied by the electrode terminals, and improving the energy density of the battery cell.
  • the casing includes a cylinder and a cover connected to the cylinder, the cylinder is disposed around the periphery of the electrode assembly, the cover is provided with an electrode lead-out hole, and the electrode terminal is disposed in the electrode lead-out hole.
  • the cover and the barrel are integrally formed so as to save the connecting process of the cover and the barrel.
  • the cover and the cylinder are electrically connected to the positive pole or the negative pole of the electrode assembly, since the connection between the cover and the cylinder is an integrated structure, the resistance at the connection between the cover and the cylinder is small, thereby improving the flow-through capacity.
  • the cover body can be used to connect with external components (such as confluence parts).
  • the external component may pull the cover body, so that the connection between the cover body and the cylinder body is subjected to force; the above technical solution will cover the The body and the cylinder are integrated to increase the strength of the connection between the cover and the cylinder and reduce the risk of failure of the connection between the cover and the cylinder.
  • the electrode assembly further includes a second tab, the polarity of the second tab is opposite to that of the first tab, and the second tab is electrically connected to the cover.
  • one of the cover body and the electrode terminal can be used as the positive output pole of the battery cell, and the other can be used as the negative output pole of the battery cell.
  • the positive output pole and the negative output pole are arranged on the same side of the battery cell, which can simplify the connection process between multiple battery cells.
  • the first tab is located at the end of the electrode assembly facing the electrode terminal
  • the second tab is located at the end of the electrode assembly facing away from the electrode terminal.
  • the first tab and the second tab are respectively arranged at opposite ends of the electrode assembly, so that the distance between the first tab and the second tab can be increased, and the distance between the first tab and the second tab can be reduced.
  • the risk of dipole ear conduction improves safety.
  • the second tab is a negative tab
  • the base material of the casing is steel
  • the housing is electrically connected to the negative tab, that is, the housing is in a low potential state.
  • the steel shell is not easily corroded by the electrolyte in a low potential state.
  • the barrel has an opening at an end away from the cover, and the battery cell further includes a cover for closing the opening.
  • an embodiment of the present application provides a battery, including a plurality of battery cells in any embodiment of the first aspect.
  • an embodiment of the present application provides an electrical device, including the battery in the second aspect, and the battery is used to provide electrical energy.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2;
  • Fig. 4 is a schematic explosion diagram of a battery cell provided by some embodiments of the present application.
  • Fig. 5 is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application.
  • FIG. 6 is a partially enlarged schematic diagram of the battery cell shown in FIG. 5;
  • Fig. 7 is the enlarged schematic diagram at block B of Fig. 6;
  • FIG. 8 is a schematic diagram of electrode terminals of a battery cell provided by some embodiments of the present application.
  • Fig. 9 is an enlarged schematic diagram of Fig. 7 at the circle box C;
  • Fig. 10 is a schematic diagram of a terminal body of an electrode terminal of a battery cell provided in some embodiments of the present application.
  • Fig. 11 is a schematic diagram of a terminal body of an electrode terminal of a battery cell provided by another embodiment of the present application.
  • Fig. 12 is a schematic diagram of a terminal body of an electrode terminal of a battery cell provided in some other embodiments of the present application.
  • Fig. 13 is a partial cross-sectional schematic diagram of a battery cell provided by another embodiment of the present application.
  • Fig. 14 is a partial cross-sectional schematic diagram of a battery cell provided by another embodiment of the present application.
  • FIG. 15 is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • “Plurality” in this application refers to two or more (including two).
  • parallel in this application includes not only the absolutely parallel situation, but also the roughly parallel situation that is generally recognized in engineering; at the same time, the "perpendicular” not only includes the absolutely vertical situation, but also includes the roughly parallel situation that is conventionally recognized in engineering. vertical case.
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector; the positive electrode current collector includes a positive electrode current collector and a positive electrode tab, and the positive electrode current collector is coated with a positive electrode active material layer , the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, the positive electrode active material layer includes the positive electrode active material, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collector and a negative electrode tab, and the negative electrode current collector is coated with a negative electrode active material layer , the negative electrode tab is not coated with the negative electrode active material layer.
  • the material of the negative electrode current collector may be copper, the negative electrode active material layer includes the negative electrode active material, and the negative electrode active material may be carbon or silicon.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the battery cell also includes a casing for accommodating the electrode assembly and electrode terminals disposed on the casing, the electrode terminals are used for electrical connection to the electrode assembly, so as to realize charging and discharging of the electrode assembly.
  • electrolyte needs to be injected into the inside of the case.
  • the inventor tried to open a liquid injection hole on the casing.
  • the liquid injection head of the liquid injection device is pressed against the casing, and then the liquid injection head injects the electrolyte into the casing through the liquid injection hole.
  • the inventors have found that providing a liquid injection hole on the casing will result in a complex structure of the casing; the liquid injection hole will occupy the space of the casing and affect the installation of other components on the casing.
  • the shell is thinner and has lower strength; when liquid is injected, the shell may be deformed due to the extrusion of the liquid injection head, thereby causing the risk of defects in the shape of the battery cell.
  • the embodiment of the present application provides a technical solution.
  • the deformation of the casing during the liquid injection process can be reduced, the structure of the battery cell can be simplified, and the second step can be reduced.
  • Electric devices can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and electric tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiments of the present application do not impose special limitations on the above-mentioned electrical devices.
  • the electric device is taken as an example for description.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is arranged inside the vehicle 1 , and the battery 2 can be arranged at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4 , the controller 3 is used to control the battery 2 to supply power to the motor 4 , for example, for the starting, navigation and working power requirements of the vehicle 1 during driving.
  • the battery 2 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 to provide driving power for the vehicle 1 instead of or partially replacing fuel oil or natural gas.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a box body 5 and a battery cell (not shown in FIG. 2 ), and the battery cell is accommodated in the box body 5 .
  • the box body 5 is used to accommodate the battery cells, and the box body 5 may have various structures.
  • the box body 5 may include a first box body part 5a and a second box body part 5b, the first box body part 5a and the second box body part 5b cover each other, the first box body part 5a and the second box body part 5a
  • the two box parts 5b jointly define an accommodating space 5c for accommodating the battery cells.
  • the second box body part 5b can be a hollow structure with one end open, the first box body part 5a is a plate-shaped structure, and the first box body part 5a covers the opening side of the second box body part 5b to form an accommodating space 5c
  • the box body 5; the first box body portion 5a and the second box body portion 5b also can be a hollow structure with one side opening, and the opening side of the first box body portion 5a is covered on the opening side of the second box body portion 5b , to form a box body 5 with an accommodating space 5c.
  • the first box body part 5a and the second box body part 5b can be in various shapes, such as a cylinder, a cuboid, and the like.
  • a sealant such as sealant, sealing ring, etc.
  • a sealant can also be arranged between the first box body part 5a and the second box body part 5b.
  • the first box part 5a covers the top of the second box part 5b
  • the first box part 5a can also be called an upper box cover
  • the second box part 5b can also be called a lower box.
  • the battery 2 there may be one or more battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series, in parallel or in parallel.
  • the hybrid connection means that there are both series and parallel connections among the multiple battery cells.
  • a plurality of battery cells can be directly connected in series or in parallel or mixed together, and then the whole composed of a plurality of battery cells is accommodated in the box 5; of course, it is also possible to first connect a plurality of battery cells in series or parallel or
  • the battery modules 6 are formed by parallel connection, and multiple battery modules 6 are connected in series or in parallel or in series to form a whole, and are housed in the box body 5 .
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2 .
  • FIG. 3 there are multiple battery cells 7 , and the multiple battery cells 7 are connected in series, in parallel, or in parallel to form a battery module 6 .
  • a plurality of battery modules 6 are connected in series, in parallel or in parallel to form a whole, and accommodated in the box.
  • the plurality of battery cells 7 in the battery module 6 can be electrically connected through a bus component 8 , so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 7 in the battery module 6 .
  • Fig. 4 is a schematic exploded view of a battery cell provided by some embodiments of the present application
  • Fig. 5 is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application
  • Fig. 6 is a partially enlarged schematic view of the battery cell shown in Fig. 5
  • FIG. 7 is an enlarged schematic view of the box B in FIG. 6 .
  • the battery cell 7 of the embodiment of the present application includes an electrode assembly 10 , a casing 20 and an electrode terminal 30 .
  • the electrode assembly 10 includes a first tab 11 .
  • the case 20 is used to house the electrode assembly 10 .
  • the electrode terminal 30 is disposed on the housing 20 and is electrically connected to the first tab 11 .
  • the electrode terminal 30 is provided with a first through hole 323 , and the first through hole 323 is used for injecting electrolyte solution into the inner space of the housing 20 .
  • the electrode assembly 10 includes a first pole piece and a second pole piece with opposite polarities.
  • One of the first pole piece and the second pole piece is a positive pole piece, and the other is a negative pole piece.
  • the electrode assembly 10 generates electrical energy through oxidation and reduction reactions during intercalation/deintercalation of ions in the positive pole piece and the negative pole piece.
  • the electrode assembly 10 further includes a separator, which is used to insulate and isolate the first pole piece and the second pole piece.
  • the first pole piece, the second pole piece and the spacer are all strip structures, and the first pole piece, the second pole piece and the spacer are wound around the central axis A to form a wound structure.
  • the winding structure can be a cylindrical structure, a flat structure or other shapes.
  • the electrode assembly 10 may also be a laminated structure formed by stacking the first pole piece, the separator and the second pole piece.
  • the first tab 11 may be a portion of the first pole piece not coated with an active material layer.
  • the first tab 11 may be a positive tab or a negative tab.
  • the casing 20 is a hollow structure, and a space for accommodating the electrode assembly 10 is formed inside it.
  • the housing 20 can be in various shapes and sizes, such as cuboid, cylinder, hexagonal prism and so on.
  • the shape of the case 20 may be determined according to the specific shape of the electrode assembly 10 . For example, if the electrode assembly 10 has a cylindrical structure, a cylindrical shell can be selected; if the electrode assembly 10 has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be selected.
  • both the electrode assembly 10 and the casing 20 are cylindrical.
  • the housing 20 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, etc., which is not particularly limited in this embodiment of the present application.
  • the housing 20 may be positively charged, negatively charged, or uncharged.
  • the electrode terminal 30 may be insulated from the housing 20 , or may be electrically connected to the housing 20 , which is not limited in the embodiment of the present application, as long as the conduction between the positive pole piece and the negative pole piece is avoided.
  • the electrode terminal 30 can be directly connected to the first tab 11 to realize the electrical connection between the electrode terminal 30 and the first tab 11 .
  • the electrode terminal 30 can be connected to the first tab 11 by bonding, abutting, clamping, welding or other methods.
  • the electrode terminal 30 may also be indirectly connected to the first tab 11 through other conductive members, so as to realize the electrical connection between the electrode terminal 30 and the first tab 11 .
  • the conductive member can be connected to the first tab 11 and the electrode terminal 30 at the same time, so as to realize the electrical connection between the electrode terminal 30 and the first tab 11 .
  • the electrode terminal 30 can be used as an output electrode of the battery cell 7 , which can electrically connect the battery cell 7 with an external circuit, so as to realize charging and discharging of the battery cell 7 .
  • the electrode terminal 30 is used to connect with the current flow component, so as to realize the electrical connection between the battery cells 7 .
  • the first through hole 323 can communicate the space outside the housing 20 with the inner space of the housing 20 .
  • the liquid injection head of the liquid injection device presses against the electrode terminal 30 , and then the liquid injection head injects electrolyte solution into the casing 20 through the first through hole 323 .
  • the deformation of the casing 20 during the liquid injection process can be reduced, the structure of the battery cell 7 can be simplified, and the impact of the first through hole 323 on the casing can be reduced. 20 intensity effects.
  • the first through hole 323 can also be applied to other processes, such as a chemical formation process.
  • gas will be generated in the housing 20 , and the first through hole 323 can also be used to communicate with an external negative pressure device to extract the gas in the housing 20 .
  • the electrode assembly 10 includes a main body 12 , a first tab 11 and a second tab 13 , and the first tab 11 and the second tab 13 protrude from the main body 12 .
  • the first tab 11 is the part of the first pole piece not coated with the active material layer
  • the second tab 13 is the part of the second pole piece not coated with the active material layer.
  • the first tab 11 and the second tab 13 may protrude from the same side of the main body 12 , or may protrude from opposite sides respectively.
  • the first tab 11 is located at one end of the electrode assembly 10 facing the electrode terminal 30
  • the second tab 13 is located at the end of the electrode assembly 10 facing away from the electrode terminal 30 .
  • the first tab 11 is wound in multiple turns around the central axis A of the electrode assembly 10 , in other words, the first tab 11 includes multiple turns of the tab layer.
  • the first tab 11 is generally cylindrical, and there is a gap between two adjacent tab layers.
  • the first tab 11 can be processed to reduce the gap between the tab layers, so as to facilitate the connection of the first tab 11 with other components.
  • the first tab 11 can be flattened so that the end area of the first tab 11 away from the main body 12 can be gathered together; One end of the main body part 12 forms a dense end surface, which reduces the gap between the tab layers and facilitates the connection of the first tab 11 with other components.
  • a conductive material may also be filled between two adjacent tab layers, so as to reduce the gap between the tab layers.
  • the second tab 13 is wound in multiple turns around the central axis A of the electrode assembly 10 , and the second tab 13 includes multiple turns of the tab layer.
  • the second tab 13 has also been smoothed to reduce the gap between the tab layers of the second tab 13 .
  • the central axis A of the electrode assembly 10 is a virtual straight line.
  • the first pole piece, the second pole piece and the spacer can be wound on the basis of the central axis A.
  • the housing 20 includes a cylinder 21 and a cover 22 connected to the cylinder 21, the cylinder 21 is arranged around the periphery of the electrode assembly 10, the cover 22 is provided with an electrode lead-out hole 221, and the electrode terminal 30 is arranged on Electrode extraction hole 221 .
  • the cover body 22 and the cylinder body 21 may be integrally formed, that is, the housing 20 is an integrally formed component.
  • the cover body 22 and the barrel body 21 may also be two components provided separately, and then connected together by means of welding, riveting, bonding or the like.
  • the electrode lead-out hole 221 passes through the cover body 22 so as to lead out the electric energy in the electrode assembly 10 to the outside of the casing 20 .
  • the central axis A is a virtual straight line. In some embodiments, the central axis A may pass through the electrode extraction hole 221 .
  • the central axis A of the electrode assembly 10 may or may not coincide with the axis of the electrode lead-out hole 221 . In some other embodiments, the central axis A may not pass through the electrode lead-out hole 221 .
  • the electrode terminal 30 is used to cooperate with the electrode lead-out hole 221 to cover the electrode lead-out hole 221 .
  • the electrode terminal 30 may or may not extend into the electrode lead-out hole 221 .
  • the electrode terminal 30 is fixed to the cover body 22 .
  • the electrode terminals 30 can be integrally fixed on the outside of the cover body 22 , or can extend into the inside of the casing 20 through the electrode lead-out holes 221 .
  • the cylinder body 21 is a cylinder, and the cover body 22 is a circular plate-shaped structure. In some other embodiments, the cylinder body 21 may be a square cylinder, and the cover body 22 may be a square plate structure.
  • the cover body 22 and the cylinder body 21 are integrally formed. In this way, the connecting process of the cover body 22 and the cylinder body 21 can be omitted.
  • the cover body 22 can be used to be connected with an external component (such as a confluence part).
  • the external component may pull the cover body 22, so that the connection between the cover body 22 and the cylinder body 21 is subjected to force; the above Technical solution
  • the cover body 22 and the cylinder body 21 are integrally arranged, thereby increasing the strength of the connection between the cover body 22 and the cylinder body 21 and reducing the risk of failure of the connection between the cover body 22 and the cylinder body 21 .
  • housing 20 may be formed by a stretching process.
  • the cylinder body 21 has an opening 211 at an end away from the cover body 22 , and the battery cell 7 further includes a cover plate 50 for closing the opening 211 .
  • the cover plate 50 covers the opening of the barrel 21 to close the opening of the barrel 21 .
  • the cover plate 50 can be of various structures, for example, the cover plate 50 is a plate-like structure.
  • the cover plate 50 may be a circular cover plate, a rectangular cover plate, a square cover plate, a hexagonal cover plate or other shaped cover plates.
  • the cover plate 50 is welded to the cylinder body 21 .
  • the cover body 22 is circular, and the electrode assembly 10 is cylindrical; the central axis A coincides with the axis of the electrode lead-out hole 221 . In this embodiment, it is not required that the central axis A completely coincides with the axis of the electrode lead-out hole 221 , and there may be a deviation allowed by the process between the two.
  • the electrode lead-out hole 221 is generally opened in the middle of the cover 22 , and correspondingly, the electrode terminal 30 is also installed in the middle of the cover 22 .
  • the axis of the electrode lead-out hole 221 coincides with the axis of the cover body 22
  • the cover body 22 is a ring-shaped structure arranged around the axis of the electrode lead-out hole 221 .
  • the axis of the electrode terminal 30 coincides with the axis of the electrode lead-out hole 221 .
  • the cover body 22 may also be rectangular, and the electrode assembly 10 is flat.
  • the electrode lead-out hole 221 may be disposed near the end of the cover body 22 along its length direction.
  • the axis of the first through hole 323 coincides with the axis of the electrode extraction hole 221 .
  • the electrode assembly 10 further includes a second tab 13 , the polarity of the second tab 13 is opposite to that of the first tab 11 , and the second tab 13 is electrically connected to the cover 22 .
  • the cover body 22 itself can be used as an output electrode of one of the battery cells 7 , thereby saving a conventional electrode terminal 30 and simplifying the structure of the battery cell 7 .
  • the cover body 22 can be electrically connected with the confluence part, which can increase the flow area and make the structural design of the confluence part more flexible.
  • the cylindrical body 21 is used to connect the second tab 13 and the cover 22 so that the second tab 13 and the cover 22 are electrically connected.
  • the cylinder body 21 may be electrically connected to the second tab 13 directly, or may be electrically connected to the second tab 13 through other components.
  • the second tab 13 is electrically connected to the barrel 21 through the cover plate 50 .
  • the cover body 22 and the electrode terminal 30 have different polarities. At this time, one of the cover body 22 and the electrode terminal 30 can be used as a positive output pole of the battery cell 7 , and the other can be used as a negative output pole of the battery cell 7 . In this embodiment, the positive output pole and the negative output pole are arranged on the same side of the battery cell 7 , which can simplify the connection process between multiple battery cells 7 .
  • the cover body 22 can be used for electrical connection of the bus components.
  • the inventor has tried to open a first through hole on the cover, but the first through hole will reduce the connection area between the cover and the confluence part, reduce the flow area between the cover and the confluence part, and it is difficult to meet the requirements of the battery cell. Requirements for overcurrent capability and temperature rise during fast charging. Therefore, the inventors opened the first through hole 323 for liquid injection on the electrode terminal 30 to increase the connection area between the cover body 22 and the bus component.
  • the first tab 11 is located at the end of the electrode assembly 10 facing the electrode terminal 30
  • the second tab 13 is located at the end of the electrode assembly 10 facing away from the electrode terminal 30 .
  • Setting the first tab 11 and the second tab 13 at opposite ends of the electrode assembly 10 can increase the distance between the first tab 11 and the second tab 13 and reduce the distance between the first tab 11 and the second tab.
  • the risk of conduction of the dipole ear 13 improves safety.
  • the second tab 13 is a negative tab
  • the base material of the casing 20 is steel.
  • the base material is the main component in the material composition of the casing 20 .
  • the casing 20 is electrically connected to the negative electrode tab, that is, the casing 20 is in a low potential state.
  • the steel casing 20 is not easily corroded by the electrolyte in a low potential state.
  • the electrode lead-out hole 221 in the embodiment of the present application is made after the casing 20 is stretched and formed.
  • the inventors have tried to roll the open end of the cylinder body so that the open end of the cylinder body is turned inward to form a flanging structure, and the flanging structure presses the cover plate to fix the cover plate.
  • the inventor installed the electrode terminals on the cover plate, and used the flanging structure and the electrode terminals as the two output poles of the battery cell.
  • the larger the size of the cuffed structure the higher the risk of curling and wrinkling after forming; if the cuffed structure curls and wrinkles, it will cause the surface of the cuffed structure to be uneven.
  • the confluence part is welded, there will be a problem of poor welding. Therefore, the size of the flange structure is relatively limited, resulting in insufficient flow capacity of the battery cell.
  • an electrode lead-out hole 221 for installing the electrode terminal 30 is formed on the cover body 22 by using a hole-opening process, so that the positive output pole and the negative output pole are arranged at the end of the battery cell 7 away from the opening of the cylinder body 21;
  • the cover body 22 is formed during the molding process of the casing 20 , and the flatness can be ensured even after opening the electrode lead-out hole 221 , so as to ensure the connection strength between the cover body 22 and the busbar.
  • the flatness of the cover body 22 is not restricted by its own size, so the cover body 22 can have a larger size, thereby improving the flow-through capacity of the battery cell 7 .
  • the electrode terminal 30 is electrically connected to the first tab 11 through at least one first welding portion W1 .
  • the electrode terminal 30 is welded with other components to form a first welded portion W1.
  • the current is conducted between the electrode terminal 30 and the first tab 11 through the first welding portion W1.
  • the electrode terminal 30 may be directly welded to the first tab 11 to form the first welding portion W1.
  • a part of the electrode terminal 30 and a part of the first tab 11 melt to form a molten pool, and the molten pool is solidified to form the first welding portion W1.
  • the electrode terminal 30 is welded to other components connected to the first tab 11 (such as a current collecting member described later) to form the first welding portion W1.
  • a part of the electrode terminal 30 and a part of the current collecting member melt to form a molten pool, and the molten pool solidifies to form the first welded portion W1.
  • the shape of the first welding portion W1 may be straight, round, circular, spiral, V-shaped or other shapes. There may be one first welding part W1, or there may be a plurality of them.
  • the first welding portion W1 can reduce the resistance between the electrode terminal 30 and the first tab 11 and improve the overcurrent capability.
  • Fig. 8 is a schematic diagram of the electrode terminals of the battery cell provided by some embodiments of the present application
  • Fig. 9 is an enlarged schematic diagram of Fig. 7 at the circle C
  • Fig. 10 is a schematic diagram of the electrode terminals of the battery cell provided by some embodiments of the present application Schematic diagram of the terminal body.
  • the electrode terminal 30 includes a sealing plate 33 and a terminal body 34.
  • the terminal body 34 is provided with a first through hole 323.
  • the sealing plate 33 is connected to the terminal body 34 and is used for sealing.
  • the first through hole 323 is a first through hole 323.
  • the sealing plate 33 is connected to the terminal body 34 to reduce the risk of electrolyte leakage through the first through hole 323 and improve the sealing performance.
  • the terminal body 34 includes a concave portion 31 and a connecting portion 32 located on the side of the concave portion 31 facing the electrode assembly 10, the first through hole 323 passes through the connecting portion 32, and the connecting portion 32 is connected to the connecting portion 32 through at least one first welding portion W1. Electrical connection of the first tab 11 . At least part of the sealing plate 33 is housed in the recess 31 .
  • the recess 31 may be recessed from a side of the terminal body 34 facing away from the electrode assembly 10 in a direction facing the electrode assembly 10 .
  • the connecting portion 32 is a portion of the terminal main body 34 corresponding to the bottom surface of the recessed portion 31 .
  • the sealing plate 33 can be entirely accommodated in the recess 31 , or partially accommodated in the recess 31 , as long as the sealing plate 33 can seal the first through hole 323 .
  • the connecting portion 32 is welded with other components to form a first welded portion W1.
  • the welding equipment can irradiate a laser on the surface of the connecting portion 32 facing the concave portion 31, and the laser will melt a part of the connecting portion 32 and a part of the components inside the connecting portion 32 to form a molten pool, and the molten pool is solidified to form a first Welding part W1.
  • the thickness of the connecting portion 32 can be reduced by providing the recessed portion 31 on the terminal body 34 , thereby reducing the welding power required for welding, reducing the risk of other components being burned, and improving safety.
  • the concave portion 31 can also provide a receiving space for the sealing plate 33 , thereby reducing the size of the sealing plate 33 protruding from the terminal body 34 , reducing the space occupied by the electrode terminal 30 and increasing the energy density of the battery cell 7 .
  • the sealing plate 33 can protect the connecting portion 32 from the outside, reduce external impurities entering the concave portion 31 , reduce the risk of the connecting portion 32 being damaged by external impurities, and improve the sealing performance of the battery cell 7 .
  • the thickness of the connecting portion 32 is 0.5mm-10mm.
  • a gap is provided between the sealing plate 33 and the connecting portion 32, and the gap is used to avoid the first welding portion W1.
  • the surface of the first welding portion W1 is uneven. If the sealing plate 33 is pressed against the first welding portion W1, it will cause the sealing plate 33 to vibrate during the assembly process and affect the sealing effect.
  • a gap is provided between the sealing plate 33 and the connecting portion 32 to avoid the sealing plate 33 from the first welding portion W1, avoid direct contact between the sealing plate 33 and the first welding portion W1, and reduce the distance between the sealing plate 33 and the first welding portion W1. Shaking during assembly ensures the sealing effect.
  • a stepped surface 311 is provided on the sidewall of the recess 31 , at least a part of the sealing plate 33 is accommodated in the recess 31 , and the stepped surface 311 is used to support the sealing plate 33 .
  • the recess 31 is a stepped recess with a large outside and a small inside.
  • the stepped surface 311 can support the sealing plate 33 and position the sealing plate 33 , thereby simplifying the assembly process and forming a gap between the sealing plate 33 and the connecting portion 32 .
  • the sealing plate 33 is welded to the sidewall of the recess 31 to close the opening of the recess 31 and the first through hole 323 .
  • the connecting portion 32 is provided with a groove 324 recessed from the first outer surface 322 of the connecting portion 32 along a direction facing the electrode assembly 10 .
  • the connecting portion 32 has a first outer surface 322 and a first inner surface 321 oppositely disposed along its thickness direction, the first inner surface 321 faces the electrode assembly 10 , and the first outer surface 322 faces away from the electrode assembly 10 .
  • both the first outer surface 322 and the first inner surface 321 are planes.
  • the groove 324 is recessed relative to the first outer surface 322 in a direction facing the electrode assembly 10 .
  • a portion between the bottom wall of the groove 324 and the first inner surface 321 is used for welding with other components to form a first welding portion W1.
  • a groove 324 is formed on the connecting portion 32 to form a stepped structure on the connecting portion 32 .
  • a gap is formed between the first outer surface 322 and the bottom wall of the groove 324 .
  • the connection part 32 During the production process of the battery cell 7 , external equipment needs to cooperate with the connection part 32 .
  • the surface of the first welding portion W1 is uneven, and if the external device is pressed on the first welding portion W1, the external device is easily crushed by the first welding portion W1.
  • the groove 324 is provided to form a gap between the first outer surface 322 and the bottom wall of the groove 324. In this way, the first outer surface 322 can be used to support external equipment, so that the external equipment and the first welding part W1 is separated to reduce the risk of external equipment being crushed.
  • the external device may be a liquid injection device, an air extraction device, a welding device or other devices for the battery cells 7 .
  • the liquid injection head when injecting liquid, the liquid injection head is pressed against the first outer surface 322, and the first outer surface 322 can support the liquid injection head, and cooperate with the liquid injection head to realize sealing, so as to reduce the electrolyte leakage to the outside of the battery cell 7 risks of.
  • the terminal body 34 has a second outer surface 344 and a second inner surface 345 disposed opposite to each other.
  • the second inner surface 345 faces the electrode assembly 10
  • the second outer surface 344 faces away from the electrode assembly 10 .
  • the concave part 31 is depressed from the second outer surface 344 to the first outer surface 322 of the connection part 32 in a direction facing the electrode assembly 10 .
  • the sealing plate 33 can be used for welding with the busbar part of the battery.
  • the bus member can connect the sealing plate 33 of one battery cell 7 and the cover 22 of the other battery cell 7 to connect the two battery cells 7 in series.
  • At least a portion of the sealing plate 33 protrudes from the second outer surface 344 of the terminal body 34 .
  • the confluence part is first attached to the upper surface of the sealing plate 33 (that is, the outer surface of the sealing plate 33 away from the connecting portion 32), and then the confluence part and the sealing plate 33 are welded.
  • At least part of the sealing plate 33 protrudes from the second outer surface 344 to prevent the second outer surface 344 from interfering with the bonding of the sealing plate 33 and the confluence component, and to ensure the tight fit between the confluence component and the sealing plate 33 .
  • connection portion 32 is disposed at one end of the terminal body 34 facing the electrode assembly 10 , and the first inner surface 321 of the connection portion 32 is flush with the second inner surface 345 .
  • the second inner surface 345 is a surface of the terminal body 34 facing the electrode assembly 10 .
  • the first inner surface 321 of the connecting portion 32 constitutes a part of the second inner surface 345 .
  • the terminal body 34 can be fitted with a current collecting member having a flat plate structure.
  • the connecting portion 32 can be attached to the current collecting member, so as to facilitate the welding of the connecting portion 32 and the current collecting member.
  • the terminal body 34 includes a columnar portion 341 , a first limiting portion 342 and a second limiting portion 343 , at least a part of the columnar portion 341 is located in the electrode lead-out hole 221 , the concave portion 31 is disposed on the columnar portion 341 , and the first Both the limiting portion 342 and the second limiting portion 343 are connected to and protrude from the outer wall of the columnar portion 341.
  • the first limiting portion 342 and the second limiting portion 343 are respectively arranged on the outer side and the inner side of the cover body 22, and are used for A part of the cover body 22 is clamped.
  • the first limiting part 342 is arranged on the outside of the cover body 22, which means that the first limiting part 342 is arranged on the side of the cover body 22 away from the electrode assembly 10; the second limiting part 343 is arranged on the inner side of the cover body 22, It means that the second limiting portion 343 is disposed on the side of the cover body 22 facing the electrode assembly 10 .
  • the first limiting portion 342 overlaps the cover 22
  • at least part of the second limiting portion 343 overlaps the cover 22 .
  • the columnar portion 341 passes through the electrode lead-out hole 221 to connect the first limiting portion 342 and the second limiting portion 343 respectively located on two sides of the cover body 22 .
  • the first limiting portion 342 and the second limiting portion 343 clamp a part of the cover body 22 from both sides, so as to fix the terminal body 34 on the cover body 22 .
  • the first limiting portion 342 and the second limiting portion 343 can directly clamp the cover body 22 , or indirectly clamp the cover body 22 through other components.
  • the columnar portion 341 is cylindrical. Both the first limiting portion 342 and the second limiting portion 343 are annular structures surrounding the cylindrical portion 341 .
  • the battery cell 7 further includes a first insulating member 60 and a second insulating member 70, at least part of the first insulating member 60 is disposed between the first limiting portion 342 and the cover 22, and the second insulating member At least part of the component 70 is disposed between the second limiting portion 343 and the cover 22 .
  • the first insulating member 60 and the second insulating member 70 are used to insulate the terminal body 34 from the cover 22 .
  • Both the first insulating member 60 and the second insulating member 70 are annular structures disposed around the columnar portion 341 .
  • the first insulating member 60 can insulate and isolate the first limiting portion 342 from the cover 22
  • the second insulating member 70 can insulate and isolate the second limiting portion 343 from the cover 22 .
  • one of the first insulating member 60 and the second insulating member 70 separates the pillar portion 341 from the cover 22 .
  • a part of the first insulating member 60 extends into the electrode lead-out hole 221 to separate the hole wall of the electrode lead-out hole 221 from the columnar portion 341 .
  • first insulating member 60 and the second insulating member 70 are integrally formed structures. Alternatively, in other embodiments, the first insulating member 60 and the second insulating member 70 are provided separately and abut against each other.
  • one of the first insulating member 60 and the second insulating member 70 is used to seal the electrode lead-out hole 221 .
  • the first limiting portion 342 and the cover body 22 press the first insulating member 60, and the first insulating member 60 compresses and seals the electrode lead-out hole 221 from the outside.
  • the second limiting portion 343 and the cover body 22 press the second insulating member 70 , and the second insulating member 70 compresses and seals the electrode lead-out hole 221 from the inner side.
  • the battery cell 7 further includes a sealing ring 80 sleeved on the columnar portion 341 and used to seal the electrode lead-out hole 221 .
  • a part of the sealing ring 80 extends into the electrode lead-out hole 221 to separate the hole wall of the electrode lead-out hole 221 from the columnar portion 341 .
  • the outer periphery of the first limiting portion 342 is provided with a plurality of protruding structures 342 a , and the plurality of protruding structures 342 a are arranged at intervals along the circumferential direction of the columnar portion 341 .
  • a plurality of protruding structures 342 a may be arranged at equal intervals along the circumference of the columnar portion 341 .
  • the first limiting portion 342 is a flanging structure formed by turning the end of the terminal main body 34 away from the electrode assembly 10 outward.
  • the first limiting portion 342 of the terminal main body 34 is generally cylindrical and located at the upper end of the columnar portion 341, and the outer wall of the first limiting portion 342 is in contact with the outer side of the columnar portion 341. flush with the wall.
  • the upper end of the first limiting part 342 is provided with a plurality of groove structures 342b arranged at intervals;
  • the protruding structures 342a are arranged at intervals, and the groove structures 342b are formed between adjacent protruding structures 342a.
  • the groove structure 342b and the protruding structure 342a are provided to reduce the difficulty of turning over the first limiting portion 342 and reduce the stress concentration on the first limiting portion 342 .
  • the second limiting portion 343 is a limiting structure formed by pressing the end of the terminal body 34 facing the electrode assembly 10 so that the end of the terminal body 34 facing the electrode assembly 10 extends outward.
  • the external device can squeeze the end of the terminal body 34 facing the electrode assembly 10, and the end of the terminal body 34 facing the electrode assembly 10 extends outward under the action of pressure to form The protruding second limiting portion 343 .
  • the battery cell 7 further includes a current collecting member 40 for electrically connecting the electrode terminal 30 and the first tab 11 .
  • the current collecting member 40 electrically connects the first tab 11 to the electrode terminal 30 .
  • the embodiment of the present application does not limit the connection manner between the first tab 11 and the current collecting member 40 , for example, the current collecting member 40 may be connected to the first tab 11 by welding, abutting or bonding.
  • the current collecting member 40 and the electrode terminal 30 are welded to form at least one first welding part W1.
  • the current collecting member 40 and the connecting portion 32 are welded to form at least one first welded portion W1.
  • the first through hole 323 can release the welding stress and reduce the risk of the connection part 32 being broken.
  • the first welding portion W1 extends from the side of the connecting portion 32 away from the current collecting member 40 at least to the inside of the current collecting member 40 .
  • the external welding equipment can move away from the connecting portion 32 from the current collecting member.
  • One side of 40 welds the connecting portion 32 and the current collecting member 40 to form a first welded portion W1.
  • the first welding portion W1 is exposed on the surface of the connecting portion 32 away from the current collecting member 40 .
  • the first welding portion W1 may pass through the current collecting member 40 , for example, the first welding portion W1 passes through the current collecting member 40 and the connecting portion 32 , and the first welding portion W1 is exposed on the surface of the current collecting member 40 away from the connecting portion 32 .
  • the first welding portion W1 may not penetrate through the current collecting member 40 , that is, the first welding portion W1 is not exposed on the surface of the current collecting member 40 away from the connecting portion 32 .
  • the first welding part W1 extends from the connecting part 32 to the inside of the current collecting member 40 to connect the current collecting member 40 and the connecting part 32 , reduce the contact resistance between the current collecting member 40 and the electrode terminal 30 , and improve the overcurrent capability.
  • the first welding portion W1 does not protrude beyond the surface of the current collecting member 40 facing away from the connecting portion 32 .
  • the first welding portion W1 is spaced a predetermined distance from the surface of the current collecting member 40 facing away from the connecting portion 32 to avoid the current collecting member 40 from being melted and reduce the risk of metal particles being produced on the surface of the current collecting member 40 facing away from the connecting portion 32 , Improve security.
  • the current collecting member 40 is welded to the first tab 11 to form a second welding portion W2.
  • the first tab 11 of the electrode assembly 10 can be welded to the current collecting member 40 first, and then the electrode assembly 10 and the current collecting member 40 are put into the casing 20 .
  • the current collecting member 40 can be pressed against the flattened end surface of the first tab 11 first, and then the external welding equipment can be used when the current collecting member 40 is away from the first pole.
  • the surface of the ear 11 emits laser light, and the laser welds the current collecting member 40 and the first ear 11 .
  • the shape of the second welding portion W2 may be straight, C-shaped, circular, spiral, V-shaped or other shapes, which is not limited in this embodiment. There may be one second welding portion W2, or there may be a plurality of them.
  • the second welding portion W2 can reduce the contact resistance between the current collecting member 40 and the first tab 11 and improve the overcurrent capability.
  • the current collecting member 40 has a protrusion 41 on a side facing the first tab 11 , and the protrusion 41 is welded to the first tab 11 to form a second welding portion W2 .
  • the protrusion 41 of the current collecting member 40 is first pressed against the first tab 11 , and then the protrusion 41 and the first tab 11 are welded.
  • the convex portion 41 can better fit the first tab 11 , reducing the risk of poor welding.
  • the protrusion 41 can press the first tab 11 and be embedded into the first tab 11 .
  • other parts of the current collecting member 40 are generally flat plate structures.
  • the current collecting member 40 forms a recessed structure 44 at a position corresponding to the convex portion 41 , and the recessed structure 44 faces away from the surface of the current collecting member 40 away from the first tab 11 along the direction facing the first tab 11 sunken.
  • a transition portion is formed between the bottom surface of the concave structure 44 and the top surface of the protrusion 41 , and the transition portion is welded to the first tab 11 to form a second welding portion W2 .
  • the thickness of the transition part can be reduced by setting the recessed structure 44, so as to reduce the welding power required for welding the transition part and the first tab 11, reduce heat generation, and reduce the risk of the electrode assembly 10 being burned.
  • the second welding part W2 is formed by welding, and its surface is uneven.
  • the surface of the second welding portion W2 can be recessed relative to the surface of the current collecting member 40 away from the first tab 11, so as to connect the second welding portion W2 to other components (such as the electrode terminal 30). avoid.
  • the number of the first welding portion W1 is one, and the first welding portion W1 extends along the circumferential direction Y of the first through hole 323 and surrounds at least part of the first through hole 323 .
  • the first welding portion W1 may be a ring structure or a semi-ring structure.
  • the dimension of the first welding portion W1 extending in the circumferential direction Y can be determined according to the requirement of the battery cell 7 for the flow-through capacity, which is not particularly limited in this embodiment.
  • the first welding part W1 can increase the strength of the region of the electrode terminal 30 around the first through hole 323 and reduce the deformation of the electrode terminal 30 under the impact of the electrolyte.
  • the first welding portion W1 only surrounds a part of the first through hole 323 along the circumferential direction Y of the first through hole 323 .
  • a part of the first through hole 323 is surrounded by the first welding part W1 along the circumferential direction Y of the first through hole 323, and another part of the first through hole 323 is surrounded by the first welding part W1 along the circumferential direction Y of the first through hole 323. .
  • the outer periphery of the first through hole 323 is not closed by the first welding part W1, and the gap between the electrode terminal 30 and the component (such as the current collecting member 40) welded to the electrode terminal 30 will not be blocked by the first welding part W1. , part of the electrolyte flowing in through the first through hole 323 can pass through the gap, thereby improving the efficiency of electrolyte injection.
  • the angle at which the first welding portion W1 surrounds the first through hole 323 is ⁇ , and 180° ⁇ 360°.
  • may be 180°, 225°, 270°, 315° or 360°.
  • is positively correlated with the flow area of the first welding portion W1.
  • satisfies: 180° ⁇ 360°, so that the first welding portion W1 meets the requirements of the battery cell 7 on the overcurrent capability and temperature rise.
  • FIG. 11 is a schematic diagram of a terminal body of an electrode terminal of a battery cell provided by another embodiment of the present application.
  • the first welding portion W1 circles around the first through hole 323 , that is, ⁇ is 360°.
  • the embodiment of the present application can increase the overcurrent area of the first welding part W1, so that the first welding part W1 can meet the requirements of the battery cell 7 on the overcurrent capability and temperature rise, and improve the strength of the first welding part W1 and reduce the first welding part W1. There is a risk of tearing of the weld W1 when the battery cell 7 vibrates.
  • Fig. 12 is a schematic diagram of a terminal main body of an electrode terminal of a battery cell provided in some other embodiments of the present application.
  • first welding portions W1 there are multiple first welding portions W1 , and the multiple first welding portions W1 are arranged at intervals along the Y direction of the first through hole 323 .
  • the first welding portion W1 may extend along the circumferential direction Y of the first through hole 323 , or may extend along the radial direction of the first through hole 323 .
  • first welding portions W1 there is no special limitation on the angle between two adjacent first welding portions W1 in the circumferential direction Y of the first through hole 323 .
  • the plurality of first welding portions W1 may be arranged at equal intervals along the circumferential direction Y of the first through hole 323 , or may be arranged at unequal intervals.
  • the solution of setting multiple first welding parts W1 can reduce the power of a single welding and reduce heat generation.
  • the interval angle ⁇ between any two adjacent first welding portions W1 along the circumferential direction Y of the first through hole 323 is less than 30°.
  • is limited to less than 30°, so as to meet the requirements of the battery cell 7 on overcurrent capability and temperature rise, and reduce the risk of tearing of the first welding portion W1 when the battery cell 7 vibrates.
  • each first welding portion W1 extends along the radial direction of the first through hole 323 .
  • the extension of the first welding portion W1 along the radial direction of the first through hole 323 means that the dimension of the first welding portion W1 along the radial direction of the first through hole 323 is larger than that of the first welding portion W1 along the circumferential direction of the first through hole 323 Y-dimension.
  • the first welding part W1 extends along the radial direction of the first through hole 323, which can reduce the size of the first welding part W1 along the circumferential direction Y of the first through hole 323, so that the electrode terminal 30 can be on the outer periphery of the first through hole 323. More first welding parts W1 are arranged, so as to improve the flow-through capacity and reduce heat generation.
  • the depth of the first welding portion W1 is h;
  • the minimum distance between them is d.
  • d and h satisfy: 0.1 ⁇ h/d ⁇ 0.6.
  • h may be the dimension along the axial direction X of the first through hole 323 in the area of the minimum penetration of the first welding portion W1 .
  • limiting the value of h/d to be less than or equal to 0.6 can reduce the thermal stress acting on the region close to the first through hole 323, and reduce the first through hole 323.
  • the deformation of the hole 323 is convenient for the liquid injection head to cooperate with the first through hole 323 .
  • the value of h/d may be 0.1, 0.2, 0.3, 0.4, 0.5 or 0.6.
  • d and h satisfy: 0.2 ⁇ h/d ⁇ 0.5.
  • the inventor found that when 0.2 ⁇ h/d ⁇ 0.5, the deformation of the first through hole 323 can be effectively reduced, so that the flow capacity and strength of the first welding part W1 can meet the requirements .
  • d is 1.6mm, 2mm, 3mm, 4mm, 5mm or 5.5mm.
  • h is 0.8mm-1.0mm.
  • the electrode assembly 10 has a wound structure, and the electrode assembly 10 has a second through hole 14 at the center of the winding.
  • the first through hole 323 communicates with the second through hole 14 , so that the electrolyte injected through the first through hole 323 can flow into the second through hole 14 .
  • the electrode assembly 10 is manufactured by winding the first pole piece, the second pole piece and the separator on a winding tool, and after the winding is formed, the winding tool is pulled out from the electrode assembly 10 . After the winding tool is pulled out, a second through hole 14 is formed in the middle of the electrode assembly 10 . The second through hole 14 passes through the first tab 11 , the main body 12 and the second tab 13 .
  • first through hole 323 and the second through hole 14 may or may not overlap.
  • the electrolyte solution can flow into the second through hole 14 through the first through hole 323 , and the electrolyte solution flowing into the second through hole 14 can infiltrate the electrode assembly 10 from inside, improving the wetting efficiency of the electrode assembly 10 .
  • the axis X of the first through hole 323 is parallel to the axis of the second through hole 14 .
  • the projection of the first through hole 323 at least partially overlaps with the projection of the second through hole 14 .
  • the first through hole 323 and the second through hole 14 are opposite along the axial direction X of the first through hole 323, and part of the electrolyte passing through the first through hole 323 can enter the second through hole 14 without changing the flow direction, thereby improving the electrode assembly. 10 infiltration efficiency.
  • the projection of the first through hole 323 along its own axis X refers to: the projection of the opening of the inner end of the first through hole 323 along its own axis X.
  • the projection of the second through hole 14 along the axial direction X of the first through hole 323 means that the opening of the second through hole 14 near the end of the first through hole 323 is along the The projection of the axis X of a through hole 323 .
  • the projection of the second through hole 14 is larger than the projection of the first through hole 323 .
  • the projected area of the first through hole 323 along the axis X of itself is S1
  • the projected area of the second through hole 14 along the axis X of the first through hole 323 is S2
  • S2 is larger than S1.
  • the second through hole 14 has a larger cross-sectional area, so that the second through hole 14 can accommodate more electrolyte, which helps to promote the electrolyte to infiltrate the electrode assembly 10 from the inside. s efficiency.
  • the projection of the first through hole 323 is located within the projection of the second through hole 14 .
  • the solid part of the electrode assembly 10 can be avoided from the first through hole 323 , reducing the electrolyte directly impacting the electrode assembly 10 and reducing the risk of deformation of the electrode assembly 10 .
  • the embodiment of the present application can reduce the impact on the first tab 11 and the spacer, and reduce the deformation of the first tab 11 and the spacer.
  • the diameter of the first through hole 323 is D 1
  • the diameter of the second through hole 14 is D 2
  • D 1 and D 2 satisfy: 65% ⁇ D 1 /D 2 ⁇ 95%.
  • D 1 refers to the minimum diameter of the first through hole 323
  • D 2 refers to the minimum diameter of the second through hole 14 .
  • the value of D 1 /D 2 is limited to be greater than or equal to 65%, so as to improve the liquid injection efficiency and reduce the leakage of the battery cell 7 caused by the second through hole 14. loss of energy density.
  • the value of D 1 /D 2 may be 65%, 75%, 85% or 95%.
  • D 2 >D 1 +0.2mm.
  • the electrode assembly 10 When assembling the battery cell 7 , due to assembly errors, the electrode assembly 10 may be shifted, causing the first through hole 323 to face the solid part of the electrode assembly 10 , which will cause the electrode assembly 10 to be impacted by the electrolyte.
  • D 2 ⁇ D 1 +0.2mm can provide a margin for offset for the electrode assembly 10 and reduce the physical part of the electrode assembly 10 facing the first through hole 323.
  • the risk of reducing the electrolyte that directly impacts the electrode assembly 10 reduces the risk of deformation of the electrode assembly 10 .
  • the central axis of the first through hole 323 is parallel to the central axis of the second through hole 14 .
  • the central axis of the first through hole 323 coincides with the central axis of the second through hole 14 .
  • the central axis of the second through hole 14 may serve as the central axis A of the electrode assembly 10 .
  • the battery cell 7 further includes a current collecting member 40 for electrically connecting the electrode terminal 30 and the first tab 11 .
  • the current collecting member 40 includes a third through hole 45 at least partially disposed between the first through hole 323 and the second through hole 14 .
  • the diameter of the third through hole 45 which may be greater than, smaller than or equal to the space of the first through hole 323 .
  • the third through hole 45 is opposite to the first through hole 323, that is, the projection of the third through hole 45 along the axis X of the first through hole 323 is along the axis X of the first through hole 323. Projections of the first through hole 323 in the axial direction X at least partially overlap.
  • the third through hole 45 is opposite to the second through hole 14, that is, the projection of the third through hole 45 along the axis X of the first through hole 323 is along the axis X of the second through hole 14. Projections of the first through hole 323 in the axial direction X at least partially overlap.
  • the current collecting member 40 avoids the electrolytic solution flowing in through the first through hole 323, so as to reduce the blocking of the electrolytic solution by the current collecting member 40 in the liquid injection process, so that the electrolytic solution can pass through smoothly.
  • the third through hole 45 flows into the second through hole 14 to improve the wetting efficiency of the electrode assembly 10 .
  • the axis of the third through hole 45 is parallel to the axis X of the first through hole 323 .
  • the diameter of the third through hole 45 is greater than or equal to the diameter of the first through hole 323 .
  • the diameter of the third through hole 45 is smaller than or equal to the diameter of the second through hole 14.
  • the projection of the third through hole 45 is smaller than the projection of the second through hole 14 .
  • the projected area of the third through hole 45 along the axis X of the first through hole 323 is S3, and S2 is larger than S3.
  • the diameter of the third through hole 45 is smaller than the diameter of the second through hole 14 .
  • the second through hole 14 has a larger cross-sectional area, so that the electrolyte passing through the third through hole 45 can quickly flow into the second through hole 14, which helps to improve the electrolytic solution.
  • the projection of the third through hole 45 is larger than the projection of the first through hole 323 .
  • the diameter of the third through hole 45 is larger than the diameter of the first through hole 323 .
  • the third through hole 45 has a larger cross-sectional area, which can reduce the risk of the current collecting member 40 blocking the first through hole 323, so that the electrolyte can pass through the third through hole smoothly 45 and enter the second through hole 14 to improve the efficiency of the electrolyte infiltrating the electrode assembly 10 from the inside.
  • the projection of the first through hole 323 is located within the projection of the third through hole 45 .
  • This embodiment can not only reduce the risk of the current collecting member 40 blocking the first through hole 323, so that the electrolyte can flow into the casing 20 smoothly, but also reduce the impact on the current collecting member 40, and reduce the contact between the current collecting member 40 and the electrodes. Risk of cracking at the junction of the terminals 30.
  • the projection of the third through hole 45 is located within the projection of the second through hole 14 . This embodiment can reduce the shielding of the third through hole 45 by the solid part of the electrode assembly 10 , so that the electrolyte can flow into the second through hole 14 smoothly.
  • the first through hole 323 , the second through hole 14 and the third through hole 45 are arranged coaxially.
  • Coaxial setting means that the central axis of the first through hole 323 , the central axis of the second through hole 14 and the central axis of the third through hole 45 are coincident.
  • the coincidence in this embodiment does not require absolute coincidence, and errors in conventional engineering cognition are allowed.
  • Arranging the three through holes coaxially can make the electrolyte flow in more smoothly, and reduce the impact of the electrolyte on the current collecting member 40 and the electrode assembly 10 .
  • the diameter of the third through hole 45 is smaller than that of the second through hole 14 , and the current collecting member 40 protrudes inward from the wall of the second through hole 14 in the radial direction of the second through hole 14 .
  • the current collecting member 40 can cover the first tab 11 to reduce the impact on the first tab 11 from the electrolyte.
  • FIG. 13 is a schematic partial cross-sectional view of a battery cell provided by another embodiment of the present application.
  • the electrode terminal 30 is welded to the first tab 11 to form a first welding portion W1 .
  • the battery cell 7 shown in FIG. 13 can omit the current collecting member, thereby simplifying the internal structure of the battery cell 7 and shortening the distance between the electrode terminal 30 and the first tab 11.
  • the conductive path improves the energy density of the battery cell 7 .
  • a battery including a plurality of battery cells in any one of the above embodiments.
  • FIG. 14 is a schematic partial cross-sectional view of a battery cell provided by another embodiment of the present application.
  • the concave portion of the electrode terminal 30 may be omitted.
  • the first through hole 323 passes through the terminal body 34 , and the terminal body 34 may not be provided with the recess 31 shown in FIG. 6 .
  • the sealing plate 33 can directly cover the terminal body 34 and seal the first through hole 323 .
  • FIG. 15 is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application.
  • the battery cell 7 can be a square battery cell.
  • the casing 20 includes a cylinder body 21 and a cover body 22 formed integrally, and the cylinder body 21 is disposed around the periphery of the electrode assembly 10 .
  • the cylinder body 21 can be a square cylinder.
  • the cylinder body 21 has an opening at an end away from the cover body 22 , and the cover plate 50 covers the opening of the cylinder body 21 to close the opening of the cylinder body 21 .
  • the cover plate 50 is welded to the cylinder body 21 .
  • the battery cell further includes a first electrode terminal 30 and a second electrode terminal 90 with opposite polarities, the first electrode terminal 30 is used to electrically connect to the first tab of the electrode assembly 10, and the second electrode terminal 90 is used to electrically connect to the second tab of the electrode assembly 10 .
  • both the first electrode terminal 30 and the second electrode terminal 90 are mounted on the cover 22 .
  • a bus member connects electrode terminals of a plurality of battery cells to connect the plurality of battery cells in series, in parallel, or in parallel. Both the first electrode terminal 30 and the second electrode terminal 90 can be used to connect with the bus part.
  • the current-combining component When the battery is subjected to an external impact, the current-combining component will pull the cover 22 through the first electrode terminal 30 and the second electrode terminal 90 , so that the connection between the cover 22 and the cylinder 21 is subjected to force. If the cover body 22 and the cylinder body 21 are separate structures, for example, the cover body 22 and the cylinder body 21 are connected by welding, then the connection between the cover body 22 and the cylinder body 21 may fail under the action of force. In the embodiment of the present application, the cover body 22 and the cylinder body 21 are integrally arranged, thereby improving the strength of the joint between the cover body 22 and the cylinder body 21 and reducing the risk of failure of the connection between the cover body 22 and the cylinder body 21 .
  • the case 20 is not electrically connected to the positive pole of the electrode assembly, nor is it electrically connected to the negative pole of the electrode assembly. In other words, the housing 20 is not charged.
  • the first tab and the second tab of the electrode assembly 10 are located on the same side of the electrode assembly facing the cover 22 .
  • the first through hole 323 can be opened in the first electrode terminal 30 .
  • an electric device including the battery in any one of the above embodiments, and the battery is used to provide electric energy for the electric device.
  • the electrical device may be any of the aforementioned devices or systems using battery cells.
  • a cylindrical battery cell 7 including an electrode assembly 10 , a case 20 , an electrode terminal 30 , a current collecting member 40 and a cover plate 50 .
  • the casing 20 includes a cylinder body 21 and a cover body 22 which are integrally formed.
  • the cylinder body 21 is arranged around the outer periphery of the electrode assembly 10 , and the cover body 22 is provided with an electrode lead-out hole 221 .
  • the cylinder body 21 has an opening 211 at an end away from the cover body 22 , and the cover plate 50 covers the opening of the cylinder body 21 to close the opening of the cylinder body 21 .
  • the electrode assembly 10 is accommodated in the casing 20 and includes a main body 12 , a first tab 11 and a second tab 13 , and the first tab 11 and the second tab 13 protrude from the main body 12 .
  • the first tab 11 is located at one end of the electrode assembly 10 facing the electrode terminal 30
  • the second tab 13 is located at the end of the electrode assembly 10 facing away from the electrode terminal 30 .
  • the electrode terminal 30 includes a sealing plate 33 and a terminal body 34, the terminal body 34 is installed in the electrode lead-out hole 221, and the terminal body 34 includes a concave portion 31 and a connecting portion 32 located on the side of the concave portion 31 facing the electrode assembly 10, and the first through hole 323 penetrates
  • the connecting portion 32 and the first through hole 323 are used for injecting electrolyte solution into the inner space of the casing 20 .
  • At least part of the sealing plate 33 is accommodated in the concave portion 31 , and the sealing plate 33 is connected to the terminal body 34 and used to seal the first through hole 323 .
  • the current collecting member 40 is welded to the connecting portion 32 to form at least one first welding portion W1 , and welded to the first tab 11 to form at least one second welding portion W2 , thereby electrically connecting the connecting portion 32 and the first tab 11 .

Abstract

本申请实施例提供一种电池单体、电池以及用电装置。电池单体包括电极组件、壳体和电极端子。电极组件包括第一极耳。壳体用于容纳电极组件。电极端子设置于壳体,并与第一极耳电连接,电极端子设有第一通孔,第一通孔用于向壳体的内部空间注入电解液。通过在电极端子上开设用于注入电解液的第一通孔,可减小壳体在注液过程中的变形,简化电池单体的结构,降低第一通孔对壳体强度的影响。

Description

电池单体、电池以及用电装置
相关申请的交叉引用
本申请要求享有于2021年08月23日提交的名称为“电池单体及其制造方法和制造系统、电池以及用电装置”、国际申请号为PCT/CN2021/114156申请的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,如何简化电池单体的结构,是电池技术中的一个研究方向。
发明内容
本申请提供了一种电池单体、电池以及用电装置,其能简化电池单体的结构。
第一方面,本申请实施例提供了一种电池单体,包括电极组件、壳体和电极端子。电极组件包括第一极耳。壳体用于容纳电极组件。电极端子设置于壳体,并与第一极耳电连接,电极端子设有第一通孔,第一通孔用于向壳体的内部空间注入电解液。
在上述技术方案中,通过在电极端子上开设用于注入电解液的第一通孔,可减小壳体在注液过程中的变形,简化电池单体的结构,降低第一通孔对壳体强度的影响。
在一些实施例中,电极端子通过至少一个第一焊接部实现与第一极耳的电连接。
在上述技术方案中,第一焊接部可以减小电极端子和第一极耳之间的电阻,提高过流能力。
在一些实施例中,第一焊接部的数量为一个,第一焊接部沿第一通孔的周向延伸并包围第一通孔的至少部分。
在上述技术方案中,第一焊接部可以增大电极端子的位于第一通孔周围的区域的强度,减小电极端子在电解液的冲击下的变形。
在一些实施例中,第一焊接部沿第一通孔的周向仅包围第一通孔的一部分。
在上述技术方案中,第一通孔的外周未被第一焊接部封闭,电极端子与焊接于电极端子的部件之间的缝隙也就不会被第一焊接部堵住,经由第一通孔流入的部分电解液可以从该缝隙内穿过,从而提升电解液注入的效率。
在一些实施例中,第一焊接部包围第一通孔的角度为α,180°≤α≤360°。
α与第一焊接部的过流面积正相关。α越小,第一焊接部的过流面积越小,电流流经第一焊接部时的产热越高。上述技术方案将α限定在180°-360°,以使第一焊接部满足电池单体对过流能力和温升的要求。
在一些实施例中,第一焊接部为多个,多个第一焊接部沿第一通孔的周向间隔设置。
在总面积一定的前提下,与设置一个第一焊接部的方案相比,将第一焊接部设置为多个的方案,可以降低单次焊接的功率,减少产热。
在一些实施例中,任意相邻两个第一焊接部沿第一通孔的周向的间隔角度β小于30°。
角度β的值越大,多个第一焊接部分布的越稀疏,多个第一焊接部的总过流面积越小;角度β的值越小,多个第一焊接部分布的越密集,多个第一焊接部的总过流面积越大。本申请实施例将β限定为小于30°,以满足电池单体对过流能力和温升的要求,并降低第一焊接部在电池单体震动时撕裂的风险。
在一些实施例中,每个第一焊接部沿第一通孔的径向延伸。
在上述技术方案中,第一焊接部沿第一通孔的径向延伸,可以减小第一焊接部沿第一通孔的周向的尺寸,使电极端子可以在第一通孔的外周布置更多的第一焊接部,从而提升过流能力,减少产热。
在一些实施例中,在第一通孔的轴向上,第一焊接部的深度为h;在第一通孔的径向上,第一焊接部与第一通孔之间的最小间距为d。d和h满足:0.1≤h/d≤0.6。
h越大,焊接所需的功率越大,在焊接过程中的产热越高,作用在靠近第一通孔的区域的热应力越大,第一通孔变形的程度也越大。d越小,在焊接过程中传导至靠近第一通孔的区域的热量越多,作用在靠近第一通孔的区域的热应力越大,第一通孔变形的程度也越大。如果h/d过大,将会造成第一通孔变形严重,注液头较难与第一通孔配合,影响注液效率。上述技术方案将h/d的值限定为小于或等于0.6,以减小作用在靠近第一通孔的区域的热应力越大,降低第一通孔的变形,便于注液头与第一通孔配合。
h越小,第一焊接部的过流能力和强度越低,在电池单体震动时第一焊接部撕裂的风险也越高。d越大,电极端子的能够用于焊接的区域的面积也越小,第一焊接部的过流能力和强度越受限。如果h/d过小,将会造成第一焊接部的过流能力和强度不足。上述技术方案将h/d的值限定为大于或等于0.1,以使第一焊接部的过流能力和强度满足要求。
在一些实施例中,d和h满足:0.2≤h/d≤0.5。
在一些实施例中,1.6mm≤d≤5.5mm。
如果d过小,那么在焊接过程中传导至靠近第一通孔的区域的热量过多,作用 在靠近第一通孔的区域的热应力过大,第一通孔变形严重,注液头较难与第一通孔配合,影响注液效率。如果d过大,将会使电极端子的能够用于焊接的区域的面积偏小,第一焊接部的过流能力和强度不足。上述技术方案将d的值限制在1.6mm-5.5mm,以减小第一通孔的变形,便于注液头与第一通孔配合,并使第一焊接部的过流能力和强度满足要求。
在一些实施例中,电极组件为卷绕结构,电极组件在卷绕中心处具有第二通孔。第一通孔与第二通孔连通,以使经由第一通孔注入的电解液能够流入第二通孔。
在上述技术方案中,在注液工序中,电解液能够经过第一通孔流入第二通孔,流入第二通孔的电解液能够从内部浸润电极组件,提高电极组件的浸润效率。
在一些实施例中,在第一通孔的轴向上,第一通孔的投影与第二通孔的投影至少部分地重叠。
在上述技术方案中,第一通孔和第二通孔沿第一通孔的轴向相对,穿过第一通孔的部分电解液无需改变流向即可进入第二通孔,从而提高电极组件的浸润效率。
在一些实施例中,在第一通孔的轴向上,第二通孔的投影大于第一通孔的投影。
在上述技术方案中,相较于第一通孔,第二通孔具有较大的横截面积,这样可以使第二通孔能够容纳更多的电解液,有助于提升电解液从内部浸润电极组件的效率。
在一些实施例中,在第一通孔的轴向上,第一通孔的投影位于第二通孔的投影内。
上述技术方案可以使电极组件的实体部分避开第一通孔,减少直接冲击电极组件的电解液,降低电极组件变形的风险。
在一些实施例中,第一通孔的孔径为D 1,第二通孔的孔径为D 2,D 1和D 2满足:65%≤D 1/D 2≤95%。
D 1越大,电解液注入的效率越高,电解液注满的时间越短,电解液的在注液过程中能够浸润到电极组件中的量越少,电解液注入的总量也越少。D 2越小,第二通孔的孔壁的面积越小,电解液从电极组件内部浸润的效率越低。如果D 1/D 2过大,将会造成电解液的注入量偏少,影响电池单体的循环寿命。上述技术方案将D 1/D 2的值限定为小于或等于95%,以使电解液的注入量满足要求。
D 1越小,电解液注入的效率越低,电解液注满的时间越长;D 2越大,电解液从电极组件内部浸润的效率越高。如果D 1/D 2过小,会造成注液时间偏长,导致产品生产效率偏低。另外,D 2越大,电极组件的容量越小,电池单体的内部的空间利用率越低,电池单体的能量密度也越低。上述技术方案将D 1/D 2的值限定为大于或等于65%,以提升注液效率,降低因第二通孔造成的电池单体的能量密度的损失。
在一些实施例中,D 2≥D 1+0.2mm。
在装配电池单体时,因为装配误差,电极组件可能会发生偏移,造成第一通孔与电极组件的实体部分相对,这样会造成电极组件受到电解液的冲击。上述技术方案使D 2≥D 1+0.2mm,以为电极组件提供偏移的余量,降低电极组件的实体部分与第一通孔相对的风险,减少直接冲击电极组件的电解液,降低电极组件变形的风险。
在一些实施例中,电池单体还包括集流构件,用于电连接电极端子和第一极耳。 集流构件包括第三通孔,第三通孔的至少部分设于第一通孔和第二通孔之间。
在上述技术方案中,通过设置第三通孔,以使集流构件避让经由第一通孔流入的电解液,降低集流构件在注液工序中对电解液的阻挡,使电解液能够顺畅地穿过第三通孔并流入第二通孔内,提高电极组件的浸润效率。
在一些实施例中,在第一通孔的轴向上,第三通孔的投影小于第二通孔的投影。
在上述技术方案中,相较于第三通孔,第二通孔具有较大的横截面积,这样可以使穿过第三通孔的电解液能够快速地流入第二通孔,有助于提升电解液从内部浸润电极组件的效率。
在一些实施例中,在第一通孔的轴向上,第三通孔的投影大于第一通孔的投影。
在上述技术方案中,相较于第一通孔,第三通孔具有较大的横截面积,这样可以降低集流构件遮挡第一通孔的风险,使电解液能够顺畅地穿过第三通孔并进入第二通孔,提升电解液从内部浸润电极组件的效率。
在一些实施例中,在第一通孔的轴向上,第一通孔的投影位于第三通孔的投影内。
上述技术方案既可以降低集流构件遮挡第一通孔的风险,使电解液能够顺畅地流入壳体内,还能够减小集流构件受到的冲击,降低集流构件与电极端子的连接处开裂的风险。
在一些实施例中,在第一通孔的轴向上,第三通孔的投影位于第二通孔的投影内。
上述技术方案能够降低电极组件的实体部分对第三通孔的遮挡,使电解液能够顺畅地流入第二通孔内。
在一些实施例中,第一通孔、第二通孔以及第三通孔同轴设置。
在上述技术方案中,将三个通孔同轴设置,可以使电解液的流入更为顺畅,减少集流构件和电极组件受到的来自电解液的冲击。
在一些实施例中,电极端子包括密封板和端子主体,端子主体设有第一通孔,密封板连接于端子主体并用于密封第一通孔。
在上述技术方案中,在与第一通孔相关的工艺完成后,将密封板连接到端子主体,以降低电解液经由第一通孔泄露的风险,提高密封性能。
在一些实施例中,端子主体包括凹部和位于凹部面向电极组件一侧的连接部,第一通孔贯通连接部,连接部通过至少一个第一焊接部实现与第一极耳的电连接。密封板的至少部分容纳于凹部。
在上述技术方案中,通过在端子主体上开设凹部,可减小连接部的厚度,从而减小焊接所需的焊接功率,降低其它构件被烧伤的风险,提高安全性。凹部还能够为密封板提供容纳空间,从而减小密封板凸出端子主体的尺寸,降低电极端子占用的空间,提高电池单体的能量密度。
在一些实施例中,壳体包括筒体和连接于筒体的盖体,筒体环绕电极组件的外周设置,盖体设有电极引出孔,电极端子设置于电极引出孔。
在一些实施例中,盖体与筒体一体成型结构,以省去盖体和筒体的连接工序。 当盖体和筒体电连接到电极组件的正极或负极时,由于盖体和筒体的连接处为一体式结构,所以盖体和筒体连接处的电阻较小,从而提升过流能力。盖体可用于与外部构件(例如汇流部件)相连,在电池单体受到外部冲击时,外部构件可能会拉扯盖体,使盖体和筒体的连接处受到力的作用;上述技术方案将盖体和筒体一体设置,从而提高盖体和筒体连接处的强度,降低盖体和筒体连接失效的风险。
在一些实施例中,电极组件还包括第二极耳,第二极耳与第一极耳的极性相反,第二极耳电连接于盖体。
在上述技术方案中,盖体和电极端子中的一者可作为电池单体的正输出极,另一者可作为电池单体的负输出极。上述技术方案将正输出极和负输出极设置在电池单体的同一侧,这样可以简化多个电池单体之间的连接工艺。
在一些实施例中,第一极耳位于电极组件面向电极端子的一端,第二极耳位于电极组件背离电极端子的一端。
在上述技术方案中,将第一极耳和第二极耳分别设于电极组件相对的两端,可以增大第一极耳和第二极耳之间的间距,降低第一极耳和第二极耳导通的风险,提高安全性。
在一些实施例中,第二极耳为负极极耳,壳体的基体材质为钢。
在上述技术方案中,壳体与负极极耳电连接,即壳体处于低电位状态。钢制的壳体在低电位状态下不易被电解液腐蚀。
在一些实施例中,筒体在背离盖体的一端具有开口,电池单体还包括用于封闭开口的盖板。
第二方面,本申请实施例提供了一种电池,包括多个第一方面任一实施例的电池单体。
第三方面,本申请实施例提供了一种用电装置,包括第二方面的电池,电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为图2所示的电池模块的结构示意图;
图4为本申请一些实施例提供的电池单体的爆炸示意图;
图5为本申请一些实施例提供的电池单体的剖视示意图;
图6为图5所示的电池单体的局部放大示意图;
图7为图6在方框B处的放大示意图;
图8为本申请一些实施例提供的电池单体的电极端子的示意图;
图9为图7在圆框C处的放大示意图;
图10为本申请一些实施例提供的电池单体的电极端子的端子主体的示意图;
图11为本申请另一些实施例提供的电池单体的电极端子的端子主体的示意图;
图12为本申请又一些实施例提供的电池单体的电极端子的端子主体的示意图;
图13为本申请另一些实施例提供的电池单体的局部剖视示意图;
图14为本申请另一些实施例提供的电池单体的局部剖视示意图;
图15为本申请另一些实施例提供的电池单体的剖视示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中术语“平行”不仅包括绝对平行的情况,也包括了工程上常规认知的大致平行的情况;同时,“垂直”也不仅包括绝对垂直的情况,还包括工程上常规认知的大致垂直的情况。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体还包括用于容纳电极组件的壳体和设置于壳体的电极端子,电极端子用于电连接到电极组件,以实现电极组件的充放电。
在电池的生产过程中,需要向壳体的内部注入电解液。为了实现电解液的注入,发明人尝试在壳体上开设注液孔。当需要注液时,注液设备的注液头抵压在壳体上,然后注液头通过注液孔向壳体内注入电解液。
然而,发明人发现,在壳体上开设注液孔,会造成壳体的结构复杂;注液孔会占用壳体的空间,影响其它部件在壳体上的安装。相较于电极端子,壳体较薄,强度较低;在注液时,壳体可能会因为注液头的挤压而变形,从而引发电池单体外形产生缺陷的风险。
鉴于此,本申请实施例提供一种技术方案,通过在电极端子上开设用于注入电解液的通孔,可减小壳体在注液过程中的变形,简化电池单体的结构,降低第一通孔对壳体强度的影响。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机 和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部5a和第二箱体部5b,第一箱体部5a与第二箱体部5b相互盖合,第一箱体部5a和第二箱体部5b共同限定出用于容纳电池单体的容纳空间5c。第二箱体部5b可以是一端开口的空心结构,第一箱体部5a为板状结构,第一箱体部5a盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5;第一箱体部5a和第二箱体部5b也均可以是一侧开口的空心结构,第一箱体部5a的开口侧盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5。当然,第一箱体部5a和第二箱体部5b可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部5a与第二箱体部5b连接后的密封性,第一箱体部5a与第二箱体部5b之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部5a盖合于第二箱体部5b的顶部,第一箱体部5a亦可称之为上箱盖,第二箱体部5b亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为图2所示的电池模块的结构示意图。
在一些实施例中,如图3所示,电池单体7为多个,多个电池单体7先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件8实现电连接,以实现电池模块6中的多个电池单体7的并联或串联或混联。汇流部件可为一个或多个,各汇流 部件8用于将至少两个电池单体电连接。
图4为本申请一些实施例提供的电池单体的爆炸示意图;图5为本申请一些实施例提供的电池单体的剖视示意图;图6为图5所示的电池单体的局部放大示意图;图7为图6在方框B处的放大示意图。
如图4至图7所示,本申请实施例的电池单体7包括电极组件10、壳体20和电极端子30。电极组件10包括第一极耳11。壳体20用于容纳电极组件10。电极端子30设置于壳体20,并与第一极耳11电连接,电极端子30设有第一通孔323,第一通孔323用于向壳体20的内部空间注入电解液。
电极组件10包括极性相反的第一极片和第二极片。第一极片和第二极片中的一者为正极极片,另一者为负极极片。示例性地,电极组件10通过离子在正极极片和负极极片中的嵌入/脱出时的氧化和还原反应来产生电能。可选地,电极组件10还包括隔离件,隔离件用于将第一极片和第二极片绝缘隔离。
在一些示例中,第一极片、第二极片和隔离件均为带状结构,第一极片、第二极片和隔离件绕中心轴线A卷绕为一体并形成卷绕结构。卷绕结构可以为圆柱状结构、扁平状结构或其它形状的结构。在另一些示例中,电极组件10也可以是由第一极片、隔离件和第二极片通过层叠布置形成的叠片式结构。
第一极耳11可为第一极片的未涂覆活性物质层的部分。第一极耳11可以为正极极耳,也可以是负极极耳。
壳体20为空心结构,其内部形成用于容纳电极组件10的空间。壳体20可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。壳体20的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。可选地,电极组件10和壳体20均为圆柱体。
壳体20的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金等,本申请实施例对此不作特殊限制。
壳体20可以带正电、可以带负电、也可以不带电。
电极端子30可以绝缘地设置于壳体20,也可以电连接于壳体20,本申请实施例对此不作限制,只要避免正极极片和负极极片导通即可。
电极端子30可以直接连接于第一极耳11,以实现电极端子30与第一极耳11的电连接。示例性地,电极端子30可通过粘接、抵接、卡接、焊接或其它方式连接于第一极耳11。
可替代地,电极端子30也可通过其它导电构件间接地连接于第一极耳11,以实现电极端子30与第一极耳11的电连接。示例性地,导电构件可同时连接于第一极耳11和电极端子30,以实现电极端子30与第一极耳11的电连接。
电极端子30可作为电池单体7的输出电极,其可将电池单体7与外电路电连接,以实现电池单体7的充放电。可选地,电极端子30用于与汇流部件连接,以实现电池单体7之间的电连接。
第一通孔323可以为一个,也可以为多个。
在电池单体7的成型过程中,第一通孔323可将壳体20外侧的空间与壳体20的内部空间连通。当需要注液时,注液设备的注液头抵压在电极端子30上,然后注液头通过第一通孔323向壳体20内注入电解液。
通过在电极端子30上开设用于注入电解液的第一通孔323,可减小壳体20在注液过程中的变形,简化电池单体7的结构,降低第一通孔323对壳体20强度的影响。
在一些实施例中,第一通孔323还可应用于其它工序,例如化成工序。
在电池单体7的化成工序中,壳体20内会产生气体,第一通孔323也可用于与外部负压设备连通,以抽出壳体20内的气体。
在一些实施例中,电极组件10包括主体部12、第一极耳11和第二极耳13,第一极耳11和第二极耳13凸出于主体部12。第一极耳11为第一极片的未涂覆活性物质层的部分,第二极耳13为第二极片的未涂覆活性物质层的部分。
第一极耳11和第二极耳13可以从主体部12的同一侧伸出,也可以分别从相反的两侧延伸出。示例性地,第一极耳11位于电极组件10的面向电极端子30的一端,第二极耳13位于电极组件10背离电极端子30的一端。
在一些实施例中,第一极耳11环绕电极组件10的中心轴线A卷绕为多圈,换言之,第一极耳11包括多圈极耳层。在卷绕完成后,第一极耳11大体为柱体状,相邻的两圈极耳层之间留有缝隙。本申请实施例可以对第一极耳11进行处理,以减小极耳层间的缝隙,便于第一极耳11与其它部件连接。例如,本申请实施例可对第一极耳11进行揉平处理,以使第一极耳11的远离主体部12的端部区域收拢、集合在一起;揉平处理在第一极耳11远离主体部12的一端形成致密的端面,减小极耳层间的缝隙,便于第一极耳11与其它部件连接。可替代地,本申请实施例也可以在相邻的两圈极耳层之间填充导电材料,以减小极耳层间的缝隙。
在一些实施例中,第二极耳13环绕电极组件10的中心轴线A卷绕为多圈,第二极耳13包括多圈极耳层。示例性地,且第二极耳13也经过了揉平处理,以减小第二极耳13的极耳层间的缝隙。
电极组件10的中心轴线A是一条虚拟的直线。第一极片、第二极片和隔离件可以中心轴线A为基准进行卷绕。
在一些实施例中,壳体20包括筒体21和连接于筒体21的盖体22,筒体21环绕电极组件10的外周设置,盖体22设有电极引出孔221,电极端子30设置于电极引出孔221。
盖体22和筒体21可为一体形成结构,即壳体20为一体成形的构件。当然,盖体22和筒体21也可以为分开提供的两个构件,然后通过焊接、铆接、粘接等方式连接在一起。
电极引出孔221贯通盖体22,以便于电极组件10中的电能引出到壳体20的外部。
中心轴线A是一条虚拟的直线。在一些实施例中,中心轴线A可经过电极引出孔221。电极组件10的中心轴线A与电极引出孔221的轴线可以重合,也可以不重合。在另一些实施例中,中心轴线A也可不经过电极引出孔221。
电极端子30用于与电极引出孔221配合,以覆盖电极引出孔221。电极端子30可以伸入电极引出孔221,也可以不伸入电极引出孔221。电极端子30固定于盖体22。电极端子30可以整体固定在盖体22的外侧,也可以通过电极引出孔221伸入到壳体20的内部。
在一些实施例中,筒体21为圆筒,盖体22为圆形板状结构。在另一些实施例中,筒体21可为方筒,盖体22可为方形板状结构。
在一些实施例中,盖体22与筒体21一体成型结构。这样可以省去盖体22和筒体21的连接工序。
当盖体22和筒体21电连接到电极组件10的正极或负极时,由于盖体22和筒体21的连接处为一体式结构,所以盖体22和筒体21连接处的电阻较小,从而提升过流能力。盖体22可用于与外部构件(例如汇流部件)相连,在电池单体受到外部冲击时,外部构件可能会拉扯盖体22,使盖体22和筒体21的连接处受到力的作用;上述技术方案将盖体22和筒体21一体设置,从而提高盖体22和筒体21连接处的强度,降低盖体22和筒体21连接失效的风险。
在一些实施例中,壳体20可通过拉伸工艺成型。
在一些实施例中,筒体21在背离盖体22的一端具有开口211,电池单体7还包括用于封闭开口211的盖板50。
盖板50盖合于筒体21的开口处,以封闭筒体21的开口。盖板50可以是多种结构,比如,盖板50为板状结构。
在一些实施例中,盖板50可以为圆形盖板、长方形盖板、正方形盖板、六边形盖板或其它形状的盖板。
在一些实施例中,盖板50焊接于筒体21。
在一些实施例中,盖体22为圆形,电极组件10为圆柱形;中心轴线A与电极引出孔221的轴线重合。本实施例不要求中心轴线A与电极引出孔221的轴线完全重合,两者之间可以存着工艺允许的偏差。
在本实施例中,电极引出孔221大体开设在盖体22的中部,对应地,电极端子30也安装在盖体22的中部。在多个电池单体7装配成组时,可以降低对电极端子30的定位精度的要求,简化装配工艺。
示例性地,电极引出孔221的轴线与盖体22的轴线重合,盖体22为环绕电极引出孔221的轴线设置的环状结构。
示例性地,电极端子30的轴线与电极引出孔221的轴线重合。
在另一些实施例中,盖体22也可为长方形,电极组件10呈扁平状。电极引出孔221可靠近盖体22沿自身的长度方向的端部设置。
在一些实施例中,第一通孔323的轴线与电极引出孔221的轴线重合。
在一些实施例中,电极组件10还包括第二极耳13,第二极耳13与第一极耳11的极性相反,第二极耳13电连接于盖体22。
盖体22本身可以作为电池单体7的一个的输出电极,从而省去一个传统的电极端子30,简化电池单体7的结构。在多个电池单体7装配成组时,盖体22可以与汇流 部件电连接,这样既可以增大过流面积,还可以使汇流部件的结构设计更为灵活。
在一些实施例中,筒体21用于连接第二极耳13和盖体22,以使第二极耳13和盖体22电连接。
筒体21可以直接电连接第二极耳13,也可以通过其它构件电连接第二极耳13。例如,第二极耳13通过盖板50电连接到筒体21。
盖体22和电极端子30具有不同的极性。此时,盖体22和电极端子30中的一者可作为电池单体7的正输出极,另一者可作为电池单体7的负输出极。本实施例将正输出极和负输出极设置在电池单体7的同一侧,这样可以简化多个电池单体7之间的连接工艺。
盖体22可用于汇流部件电连接。发明人曾尝试在盖体上开设第一通孔,但是第一通孔会减小盖体与汇流部件的连接面积,降低盖体与汇流部件之间的过流面积,难以满足电池单体在快充时对过流能力和温升的要求。因此,发明人将用于注液的第一通孔323开设在电极端子30上,以提升盖体22与汇流部件之间的连接面积。
在一些实施例中,第一极耳11位于电极组件10面向电极端子30的一端,第二极耳13位于电极组件10背离电极端子30的一端。
将第一极耳11和第二极耳13分别设于电极组件10相对的两端,可以增大第一极耳11和第二极耳13之间的间距,降低第一极耳11和第二极耳13导通的风险,提高安全性。
在一些实施例中,第二极耳13为负极极耳,壳体20的基体材质为钢。基体材质是壳体20的材质组成中的主要成分。
壳体20与负极极耳电连接,即壳体20处于低电位状态。钢制的壳体20在低电位状态下不易被电解液腐蚀。
本申请实施例的电极引出孔221是在壳体20拉伸成型后制成。
发明人曾尝试辊压筒体的开口端,以使筒体的开口端向内翻折并形成翻边结构,翻边结构压住盖板以实现盖板的固定。发明人将电极端子安装到盖板上,并以翻边结构和电极端子作为电池单体的两个输出极。然而,翻边结构的尺寸越大,其在成型后出现卷曲和褶皱的风险越高;如果翻边结构出现卷曲和褶皱,那么会造成翻边结构的表面不平整,当翻边结构与外部的汇流部件焊接时,会存在焊接不良的问题。因此,翻边结构的尺寸比较受限,造成电池单体的过流能力不足。
本实施例利用开孔的工艺在盖体22上形成用于安装电极端子30的电极引出孔221,以将正输出极和负输出极设置在电池单体7的背离筒体21开口的一端;盖体22是在壳体20的成型过程中形成,开设电极引出孔221后也能够保证平整性,保证盖体22和汇流部件的连接强度。同时,盖体22的平整性不受自身尺寸的约束,所以盖体22可以具有较大的尺寸,从而提高电池单体7的过流能力。
在一些实施例中,电极端子30通过至少一个第一焊接部W1实现与第一极耳11的电连接。
电极端子30与其它部件焊接以形成第一焊接部W1。电流通过第一焊接部W1在电极端子30和第一极耳11之间传导。
在一些示例中,电极端子30可以直接焊接于第一极耳11,以形成第一焊接部W1。例如,电极端子30的一部分和第一极耳11的一部分熔化并形成熔池,熔池凝固后形成第一焊接部W1。
在另一些可替代地示例中,电极端子30焊接于与第一极耳11相连的其它部件(例如后述的集流构件),以形成第一焊接部W1。例如,电极端子30的一部分和集流构件的一部分熔化并形成熔池,熔池凝固后形成第一焊接部W1。
本申请实施例对第一焊接部W1的形状、位置、深度以及数量不作特殊限制。例如,第一焊接部W1的形状可以是直线形、形、环形、螺旋形、V形或其它形状。第一焊接部W1可以为一个,也可以为多个。
第一焊接部W1可以减小电极端子30和第一极耳11之间的电阻,提高过流能力。
图8为本申请一些实施例提供的电池单体的电极端子的示意图;图9为图7在圆框C处的放大示意图;图10为本申请一些实施例提供的电池单体的电极端子的端子主体的示意图。
请一并参照图6至图10,在一些实施例中,电极端子30包括密封板33和端子主体34,端子主体34设有第一通孔323,密封板33连接于端子主体34并用于密封第一通孔323。
在与第一通孔323相关的工艺完成后,将密封板33连接到端子主体34,以降低电解液经由第一通孔323泄露的风险,提高密封性能。
在一些实施例中,端子主体34包括凹部31和位于凹部31面向电极组件10一侧的连接部32,第一通孔323贯通连接部32,连接部32通过至少一个第一焊接部W1实现与第一极耳11的电连接。密封板33的至少部分容纳于凹部31。
凹部31可以从端子主体34背离电极组件10的一侧沿面向电极组件10的方向凹陷。连接部32为端子主体34的与凹部31的底面相对应的部分。
密封板33可以整体容纳于凹部31内,也可以部分地容纳于凹部31内,只要密封板33能够密封第一通孔323即可。
连接部32与其它部件焊接以形成第一焊接部W1。示例性地,焊接设备可在连接部32的面向凹部31的表面照射激光,激光将连接部32的一部分和位于连接部32内侧的部件的一部分熔化并形成熔池,熔池凝固后形成第一焊接部W1。
在本申请实施例中,通过在端子主体34上开设凹部31,可减小连接部32的厚度,从而减小焊接所需的焊接功率,降低其它构件被烧伤的风险,提高安全性。凹部31还能够为密封板33提供容纳空间,从而减小密封板33凸出端子主体34的尺寸,降低电极端子30占用的空间,提高电池单体7的能量密度。
密封板33可以从外侧保护连接部32,减少进入凹部31的外部杂质,降低连接部32被外部杂质损伤的风险,提高电池单体7的密封性能。
在一些实施例中,连接部32的厚度为0.5mm-10mm。
在一些实施例中,密封板33与连接部32之间设有间隙,间隙用于避让第一焊接部W1。
第一焊接部W1的表面凹凸不平,如果密封板33抵压在第一焊接部W1上,将会导致密封板33在装配过程中晃动,影响密封效果。本实施例通过在密封板33与连接部32之间设置间隙,以将密封板33与第一焊接部W1避开,避免密封板33与第一焊接部W1直接接触,减小密封板33在装配过程中的晃动,保证密封效果。
在一些实施例中,凹部31的侧壁上设置有台阶面311,密封板33至少一部分容纳于凹部31,并且台阶面311用于支撑密封板33。
凹部31是外大内小的台阶式凹部。
在装配密封板33时,台阶面311可以支撑密封板33并对密封板33进行定位,从而简化装配工艺,并在密封板33与连接部32之间形成间隙。
在一些实施例中,密封板33焊接于凹部31的侧壁,以封闭凹部31的开口和第一通孔323。
在一些实施例中,连接部32上设有从连接部32的第一外表面322沿面向电极组件10的方向凹陷的凹槽324。
连接部32具有沿自身厚度方向相对设置的第一外表面322和第一内表面321,第一内表面321面向电极组件10,第一外表面322背向电极组件10。可选地,第一外表面322和第一内表面321均为平面。凹槽324相对于第一外表面322沿面向电极组件10的方向凹陷。
凹槽324的底壁和第一内表面321之间的部分用于与其它部件焊接并形成第一焊接部W1。
本实施例通过在连接部32上开设凹槽324,以在连接部32上形成台阶结构。第一外表面322和凹槽324的底壁之间形成间隙。
在电池单体7的生产过程中,外部设备需要与连接部32配合。第一焊接部W1的表面凹凸不平,如果外部设备压合在第一焊接部W1上,外部设备容易被第一焊接部W1压伤。本实施例通过设置凹槽324,以在第一外表面322和凹槽324的底壁之间形成间隙,这样,第一外表面322可用于支撑外部设备,以将外部设备与第一焊接部W1隔开,降低外部设备被压伤的风险。
示例性地,外部设备可为注液设备、抽气设备、焊接设备或其它用于电池单体7的设备。
例如,在注液时,注液头抵压在第一外表面322上,第一外表面322可以支撑注液头,并与注液头配合实现密封,降低电解液泄漏到电池单体7外部的风险。
在一些实施例中,端子主体34具有相对设置的第二外表面344和第二内表面345。第二内表面345面向电极组件10,第二外表面344背离电极组件10。凹部31从第二外表面344沿面向电极组件10的方向凹陷至连接部32的第一外表面322。
在一些实施例中,密封板33可用于与电池的汇流部件焊接。在电池中,汇流部件可连接一个电池单体7的密封板33和另一个电池单体7的盖体22,以将这两个电池单体7串联。
在一些实施例中,密封板33的至少部分凸出于端子主体34的第二外表面344。
当需要焊接汇流部件和密封板33时,先将汇流部件贴合到密封板33的上表面 (即密封板33的背离连接部32的外表面),然后再焊接汇流部件和密封板33。
密封板33的至少部分凸出于第二外表面344,以避免第二外表面344干涉密封板33和汇流部件的贴合,保证汇流部件和密封板33紧密贴合。
在一些实施例中,连接部32设于端子主体34面向电极组件10的一端,连接部32的第一内表面321与第二内表面345齐平设置。
第二内表面345为端子主体34的面向电极组件10的表面。连接部32的第一内表面321构成第二内表面345的一部分。这样,端子主体34可以与具有平板结构的集流构件配合。本实施例只要将集流构件贴合于第二内表面345,即可实现连接部32与集流构件贴合,以便于实现连接部32和集流构件的焊接。
在一些实施例中,端子主体34包括柱状部341、第一限位部342和第二限位部343,柱状部341至少一部分位于电极引出孔221内,凹部31设于柱状部341,第一限位部342和第二限位部343均连接并凸出于柱状部341的外侧壁,第一限位部342和第二限位部343分别设于盖体22的外侧和内侧,并用于夹持盖体22的一部分。
第一限位部342设于盖体22的外侧,指的是第一限位部342设于盖体22背离电极组件10的一侧;第二限位部343设于盖体22的内侧,指的是第二限位部343设于盖体22面向电极组件10的一侧。
在盖体22的厚度方向上,第一限位部342的至少部分与盖体22重叠,第二限位部343的至少部分与盖体22重叠。柱状部341从电极引出孔221穿过,以连接分别位于盖体22两侧的第一限位部342和第二限位部343。
第一限位部342和第二限位部343从两侧夹持盖体22的一部分,以将端子主体34固定到盖体22上。第一限位部342和第二限位部343可以直接夹持盖体22,也可以通过其它构件间接地夹持盖体22。
可选地,柱状部341为圆柱状。第一限位部342和第二限位部343均为环绕柱状部341的环形结构。
在一些实施例中,电池单体7还包括第一绝缘构件60和第二绝缘构件70,第一绝缘构件60的至少部分设于第一限位部342与盖体22之间,第二绝缘构件70的至少部分设于第二限位部343与盖体22之间。第一绝缘构件60和第二绝缘构件70用于将端子主体34与盖体22绝缘隔离。
第一绝缘构件60和第二绝缘构件70均为环绕柱状部341设置的环形结构。
第一绝缘构件60能够将第一限位部342与盖体22绝缘隔离,第二绝缘构件70能够将第二限位部343与盖体22绝缘隔离。
在一些实施例中,第一绝缘构件60和第二绝缘构件70中的一者将柱状部341和盖体22隔开。例如,第一绝缘构件60的一部分延伸到电极引出孔221内,以将电极引出孔221的孔壁和柱状部341隔开。
在一些实施例中,第一绝缘构件60和第二绝缘构件70为一体形成结构。可替代地,在另一些实施例中,第一绝缘构件60和第二绝缘构件70分开提供并相互抵接。
在一些实施例中,第一绝缘构件60和第二绝缘构件70中的一者用于密封电极引出孔221。在一些示例中,第一限位部342和盖体22挤压第一绝缘构件60,第一绝 缘构件60压缩并从外侧密封电极引出孔221。在另一些示例中,第二限位部343和盖体22挤压第二绝缘构件70,第二绝缘构件70压缩并从内侧密封电极引出孔221。
在一些实施例中,电池单体7还包括密封圈80,密封圈80套设在柱状部341上并用于密封电极引出孔221。可选地,密封圈80的一部分延伸到电极引出孔221内,以将电极引出孔221的孔壁和柱状部341隔开。
在一些实施例中,第一限位部342的外周设有多个凸起结构342a,多个凸起结构342a沿柱状部341的周向间隔设置。
可选地,多个凸起结构342a可以沿柱状部341的周向等间隔设置。
第一限位部342为端子主体34的背离电极组件10的端部向外翻折形成的翻边结构。
在将端子主体34装配到壳体20之前,端子主体34的第一限位部342大体为圆筒结构且位于柱状部341的上端,第一限位部342的外侧壁与柱状部341的外侧壁齐平。装配端子主体34和壳体20时,将第一限位部342穿过电极引出孔221后,再通过挤压第一限位部342,以使第一限位部342向外翻折,并将端子主体34铆接到盖体22上。
在翻折第一限位部342之前,第一限位部342上端开设有多个间隔设置的凹槽结构342b;翻折第一限位部342后,形成多个沿柱状部341的周向间隔设置的凸起结构342a,相邻的凸起结构342a之间即为凹槽结构342b。本实施例通过设置凹槽结构342b和凸起结构342a,以降低第一限位部342的翻折难度,减小第一限位部342上的应力集中。
在一些实施例中,第二限位部343为通过挤压端子主体34的面向电极组件10的端部以使端子主体34的面向电极组件10的端部向外延伸所形成的限位结构。在装配盖体22和端子主体34时,外部设备可以挤压端子主体34的面向电极组件10的端部,端子主体34的面向电极组件10的端部在压力的作用下向外延伸,以形成凸出的第二限位部343。
在一些实施例中,电池单体7还包括集流构件40,集流构件40用于电连接电极端子30和第一极耳11。
集流构件40将第一极耳11电连接于电极端子30。本申请实施例不限制第一极耳11和集流构件40的连接方式,例如,集流构件40可以通过焊接、抵接或粘接等方式连接于第一极耳11。
集流构件40和电极端子30焊接并形成至少一个第一焊接部W1。
示例性地,集流构件40和连接部32焊接并形成至少一个第一焊接部W1。在焊接连接部32和集流构件40时,第一通孔323可以起到释放焊接应力的作用,降低连接部32破裂的风险。
在一些实施例中,在连接部32的厚度方向上,第一焊接部W1从连接部32背离集流构件40的一侧至少延伸至集流构件40的内部。
在焊接时,示例性地,当电极组件10和集流构件40安装至壳体20内,且集流构件40抵压于连接部32之后,外部焊接设备能够从连接部32的背离集流构件40的一 侧将连接部32和集流构件40焊接并形成第一焊接部W1。第一焊接部W1露出于连接部32的背离集流构件40的表面。
第一焊接部W1可以贯穿集流构件40,例如,第一焊接部W1贯穿集流构件40和连接部32,且第一焊接部W1露出于集流构件40背离连接部32的表面。当然,第一焊接部W1也可以不贯穿集流构件40,即第一焊接部W1不露出于集流构件40背离连接部32的表面。
第一焊接部W1从连接部32延伸至集流构件40的内部,以连接集流构件40和连接部32,减小集流构件40与电极端子30之间的接触电阻,提高过流能力。
在一些实施例中,在连接部32的厚度方向上,第一焊接部W1不超出集流构件40背离连接部32的表面。
第一焊接部W1与集流构件40的背离连接部32的表面间隔预定的距离,以避免集流构件40被熔穿,降低集流构件40的背离连接部32的表面产生金属颗粒的风险,提高安全性。
在一些实施例中,集流构件40焊接于第一极耳11并形成第二焊接部W2。
在装配电池单体7时,可先将电极组件10的第一极耳11焊接于集流构件40,再将电极组件10和集流构件40放入壳体20内。具体地,焊接第一极耳11和集流构件40时,可先将集流构件40抵压于第一极耳11揉平后的端面,然后外部焊接设备在集流构件40背离第一极耳11的表面发射激光,激光将集流构件40和第一极耳11焊接。
第二焊接部W2的形状可以是直线形、C形、环形、螺旋形、V形或其它形状,本实施例对此不作限制。第二焊接部W2的可以为一个,也可以为多个。
第二焊接部W2可以减小集流构件40和第一极耳11之间的接触电阻,提高过流能力。
在一些实施例中,集流构件40在面向第一极耳11的一侧具有凸部41,凸部41焊接于第一极耳11以形成第二焊接部W2。
在装配集流构件40和电极组件10时,先将集流构件40的凸部41抵压在第一极耳11上,然后再焊接凸部41和第一极耳11。凸部41可以更好地与第一极耳11贴合,降低焊接不良的风险。
在一些实施例中,凸部41可以挤压第一极耳11并嵌入到第一极耳11。
在一些实施例中,除凸部41外,集流构件40的其它部分大体为平板结构。
在一些实施例中,集流构件40在与凸部41相对应的位置形成凹陷结构44,凹陷结构44相对于集流构件40背离第一极耳11的表面沿面向第一极耳11的方向凹陷。凹陷结构44的底面与凸部41的顶面之间形成转接部,转接部焊接于第一极耳11以形成第二焊接部W2。通过设置凹陷结构44可以减小转接部的厚度,以减小转接部与第一极耳11焊接所需的焊接功率,减少产热,降低电极组件10被烧伤的风险。
第二焊接部W2通过焊接而成,其表面凹凸不平。本实施例通过设置凹陷结构44,能够将第二焊接部W2的表面相对于集流构件40背离第一极耳11的表面凹陷,以将第二焊接部W2与其它构件(例如电极端子30)避开。
在一些实施例中,第一焊接部W1的数量为一个,第一焊接部W1沿第一通孔323 的周向Y延伸并包围第一通孔323的至少部分。
第一焊接部W1可以为环形结构或半环结构。第一焊接部W1沿周向Y延伸的尺寸可根据电池单体7对过流能力的要求确定,本实施例对此不作特别的限制。
第一焊接部W1可以增大电极端子30的位于第一通孔323周围的区域的强度,减小电极端子30在电解液的冲击下的变形。
在一些实施例中,第一焊接部W1沿第一通孔323的周向Y仅包围第一通孔323的一部分。
第一通孔323的一部分被第一焊接部W1沿第一通孔323的周向Y包围,第一通孔323的另一部分被第一焊接部W1沿第一通孔323的周向Y包围。
第一通孔323的外周未被第一焊接部W1封闭,电极端子30与焊接于电极端子30的部件(例如集流构件40)之间的缝隙也就不会被第一焊接部W1堵住,经由第一通孔323流入的部分电解液可以从该缝隙内穿过,从而提升电解液注入的效率。
在一些实施例中,第一焊接部W1包围第一通孔323的角度为α,180°≤α≤360°。
可选地,α可为180°、225°、270°、315°或360°。
α与第一焊接部W1的过流面积正相关。α越小,第一焊接部W1的过流面积越小,电流流经第一焊接部W1时的产热越高。本申请实施例使α满足:180°≤α≤360°,以使第一焊接部W1满足电池单体7对过流能力和温升的要求。
图11为本申请另一些实施例提供的电池单体的电极端子的端子主体的示意图。
如图11所示,在一些实施例中,第一焊接部W1环绕第一通孔323一周,即α为360°。
本申请实施例可增大第一焊接部W1的过流面积,使第一焊接部W1满足电池单体7对过流能力和温升的要求,并提升第一焊接部W1的强度,降低第一焊接部W1在电池单体7震动时撕裂的风险。
图12为本申请又一些实施例提供的电池单体的电极端子的端子主体的示意图。
请一并参照图6至图9、图12,在一些实施例中,第一焊接部W1为多个,多个第一焊接部W1沿第一通孔323的周向Y间隔设置。
第一焊接部W1可以沿第一通孔323的周向Y延伸,也可以沿第一通孔323的径向延伸。
本实施例对相邻的两个第一焊接部W1在第一通孔323的周向Y上间隔的角度不作特别限制。多个第一焊接部W1可以沿第一通孔323的周向Y以等间隔的方式布置,也可以不等间隔的方式设置。
在总面积一定的前提下,与设置一个第一焊接部W1的方案相比,将第一焊接部W1设置为多个的方案,可以降低单次焊接的功率,减少产热。
在一些实施例中,任意相邻两个第一焊接部W1沿第一通孔323的周向Y的间隔角度β小于30°。
角度β的值越大,多个第一焊接部W1分布的越稀疏,多个第一焊接部W1的总过流面积越小;角度β的值越小,多个第一焊接部W1分布的越密集,多个第一焊接部 W1的总过流面积越大。本申请实施例将β限定为小于30°,以满足电池单体7对过流能力和温升的要求,并降低第一焊接部W1在电池单体7震动时撕裂的风险。
在一些实施例中,每个第一焊接部W1沿第一通孔323的径向延伸。
第一焊接部W1沿第一通孔323的径向延伸指的是:第一焊接部W1沿第一通孔323的径向的尺寸大于第一焊接部W1沿第一通孔323的周向Y的尺寸。
第一焊接部W1沿第一通孔323的径向延伸,可以减小第一焊接部W1沿第一通孔323的周向Y的尺寸,使电极端子30可以在第一通孔323的外周布置更多的第一焊接部W1,从而提升过流能力,减少产热。
在一些实施例中,在第一通孔323的轴向X上,第一焊接部W1的深度为h;在第一通孔323的径向上,第一焊接部W1与第一通孔323之间的最小间距为d。d和h满足:0.1≤h/d≤0.6。
因工艺误差的原因,第一焊接部W1的不同区域在第一通孔323的轴向X上可能具有不同的熔深。h可为第一焊接部W1熔深最小的区域沿第一通孔323的轴向X的尺寸。
h越大,焊接所需的功率越大,在焊接过程中的产热越高,作用在靠近第一通孔323的区域的热应力越大,第一通孔323变形的程度也越大。d越小,在焊接过程中传导至靠近第一通孔323的区域的热量越多,作用在靠近第一通孔323的区域的热应力越大,第一通孔323变形的程度也越大。如果h/d过大,将会造成第一通孔323变形严重,注液头较难与第一通孔323配合,影响注液效率。发明人在经过深入的研究和大量的实验之后发现,将h/d的值限定为小于或等于0.6,可以减小作用在靠近第一通孔323的区域的热应力越大,降低第一通孔323的变形,便于注液头与第一通孔323配合。
h越小,第一焊接部W1的过流能力和强度越低,在电池单体7震动时第一焊接部W1撕裂的风险也越高。d越大,电极端子30的能够用于焊接的区域的面积也越小,第一焊接部W1的过流能力和强度越受限。如果h/d过小,将会造成第一焊接部W1的过流能力和强度不足。发明人在经过深入的研究和大量的实验之后发现,,将h/d的值限定为大于或等于0.1,以使第一焊接部W1的过流能力和强度满足要求。
可选地,h/d的值可为0.1、0.2、0.3、0.4、0.5或0.6。
在一些实施例中,d和h满足:0.2≤h/d≤0.5。发明人在经过深入的研究和大量的实验之后发现,当0.2≤h/d≤0.5时,可有效地降低第一通孔323的变形,使第一焊接部W1的过流能力和强度满足要求。
在一些实施例中,1.6mm≤d≤5.5mm。
如果d过小,那么在焊接过程中传导至靠近第一通孔323的区域的热量过多,作用在靠近第一通孔323的区域的热应力过大,第一通孔323变形严重,注液头较难与第一通孔323配合,影响注液效率。如果d过大,将会使电极端子30的能够用于焊接的区域的面积偏小,第一焊接部W1的过流能力和强度不足。
发明人在经过深入的研究和大量的实验之后发现,将d的值限制在1.6mm-5.5mm,可以减小第一通孔323的变形,便于注液头与第一通孔323配合,并使第一焊接部W1的过流能力和强度满足要求。
可选地,d为1.6mm、2mm、3mm、4mm、5mm或5.5mm。
在一些实施例中,h为0.8mm-1.0mm。
在一些实施例中,电极组件10为卷绕结构,电极组件10在卷绕中心处具有第二通孔14。第一通孔323与第二通孔14连通,以使经由第一通孔323注入的电解液能够流入第二通孔14。
示例性地,电极组件10通过将第一极片、第二极片和隔离件卷绕在卷绕工具上制成,卷绕成型后,再将卷绕工具从电极组件10中抽出。抽出卷绕工具后,电极组件10的中部形成第二通孔14。第二通孔14贯通第一极耳11、主体部12和第二极耳13。
在第一通孔323的轴向X上,第一通孔323和第二通孔14可以存在重叠,也可以不重叠。
本申请实施例对第一通孔323的孔径与第二通孔14的孔径之间的大小关系不作特别限定。
在注液工序中,电解液能够经过第一通孔323流入第二通孔14,流入第二通孔14的电解液能够从内部浸润电极组件10,提高电极组件10的浸润效率。
在一些实施例中,第一通孔323的轴向X平行于第二通孔14的轴向。
在一些实施例中,在第一通孔323的轴向X上,第一通孔323的投影与第二通孔14的投影至少部分地重叠。
第一通孔323和第二通孔14沿第一通孔323的轴向X相对,穿过第一通孔323的部分电解液无需改变流向即可进入第二通孔14,从而提高电极组件10的浸润效率。
可选地,当第一通孔323为变径孔时,第一通孔323沿自身轴向X的投影指的是:第一通孔323内端的开口沿自身轴向X的投影。当第二通孔14为变径孔时,第二通孔14沿第一通孔323的轴向X的投影指的是:第二通孔14靠近第一通孔323的一端的开口沿第一通孔323的轴向X的投影。
在一些实施例中,在第一通孔323的轴向X上,第二通孔14的投影大于第一通孔323的投影。
第一通孔323沿自身轴向X的投影的面积为S1,第二通孔14沿第一通孔323的轴向X投影的面积为S2,S2大于S1。
相较于第一通孔323,第二通孔14具有较大的横截面积,这样可以使第二通孔14能够容纳更多的电解液,有助于提升电解液从内部浸润电极组件10的效率。
在一些实施例中,在第一通孔323的轴向X上,第一通孔323的投影位于第二通孔14的投影内。
本实施例可以使电极组件10的实体部分避开第一通孔323,减少直接冲击电极组件10的电解液,降低电极组件10变形的风险。示例性地,本申请实施例可以减小第一极耳11和隔离件受到的冲击,降低第一极耳11和隔离件的变形。
在一些实施例中,第一通孔323的孔径为D 1,第二通孔14的孔径为D 2,D 1和D 2满足:65%≤D 1/D 2≤95%。
示例性地,D 1指的是第一通孔323的最小直径,D 2指的是第二通孔14的最小直 径。
D 1越大,电解液注入的效率越高,电解液注满的时间越短,电解液的在注液过程中能够浸润到电极组件10中的量越少,电解液注入的总量也越少。D 2越小,第二通孔14的孔壁的面积越小,电解液从电极组件10内部浸润的效率越低。如果D 1/D 2过大,将会造成电解液的注入量偏少,影响电池单体7的循环寿命。发明人在经过深入的研究和大量的实验之后发现,将D 1/D 2的值限定为小于或等于95%,以使电解液的注入量满足要求。
D 1越小,电解液注入的效率越低,电解液注满的时间越长;D 2越大,电解液从电极组件10内部浸润的效率越高。如果D 1/D 2过小,会造成注液时间偏长,导致产品生产效率偏低。另外,D 2越大,电极组件10的容量越小,电池单体7的内部的空间利用率越低,电池单体7的能量密度也越低。发明人在经过深入的研究和大量的实验之后发现,将D 1/D 2的值限定为大于或等于65%,以提升注液效率,降低因第二通孔14造成的电池单体7的能量密度的损失。
可选地,D 1/D 2的值可为65%、75%、85%或95%。
在一些实施例中,D 2≥D 1+0.2mm。
在装配电池单体7时,因为装配误差,电极组件10可能会发生偏移,造成第一通孔323与电极组件10的实体部分相对,这样会造成电极组件10受到电解液的冲击。
发明人在经过深入的研究和大量的实验之后发现,使D 2≥D 1+0.2mm,可以为电极组件10提供偏移的余量,降低电极组件10的实体部分与第一通孔323相对的风险,减少直接冲击电极组件10的电解液,降低电极组件10变形的风险。
在一些实施例中,第一通孔323的中心轴线与第二通孔14的中心轴线平行。可选地,第一通孔323的中心轴线与第二通孔14的中心轴线重合。示例性地,第二通孔14的中心轴线可作为电极组件10的中心轴线A。
在一些实施例中,电池单体7还包括集流构件40,用于电连接电极端子30和第一极耳11。集流构件40包括第三通孔45,第三通孔45的至少部分设于第一通孔323和第二通孔14之间。
本实施例对第三通孔45的孔径不作特别限制,其孔径可以大于、小于或等于第一通孔323的空间。
在第一通孔323的轴向X上,第三通孔45与第一通孔323相对,即第三通孔45沿第一通孔323的轴向X的投影与第一通孔323沿第一通孔323的轴向X的投影至少部分地重叠。在第一通孔323的轴向X上,第三通孔45与第二通孔14相对,即第三通孔45沿第一通孔323的轴向X的投影与第二通孔14沿第一通孔323的轴向X的投影至少部分地重叠。
通过设置第三通孔45,以使集流构件40避让经由第一通孔323流入的电解液,降低集流构件40在注液工序中对电解液的阻挡,使电解液能够顺畅地穿过第三通孔45并流入第二通孔14内,提高电极组件10的浸润效率。
在一些实施例中,第三通孔45的轴向平行于第一通孔323的轴向X。
在一些实施例中,第三通孔45的孔径大于或等于第一通孔323的孔径。第三通 孔45的孔径小于或等于第二通孔14的孔径。
在一些实施例中,在第一通孔323的轴向X上,第三通孔45的投影小于第二通孔14的投影。
第三通孔45沿第一通孔323的轴向X投影的面积为S3,S2大于S3。示例性地,第三通孔45的孔径小于第二通孔14的孔径。
相较于第三通孔45,第二通孔14具有较大的横截面积,这样可以使穿过第三通孔45的电解液能够快速地流入第二通孔14,有助于提升电解液从内部浸润电极组件10的效率。
在一些实施例中,在第一通孔323的轴向X上,第三通孔45的投影大于第一通孔323的投影。示例性地,第三通孔45的孔径大于第一通孔323的孔径。
相较于第一通孔323,第三通孔45具有较大的横截面积,这样可以降低集流构件40遮挡第一通孔323的风险,使电解液能够顺畅地穿过第三通孔45并进入第二通孔14,提升电解液从内部浸润电极组件10的效率。
在一些实施例中,在第一通孔323的轴向X上,第一通孔323的投影位于第三通孔45的投影内。
本实施例既可以降低集流构件40遮挡第一通孔323的风险,使电解液能够顺畅地流入壳体20内,还能够减小集流构件40受到的冲击,降低集流构件40与电极端子30的连接处开裂的风险。
在一些实施例中,在第一通孔323的轴向X上,第三通孔45的投影位于第二通孔14的投影内。本实施例能够降低电极组件10的实体部分对第三通孔45的遮挡,使电解液能够顺畅地流入第二通孔14内。
在一些实施例中,第一通孔323、第二通孔14以及第三通孔45同轴设置。同轴设置指的是:第一通孔323的中心轴线、第二通孔14的中心轴线以及第三通孔45的中心轴线重合。当然,本实施例的重合不要求绝对的重合,允许存在工程常规认知中的误差。
将三个通孔同轴设置,可以使电解液的流入更为顺畅,减少集流构件40和电极组件10受到的来自电解液的冲击。
在一些实施例中,第三通孔45的孔径小于第二通孔14的孔径,集流构件40在第二通孔14的径向上向内凸出于第二通孔14的孔壁。集流构件40可以遮挡第一极耳11,减小第一极耳11受到的来自电解液的冲击。
图13为本申请另一些实施例提供的电池单体的局部剖视示意图。
如图13所示,在一些实施例中,电极端子30与第一极耳11焊接并形成第一焊接部W1。
与图6所示的电池单体相比,图13所示的电池单体7可以省去集流构件,从而简化电池单体7的内部结构,缩短电极端子30与第一极耳11之间的导电路径,提升电池单体7的能量密度。
根据本申请的一些实施例,还提供了一种电池,包括多个以上任一实施例的电池单体。
图14为本申请另一些实施例提供的电池单体的局部剖视示意图。
如图14所示,在一些实施例中,电极端子30的凹部可以省去。示例性地,第一通孔323贯通端子主体34,端子主体34可不设置图6所示的凹部31。密封板33可以直接盖合到端子主体34,并密封第一通孔323。
图15为本申请另一些实施例提供的电池单体的剖视示意图。
如图15所示,在一些实施例中,电池单体7可为方形电池单体。
在一些实施例中,壳体20包括一体形成的筒体21和盖体22,筒体21环绕电极组件10的外周设置。示例性地,筒体21可为方筒。
筒体21在背离盖体22的一端具有开口,盖板50盖合于筒体21的开口处,以封闭筒体21的开口。示例性地,盖板50焊接于筒体21。
在一些实施例中,电池单体还包括极性相反的第一电极端子30和第二电极端子90,第一电极端子30用于电连接于电极组件10的第一极耳,第二电极端子90用于电连接于电极组件10的第二极耳。
在一些实施例中,第一电极端子30和第二电极端子90均安装于盖体22。
在电池中,汇流部件连接多个电池单体的电极端子,以将多个电池单体串联、并联或混联。第一电极端子30和第二电极端子90均可用于与汇流部件连接。
在电池受到外部冲击时,汇流部件会通过第一电极端子30和第二电极端子90拉扯盖体22,从而使盖体22和筒体21的连接处受到力的作用。如果盖体22和筒体21为分体结构,例如盖体22和筒体21通过焊接相连,那么盖体22和筒体21的连接处在力的作用下可能会出现连接失效。本申请实施例时盖体22和筒体21一体设置,从而提高盖体22和筒体21连接处的强度,降低盖体22和筒体21连接失效的风险。
在一些实施例中,壳体20不与电极组件的正极电连接,也不与电极组件的负极电连接。换言之,壳体20不带电。
在一些实施例中,电极组件10的第一极耳和第二极耳位于电极组件面向盖体22的同一侧。
在一些实施例中,第一通孔323可开设于第一电极端子30。
根据本申请的一些实施例,还提供了一种用电装置,包括以上任一实施例的电池,电池用于为用电装置提供电能。用电装置可以是前述任一应用电池单体的设备或系统。
参照图4至图7,根据本申请的一些实施例提供了一种圆柱电池单体7,其包括电极组件10、壳体20、电极端子30、集流构件40和盖板50。
壳体20包括一体形成的筒体21和盖体22,筒体21环绕电极组件10的外周设置,盖体22设有电极引出孔221。筒体21在背离盖体22的一端具有开口211,盖板50盖合于筒体21的开口处,以封闭筒体21的开口。
电极组件10容纳于壳体20内且包括主体部12、第一极耳11和第二极耳13,第一极耳11和第二极耳13凸出于主体部12。第一极耳11位于电极组件10的面向电极端子30的一端,第二极耳13位于电极组件10背离电极端子30的一端。
电极端子30包括密封板33和端子主体34,端子主体34安装于电极引出孔221, 且端子主体34包括凹部31和位于凹部31面向电极组件10一侧的连接部32,第一通孔323贯通连接部32,第一通孔323用于向壳体20的内部空间注入电解液。密封板33的至少部分容纳于凹部31,且密封板33连接于端子主体34并用于密封第一通孔323。
集流构件40焊接于连接部32并形成至少一个第一焊接部W1,焊接于第一极耳11并形成至少一个第二焊接部W2,从而将连接部32和第一极耳11电连接。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (32)

  1. 一种电池单体,包括:
    电极组件,包括第一极耳;
    壳体,用于容纳所述电极组件;
    电极端子,设置于所述壳体,并与所述第一极耳电连接,所述电极端子设有第一通孔,所述第一通孔用于向所述壳体的内部空间注入电解液。
  2. 根据权利要求1所述的电池单体,其中,所述电极端子通过至少一个第一焊接部实现与所述第一极耳的电连接。
  3. 根据权利要求2所述的电池单体,其中,所述第一焊接部的数量为一个,所述第一焊接部沿所述第一通孔的周向延伸并包围所述第一通孔的至少部分。
  4. 根据权利要求3所述的电池单体,其中,所述第一焊接部沿所述第一通孔的周向仅包围所述第一通孔的一部分。
  5. 根据权利要求3或4所述的电池单体,其中,所述第一焊接部包围所述第一通孔的角度为α,180°≤α≤360°。
  6. 根据权利要求2所述的电池单体,其中,所述第一焊接部为多个,多个所述第一焊接部沿所述第一通孔的周向间隔设置。
  7. 根据权利要求6所述的电池单体,其中,任意相邻两个所述第一焊接部沿所述第一通孔的周向的间隔角度小于30°。
  8. 根据权利要求6或7所述的电池单体,其中,每个所述第一焊接部沿所述第一通孔的径向延伸。
  9. 根据权利要求2-8任一项所述的电池单体,其中,在所述第一通孔的轴向上,所述第一焊接部的深度为h;在所述第一通孔的径向上,所述第一焊接部与所述第一通孔之间的最小间距为d;
    d和h满足:0.1≤h/d≤0.6。
  10. 根据权利要求9所述的电池单体,其中,d和h满足:0.2≤h/d≤0.5。
  11. 根据权利要求9或10所述的电池单体,其中,1.6mm≤d≤5.5mm。
  12. 根据权利要求1-11任一项所述的电池单体,其中,
    所述电极组件为卷绕结构,所述电极组件在卷绕中心处具有第二通孔;
    所述第一通孔与所述第二通孔连通,以使经由所述第一通孔注入的电解液能够流入所述第二通孔。
  13. 根据权利要求12所述的电池单体,其中,在所述第一通孔的轴向上,所述第一通孔的投影与所述第二通孔的投影至少部分地重叠。
  14. 根据权利要求12或13所述的电池单体,其中,在所述第一通孔的轴向上,所述第二通孔的投影大于所述第一通孔的投影。
  15. 根据权利要求13或14所述的电池单体,其中,在所述第一通孔的轴向上,所述第一通孔的投影位于所述第二通孔的投影内。
  16. 根据权利要求14或15所述的电池单体,其中,所述第一通孔的孔径为D 1,所述第二通孔的孔径为D 2,D 1和D 2满足:65%≤D 1/D 2≤95%。
  17. 根据权利要求16所述的电池单体,其中,D 2≥D 1+0.2mm。
  18. 根据权利要求12-16任一项所述的电池单体,还包括集流构件,用于电连接所述电极端子和所述第一极耳;
    所述集流构件包括第三通孔,所述第三通孔的至少部分设于所述第一通孔和所述第二通孔之间。
  19. 根据权利要求18所述的电池单体,其中,在所述第一通孔的轴向上,所述第三通孔的投影小于所述第二通孔的投影。
  20. 根据权利要求18或19所述的电池单体,其中,在所述第一通孔的轴向上,所述第三通孔的投影大于所述第一通孔的投影。
  21. 根据权利要求18-20任一项所述的电池单体,其中,在所述第一通孔的轴向上,所述第一通孔的投影位于所述第三通孔的投影内,所述第三通孔的投影位于所述第二通孔的投影内。
  22. 根据权利要求18-21任一项所述的电池单体,其中,所述第一通孔、所述第二通孔以及所述第三通孔同轴设置。
  23. 根据权利要求1-22任一项所述的电池单体,其中,所述电极端子包括密封板和端子主体,所述端子主体设有所述第一通孔,所述密封板连接于所述端子主体并用于密封所述第一通孔。
  24. 根据权利要求23所述的电池单体,其中,所述端子主体包括凹部和位于所述凹部面向所述电极组件一侧的连接部,所述第一通孔贯通所述连接部,所述连接部通过至少一个第一焊接部实现与所述第一极耳的电连接;
    所述密封板的至少部分容纳于所述凹部。
  25. 根据权利要求1-24任一项所述的电池单体,其中,所述壳体包括筒体和连接于所述筒体的盖体,所述筒体环绕所述电极组件的外周设置,所述盖体设有电极引出孔,所述电极端子设置于所述电极引出孔。
  26. 根据权利要求25所述的电池单体,其中,所述盖体与所述筒体一体成型结构。
  27. 根据权利要求25或26所述的电池单体,其中,所述电极组件还包括第二极耳,所述第二极耳与所述第一极耳的极性相反,所述第二极耳电连接于所述盖体。
  28. 根据权利要求27所述的电池单体,其中,所述第一极耳位于所述电极组件面向所述电极端子的一端,所述第二极耳位于所述电极组件背离所述电极端子的一端。
  29. 根据权利要求27或28所述的电池单体,其中,所述第二极耳为负极极耳,所述壳体的基体材质为钢。
  30. 根据权利要求25-29中任一项所述的电池单体,其中,所述筒体在背离所述盖体的一端具有开口,所述电池单体还包括用于封闭所述开口的盖板。
  31. 一种电池,包括多个根据权利要求1-30中任一项所述的电池单体。
  32. 一种用电装置,包括根据权利要求31所述的电池,所述电池用于提供电能。
PCT/CN2022/114036 2021-08-23 2022-08-22 电池单体、电池以及用电装置 WO2023025107A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023530876A JP2023550165A (ja) 2021-08-23 2022-08-22 電池セル、電池及び電力消費装置
CN202280007864.9A CN116529949A (zh) 2021-08-23 2022-08-22 电池单体、电池以及用电装置
EP22860453.4A EP4266481A1 (en) 2021-08-23 2022-08-22 Battery cell, battery, and electric device
KR1020237017462A KR20230093033A (ko) 2021-08-23 2022-08-22 전지 셀, 전지 및 전기기기
US18/360,780 US20230369734A1 (en) 2021-08-23 2023-07-27 Battery cell, battery, and electric apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/114156 WO2023023917A1 (zh) 2021-08-23 2021-08-23 电池单体及其制造方法和制造系统、电池以及用电装置
CNPCT/CN2021/114156 2021-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/360,780 Continuation US20230369734A1 (en) 2021-08-23 2023-07-27 Battery cell, battery, and electric apparatus

Publications (1)

Publication Number Publication Date
WO2023025107A1 true WO2023025107A1 (zh) 2023-03-02

Family

ID=85321403

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2021/114156 WO2023023917A1 (zh) 2021-08-23 2021-08-23 电池单体及其制造方法和制造系统、电池以及用电装置
PCT/CN2022/114037 WO2023025108A1 (zh) 2021-08-23 2022-08-22 电池单体、电池以及用电装置
PCT/CN2022/114036 WO2023025107A1 (zh) 2021-08-23 2022-08-22 电池单体、电池以及用电装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/114156 WO2023023917A1 (zh) 2021-08-23 2021-08-23 电池单体及其制造方法和制造系统、电池以及用电装置
PCT/CN2022/114037 WO2023025108A1 (zh) 2021-08-23 2022-08-22 电池单体、电池以及用电装置

Country Status (6)

Country Link
US (3) US20230402684A1 (zh)
EP (3) EP4164022A4 (zh)
JP (3) JP2023542763A (zh)
KR (3) KR20230033638A (zh)
CN (5) CN116569406A (zh)
WO (3) WO2023023917A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284644B (zh) * 2021-12-22 2024-02-20 远景动力技术(江苏)有限公司 转接结构及包含其的全极耳卷芯、全极耳电池
WO2024082112A1 (zh) * 2022-10-17 2024-04-25 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN116683128B (zh) * 2023-08-03 2023-11-14 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083339A (zh) * 2006-05-30 2007-12-05 张树全 圆柱形锂二次电池及其制造方法
CN105826489A (zh) * 2015-01-06 2016-08-03 湘潭银河新能源有限公司 一种新型散热电池
CN209472008U (zh) * 2019-04-28 2019-10-08 郭军平 耐低温且高倍率充放电的全极耳圆柱锂离子电池
CN213905545U (zh) * 2020-09-30 2021-08-06 星恒电源(滁州)有限公司 一种圆形锂电池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675700B1 (ko) * 1999-08-10 2007-02-01 산요덴키가부시키가이샤 비수 전해액 이차 전지 및 그 제조 방법
JP2001256954A (ja) * 2000-03-10 2001-09-21 Sony Corp 蓄電装置
JP2007265846A (ja) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd 円筒形電池およびその製造方法
JP5198134B2 (ja) * 2008-04-28 2013-05-15 パナソニック株式会社 円筒形電池の製造方法
CN206619636U (zh) * 2017-03-30 2017-11-07 陕西沃特玛新能源有限公司 一种电池
CN112271412B (zh) * 2017-08-30 2022-08-09 宁德时代新能源科技股份有限公司 二次电池以及电池模组
CN209183657U (zh) * 2018-12-03 2019-07-30 宁德时代新能源科技股份有限公司 二次电池以及电池模组
CN209200018U (zh) * 2018-12-05 2019-08-02 宁德时代新能源科技股份有限公司 二次电池以及电池模组
CN209447912U (zh) * 2019-03-13 2019-09-27 宁德时代新能源科技股份有限公司 二次电池
CN112310574A (zh) * 2020-09-30 2021-02-02 宁德时代新能源科技股份有限公司 圆柱型电池单体、电池、用电装置、制造方法及制造系统
CN212783705U (zh) * 2020-09-30 2021-03-23 中航锂电技术研究院有限公司 电池盖板组件、电池及电池模组
CN112510326A (zh) * 2020-12-18 2021-03-16 湖北亿纬动力有限公司 一种单体电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083339A (zh) * 2006-05-30 2007-12-05 张树全 圆柱形锂二次电池及其制造方法
CN105826489A (zh) * 2015-01-06 2016-08-03 湘潭银河新能源有限公司 一种新型散热电池
CN209472008U (zh) * 2019-04-28 2019-10-08 郭军平 耐低温且高倍率充放电的全极耳圆柱锂离子电池
CN213905545U (zh) * 2020-09-30 2021-08-06 星恒电源(滁州)有限公司 一种圆形锂电池

Also Published As

Publication number Publication date
JP2023551232A (ja) 2023-12-07
CN218769959U (zh) 2023-03-28
KR20230033638A (ko) 2023-03-08
KR20230096015A (ko) 2023-06-29
US20230402684A1 (en) 2023-12-14
US20230344097A1 (en) 2023-10-26
JP2023550165A (ja) 2023-11-30
US20230369734A1 (en) 2023-11-16
EP4254644A1 (en) 2023-10-04
EP4164022A1 (en) 2023-04-12
CN116529948A (zh) 2023-08-01
CN116529949A (zh) 2023-08-01
EP4164022A4 (en) 2023-09-06
WO2023023917A1 (zh) 2023-03-02
EP4266481A1 (en) 2023-10-25
JP2023542763A (ja) 2023-10-12
WO2023025108A1 (zh) 2023-03-02
CN116569406A (zh) 2023-08-08
KR20230093033A (ko) 2023-06-26
CN218769992U (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2023025107A1 (zh) 电池单体、电池以及用电装置
CN215988974U (zh) 电池单体、电池以及用电装置
CN217158403U (zh) 电池单体、电池以及用电装置
WO2023092758A1 (zh) 电池单体及其制造方法和制造设备、电池以及用电设备
US20240154218A1 (en) Battery cell, battery, and electrical apparatus
WO2023023915A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050281A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050289A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050278A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050282A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
CN220510198U (zh) 电池单体、电池及用电装置
US20230055271A1 (en) Battery cell, method and system for manufacturing a battery cell, battery and electrical device
WO2023141879A1 (zh) 电池单体及其制造方法和制造设备、电池以及用电装置
WO2024082112A1 (zh) 电池单体、电池以及用电装置
WO2023051731A1 (zh) 电池单体、电池以及用电装置
WO2023245430A1 (zh) 电池单体、电池及用电设备
CN218997009U (zh) 电池单体、电池以及用电装置
WO2023097469A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023097584A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023155204A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023082151A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023159928A1 (zh) 电池单体、电池以及用电装置
US20240097287A1 (en) Battery cell, method and system for manufacture same, battery, and power consuming device
US20240162558A1 (en) Battery cell, battery, electrical apparatus, and method and apparatus for manufacturing battery cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530876

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237017462

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280007864.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022860453

Country of ref document: EP

Effective date: 20230717

NENP Non-entry into the national phase

Ref country code: DE